1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the ELF-specific dumper for llvm-readobj.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMEHABIPrinter.h"
15 #include "DwarfCFIEHPrinter.h"
16 #include "ObjDumper.h"
17 #include "StackMapPrinter.h"
18 #include "llvm-readobj.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/ADT/PointerIntPair.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
33 #include "llvm/BinaryFormat/ELF.h"
34 #include "llvm/BinaryFormat/MsgPackDocument.h"
35 #include "llvm/Demangle/Demangle.h"
36 #include "llvm/Object/Archive.h"
37 #include "llvm/Object/ELF.h"
38 #include "llvm/Object/ELFObjectFile.h"
39 #include "llvm/Object/ELFTypes.h"
40 #include "llvm/Object/Error.h"
41 #include "llvm/Object/ObjectFile.h"
42 #include "llvm/Object/RelocationResolver.h"
43 #include "llvm/Object/StackMapParser.h"
44 #include "llvm/Support/AMDGPUMetadata.h"
45 #include "llvm/Support/ARMAttributeParser.h"
46 #include "llvm/Support/ARMBuildAttributes.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/Endian.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/Format.h"
52 #include "llvm/Support/FormatVariadic.h"
53 #include "llvm/Support/FormattedStream.h"
54 #include "llvm/Support/LEB128.h"
55 #include "llvm/Support/MSP430AttributeParser.h"
56 #include "llvm/Support/MSP430Attributes.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/MipsABIFlags.h"
59 #include "llvm/Support/RISCVAttributeParser.h"
60 #include "llvm/Support/RISCVAttributes.h"
61 #include "llvm/Support/ScopedPrinter.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include <algorithm>
64 #include <cinttypes>
65 #include <cstddef>
66 #include <cstdint>
67 #include <cstdlib>
68 #include <iterator>
69 #include <memory>
70 #include <string>
71 #include <system_error>
72 #include <vector>
73 
74 using namespace llvm;
75 using namespace llvm::object;
76 using namespace ELF;
77 
78 #define LLVM_READOBJ_ENUM_CASE(ns, enum)                                       \
79   case ns::enum:                                                               \
80     return #enum;
81 
82 #define ENUM_ENT(enum, altName)                                                \
83   { #enum, altName, ELF::enum }
84 
85 #define ENUM_ENT_1(enum)                                                       \
86   { #enum, #enum, ELF::enum }
87 
88 namespace {
89 
90 template <class ELFT> struct RelSymbol {
91   RelSymbol(const typename ELFT::Sym *S, StringRef N)
92       : Sym(S), Name(N.str()) {}
93   const typename ELFT::Sym *Sym;
94   std::string Name;
95 };
96 
97 /// Represents a contiguous uniform range in the file. We cannot just create a
98 /// range directly because when creating one of these from the .dynamic table
99 /// the size, entity size and virtual address are different entries in arbitrary
100 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
101 struct DynRegionInfo {
102   DynRegionInfo(const Binary &Owner, const ObjDumper &D)
103       : Obj(&Owner), Dumper(&D) {}
104   DynRegionInfo(const Binary &Owner, const ObjDumper &D, const uint8_t *A,
105                 uint64_t S, uint64_t ES)
106       : Addr(A), Size(S), EntSize(ES), Obj(&Owner), Dumper(&D) {}
107 
108   /// Address in current address space.
109   const uint8_t *Addr = nullptr;
110   /// Size in bytes of the region.
111   uint64_t Size = 0;
112   /// Size of each entity in the region.
113   uint64_t EntSize = 0;
114 
115   /// Owner object. Used for error reporting.
116   const Binary *Obj;
117   /// Dumper used for error reporting.
118   const ObjDumper *Dumper;
119   /// Error prefix. Used for error reporting to provide more information.
120   std::string Context;
121   /// Region size name. Used for error reporting.
122   StringRef SizePrintName = "size";
123   /// Entry size name. Used for error reporting. If this field is empty, errors
124   /// will not mention the entry size.
