1 //===-- DifferenceEngine.cpp - Structural function/module comparison ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This header defines the implementation of the LLVM difference
10 // engine, which structurally compares global values within a module.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "DifferenceEngine.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringSet.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Support/type_traits.h"
29 #include <utility>
30 
31 using namespace llvm;
32 
33 namespace {
34 
35 /// A priority queue, implemented as a heap.
36 template <class T, class Sorter, unsigned InlineCapacity>
37 class PriorityQueue {
38   Sorter Precedes;
39   llvm::SmallVector<T, InlineCapacity> Storage;
40 
41 public:
42   PriorityQueue(const Sorter &Precedes) : Precedes(Precedes) {}
43 
44   /// Checks whether the heap is empty.
45   bool empty() const { return Storage.empty(); }
46 
47   /// Insert a new value on the heap.
48   void insert(const T &V) {
49     unsigned Index = Storage.size();
50     Storage.push_back(V);
51     if (Index == 0) return;
52 
53     T *data = Storage.data();
54     while (true) {
55       unsigned Target = (Index + 1) / 2 - 1;
56       if (!Precedes(data[Index], data[Target])) return;
57       std::swap(data[Index], data[Target]);
58       if (Target == 0) return;
59       Index = Target;
60     }
61   }
62 
63   /// Remove the minimum value in the heap.  Only valid on a non-empty heap.
64   T remove_min() {
65     assert(!empty());
66     T tmp = Storage[0];
67 
68     unsigned NewSize = Storage.size() - 1;
69     if (NewSize) {
70       // Move the slot at the end to the beginning.
71       if (std::is_trivially_copyable<T>::value)
72         Storage[0] = Storage[NewSize];
73       else
74         std::swap(Storage[0], Storage[NewSize]);
75 
76       // Bubble the root up as necessary.
77       unsigned Index = 0;
78       while (true) {
79         // With a 1-based index, the children would be Index*2 and Index*2+1.
80         unsigned R = (Index + 1) * 2;
81         unsigned L = R - 1;
82 
83         // If R is out of bounds, we're done after this in any case.
84         if (R >= NewSize) {
85           // If L is also out of bounds, we're done immediately.
86           if (L >= NewSize) break;
87 
88           // Otherwise, test whether we should swap L and Index.
89           if (Precedes(Storage[L], Storage[Index]))
90             std::swap(Storage[L], Storage[Index]);
91           break;
92         }
93 
94         // Otherwise, we need to compare with the smaller of L and R.
95         // Prefer R because it's closer to the end of the array.
96         unsigned IndexToTest = (Precedes(Storage[L], Storage[R]) ? L : R);
97 
98         // If Index is >= the min of L and R, then heap ordering is restored.
99         if (!Precedes(Storage[IndexToTest], Storage[Index]))
100           break;
101 
102         // Otherwise, keep bubbling up.
103         std::swap(Storage[IndexToTest], Storage[Index]);
104         Index = IndexToTest;
105       }
106     }
107     Storage.pop_back();
108 
109     return tmp;
110   }
111 };
112 
113 /// A function-scope difference engine.
114 class FunctionDifferenceEngine {
115   DifferenceEngine &Engine;
116 
117   // Some initializers may reference the variable we're currently checking. This
118   // can cause an infinite loop. The Saved[LR]HS ivars can be checked to prevent
119   // recursing.
120   const Value *SavedLHS;
121   const Value *SavedRHS;
122 
123   // The current mapping from old local values to new local values.
124   DenseMap<const Value *, const Value *> Values;
125 
126   // The current mapping from old blocks to new blocks.
127   DenseMap<const BasicBlock *, const BasicBlock *> Blocks;
128 
129   // The tentative mapping from old local values while comparing a pair of
130   // basic blocks. Once the pair has been processed, the tentative mapping is
131   // committed to the Values map.
132   DenseSet<std::pair<const Value *, const Value *>> TentativeValues;
133 
134   // Equivalence Assumptions
135   //
136   // For basic blocks in loops, some values in phi nodes may depend on
137   // values from not yet processed basic blocks in the loop. When encountering
138   // such values, we optimistically asssume their equivalence and store this
139   // assumption in a BlockDiffCandidate for the pair of compared BBs.
140   //
141   // Once we have diffed all BBs, for every BlockDiffCandidate, we check all
142   // stored assumptions using the Values map that stores proven equivalences
143   // between the old and new values, and report a diff if an assumption cannot
144   // be proven to be true.
145   //
146   // Note that after having made an assumption, all further determined
147   // equivalences implicitly depend on that assumption. These will not be
148   // reverted or reported if the assumption proves to be false, because these
149   // are considered indirect diffs caused by earlier direct diffs.
150   //
151   // We aim to avoid false negatives in llvm-diff, that is, ensure that
152   // whenever no diff is reported, the functions are indeed equal. If
153   // assumptions were made, this is not entirely clear, because in principle we
154   // could end up with a circular proof where the proof of equivalence of two
155   // nodes is depending on the assumption of their equivalence.
