1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "COFFDump.h"
20 #include "ELFDump.h"
21 #include "MachODump.h"
22 #include "ObjdumpOptID.h"
23 #include "OffloadDump.h"
24 #include "SourcePrinter.h"
25 #include "WasmDump.h"
26 #include "XCOFFDump.h"
27 #include "llvm/ADT/IndexedMap.h"
28 #include "llvm/ADT/Optional.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SetOperations.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/ADT/StringSet.h"
34 #include "llvm/ADT/Triple.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
37 #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h"
38 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
39 #include "llvm/Demangle/Demangle.h"
40 #include "llvm/MC/MCAsmInfo.h"
41 #include "llvm/MC/MCContext.h"
42 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
43 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
44 #include "llvm/MC/MCInst.h"
45 #include "llvm/MC/MCInstPrinter.h"
46 #include "llvm/MC/MCInstrAnalysis.h"
47 #include "llvm/MC/MCInstrInfo.h"
48 #include "llvm/MC/MCObjectFileInfo.h"
49 #include "llvm/MC/MCRegisterInfo.h"
50 #include "llvm/MC/MCSubtargetInfo.h"
51 #include "llvm/MC/MCTargetOptions.h"
52 #include "llvm/MC/TargetRegistry.h"
53 #include "llvm/Object/Archive.h"
54 #include "llvm/Object/COFF.h"
55 #include "llvm/Object/COFFImportFile.h"
56 #include "llvm/Object/ELFObjectFile.h"
57 #include "llvm/Object/ELFTypes.h"
58 #include "llvm/Object/FaultMapParser.h"
59 #include "llvm/Object/MachO.h"
60 #include "llvm/Object/MachOUniversal.h"
61 #include "llvm/Object/ObjectFile.h"
62 #include "llvm/Object/OffloadBinary.h"
63 #include "llvm/Object/Wasm.h"
64 #include "llvm/Option/Arg.h"
65 #include "llvm/Option/ArgList.h"
66 #include "llvm/Option/Option.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/Errc.h"
70 #include "llvm/Support/FileSystem.h"
71 #include "llvm/Support/Format.h"
72 #include "llvm/Support/FormatVariadic.h"
73 #include "llvm/Support/GraphWriter.h"
74 #include "llvm/Support/Host.h"
75 #include "llvm/Support/InitLLVM.h"
76 #include "llvm/Support/MemoryBuffer.h"
77 #include "llvm/Support/SourceMgr.h"
78 #include "llvm/Support/StringSaver.h"
79 #include "llvm/Support/TargetSelect.h"
80 #include "llvm/Support/WithColor.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include <algorithm>
83 #include <cctype>
84 #include <cstring>
85 #include <system_error>
86 #include <unordered_map>
87 #include <utility>
88 
89 using namespace llvm;
90 using namespace llvm::object;
91 using namespace llvm::objdump;
92 using namespace llvm::opt;
93 
94 namespace {
95 
96 class CommonOptTable : public opt::OptTable {
97 public:
98   CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage,
99                  const char *Description)
100       : OptTable(OptionInfos), Usage(Usage), Description(Description) {
101     setGroupedShortOptions(true);
102   }
103 
104   void printHelp(StringRef Argv0, bool ShowHidden = false) const {
105     Argv0 = sys::path::filename(Argv0);
106     opt::OptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(), Description,
107                              ShowHidden, ShowHidden);
108     // TODO Replace this with OptTable API once it adds extrahelp support.
109     outs() << "\nPass @FILE as argument to read options from FILE.\n";
110   }
111 
112 private:
113   const char *Usage;
114   const char *Description;
115 };
116 
117 // ObjdumpOptID is in ObjdumpOptID.h
118 
119 #define PREFIX(NAME, VALUE) const char *const OBJDUMP_##NAME[] = VALUE;
120 #include "ObjdumpOpts.inc"
121 #undef PREFIX
122 
123 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = {
124 #define OBJDUMP_nullptr nullptr
125 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
126                HELPTEXT, METAVAR, VALUES)                                      \
127   {OBJDUMP_##PREFIX, NAME,         HELPTEXT,                                   \
128    METAVAR,          OBJDUMP_##ID, opt::Option::KIND##Class,                   \
129    PARAM,            FLAGS,        OBJDUMP_##GROUP,                            \
130    OBJDUMP_##ALIAS,  ALIASARGS,    VALUES},
131 #include "ObjdumpOpts.inc"
132 #undef OPTION
133 #undef OBJDUMP_nullptr
134 };
135 
136 class ObjdumpOptTable : public CommonOptTable {
137 public:
138   ObjdumpOptTable()
139       : CommonOptTable(ObjdumpInfoTable, " [options] <input object files>",
140                        "llvm object file dumper") {}
141 };
142 
143 enum OtoolOptID {
144   OTOOL_INVALID = 0, // This is not an option ID.
145 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
146                HELPTEXT, METAVAR, VALUES)                                      \
147   OTOOL_##ID,
148 #include "OtoolOpts.inc"
149 #undef OPTION
150 };
151 
152 #define PREFIX(NAME, VALUE) const char *const OTOOL_##NAME[] = VALUE;
153 #include "OtoolOpts.inc"
154 #undef PREFIX
155 
156 static constexpr opt::OptTable::Info OtoolInfoTable[] = {
157 #define OTOOL_nullptr nullptr
158 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
159                HELPTEXT, METAVAR, VALUES)                                      \
160   {OTOOL_##PREFIX, NAME,       HELPTEXT,                                       \
161    METAVAR,        OTOOL_##ID, opt::Option::KIND##Class,                       \
162    PARAM,          FLAGS,      OTOOL_##GROUP,                                  \
163    OTOOL_##ALIAS,  ALIASARGS,  VALUES},
164 #include "OtoolOpts.inc"
165 #undef OPTION
166 #undef OTOOL_nullptr
167 };
168 
169 class OtoolOptTable : public CommonOptTable {
170 public:
171   OtoolOptTable()
172       : CommonOptTable(OtoolInfoTable, " [option...] [file...]",
173                        "Mach-O object file displaying tool") {}
174 };
175 
176 } // namespace
177 
178 #define DEBUG_TYPE "objdump"
179 
180 static uint64_t AdjustVMA;
181 static bool AllHeaders;
182 static std::string ArchName;
183 bool objdump::ArchiveHeaders;
184 bool objdump::Demangle;
185 bool objdump::Disassemble;
186 bool objdump::DisassembleAll;
187 bool objdump::SymbolDescription;
188 static std::vector<std::string> DisassembleSymbols;
189 static bool DisassembleZeroes;
190 static std::vector<std::string> DisassemblerOptions;
191 DIDumpType objdump::DwarfDumpType;
192 static bool DynamicRelocations;
193 static bool FaultMapSection;
194 static bool FileHeaders;
195 bool objdump::SectionContents;
196 static std::vector<std::string> InputFilenames;
197 bool objdump::PrintLines;
198 static bool MachOOpt;
199 std::string objdump::MCPU;
200 std::vector<std::string> objdump::MAttrs;
201 bool objdump::ShowRawInsn;
202 bool objdump::LeadingAddr;
203 static bool Offloading;
204 static bool RawClangAST;
205 bool objdump::Relocations;
206 bool objdump::PrintImmHex;
207 bool objdump::PrivateHeaders;
208 std::vector<std::string> objdump::FilterSections;
209 bool objdump::SectionHeaders;
210 static bool ShowLMA;
211 bool objdump::PrintSource;
212 
213 static uint64_t StartAddress;
214 static bool HasStartAddressFlag;
215 static uint64_t StopAddress = UINT64_MAX;
216 static bool HasStopAddressFlag;
217 
218 bool objdump::SymbolTable;
219 static bool SymbolizeOperands;
220 static bool DynamicSymbolTable;
221 std::string objdump::TripleName;
222 bool objdump::UnwindInfo;
223 static bool Wide;
224 std::string objdump::Prefix;
225 uint32_t objdump::PrefixStrip;
226 
227 DebugVarsFormat objdump::DbgVariables = DVDisabled;
228 
229 int objdump::DbgIndent = 52;
230 
231 static StringSet<> DisasmSymbolSet;
232 StringSet<> objdump::FoundSectionSet;
233 static StringRef ToolName;
234 
235 namespace {
236 struct FilterResult {
237   // True if the section should not be skipped.
238   bool Keep;
239 
240   // True if the index counter should be incremented, even if the section should
241   // be skipped. For example, sections may be skipped if they are not included
242   // in the --section flag, but we still want those to count toward the section
243   // count.
244   bool IncrementIndex;
245 };
246 } // namespace
247 
248 static FilterResult checkSectionFilter(object::SectionRef S) {
249   if (FilterSections.empty())
250     return {/*Keep=*/true, /*IncrementIndex=*/true};
251 
252   Expected<StringRef> SecNameOrErr = S.getName();
253   if (!SecNameOrErr) {
254     consumeError(SecNameOrErr.takeError());
255     return {/*Keep=*/false, /*IncrementIndex=*/false};
256   }
257   StringRef SecName = *SecNameOrErr;
258 
259   // StringSet does not allow empty key so avoid adding sections with
260   // no name (such as the section with index 0) here.
261   if (!SecName.empty())
262     FoundSectionSet.insert(SecName);
263 
264   // Only show the section if it's in the FilterSections list, but always
265   // increment so the indexing is stable.
266   return {/*Keep=*/is_contained(FilterSections, SecName),
267           /*IncrementIndex=*/true};
268 }
269 
270 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
271                                          uint64_t *Idx) {
272   // Start at UINT64_MAX so that the first index returned after an increment is
273   // zero (after the unsigned wrap).
274   if (Idx)
275     *Idx = UINT64_MAX;
276   return SectionFilter(
277       [Idx](object::SectionRef S) {
278         FilterResult Result = checkSectionFilter(S);
279         if (Idx != nullptr && Result.IncrementIndex)
280           *Idx += 1;
281         return Result.Keep;
282       },
283       O);
284 }
285 
286 std::string objdump::getFileNameForError(const object::Archive::Child &C,
287                                          unsigned Index) {
288   Expected<StringRef> NameOrErr = C.getName();
289   if (NameOrErr)
290     return std::string(NameOrErr.get());
291   // If we have an error getting the name then we print the index of the archive
292   // member. Since we are already in an error state, we just ignore this error.
293   consumeError(NameOrErr.takeError());
294   return "<file index: " + std::to_string(Index) + ">";
295 }
296 
297 void objdump::reportWarning(const Twine &Message, StringRef File) {
298   // Output order between errs() and outs() matters especially for archive
299   // files where the output is per member object.
300   outs().flush();
301   WithColor::warning(errs(), ToolName)
302       << "'" << File << "': " << Message << "\n";
303 }
304 
305 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) {
306   outs().flush();
307   WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
308   exit(1);
309 }
310 
311 [[noreturn]] void objdump::reportError(Error E, StringRef FileName,
312                                        StringRef ArchiveName,
313                                        StringRef ArchitectureName) {
314   assert(E);
315   outs().flush();
316   WithColor::error(errs(), ToolName);
317   if (ArchiveName != "")
318     errs() << ArchiveName << "(" << FileName << ")";
319   else
320     errs() << "'" << FileName << "'";
321   if (!ArchitectureName.empty())
322     errs() << " (for architecture " << ArchitectureName << ")";
323   errs() << ": ";
324   logAllUnhandledErrors(std::move(E), errs());
325   exit(1);
326 }
327 
328 static void reportCmdLineWarning(const Twine &Message) {
329   WithColor::warning(errs(), ToolName) << Message << "\n";
330 }
331 
332 [[noreturn]] static void reportCmdLineError(const Twine &Message) {
333   WithColor::error(errs(), ToolName) << Message << "\n";
334   exit(1);
335 }
336 
337 static void warnOnNoMatchForSections() {
338   SetVector<StringRef> MissingSections;
339   for (StringRef S : FilterSections) {
340     if (FoundSectionSet.count(S))
341       return;
342     // User may specify a unnamed section. Don't warn for it.
343     if (!S.empty())
344       MissingSections.insert(S);
345   }
346 
347   // Warn only if no section in FilterSections is matched.
348   for (StringRef S : MissingSections)
349     reportCmdLineWarning("section '" + S +
350                          "' mentioned in a -j/--section option, but not "
351                          "found in any input file");
352 }
353 
354 static const Target *getTarget(const ObjectFile *Obj) {
355   // Figure out the target triple.
356   Triple TheTriple("unknown-unknown-unknown");
357   if (TripleName.empty()) {
358     TheTriple = Obj->makeTriple();
359   } else {
360     TheTriple.setTriple(Triple::normalize(TripleName));
361     auto Arch = Obj->getArch();
362     if (Arch == Triple::arm || Arch == Triple::armeb)
363       Obj->setARMSubArch(TheTriple);
364   }
365 
366   // Get the target specific parser.
367   std::string Error;
368   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
369                                                          Error);
370   if (!TheTarget)
371     reportError(Obj->getFileName(), "can't find target: " + Error);
372 
373   // Update the triple name and return the found target.
374   TripleName = TheTriple.getTriple();
375   return TheTarget;
376 }
377 
378 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
379   return A.getOffset() < B.getOffset();
380 }
381 
382 static Error getRelocationValueString(const RelocationRef &Rel,
383                                       SmallVectorImpl<char> &Result) {
384   const ObjectFile *Obj = Rel.getObject();
385   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
386     return getELFRelocationValueString(ELF, Rel, Result);
387   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
388     return getCOFFRelocationValueString(COFF, Rel, Result);
389   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
390     return getWasmRelocationValueString(Wasm, Rel, Result);
391   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
392     return getMachORelocationValueString(MachO, Rel, Result);
393   if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
394     return getXCOFFRelocationValueString(*XCOFF, Rel, Result);
395   llvm_unreachable("unknown object file format");
396 }
397 
398 /// Indicates whether this relocation should hidden when listing
399 /// relocations, usually because it is the trailing part of a multipart
400 /// relocation that will be printed as part of the leading relocation.
