1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "COFFDump.h"
20 #include "ELFDump.h"
21 #include "MachODump.h"
22 #include "ObjdumpOptID.h"
23 #include "SourcePrinter.h"
24 #include "WasmDump.h"
25 #include "XCOFFDump.h"
26 #include "llvm/ADT/IndexedMap.h"
27 #include "llvm/ADT/Optional.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/ADT/StringSet.h"
33 #include "llvm/ADT/Triple.h"
34 #include "llvm/ADT/Twine.h"
35 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
36 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
37 #include "llvm/Demangle/Demangle.h"
38 #include "llvm/MC/MCAsmInfo.h"
39 #include "llvm/MC/MCContext.h"
40 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
41 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
42 #include "llvm/MC/MCInst.h"
43 #include "llvm/MC/MCInstPrinter.h"
44 #include "llvm/MC/MCInstrAnalysis.h"
45 #include "llvm/MC/MCInstrInfo.h"
46 #include "llvm/MC/MCObjectFileInfo.h"
47 #include "llvm/MC/MCRegisterInfo.h"
48 #include "llvm/MC/MCSubtargetInfo.h"
49 #include "llvm/MC/MCTargetOptions.h"
50 #include "llvm/MC/TargetRegistry.h"
51 #include "llvm/Object/Archive.h"
52 #include "llvm/Object/COFF.h"
53 #include "llvm/Object/COFFImportFile.h"
54 #include "llvm/Object/ELFObjectFile.h"
55 #include "llvm/Object/FaultMapParser.h"
56 #include "llvm/Object/MachO.h"
57 #include "llvm/Object/MachOUniversal.h"
58 #include "llvm/Object/ObjectFile.h"
59 #include "llvm/Object/Wasm.h"
60 #include "llvm/Option/Arg.h"
61 #include "llvm/Option/ArgList.h"
62 #include "llvm/Option/Option.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/Errc.h"
66 #include "llvm/Support/FileSystem.h"
67 #include "llvm/Support/Format.h"
68 #include "llvm/Support/FormatVariadic.h"
69 #include "llvm/Support/GraphWriter.h"
70 #include "llvm/Support/Host.h"
71 #include "llvm/Support/InitLLVM.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/SourceMgr.h"
74 #include "llvm/Support/StringSaver.h"
75 #include "llvm/Support/TargetSelect.h"
76 #include "llvm/Support/WithColor.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include <algorithm>
79 #include <cctype>
80 #include <cstring>
81 #include <system_error>
82 #include <unordered_map>
83 #include <utility>
84 
85 using namespace llvm;
86 using namespace llvm::object;
87 using namespace llvm::objdump;
88 using namespace llvm::opt;
89 
90 namespace {
91 
92 class CommonOptTable : public opt::OptTable {
93 public:
94   CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage,
95                  const char *Description)
96       : OptTable(OptionInfos), Usage(Usage), Description(Description) {
97     setGroupedShortOptions(true);
98   }
99 
100   void printHelp(StringRef Argv0, bool ShowHidden = false) const {
101     Argv0 = sys::path::filename(Argv0);
102     opt::OptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(), Description,
103                              ShowHidden, ShowHidden);
104     // TODO Replace this with OptTable API once it adds extrahelp support.
105     outs() << "\nPass @FILE as argument to read options from FILE.\n";
106   }
107 
108 private:
109   const char *Usage;
110   const char *Description;
111 };
112 
113 // ObjdumpOptID is in ObjdumpOptID.h
114 
115 #define PREFIX(NAME, VALUE) const char *const OBJDUMP_##NAME[] = VALUE;
116 #include "ObjdumpOpts.inc"
117 #undef PREFIX
118 
119 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = {
120 #define OBJDUMP_nullptr nullptr
121 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
122                HELPTEXT, METAVAR, VALUES)                                      \
123   {OBJDUMP_##PREFIX, NAME,         HELPTEXT,                                   \
124    METAVAR,          OBJDUMP_##ID, opt::Option::KIND##Class,                   \
125    PARAM,            FLAGS,        OBJDUMP_##GROUP,                            \
126    OBJDUMP_##ALIAS,  ALIASARGS,    VALUES},
127 #include "ObjdumpOpts.inc"
128 #undef OPTION
129 #undef OBJDUMP_nullptr
130 };
131 
132 class ObjdumpOptTable : public CommonOptTable {
133 public:
134   ObjdumpOptTable()
135       : CommonOptTable(ObjdumpInfoTable, " [options] <input object files>",
136                        "llvm object file dumper") {}
137 };
138 
139 enum OtoolOptID {
140   OTOOL_INVALID = 0, // This is not an option ID.
141 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
142                HELPTEXT, METAVAR, VALUES)                                      \
143   OTOOL_##ID,
144 #include "OtoolOpts.inc"
145 #undef OPTION
146 };
147 
148 #define PREFIX(NAME, VALUE) const char *const OTOOL_##NAME[] = VALUE;
149 #include "OtoolOpts.inc"
150 #undef PREFIX
151 
152 static constexpr opt::OptTable::Info OtoolInfoTable[] = {
153 #define OTOOL_nullptr nullptr
154 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
155                HELPTEXT, METAVAR, VALUES)                                      \
156   {OTOOL_##PREFIX, NAME,       HELPTEXT,                                       \
157    METAVAR,        OTOOL_##ID, opt::Option::KIND##Class,                       \
158    PARAM,          FLAGS,      OTOOL_##GROUP,                                  \
159    OTOOL_##ALIAS,  ALIASARGS,  VALUES},
160 #include "OtoolOpts.inc"
161 #undef OPTION
162 #undef OTOOL_nullptr
163 };
164 
165 class OtoolOptTable : public CommonOptTable {
166 public:
167   OtoolOptTable()
168       : CommonOptTable(OtoolInfoTable, " [option...] [file...]",
169                        "Mach-O object file displaying tool") {}
170 };
171 
172 } // namespace
173 
174 #define DEBUG_TYPE "objdump"
175 
176 static uint64_t AdjustVMA;
177 static bool AllHeaders;
178 static std::string ArchName;
179 bool objdump::ArchiveHeaders;
180 bool objdump::Demangle;
181 bool objdump::Disassemble;
182 bool objdump::DisassembleAll;
183 bool objdump::SymbolDescription;
184 static std::vector<std::string> DisassembleSymbols;
185 static bool DisassembleZeroes;
186 static std::vector<std::string> DisassemblerOptions;
187 DIDumpType objdump::DwarfDumpType;
188 static bool DynamicRelocations;
189 static bool FaultMapSection;
190 static bool FileHeaders;
191 bool objdump::SectionContents;
192 static std::vector<std::string> InputFilenames;
193 bool objdump::PrintLines;
194 static bool MachOOpt;
195 std::string objdump::MCPU;
196 std::vector<std::string> objdump::MAttrs;
197 bool objdump::ShowRawInsn;
198 bool objdump::LeadingAddr;
199 static bool RawClangAST;
200 bool objdump::Relocations;
201 bool objdump::PrintImmHex;
202 bool objdump::PrivateHeaders;
203 std::vector<std::string> objdump::FilterSections;
204 bool objdump::SectionHeaders;
205 static bool ShowLMA;
206 bool objdump::PrintSource;
207 
208 static uint64_t StartAddress;
209 static bool HasStartAddressFlag;
210 static uint64_t StopAddress = UINT64_MAX;
211 static bool HasStopAddressFlag;
212 
213 bool objdump::SymbolTable;
214 static bool SymbolizeOperands;
215 static bool DynamicSymbolTable;
216 std::string objdump::TripleName;
217 bool objdump::UnwindInfo;
218 static bool Wide;
219 std::string objdump::Prefix;
220 uint32_t objdump::PrefixStrip;
221 
222 DebugVarsFormat objdump::DbgVariables = DVDisabled;
223 
224 int objdump::DbgIndent = 52;
225 
226 static StringSet<> DisasmSymbolSet;
227 StringSet<> objdump::FoundSectionSet;
228 static StringRef ToolName;
229 
230 namespace {
231 struct FilterResult {
232   // True if the section should not be skipped.
233   bool Keep;
234 
235   // True if the index counter should be incremented, even if the section should
236   // be skipped. For example, sections may be skipped if they are not included
237   // in the --section flag, but we still want those to count toward the section
238   // count.
239   bool IncrementIndex;
240 };
241 } // namespace
242 
243 static FilterResult checkSectionFilter(object::SectionRef S) {
244   if (FilterSections.empty())
245     return {/*Keep=*/true, /*IncrementIndex=*/true};
246 
247   Expected<StringRef> SecNameOrErr = S.getName();
248   if (!SecNameOrErr) {
249     consumeError(SecNameOrErr.takeError());
250     return {/*Keep=*/false, /*IncrementIndex=*/false};
251   }
252   StringRef SecName = *SecNameOrErr;
253 
254   // StringSet does not allow empty key so avoid adding sections with
255   // no name (such as the section with index 0) here.
256   if (!SecName.empty())
257     FoundSectionSet.insert(SecName);
258 
259   // Only show the section if it's in the FilterSections list, but always
260   // increment so the indexing is stable.
261   return {/*Keep=*/is_contained(FilterSections, SecName),
262           /*IncrementIndex=*/true};
263 }
264 
265 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
266                                          uint64_t *Idx) {
267   // Start at UINT64_MAX so that the first index returned after an increment is
268   // zero (after the unsigned wrap).
269   if (Idx)
270     *Idx = UINT64_MAX;
271   return SectionFilter(
272       [Idx](object::SectionRef S) {
273         FilterResult Result = checkSectionFilter(S);
274         if (Idx != nullptr && Result.IncrementIndex)
275           *Idx += 1;
276         return Result.Keep;
277       },
278       O);
279 }
280 
281 std::string objdump::getFileNameForError(const object::Archive::Child &C,
282                                          unsigned Index) {
283   Expected<StringRef> NameOrErr = C.getName();
284   if (NameOrErr)
285     return std::string(NameOrErr.get());
286   // If we have an error getting the name then we print the index of the archive
287   // member. Since we are already in an error state, we just ignore this error.
288   consumeError(NameOrErr.takeError());
289   return "<file index: " + std::to_string(Index) + ">";
290 }
291 
292 void objdump::reportWarning(const Twine &Message, StringRef File) {
293   // Output order between errs() and outs() matters especially for archive
294   // files where the output is per member object.
295   outs().flush();
296   WithColor::warning(errs(), ToolName)
297       << "'" << File << "': " << Message << "\n";
298 }
299 
300 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) {
301   outs().flush();
302   WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
303   exit(1);
304 }
305 
306 [[noreturn]] void objdump::reportError(Error E, StringRef FileName,
307                                        StringRef ArchiveName,
308                                        StringRef ArchitectureName) {
309   assert(E);
310   outs().flush();
311   WithColor::error(errs(), ToolName);
312   if (ArchiveName != "")
313     errs() << ArchiveName << "(" << FileName << ")";
314   else
315     errs() << "'" << FileName << "'";
316   if (!ArchitectureName.empty())
317     errs() << " (for architecture " << ArchitectureName << ")";
318   errs() << ": ";
319   logAllUnhandledErrors(std::move(E), errs());
320   exit(1);
321 }
322 
323 static void reportCmdLineWarning(const Twine &Message) {
324   WithColor::warning(errs(), ToolName) << Message << "\n";
325 }
326 
327 [[noreturn]] static void reportCmdLineError(const Twine &Message) {
328   WithColor::error(errs(), ToolName) << Message << "\n";
329   exit(1);
330 }
331 
332 static void warnOnNoMatchForSections() {
333   SetVector<StringRef> MissingSections;
334   for (StringRef S : FilterSections) {
335     if (FoundSectionSet.count(S))
336       return;
337     // User may specify a unnamed section. Don't warn for it.
338     if (!S.empty())
339       MissingSections.insert(S);
340   }
341 
342   // Warn only if no section in FilterSections is matched.
343   for (StringRef S : MissingSections)
344     reportCmdLineWarning("section '" + S +
345                          "' mentioned in a -j/--section option, but not "
346                          "found in any input file");
347 }
348 
349 static const Target *getTarget(const ObjectFile *Obj) {
350   // Figure out the target triple.
351   Triple TheTriple("unknown-unknown-unknown");
352   if (TripleName.empty()) {
353     TheTriple = Obj->makeTriple();
354   } else {
355     TheTriple.setTriple(Triple::normalize(TripleName));
356     auto Arch = Obj->getArch();
357     if (Arch == Triple::arm || Arch == Triple::armeb)
358       Obj->setARMSubArch(TheTriple);
359   }
360 
361   // Get the target specific parser.