156   //
157   // To see that assumptions do not add false negatives, note that if we do not
158   // report a diff, this means that there is an equivalence mapping between old
159   // and new values that is consistent with all assumptions made. The circular
160   // dependency that exists on an IR value level does not exist at run time,
161   // because the values selected by the phi nodes must always already have been
162   // computed. Hence, we can prove equivalence of the old and new functions by
163   // considering step-wise parallel execution, and incrementally proving
164   // equivalence of every new computed value. Another way to think about it is
165   // to imagine cloning the loop BBs for every iteration, turning the loops
166   // into (possibly infinite) DAGs, and proving equivalence by induction on the
167   // iteration, using the computed value mapping.
168 
169   // The class BlockDiffCandidate stores pairs which either have already been
170   // proven to differ, or pairs whose equivalence depends on assumptions to be
171   // verified later.
172   struct BlockDiffCandidate {
173     const BasicBlock *LBB;
174     const BasicBlock *RBB;
175     // Maps old values to assumed-to-be-equivalent new values
176     SmallDenseMap<const Value *, const Value *> EquivalenceAssumptions;
177     // If set, we already know the blocks differ.
178     bool KnownToDiffer;
179   };
180 
181   // List of block diff candidates in the order found by processing.
182   // We generate reports in this order.
183   // For every LBB, there may only be one corresponding RBB.
184   SmallVector<BlockDiffCandidate> BlockDiffCandidates;
185   // Maps LBB to the index of its BlockDiffCandidate, if existing.
186   DenseMap<const BasicBlock *, uint64_t> BlockDiffCandidateIndices;
187 
188   // Note: Every LBB must always be queried together with the same RBB.
189   // The returned reference is not permanently valid and should not be stored.
190   BlockDiffCandidate &getOrCreateBlockDiffCandidate(const BasicBlock *LBB,
191                                                     const BasicBlock *RBB) {
192     auto It = BlockDiffCandidateIndices.find(LBB);
193     // Check if LBB already has a diff candidate
194     if (It == BlockDiffCandidateIndices.end()) {
195       // Add new one
196       BlockDiffCandidateIndices[LBB] = BlockDiffCandidates.size();
197       BlockDiffCandidates.push_back(
198           {LBB, RBB, SmallDenseMap<const Value *, const Value *>(), false});
199       return BlockDiffCandidates.back();
200     }
201     // Use existing one
202     BlockDiffCandidate &Result = BlockDiffCandidates[It->second];
203     assert(Result.RBB == RBB && "Inconsistent basic block pairing!");
204     return Result;
205   }
206 
207   // Optionally passed to equivalence checker functions, so these can add
208   // assumptions in BlockDiffCandidates. Its presence controls whether
209   // assumptions are generated.
210   struct AssumptionContext {
211     // The two basic blocks that need the two compared values to be equivalent.
212     const BasicBlock *LBB;
213     const BasicBlock *RBB;
214   };
215 
216   unsigned getUnprocPredCount(const BasicBlock *Block) const {
217     return llvm::count_if(predecessors(Block), [&](const BasicBlock *Pred) {
218       return !Blocks.contains(Pred);
219     });
220   }
221 
222   typedef std::pair<const BasicBlock *, const BasicBlock *> BlockPair;
223 
224   /// A type which sorts a priority queue by the number of unprocessed
225   /// predecessor blocks it has remaining.
226   ///
227   /// This is actually really expensive to calculate.
228   struct QueueSorter {
229     const FunctionDifferenceEngine &fde;
230     explicit QueueSorter(const FunctionDifferenceEngine &fde) : fde(fde) {}
231 
232     bool operator()(BlockPair &Old, BlockPair &New) {
233       return fde.getUnprocPredCount(Old.first)
234            < fde.getUnprocPredCount(New.first);
235     }
236   };
237 
238   /// A queue of unified blocks to process.
239   PriorityQueue<BlockPair, QueueSorter, 20> Queue;
240 
241   /// Try to unify the given two blocks.  Enqueues them for processing
242   /// if they haven't already been processed.
243   ///
244   /// Returns true if there was a problem unifying them.
245   bool tryUnify(const BasicBlock *L, const BasicBlock *R) {
246     const BasicBlock *&Ref = Blocks[L];
247 
248     if (Ref) {
249       if (Ref == R) return false;
250 
251       Engine.logf("successor %l cannot be equivalent to %r; "
252                   "it's already equivalent to %r")
253         << L << R << Ref;
254       return true;
255     }
256 
257     Ref = R;
258     Queue.insert(BlockPair(L, R));
259     return false;
260   }
261 
262   /// Unifies two instructions, given that they're known not to have
263   /// structural differences.