401 static bool getHidden(RelocationRef RelRef) {
402   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
403   if (!MachO)
404     return false;
405 
406   unsigned Arch = MachO->getArch();
407   DataRefImpl Rel = RelRef.getRawDataRefImpl();
408   uint64_t Type = MachO->getRelocationType(Rel);
409 
410   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
411   // is always hidden.
412   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
413     return Type == MachO::GENERIC_RELOC_PAIR;
414 
415   if (Arch == Triple::x86_64) {
416     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
417     // an X86_64_RELOC_SUBTRACTOR.
418     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
419       DataRefImpl RelPrev = Rel;
420       RelPrev.d.a--;
421       uint64_t PrevType = MachO->getRelocationType(RelPrev);
422       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
423         return true;
424     }
425   }
426 
427   return false;
428 }
429 
430 namespace {
431 
432 /// Get the column at which we want to start printing the instruction
433 /// disassembly, taking into account anything which appears to the left of it.
434 unsigned getInstStartColumn(const MCSubtargetInfo &STI) {
435   return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
436 }
437 
438 static bool isAArch64Elf(const ObjectFile &Obj) {
439   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
440   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
441 }
442 
443 static bool isArmElf(const ObjectFile &Obj) {
444   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
445   return Elf && Elf->getEMachine() == ELF::EM_ARM;
446 }
447 
448 static bool isCSKYElf(const ObjectFile &Obj) {
449   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
450   return Elf && Elf->getEMachine() == ELF::EM_CSKY;
451 }
452 
453 static bool hasMappingSymbols(const ObjectFile &Obj) {
454   return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ;
455 }
456 
457 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
458                             const RelocationRef &Rel, uint64_t Address,
459                             bool Is64Bits) {
460   StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ":  " : "\t\t\t%08" PRIx64 ":  ";
461   SmallString<16> Name;
462   SmallString<32> Val;
463   Rel.getTypeName(Name);
464   if (Error E = getRelocationValueString(Rel, Val))
465     reportError(std::move(E), FileName);
466   OS << format(Fmt.data(), Address) << Name << "\t" << Val;
467 }
468 
469 static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI,
470                                    raw_ostream &OS) {
471   // The output of printInst starts with a tab. Print some spaces so that
472   // the tab has 1 column and advances to the target tab stop.
473   unsigned TabStop = getInstStartColumn(STI);
474   unsigned Column = OS.tell() - Start;
475   OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
476 }
477 
478 class PrettyPrinter {
479 public:
480   virtual ~PrettyPrinter() = default;
481   virtual void
482   printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
483             object::SectionedAddress Address, formatted_raw_ostream &OS,
484             StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
485             StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
486             LiveVariablePrinter &LVP) {
487     if (SP && (PrintSource || PrintLines))
488       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
489     LVP.printBetweenInsts(OS, false);
490 
491     size_t Start = OS.tell();
492     if (LeadingAddr)
493       OS << format("%8" PRIx64 ":", Address.Address);
494     if (ShowRawInsn) {
495       OS << ' ';
496       dumpBytes(Bytes, OS);
497     }
498 
499     AlignToInstStartColumn(Start, STI, OS);
500 
501     if (MI) {
502       // See MCInstPrinter::printInst. On targets where a PC relative immediate
503       // is relative to the next instruction and the length of a MCInst is
504       // difficult to measure (x86), this is the address of the next
505       // instruction.
506       uint64_t Addr =
507           Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
508       IP.printInst(MI, Addr, "", STI, OS);
509     } else
510       OS << "\t<unknown>";
511   }
512 };
513 PrettyPrinter PrettyPrinterInst;
514 
515 class HexagonPrettyPrinter : public PrettyPrinter {
516 public:
517   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
518                  formatted_raw_ostream &OS) {
519     uint32_t opcode =
520       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
521     if (LeadingAddr)
522       OS << format("%8" PRIx64 ":", Address);
523     if (ShowRawInsn) {
524       OS << "\t";
525       dumpBytes(Bytes.slice(0, 4), OS);
526       OS << format("\t%08" PRIx32, opcode);
527     }
528   }
529   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
530                  object::SectionedAddress Address, formatted_raw_ostream &OS,
531                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
532                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
533                  LiveVariablePrinter &LVP) override {
534     if (SP && (PrintSource || PrintLines))
535       SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
536     if (!MI) {
537       printLead(Bytes, Address.Address, OS);
538       OS << " <unknown>";
539       return;
540     }
541     std::string Buffer;
542     {
543       raw_string_ostream TempStream(Buffer);
544       IP.printInst(MI, Address.Address, "", STI, TempStream);
545     }
546     StringRef Contents(Buffer);
547     // Split off bundle attributes
548     auto PacketBundle = Contents.rsplit('\n');
549     // Split off first instruction from the rest
550     auto HeadTail = PacketBundle.first.split('\n');
551     auto Preamble = " { ";
552     auto Separator = "";
553 
554     // Hexagon's packets require relocations to be inline rather than
555     // clustered at the end of the packet.
556     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
557     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
558     auto PrintReloc = [&]() -> void {
559       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
560         if (RelCur->getOffset() == Address.Address) {
561           printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
562           return;
563         }
564         ++RelCur;
565       }
566     };
567 
568     while (!HeadTail.first.empty()) {
569       OS << Separator;
570       Separator = "\n";
571       if (SP && (PrintSource || PrintLines))
572         SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
573       printLead(Bytes, Address.Address, OS);
574       OS << Preamble;
575       Preamble = "   ";
576       StringRef Inst;
577       auto Duplex = HeadTail.first.split('\v');
578       if (!Duplex.second.empty()) {
579         OS << Duplex.first;
580         OS << "; ";
581         Inst = Duplex.second;
582       }
583       else
584         Inst = HeadTail.first;
585       OS << Inst;
586       HeadTail = HeadTail.second.split('\n');
587       if (HeadTail.first.empty())
588         OS << " } " << PacketBundle.second;
589       PrintReloc();
590       Bytes = Bytes.slice(4);
591       Address.Address += 4;
592     }
593   }
594 };
595 HexagonPrettyPrinter HexagonPrettyPrinterInst;
596 
597 class AMDGCNPrettyPrinter : public PrettyPrinter {
598 public:
599   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
600                  object::SectionedAddress Address, formatted_raw_ostream &OS,
601                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
602                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
603                  LiveVariablePrinter &LVP) override {
604     if (SP && (PrintSource || PrintLines))
605       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
606 
607     if (MI) {
608       SmallString<40> InstStr;
609       raw_svector_ostream IS(InstStr);
610 
611       IP.printInst(MI, Address.Address, "", STI, IS);
612 
613       OS << left_justify(IS.str(), 60);
614     } else {
615       // an unrecognized encoding - this is probably data so represent it
616       // using the .long directive, or .byte directive if fewer than 4 bytes
617       // remaining
618       if (Bytes.size() >= 4) {
619         OS << format("\t.long 0x%08" PRIx32 " ",
620                      support::endian::read32<support::little>(Bytes.data()));
621         OS.indent(42);
622       } else {
623           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
624           for (unsigned int i = 1; i < Bytes.size(); i++)
625             OS << format(", 0x%02" PRIx8, Bytes[i]);
626           OS.indent(55 - (6 * Bytes.size()));
627       }
628     }
629 
630     OS << format("// %012" PRIX64 ":", Address.Address);
631     if (Bytes.size() >= 4) {
632       // D should be casted to uint32_t here as it is passed by format to
633       // snprintf as vararg.
634       for (uint32_t D : makeArrayRef(
635                reinterpret_cast<const support::little32_t *>(Bytes.data()),
636                Bytes.size() / 4))
637         OS << format(" %08" PRIX32, D);
638     } else {
639       for (unsigned char B : Bytes)
640         OS << format(" %02" PRIX8, B);
641     }
642 
643     if (!Annot.empty())
644       OS << " // " << Annot;
645   }
646 };
647 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
648 
649 class BPFPrettyPrinter : public PrettyPrinter {
650 public:
651   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
652                  object::SectionedAddress Address, formatted_raw_ostream &OS,
653                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
654                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
655                  LiveVariablePrinter &LVP) override {
656     if (SP && (PrintSource || PrintLines))
657       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
658     if (LeadingAddr)
659       OS << format("%8" PRId64 ":", Address.Address / 8);
660     if (ShowRawInsn) {
661       OS << "\t";
662       dumpBytes(Bytes, OS);
663     }
664     if (MI)
665       IP.printInst(MI, Address.Address, "", STI, OS);
666     else
667       OS << "\t<unknown>";
668   }
669 };
670 BPFPrettyPrinter BPFPrettyPrinterInst;
671 
672 class ARMPrettyPrinter : public PrettyPrinter {
673 public:
674   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
675                  object::SectionedAddress Address, formatted_raw_ostream &OS,
676                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
677                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
678                  LiveVariablePrinter &LVP) override {
679     if (SP && (PrintSource || PrintLines))
680       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
681     LVP.printBetweenInsts(OS, false);
682 
683     size_t Start = OS.tell();
684     if (LeadingAddr)
685       OS << format("%8" PRIx64 ":", Address.Address);
686     if (ShowRawInsn) {
687       size_t Pos = 0, End = Bytes.size();
688       if (STI.checkFeatures("+thumb-mode")) {
689         for (; Pos + 2 <= End; Pos += 2)
690           OS << ' '
691              << format_hex_no_prefix(
692                     llvm::support::endian::read<uint16_t>(
693                         Bytes.data() + Pos, llvm::support::little),
694                     4);
695       } else {
696         for (; Pos + 4 <= End; Pos += 4)
697           OS << ' '
698              << format_hex_no_prefix(
699                     llvm::support::endian::read<uint32_t>(
700                         Bytes.data() + Pos, llvm::support::little),
701                     8);
702       }
703       if (Pos < End) {
704         OS << ' ';
705         dumpBytes(Bytes.slice(Pos), OS);
706       }
707     }
708 
709     AlignToInstStartColumn(Start, STI, OS);
710 
711     if (MI) {
712       IP.printInst(MI, Address.Address, "", STI, OS);
713     } else
714       OS << "\t<unknown>";
715   }
716 };
717 ARMPrettyPrinter ARMPrettyPrinterInst;
718 
719 class AArch64PrettyPrinter : public PrettyPrinter {
720 public:
721   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
722                  object::SectionedAddress Address, formatted_raw_ostream &OS,
723                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
724                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
725                  LiveVariablePrinter &LVP) override {
726     if (SP && (PrintSource || PrintLines))
727       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
728     LVP.printBetweenInsts(OS, false);
729 
730     size_t Start = OS.tell();
731     if (LeadingAddr)
732       OS << format("%8" PRIx64 ":", Address.Address);
733     if (ShowRawInsn) {
734       size_t Pos = 0, End = Bytes.size();
735       for (; Pos + 4 <= End; Pos += 4)
736         OS << ' '
737            << format_hex_no_prefix(
738                   llvm::support::endian::read<uint32_t>(Bytes.data() + Pos,
739                                                         llvm::support::little),
740                   8);
741       if (Pos < End) {
742         OS << ' ';
743         dumpBytes(Bytes.slice(Pos), OS);
744       }
745     }
746 
747     AlignToInstStartColumn(Start, STI, OS);
748 
749     if (MI) {
750       IP.printInst(MI, Address.Address, "", STI, OS);
751     } else
752       OS << "\t<unknown>";
753   }
754 };
755 AArch64PrettyPrinter AArch64PrettyPrinterInst;
756 
757 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
758   switch(Triple.getArch()) {
759   default:
760     return PrettyPrinterInst;
761   case Triple::hexagon:
762     return HexagonPrettyPrinterInst;
763   case Triple::amdgcn:
764     return AMDGCNPrettyPrinterInst;
765   case Triple::bpfel:
766   case Triple::bpfeb:
767     return BPFPrettyPrinterInst;
768   case Triple::arm:
769   case Triple::armeb:
770   case Triple::thumb:
771   case Triple::thumbeb:
772     return ARMPrettyPrinterInst;
773   case Triple::aarch64:
774   case Triple::aarch64_be:
775   case Triple::aarch64_32:
776     return AArch64PrettyPrinterInst;
777   }
778 }
779 }
780 
781 static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) {
782   assert(Obj.isELF());
783   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
784     return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()),
785                          Obj.getFileName())
786         ->getType();
787   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
788     return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()),
789                          Obj.getFileName())
790         ->getType();
791   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
792     return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()),
793                          Obj.getFileName())
794         ->getType();
795   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
796     return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()),
797                          Obj.getFileName())
798         ->getType();
799   llvm_unreachable("Unsupported binary format");
800 }
801 
802 template <class ELFT>
803 static void
804 addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj,
805                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
806   for (auto Symbol : Obj.getDynamicSymbolIterators()) {
807     uint8_t SymbolType = Symbol.getELFType();
808     if (SymbolType == ELF::STT_SECTION)
809       continue;
810 
811     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName());
812     // ELFSymbolRef::getAddress() returns size instead of value for common
813     // symbols which is not desirable for disassembly output. Overriding.