362   std::string Error;
363   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
364                                                          Error);
365   if (!TheTarget)
366     reportError(Obj->getFileName(), "can't find target: " + Error);
367 
368   // Update the triple name and return the found target.
369   TripleName = TheTriple.getTriple();
370   return TheTarget;
371 }
372 
373 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
374   return A.getOffset() < B.getOffset();
375 }
376 
377 static Error getRelocationValueString(const RelocationRef &Rel,
378                                       SmallVectorImpl<char> &Result) {
379   const ObjectFile *Obj = Rel.getObject();
380   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
381     return getELFRelocationValueString(ELF, Rel, Result);
382   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
383     return getCOFFRelocationValueString(COFF, Rel, Result);
384   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
385     return getWasmRelocationValueString(Wasm, Rel, Result);
386   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
387     return getMachORelocationValueString(MachO, Rel, Result);
388   if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
389     return getXCOFFRelocationValueString(XCOFF, Rel, Result);
390   llvm_unreachable("unknown object file format");
391 }
392 
393 /// Indicates whether this relocation should hidden when listing
394 /// relocations, usually because it is the trailing part of a multipart
395 /// relocation that will be printed as part of the leading relocation.
396 static bool getHidden(RelocationRef RelRef) {
397   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
398   if (!MachO)
399     return false;
400 
401   unsigned Arch = MachO->getArch();
402   DataRefImpl Rel = RelRef.getRawDataRefImpl();
403   uint64_t Type = MachO->getRelocationType(Rel);
404 
405   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
406   // is always hidden.
407   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
408     return Type == MachO::GENERIC_RELOC_PAIR;
409 
410   if (Arch == Triple::x86_64) {
411     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
412     // an X86_64_RELOC_SUBTRACTOR.
413     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
414       DataRefImpl RelPrev = Rel;
415       RelPrev.d.a--;
416       uint64_t PrevType = MachO->getRelocationType(RelPrev);
417       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
418         return true;
419     }
420   }
421 
422   return false;
423 }
424 
425 namespace {
426 
427 /// Get the column at which we want to start printing the instruction
428 /// disassembly, taking into account anything which appears to the left of it.
429 unsigned getInstStartColumn(const MCSubtargetInfo &STI) {
430   return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
431 }
432 
433 static bool isAArch64Elf(const ObjectFile *Obj) {
434   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
435   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
436 }
437 
438 static bool isArmElf(const ObjectFile *Obj) {
439   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
440   return Elf && Elf->getEMachine() == ELF::EM_ARM;
441 }
442 
443 static bool hasMappingSymbols(const ObjectFile *Obj) {
444   return isArmElf(Obj) || isAArch64Elf(Obj);
445 }
446 
447 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
448                             const RelocationRef &Rel, uint64_t Address,
449                             bool Is64Bits) {
450   StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ":  " : "\t\t\t%08" PRIx64 ":  ";
451   SmallString<16> Name;
452   SmallString<32> Val;
453   Rel.getTypeName(Name);
454   if (Error E = getRelocationValueString(Rel, Val))
455     reportError(std::move(E), FileName);
456   OS << format(Fmt.data(), Address) << Name << "\t" << Val;
457 }
458 
459 class PrettyPrinter {
460 public:
461   virtual ~PrettyPrinter() = default;
462   virtual void
463   printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
464             object::SectionedAddress Address, formatted_raw_ostream &OS,
465             StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
466             StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
467             LiveVariablePrinter &LVP) {
468     if (SP && (PrintSource || PrintLines))
469       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
470     LVP.printBetweenInsts(OS, false);
471 
472     size_t Start = OS.tell();
473     if (LeadingAddr)
474       OS << format("%8" PRIx64 ":", Address.Address);
475     if (ShowRawInsn) {
476       OS << ' ';
477       dumpBytes(Bytes, OS);
478     }
479 
480     // The output of printInst starts with a tab. Print some spaces so that
481     // the tab has 1 column and advances to the target tab stop.
482     unsigned TabStop = getInstStartColumn(STI);
483     unsigned Column = OS.tell() - Start;
484     OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
485 
486     if (MI) {
487       // See MCInstPrinter::printInst. On targets where a PC relative immediate
488       // is relative to the next instruction and the length of a MCInst is
489       // difficult to measure (x86), this is the address of the next
490       // instruction.
491       uint64_t Addr =
492           Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
493       IP.printInst(MI, Addr, "", STI, OS);
494     } else
495       OS << "\t<unknown>";
496   }
497 };
498 PrettyPrinter PrettyPrinterInst;
499 
500 class HexagonPrettyPrinter : public PrettyPrinter {
501 public:
502   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
503                  formatted_raw_ostream &OS) {
504     uint32_t opcode =
505       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
506     if (LeadingAddr)
507       OS << format("%8" PRIx64 ":", Address);
508     if (ShowRawInsn) {
509       OS << "\t";
510       dumpBytes(Bytes.slice(0, 4), OS);
511       OS << format("\t%08" PRIx32, opcode);
512     }
513   }
514   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
515                  object::SectionedAddress Address, formatted_raw_ostream &OS,
516                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
517                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
518                  LiveVariablePrinter &LVP) override {
519     if (SP && (PrintSource || PrintLines))
520       SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
521     if (!MI) {
522       printLead(Bytes, Address.Address, OS);
523       OS << " <unknown>";
524       return;
525     }
526     std::string Buffer;
527     {
528       raw_string_ostream TempStream(Buffer);
529       IP.printInst(MI, Address.Address, "", STI, TempStream);
530     }
531     StringRef Contents(Buffer);
532     // Split off bundle attributes
533     auto PacketBundle = Contents.rsplit('\n');
534     // Split off first instruction from the rest
535     auto HeadTail = PacketBundle.first.split('\n');
536     auto Preamble = " { ";
537     auto Separator = "";
538 
539     // Hexagon's packets require relocations to be inline rather than
540     // clustered at the end of the packet.
541     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
542     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
543     auto PrintReloc = [&]() -> void {
544       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
545         if (RelCur->getOffset() == Address.Address) {
546           printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
547           return;
548         }
549         ++RelCur;
550       }
551     };
552 
553     while (!HeadTail.first.empty()) {
554       OS << Separator;
555       Separator = "\n";
556       if (SP && (PrintSource || PrintLines))
557         SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
558       printLead(Bytes, Address.Address, OS);
559       OS << Preamble;
560       Preamble = "   ";
561       StringRef Inst;
562       auto Duplex = HeadTail.first.split('\v');
563       if (!Duplex.second.empty()) {
564         OS << Duplex.first;
565         OS << "; ";
566         Inst = Duplex.second;
567       }
568       else
569         Inst = HeadTail.first;
570       OS << Inst;
571       HeadTail = HeadTail.second.split('\n');
572       if (HeadTail.first.empty())
573         OS << " } " << PacketBundle.second;
574       PrintReloc();
575       Bytes = Bytes.slice(4);
576       Address.Address += 4;
577     }
578   }
579 };
580 HexagonPrettyPrinter HexagonPrettyPrinterInst;
581 
582 class AMDGCNPrettyPrinter : public PrettyPrinter {
583 public:
584   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
585                  object::SectionedAddress Address, formatted_raw_ostream &OS,
586                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
587                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
588                  LiveVariablePrinter &LVP) override {
589     if (SP && (PrintSource || PrintLines))
590       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
591 
592     if (MI) {
593       SmallString<40> InstStr;
594       raw_svector_ostream IS(InstStr);
595 
596       IP.printInst(MI, Address.Address, "", STI, IS);
597 
598       OS << left_justify(IS.str(), 60);
599     } else {
600       // an unrecognized encoding - this is probably data so represent it
601       // using the .long directive, or .byte directive if fewer than 4 bytes
602       // remaining
603       if (Bytes.size() >= 4) {
604         OS << format("\t.long 0x%08" PRIx32 " ",
605                      support::endian::read32<support::little>(Bytes.data()));
606         OS.indent(42);
607       } else {
608           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
609           for (unsigned int i = 1; i < Bytes.size(); i++)
610             OS << format(", 0x%02" PRIx8, Bytes[i]);
611           OS.indent(55 - (6 * Bytes.size()));
612       }
613     }
614 
615     OS << format("// %012" PRIX64 ":", Address.Address);
616     if (Bytes.size() >= 4) {
617       // D should be casted to uint32_t here as it is passed by format to
618       // snprintf as vararg.
619       for (uint32_t D : makeArrayRef(
620                reinterpret_cast<const support::little32_t *>(Bytes.data()),
621                Bytes.size() / 4))
622         OS << format(" %08" PRIX32, D);
623     } else {
624       for (unsigned char B : Bytes)
625         OS << format(" %02" PRIX8, B);
626     }
627 
628     if (!Annot.empty())
629       OS << " // " << Annot;
630   }
631 };
632 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
633 
634 class BPFPrettyPrinter : public PrettyPrinter {
635 public:
636   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
637                  object::SectionedAddress Address, formatted_raw_ostream &OS,
638                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
639                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
640                  LiveVariablePrinter &LVP) override {
641     if (SP && (PrintSource || PrintLines))
642       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
643     if (LeadingAddr)
644       OS << format("%8" PRId64 ":", Address.Address / 8);
645     if (ShowRawInsn) {
646       OS << "\t";
647       dumpBytes(Bytes, OS);
648     }
649     if (MI)
650       IP.printInst(MI, Address.Address, "", STI, OS);
651     else
652       OS << "\t<unknown>";
653   }
654 };
655 BPFPrettyPrinter BPFPrettyPrinterInst;
656 
657 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
658   switch(Triple.getArch()) {
659   default:
660     return PrettyPrinterInst;
661   case Triple::hexagon:
662     return HexagonPrettyPrinterInst;
663   case Triple::amdgcn:
664     return AMDGCNPrettyPrinterInst;
665   case Triple::bpfel:
666   case Triple::bpfeb:
667     return BPFPrettyPrinterInst;
668   }
669 }
670 }
671 
672 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
673   assert(Obj->isELF());
674   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
675     return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()),
676                          Obj->getFileName())
677         ->getType();
678   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
679     return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()),
680                          Obj->getFileName())
681         ->getType();
682   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
683     return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()),
684                          Obj->getFileName())
685         ->getType();
686   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
687     return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()),
688                          Obj->getFileName())
689         ->getType();
690   llvm_unreachable("Unsupported binary format");
691 }
692 
693 template <class ELFT> static void
694 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
695                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
696   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
697     uint8_t SymbolType = Symbol.getELFType();
698     if (SymbolType == ELF::STT_SECTION)
699       continue;
700 
701     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName());
702     // ELFSymbolRef::getAddress() returns size instead of value for common
703     // symbols which is not desirable for disassembly output. Overriding.
704     if (SymbolType == ELF::STT_COMMON)
705       Address = unwrapOrError(Obj->getSymbol(Symbol.getRawDataRefImpl()),
706                               Obj->getFileName())
707                     ->st_value;
708 
709     StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
710     if (Name.empty())
711       continue;
712 
713     section_iterator SecI =
714         unwrapOrError(Symbol.getSection(), Obj->getFileName());
715     if (SecI == Obj->section_end())
716       continue;
717 
718     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
719   }
720 }
721 
722 static void
723 addDynamicElfSymbols(const ObjectFile *Obj,
724                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
725   assert(Obj->isELF());
726   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
727     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
728   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
729     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
730   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
731     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
732   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
733     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
734   else
735     llvm_unreachable("Unsupported binary format");
736 }
737 
738 static Optional<SectionRef> getWasmCodeSection(const WasmObjectFile *Obj) {
739   for (auto SecI : Obj->sections()) {
740     const WasmSection &Section = Obj->getWasmSection(SecI);
741     if (Section.Type == wasm::WASM_SEC_CODE)
742       return SecI;
743   }
744   return None;
745 }
746 
747 static void
748 addMissingWasmCodeSymbols(const WasmObjectFile *Obj,
749                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
750   Optional<SectionRef> Section = getWasmCodeSection(Obj);
751   if (!Section)
752     return;
753   SectionSymbolsTy &Symbols = AllSymbols[*Section];
754 
755   std::set<uint64_t> SymbolAddresses;
756   for (const auto &Sym : Symbols)
757     SymbolAddresses.insert(Sym.Addr);
758 
759   for (const wasm::WasmFunction &Function : Obj->functions()) {
760     uint64_t Address = Function.CodeSectionOffset;
761     // Only add fallback symbols for functions not already present in the symbol
762     // table.