264   void unify(const Instruction *L, const Instruction *R) {
265     DifferenceEngine::Context C(Engine, L, R);
266 
267     bool Result = diff(L, R, true, true, true);
268     assert(!Result && "structural differences second time around?");
269     (void) Result;
270     if (!L->use_empty())
271       Values[L] = R;
272   }
273 
274   void processQueue() {
275     while (!Queue.empty()) {
276       BlockPair Pair = Queue.remove_min();
277       diff(Pair.first, Pair.second);
278     }
279   }
280 
281   void checkAndReportDiffCandidates() {
282     for (BlockDiffCandidate &BDC : BlockDiffCandidates) {
283 
284       // Check assumptions
285       for (const auto &[L, R] : BDC.EquivalenceAssumptions) {
286         auto It = Values.find(L);
287         if (It == Values.end() || It->second != R) {
288           BDC.KnownToDiffer = true;
289           break;
290         }
291       }
292 
293       // Run block diff if the BBs differ
294       if (BDC.KnownToDiffer) {
295         DifferenceEngine::Context C(Engine, BDC.LBB, BDC.RBB);
296         runBlockDiff(BDC.LBB->begin(), BDC.RBB->begin());
297       }
298     }
299   }
300 
301   void diff(const BasicBlock *L, const BasicBlock *R) {
302     DifferenceEngine::Context C(Engine, L, R);
303 
304     BasicBlock::const_iterator LI = L->begin(), LE = L->end();
305     BasicBlock::const_iterator RI = R->begin();
306 
307     do {
308       assert(LI != LE && RI != R->end());
309       const Instruction *LeftI = &*LI, *RightI = &*RI;
310 
311       // If the instructions differ, start the more sophisticated diff
312       // algorithm at the start of the block.
313       if (diff(LeftI, RightI, false, false, true)) {
314         TentativeValues.clear();
315         // Register (L, R) as diffing pair. Note that we could directly emit a
316         // block diff here, but this way we ensure all diffs are emitted in one
317         // consistent order, independent of whether the diffs were detected
318         // immediately or via invalid assumptions.
319         getOrCreateBlockDiffCandidate(L, R).KnownToDiffer = true;
320         return;
321       }
322 
323       // Otherwise, tentatively unify them.
324       if (!LeftI->use_empty())
325         TentativeValues.insert(std::make_pair(LeftI, RightI));
326 
327       ++LI;
328       ++RI;
329     } while (LI != LE); // This is sufficient: we can't get equality of
330                         // terminators if there are residual instructions.
331 
332     // Unify everything in the block, non-tentatively this time.
333     TentativeValues.clear();
334     for (LI = L->begin(), RI = R->begin(); LI != LE; ++LI, ++RI)
335       unify(&*LI, &*RI);
336   }
337 
338   bool matchForBlockDiff(const Instruction *L, const Instruction *R);
339   void runBlockDiff(BasicBlock::const_iterator LI,
340                     BasicBlock::const_iterator RI);
341 
342   bool diffCallSites(const CallBase &L, const CallBase &R, bool Complain) {
343     // FIXME: call attributes
344     AssumptionContext AC = {L.getParent(), R.getParent()};
345     if (!equivalentAsOperands(L.getCalledOperand(), R.getCalledOperand(),
346                               &AC)) {
347       if (Complain) Engine.log("called functions differ");
348       return true;
349     }
350     if (L.arg_size() != R.arg_size()) {
351       if (Complain) Engine.log("argument counts differ");
352       return true;
353     }
354     for (unsigned I = 0, E = L.arg_size(); I != E; ++I)
355       if (!equivalentAsOperands(L.getArgOperand(I), R.getArgOperand(I), &AC)) {
356         if (Complain)
357           Engine.logf("arguments %l and %r differ")
358               << L.getArgOperand(I) << R.getArgOperand(I);
359         return true;
360       }
361     return false;
362   }
363 
364   // If AllowAssumptions is enabled, whenever we encounter a pair of values
365   // that we cannot prove to be equivalent, we assume equivalence and store that
366   // assumption to be checked later in BlockDiffCandidates.
367   bool diff(const Instruction *L, const Instruction *R, bool Complain,
368             bool TryUnify, bool AllowAssumptions) {
369     // FIXME: metadata (if Complain is set)
370     AssumptionContext ACValue = {L->getParent(), R->getParent()};
371     // nullptr AssumptionContext disables assumption generation.
372     const AssumptionContext *AC = AllowAssumptions ? &ACValue : nullptr;
373 
374     // Different opcodes always imply different operations.
375     if (L->getOpcode() != R->getOpcode()) {
376       if (Complain) Engine.log("different instruction types");
377       return true;
378     }
379 
380     if (isa<CmpInst>(L)) {
381       if (cast<CmpInst>(L)->getPredicate()
382             != cast<CmpInst>(R)->getPredicate()) {
383         if (Complain) Engine.log("different predicates");
384         return true;
385       }
386     } else if (isa<CallInst>(L)) {
387       return diffCallSites(cast<CallInst>(*L), cast<CallInst>(*R), Complain);
388     } else if (isa<PHINode>(L)) {
389       const PHINode &LI = cast<PHINode>(*L);
390       const PHINode &RI = cast<PHINode>(*R);
391 
392       // This is really weird;  type uniquing is broken?