814     if (SymbolType == ELF::STT_COMMON)
815       Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()),
816                               Obj.getFileName())
817                     ->st_value;
818 
819     StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName());
820     if (Name.empty())
821       continue;
822 
823     section_iterator SecI =
824         unwrapOrError(Symbol.getSection(), Obj.getFileName());
825     if (SecI == Obj.section_end())
826       continue;
827 
828     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
829   }
830 }
831 
832 static void
833 addDynamicElfSymbols(const ELFObjectFileBase &Obj,
834                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
835   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
836     addDynamicElfSymbols(*Elf32LEObj, AllSymbols);
837   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
838     addDynamicElfSymbols(*Elf64LEObj, AllSymbols);
839   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
840     addDynamicElfSymbols(*Elf32BEObj, AllSymbols);
841   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
842     addDynamicElfSymbols(*Elf64BEObj, AllSymbols);
843   else
844     llvm_unreachable("Unsupported binary format");
845 }
846 
847 static Optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) {
848   for (auto SecI : Obj.sections()) {
849     const WasmSection &Section = Obj.getWasmSection(SecI);
850     if (Section.Type == wasm::WASM_SEC_CODE)
851       return SecI;
852   }
853   return None;
854 }
855 
856 static void
857 addMissingWasmCodeSymbols(const WasmObjectFile &Obj,
858                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
859   Optional<SectionRef> Section = getWasmCodeSection(Obj);
860   if (!Section)
861     return;
862   SectionSymbolsTy &Symbols = AllSymbols[*Section];
863 
864   std::set<uint64_t> SymbolAddresses;
865   for (const auto &Sym : Symbols)
866     SymbolAddresses.insert(Sym.Addr);
867 
868   for (const wasm::WasmFunction &Function : Obj.functions()) {
869     uint64_t Address = Function.CodeSectionOffset;
870     // Only add fallback symbols for functions not already present in the symbol
871     // table.
872     if (SymbolAddresses.count(Address))
873       continue;
874     // This function has no symbol, so it should have no SymbolName.
875     assert(Function.SymbolName.empty());
876     // We use DebugName for the name, though it may be empty if there is no
877     // "name" custom section, or that section is missing a name for this
878     // function.
879     StringRef Name = Function.DebugName;
880     Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE);
881   }
882 }
883 
884 static void addPltEntries(const ObjectFile &Obj,
885                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
886                           StringSaver &Saver) {
887   Optional<SectionRef> Plt = None;
888   for (const SectionRef &Section : Obj.sections()) {
889     Expected<StringRef> SecNameOrErr = Section.getName();
890     if (!SecNameOrErr) {
891       consumeError(SecNameOrErr.takeError());
892       continue;
893     }
894     if (*SecNameOrErr == ".plt")
895       Plt = Section;
896   }
897   if (!Plt)
898     return;
899   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(&Obj)) {
900     for (auto PltEntry : ElfObj->getPltAddresses()) {
901       if (PltEntry.first) {
902         SymbolRef Symbol(*PltEntry.first, ElfObj);
903         uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
904         if (Expected<StringRef> NameOrErr = Symbol.getName()) {
905           if (!NameOrErr->empty())
906             AllSymbols[*Plt].emplace_back(
907                 PltEntry.second, Saver.save((*NameOrErr + "@plt").str()),
908                 SymbolType);
909           continue;
910         } else {
911           // The warning has been reported in disassembleObject().
912           consumeError(NameOrErr.takeError());
913         }
914       }
915       reportWarning("PLT entry at 0x" + Twine::utohexstr(PltEntry.second) +
916                         " references an invalid symbol",
917                     Obj.getFileName());
918     }
919   }
920 }
921 
922 // Normally the disassembly output will skip blocks of zeroes. This function
923 // returns the number of zero bytes that can be skipped when dumping the
924 // disassembly of the instructions in Buf.
925 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
926   // Find the number of leading zeroes.
927   size_t N = 0;
928   while (N < Buf.size() && !Buf[N])
929     ++N;
930 
931   // We may want to skip blocks of zero bytes, but unless we see
932   // at least 8 of them in a row.
933   if (N < 8)
934     return 0;
935 
936   // We skip zeroes in multiples of 4 because do not want to truncate an
937   // instruction if it starts with a zero byte.
938   return N & ~0x3;
939 }
940 
941 // Returns a map from sections to their relocations.
942 static std::map<SectionRef, std::vector<RelocationRef>>
943 getRelocsMap(object::ObjectFile const &Obj) {
944   std::map<SectionRef, std::vector<RelocationRef>> Ret;
945   uint64_t I = (uint64_t)-1;
946   for (SectionRef Sec : Obj.sections()) {
947     ++I;
948     Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
949     if (!RelocatedOrErr)
950       reportError(Obj.getFileName(),
951                   "section (" + Twine(I) +
952                       "): failed to get a relocated section: " +
953                       toString(RelocatedOrErr.takeError()));
954 
955     section_iterator Relocated = *RelocatedOrErr;
956     if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
957       continue;
958     std::vector<RelocationRef> &V = Ret[*Relocated];
959     append_range(V, Sec.relocations());
960     // Sort relocations by address.
961     llvm::stable_sort(V, isRelocAddressLess);
962   }
963   return Ret;
964 }
965 
966 // Used for --adjust-vma to check if address should be adjusted by the
967 // specified value for a given section.
968 // For ELF we do not adjust non-allocatable sections like debug ones,
969 // because they are not loadable.
970 // TODO: implement for other file formats.
971 static bool shouldAdjustVA(const SectionRef &Section) {
972   const ObjectFile *Obj = Section.getObject();
973   if (Obj->isELF())
974     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
975   return false;
976 }
977 
978 
979 typedef std::pair<uint64_t, char> MappingSymbolPair;
980 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
981                                  uint64_t Address) {
982   auto It =
983       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
984         return Val.first <= Address;
985       });
986   // Return zero for any address before the first mapping symbol; this means
987   // we should use the default disassembly mode, depending on the target.
988   if (It == MappingSymbols.begin())
989     return '\x00';
990   return (It - 1)->second;
991 }
992 
993 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
994                                uint64_t End, const ObjectFile &Obj,
995                                ArrayRef<uint8_t> Bytes,
996                                ArrayRef<MappingSymbolPair> MappingSymbols,
997                                const MCSubtargetInfo &STI, raw_ostream &OS) {
998   support::endianness Endian =
999       Obj.isLittleEndian() ? support::little : support::big;
1000   size_t Start = OS.tell();
1001   OS << format("%8" PRIx64 ": ", SectionAddr + Index);
1002   if (Index + 4 <= End) {
1003     dumpBytes(Bytes.slice(Index, 4), OS);
1004     AlignToInstStartColumn(Start, STI, OS);
1005     OS << "\t.word\t"
1006            << format_hex(support::endian::read32(Bytes.data() + Index, Endian),
1007                          10);
1008     return 4;
1009   }
1010   if (Index + 2 <= End) {
1011     dumpBytes(Bytes.slice(Index, 2), OS);
1012     AlignToInstStartColumn(Start, STI, OS);
1013     OS << "\t.short\t"
1014        << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 6);
1015     return 2;
1016   }
1017   dumpBytes(Bytes.slice(Index, 1), OS);
1018   AlignToInstStartColumn(Start, STI, OS);
1019   OS << "\t.byte\t" << format_hex(Bytes[Index], 4);
1020   return 1;
1021 }
1022 
1023 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1024                         ArrayRef<uint8_t> Bytes) {
1025   // print out data up to 8 bytes at a time in hex and ascii
1026   uint8_t AsciiData[9] = {'\0'};
1027   uint8_t Byte;
1028   int NumBytes = 0;
1029 
1030   for (; Index < End; ++Index) {
1031     if (NumBytes == 0)
1032       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1033     Byte = Bytes.slice(Index)[0];
1034     outs() << format(" %02x", Byte);
1035     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1036 
1037     uint8_t IndentOffset = 0;
1038     NumBytes++;
1039     if (Index == End - 1 || NumBytes > 8) {
1040       // Indent the space for less than 8 bytes data.
1041       // 2 spaces for byte and one for space between bytes
1042       IndentOffset = 3 * (8 - NumBytes);
1043       for (int Excess = NumBytes; Excess < 8; Excess++)
1044         AsciiData[Excess] = '\0';
1045       NumBytes = 8;
1046     }
1047     if (NumBytes == 8) {
1048       AsciiData[8] = '\0';
1049       outs() << std::string(IndentOffset, ' ') << "         ";
1050       outs() << reinterpret_cast<char *>(AsciiData);
1051       outs() << '\n';
1052       NumBytes = 0;
1053     }
1054   }
1055 }
1056 
1057 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj,
1058                                        const SymbolRef &Symbol) {
1059   const StringRef FileName = Obj.getFileName();
1060   const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
1061   const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1062 
1063   if (Obj.isXCOFF() && SymbolDescription) {
1064     const auto &XCOFFObj = cast<XCOFFObjectFile>(Obj);
1065     DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
1066 
1067     const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymbolDRI.p);
1068     Optional<XCOFF::StorageMappingClass> Smc =
1069         getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
1070     return SymbolInfoTy(Addr, Name, Smc, SymbolIndex,
1071                         isLabel(XCOFFObj, Symbol));
1072   } else if (Obj.isXCOFF()) {
1073     const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName);
1074     return SymbolInfoTy(Addr, Name, SymType, true);
1075   } else
1076     return SymbolInfoTy(Addr, Name,
1077                         Obj.isELF() ? getElfSymbolType(Obj, Symbol)
1078                                     : (uint8_t)ELF::STT_NOTYPE);
1079 }
1080 
1081 static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj,
1082                                           const uint64_t Addr, StringRef &Name,
1083                                           uint8_t Type) {
1084   if (Obj.isXCOFF() && SymbolDescription)
1085     return SymbolInfoTy(Addr, Name, None, None, false);
1086   else
1087     return SymbolInfoTy(Addr, Name, Type);
1088 }
1089 
1090 static void
1091 collectBBAddrMapLabels(const std::unordered_map<uint64_t, BBAddrMap> &AddrToBBAddrMap,
1092                        uint64_t SectionAddr, uint64_t Start, uint64_t End,
1093                        std::unordered_map<uint64_t, std::vector<std::string>> &Labels) {
1094   if (AddrToBBAddrMap.empty())
1095     return;
1096   Labels.clear();
1097   uint64_t StartAddress = SectionAddr + Start;
1098   uint64_t EndAddress = SectionAddr + End;
1099   auto Iter = AddrToBBAddrMap.find(StartAddress);
1100   if (Iter == AddrToBBAddrMap.end())
1101     return;
1102   for (unsigned I = 0, Size = Iter->second.BBEntries.size(); I < Size; ++I) {
1103     uint64_t BBAddress = Iter->second.BBEntries[I].Offset + Iter->second.Addr;
1104     if (BBAddress >= EndAddress)
1105       continue;
1106     Labels[BBAddress].push_back(("BB" + Twine(I)).str());
1107   }
1108 }
1109 
1110 static void collectLocalBranchTargets(
1111     ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA, MCDisassembler *DisAsm,
1112     MCInstPrinter *IP, const MCSubtargetInfo *STI, uint64_t SectionAddr,
1113     uint64_t Start, uint64_t End, std::unordered_map<uint64_t, std::string> &Labels) {
1114   // So far only supports PowerPC and X86.
1115   if (!STI->getTargetTriple().isPPC() && !STI->getTargetTriple().isX86())
1116     return;
1117 
1118   Labels.clear();
1119   unsigned LabelCount = 0;
1120   Start += SectionAddr;
1121   End += SectionAddr;
1122   uint64_t Index = Start;
1123   while (Index < End) {
1124     // Disassemble a real instruction and record function-local branch labels.
1125     MCInst Inst;
1126     uint64_t Size;
1127     ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr);
1128     bool Disassembled =
1129         DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls());
1130     if (Size == 0)
1131       Size = std::min<uint64_t>(ThisBytes.size(),
1132                                 DisAsm->suggestBytesToSkip(ThisBytes, Index));
1133 
1134     if (Disassembled && MIA) {
1135       uint64_t Target;
1136       bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target);
1137       // On PowerPC, if the address of a branch is the same as the target, it
1138       // means that it's a function call. Do not mark the label for this case.
1139       if (TargetKnown && (Target >= Start && Target < End) &&
1140           !Labels.count(Target) &&
1141           !(STI->getTargetTriple().isPPC() && Target == Index))
1142         Labels[Target] = ("L" + Twine(LabelCount++)).str();
1143     }
1144     Index += Size;
1145   }
1146 }
1147 
1148 // Create an MCSymbolizer for the target and add it to the MCDisassembler.
1149 // This is currently only used on AMDGPU, and assumes the format of the
1150 // void * argument passed to AMDGPU's createMCSymbolizer.
1151 static void addSymbolizer(
1152     MCContext &Ctx, const Target *Target, StringRef TripleName,
1153     MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes,
1154     SectionSymbolsTy &Symbols,
1155     std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) {
1156 
1157   std::unique_ptr<MCRelocationInfo> RelInfo(
1158       Target->createMCRelocationInfo(TripleName, Ctx));
1159   if (!RelInfo)
1160     return;
1161   std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer(
1162       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1163   MCSymbolizer *SymbolizerPtr = &*Symbolizer;
1164   DisAsm->setSymbolizer(std::move(Symbolizer));
1165 
1166   if (!SymbolizeOperands)
1167     return;
1168 
1169   // Synthesize labels referenced by branch instructions by
1170   // disassembling, discarding the output, and collecting the referenced
1171   // addresses from the symbolizer.