125   StringRef EntSizePrintName = "entry size";
126 
127   template <typename Type> ArrayRef<Type> getAsArrayRef() const {
128     const Type *Start = reinterpret_cast<const Type *>(Addr);
129     if (!Start)
130       return {Start, Start};
131 
132     const uint64_t Offset =
133         Addr - (const uint8_t *)Obj->getMemoryBufferRef().getBufferStart();
134     const uint64_t ObjSize = Obj->getMemoryBufferRef().getBufferSize();
135 
136     if (Size > ObjSize - Offset) {
137       Dumper->reportUniqueWarning(
138           "unable to read data at 0x" + Twine::utohexstr(Offset) +
139           " of size 0x" + Twine::utohexstr(Size) + " (" + SizePrintName +
140           "): it goes past the end of the file of size 0x" +
141           Twine::utohexstr(ObjSize));
142       return {Start, Start};
143     }
144 
145     if (EntSize == sizeof(Type) && (Size % EntSize == 0))
146       return {Start, Start + (Size / EntSize)};
147 
148     std::string Msg;
149     if (!Context.empty())
150       Msg += Context + " has ";
151 
152     Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")")
153                .str();
154     if (!EntSizePrintName.empty())
155       Msg +=
156           (" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")")
157               .str();
158 
159     Dumper->reportUniqueWarning(Msg);
160     return {Start, Start};
161   }
162 };
163 
164 struct GroupMember {
165   StringRef Name;
166   uint64_t Index;
167 };
168 
169 struct GroupSection {
170   StringRef Name;
171   std::string Signature;
172   uint64_t ShName;
173   uint64_t Index;
174   uint32_t Link;
175   uint32_t Info;
176   uint32_t Type;
177   std::vector<GroupMember> Members;
178 };
179 
180 namespace {
181 
182 struct NoteType {
183   uint32_t ID;
184   StringRef Name;
185 };
186 
187 } // namespace
188 
189 template <class ELFT> class Relocation {
190 public:
191   Relocation(const typename ELFT::Rel &R, bool IsMips64EL)
192       : Type(R.getType(IsMips64EL)), Symbol(R.getSymbol(IsMips64EL)),
193         Offset(R.r_offset), Info(R.r_info) {}
194 
195   Relocation(const typename ELFT::Rela &R, bool IsMips64EL)
196       : Relocation((const typename ELFT::Rel &)R, IsMips64EL) {
197     Addend = R.r_addend;
198   }
199 
200   uint32_t Type;
201   uint32_t Symbol;
202   typename ELFT::uint Offset;
203   typename ELFT::uint Info;
204   Optional<int64_t> Addend;
205 };
206 
207 template <class ELFT> class MipsGOTParser;
208 
209 template <typename ELFT> class ELFDumper : public ObjDumper {
210   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
211 
212 public:
213   ELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer);
214 
215   void printUnwindInfo() override;
216   void printNeededLibraries() override;
217   void printHashTable() override;
218   void printGnuHashTable() override;
219   void printLoadName() override;
220   void printVersionInfo() override;
221   void printArchSpecificInfo() override;
222   void printStackMap() const override;
223 
224   const object::ELFObjectFile<ELFT> &getElfObject() const { return ObjF; };
225 
226   std::string describe(const Elf_Shdr &Sec) const;
227 
228   unsigned getHashTableEntSize() const {
229     // EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH
230     // sections. This violates the ELF specification.
231     if (Obj.getHeader().e_machine == ELF::EM_S390 ||
232         Obj.getHeader().e_machine == ELF::EM_ALPHA)
233       return 8;
234     return 4;
235   }
236 
237   Elf_Dyn_Range dynamic_table() const {
238     // A valid .dynamic section contains an array of entries terminated
239     // with a DT_NULL entry. However, sometimes the section content may
240     // continue past the DT_NULL entry, so to dump the section correctly,
241     // we first find the end of the entries by iterating over them.