393       if (LI.getType() != RI.getType()) {
394         if (!LI.getType()->isPointerTy() || !RI.getType()->isPointerTy()) {
395           if (Complain) Engine.log("different phi types");
396           return true;
397         }
398       }
399 
400       if (LI.getNumIncomingValues() != RI.getNumIncomingValues()) {
401         if (Complain)
402           Engine.log("PHI node # of incoming values differ");
403         return true;
404       }
405 
406       for (unsigned I = 0; I < LI.getNumIncomingValues(); ++I) {
407         if (TryUnify)
408           tryUnify(LI.getIncomingBlock(I), RI.getIncomingBlock(I));
409 
410         if (!equivalentAsOperands(LI.getIncomingValue(I),
411                                   RI.getIncomingValue(I), AC)) {
412           if (Complain)
413             Engine.log("PHI node incoming values differ");
414           return true;
415         }
416       }
417 
418       return false;
419 
420     // Terminators.
421     } else if (isa<InvokeInst>(L)) {
422       const InvokeInst &LI = cast<InvokeInst>(*L);
423       const InvokeInst &RI = cast<InvokeInst>(*R);
424       if (diffCallSites(LI, RI, Complain))
425         return true;
426 
427       if (TryUnify) {
428         tryUnify(LI.getNormalDest(), RI.getNormalDest());
429         tryUnify(LI.getUnwindDest(), RI.getUnwindDest());
430       }
431       return false;
432 
433     } else if (isa<CallBrInst>(L)) {
434       const CallBrInst &LI = cast<CallBrInst>(*L);
435       const CallBrInst &RI = cast<CallBrInst>(*R);
436       if (LI.getNumIndirectDests() != RI.getNumIndirectDests()) {
437         if (Complain)
438           Engine.log("callbr # of indirect destinations differ");
439         return true;
440       }
441 
442       // Perform the "try unify" step so that we can equate the indirect
443       // destinations before checking the call site.
444       for (unsigned I = 0; I < LI.getNumIndirectDests(); I++)
445         tryUnify(LI.getIndirectDest(I), RI.getIndirectDest(I));
446 
447       if (diffCallSites(LI, RI, Complain))
448         return true;
449 
450       if (TryUnify)
451         tryUnify(LI.getDefaultDest(), RI.getDefaultDest());
452       return false;
453 
454     } else if (isa<BranchInst>(L)) {
455       const BranchInst *LI = cast<BranchInst>(L);
456       const BranchInst *RI = cast<BranchInst>(R);
457       if (LI->isConditional() != RI->isConditional()) {
458         if (Complain) Engine.log("branch conditionality differs");
459         return true;
460       }
461 
462       if (LI->isConditional()) {
463         if (!equivalentAsOperands(LI->getCondition(), RI->getCondition(), AC)) {
464           if (Complain) Engine.log("branch conditions differ");
465           return true;
466         }
467         if (TryUnify) tryUnify(LI->getSuccessor(1), RI->getSuccessor(1));
468       }
469       if (TryUnify) tryUnify(LI->getSuccessor(0), RI->getSuccessor(0));
470       return false;
471 
472     } else if (isa<IndirectBrInst>(L)) {
473       const IndirectBrInst *LI = cast<IndirectBrInst>(L);
474       const IndirectBrInst *RI = cast<IndirectBrInst>(R);
475       if (LI->getNumDestinations() != RI->getNumDestinations()) {
476         if (Complain) Engine.log("indirectbr # of destinations differ");
477         return true;
478       }
479 
480       if (!equivalentAsOperands(LI->getAddress(), RI->getAddress(), AC)) {
481         if (Complain) Engine.log("indirectbr addresses differ");
482         return true;
483       }
484 
485       if (TryUnify) {
486         for (unsigned i = 0; i < LI->getNumDestinations(); i++) {
487           tryUnify(LI->getDestination(i), RI->getDestination(i));
488         }
489       }
490       return false;
491 
492     } else if (isa<SwitchInst>(L)) {
493       const SwitchInst *LI = cast<SwitchInst>(L);
494       const SwitchInst *RI = cast<SwitchInst>(R);
495       if (!equivalentAsOperands(LI->getCondition(), RI->getCondition(), AC)) {
496         if (Complain) Engine.log("switch conditions differ");
497         return true;
498       }
499       if (TryUnify) tryUnify(LI->getDefaultDest(), RI->getDefaultDest());
500 
501       bool Difference = false;
502 
503       DenseMap<const ConstantInt *, const BasicBlock *> LCases;
504       for (auto Case : LI->cases())
505         LCases[Case.getCaseValue()] = Case.getCaseSuccessor();
506 
507       for (auto Case : RI->cases()) {
508         const ConstantInt *CaseValue = Case.getCaseValue();
509         const BasicBlock *LCase = LCases[CaseValue];
510         if (LCase) {
511           if (TryUnify)
512             tryUnify(LCase, Case.getCaseSuccessor());
513           LCases.erase(CaseValue);
514         } else if (Complain || !Difference) {
515           if (Complain)
516             Engine.logf("right switch has extra case %r") << CaseValue;
517           Difference = true;
518         }
519       }
520       if (!Difference)
521         for (DenseMap<const ConstantInt *, const BasicBlock *>::iterator
522                  I = LCases.begin(),
523                  E = LCases.end();
524              I != E; ++I) {
525           if (Complain)
526             Engine.logf("left switch has extra case %l") << I->first;
527           Difference = true;
528         }
529       return Difference;
530     } else if (isa<UnreachableInst>(L)) {
531       return false;
532     }
533 
534     if (L->getNumOperands() != R->getNumOperands()) {
535       if (Complain) Engine.log("instructions have different operand counts");
536       return true;
537     }
538 
539     for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I) {
540       Value *LO = L->getOperand(I), *RO = R->getOperand(I);
541       if (!equivalentAsOperands(LO, RO, AC)) {
542         if (Complain) Engine.logf("operands %l and %r differ") << LO << RO;
543         return true;
544       }
545     }
546 
547     return false;
548   }
549 
550 public:
551   bool equivalentAsOperands(const Constant *L, const Constant *R,
552                             const AssumptionContext *AC) {
553     // Use equality as a preliminary filter.