1172   for (size_t Index = 0; Index != Bytes.size();) {
1173     MCInst Inst;
1174     uint64_t Size;
1175     ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr);
1176     DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls());
1177     if (Size == 0)
1178       Size = std::min<uint64_t>(ThisBytes.size(),
1179                                 DisAsm->suggestBytesToSkip(ThisBytes, Index));
1180     Index += Size;
1181   }
1182   ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses();
1183   // Copy and sort to remove duplicates.
1184   std::vector<uint64_t> LabelAddrs;
1185   LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(),
1186                     LabelAddrsRef.end());
1187   llvm::sort(LabelAddrs);
1188   LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) -
1189                     LabelAddrs.begin());
1190   // Add the labels.
1191   for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) {
1192     auto Name = std::make_unique<std::string>();
1193     *Name = (Twine("L") + Twine(LabelNum)).str();
1194     SynthesizedLabelNames.push_back(std::move(Name));
1195     Symbols.push_back(SymbolInfoTy(
1196         LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE));
1197   }
1198   llvm::stable_sort(Symbols);
1199   // Recreate the symbolizer with the new symbols list.
1200   RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx));
1201   Symbolizer.reset(Target->createMCSymbolizer(
1202       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1203   DisAsm->setSymbolizer(std::move(Symbolizer));
1204 }
1205 
1206 static StringRef getSegmentName(const MachOObjectFile *MachO,
1207                                 const SectionRef &Section) {
1208   if (MachO) {
1209     DataRefImpl DR = Section.getRawDataRefImpl();
1210     StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1211     return SegmentName;
1212   }
1213   return "";
1214 }
1215 
1216 static void emitPostInstructionInfo(formatted_raw_ostream &FOS,
1217                                     const MCAsmInfo &MAI,
1218                                     const MCSubtargetInfo &STI,
1219                                     StringRef Comments,
1220                                     LiveVariablePrinter &LVP) {
1221   do {
1222     if (!Comments.empty()) {
1223       // Emit a line of comments.
1224       StringRef Comment;
1225       std::tie(Comment, Comments) = Comments.split('\n');
1226       // MAI.getCommentColumn() assumes that instructions are printed at the
1227       // position of 8, while getInstStartColumn() returns the actual position.
1228       unsigned CommentColumn =
1229           MAI.getCommentColumn() - 8 + getInstStartColumn(STI);
1230       FOS.PadToColumn(CommentColumn);
1231       FOS << MAI.getCommentString() << ' ' << Comment;
1232     }
1233     LVP.printAfterInst(FOS);
1234     FOS << '\n';
1235   } while (!Comments.empty());
1236   FOS.flush();
1237 }
1238 
1239 static void createFakeELFSections(ObjectFile &Obj) {
1240   assert(Obj.isELF());
1241   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
1242     Elf32LEObj->createFakeSections();
1243   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
1244     Elf64LEObj->createFakeSections();
1245   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
1246     Elf32BEObj->createFakeSections();
1247   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
1248     Elf64BEObj->createFakeSections();
1249   else
1250     llvm_unreachable("Unsupported binary format");
1251 }
1252 
1253 static void disassembleObject(const Target *TheTarget, ObjectFile &Obj,
1254                               MCContext &Ctx, MCDisassembler *PrimaryDisAsm,
1255                               MCDisassembler *SecondaryDisAsm,
1256                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1257                               const MCSubtargetInfo *PrimarySTI,
1258                               const MCSubtargetInfo *SecondarySTI,
1259                               PrettyPrinter &PIP, SourcePrinter &SP,
1260                               bool InlineRelocs) {
1261   const MCSubtargetInfo *STI = PrimarySTI;
1262   MCDisassembler *DisAsm = PrimaryDisAsm;
1263   bool PrimaryIsThumb = false;
1264   if (isArmElf(Obj))
1265     PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
1266 
1267   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1268   if (InlineRelocs)
1269     RelocMap = getRelocsMap(Obj);
1270   bool Is64Bits = Obj.getBytesInAddress() > 4;
1271 
1272   // Create a mapping from virtual address to symbol name.  This is used to
1273   // pretty print the symbols while disassembling.
1274   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1275   SectionSymbolsTy AbsoluteSymbols;
1276   const StringRef FileName = Obj.getFileName();
1277   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&Obj);
1278   for (const SymbolRef &Symbol : Obj.symbols()) {
1279     Expected<StringRef> NameOrErr = Symbol.getName();
1280     if (!NameOrErr) {
1281       reportWarning(toString(NameOrErr.takeError()), FileName);
1282       continue;
1283     }
1284     if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription))
1285       continue;
1286 
1287     if (Obj.isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION)
1288       continue;
1289 
1290     if (MachO) {
1291       // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special
1292       // symbols that support MachO header introspection. They do not bind to
1293       // code locations and are irrelevant for disassembly.
1294       if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header"))
1295         continue;
1296       // Don't ask a Mach-O STAB symbol for its section unless you know that
1297       // STAB symbol's section field refers to a valid section index. Otherwise
1298       // the symbol may error trying to load a section that does not exist.
1299       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1300       uint8_t NType = (MachO->is64Bit() ?
1301                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1302                        MachO->getSymbolTableEntry(SymDRI).n_type);
1303       if (NType & MachO::N_STAB)
1304         continue;
1305     }
1306 
1307     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1308     if (SecI != Obj.section_end())
1309       AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
1310     else
1311       AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
1312   }
1313 
1314   if (AllSymbols.empty() && Obj.isELF())
1315     addDynamicElfSymbols(cast<ELFObjectFileBase>(Obj), AllSymbols);
1316 
1317   if (Obj.isWasm())
1318     addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols);
1319 
1320   if (Obj.isELF() && Obj.sections().empty())
1321     createFakeELFSections(Obj);
1322 
1323   BumpPtrAllocator A;
1324   StringSaver Saver(A);
1325   addPltEntries(Obj, AllSymbols, Saver);
1326 
1327   // Create a mapping from virtual address to section. An empty section can
1328   // cause more than one section at the same address. Sort such sections to be
1329   // before same-addressed non-empty sections so that symbol lookups prefer the
1330   // non-empty section.
1331   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1332   for (SectionRef Sec : Obj.sections())
1333     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1334   llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
1335     if (LHS.first != RHS.first)
1336       return LHS.first < RHS.first;
1337     return LHS.second.getSize() < RHS.second.getSize();
1338   });
1339 
1340   // Linked executables (.exe and .dll files) typically don't include a real
1341   // symbol table but they might contain an export table.
1342   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) {
1343     for (const auto &ExportEntry : COFFObj->export_directories()) {
1344       StringRef Name;
1345       if (Error E = ExportEntry.getSymbolName(Name))
1346         reportError(std::move(E), Obj.getFileName());
1347       if (Name.empty())
1348         continue;
1349 
1350       uint32_t RVA;
1351       if (Error E = ExportEntry.getExportRVA(RVA))
1352         reportError(std::move(E), Obj.getFileName());
1353 
1354       uint64_t VA = COFFObj->getImageBase() + RVA;
1355       auto Sec = partition_point(
1356           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1357             return O.first <= VA;
1358           });
1359       if (Sec != SectionAddresses.begin()) {
1360         --Sec;
1361         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1362       } else
1363         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1364     }
1365   }
1366 
1367   // Sort all the symbols, this allows us to use a simple binary search to find
1368   // Multiple symbols can have the same address. Use a stable sort to stabilize
1369   // the output.
1370   StringSet<> FoundDisasmSymbolSet;
1371   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1372     llvm::stable_sort(SecSyms.second);
1373   llvm::stable_sort(AbsoluteSymbols);
1374 
1375   std::unique_ptr<DWARFContext> DICtx;
1376   LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI);
1377 
1378   if (DbgVariables != DVDisabled) {
1379     DICtx = DWARFContext::create(Obj);
1380     for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
1381       LVP.addCompileUnit(CU->getUnitDIE(false));
1382   }
1383 
1384   LLVM_DEBUG(LVP.dump());
1385 
1386   std::unordered_map<uint64_t, BBAddrMap> AddrToBBAddrMap;
1387   auto ReadBBAddrMap = [&](Optional<unsigned> SectionIndex = None) {
1388     AddrToBBAddrMap.clear();
1389     if (const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj)) {
1390       auto BBAddrMapsOrErr = Elf->readBBAddrMap(SectionIndex);
1391       if (!BBAddrMapsOrErr)
1392           reportWarning(toString(BBAddrMapsOrErr.takeError()),
1393                         Obj.getFileName());
1394       for (auto &FunctionBBAddrMap : *BBAddrMapsOrErr)
1395         AddrToBBAddrMap.emplace(FunctionBBAddrMap.Addr,
1396                                 std::move(FunctionBBAddrMap));
1397     }
1398   };
1399 
1400   // For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a
1401   // single mapping, since they don't have any conflicts.
1402   if (SymbolizeOperands && !Obj.isRelocatableObject())
1403     ReadBBAddrMap();
1404 
1405   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
1406     if (FilterSections.empty() && !DisassembleAll &&
1407         (!Section.isText() || Section.isVirtual()))
1408       continue;
1409 
1410     uint64_t SectionAddr = Section.getAddress();
1411     uint64_t SectSize = Section.getSize();
1412     if (!SectSize)
1413       continue;
1414 
1415     // For relocatable object files, read the LLVM_BB_ADDR_MAP section
1416     // corresponding to this section, if present.
1417     if (SymbolizeOperands && Obj.isRelocatableObject())
1418       ReadBBAddrMap(Section.getIndex());
1419 
1420     // Get the list of all the symbols in this section.
1421     SectionSymbolsTy &Symbols = AllSymbols[Section];
1422     std::vector<MappingSymbolPair> MappingSymbols;
1423     if (hasMappingSymbols(Obj)) {
1424       for (const auto &Symb : Symbols) {
1425         uint64_t Address = Symb.Addr;
1426         StringRef Name = Symb.Name;
1427         if (Name.startswith("$d"))
1428           MappingSymbols.emplace_back(Address - SectionAddr, 'd');
1429         if (Name.startswith("$x"))
1430           MappingSymbols.emplace_back(Address - SectionAddr, 'x');
1431         if (Name.startswith("$a"))
1432           MappingSymbols.emplace_back(Address - SectionAddr, 'a');
1433         if (Name.startswith("$t"))
1434           MappingSymbols.emplace_back(Address - SectionAddr, 't');
1435       }
1436     }
1437 
1438     llvm::sort(MappingSymbols);
1439 
1440     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1441         unwrapOrError(Section.getContents(), Obj.getFileName()));
1442 
1443     std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames;
1444     if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) {
1445       // AMDGPU disassembler uses symbolizer for printing labels
1446       addSymbolizer(Ctx, TheTarget, TripleName, DisAsm, SectionAddr, Bytes,
1447                     Symbols, SynthesizedLabelNames);
1448     }
1449 
1450     StringRef SegmentName = getSegmentName(MachO, Section);
1451     StringRef SectionName = unwrapOrError(Section.getName(), Obj.getFileName());
1452     // If the section has no symbol at the start, just insert a dummy one.
1453     if (Symbols.empty() || Symbols[0].Addr != 0) {
1454       Symbols.insert(Symbols.begin(),
1455                      createDummySymbolInfo(Obj, SectionAddr, SectionName,
1456                                            Section.isText() ? ELF::STT_FUNC
1457                                                             : ELF::STT_OBJECT));
1458     }
1459 
1460     SmallString<40> Comments;
1461     raw_svector_ostream CommentStream(Comments);
1462 
1463     uint64_t VMAAdjustment = 0;
1464     if (shouldAdjustVA(Section))
1465       VMAAdjustment = AdjustVMA;
1466 
1467     // In executable and shared objects, r_offset holds a virtual address.
1468     // Subtract SectionAddr from the r_offset field of a relocation to get
1469     // the section offset.
1470     uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr;
1471     uint64_t Size;
1472     uint64_t Index;
1473     bool PrintedSection = false;
1474     std::vector<RelocationRef> Rels = RelocMap[Section];
1475     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1476     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1477     // Disassemble symbol by symbol.
1478     for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
1479       std::string SymbolName = Symbols[SI].Name.str();
1480       if (Demangle)
1481         SymbolName = demangle(SymbolName);
1482 
1483       // Skip if --disassemble-symbols is not empty and the symbol is not in
1484       // the list.
1485       if (!DisasmSymbolSet.empty() && !DisasmSymbolSet.count(SymbolName))
1486         continue;
1487 
1488       uint64_t Start = Symbols[SI].Addr;
1489       if (Start < SectionAddr || StopAddress <= Start)
1490         continue;
1491       else
1492         FoundDisasmSymbolSet.insert(SymbolName);
1493 
1494       // The end is the section end, the beginning of the next symbol, or
1495       // --stop-address.
1496       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1497       if (SI + 1 < SE)
1498         End = std::min(End, Symbols[SI + 1].Addr);
1499       if (Start >= End || End <= StartAddress)
1500         continue;
1501       Start -= SectionAddr;
1502       End -= SectionAddr;
1503 
1504       if (!PrintedSection) {
1505         PrintedSection = true;
1506         outs() << "\nDisassembly of section ";
1507         if (!SegmentName.empty())
1508           outs() << SegmentName << ",";
1509         outs() << SectionName << ":\n";
1510       }
1511 
1512       outs() << '\n';
1513       if (LeadingAddr)
1514         outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1515                          SectionAddr + Start + VMAAdjustment);
1516       if (Obj.isXCOFF() && SymbolDescription) {
1517         outs() << getXCOFFSymbolDescription(Symbols[SI], SymbolName) << ":\n";
1518       } else
1519         outs() << '<' << SymbolName << ">:\n";
1520 
1521       // Don't print raw contents of a virtual section. A virtual section
1522       // doesn't have any contents in the file.