763     if (SymbolAddresses.count(Address))
764       continue;
765     // This function has no symbol, so it should have no SymbolName.
766     assert(Function.SymbolName.empty());
767     // We use DebugName for the name, though it may be empty if there is no
768     // "name" custom section, or that section is missing a name for this
769     // function.
770     StringRef Name = Function.DebugName;
771     Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE);
772   }
773 }
774 
775 static void addPltEntries(const ObjectFile *Obj,
776                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
777                           StringSaver &Saver) {
778   Optional<SectionRef> Plt = None;
779   for (const SectionRef &Section : Obj->sections()) {
780     Expected<StringRef> SecNameOrErr = Section.getName();
781     if (!SecNameOrErr) {
782       consumeError(SecNameOrErr.takeError());
783       continue;
784     }
785     if (*SecNameOrErr == ".plt")
786       Plt = Section;
787   }
788   if (!Plt)
789     return;
790   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
791     for (auto PltEntry : ElfObj->getPltAddresses()) {
792       if (PltEntry.first) {
793         SymbolRef Symbol(*PltEntry.first, ElfObj);
794         uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
795         if (Expected<StringRef> NameOrErr = Symbol.getName()) {
796           if (!NameOrErr->empty())
797             AllSymbols[*Plt].emplace_back(
798                 PltEntry.second, Saver.save((*NameOrErr + "@plt").str()),
799                 SymbolType);
800           continue;
801         } else {
802           // The warning has been reported in disassembleObject().
803           consumeError(NameOrErr.takeError());
804         }
805       }
806       reportWarning("PLT entry at 0x" + Twine::utohexstr(PltEntry.second) +
807                         " references an invalid symbol",
808                     Obj->getFileName());
809     }
810   }
811 }
812 
813 // Normally the disassembly output will skip blocks of zeroes. This function
814 // returns the number of zero bytes that can be skipped when dumping the
815 // disassembly of the instructions in Buf.
816 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
817   // Find the number of leading zeroes.
818   size_t N = 0;
819   while (N < Buf.size() && !Buf[N])
820     ++N;
821 
822   // We may want to skip blocks of zero bytes, but unless we see
823   // at least 8 of them in a row.
824   if (N < 8)
825     return 0;
826 
827   // We skip zeroes in multiples of 4 because do not want to truncate an
828   // instruction if it starts with a zero byte.
829   return N & ~0x3;
830 }
831 
832 // Returns a map from sections to their relocations.
833 static std::map<SectionRef, std::vector<RelocationRef>>
834 getRelocsMap(object::ObjectFile const &Obj) {
835   std::map<SectionRef, std::vector<RelocationRef>> Ret;
836   uint64_t I = (uint64_t)-1;
837   for (SectionRef Sec : Obj.sections()) {
838     ++I;
839     Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
840     if (!RelocatedOrErr)
841       reportError(Obj.getFileName(),
842                   "section (" + Twine(I) +
843                       "): failed to get a relocated section: " +
844                       toString(RelocatedOrErr.takeError()));
845 
846     section_iterator Relocated = *RelocatedOrErr;
847     if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
848       continue;
849     std::vector<RelocationRef> &V = Ret[*Relocated];
850     append_range(V, Sec.relocations());
851     // Sort relocations by address.
852     llvm::stable_sort(V, isRelocAddressLess);
853   }
854   return Ret;
855 }
856 
857 // Used for --adjust-vma to check if address should be adjusted by the
858 // specified value for a given section.
859 // For ELF we do not adjust non-allocatable sections like debug ones,
860 // because they are not loadable.
861 // TODO: implement for other file formats.
862 static bool shouldAdjustVA(const SectionRef &Section) {
863   const ObjectFile *Obj = Section.getObject();
864   if (Obj->isELF())
865     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
866   return false;
867 }
868 
869 
870 typedef std::pair<uint64_t, char> MappingSymbolPair;
871 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
872                                  uint64_t Address) {
873   auto It =
874       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
875         return Val.first <= Address;
876       });
877   // Return zero for any address before the first mapping symbol; this means
878   // we should use the default disassembly mode, depending on the target.
879   if (It == MappingSymbols.begin())
880     return '\x00';
881   return (It - 1)->second;
882 }
883 
884 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
885                                uint64_t End, const ObjectFile *Obj,
886                                ArrayRef<uint8_t> Bytes,
887                                ArrayRef<MappingSymbolPair> MappingSymbols,
888                                raw_ostream &OS) {
889   support::endianness Endian =
890       Obj->isLittleEndian() ? support::little : support::big;
891   OS << format("%8" PRIx64 ":\t", SectionAddr + Index);
892   if (Index + 4 <= End) {
893     dumpBytes(Bytes.slice(Index, 4), OS);
894     OS << "\t.word\t"
895            << format_hex(support::endian::read32(Bytes.data() + Index, Endian),
896                          10);
897     return 4;
898   }
899   if (Index + 2 <= End) {
900     dumpBytes(Bytes.slice(Index, 2), OS);
901     OS << "\t\t.short\t"
902            << format_hex(support::endian::read16(Bytes.data() + Index, Endian),
903                          6);
904     return 2;
905   }
906   dumpBytes(Bytes.slice(Index, 1), OS);
907   OS << "\t\t.byte\t" << format_hex(Bytes[0], 4);
908   return 1;
909 }
910 
911 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
912                         ArrayRef<uint8_t> Bytes) {
913   // print out data up to 8 bytes at a time in hex and ascii
914   uint8_t AsciiData[9] = {'\0'};
915   uint8_t Byte;
916   int NumBytes = 0;
917 
918   for (; Index < End; ++Index) {
919     if (NumBytes == 0)
920       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
921     Byte = Bytes.slice(Index)[0];
922     outs() << format(" %02x", Byte);
923     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
924 
925     uint8_t IndentOffset = 0;
926     NumBytes++;
927     if (Index == End - 1 || NumBytes > 8) {
928       // Indent the space for less than 8 bytes data.
929       // 2 spaces for byte and one for space between bytes
930       IndentOffset = 3 * (8 - NumBytes);
931       for (int Excess = NumBytes; Excess < 8; Excess++)
932         AsciiData[Excess] = '\0';
933       NumBytes = 8;
934     }
935     if (NumBytes == 8) {
936       AsciiData[8] = '\0';
937       outs() << std::string(IndentOffset, ' ') << "         ";
938       outs() << reinterpret_cast<char *>(AsciiData);
939       outs() << '\n';
940       NumBytes = 0;
941     }
942   }
943 }
944 
945 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile *Obj,
946                                        const SymbolRef &Symbol) {
947   const StringRef FileName = Obj->getFileName();
948   const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
949   const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
950 
951   if (Obj->isXCOFF() && SymbolDescription) {
952     const auto *XCOFFObj = cast<XCOFFObjectFile>(Obj);
953     DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
954 
955     const uint32_t SymbolIndex = XCOFFObj->getSymbolIndex(SymbolDRI.p);
956     Optional<XCOFF::StorageMappingClass> Smc =
957         getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
958     return SymbolInfoTy(Addr, Name, Smc, SymbolIndex,
959                         isLabel(XCOFFObj, Symbol));
960   } else
961     return SymbolInfoTy(Addr, Name,
962                         Obj->isELF() ? getElfSymbolType(Obj, Symbol)
963                                      : (uint8_t)ELF::STT_NOTYPE);
964 }
965 
966 static SymbolInfoTy createDummySymbolInfo(const ObjectFile *Obj,
967                                           const uint64_t Addr, StringRef &Name,
968                                           uint8_t Type) {
969   if (Obj->isXCOFF() && SymbolDescription)
970     return SymbolInfoTy(Addr, Name, None, None, false);
971   else
972     return SymbolInfoTy(Addr, Name, Type);
973 }
974 
975 static void
976 collectLocalBranchTargets(ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA,
977                           MCDisassembler *DisAsm, MCInstPrinter *IP,
978                           const MCSubtargetInfo *STI, uint64_t SectionAddr,
979                           uint64_t Start, uint64_t End,
980                           std::unordered_map<uint64_t, std::string> &Labels) {
981   // So far only supports PowerPC and X86.
982   if (!STI->getTargetTriple().isPPC() && !STI->getTargetTriple().isX86())
983     return;
984 
985   Labels.clear();
986   unsigned LabelCount = 0;
987   Start += SectionAddr;
988   End += SectionAddr;
989   uint64_t Index = Start;
990   while (Index < End) {
991     // Disassemble a real instruction and record function-local branch labels.
992     MCInst Inst;
993     uint64_t Size;
994     bool Disassembled = DisAsm->getInstruction(
995         Inst, Size, Bytes.slice(Index - SectionAddr), Index, nulls());
996     if (Size == 0)
997       Size = 1;
998 
999     if (Disassembled && MIA) {
1000       uint64_t Target;
1001       bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target);
1002       // On PowerPC, if the address of a branch is the same as the target, it
1003       // means that it's a function call. Do not mark the label for this case.
1004       if (TargetKnown && (Target >= Start && Target < End) &&
1005           !Labels.count(Target) &&
1006           !(STI->getTargetTriple().isPPC() && Target == Index))
1007         Labels[Target] = ("L" + Twine(LabelCount++)).str();
1008     }
1009 
1010     Index += Size;
1011   }
1012 }
1013 
1014 // Create an MCSymbolizer for the target and add it to the MCDisassembler.
1015 // This is currently only used on AMDGPU, and assumes the format of the
1016 // void * argument passed to AMDGPU's createMCSymbolizer.
1017 static void addSymbolizer(
1018     MCContext &Ctx, const Target *Target, StringRef TripleName,
1019     MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes,
1020     SectionSymbolsTy &Symbols,
1021     std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) {
1022 
1023   std::unique_ptr<MCRelocationInfo> RelInfo(
1024       Target->createMCRelocationInfo(TripleName, Ctx));
1025   if (!RelInfo)
1026     return;
1027   std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer(
1028       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1029   MCSymbolizer *SymbolizerPtr = &*Symbolizer;
1030   DisAsm->setSymbolizer(std::move(Symbolizer));
1031 
1032   if (!SymbolizeOperands)
1033     return;
1034 
1035   // Synthesize labels referenced by branch instructions by
1036   // disassembling, discarding the output, and collecting the referenced
1037   // addresses from the symbolizer.
1038   for (size_t Index = 0; Index != Bytes.size();) {
1039     MCInst Inst;
1040     uint64_t Size;
1041     DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), SectionAddr + Index,
1042                            nulls());
1043     if (Size == 0)
1044       Size = 1;
1045     Index += Size;
1046   }
1047   ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses();
1048   // Copy and sort to remove duplicates.
1049   std::vector<uint64_t> LabelAddrs;
1050   LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(),
1051                     LabelAddrsRef.end());
1052   llvm::sort(LabelAddrs);
1053   LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) -
1054                     LabelAddrs.begin());
1055   // Add the labels.
1056   for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) {
1057     auto Name = std::make_unique<std::string>();
1058     *Name = (Twine("L") + Twine(LabelNum)).str();
1059     SynthesizedLabelNames.push_back(std::move(Name));
1060     Symbols.push_back(SymbolInfoTy(
1061         LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE));
1062   }
1063   llvm::stable_sort(Symbols);
1064   // Recreate the symbolizer with the new symbols list.
1065   RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx));
1066   Symbolizer.reset(Target->createMCSymbolizer(
1067       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1068   DisAsm->setSymbolizer(std::move(Symbolizer));
1069 }
1070 
1071 static StringRef getSegmentName(const MachOObjectFile *MachO,
1072                                 const SectionRef &Section) {
1073   if (MachO) {
1074     DataRefImpl DR = Section.getRawDataRefImpl();
1075     StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1076     return SegmentName;
1077   }
1078   return "";
1079 }
1080 
1081 static void emitPostInstructionInfo(formatted_raw_ostream &FOS,
1082                                     const MCAsmInfo &MAI,
1083                                     const MCSubtargetInfo &STI,
1084                                     StringRef Comments,
1085                                     LiveVariablePrinter &LVP) {
1086   do {
1087     if (!Comments.empty()) {
1088       // Emit a line of comments.
1089       StringRef Comment;
1090       std::tie(Comment, Comments) = Comments.split('\n');
1091       // MAI.getCommentColumn() assumes that instructions are printed at the
1092       // position of 8, while getInstStartColumn() returns the actual position.