554     if (L == R)
555       return true;
556 
557     if (L->getValueID() != R->getValueID())
558       return false;
559 
560     // Ask the engine about global values.
561     if (isa<GlobalValue>(L))
562       return Engine.equivalentAsOperands(cast<GlobalValue>(L),
563                                          cast<GlobalValue>(R));
564 
565     // Compare constant expressions structurally.
566     if (isa<ConstantExpr>(L))
567       return equivalentAsOperands(cast<ConstantExpr>(L), cast<ConstantExpr>(R),
568                                   AC);
569 
570     // Constants of the "same type" don't always actually have the same
571     // type; I don't know why.  Just white-list them.
572     if (isa<ConstantPointerNull>(L) || isa<UndefValue>(L) || isa<ConstantAggregateZero>(L))
573       return true;
574 
575     // Block addresses only match if we've already encountered the
576     // block.  FIXME: tentative matches?
577     if (isa<BlockAddress>(L))
578       return Blocks[cast<BlockAddress>(L)->getBasicBlock()]
579                  == cast<BlockAddress>(R)->getBasicBlock();
580 
581     // If L and R are ConstantVectors, compare each element
582     if (isa<ConstantVector>(L)) {
583       const ConstantVector *CVL = cast<ConstantVector>(L);
584       const ConstantVector *CVR = cast<ConstantVector>(R);
585       if (CVL->getType()->getNumElements() != CVR->getType()->getNumElements())
586         return false;
587       for (unsigned i = 0; i < CVL->getType()->getNumElements(); i++) {
588         if (!equivalentAsOperands(CVL->getOperand(i), CVR->getOperand(i), AC))
589           return false;
590       }
591       return true;
592     }
593 
594     // If L and R are ConstantArrays, compare the element count and types.
595     if (isa<ConstantArray>(L)) {
596       const ConstantArray *CAL = cast<ConstantArray>(L);
597       const ConstantArray *CAR = cast<ConstantArray>(R);
598       // Sometimes a type may be equivalent, but not uniquified---e.g. it may
599       // contain a GEP instruction. Do a deeper comparison of the types.
600       if (CAL->getType()->getNumElements() != CAR->getType()->getNumElements())
601         return false;
602 
603       for (unsigned I = 0; I < CAL->getType()->getNumElements(); ++I) {
604         if (!equivalentAsOperands(CAL->getAggregateElement(I),
605                                   CAR->getAggregateElement(I), AC))
606           return false;
607       }
608 
609       return true;
610     }
611 
612     // If L and R are ConstantStructs, compare each field and type.
613     if (isa<ConstantStruct>(L)) {
614       const ConstantStruct *CSL = cast<ConstantStruct>(L);
615       const ConstantStruct *CSR = cast<ConstantStruct>(R);
616 
617       const StructType *LTy = cast<StructType>(CSL->getType());
618       const StructType *RTy = cast<StructType>(CSR->getType());
619 
620       // The StructTypes should have the same attributes. Don't use
621       // isLayoutIdentical(), because that just checks the element pointers,
622       // which may not work here.
623       if (LTy->getNumElements() != RTy->getNumElements() ||
624           LTy->isPacked() != RTy->isPacked())
625         return false;
626 
627       for (unsigned I = 0; I < LTy->getNumElements(); I++) {
628         const Value *LAgg = CSL->getAggregateElement(I);
629         const Value *RAgg = CSR->getAggregateElement(I);
630 
631         if (LAgg == SavedLHS || RAgg == SavedRHS) {
632           if (LAgg != SavedLHS || RAgg != SavedRHS)
633             // If the left and right operands aren't both re-analyzing the
634             // variable, then the initialiers don't match, so report "false".
635             // Otherwise, we skip these operands..