1523       if (Section.isVirtual()) {
1524         outs() << "...\n";
1525         continue;
1526       }
1527 
1528       auto Status = DisAsm->onSymbolStart(Symbols[SI], Size,
1529                                           Bytes.slice(Start, End - Start),
1530                                           SectionAddr + Start, CommentStream);
1531       // To have round trippable disassembly, we fall back to decoding the
1532       // remaining bytes as instructions.
1533       //
1534       // If there is a failure, we disassemble the failed region as bytes before
1535       // falling back. The target is expected to print nothing in this case.
1536       //
1537       // If there is Success or SoftFail i.e no 'real' failure, we go ahead by
1538       // Size bytes before falling back.
1539       // So if the entire symbol is 'eaten' by the target:
1540       //   Start += Size  // Now Start = End and we will never decode as
1541       //                  // instructions
1542       //
1543       // Right now, most targets return None i.e ignore to treat a symbol
1544       // separately. But WebAssembly decodes preludes for some symbols.
1545       //
1546       if (Status) {
1547         if (Status.value() == MCDisassembler::Fail) {
1548           outs() << "// Error in decoding " << SymbolName
1549                  << " : Decoding failed region as bytes.\n";
1550           for (uint64_t I = 0; I < Size; ++I) {
1551             outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
1552                    << "\n";
1553           }
1554         }
1555       } else {
1556         Size = 0;
1557       }
1558 
1559       Start += Size;
1560 
1561       Index = Start;
1562       if (SectionAddr < StartAddress)
1563         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1564 
1565       // If there is a data/common symbol inside an ELF text section and we are
1566       // only disassembling text (applicable all architectures), we are in a
1567       // situation where we must print the data and not disassemble it.
1568       if (Obj.isELF() && !DisassembleAll && Section.isText()) {
1569         uint8_t SymTy = Symbols[SI].Type;
1570         if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) {
1571           dumpELFData(SectionAddr, Index, End, Bytes);
1572           Index = End;
1573         }
1574       }
1575 
1576       bool CheckARMELFData = hasMappingSymbols(Obj) &&
1577                              Symbols[SI].Type != ELF::STT_OBJECT &&
1578                              !DisassembleAll;
1579       bool DumpARMELFData = false;
1580       formatted_raw_ostream FOS(outs());
1581 
1582       std::unordered_map<uint64_t, std::string> AllLabels;
1583       std::unordered_map<uint64_t, std::vector<std::string>> BBAddrMapLabels;
1584       if (SymbolizeOperands) {
1585         collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI,
1586                                   SectionAddr, Index, End, AllLabels);
1587         collectBBAddrMapLabels(AddrToBBAddrMap, SectionAddr, Index, End,
1588                                BBAddrMapLabels);
1589       }
1590 
1591       while (Index < End) {
1592         // ARM and AArch64 ELF binaries can interleave data and text in the
1593         // same section. We rely on the markers introduced to understand what
1594         // we need to dump. If the data marker is within a function, it is
1595         // denoted as a word/short etc.
1596         if (CheckARMELFData) {
1597           char Kind = getMappingSymbolKind(MappingSymbols, Index);
1598           DumpARMELFData = Kind == 'd';
1599           if (SecondarySTI) {
1600             if (Kind == 'a') {
1601               STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
1602               DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
1603             } else if (Kind == 't') {
1604               STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
1605               DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
1606             }
1607           }
1608         }
1609 
1610         if (DumpARMELFData) {
1611           Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1612                                 MappingSymbols, *STI, FOS);
1613         } else {
1614           // When -z or --disassemble-zeroes are given we always dissasemble
1615           // them. Otherwise we might want to skip zero bytes we see.
1616           if (!DisassembleZeroes) {
1617             uint64_t MaxOffset = End - Index;
1618             // For --reloc: print zero blocks patched by relocations, so that
1619             // relocations can be shown in the dump.
1620             if (RelCur != RelEnd)
1621               MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index,
1622                                    MaxOffset);
1623 
1624             if (size_t N =
1625                     countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1626               FOS << "\t\t..." << '\n';
1627               Index += N;
1628               continue;
1629             }
1630           }
1631 
1632           // Print local label if there's any.
1633           auto Iter1 = BBAddrMapLabels.find(SectionAddr + Index);
1634           if (Iter1 != BBAddrMapLabels.end()) {
1635             for (StringRef Label : Iter1->second)
1636               FOS << "<" << Label << ">:\n";
1637           } else {
1638             auto Iter2 = AllLabels.find(SectionAddr + Index);
1639             if (Iter2 != AllLabels.end())
1640               FOS << "<" << Iter2->second << ">:\n";
1641           }
1642 
1643           // Disassemble a real instruction or a data when disassemble all is
1644           // provided
1645           MCInst Inst;
1646           ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
1647           uint64_t ThisAddr = SectionAddr + Index;
1648           bool Disassembled = DisAsm->getInstruction(Inst, Size, ThisBytes,
1649                                                      ThisAddr, CommentStream);
1650           if (Size == 0)
1651             Size = std::min<uint64_t>(
1652                 ThisBytes.size(),
1653                 DisAsm->suggestBytesToSkip(ThisBytes, ThisAddr));
1654 
1655           LVP.update({Index, Section.getIndex()},
1656                      {Index + Size, Section.getIndex()}, Index + Size != End);
1657 
1658           IP->setCommentStream(CommentStream);
1659 
1660           PIP.printInst(
1661               *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
1662               {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
1663               "", *STI, &SP, Obj.getFileName(), &Rels, LVP);
1664 
1665           IP->setCommentStream(llvm::nulls());
1666 
1667           // If disassembly has failed, avoid analysing invalid/incomplete
1668           // instruction information. Otherwise, try to resolve the target
1669           // address (jump target or memory operand address) and print it on the
1670           // right of the instruction.
1671           if (Disassembled && MIA) {
1672             // Branch targets are printed just after the instructions.
1673             llvm::raw_ostream *TargetOS = &FOS;
1674             uint64_t Target;
1675             bool PrintTarget =
1676                 MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target);
1677             if (!PrintTarget)
1678               if (Optional<uint64_t> MaybeTarget =
1679                       MIA->evaluateMemoryOperandAddress(
1680                           Inst, STI, SectionAddr + Index, Size)) {
1681                 Target = *MaybeTarget;
1682                 PrintTarget = true;
1683                 // Do not print real address when symbolizing.
1684                 if (!SymbolizeOperands) {
1685                   // Memory operand addresses are printed as comments.
1686                   TargetOS = &CommentStream;
1687                   *TargetOS << "0x" << Twine::utohexstr(Target);
1688                 }
1689               }
1690             if (PrintTarget) {
1691               // In a relocatable object, the target's section must reside in
1692               // the same section as the call instruction or it is accessed
1693               // through a relocation.
1694               //
1695               // In a non-relocatable object, the target may be in any section.
1696               // In that case, locate the section(s) containing the target
1697               // address and find the symbol in one of those, if possible.
1698               //
1699               // N.B. We don't walk the relocations in the relocatable case yet.
1700               std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
1701               if (!Obj.isRelocatableObject()) {
1702                 auto It = llvm::partition_point(
1703                     SectionAddresses,
1704                     [=](const std::pair<uint64_t, SectionRef> &O) {
1705                       return O.first <= Target;
1706                     });
1707                 uint64_t TargetSecAddr = 0;
1708                 while (It != SectionAddresses.begin()) {
1709                   --It;
1710                   if (TargetSecAddr == 0)
1711                     TargetSecAddr = It->first;
1712                   if (It->first != TargetSecAddr)
1713                     break;
1714                   TargetSectionSymbols.push_back(&AllSymbols[It->second]);
1715                 }
1716               } else {
1717                 TargetSectionSymbols.push_back(&Symbols);
1718               }
1719               TargetSectionSymbols.push_back(&AbsoluteSymbols);
1720 
1721               // Find the last symbol in the first candidate section whose
1722               // offset is less than or equal to the target. If there are no
1723               // such symbols, try in the next section and so on, before finally
1724               // using the nearest preceding absolute symbol (if any), if there
1725               // are no other valid symbols.
1726               const SymbolInfoTy *TargetSym = nullptr;
1727               for (const SectionSymbolsTy *TargetSymbols :
1728                    TargetSectionSymbols) {
1729                 auto It = llvm::partition_point(
1730                     *TargetSymbols,
1731                     [=](const SymbolInfoTy &O) { return O.Addr <= Target; });
1732                 if (It != TargetSymbols->begin()) {
1733                   TargetSym = &*(It - 1);
1734                   break;
1735                 }
1736               }
1737 
1738               // Print the labels corresponding to the target if there's any.
1739               bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(Target);
1740               bool LabelAvailable = AllLabels.count(Target);
1741               if (TargetSym != nullptr) {
1742                 uint64_t TargetAddress = TargetSym->Addr;
1743                 uint64_t Disp = Target - TargetAddress;
1744                 std::string TargetName = TargetSym->Name.str();
1745                 if (Demangle)
1746                   TargetName = demangle(TargetName);
1747 
1748                 *TargetOS << " <";
1749                 if (!Disp) {
1750                   // Always Print the binary symbol precisely corresponding to
1751                   // the target address.
1752                   *TargetOS << TargetName;
1753                 } else if (BBAddrMapLabelAvailable) {
1754                   *TargetOS << BBAddrMapLabels[Target].front();
1755                 } else if (LabelAvailable) {
1756                   *TargetOS << AllLabels[Target];
1757                 } else {
1758                   // Always Print the binary symbol plus an offset if there's no
1759                   // local label corresponding to the target address.
1760                   *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp);
1761                 }
1762                 *TargetOS << ">";
1763               } else if (BBAddrMapLabelAvailable) {
1764                 *TargetOS << " <" << BBAddrMapLabels[Target].front() << ">";
1765               } else if (LabelAvailable) {
1766                 *TargetOS << " <" << AllLabels[Target] << ">";
1767               }
1768               // By convention, each record in the comment stream should be
1769               // terminated.
1770               if (TargetOS == &CommentStream)
1771                 *TargetOS << "\n";
1772             }
1773           }
1774         }
1775 
1776         assert(Ctx.getAsmInfo());
1777         emitPostInstructionInfo(FOS, *Ctx.getAsmInfo(), *STI,
1778                                 CommentStream.str(), LVP);
1779         Comments.clear();
1780 
1781         // Hexagon does this in pretty printer
1782         if (Obj.getArch() != Triple::hexagon) {
1783           // Print relocation for instruction and data.
1784           while (RelCur != RelEnd) {
1785             uint64_t Offset = RelCur->getOffset() - RelAdjustment;
1786             // If this relocation is hidden, skip it.
1787             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
1788               ++RelCur;
1789               continue;
1790             }
1791 
1792             // Stop when RelCur's offset is past the disassembled
1793             // instruction/data. Note that it's possible the disassembled data
1794             // is not the complete data: we might see the relocation printed in
1795             // the middle of the data, but this matches the binutils objdump
1796             // output.
1797             if (Offset >= Index + Size)
1798               break;
1799 
1800             // When --adjust-vma is used, update the address printed.
1801             if (RelCur->getSymbol() != Obj.symbol_end()) {
1802               Expected<section_iterator> SymSI =
1803                   RelCur->getSymbol()->getSection();
1804               if (SymSI && *SymSI != Obj.section_end() &&
1805                   shouldAdjustVA(**SymSI))
1806                 Offset += AdjustVMA;
1807             }
1808 
1809             printRelocation(FOS, Obj.getFileName(), *RelCur,
1810                             SectionAddr + Offset, Is64Bits);
1811             LVP.printAfterOtherLine(FOS, true);
1812             ++RelCur;
1813           }
1814         }
1815 
1816         Index += Size;
1817       }
1818     }
1819   }
1820   StringSet<> MissingDisasmSymbolSet =
1821       set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
1822   for (StringRef Sym : MissingDisasmSymbolSet.keys())
1823     reportWarning("failed to disassemble missing symbol " + Sym, FileName);
1824 }
1825 
1826 static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) {
1827   const Target *TheTarget = getTarget(Obj);
1828 
1829   // Package up features to be passed to target/subtarget
1830   SubtargetFeatures Features = Obj->getFeatures();
1831   if (!MAttrs.empty()) {
1832     for (unsigned I = 0; I != MAttrs.size(); ++I)
1833       Features.AddFeature(MAttrs[I]);
1834   } else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) {
1835     Features.AddFeature("+all");
1836   }
1837 
1838   std::unique_ptr<const MCRegisterInfo> MRI(
1839       TheTarget->createMCRegInfo(TripleName));
1840   if (!MRI)
1841     reportError(Obj->getFileName(),
1842                 "no register info for target " + TripleName);
1843 
1844   // Set up disassembler.