1093       unsigned CommentColumn =
1094           MAI.getCommentColumn() - 8 + getInstStartColumn(STI);
1095       FOS.PadToColumn(CommentColumn);
1096       FOS << MAI.getCommentString() << ' ' << Comment;
1097     }
1098     LVP.printAfterInst(FOS);
1099     FOS << '\n';
1100   } while (!Comments.empty());
1101   FOS.flush();
1102 }
1103 
1104 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj,
1105                               MCContext &Ctx, MCDisassembler *PrimaryDisAsm,
1106                               MCDisassembler *SecondaryDisAsm,
1107                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1108                               const MCSubtargetInfo *PrimarySTI,
1109                               const MCSubtargetInfo *SecondarySTI,
1110                               PrettyPrinter &PIP,
1111                               SourcePrinter &SP, bool InlineRelocs) {
1112   const MCSubtargetInfo *STI = PrimarySTI;
1113   MCDisassembler *DisAsm = PrimaryDisAsm;
1114   bool PrimaryIsThumb = false;
1115   if (isArmElf(Obj))
1116     PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
1117 
1118   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1119   if (InlineRelocs)
1120     RelocMap = getRelocsMap(*Obj);
1121   bool Is64Bits = Obj->getBytesInAddress() > 4;
1122 
1123   // Create a mapping from virtual address to symbol name.  This is used to
1124   // pretty print the symbols while disassembling.
1125   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1126   SectionSymbolsTy AbsoluteSymbols;
1127   const StringRef FileName = Obj->getFileName();
1128   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
1129   for (const SymbolRef &Symbol : Obj->symbols()) {
1130     Expected<StringRef> NameOrErr = Symbol.getName();
1131     if (!NameOrErr) {
1132       reportWarning(toString(NameOrErr.takeError()), FileName);
1133       continue;
1134     }
1135     if (NameOrErr->empty() && !(Obj->isXCOFF() && SymbolDescription))
1136       continue;
1137 
1138     if (Obj->isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION)
1139       continue;
1140 
1141     if (MachO) {
1142       // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special
1143       // symbols that support MachO header introspection. They do not bind to
1144       // code locations and are irrelevant for disassembly.
1145       if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header"))
1146         continue;
1147       // Don't ask a Mach-O STAB symbol for its section unless you know that
1148       // STAB symbol's section field refers to a valid section index. Otherwise
1149       // the symbol may error trying to load a section that does not exist.
1150       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1151       uint8_t NType = (MachO->is64Bit() ?
1152                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1153                        MachO->getSymbolTableEntry(SymDRI).n_type);
1154       if (NType & MachO::N_STAB)
1155         continue;
1156     }
1157 
1158     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1159     if (SecI != Obj->section_end())
1160       AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
1161     else
1162       AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
1163   }
1164 
1165   if (AllSymbols.empty() && Obj->isELF())
1166     addDynamicElfSymbols(Obj, AllSymbols);
1167 
1168   if (Obj->isWasm())
1169     addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols);
1170 
1171   BumpPtrAllocator A;
1172   StringSaver Saver(A);
1173   addPltEntries(Obj, AllSymbols, Saver);
1174 
1175   // Create a mapping from virtual address to section. An empty section can
1176   // cause more than one section at the same address. Sort such sections to be
1177   // before same-addressed non-empty sections so that symbol lookups prefer the
1178   // non-empty section.
1179   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1180   for (SectionRef Sec : Obj->sections())
1181     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1182   llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
1183     if (LHS.first != RHS.first)
1184       return LHS.first < RHS.first;
1185     return LHS.second.getSize() < RHS.second.getSize();
1186   });
1187 
1188   // Linked executables (.exe and .dll files) typically don't include a real
1189   // symbol table but they might contain an export table.
1190   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1191     for (const auto &ExportEntry : COFFObj->export_directories()) {
1192       StringRef Name;
1193       if (Error E = ExportEntry.getSymbolName(Name))
1194         reportError(std::move(E), Obj->getFileName());
1195       if (Name.empty())
1196         continue;
1197 
1198       uint32_t RVA;
1199       if (Error E = ExportEntry.getExportRVA(RVA))
1200         reportError(std::move(E), Obj->getFileName());
1201 
1202       uint64_t VA = COFFObj->getImageBase() + RVA;
1203       auto Sec = partition_point(
1204           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1205             return O.first <= VA;
1206           });
1207       if (Sec != SectionAddresses.begin()) {
1208         --Sec;
1209         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1210       } else
1211         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1212     }
1213   }
1214 
1215   // Sort all the symbols, this allows us to use a simple binary search to find
1216   // Multiple symbols can have the same address. Use a stable sort to stabilize
1217   // the output.
1218   StringSet<> FoundDisasmSymbolSet;
1219   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1220     llvm::stable_sort(SecSyms.second);
1221   llvm::stable_sort(AbsoluteSymbols);
1222 
1223   std::unique_ptr<DWARFContext> DICtx;
1224   LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI);
1225 
1226   if (DbgVariables != DVDisabled) {
1227     DICtx = DWARFContext::create(*Obj);
1228     for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
1229       LVP.addCompileUnit(CU->getUnitDIE(false));
1230   }
1231 
1232   LLVM_DEBUG(LVP.dump());
1233 
1234   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1235     if (FilterSections.empty() && !DisassembleAll &&
1236         (!Section.isText() || Section.isVirtual()))
1237       continue;
1238 
1239     uint64_t SectionAddr = Section.getAddress();
1240     uint64_t SectSize = Section.getSize();
1241     if (!SectSize)
1242       continue;
1243 
1244     // Get the list of all the symbols in this section.
1245     SectionSymbolsTy &Symbols = AllSymbols[Section];
1246     std::vector<MappingSymbolPair> MappingSymbols;
1247     if (hasMappingSymbols(Obj)) {
1248       for (const auto &Symb : Symbols) {
1249         uint64_t Address = Symb.Addr;
1250         StringRef Name = Symb.Name;
1251         if (Name.startswith("$d"))
1252           MappingSymbols.emplace_back(Address - SectionAddr, 'd');
1253         if (Name.startswith("$x"))
1254           MappingSymbols.emplace_back(Address - SectionAddr, 'x');
1255         if (Name.startswith("$a"))
1256           MappingSymbols.emplace_back(Address - SectionAddr, 'a');
1257         if (Name.startswith("$t"))
1258           MappingSymbols.emplace_back(Address - SectionAddr, 't');
1259       }
1260     }
1261 
1262     llvm::sort(MappingSymbols);
1263 
1264     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1265         unwrapOrError(Section.getContents(), Obj->getFileName()));
1266 
1267     std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames;
1268     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1269       // AMDGPU disassembler uses symbolizer for printing labels
1270       addSymbolizer(Ctx, TheTarget, TripleName, DisAsm, SectionAddr, Bytes,
1271                     Symbols, SynthesizedLabelNames);
1272     }
1273 
1274     StringRef SegmentName = getSegmentName(MachO, Section);
1275     StringRef SectionName = unwrapOrError(Section.getName(), Obj->getFileName());
1276     // If the section has no symbol at the start, just insert a dummy one.
1277     if (Symbols.empty() || Symbols[0].Addr != 0) {
1278       Symbols.insert(Symbols.begin(),
1279                      createDummySymbolInfo(Obj, SectionAddr, SectionName,
1280                                            Section.isText() ? ELF::STT_FUNC
1281                                                             : ELF::STT_OBJECT));
1282     }
1283 
1284     SmallString<40> Comments;
1285     raw_svector_ostream CommentStream(Comments);
1286 
1287     uint64_t VMAAdjustment = 0;
1288     if (shouldAdjustVA(Section))
1289       VMAAdjustment = AdjustVMA;
1290 
1291     // In executable and shared objects, r_offset holds a virtual address.
1292     // Subtract SectionAddr from the r_offset field of a relocation to get
1293     // the section offset.
1294     uint64_t RelAdjustment = Obj->isRelocatableObject() ? 0 : SectionAddr;
1295     uint64_t Size;
1296     uint64_t Index;
1297     bool PrintedSection = false;
1298     std::vector<RelocationRef> Rels = RelocMap[Section];
1299     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1300     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1301     // Disassemble symbol by symbol.
1302     for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
1303       std::string SymbolName = Symbols[SI].Name.str();
1304       if (Demangle)
1305         SymbolName = demangle(SymbolName);
1306 
1307       // Skip if --disassemble-symbols is not empty and the symbol is not in
1308       // the list.
1309       if (!DisasmSymbolSet.empty() && !DisasmSymbolSet.count(SymbolName))
1310         continue;
1311 
1312       uint64_t Start = Symbols[SI].Addr;
1313       if (Start < SectionAddr || StopAddress <= Start)
1314         continue;
1315       else
1316         FoundDisasmSymbolSet.insert(SymbolName);
1317 
1318       // The end is the section end, the beginning of the next symbol, or
1319       // --stop-address.
1320       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1321       if (SI + 1 < SE)
1322         End = std::min(End, Symbols[SI + 1].Addr);
1323       if (Start >= End || End <= StartAddress)
1324         continue;
1325       Start -= SectionAddr;
1326       End -= SectionAddr;
1327 
1328       if (!PrintedSection) {
1329         PrintedSection = true;
1330         outs() << "\nDisassembly of section ";
1331         if (!SegmentName.empty())
1332           outs() << SegmentName << ",";
1333         outs() << SectionName << ":\n";
1334       }
1335 
1336       outs() << '\n';
1337       if (LeadingAddr)
1338         outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1339                          SectionAddr + Start + VMAAdjustment);
1340       if (Obj->isXCOFF() && SymbolDescription) {
1341         outs() << getXCOFFSymbolDescription(Symbols[SI], SymbolName) << ":\n";
1342       } else
1343         outs() << '<' << SymbolName << ">:\n";
1344 
1345       // Don't print raw contents of a virtual section. A virtual section
1346       // doesn't have any contents in the file.
1347       if (Section.isVirtual()) {
1348         outs() << "...\n";
1349         continue;
1350       }
1351 
1352       auto Status = DisAsm->onSymbolStart(Symbols[SI], Size,
1353                                           Bytes.slice(Start, End - Start),
1354                                           SectionAddr + Start, CommentStream);
1355       // To have round trippable disassembly, we fall back to decoding the
1356       // remaining bytes as instructions.
1357       //
1358       // If there is a failure, we disassemble the failed region as bytes before
1359       // falling back. The target is expected to print nothing in this case.
1360       //
1361       // If there is Success or SoftFail i.e no 'real' failure, we go ahead by
1362       // Size bytes before falling back.
1363       // So if the entire symbol is 'eaten' by the target:
1364       //   Start += Size  // Now Start = End and we will never decode as
1365       //                  // instructions
1366       //
1367       // Right now, most targets return None i.e ignore to treat a symbol
1368       // separately. But WebAssembly decodes preludes for some symbols.
1369       //
1370       if (Status.hasValue()) {
1371         if (Status.getValue() == MCDisassembler::Fail) {
1372           outs() << "// Error in decoding " << SymbolName
1373                  << " : Decoding failed region as bytes.\n";
1374           for (uint64_t I = 0; I < Size; ++I) {
1375             outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
1376                    << "\n";
1377           }
1378         }
1379       } else {
1380         Size = 0;
1381       }
1382 
1383       Start += Size;
1384 
1385       Index = Start;
1386       if (SectionAddr < StartAddress)
1387         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1388 
1389       // If there is a data/common symbol inside an ELF text section and we are
1390       // only disassembling text (applicable all architectures), we are in a
1391       // situation where we must print the data and not disassemble it.
1392       if (Obj->isELF() && !DisassembleAll && Section.isText()) {
1393         uint8_t SymTy = Symbols[SI].Type;
1394         if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) {
1395           dumpELFData(SectionAddr, Index, End, Bytes);
1396           Index = End;
1397         }
1398       }
1399 
1400       bool CheckARMELFData = hasMappingSymbols(Obj) &&
1401                              Symbols[SI].Type != ELF::STT_OBJECT &&
1402                              !DisassembleAll;
1403       bool DumpARMELFData = false;
1404       formatted_raw_ostream FOS(outs());
1405 
1406       std::unordered_map<uint64_t, std::string> AllLabels;
1407       if (SymbolizeOperands)
1408         collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI,
1409                                   SectionAddr, Index, End, AllLabels);
1410 
1411       while (Index < End) {
1412         // ARM and AArch64 ELF binaries can interleave data and text in the
1413         // same section. We rely on the markers introduced to understand what
1414         // we need to dump. If the data marker is within a function, it is
1415         // denoted as a word/short etc.