636             return false;
637 
638           continue;
639         }
640 
641         if (!equivalentAsOperands(LAgg, RAgg, AC)) {
642           return false;
643         }
644       }
645 
646       return true;
647     }
648 
649     return false;
650   }
651 
652   bool equivalentAsOperands(const ConstantExpr *L, const ConstantExpr *R,
653                             const AssumptionContext *AC) {
654     if (L == R)
655       return true;
656 
657     if (L->getOpcode() != R->getOpcode())
658       return false;
659 
660     switch (L->getOpcode()) {
661     case Instruction::ICmp:
662     case Instruction::FCmp:
663       if (L->getPredicate() != R->getPredicate())
664         return false;
665       break;
666 
667     case Instruction::GetElementPtr:
668       // FIXME: inbounds?
669       break;
670 
671     default:
672       break;
673     }
674 
675     if (L->getNumOperands() != R->getNumOperands())
676       return false;
677 
678     for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I) {
679       const auto *LOp = L->getOperand(I);
680       const auto *ROp = R->getOperand(I);
681 
682       if (LOp == SavedLHS || ROp == SavedRHS) {
683         if (LOp != SavedLHS || ROp != SavedRHS)
684           // If the left and right operands aren't both re-analyzing the
685           // variable, then the initialiers don't match, so report "false".
686           // Otherwise, we skip these operands..
687           return false;
688 
689         continue;
690       }
691 
692       if (!equivalentAsOperands(LOp, ROp, AC))
693         return false;
694     }
695 
696     return true;
697   }
698 
699   // There are cases where we cannot determine whether two values are
700   // equivalent, because it depends on not yet processed basic blocks -- see the
701   // documentation on assumptions.
702   //
703   // AC is the context in which we are currently performing a diff.
704   // When we encounter a pair of values for which we can neither prove
705   // equivalence nor the opposite, we do the following:
706   //  * If AC is nullptr, we treat the pair as non-equivalent.
707   //  * If AC is set, we add an assumption for the basic blocks given by AC,
708   //    and treat the pair as equivalent. The assumption is checked later.
709   bool equivalentAsOperands(const Value *L, const Value *R,
710                             const AssumptionContext *AC) {
711     // Fall out if the values have different kind.
712     // This possibly shouldn't take priority over oracles.
713     if (L->getValueID() != R->getValueID())
714       return false;
715 
716     // Value subtypes:  Argument, Constant, Instruction, BasicBlock,
717     //                  InlineAsm, MDNode, MDString, PseudoSourceValue
718 
719     if (isa<Constant>(L))
720       return equivalentAsOperands(cast<Constant>(L), cast<Constant>(R), AC);
721 
722     if (isa<Instruction>(L)) {
723       auto It = Values.find(L);
724       if (It != Values.end())
725         return It->second == R;
726 
727       if (TentativeValues.count(std::make_pair(L, R)))
728         return true;
729 
730       // L and R might be equivalent, this could depend on not yet processed
731       // basic blocks, so we cannot decide here.
732       if (AC) {
733         // Add an assumption, unless there is a conflict with an existing one
734         BlockDiffCandidate &BDC =
735             getOrCreateBlockDiffCandidate(AC->LBB, AC->RBB);
736         auto InsertionResult = BDC.EquivalenceAssumptions.insert({L, R});
737         if (!InsertionResult.second && InsertionResult.first->second != R) {
738           // We already have a conflicting equivalence assumption for L, so at
739           // least one must be wrong, and we know that there is a diff.
740           BDC.KnownToDiffer = true;
741           BDC.EquivalenceAssumptions.clear();
742           return false;
743         }
744         // Optimistically assume equivalence, and check later once all BBs
745         // have been processed.
746         return true;
747       }
748 
749       // Assumptions disabled, so pessimistically assume non-equivalence.
750       return false;
751     }
752 
753     if (isa<Argument>(L))
754       return Values[L] == R;
755 
756     if (isa<BasicBlock>(L))
757       return Blocks[cast<BasicBlock>(L)] != R;
758 
759     // Pretend everything else is identical.
760     return true;
761   }
762 
763   // Avoid a gcc warning about accessing 'this' in an initializer.
764   FunctionDifferenceEngine *this_() { return this; }
765 
766 public:
767   FunctionDifferenceEngine(DifferenceEngine &Engine,
768                            const Value *SavedLHS = nullptr,
769                            const Value *SavedRHS = nullptr)
770       : Engine(Engine), SavedLHS(SavedLHS), SavedRHS(SavedRHS),
771         Queue(QueueSorter(*this_())) {}
772 
773   void diff(const Function *L, const Function *R) {
774     assert(Values.empty() && "Multiple diffs per engine are not supported!");
775 
776     if (L->arg_size() != R->arg_size())
777       Engine.log("different argument counts");
778 
779     // Map the arguments.