1845   MCTargetOptions MCOptions;
1846   std::unique_ptr<const MCAsmInfo> AsmInfo(
1847       TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
1848   if (!AsmInfo)
1849     reportError(Obj->getFileName(),
1850                 "no assembly info for target " + TripleName);
1851 
1852   if (MCPU.empty())
1853     MCPU = Obj->tryGetCPUName().value_or("").str();
1854 
1855   std::unique_ptr<const MCSubtargetInfo> STI(
1856       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1857   if (!STI)
1858     reportError(Obj->getFileName(),
1859                 "no subtarget info for target " + TripleName);
1860   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1861   if (!MII)
1862     reportError(Obj->getFileName(),
1863                 "no instruction info for target " + TripleName);
1864   MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get());
1865   // FIXME: for now initialize MCObjectFileInfo with default values
1866   std::unique_ptr<MCObjectFileInfo> MOFI(
1867       TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false));
1868   Ctx.setObjectFileInfo(MOFI.get());
1869 
1870   std::unique_ptr<MCDisassembler> DisAsm(
1871       TheTarget->createMCDisassembler(*STI, Ctx));
1872   if (!DisAsm)
1873     reportError(Obj->getFileName(), "no disassembler for target " + TripleName);
1874 
1875   // If we have an ARM object file, we need a second disassembler, because
1876   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
1877   // We use mapping symbols to switch between the two assemblers, where
1878   // appropriate.
1879   std::unique_ptr<MCDisassembler> SecondaryDisAsm;
1880   std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
1881   if (isArmElf(*Obj) && !STI->checkFeatures("+mclass")) {
1882     if (STI->checkFeatures("+thumb-mode"))
1883       Features.AddFeature("-thumb-mode");
1884     else
1885       Features.AddFeature("+thumb-mode");
1886     SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
1887                                                         Features.getString()));
1888     SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
1889   }
1890 
1891   std::unique_ptr<const MCInstrAnalysis> MIA(
1892       TheTarget->createMCInstrAnalysis(MII.get()));
1893 
1894   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1895   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1896       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1897   if (!IP)
1898     reportError(Obj->getFileName(),
1899                 "no instruction printer for target " + TripleName);
1900   IP->setPrintImmHex(PrintImmHex);
1901   IP->setPrintBranchImmAsAddress(true);
1902   IP->setSymbolizeOperands(SymbolizeOperands);
1903   IP->setMCInstrAnalysis(MIA.get());
1904 
1905   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1906   SourcePrinter SP(Obj, TheTarget->getName());
1907 
1908   for (StringRef Opt : DisassemblerOptions)
1909     if (!IP->applyTargetSpecificCLOption(Opt))
1910       reportError(Obj->getFileName(),
1911                   "Unrecognized disassembler option: " + Opt);
1912 
1913   disassembleObject(TheTarget, *Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(),
1914                     MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP, SP,
1915                     InlineRelocs);
1916 }
1917 
1918 void objdump::printRelocations(const ObjectFile *Obj) {
1919   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1920                                                  "%08" PRIx64;
1921 
1922   // Build a mapping from relocation target to a vector of relocation
1923   // sections. Usually, there is an only one relocation section for
1924   // each relocated section.
1925   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
1926   uint64_t Ndx;
1927   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) {
1928     if (Obj->isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC))
1929       continue;
1930     if (Section.relocation_begin() == Section.relocation_end())
1931       continue;
1932     Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
1933     if (!SecOrErr)
1934       reportError(Obj->getFileName(),
1935                   "section (" + Twine(Ndx) +
1936                       "): unable to get a relocation target: " +
1937                       toString(SecOrErr.takeError()));
1938     SecToRelSec[**SecOrErr].push_back(Section);
1939   }
1940 
1941   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
1942     StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName());
1943     outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n";
1944     uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
1945     uint32_t TypePadding = 24;
1946     outs() << left_justify("OFFSET", OffsetPadding) << " "
1947            << left_justify("TYPE", TypePadding) << " "
1948            << "VALUE\n";
1949 
1950     for (SectionRef Section : P.second) {
1951       for (const RelocationRef &Reloc : Section.relocations()) {
1952         uint64_t Address = Reloc.getOffset();
1953         SmallString<32> RelocName;
1954         SmallString<32> ValueStr;
1955         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
1956           continue;
1957         Reloc.getTypeName(RelocName);
1958         if (Error E = getRelocationValueString(Reloc, ValueStr))
1959           reportError(std::move(E), Obj->getFileName());
1960 
1961         outs() << format(Fmt.data(), Address) << " "
1962                << left_justify(RelocName, TypePadding) << " " << ValueStr
1963                << "\n";
1964       }
1965     }
1966   }
1967 }
1968 
1969 void objdump::printDynamicRelocations(const ObjectFile *Obj) {
1970   // For the moment, this option is for ELF only
1971   if (!Obj->isELF())
1972     return;
1973 
1974   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1975   if (!Elf || !any_of(Elf->sections(), [](const ELFSectionRef Sec) {
1976         return Sec.getType() == ELF::SHT_DYNAMIC;
1977       })) {
1978     reportError(Obj->getFileName(), "not a dynamic object");
1979     return;
1980   }
1981 
1982   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
1983   if (DynRelSec.empty())
1984     return;
1985 
1986   outs() << "\nDYNAMIC RELOCATION RECORDS\n";
1987   const uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
1988   const uint32_t TypePadding = 24;
1989   outs() << left_justify("OFFSET", OffsetPadding) << ' '
1990          << left_justify("TYPE", TypePadding) << " VALUE\n";
1991 
1992   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1993   for (const SectionRef &Section : DynRelSec)
1994     for (const RelocationRef &Reloc : Section.relocations()) {
1995       uint64_t Address = Reloc.getOffset();
1996       SmallString<32> RelocName;
1997       SmallString<32> ValueStr;
1998       Reloc.getTypeName(RelocName);
1999       if (Error E = getRelocationValueString(Reloc, ValueStr))
2000         reportError(std::move(E), Obj->getFileName());
2001       outs() << format(Fmt.data(), Address) << ' '
2002              << left_justify(RelocName, TypePadding) << ' ' << ValueStr << '\n';
2003     }
2004 }
2005 
2006 // Returns true if we need to show LMA column when dumping section headers. We
2007 // show it only when the platform is ELF and either we have at least one section
2008 // whose VMA and LMA are different and/or when --show-lma flag is used.
2009 static bool shouldDisplayLMA(const ObjectFile &Obj) {
2010   if (!Obj.isELF())
2011     return false;
2012   for (const SectionRef &S : ToolSectionFilter(Obj))
2013     if (S.getAddress() != getELFSectionLMA(S))
2014       return true;
2015   return ShowLMA;
2016 }
2017 
2018 static size_t getMaxSectionNameWidth(const ObjectFile &Obj) {
2019   // Default column width for names is 13 even if no names are that long.
2020   size_t MaxWidth = 13;
2021   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
2022     StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2023     MaxWidth = std::max(MaxWidth, Name.size());
2024   }
2025   return MaxWidth;
2026 }
2027 
2028 void objdump::printSectionHeaders(ObjectFile &Obj) {
2029   size_t NameWidth = getMaxSectionNameWidth(Obj);
2030   size_t AddressWidth = 2 * Obj.getBytesInAddress();
2031   bool HasLMAColumn = shouldDisplayLMA(Obj);
2032   outs() << "\nSections:\n";
2033   if (HasLMAColumn)
2034     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
2035            << left_justify("VMA", AddressWidth) << " "
2036            << left_justify("LMA", AddressWidth) << " Type\n";
2037   else
2038     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
2039            << left_justify("VMA", AddressWidth) << " Type\n";
2040 
2041   if (Obj.isELF() && Obj.sections().empty())
2042     createFakeELFSections(Obj);
2043 
2044   uint64_t Idx;
2045   for (const SectionRef &Section : ToolSectionFilter(Obj, &Idx)) {
2046     StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2047     uint64_t VMA = Section.getAddress();
2048     if (shouldAdjustVA(Section))
2049       VMA += AdjustVMA;
2050 
2051     uint64_t Size = Section.getSize();
2052 
2053     std::string Type = Section.isText() ? "TEXT" : "";
2054     if (Section.isData())
2055       Type += Type.empty() ? "DATA" : ", DATA";
2056     if (Section.isBSS())
2057       Type += Type.empty() ? "BSS" : ", BSS";
2058     if (Section.isDebugSection())
2059       Type += Type.empty() ? "DEBUG" : ", DEBUG";
2060 
2061     if (HasLMAColumn)
2062       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2063                        Name.str().c_str(), Size)
2064              << format_hex_no_prefix(VMA, AddressWidth) << " "
2065              << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
2066              << " " << Type << "\n";
2067     else
2068       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2069                        Name.str().c_str(), Size)
2070              << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
2071   }
2072 }
2073 
2074 void objdump::printSectionContents(const ObjectFile *Obj) {
2075   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
2076 
2077   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
2078     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
2079     uint64_t BaseAddr = Section.getAddress();
2080     uint64_t Size = Section.getSize();
2081     if (!Size)
2082       continue;
2083 
2084     outs() << "Contents of section ";
2085     StringRef SegmentName = getSegmentName(MachO, Section);
2086     if (!SegmentName.empty())
2087       outs() << SegmentName << ",";
2088     outs() << Name << ":\n";
2089     if (Section.isBSS()) {
2090       outs() << format("<skipping contents of bss section at [%04" PRIx64
2091                        ", %04" PRIx64 ")>\n",
2092                        BaseAddr, BaseAddr + Size);
2093       continue;
2094     }
2095 
2096     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
2097 
2098     // Dump out the content as hex and printable ascii characters.
2099     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
2100       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
2101       // Dump line of hex.
2102       for (std::size_t I = 0; I < 16; ++I) {
2103         if (I != 0 && I % 4 == 0)
2104           outs() << ' ';
2105         if (Addr + I < End)
2106           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
2107                  << hexdigit(Contents[Addr + I] & 0xF, true);
2108         else
2109           outs() << "  ";
2110       }
2111       // Print ascii.
2112       outs() << "  ";
2113       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
2114         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
2115           outs() << Contents[Addr + I];
2116         else
2117           outs() << ".";
2118       }
2119       outs() << "\n";
2120     }
2121   }
2122 }
2123 
2124 void objdump::printSymbolTable(const ObjectFile &O, StringRef ArchiveName,
2125                                StringRef ArchitectureName, bool DumpDynamic) {
2126   if (O.isCOFF() && !DumpDynamic) {
2127     outs() << "\nSYMBOL TABLE:\n";
2128     printCOFFSymbolTable(cast<const COFFObjectFile>(O));
2129     return;
2130   }
2131 
2132   const StringRef FileName = O.getFileName();
2133 
2134   if (!DumpDynamic) {
2135     outs() << "\nSYMBOL TABLE:\n";
2136     for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I)
2137       printSymbol(O, *I, {}, FileName, ArchiveName, ArchitectureName,
2138                   DumpDynamic);
2139     return;
2140   }
2141 
2142   outs() << "\nDYNAMIC SYMBOL TABLE:\n";
2143   if (!O.isELF()) {
2144     reportWarning(
2145         "this operation is not currently supported for this file format",
2146         FileName);
2147     return;
2148   }
2149 
2150   const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(&O);
2151   auto Symbols = ELF->getDynamicSymbolIterators();
2152   Expected<std::vector<VersionEntry>> SymbolVersionsOrErr =
2153       ELF->readDynsymVersions();
2154   if (!SymbolVersionsOrErr) {
2155     reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName);
2156     SymbolVersionsOrErr = std::vector<VersionEntry>();
2157     (void)!SymbolVersionsOrErr;
2158   }
2159   for (auto &Sym : Symbols)
2160     printSymbol(O, Sym, *SymbolVersionsOrErr, FileName, ArchiveName,
2161                 ArchitectureName, DumpDynamic);
2162 }
2163 
2164 void objdump::printSymbol(const ObjectFile &O, const SymbolRef &Symbol,
2165                           ArrayRef<VersionEntry> SymbolVersions,
2166                           StringRef FileName, StringRef ArchiveName,
2167                           StringRef ArchitectureName, bool DumpDynamic) {
2168   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&O);
2169   uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName,
2170                                    ArchitectureName);
2171   if ((Address < StartAddress) || (Address > StopAddress))
2172     return;
2173   SymbolRef::Type Type =
2174       unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
2175   uint32_t Flags =
2176       unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);
2177 
2178   // Don't ask a Mach-O STAB symbol for its section unless you know that
2179   // STAB symbol's section field refers to a valid section index. Otherwise
2180   // the symbol may error trying to load a section that does not exist.
2181   bool IsSTAB = false;
2182   if (MachO) {
2183     DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
2184     uint8_t NType =
2185         (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
2186                           : MachO->getSymbolTableEntry(SymDRI).n_type);
2187     if (NType & MachO::N_STAB)
2188       IsSTAB = true;
2189   }
2190   section_iterator Section = IsSTAB
2191                                  ? O.section_end()
2192                                  : unwrapOrError(Symbol.getSection(), FileName,
2193                                                  ArchiveName, ArchitectureName);
2194 
2195   StringRef Name;
2196   if (Type == SymbolRef::ST_Debug && Section != O.section_end()) {
2197     if (Expected<StringRef> NameOrErr = Section->getName())
2198       Name = *NameOrErr;
2199     else
2200       consumeError(NameOrErr.takeError());
2201 
2202   } else {
2203     Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
2204                          ArchitectureName);
2205   }
2206 
2207   bool Global = Flags & SymbolRef::SF_Global;
2208   bool Weak = Flags & SymbolRef::SF_Weak;
2209   bool Absolute = Flags & SymbolRef::SF_Absolute;
2210   bool Common = Flags & SymbolRef::SF_Common;
2211   bool Hidden = Flags & SymbolRef::SF_Hidden;
2212 
2213   char GlobLoc = ' ';
2214   if ((Section != O.section_end() || Absolute) && !Weak)
2215     GlobLoc = Global ? 'g' : 'l';
2216   char IFunc = ' ';
2217   if (O.isELF()) {
2218     if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
2219       IFunc = 'i';
2220     if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
2221       GlobLoc = 'u';
2222   }
2223 
2224   char Debug = ' ';
2225   if (DumpDynamic)
2226     Debug = 'D';
2227   else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2228     Debug = 'd';
2229 
2230   char FileFunc = ' ';
2231   if (Type == SymbolRef::ST_File)
2232     FileFunc = 'f';
2233   else if (Type == SymbolRef::ST_Function)
2234     FileFunc = 'F';
2235   else if (Type == SymbolRef::ST_Data)
2236     FileFunc = 'O';
2237 
2238   const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2239 
2240   outs() << format(Fmt, Address) << " "
2241          << GlobLoc            // Local -> 'l', Global -> 'g', Neither -> ' '
2242          << (Weak ? 'w' : ' ') // Weak?