1416         if (CheckARMELFData) {
1417           char Kind = getMappingSymbolKind(MappingSymbols, Index);
1418           DumpARMELFData = Kind == 'd';
1419           if (SecondarySTI) {
1420             if (Kind == 'a') {
1421               STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
1422               DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
1423             } else if (Kind == 't') {
1424               STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
1425               DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
1426             }
1427           }
1428         }
1429 
1430         if (DumpARMELFData) {
1431           Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1432                                 MappingSymbols, FOS);
1433         } else {
1434           // When -z or --disassemble-zeroes are given we always dissasemble
1435           // them. Otherwise we might want to skip zero bytes we see.
1436           if (!DisassembleZeroes) {
1437             uint64_t MaxOffset = End - Index;
1438             // For --reloc: print zero blocks patched by relocations, so that
1439             // relocations can be shown in the dump.
1440             if (RelCur != RelEnd)
1441               MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index,
1442                                    MaxOffset);
1443 
1444             if (size_t N =
1445                     countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1446               FOS << "\t\t..." << '\n';
1447               Index += N;
1448               continue;
1449             }
1450           }
1451 
1452           // Print local label if there's any.
1453           auto Iter = AllLabels.find(SectionAddr + Index);
1454           if (Iter != AllLabels.end())
1455             FOS << "<" << Iter->second << ">:\n";
1456 
1457           // Disassemble a real instruction or a data when disassemble all is
1458           // provided
1459           MCInst Inst;
1460           bool Disassembled =
1461               DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
1462                                      SectionAddr + Index, CommentStream);
1463           if (Size == 0)
1464             Size = 1;
1465 
1466           LVP.update({Index, Section.getIndex()},
1467                      {Index + Size, Section.getIndex()}, Index + Size != End);
1468 
1469           IP->setCommentStream(CommentStream);
1470 
1471           PIP.printInst(
1472               *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
1473               {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
1474               "", *STI, &SP, Obj->getFileName(), &Rels, LVP);
1475 
1476           IP->setCommentStream(llvm::nulls());
1477 
1478           // If disassembly has failed, avoid analysing invalid/incomplete
1479           // instruction information. Otherwise, try to resolve the target
1480           // address (jump target or memory operand address) and print it on the
1481           // right of the instruction.
1482           if (Disassembled && MIA) {
1483             // Branch targets are printed just after the instructions.
1484             llvm::raw_ostream *TargetOS = &FOS;
1485             uint64_t Target;
1486             bool PrintTarget =
1487                 MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target);
1488             if (!PrintTarget)
1489               if (Optional<uint64_t> MaybeTarget =
1490                       MIA->evaluateMemoryOperandAddress(
1491                           Inst, STI, SectionAddr + Index, Size)) {
1492                 Target = *MaybeTarget;
1493                 PrintTarget = true;
1494                 // Do not print real address when symbolizing.
1495                 if (!SymbolizeOperands) {
1496                   // Memory operand addresses are printed as comments.
1497                   TargetOS = &CommentStream;
1498                   *TargetOS << "0x" << Twine::utohexstr(Target);
1499                 }
1500               }
1501             if (PrintTarget) {
1502               // In a relocatable object, the target's section must reside in
1503               // the same section as the call instruction or it is accessed
1504               // through a relocation.
1505               //
1506               // In a non-relocatable object, the target may be in any section.
1507               // In that case, locate the section(s) containing the target
1508               // address and find the symbol in one of those, if possible.
1509               //
1510               // N.B. We don't walk the relocations in the relocatable case yet.
1511               std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
1512               if (!Obj->isRelocatableObject()) {
1513                 auto It = llvm::partition_point(
1514                     SectionAddresses,
1515                     [=](const std::pair<uint64_t, SectionRef> &O) {
1516                       return O.first <= Target;
1517                     });
1518                 uint64_t TargetSecAddr = 0;
1519                 while (It != SectionAddresses.begin()) {
1520                   --It;
1521                   if (TargetSecAddr == 0)
1522                     TargetSecAddr = It->first;
1523                   if (It->first != TargetSecAddr)
1524                     break;
1525                   TargetSectionSymbols.push_back(&AllSymbols[It->second]);
1526                 }
1527               } else {
1528                 TargetSectionSymbols.push_back(&Symbols);
1529               }
1530               TargetSectionSymbols.push_back(&AbsoluteSymbols);
1531 
1532               // Find the last symbol in the first candidate section whose
1533               // offset is less than or equal to the target. If there are no
1534               // such symbols, try in the next section and so on, before finally
1535               // using the nearest preceding absolute symbol (if any), if there
1536               // are no other valid symbols.
1537               const SymbolInfoTy *TargetSym = nullptr;
1538               for (const SectionSymbolsTy *TargetSymbols :
1539                    TargetSectionSymbols) {
1540                 auto It = llvm::partition_point(
1541                     *TargetSymbols,
1542                     [=](const SymbolInfoTy &O) { return O.Addr <= Target; });
1543                 if (It != TargetSymbols->begin()) {
1544                   TargetSym = &*(It - 1);
1545                   break;
1546                 }
1547               }
1548 
1549               // Print the labels corresponding to the target if there's any.
1550               bool LabelAvailable = AllLabels.count(Target);
1551               if (TargetSym != nullptr) {
1552                 uint64_t TargetAddress = TargetSym->Addr;
1553                 uint64_t Disp = Target - TargetAddress;
1554                 std::string TargetName = TargetSym->Name.str();
1555                 if (Demangle)
1556                   TargetName = demangle(TargetName);
1557 
1558                 *TargetOS << " <";
1559                 if (!Disp) {
1560                   // Always Print the binary symbol precisely corresponding to
1561                   // the target address.
1562                   *TargetOS << TargetName;
1563                 } else if (!LabelAvailable) {
1564                   // Always Print the binary symbol plus an offset if there's no
1565                   // local label corresponding to the target address.
1566                   *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp);
1567                 } else {
1568                   *TargetOS << AllLabels[Target];
1569                 }
1570                 *TargetOS << ">";
1571               } else if (LabelAvailable) {
1572                 *TargetOS << " <" << AllLabels[Target] << ">";
1573               }
1574               // By convention, each record in the comment stream should be
1575               // terminated.
1576               if (TargetOS == &CommentStream)
1577                 *TargetOS << "\n";
1578             }
1579           }
1580         }
1581 
1582         assert(Ctx.getAsmInfo());
1583         emitPostInstructionInfo(FOS, *Ctx.getAsmInfo(), *STI,
1584                                 CommentStream.str(), LVP);
1585         Comments.clear();
1586 
1587         // Hexagon does this in pretty printer
1588         if (Obj->getArch() != Triple::hexagon) {
1589           // Print relocation for instruction and data.
1590           while (RelCur != RelEnd) {
1591             uint64_t Offset = RelCur->getOffset() - RelAdjustment;
1592             // If this relocation is hidden, skip it.
1593             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
1594               ++RelCur;
1595               continue;
1596             }
1597 
1598             // Stop when RelCur's offset is past the disassembled
1599             // instruction/data. Note that it's possible the disassembled data
1600             // is not the complete data: we might see the relocation printed in
1601             // the middle of the data, but this matches the binutils objdump
1602             // output.
1603             if (Offset >= Index + Size)
1604               break;
1605 
1606             // When --adjust-vma is used, update the address printed.
1607             if (RelCur->getSymbol() != Obj->symbol_end()) {
1608               Expected<section_iterator> SymSI =
1609                   RelCur->getSymbol()->getSection();
1610               if (SymSI && *SymSI != Obj->section_end() &&
1611                   shouldAdjustVA(**SymSI))
1612                 Offset += AdjustVMA;
1613             }
1614 
1615             printRelocation(FOS, Obj->getFileName(), *RelCur,
1616                             SectionAddr + Offset, Is64Bits);
1617             LVP.printAfterOtherLine(FOS, true);
1618             ++RelCur;
1619           }
1620         }
1621 
1622         Index += Size;
1623       }
1624     }
1625   }
1626   StringSet<> MissingDisasmSymbolSet =
1627       set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
1628   for (StringRef Sym : MissingDisasmSymbolSet.keys())
1629     reportWarning("failed to disassemble missing symbol " + Sym, FileName);
1630 }
1631 
1632 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1633   const Target *TheTarget = getTarget(Obj);
1634 
1635   // Package up features to be passed to target/subtarget
1636   SubtargetFeatures Features = Obj->getFeatures();
1637   if (!MAttrs.empty())
1638     for (unsigned I = 0; I != MAttrs.size(); ++I)
1639       Features.AddFeature(MAttrs[I]);
1640 
1641   std::unique_ptr<const MCRegisterInfo> MRI(
1642       TheTarget->createMCRegInfo(TripleName));
1643   if (!MRI)
1644     reportError(Obj->getFileName(),
1645                 "no register info for target " + TripleName);
1646 
1647   // Set up disassembler.
1648   MCTargetOptions MCOptions;
1649   std::unique_ptr<const MCAsmInfo> AsmInfo(
1650       TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
1651   if (!AsmInfo)
1652     reportError(Obj->getFileName(),
1653                 "no assembly info for target " + TripleName);
1654 
1655   if (MCPU.empty())
1656     MCPU = Obj->tryGetCPUName().getValueOr("").str();
1657 
1658   std::unique_ptr<const MCSubtargetInfo> STI(
1659       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1660   if (!STI)
1661     reportError(Obj->getFileName(),
1662                 "no subtarget info for target " + TripleName);
1663   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1664   if (!MII)
1665     reportError(Obj->getFileName(),
1666                 "no instruction info for target " + TripleName);
1667   MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get());
1668   // FIXME: for now initialize MCObjectFileInfo with default values
1669   std::unique_ptr<MCObjectFileInfo> MOFI(
1670       TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false));
1671   Ctx.setObjectFileInfo(MOFI.get());
1672 
1673   std::unique_ptr<MCDisassembler> DisAsm(
1674       TheTarget->createMCDisassembler(*STI, Ctx));
1675   if (!DisAsm)
1676     reportError(Obj->getFileName(), "no disassembler for target " + TripleName);
1677 
1678   // If we have an ARM object file, we need a second disassembler, because
1679   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
1680   // We use mapping symbols to switch between the two assemblers, where
1681   // appropriate.
1682   std::unique_ptr<MCDisassembler> SecondaryDisAsm;
1683   std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
1684   if (isArmElf(Obj) && !STI->checkFeatures("+mclass")) {
1685     if (STI->checkFeatures("+thumb-mode"))
1686       Features.AddFeature("-thumb-mode");
1687     else
1688       Features.AddFeature("+thumb-mode");
1689     SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
1690                                                         Features.getString()));
1691     SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
1692   }
1693 
1694   std::unique_ptr<const MCInstrAnalysis> MIA(
1695       TheTarget->createMCInstrAnalysis(MII.get()));
1696 
1697   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1698   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1699       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1700   if (!IP)
1701     reportError(Obj->getFileName(),
1702                 "no instruction printer for target " + TripleName);
1703   IP->setPrintImmHex(PrintImmHex);
1704   IP->setPrintBranchImmAsAddress(true);
1705   IP->setSymbolizeOperands(SymbolizeOperands);
1706   IP->setMCInstrAnalysis(MIA.get());
1707 
1708   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1709   SourcePrinter SP(Obj, TheTarget->getName());
1710 
1711   for (StringRef Opt : DisassemblerOptions)
1712     if (!IP->applyTargetSpecificCLOption(Opt))
1713       reportError(Obj->getFileName(),
1714                   "Unrecognized disassembler option: " + Opt);
1715 
1716   disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(),
1717                     MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP,
1718                     SP, InlineRelocs);
1719 }
1720 
1721 void objdump::printRelocations(const ObjectFile *Obj) {
1722   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1723                                                  "%08" PRIx64;
1724   // Regular objdump doesn't print relocations in non-relocatable object
1725   // files.
1726   if (!Obj->isRelocatableObject())
1727     return;
1728 
1729   // Build a mapping from relocation target to a vector of relocation
1730   // sections. Usually, there is an only one relocation section for
1731   // each relocated section.