780     for (Function::const_arg_iterator LI = L->arg_begin(), LE = L->arg_end(),
781                                       RI = R->arg_begin(), RE = R->arg_end();
782          LI != LE && RI != RE; ++LI, ++RI)
783       Values[&*LI] = &*RI;
784 
785     tryUnify(&*L->begin(), &*R->begin());
786     processQueue();
787     checkAndReportDiffCandidates();
788   }
789 };
790 
791 struct DiffEntry {
792   DiffEntry() = default;
793 
794   unsigned Cost = 0;
795   llvm::SmallVector<char, 8> Path; // actually of DifferenceEngine::DiffChange
796 };
797 
798 bool FunctionDifferenceEngine::matchForBlockDiff(const Instruction *L,
799                                                  const Instruction *R) {
800   return !diff(L, R, false, false, false);
801 }
802 
803 void FunctionDifferenceEngine::runBlockDiff(BasicBlock::const_iterator LStart,
804                                             BasicBlock::const_iterator RStart) {
805   BasicBlock::const_iterator LE = LStart->getParent()->end();
806   BasicBlock::const_iterator RE = RStart->getParent()->end();
807 
808   unsigned NL = std::distance(LStart, LE);
809 
810   SmallVector<DiffEntry, 20> Paths1(NL+1);
811   SmallVector<DiffEntry, 20> Paths2(NL+1);
812 
813   DiffEntry *Cur = Paths1.data();
814   DiffEntry *Next = Paths2.data();
815 
816   const unsigned LeftCost = 2;
817   const unsigned RightCost = 2;
818   const unsigned MatchCost = 0;
819 
820   assert(TentativeValues.empty());
821 
822   // Initialize the first column.
823   for (unsigned I = 0; I != NL+1; ++I) {
824     Cur[I].Cost = I * LeftCost;
825     for (unsigned J = 0; J != I; ++J)
826       Cur[I].Path.push_back(DC_left);
827   }
828 
829   for (BasicBlock::const_iterator RI = RStart; RI != RE; ++RI) {
830     // Initialize the first row.
831     Next[0] = Cur[0];
832     Next[0].Cost += RightCost;
833     Next[0].Path.push_back(DC_right);
834 
835     unsigned Index = 1;
836     for (BasicBlock::const_iterator LI = LStart; LI != LE; ++LI, ++Index) {
837       if (matchForBlockDiff(&*LI, &*RI)) {
838         Next[Index] = Cur[Index-1];
839         Next[Index].Cost += MatchCost;
840         Next[Index].Path.push_back(DC_match);
841         TentativeValues.insert(std::make_pair(&*LI, &*RI));
842       } else if (Next[Index-1].Cost <= Cur[Index].Cost) {
843         Next[Index] = Next[Index-1];
844         Next[Index].Cost += LeftCost;
845         Next[Index].Path.push_back(DC_left);
846       } else {
847         Next[Index] = Cur[Index];
848         Next[Index].Cost += RightCost;
849         Next[Index].Path.push_back(DC_right);
850       }
851     }
852 
853     std::swap(Cur, Next);
854   }
855 
856   // We don't need the tentative values anymore; everything from here
857   // on out should be non-tentative.
858   TentativeValues.clear();
859 
860   SmallVectorImpl<char> &Path = Cur[NL].Path;
861   BasicBlock::const_iterator LI = LStart, RI = RStart;
862 
863   DiffLogBuilder Diff(Engine.getConsumer());
864 
865   // Drop trailing matches.
866   while (Path.size() && Path.back() == DC_match)
867     Path.pop_back();
868 
869   // Skip leading matches.
870   SmallVectorImpl<char>::iterator
871     PI = Path.begin(), PE = Path.end();
872   while (PI != PE && *PI == DC_match) {
873     unify(&*LI, &*RI);
874     ++PI;
875     ++LI;
876     ++RI;
877   }
878 
879   for (; PI != PE; ++PI) {
880     switch (static_cast<DiffChange>(*PI)) {
881     case DC_match:
882       assert(LI != LE && RI != RE);
883       {
884         const Instruction *L = &*LI, *R = &*RI;
885         unify(L, R);
886         Diff.addMatch(L, R);
887       }
888       ++LI; ++RI;
889       break;
890 
891     case DC_left:
892       assert(LI != LE);
893       Diff.addLeft(&*LI);
894       ++LI;
895       break;
896 
897     case DC_right:
898       assert(RI != RE);
899       Diff.addRight(&*RI);
900       ++RI;
901       break;
902     }
903   }
904 
905   // Finishing unifying and complaining about the tails of the block,
906   // which should be matches all the way through.
907   while (LI != LE) {
908     assert(RI != RE);
909     unify(&*LI, &*RI);
910     ++LI;
911     ++RI;
912   }
913 
914   // If the terminators have different kinds, but one is an invoke and the
915   // other is an unconditional branch immediately following a call, unify
916   // the results and the destinations.