2243          << ' '                // Constructor. Not supported yet.
2244          << ' '                // Warning. Not supported yet.
2245          << IFunc              // Indirect reference to another symbol.
2246          << Debug              // Debugging (d) or dynamic (D) symbol.
2247          << FileFunc           // Name of function (F), file (f) or object (O).
2248          << ' ';
2249   if (Absolute) {
2250     outs() << "*ABS*";
2251   } else if (Common) {
2252     outs() << "*COM*";
2253   } else if (Section == O.section_end()) {
2254     if (O.isXCOFF()) {
2255       XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(O).toSymbolRef(
2256           Symbol.getRawDataRefImpl());
2257       if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber())
2258         outs() << "*DEBUG*";
2259       else
2260         outs() << "*UND*";
2261     } else
2262       outs() << "*UND*";
2263   } else {
2264     StringRef SegmentName = getSegmentName(MachO, *Section);
2265     if (!SegmentName.empty())
2266       outs() << SegmentName << ",";
2267     StringRef SectionName = unwrapOrError(Section->getName(), FileName);
2268     outs() << SectionName;
2269     if (O.isXCOFF()) {
2270       Optional<SymbolRef> SymRef =
2271           getXCOFFSymbolContainingSymbolRef(cast<XCOFFObjectFile>(O), Symbol);
2272       if (SymRef) {
2273 
2274         Expected<StringRef> NameOrErr = SymRef->getName();
2275 
2276         if (NameOrErr) {
2277           outs() << " (csect:";
2278           std::string SymName(NameOrErr.get());
2279 
2280           if (Demangle)
2281             SymName = demangle(SymName);
2282 
2283           if (SymbolDescription)
2284             SymName = getXCOFFSymbolDescription(
2285                 createSymbolInfo(O, SymRef.value()), SymName);
2286 
2287           outs() << ' ' << SymName;
2288           outs() << ") ";
2289         } else
2290           reportWarning(toString(NameOrErr.takeError()), FileName);
2291       }
2292     }
2293   }
2294 
2295   if (Common)
2296     outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment()));
2297   else if (O.isXCOFF())
2298     outs() << '\t'
2299            << format(Fmt, cast<XCOFFObjectFile>(O).getSymbolSize(
2300                               Symbol.getRawDataRefImpl()));
2301   else if (O.isELF())
2302     outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize());
2303 
2304   if (O.isELF()) {
2305     if (!SymbolVersions.empty()) {
2306       const VersionEntry &Ver =
2307           SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1];
2308       std::string Str;
2309       if (!Ver.Name.empty())
2310         Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')';
2311       outs() << ' ' << left_justify(Str, 12);
2312     }
2313 
2314     uint8_t Other = ELFSymbolRef(Symbol).getOther();
2315     switch (Other) {
2316     case ELF::STV_DEFAULT:
2317       break;
2318     case ELF::STV_INTERNAL:
2319       outs() << " .internal";
2320       break;
2321     case ELF::STV_HIDDEN:
2322       outs() << " .hidden";
2323       break;
2324     case ELF::STV_PROTECTED:
2325       outs() << " .protected";
2326       break;
2327     default:
2328       outs() << format(" 0x%02x", Other);
2329       break;
2330     }
2331   } else if (Hidden) {
2332     outs() << " .hidden";
2333   }
2334 
2335   std::string SymName(Name);
2336   if (Demangle)
2337     SymName = demangle(SymName);
2338 
2339   if (O.isXCOFF() && SymbolDescription)
2340     SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName);
2341 
2342   outs() << ' ' << SymName << '\n';
2343 }
2344 
2345 static void printUnwindInfo(const ObjectFile *O) {
2346   outs() << "Unwind info:\n\n";
2347 
2348   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
2349     printCOFFUnwindInfo(Coff);
2350   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
2351     printMachOUnwindInfo(MachO);
2352   else
2353     // TODO: Extract DWARF dump tool to objdump.
2354     WithColor::error(errs(), ToolName)
2355         << "This operation is only currently supported "
2356            "for COFF and MachO object files.\n";
2357 }
2358 
2359 /// Dump the raw contents of the __clangast section so the output can be piped
2360 /// into llvm-bcanalyzer.
2361 static void printRawClangAST(const ObjectFile *Obj) {
2362   if (outs().is_displayed()) {
2363     WithColor::error(errs(), ToolName)
2364         << "The -raw-clang-ast option will dump the raw binary contents of "
2365            "the clang ast section.\n"
2366            "Please redirect the output to a file or another program such as "
2367            "llvm-bcanalyzer.\n";
2368     return;
2369   }
2370 
2371   StringRef ClangASTSectionName("__clangast");
2372   if (Obj->isCOFF()) {
2373     ClangASTSectionName = "clangast";
2374   }
2375 
2376   Optional<object::SectionRef> ClangASTSection;
2377   for (auto Sec : ToolSectionFilter(*Obj)) {
2378     StringRef Name;
2379     if (Expected<StringRef> NameOrErr = Sec.getName())
2380       Name = *NameOrErr;
2381     else
2382       consumeError(NameOrErr.takeError());
2383 
2384     if (Name == ClangASTSectionName) {
2385       ClangASTSection = Sec;
2386       break;
2387     }
2388   }
2389   if (!ClangASTSection)
2390     return;
2391 
2392   StringRef ClangASTContents =
2393       unwrapOrError(ClangASTSection.value().getContents(), Obj->getFileName());
2394   outs().write(ClangASTContents.data(), ClangASTContents.size());
2395 }
2396 
2397 static void printFaultMaps(const ObjectFile *Obj) {
2398   StringRef FaultMapSectionName;
2399 
2400   if (Obj->isELF()) {
2401     FaultMapSectionName = ".llvm_faultmaps";
2402   } else if (Obj->isMachO()) {
2403     FaultMapSectionName = "__llvm_faultmaps";
2404   } else {
2405     WithColor::error(errs(), ToolName)
2406         << "This operation is only currently supported "
2407            "for ELF and Mach-O executable files.\n";
2408     return;
2409   }
2410 
2411   Optional<object::SectionRef> FaultMapSection;
2412 
2413   for (auto Sec : ToolSectionFilter(*Obj)) {
2414     StringRef Name;
2415     if (Expected<StringRef> NameOrErr = Sec.getName())
2416       Name = *NameOrErr;
2417     else
2418       consumeError(NameOrErr.takeError());
2419 
2420     if (Name == FaultMapSectionName) {
2421       FaultMapSection = Sec;
2422       break;
2423     }
2424   }
2425 
2426   outs() << "FaultMap table:\n";
2427 
2428   if (!FaultMapSection) {
2429     outs() << "<not found>\n";
2430     return;
2431   }
2432 
2433   StringRef FaultMapContents =
2434       unwrapOrError(FaultMapSection->getContents(), Obj->getFileName());
2435   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2436                      FaultMapContents.bytes_end());
2437 
2438   outs() << FMP;
2439 }
2440 
2441 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
2442   if (O->isELF()) {
2443     printELFFileHeader(O);
2444     printELFDynamicSection(O);
2445     printELFSymbolVersionInfo(O);
2446     return;
2447   }
2448   if (O->isCOFF())
2449     return printCOFFFileHeader(cast<object::COFFObjectFile>(*O));
2450   if (O->isWasm())
2451     return printWasmFileHeader(O);
2452   if (O->isMachO()) {
2453     printMachOFileHeader(O);
2454     if (!OnlyFirst)
2455       printMachOLoadCommands(O);
2456     return;
2457   }
2458   reportError(O->getFileName(), "Invalid/Unsupported object file format");
2459 }
2460 
2461 static void printFileHeaders(const ObjectFile *O) {
2462   if (!O->isELF() && !O->isCOFF())
2463     reportError(O->getFileName(), "Invalid/Unsupported object file format");
2464 
2465   Triple::ArchType AT = O->getArch();
2466   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2467   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
2468 
2469   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2470   outs() << "start address: "
2471          << "0x" << format(Fmt.data(), Address) << "\n";
2472 }
2473 
2474 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2475   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2476   if (!ModeOrErr) {
2477     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2478     consumeError(ModeOrErr.takeError());
2479     return;
2480   }
2481   sys::fs::perms Mode = ModeOrErr.get();
2482   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2483   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2484   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2485   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2486   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2487   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2488   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2489   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2490   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2491 
2492   outs() << " ";
2493 
2494   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
2495                    unwrapOrError(C.getGID(), Filename),
2496                    unwrapOrError(C.getRawSize(), Filename));
2497 
2498   StringRef RawLastModified = C.getRawLastModified();
2499   unsigned Seconds;
2500   if (RawLastModified.getAsInteger(10, Seconds))
2501     outs() << "(date: \"" << RawLastModified
2502            << "\" contains non-decimal chars) ";
2503   else {
2504     // Since ctime(3) returns a 26 character string of the form:
2505     // "Sun Sep 16 01:03:52 1973\n\0"
2506     // just print 24 characters.
2507     time_t t = Seconds;
2508     outs() << format("%.24s ", ctime(&t));
2509   }
2510 
2511   StringRef Name = "";
2512   Expected<StringRef> NameOrErr = C.getName();
2513   if (!NameOrErr) {
2514     consumeError(NameOrErr.takeError());
2515     Name = unwrapOrError(C.getRawName(), Filename);
2516   } else {
2517     Name = NameOrErr.get();
2518   }
2519   outs() << Name << "\n";
2520 }
2521 
2522 // For ELF only now.
2523 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
2524   if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
2525     if (Elf->getEType() != ELF::ET_REL)
2526       return true;
2527   }
2528   return false;
2529 }
2530 
2531 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
2532                                             uint64_t Start, uint64_t Stop) {
2533   if (!shouldWarnForInvalidStartStopAddress(Obj))
2534     return;
2535 
2536   for (const SectionRef &Section : Obj->sections())
2537     if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
2538       uint64_t BaseAddr = Section.getAddress();
2539       uint64_t Size = Section.getSize();
2540       if ((Start < BaseAddr + Size) && Stop > BaseAddr)
2541         return;
2542     }
2543 
2544   if (!HasStartAddressFlag)
2545     reportWarning("no section has address less than 0x" +
2546                       Twine::utohexstr(Stop) + " specified by --stop-address",
2547                   Obj->getFileName());
2548   else if (!HasStopAddressFlag)
2549     reportWarning("no section has address greater than or equal to 0x" +
2550                       Twine::utohexstr(Start) + " specified by --start-address",
2551                   Obj->getFileName());
2552   else
2553     reportWarning("no section overlaps the range [0x" +
2554                       Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
2555                       ") specified by --start-address/--stop-address",
2556                   Obj->getFileName());
2557 }
2558 
2559 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2560                        const Archive::Child *C = nullptr) {
2561   // Avoid other output when using a raw option.
2562   if (!RawClangAST) {
2563     outs() << '\n';
2564     if (A)
2565       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2566     else
2567       outs() << O->getFileName();
2568     outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n";
2569   }
2570 
2571   if (HasStartAddressFlag || HasStopAddressFlag)
2572     checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
2573 
2574   // Note: the order here matches GNU objdump for compatability.
2575   StringRef ArchiveName = A ? A->getFileName() : "";
2576   if (ArchiveHeaders && !MachOOpt && C)
2577     printArchiveChild(ArchiveName, *C);
2578   if (FileHeaders)
2579     printFileHeaders(O);
2580   if (PrivateHeaders || FirstPrivateHeader)
2581     printPrivateFileHeaders(O, FirstPrivateHeader);
2582   if (SectionHeaders)
2583     printSectionHeaders(*O);
2584   if (SymbolTable)
2585     printSymbolTable(*O, ArchiveName);
2586   if (DynamicSymbolTable)
2587     printSymbolTable(*O, ArchiveName, /*ArchitectureName=*/"",
2588                      /*DumpDynamic=*/true);
2589   if (DwarfDumpType != DIDT_Null) {
2590     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2591     // Dump the complete DWARF structure.
2592     DIDumpOptions DumpOpts;
2593     DumpOpts.DumpType = DwarfDumpType;
2594     DICtx->dump(outs(), DumpOpts);
2595   }
2596   if (Relocations && !Disassemble)
2597     printRelocations(O);
2598   if (DynamicRelocations)
2599     printDynamicRelocations(O);
2600   if (SectionContents)
2601     printSectionContents(O);
2602   if (Disassemble)
2603     disassembleObject(O, Relocations);
2604   if (UnwindInfo)
2605     printUnwindInfo(O);
2606 
2607   // Mach-O specific options:
2608   if (ExportsTrie)
2609     printExportsTrie(O);
2610   if (Rebase)
2611     printRebaseTable(O);
2612   if (Bind)
2613     printBindTable(O);
2614   if (LazyBind)
2615     printLazyBindTable(O);
2616   if (WeakBind)
2617     printWeakBindTable(O);
2618 
2619   // Other special sections:
2620   if (RawClangAST)
2621     printRawClangAST(O);
2622   if (FaultMapSection)
2623     printFaultMaps(O);
2624   if (Offloading)
2625     dumpOffloadBinary(*O);
2626 }
2627 
2628 static void dumpObject(const COFFImportFile *I, const Archive *A,
2629                        const Archive::Child *C = nullptr) {
2630   StringRef ArchiveName = A ? A->getFileName() : "";
2631 
2632   // Avoid other output when using a raw option.