1732   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
1733   uint64_t Ndx;
1734   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) {
1735     if (Section.relocation_begin() == Section.relocation_end())
1736       continue;
1737     Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
1738     if (!SecOrErr)
1739       reportError(Obj->getFileName(),
1740                   "section (" + Twine(Ndx) +
1741                       "): unable to get a relocation target: " +
1742                       toString(SecOrErr.takeError()));
1743     SecToRelSec[**SecOrErr].push_back(Section);
1744   }
1745 
1746   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
1747     StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName());
1748     outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n";
1749     uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
1750     uint32_t TypePadding = 24;
1751     outs() << left_justify("OFFSET", OffsetPadding) << " "
1752            << left_justify("TYPE", TypePadding) << " "
1753            << "VALUE\n";
1754 
1755     for (SectionRef Section : P.second) {
1756       for (const RelocationRef &Reloc : Section.relocations()) {
1757         uint64_t Address = Reloc.getOffset();
1758         SmallString<32> RelocName;
1759         SmallString<32> ValueStr;
1760         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
1761           continue;
1762         Reloc.getTypeName(RelocName);
1763         if (Error E = getRelocationValueString(Reloc, ValueStr))
1764           reportError(std::move(E), Obj->getFileName());
1765 
1766         outs() << format(Fmt.data(), Address) << " "
1767                << left_justify(RelocName, TypePadding) << " " << ValueStr
1768                << "\n";
1769       }
1770     }
1771   }
1772 }
1773 
1774 void objdump::printDynamicRelocations(const ObjectFile *Obj) {
1775   // For the moment, this option is for ELF only
1776   if (!Obj->isELF())
1777     return;
1778 
1779   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1780   if (!Elf || !any_of(Elf->sections(), [](const ELFSectionRef Sec) {
1781         return Sec.getType() == ELF::SHT_DYNAMIC;
1782       })) {
1783     reportError(Obj->getFileName(), "not a dynamic object");
1784     return;
1785   }
1786 
1787   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
1788   if (DynRelSec.empty())
1789     return;
1790 
1791   outs() << "\nDYNAMIC RELOCATION RECORDS\n";
1792   const uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
1793   const uint32_t TypePadding = 24;
1794   outs() << left_justify("OFFSET", OffsetPadding) << ' '
1795          << left_justify("TYPE", TypePadding) << " VALUE\n";
1796 
1797   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1798   for (const SectionRef &Section : DynRelSec)
1799     for (const RelocationRef &Reloc : Section.relocations()) {
1800       uint64_t Address = Reloc.getOffset();
1801       SmallString<32> RelocName;
1802       SmallString<32> ValueStr;
1803       Reloc.getTypeName(RelocName);
1804       if (Error E = getRelocationValueString(Reloc, ValueStr))
1805         reportError(std::move(E), Obj->getFileName());
1806       outs() << format(Fmt.data(), Address) << ' '
1807              << left_justify(RelocName, TypePadding) << ' ' << ValueStr << '\n';
1808     }
1809 }
1810 
1811 // Returns true if we need to show LMA column when dumping section headers. We
1812 // show it only when the platform is ELF and either we have at least one section
1813 // whose VMA and LMA are different and/or when --show-lma flag is used.
1814 static bool shouldDisplayLMA(const ObjectFile *Obj) {
1815   if (!Obj->isELF())
1816     return false;
1817   for (const SectionRef &S : ToolSectionFilter(*Obj))
1818     if (S.getAddress() != getELFSectionLMA(S))
1819       return true;
1820   return ShowLMA;
1821 }
1822 
1823 static size_t getMaxSectionNameWidth(const ObjectFile *Obj) {
1824   // Default column width for names is 13 even if no names are that long.
1825   size_t MaxWidth = 13;
1826   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1827     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1828     MaxWidth = std::max(MaxWidth, Name.size());
1829   }
1830   return MaxWidth;
1831 }
1832 
1833 void objdump::printSectionHeaders(const ObjectFile *Obj) {
1834   size_t NameWidth = getMaxSectionNameWidth(Obj);
1835   size_t AddressWidth = 2 * Obj->getBytesInAddress();
1836   bool HasLMAColumn = shouldDisplayLMA(Obj);
1837   outs() << "\nSections:\n";
1838   if (HasLMAColumn)
1839     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
1840            << left_justify("VMA", AddressWidth) << " "
1841            << left_justify("LMA", AddressWidth) << " Type\n";
1842   else
1843     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
1844            << left_justify("VMA", AddressWidth) << " Type\n";
1845 
1846   uint64_t Idx;
1847   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Idx)) {
1848     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1849     uint64_t VMA = Section.getAddress();
1850     if (shouldAdjustVA(Section))
1851       VMA += AdjustVMA;
1852 
1853     uint64_t Size = Section.getSize();
1854 
1855     std::string Type = Section.isText() ? "TEXT" : "";
1856     if (Section.isData())
1857       Type += Type.empty() ? "DATA" : ", DATA";
1858     if (Section.isBSS())
1859       Type += Type.empty() ? "BSS" : ", BSS";
1860     if (Section.isDebugSection())
1861       Type += Type.empty() ? "DEBUG" : ", DEBUG";
1862 
1863     if (HasLMAColumn)
1864       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
1865                        Name.str().c_str(), Size)
1866              << format_hex_no_prefix(VMA, AddressWidth) << " "
1867              << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
1868              << " " << Type << "\n";
1869     else
1870       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
1871                        Name.str().c_str(), Size)
1872              << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
1873   }
1874 }
1875 
1876 void objdump::printSectionContents(const ObjectFile *Obj) {
1877   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
1878 
1879   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1880     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1881     uint64_t BaseAddr = Section.getAddress();
1882     uint64_t Size = Section.getSize();
1883     if (!Size)
1884       continue;
1885 
1886     outs() << "Contents of section ";
1887     StringRef SegmentName = getSegmentName(MachO, Section);
1888     if (!SegmentName.empty())
1889       outs() << SegmentName << ",";
1890     outs() << Name << ":\n";
1891     if (Section.isBSS()) {
1892       outs() << format("<skipping contents of bss section at [%04" PRIx64
1893                        ", %04" PRIx64 ")>\n",
1894                        BaseAddr, BaseAddr + Size);
1895       continue;
1896     }
1897 
1898     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
1899 
1900     // Dump out the content as hex and printable ascii characters.
1901     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
1902       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
1903       // Dump line of hex.
1904       for (std::size_t I = 0; I < 16; ++I) {
1905         if (I != 0 && I % 4 == 0)
1906           outs() << ' ';
1907         if (Addr + I < End)
1908           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
1909                  << hexdigit(Contents[Addr + I] & 0xF, true);
1910         else
1911           outs() << "  ";
1912       }
1913       // Print ascii.
1914       outs() << "  ";
1915       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
1916         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
1917           outs() << Contents[Addr + I];
1918         else
1919           outs() << ".";
1920       }
1921       outs() << "\n";
1922     }
1923   }
1924 }
1925 
1926 void objdump::printSymbolTable(const ObjectFile *O, StringRef ArchiveName,
1927                                StringRef ArchitectureName, bool DumpDynamic) {
1928   if (O->isCOFF() && !DumpDynamic) {
1929     outs() << "\nSYMBOL TABLE:\n";
1930     printCOFFSymbolTable(cast<const COFFObjectFile>(O));
1931     return;
1932   }
1933 
1934   const StringRef FileName = O->getFileName();
1935 
1936   if (!DumpDynamic) {
1937     outs() << "\nSYMBOL TABLE:\n";
1938     for (auto I = O->symbol_begin(); I != O->symbol_end(); ++I)
1939       printSymbol(O, *I, {}, FileName, ArchiveName, ArchitectureName,
1940                   DumpDynamic);
1941     return;
1942   }
1943 
1944   outs() << "\nDYNAMIC SYMBOL TABLE:\n";
1945   if (!O->isELF()) {
1946     reportWarning(
1947         "this operation is not currently supported for this file format",
1948         FileName);
1949     return;
1950   }
1951 
1952   const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(O);
1953   auto Symbols = ELF->getDynamicSymbolIterators();
1954   Expected<std::vector<VersionEntry>> SymbolVersionsOrErr =
1955       ELF->readDynsymVersions();
1956   if (!SymbolVersionsOrErr) {
1957     reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName);
1958     SymbolVersionsOrErr = std::vector<VersionEntry>();
1959     (void)!SymbolVersionsOrErr;
1960   }
1961   for (auto &Sym : Symbols)
1962     printSymbol(O, Sym, *SymbolVersionsOrErr, FileName, ArchiveName,
1963                 ArchitectureName, DumpDynamic);
1964 }
1965 
1966 void objdump::printSymbol(const ObjectFile *O, const SymbolRef &Symbol,
1967                           ArrayRef<VersionEntry> SymbolVersions,
1968                           StringRef FileName, StringRef ArchiveName,
1969                           StringRef ArchitectureName, bool DumpDynamic) {
1970   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(O);
1971   uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName,
1972                                    ArchitectureName);
1973   if ((Address < StartAddress) || (Address > StopAddress))
1974     return;
1975   SymbolRef::Type Type =
1976       unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
1977   uint32_t Flags =
1978       unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);
1979 
1980   // Don't ask a Mach-O STAB symbol for its section unless you know that
1981   // STAB symbol's section field refers to a valid section index. Otherwise
1982   // the symbol may error trying to load a section that does not exist.
1983   bool IsSTAB = false;
1984   if (MachO) {
1985     DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1986     uint8_t NType =
1987         (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
1988                           : MachO->getSymbolTableEntry(SymDRI).n_type);
1989     if (NType & MachO::N_STAB)
1990       IsSTAB = true;
1991   }
1992   section_iterator Section = IsSTAB
1993                                  ? O->section_end()
1994                                  : unwrapOrError(Symbol.getSection(), FileName,
1995                                                  ArchiveName, ArchitectureName);
1996 
1997   StringRef Name;
1998   if (Type == SymbolRef::ST_Debug && Section != O->section_end()) {
1999     if (Expected<StringRef> NameOrErr = Section->getName())
2000       Name = *NameOrErr;
2001     else
2002       consumeError(NameOrErr.takeError());
2003 
2004   } else {
2005     Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
2006                          ArchitectureName);
2007   }
2008 
2009   bool Global = Flags & SymbolRef::SF_Global;
2010   bool Weak = Flags & SymbolRef::SF_Weak;
2011   bool Absolute = Flags & SymbolRef::SF_Absolute;
2012   bool Common = Flags & SymbolRef::SF_Common;
2013   bool Hidden = Flags & SymbolRef::SF_Hidden;
2014 
2015   char GlobLoc = ' ';
2016   if ((Section != O->section_end() || Absolute) && !Weak)
2017     GlobLoc = Global ? 'g' : 'l';
2018   char IFunc = ' ';
2019   if (O->isELF()) {
2020     if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
2021       IFunc = 'i';
2022     if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
2023       GlobLoc = 'u';
2024   }
2025 
2026   char Debug = ' ';
2027   if (DumpDynamic)
2028     Debug = 'D';
2029   else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2030     Debug = 'd';
2031 
2032   char FileFunc = ' ';
2033   if (Type == SymbolRef::ST_File)
2034     FileFunc = 'f';
2035   else if (Type == SymbolRef::ST_Function)
2036     FileFunc = 'F';
2037   else if (Type == SymbolRef::ST_Data)
2038     FileFunc = 'O';
2039 
2040   const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2041 
2042   outs() << format(Fmt, Address) << " "
2043          << GlobLoc            // Local -> 'l', Global -> 'g', Neither -> ' '
2044          << (Weak ? 'w' : ' ') // Weak?
2045          << ' '                // Constructor. Not supported yet.
2046          << ' '                // Warning. Not supported yet.
2047          << IFunc              // Indirect reference to another symbol.
2048          << Debug              // Debugging (d) or dynamic (D) symbol.
2049          << FileFunc           // Name of function (F), file (f) or object (O).