242     Elf_Dyn_Range Table = DynamicTable.template getAsArrayRef<Elf_Dyn>();
243 
244     size_t Size = 0;
245     while (Size < Table.size())
246       if (Table[Size++].getTag() == DT_NULL)
247         break;
248 
249     return Table.slice(0, Size);
250   }
251 
252   Elf_Sym_Range dynamic_symbols() const {
253     if (!DynSymRegion)
254       return Elf_Sym_Range();
255     return DynSymRegion->template getAsArrayRef<Elf_Sym>();
256   }
257 
258   const Elf_Shdr *findSectionByName(StringRef Name) const;
259 
260   StringRef getDynamicStringTable() const { return DynamicStringTable; }
261 
262 protected:
263   virtual void printVersionSymbolSection(const Elf_Shdr *Sec) = 0;
264   virtual void printVersionDefinitionSection(const Elf_Shdr *Sec) = 0;
265   virtual void printVersionDependencySection(const Elf_Shdr *Sec) = 0;
266 
267   void
268   printDependentLibsHelper(function_ref<void(const Elf_Shdr &)> OnSectionStart,
269                            function_ref<void(StringRef, uint64_t)> OnLibEntry);
270 
271   virtual void printRelRelaReloc(const Relocation<ELFT> &R,
272                                  const RelSymbol<ELFT> &RelSym) = 0;
273   virtual void printRelrReloc(const Elf_Relr &R) = 0;
274   virtual void printDynamicRelocHeader(unsigned Type, StringRef Name,
275                                        const DynRegionInfo &Reg) {}
276   void printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
277                   const Elf_Shdr &Sec, const Elf_Shdr *SymTab);
278   void printDynamicReloc(const Relocation<ELFT> &R);
279   void printDynamicRelocationsHelper();
280   void printRelocationsHelper(const Elf_Shdr &Sec);
281   void forEachRelocationDo(
282       const Elf_Shdr &Sec, bool RawRelr,
283       llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
284                               const Elf_Shdr &, const Elf_Shdr *)>
285           RelRelaFn,
286       llvm::function_ref<void(const Elf_Relr &)> RelrFn);
287 
288   virtual void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
289                                   bool NonVisibilityBitsUsed) const {};
290   virtual void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
291                            DataRegion<Elf_Word> ShndxTable,
292                            Optional<StringRef> StrTable, bool IsDynamic,
293                            bool NonVisibilityBitsUsed) const = 0;
294 
295   virtual void printMipsABIFlags() = 0;
296   virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
297   virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
298 
299   Expected<ArrayRef<Elf_Versym>>
300   getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
301                   StringRef *StrTab, const Elf_Shdr **SymTabSec) const;
302   StringRef getPrintableSectionName(const Elf_Shdr &Sec) const;
303 
304   std::vector<GroupSection> getGroups();
305 
306   // Returns the function symbol index for the given address. Matches the
307   // symbol's section with FunctionSec when specified.
308   // Returns None if no function symbol can be found for the address or in case
309   // it is not defined in the specified section.
310   SmallVector<uint32_t>
311   getSymbolIndexesForFunctionAddress(uint64_t SymValue,
312                                      Optional<const Elf_Shdr *> FunctionSec);
313   bool printFunctionStackSize(uint64_t SymValue,
314                               Optional<const Elf_Shdr *> FunctionSec,
315                               const Elf_Shdr &StackSizeSec, DataExtractor Data,
316                               uint64_t *Offset);
317   void printStackSize(const Relocation<ELFT> &R, const Elf_Shdr &RelocSec,
318                       unsigned Ndx, const Elf_Shdr *SymTab,
319                       const Elf_Shdr *FunctionSec, const Elf_Shdr &StackSizeSec,
320                       const RelocationResolver &Resolver, DataExtractor Data);
321   virtual void printStackSizeEntry(uint64_t Size,
322                                    ArrayRef<std::string> FuncNames) = 0;
323 
324   void printRelocatableStackSizes(std::function<void()> PrintHeader);
325   void printNonRelocatableStackSizes(std::function<void()> PrintHeader);
326 
327   /// Retrieves sections with corresponding relocation sections based on
328   /// IsMatch.