917   const Instruction *LTerm = LStart->getParent()->getTerminator();
918   const Instruction *RTerm = RStart->getParent()->getTerminator();
919   if (isa<BranchInst>(LTerm) && isa<InvokeInst>(RTerm)) {
920     if (cast<BranchInst>(LTerm)->isConditional()) return;
921     BasicBlock::const_iterator I = LTerm->getIterator();
922     if (I == LStart->getParent()->begin()) return;
923     --I;
924     if (!isa<CallInst>(*I)) return;
925     const CallInst *LCall = cast<CallInst>(&*I);
926     const InvokeInst *RInvoke = cast<InvokeInst>(RTerm);
927     if (!equivalentAsOperands(LCall->getCalledOperand(),
928                               RInvoke->getCalledOperand(), nullptr))
929       return;
930     if (!LCall->use_empty())
931       Values[LCall] = RInvoke;
932     tryUnify(LTerm->getSuccessor(0), RInvoke->getNormalDest());
933   } else if (isa<InvokeInst>(LTerm) && isa<BranchInst>(RTerm)) {
934     if (cast<BranchInst>(RTerm)->isConditional()) return;
935     BasicBlock::const_iterator I = RTerm->getIterator();
936     if (I == RStart->getParent()->begin()) return;
937     --I;
938     if (!isa<CallInst>(*I)) return;
939     const CallInst *RCall = cast<CallInst>(I);
940     const InvokeInst *LInvoke = cast<InvokeInst>(LTerm);
941     if (!equivalentAsOperands(LInvoke->getCalledOperand(),
942                               RCall->getCalledOperand(), nullptr))
943       return;
944     if (!LInvoke->use_empty())
945       Values[LInvoke] = RCall;
946     tryUnify(LInvoke->getNormalDest(), RTerm->getSuccessor(0));
947   }
948 }
949 }
950 
951 void DifferenceEngine::Oracle::anchor() { }
952 
953 void DifferenceEngine::diff(const Function *L, const Function *R) {
954   Context C(*this, L, R);
955 
956   // FIXME: types
957   // FIXME: attributes and CC
958   // FIXME: parameter attributes
959 
960   // If both are declarations, we're done.
961   if (L->empty() && R->empty())
962     return;
963   else if (L->empty())
964     log("left function is declaration, right function is definition");
965   else if (R->empty())
966     log("right function is declaration, left function is definition");
967   else
968     FunctionDifferenceEngine(*this).diff(L, R);
969 }
970 
971 void DifferenceEngine::diff(const Module *L, const Module *R) {
972   StringSet<> LNames;
973   SmallVector<std::pair<const Function *, const Function *>, 20> Queue;
974 
975   unsigned LeftAnonCount = 0;
976   unsigned RightAnonCount = 0;
977 
978   for (Module::const_iterator I = L->begin(), E = L->end(); I != E; ++I) {
979     const Function *LFn = &*I;
980     StringRef Name = LFn->getName();
981     if (Name.empty()) {
982       ++LeftAnonCount;
983       continue;
984     }
985 
986     LNames.insert(Name);
987 
988     if (Function *RFn = R->getFunction(LFn->getName()))
989       Queue.push_back(std::make_pair(LFn, RFn));
990     else
991       logf("function %l exists only in left module") << LFn;
992   }
993 
994   for (Module::const_iterator I = R->begin(), E = R->end(); I != E; ++I) {
995     const Function *RFn = &*I;
996     StringRef Name = RFn->getName();
997     if (Name.empty()) {
998       ++RightAnonCount;
999       continue;
1000     }
1001 
1002     if (!LNames.count(Name))
1003       logf("function %r exists only in right module") << RFn;
1004   }
1005 
1006   if (LeftAnonCount != 0 || RightAnonCount != 0) {
1007     SmallString<32> Tmp;
1008     logf(("not comparing " + Twine(LeftAnonCount) +
1009           " anonymous functions in the left module and " +
1010           Twine(RightAnonCount) + " in the right module")
1011              .toStringRef(Tmp));
1012   }
1013 
1014   for (SmallVectorImpl<std::pair<const Function *, const Function *>>::iterator
1015            I = Queue.begin(),
1016            E = Queue.end();
1017        I != E; ++I)
1018     diff(I->first, I->second);
1019 }
1020 
1021 bool DifferenceEngine::equivalentAsOperands(const GlobalValue *L,
1022                                             const GlobalValue *R) {
1023   if (globalValueOracle) return (*globalValueOracle)(L, R);
1024 
1025   if (isa<GlobalVariable>(L) && isa<GlobalVariable>(R)) {
1026     const GlobalVariable *GVL = cast<GlobalVariable>(L);
1027     const GlobalVariable *GVR = cast<GlobalVariable>(R);
1028     if (GVL->hasLocalLinkage() && GVL->hasUniqueInitializer() &&
1029         GVR->hasLocalLinkage() && GVR->hasUniqueInitializer())
1030       return FunctionDifferenceEngine(*this, GVL, GVR)
1031           .equivalentAsOperands(GVL->getInitializer(), GVR->getInitializer(),
1032                                 nullptr);
1033   }
1034 
1035   return L->getName() == R->getName();
1036 }
1037