2050          << ' ';
2051   if (Absolute) {
2052     outs() << "*ABS*";
2053   } else if (Common) {
2054     outs() << "*COM*";
2055   } else if (Section == O->section_end()) {
2056     if (O->isXCOFF()) {
2057       XCOFFSymbolRef XCOFFSym = dyn_cast<const XCOFFObjectFile>(O)->toSymbolRef(
2058           Symbol.getRawDataRefImpl());
2059       if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber())
2060         outs() << "*DEBUG*";
2061       else
2062         outs() << "*UND*";
2063     } else
2064       outs() << "*UND*";
2065   } else {
2066     StringRef SegmentName = getSegmentName(MachO, *Section);
2067     if (!SegmentName.empty())
2068       outs() << SegmentName << ",";
2069     StringRef SectionName = unwrapOrError(Section->getName(), FileName);
2070     outs() << SectionName;
2071     if (O->isXCOFF()) {
2072       Optional<SymbolRef> SymRef = getXCOFFSymbolContainingSymbolRef(
2073           dyn_cast<const XCOFFObjectFile>(O), Symbol);
2074       if (SymRef) {
2075 
2076         Expected<StringRef> NameOrErr = SymRef.getValue().getName();
2077 
2078         if (NameOrErr) {
2079           outs() << " (csect:";
2080           std::string SymName(NameOrErr.get());
2081 
2082           if (Demangle)
2083             SymName = demangle(SymName);
2084 
2085           if (SymbolDescription)
2086             SymName = getXCOFFSymbolDescription(
2087                 createSymbolInfo(O, SymRef.getValue()), SymName);
2088 
2089           outs() << ' ' << SymName;
2090           outs() << ") ";
2091         } else
2092           reportWarning(toString(NameOrErr.takeError()), FileName);
2093       }
2094     }
2095   }
2096 
2097   if (Common)
2098     outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment()));
2099   else if (O->isXCOFF())
2100     outs() << '\t'
2101            << format(Fmt, dyn_cast<const XCOFFObjectFile>(O)->getSymbolSize(
2102                               Symbol.getRawDataRefImpl()));
2103   else if (O->isELF())
2104     outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize());
2105 
2106   if (O->isELF()) {
2107     if (!SymbolVersions.empty()) {
2108       const VersionEntry &Ver =
2109           SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1];
2110       std::string Str;
2111       if (!Ver.Name.empty())
2112         Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')';
2113       outs() << ' ' << left_justify(Str, 12);
2114     }
2115 
2116     uint8_t Other = ELFSymbolRef(Symbol).getOther();
2117     switch (Other) {
2118     case ELF::STV_DEFAULT:
2119       break;
2120     case ELF::STV_INTERNAL:
2121       outs() << " .internal";
2122       break;
2123     case ELF::STV_HIDDEN:
2124       outs() << " .hidden";
2125       break;
2126     case ELF::STV_PROTECTED:
2127       outs() << " .protected";
2128       break;
2129     default:
2130       outs() << format(" 0x%02x", Other);
2131       break;
2132     }
2133   } else if (Hidden) {
2134     outs() << " .hidden";
2135   }
2136 
2137   std::string SymName(Name);
2138   if (Demangle)
2139     SymName = demangle(SymName);
2140 
2141   if (O->isXCOFF() && SymbolDescription)
2142     SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName);
2143 
2144   outs() << ' ' << SymName << '\n';
2145 }
2146 
2147 static void printUnwindInfo(const ObjectFile *O) {
2148   outs() << "Unwind info:\n\n";
2149 
2150   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
2151     printCOFFUnwindInfo(Coff);
2152   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
2153     printMachOUnwindInfo(MachO);
2154   else
2155     // TODO: Extract DWARF dump tool to objdump.
2156     WithColor::error(errs(), ToolName)
2157         << "This operation is only currently supported "
2158            "for COFF and MachO object files.\n";
2159 }
2160 
2161 /// Dump the raw contents of the __clangast section so the output can be piped
2162 /// into llvm-bcanalyzer.
2163 static void printRawClangAST(const ObjectFile *Obj) {
2164   if (outs().is_displayed()) {
2165     WithColor::error(errs(), ToolName)
2166         << "The -raw-clang-ast option will dump the raw binary contents of "
2167            "the clang ast section.\n"
2168            "Please redirect the output to a file or another program such as "
2169            "llvm-bcanalyzer.\n";
2170     return;
2171   }
2172 
2173   StringRef ClangASTSectionName("__clangast");
2174   if (Obj->isCOFF()) {
2175     ClangASTSectionName = "clangast";
2176   }
2177 
2178   Optional<object::SectionRef> ClangASTSection;
2179   for (auto Sec : ToolSectionFilter(*Obj)) {
2180     StringRef Name;
2181     if (Expected<StringRef> NameOrErr = Sec.getName())
2182       Name = *NameOrErr;
2183     else
2184       consumeError(NameOrErr.takeError());
2185 
2186     if (Name == ClangASTSectionName) {
2187       ClangASTSection = Sec;
2188       break;
2189     }
2190   }
2191   if (!ClangASTSection)
2192     return;
2193 
2194   StringRef ClangASTContents = unwrapOrError(
2195       ClangASTSection.getValue().getContents(), Obj->getFileName());
2196   outs().write(ClangASTContents.data(), ClangASTContents.size());
2197 }
2198 
2199 static void printFaultMaps(const ObjectFile *Obj) {
2200   StringRef FaultMapSectionName;
2201 
2202   if (Obj->isELF()) {
2203     FaultMapSectionName = ".llvm_faultmaps";
2204   } else if (Obj->isMachO()) {
2205     FaultMapSectionName = "__llvm_faultmaps";
2206   } else {
2207     WithColor::error(errs(), ToolName)
2208         << "This operation is only currently supported "
2209            "for ELF and Mach-O executable files.\n";
2210     return;
2211   }
2212 
2213   Optional<object::SectionRef> FaultMapSection;
2214 
2215   for (auto Sec : ToolSectionFilter(*Obj)) {
2216     StringRef Name;
2217     if (Expected<StringRef> NameOrErr = Sec.getName())
2218       Name = *NameOrErr;
2219     else
2220       consumeError(NameOrErr.takeError());
2221 
2222     if (Name == FaultMapSectionName) {
2223       FaultMapSection = Sec;
2224       break;
2225     }
2226   }
2227 
2228   outs() << "FaultMap table:\n";
2229 
2230   if (!FaultMapSection.hasValue()) {
2231     outs() << "<not found>\n";
2232     return;
2233   }
2234 
2235   StringRef FaultMapContents =
2236       unwrapOrError(FaultMapSection.getValue().getContents(), Obj->getFileName());
2237   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2238                      FaultMapContents.bytes_end());
2239 
2240   outs() << FMP;
2241 }
2242 
2243 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
2244   if (O->isELF()) {
2245     printELFFileHeader(O);
2246     printELFDynamicSection(O);
2247     printELFSymbolVersionInfo(O);
2248     return;
2249   }
2250   if (O->isCOFF())
2251     return printCOFFFileHeader(cast<object::COFFObjectFile>(*O));
2252   if (O->isWasm())
2253     return printWasmFileHeader(O);
2254   if (O->isMachO()) {
2255     printMachOFileHeader(O);
2256     if (!OnlyFirst)
2257       printMachOLoadCommands(O);
2258     return;
2259   }
2260   reportError(O->getFileName(), "Invalid/Unsupported object file format");
2261 }
2262 
2263 static void printFileHeaders(const ObjectFile *O) {
2264   if (!O->isELF() && !O->isCOFF())
2265     reportError(O->getFileName(), "Invalid/Unsupported object file format");
2266 
2267   Triple::ArchType AT = O->getArch();
2268   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2269   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
2270 
2271   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2272   outs() << "start address: "
2273          << "0x" << format(Fmt.data(), Address) << "\n";
2274 }
2275 
2276 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2277   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2278   if (!ModeOrErr) {
2279     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2280     consumeError(ModeOrErr.takeError());
2281     return;
2282   }
2283   sys::fs::perms Mode = ModeOrErr.get();
2284   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2285   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2286   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2287   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2288   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2289   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2290   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2291   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2292   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2293 
2294   outs() << " ";
2295 
2296   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
2297                    unwrapOrError(C.getGID(), Filename),
2298                    unwrapOrError(C.getRawSize(), Filename));
2299 
2300   StringRef RawLastModified = C.getRawLastModified();
2301   unsigned Seconds;
2302   if (RawLastModified.getAsInteger(10, Seconds))
2303     outs() << "(date: \"" << RawLastModified
2304            << "\" contains non-decimal chars) ";
2305   else {
2306     // Since ctime(3) returns a 26 character string of the form:
2307     // "Sun Sep 16 01:03:52 1973\n\0"
2308     // just print 24 characters.
2309     time_t t = Seconds;
2310     outs() << format("%.24s ", ctime(&t));
2311   }
2312 
2313   StringRef Name = "";
2314   Expected<StringRef> NameOrErr = C.getName();
2315   if (!NameOrErr) {
2316     consumeError(NameOrErr.takeError());
2317     Name = unwrapOrError(C.getRawName(), Filename);
2318   } else {
2319     Name = NameOrErr.get();
2320   }
2321   outs() << Name << "\n";
2322 }
2323 
2324 // For ELF only now.
2325 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
2326   if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
2327     if (Elf->getEType() != ELF::ET_REL)
2328       return true;
2329   }
2330   return false;
2331 }
2332 
2333 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
2334                                             uint64_t Start, uint64_t Stop) {
2335   if (!shouldWarnForInvalidStartStopAddress(Obj))
2336     return;
2337 
2338   for (const SectionRef &Section : Obj->sections())
2339     if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
2340       uint64_t BaseAddr = Section.getAddress();
2341       uint64_t Size = Section.getSize();
2342       if ((Start < BaseAddr + Size) && Stop > BaseAddr)
2343         return;
2344     }
2345 
2346   if (!HasStartAddressFlag)
2347     reportWarning("no section has address less than 0x" +
2348                       Twine::utohexstr(Stop) + " specified by --stop-address",
2349                   Obj->getFileName());
2350   else if (!HasStopAddressFlag)
2351     reportWarning("no section has address greater than or equal to 0x" +
2352                       Twine::utohexstr(Start) + " specified by --start-address",
2353                   Obj->getFileName());
2354   else
2355     reportWarning("no section overlaps the range [0x" +
2356                       Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
2357                       ") specified by --start-address/--stop-address",
2358                   Obj->getFileName());
2359 }
2360 
2361 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2362                        const Archive::Child *C = nullptr) {
2363   // Avoid other output when using a raw option.
2364   if (!RawClangAST) {
2365     outs() << '\n';
2366     if (A)
2367       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2368     else
2369       outs() << O->getFileName();
2370     outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n";
2371   }
2372 
2373   if (HasStartAddressFlag || HasStopAddressFlag)
2374     checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
2375 
2376   // Note: the order here matches GNU objdump for compatability.
2377   StringRef ArchiveName = A ? A->getFileName() : "";
2378   if (ArchiveHeaders && !MachOOpt && C)
2379     printArchiveChild(ArchiveName, *C);
2380   if (FileHeaders)
2381     printFileHeaders(O);
2382   if (PrivateHeaders || FirstPrivateHeader)
2383     printPrivateFileHeaders(O, FirstPrivateHeader);
2384   if (SectionHeaders)
2385     printSectionHeaders(O);
2386   if (SymbolTable)
2387     printSymbolTable(O, ArchiveName);
2388   if (DynamicSymbolTable)
2389     printSymbolTable(O, ArchiveName, /*ArchitectureName=*/"",
2390                      /*DumpDynamic=*/true);
2391   if (DwarfDumpType != DIDT_Null) {
2392     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2393     // Dump the complete DWARF structure.
2394     DIDumpOptions DumpOpts;
2395     DumpOpts.DumpType = DwarfDumpType;
2396     DICtx->dump(outs(), DumpOpts);
2397   }
2398   if (Relocations && !Disassemble)
2399     printRelocations(O);
2400   if (DynamicRelocations)
2401     printDynamicRelocations(O);
2402   if (SectionContents)
2403     printSectionContents(O);
2404   if (Disassemble)
2405     disassembleObject(O, Relocations);
2406   if (UnwindInfo)
2407     printUnwindInfo(O);
2408 
2409   // Mach-O specific options:
2410   if (ExportsTrie)
2411     printExportsTrie(O);
2412   if (Rebase)
2413     printRebaseTable(O);
2414   if (Bind)
2415     printBindTable(O);
2416   if (LazyBind)
2417     printLazyBindTable(O);
2418   if (WeakBind)
2419     printWeakBindTable(O);
2420 
2421   // Other special sections:
2422   if (RawClangAST)
2423     printRawClangAST(O);
2424   if (FaultMapSection)
2425     printFaultMaps(O);
2426 }
2427 
2428 static void dumpObject(const COFFImportFile *I, const Archive *A,
2429                        const Archive::Child *C = nullptr) {
2430   StringRef ArchiveName = A ? A->getFileName() : "";
2431 
2432   // Avoid other output when using a raw option.