2633   if (!RawClangAST)
2634     outs() << '\n'
2635            << ArchiveName << "(" << I->getFileName() << ")"
2636            << ":\tfile format COFF-import-file"
2637            << "\n\n";
2638 
2639   if (ArchiveHeaders && !MachOOpt && C)
2640     printArchiveChild(ArchiveName, *C);
2641   if (SymbolTable)
2642     printCOFFSymbolTable(*I);
2643 }
2644 
2645 /// Dump each object file in \a a;
2646 static void dumpArchive(const Archive *A) {
2647   Error Err = Error::success();
2648   unsigned I = -1;
2649   for (auto &C : A->children(Err)) {
2650     ++I;
2651     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2652     if (!ChildOrErr) {
2653       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2654         reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
2655       continue;
2656     }
2657     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2658       dumpObject(O, A, &C);
2659     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2660       dumpObject(I, A, &C);
2661     else
2662       reportError(errorCodeToError(object_error::invalid_file_type),
2663                   A->getFileName());
2664   }
2665   if (Err)
2666     reportError(std::move(Err), A->getFileName());
2667 }
2668 
2669 /// Open file and figure out how to dump it.
2670 static void dumpInput(StringRef file) {
2671   // If we are using the Mach-O specific object file parser, then let it parse
2672   // the file and process the command line options.  So the -arch flags can
2673   // be used to select specific slices, etc.
2674   if (MachOOpt) {
2675     parseInputMachO(file);
2676     return;
2677   }
2678 
2679   // Attempt to open the binary.
2680   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2681   Binary &Binary = *OBinary.getBinary();
2682 
2683   if (Archive *A = dyn_cast<Archive>(&Binary))
2684     dumpArchive(A);
2685   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2686     dumpObject(O);
2687   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2688     parseInputMachO(UB);
2689   else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(&Binary))
2690     dumpOffloadSections(*OB);
2691   else
2692     reportError(errorCodeToError(object_error::invalid_file_type), file);
2693 }
2694 
2695 template <typename T>
2696 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID,
2697                         T &Value) {
2698   if (const opt::Arg *A = InputArgs.getLastArg(ID)) {
2699     StringRef V(A->getValue());
2700     if (!llvm::to_integer(V, Value, 0)) {
2701       reportCmdLineError(A->getSpelling() +
2702                          ": expected a non-negative integer, but got '" + V +
2703                          "'");
2704     }
2705   }
2706 }
2707 
2708 static void invalidArgValue(const opt::Arg *A) {
2709   reportCmdLineError("'" + StringRef(A->getValue()) +
2710                      "' is not a valid value for '" + A->getSpelling() + "'");
2711 }
2712 
2713 static std::vector<std::string>
2714 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) {
2715   std::vector<std::string> Values;
2716   for (StringRef Value : InputArgs.getAllArgValues(ID)) {
2717     llvm::SmallVector<StringRef, 2> SplitValues;
2718     llvm::SplitString(Value, SplitValues, ",");
2719     for (StringRef SplitValue : SplitValues)
2720       Values.push_back(SplitValue.str());
2721   }
2722   return Values;
2723 }
2724 
2725 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) {
2726   MachOOpt = true;
2727   FullLeadingAddr = true;
2728   PrintImmHex = true;
2729 
2730   ArchName = InputArgs.getLastArgValue(OTOOL_arch).str();
2731   LinkOptHints = InputArgs.hasArg(OTOOL_C);
2732   if (InputArgs.hasArg(OTOOL_d))
2733     FilterSections.push_back("__DATA,__data");
2734   DylibId = InputArgs.hasArg(OTOOL_D);
2735   UniversalHeaders = InputArgs.hasArg(OTOOL_f);
2736   DataInCode = InputArgs.hasArg(OTOOL_G);
2737   FirstPrivateHeader = InputArgs.hasArg(OTOOL_h);
2738   IndirectSymbols = InputArgs.hasArg(OTOOL_I);
2739   ShowRawInsn = InputArgs.hasArg(OTOOL_j);
2740   PrivateHeaders = InputArgs.hasArg(OTOOL_l);
2741   DylibsUsed = InputArgs.hasArg(OTOOL_L);
2742   MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str();
2743   ObjcMetaData = InputArgs.hasArg(OTOOL_o);
2744   DisSymName = InputArgs.getLastArgValue(OTOOL_p).str();
2745   InfoPlist = InputArgs.hasArg(OTOOL_P);
2746   Relocations = InputArgs.hasArg(OTOOL_r);
2747   if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) {
2748     auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str();
2749     FilterSections.push_back(Filter);
2750   }
2751   if (InputArgs.hasArg(OTOOL_t))
2752     FilterSections.push_back("__TEXT,__text");
2753   Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) ||
2754             InputArgs.hasArg(OTOOL_o);
2755   SymbolicOperands = InputArgs.hasArg(OTOOL_V);
2756   if (InputArgs.hasArg(OTOOL_x))
2757     FilterSections.push_back(",__text");
2758   LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X);
2759 
2760   InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT);
2761   if (InputFilenames.empty())
2762     reportCmdLineError("no input file");
2763 
2764   for (const Arg *A : InputArgs) {
2765     const Option &O = A->getOption();
2766     if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) {
2767       reportCmdLineWarning(O.getPrefixedName() +
2768                            " is obsolete and not implemented");
2769     }
2770   }
2771 }
2772 
2773 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) {
2774   parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA);
2775   AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers);
2776   ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str();
2777   ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers);
2778   Demangle = InputArgs.hasArg(OBJDUMP_demangle);
2779   Disassemble = InputArgs.hasArg(OBJDUMP_disassemble);
2780   DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all);
2781   SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description);
2782   DisassembleSymbols =
2783       commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ);
2784   DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes);
2785   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) {
2786     DwarfDumpType = StringSwitch<DIDumpType>(A->getValue())
2787                         .Case("frames", DIDT_DebugFrame)
2788                         .Default(DIDT_Null);
2789     if (DwarfDumpType == DIDT_Null)
2790       invalidArgValue(A);
2791   }
2792   DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc);
2793   FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section);
2794   Offloading = InputArgs.hasArg(OBJDUMP_offloading);
2795   FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers);
2796   SectionContents = InputArgs.hasArg(OBJDUMP_full_contents);
2797   PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers);
2798   InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT);
2799   MachOOpt = InputArgs.hasArg(OBJDUMP_macho);
2800   MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str();
2801   MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ);
2802   ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn);
2803   LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr);
2804   RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast);
2805   Relocations = InputArgs.hasArg(OBJDUMP_reloc);
2806   PrintImmHex =
2807       InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, false);
2808   PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers);
2809   FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ);
2810   SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers);
2811   ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma);
2812   PrintSource = InputArgs.hasArg(OBJDUMP_source);
2813   parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress);
2814   HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ);
2815   parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress);
2816   HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ);
2817   SymbolTable = InputArgs.hasArg(OBJDUMP_syms);
2818   SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands);
2819   DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms);
2820   TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str();
2821   UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info);
2822   Wide = InputArgs.hasArg(OBJDUMP_wide);
2823   Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str();
2824   parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip);
2825   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) {
2826     DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue())
2827                        .Case("ascii", DVASCII)
2828                        .Case("unicode", DVUnicode)
2829                        .Default(DVInvalid);
2830     if (DbgVariables == DVInvalid)
2831       invalidArgValue(A);
2832   }
2833   parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent);
2834 
2835   parseMachOOptions(InputArgs);
2836 
2837   // Parse -M (--disassembler-options) and deprecated
2838   // --x86-asm-syntax={att,intel}.
2839   //
2840   // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the
2841   // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is
2842   // called too late. For now we have to use the internal cl::opt option.
2843   const char *AsmSyntax = nullptr;
2844   for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ,
2845                                           OBJDUMP_x86_asm_syntax_att,
2846                                           OBJDUMP_x86_asm_syntax_intel)) {
2847     switch (A->getOption().getID()) {
2848     case OBJDUMP_x86_asm_syntax_att:
2849       AsmSyntax = "--x86-asm-syntax=att";
2850       continue;
2851     case OBJDUMP_x86_asm_syntax_intel:
2852       AsmSyntax = "--x86-asm-syntax=intel";
2853       continue;
2854     }
2855 
2856     SmallVector<StringRef, 2> Values;
2857     llvm::SplitString(A->getValue(), Values, ",");
2858     for (StringRef V : Values) {
2859       if (V == "att")
2860         AsmSyntax = "--x86-asm-syntax=att";
2861       else if (V == "intel")
2862         AsmSyntax = "--x86-asm-syntax=intel";
2863       else
2864         DisassemblerOptions.push_back(V.str());
2865     }
2866   }
2867   if (AsmSyntax) {
2868     const char *Argv[] = {"llvm-objdump", AsmSyntax};
2869     llvm::cl::ParseCommandLineOptions(2, Argv);
2870   }
2871 
2872   // objdump defaults to a.out if no filenames specified.
2873   if (InputFilenames.empty())
2874     InputFilenames.push_back("a.out");
2875 }
2876 
2877 int main(int argc, char **argv) {
2878   using namespace llvm;
2879   InitLLVM X(argc, argv);
2880 
2881   ToolName = argv[0];
2882   std::unique_ptr<CommonOptTable> T;
2883   OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag;
2884 
2885   StringRef Stem = sys::path::stem(ToolName);
2886   auto Is = [=](StringRef Tool) {
2887     // We need to recognize the following filenames:
2888     //
2889     // llvm-objdump -> objdump
2890     // llvm-otool-10.exe -> otool
2891     // powerpc64-unknown-freebsd13-objdump -> objdump
2892     auto I = Stem.rfind_insensitive(Tool);
2893     return I != StringRef::npos &&
2894            (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()]));
2895   };
2896   if (Is("otool")) {
2897     T = std::make_unique<OtoolOptTable>();
2898     Unknown = OTOOL_UNKNOWN;
2899     HelpFlag = OTOOL_help;
2900     HelpHiddenFlag = OTOOL_help_hidden;
2901     VersionFlag = OTOOL_version;
2902   } else {
2903     T = std::make_unique<ObjdumpOptTable>();
2904     Unknown = OBJDUMP_UNKNOWN;
2905     HelpFlag = OBJDUMP_help;
2906     HelpHiddenFlag = OBJDUMP_help_hidden;
2907     VersionFlag = OBJDUMP_version;
2908   }
2909 
2910   BumpPtrAllocator A;
2911   StringSaver Saver(A);
2912   opt::InputArgList InputArgs =
2913       T->parseArgs(argc, argv, Unknown, Saver,
2914                    [&](StringRef Msg) { reportCmdLineError(Msg); });
2915 
2916   if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) {
2917     T->printHelp(ToolName);
2918     return 0;
2919   }
2920   if (InputArgs.hasArg(HelpHiddenFlag)) {
2921     T->printHelp(ToolName, /*ShowHidden=*/true);
2922     return 0;
2923   }
2924 
2925   // Initialize targets and assembly printers/parsers.
2926   InitializeAllTargetInfos();
2927   InitializeAllTargetMCs();
2928   InitializeAllDisassemblers();
2929 
2930   if (InputArgs.hasArg(VersionFlag)) {
2931     cl::PrintVersionMessage();
2932     if (!Is("otool")) {
2933       outs() << '\n';
2934       TargetRegistry::printRegisteredTargetsForVersion(outs());
2935     }
2936     return 0;
2937   }
2938 
2939   if (Is("otool"))
2940     parseOtoolOptions(InputArgs);
2941   else
2942     parseObjdumpOptions(InputArgs);
2943 
2944   if (StartAddress >= StopAddress)
2945     reportCmdLineError("start address should be less than stop address");
2946 
2947   // Removes trailing separators from prefix.
2948   while (!Prefix.empty() && sys::path::is_separator(Prefix.back()))
2949     Prefix.pop_back();
2950 
2951   if (AllHeaders)
2952     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
2953         SectionHeaders = SymbolTable = true;
2954 
2955   if (DisassembleAll || PrintSource || PrintLines ||
2956       !DisassembleSymbols.empty())
2957     Disassemble = true;
2958 
2959   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
2960       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
2961       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
2962       !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading &&
2963       !(MachOOpt && (Bind || DataInCode || DyldInfo || DylibId || DylibsUsed ||
2964                      ExportsTrie || FirstPrivateHeader || FunctionStarts ||
2965                      IndirectSymbols || InfoPlist || LazyBind || LinkOptHints ||
2966                      ObjcMetaData || Rebase || Rpaths || UniversalHeaders ||
2967                      WeakBind || !FilterSections.empty()))) {
2968     T->printHelp(ToolName);
2969     return 2;
2970   }
2971 
2972   DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
2973 
2974   llvm::for_each(InputFilenames, dumpInput);
2975 
2976   warnOnNoMatchForSections();
2977 
2978   return EXIT_SUCCESS;
2979 }
2980