2433   if (!RawClangAST)
2434     outs() << '\n'
2435            << ArchiveName << "(" << I->getFileName() << ")"
2436            << ":\tfile format COFF-import-file"
2437            << "\n\n";
2438 
2439   if (ArchiveHeaders && !MachOOpt && C)
2440     printArchiveChild(ArchiveName, *C);
2441   if (SymbolTable)
2442     printCOFFSymbolTable(I);
2443 }
2444 
2445 /// Dump each object file in \a a;
2446 static void dumpArchive(const Archive *A) {
2447   Error Err = Error::success();
2448   unsigned I = -1;
2449   for (auto &C : A->children(Err)) {
2450     ++I;
2451     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2452     if (!ChildOrErr) {
2453       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2454         reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
2455       continue;
2456     }
2457     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2458       dumpObject(O, A, &C);
2459     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2460       dumpObject(I, A, &C);
2461     else
2462       reportError(errorCodeToError(object_error::invalid_file_type),
2463                   A->getFileName());
2464   }
2465   if (Err)
2466     reportError(std::move(Err), A->getFileName());
2467 }
2468 
2469 /// Open file and figure out how to dump it.
2470 static void dumpInput(StringRef file) {
2471   // If we are using the Mach-O specific object file parser, then let it parse
2472   // the file and process the command line options.  So the -arch flags can
2473   // be used to select specific slices, etc.
2474   if (MachOOpt) {
2475     parseInputMachO(file);
2476     return;
2477   }
2478 
2479   // Attempt to open the binary.
2480   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2481   Binary &Binary = *OBinary.getBinary();
2482 
2483   if (Archive *A = dyn_cast<Archive>(&Binary))
2484     dumpArchive(A);
2485   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2486     dumpObject(O);
2487   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2488     parseInputMachO(UB);
2489   else
2490     reportError(errorCodeToError(object_error::invalid_file_type), file);
2491 }
2492 
2493 template <typename T>
2494 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID,
2495                         T &Value) {
2496   if (const opt::Arg *A = InputArgs.getLastArg(ID)) {
2497     StringRef V(A->getValue());
2498     if (!llvm::to_integer(V, Value, 0)) {
2499       reportCmdLineError(A->getSpelling() +
2500                          ": expected a non-negative integer, but got '" + V +
2501                          "'");
2502     }
2503   }
2504 }
2505 
2506 static void invalidArgValue(const opt::Arg *A) {
2507   reportCmdLineError("'" + StringRef(A->getValue()) +
2508                      "' is not a valid value for '" + A->getSpelling() + "'");
2509 }
2510 
2511 static std::vector<std::string>
2512 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) {
2513   std::vector<std::string> Values;
2514   for (StringRef Value : InputArgs.getAllArgValues(ID)) {
2515     llvm::SmallVector<StringRef, 2> SplitValues;
2516     llvm::SplitString(Value, SplitValues, ",");
2517     for (StringRef SplitValue : SplitValues)
2518       Values.push_back(SplitValue.str());
2519   }
2520   return Values;
2521 }
2522 
2523 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) {
2524   MachOOpt = true;
2525   FullLeadingAddr = true;
2526   PrintImmHex = true;
2527 
2528   ArchName = InputArgs.getLastArgValue(OTOOL_arch).str();
2529   LinkOptHints = InputArgs.hasArg(OTOOL_C);
2530   if (InputArgs.hasArg(OTOOL_d))
2531     FilterSections.push_back("__DATA,__data");
2532   DylibId = InputArgs.hasArg(OTOOL_D);
2533   UniversalHeaders = InputArgs.hasArg(OTOOL_f);
2534   DataInCode = InputArgs.hasArg(OTOOL_G);
2535   FirstPrivateHeader = InputArgs.hasArg(OTOOL_h);
2536   IndirectSymbols = InputArgs.hasArg(OTOOL_I);
2537   ShowRawInsn = InputArgs.hasArg(OTOOL_j);
2538   PrivateHeaders = InputArgs.hasArg(OTOOL_l);
2539   DylibsUsed = InputArgs.hasArg(OTOOL_L);
2540   MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str();
2541   ObjcMetaData = InputArgs.hasArg(OTOOL_o);
2542   DisSymName = InputArgs.getLastArgValue(OTOOL_p).str();
2543   InfoPlist = InputArgs.hasArg(OTOOL_P);
2544   Relocations = InputArgs.hasArg(OTOOL_r);
2545   if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) {
2546     auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str();
2547     FilterSections.push_back(Filter);
2548   }
2549   if (InputArgs.hasArg(OTOOL_t))
2550     FilterSections.push_back("__TEXT,__text");
2551   Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) ||
2552             InputArgs.hasArg(OTOOL_o);
2553   SymbolicOperands = InputArgs.hasArg(OTOOL_V);
2554   if (InputArgs.hasArg(OTOOL_x))
2555     FilterSections.push_back(",__text");
2556   LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X);
2557 
2558   InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT);
2559   if (InputFilenames.empty())
2560     reportCmdLineError("no input file");
2561 
2562   for (const Arg *A : InputArgs) {
2563     const Option &O = A->getOption();
2564     if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) {
2565       reportCmdLineWarning(O.getPrefixedName() +
2566                            " is obsolete and not implemented");
2567     }
2568   }
2569 }
2570 
2571 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) {
2572   parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA);
2573   AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers);
2574   ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str();
2575   ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers);
2576   Demangle = InputArgs.hasArg(OBJDUMP_demangle);
2577   Disassemble = InputArgs.hasArg(OBJDUMP_disassemble);
2578   DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all);
2579   SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description);
2580   DisassembleSymbols =
2581       commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ);
2582   DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes);
2583   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) {
2584     DwarfDumpType = StringSwitch<DIDumpType>(A->getValue())
2585                         .Case("frames", DIDT_DebugFrame)
2586                         .Default(DIDT_Null);
2587     if (DwarfDumpType == DIDT_Null)
2588       invalidArgValue(A);
2589   }
2590   DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc);
2591   FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section);
2592   FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers);
2593   SectionContents = InputArgs.hasArg(OBJDUMP_full_contents);
2594   PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers);
2595   InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT);
2596   MachOOpt = InputArgs.hasArg(OBJDUMP_macho);
2597   MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str();
2598   MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ);
2599   ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn);
2600   LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr);
2601   RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast);
2602   Relocations = InputArgs.hasArg(OBJDUMP_reloc);
2603   PrintImmHex =
2604       InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, false);
2605   PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers);
2606   FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ);
2607   SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers);
2608   ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma);
2609   PrintSource = InputArgs.hasArg(OBJDUMP_source);
2610   parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress);
2611   HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ);
2612   parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress);
2613   HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ);
2614   SymbolTable = InputArgs.hasArg(OBJDUMP_syms);
2615   SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands);
2616   DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms);
2617   TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str();
2618   UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info);
2619   Wide = InputArgs.hasArg(OBJDUMP_wide);
2620   Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str();
2621   parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip);
2622   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) {
2623     DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue())
2624                        .Case("ascii", DVASCII)
2625                        .Case("unicode", DVUnicode)
2626                        .Default(DVInvalid);
2627     if (DbgVariables == DVInvalid)
2628       invalidArgValue(A);
2629   }
2630   parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent);
2631 
2632   parseMachOOptions(InputArgs);
2633 
2634   // Parse -M (--disassembler-options) and deprecated
2635   // --x86-asm-syntax={att,intel}.
2636   //
2637   // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the
2638   // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is
2639   // called too late. For now we have to use the internal cl::opt option.
2640   const char *AsmSyntax = nullptr;
2641   for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ,
2642                                           OBJDUMP_x86_asm_syntax_att,
2643                                           OBJDUMP_x86_asm_syntax_intel)) {
2644     switch (A->getOption().getID()) {
2645     case OBJDUMP_x86_asm_syntax_att:
2646       AsmSyntax = "--x86-asm-syntax=att";
2647       continue;
2648     case OBJDUMP_x86_asm_syntax_intel:
2649       AsmSyntax = "--x86-asm-syntax=intel";
2650       continue;
2651     }
2652 
2653     SmallVector<StringRef, 2> Values;
2654     llvm::SplitString(A->getValue(), Values, ",");
2655     for (StringRef V : Values) {
2656       if (V == "att")
2657         AsmSyntax = "--x86-asm-syntax=att";
2658       else if (V == "intel")
2659         AsmSyntax = "--x86-asm-syntax=intel";
2660       else
2661         DisassemblerOptions.push_back(V.str());
2662     }
2663   }
2664   if (AsmSyntax) {
2665     const char *Argv[] = {"llvm-objdump", AsmSyntax};
2666     llvm::cl::ParseCommandLineOptions(2, Argv);
2667   }
2668 
2669   // objdump defaults to a.out if no filenames specified.
2670   if (InputFilenames.empty())
2671     InputFilenames.push_back("a.out");
2672 }
2673 
2674 int main(int argc, char **argv) {
2675   using namespace llvm;
2676   InitLLVM X(argc, argv);
2677 
2678   ToolName = argv[0];
2679   std::unique_ptr<CommonOptTable> T;
2680   OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag;
2681 
2682   StringRef Stem = sys::path::stem(ToolName);
2683   auto Is = [=](StringRef Tool) {
2684     // We need to recognize the following filenames:
2685     //
2686     // llvm-objdump -> objdump
2687     // llvm-otool-10.exe -> otool
2688     // powerpc64-unknown-freebsd13-objdump -> objdump
2689     auto I = Stem.rfind_insensitive(Tool);
2690     return I != StringRef::npos &&
2691            (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()]));
2692   };
2693   if (Is("otool")) {
2694     T = std::make_unique<OtoolOptTable>();
2695     Unknown = OTOOL_UNKNOWN;
2696     HelpFlag = OTOOL_help;
2697     HelpHiddenFlag = OTOOL_help_hidden;
2698     VersionFlag = OTOOL_version;
2699   } else {
2700     T = std::make_unique<ObjdumpOptTable>();
2701     Unknown = OBJDUMP_UNKNOWN;
2702     HelpFlag = OBJDUMP_help;
2703     HelpHiddenFlag = OBJDUMP_help_hidden;
2704     VersionFlag = OBJDUMP_version;
2705   }
2706 
2707   BumpPtrAllocator A;
2708   StringSaver Saver(A);
2709   opt::InputArgList InputArgs =
2710       T->parseArgs(argc, argv, Unknown, Saver,
2711                    [&](StringRef Msg) { reportCmdLineError(Msg); });
2712 
2713   if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) {
2714     T->printHelp(ToolName);
2715     return 0;
2716   }
2717   if (InputArgs.hasArg(HelpHiddenFlag)) {
2718     T->printHelp(ToolName, /*ShowHidden=*/true);
2719     return 0;
2720   }
2721 
2722   // Initialize targets and assembly printers/parsers.
2723   InitializeAllTargetInfos();
2724   InitializeAllTargetMCs();
2725   InitializeAllDisassemblers();
2726 
2727   if (InputArgs.hasArg(VersionFlag)) {
2728     cl::PrintVersionMessage();
2729     if (!Is("otool")) {
2730       outs() << '\n';
2731       TargetRegistry::printRegisteredTargetsForVersion(outs());
2732     }
2733     return 0;
2734   }
2735 
2736   if (Is("otool"))
2737     parseOtoolOptions(InputArgs);
2738   else
2739     parseObjdumpOptions(InputArgs);
2740 
2741   if (StartAddress >= StopAddress)
2742     reportCmdLineError("start address should be less than stop address");
2743 
2744   // Removes trailing separators from prefix.
2745   while (!Prefix.empty() && sys::path::is_separator(Prefix.back()))
2746     Prefix.pop_back();
2747 
2748   if (AllHeaders)
2749     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
2750         SectionHeaders = SymbolTable = true;
2751 
2752   if (DisassembleAll || PrintSource || PrintLines ||
2753       !DisassembleSymbols.empty())
2754     Disassemble = true;
2755 
2756   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
2757       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
2758       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
2759       !DynamicSymbolTable && !UnwindInfo && !FaultMapSection &&
2760       !(MachOOpt &&
2761         (Bind || DataInCode || DylibId || DylibsUsed || ExportsTrie ||
2762          FirstPrivateHeader || FunctionStarts || IndirectSymbols || InfoPlist ||
2763          LazyBind || LinkOptHints || ObjcMetaData || Rebase || Rpaths ||
2764          UniversalHeaders || WeakBind || !FilterSections.empty()))) {
2765     T->printHelp(ToolName);
2766     return 2;
2767   }
2768 
2769   DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
2770 
2771   llvm::for_each(InputFilenames, dumpInput);
2772 
2773   warnOnNoMatchForSections();
2774 
2775   return EXIT_SUCCESS;
2776 }
2777