329   void getSectionAndRelocations(
330       std::function<bool(const Elf_Shdr &)> IsMatch,
331       llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> &SecToRelocMap);
332 
333   const object::ELFObjectFile<ELFT> &ObjF;
334   const ELFFile<ELFT> &Obj;
335   StringRef FileName;
336 
337   Expected<DynRegionInfo> createDRI(uint64_t Offset, uint64_t Size,
338                                     uint64_t EntSize) {
339     if (Offset + Size < Offset || Offset + Size > Obj.getBufSize())
340       return createError("offset (0x" + Twine::utohexstr(Offset) +
341                          ") + size (0x" + Twine::utohexstr(Size) +
342                          ") is greater than the file size (0x" +
343                          Twine::utohexstr(Obj.getBufSize()) + ")");
344     return DynRegionInfo(ObjF, *this, Obj.base() + Offset, Size, EntSize);
345   }
346 
347   void printAttributes(unsigned, std::unique_ptr<ELFAttributeParser>,
348                        support::endianness);
349   void printMipsReginfo();
350   void printMipsOptions();
351 
352   std::pair<const Elf_Phdr *, const Elf_Shdr *> findDynamic();
353   void loadDynamicTable();
354   void parseDynamicTable();
355 
356   Expected<StringRef> getSymbolVersion(const Elf_Sym &Sym,
357                                        bool &IsDefault) const;
358   Expected<SmallVector<Optional<VersionEntry>, 0> *> getVersionMap() const;
359 
360   DynRegionInfo DynRelRegion;
361   DynRegionInfo DynRelaRegion;
362   DynRegionInfo DynRelrRegion;
363   DynRegionInfo DynPLTRelRegion;
364   Optional<DynRegionInfo> DynSymRegion;
365   DynRegionInfo DynSymTabShndxRegion;
366   DynRegionInfo DynamicTable;
367   StringRef DynamicStringTable;
368   const Elf_Hash *HashTable = nullptr;
369   const Elf_GnuHash *GnuHashTable = nullptr;
370   const Elf_Shdr *DotSymtabSec = nullptr;
371   const Elf_Shdr *DotDynsymSec = nullptr;
372   const Elf_Shdr *DotAddrsigSec = nullptr;
373   DenseMap<const Elf_Shdr *, ArrayRef<Elf_Word>> ShndxTables;
374   Optional<uint64_t> SONameOffset;
375   Optional<DenseMap<uint64_t, std::vector<uint32_t>>> AddressToIndexMap;
376 
377   const Elf_Shdr *SymbolVersionSection = nullptr;   // .gnu.version
378   const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r
379   const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d
380 
381   std::string getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex,
382                                 DataRegion<Elf_Word> ShndxTable,
383                                 Optional<StringRef> StrTable,
384                                 bool IsDynamic) const;
385   Expected<unsigned>
386   getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
387                         DataRegion<Elf_Word> ShndxTable) const;
388   Expected<StringRef> getSymbolSectionName(const Elf_Sym &Symbol,
389                                            unsigned SectionIndex) const;
390   std::string getStaticSymbolName(uint32_t Index) const;
391   StringRef getDynamicString(uint64_t Value) const;
392 
393   void printSymbolsHelper(bool IsDynamic) const;
394   std::string getDynamicEntry(uint64_t Type, uint64_t Value) const;
395 
396   Expected<RelSymbol<ELFT>> getRelocationTarget(const Relocation<ELFT> &R,
397                                                 const Elf_Shdr *SymTab) const;
398 
399   ArrayRef<Elf_Word> getShndxTable(const Elf_Shdr *Symtab) const;
400 
401 private:
402   mutable SmallVector<Optional<VersionEntry>, 0> VersionMap;
403 };
404 
405 template <class ELFT>
406 std::string ELFDumper<ELFT>::describe(const Elf_Shdr &Sec) const {
407   return ::describe(Obj, Sec);
408 }
409 
410 namespace {
411 
412 template <class ELFT> struct SymtabLink {
413   typename ELFT::SymRange Symbols;
414   StringRef StringTable;
415   const typename ELFT::Shdr *SymTab;
416 };
417 
418 // Returns the linked symbol table, symbols and associated string table for a
419 // given section.
420 template <class ELFT>
421 Expected<SymtabLink<ELFT>> getLinkAsSymtab(const ELFFile<ELFT> &Obj,
422                                            const typename ELFT::Shdr &Sec,
423                                            unsigned ExpectedType) {
424   Expected<const typename ELFT::Shdr *> SymtabOrErr =
425       Obj.getSection(Sec.sh_link);
426   if (!SymtabOrErr)
427     return createError("invalid section linked to " + describe(Obj, Sec) +
428                        ": " + toString(SymtabOrErr.takeError()));
429 
430   if ((*SymtabOrErr)->sh_type != ExpectedType)
431     return createError(
432         "invalid section linked to " + describe(Obj, Sec) + ": expected " +
433         object::getELFSectionTypeName(Obj.getHeader().e_machine, ExpectedType) +
434         ", but got " +
435         object::getELFSectionTypeName(Obj.getHeader().e_machine,
436                                       (*SymtabOrErr)->sh_type));
437 
438   Expected<StringRef> StrTabOrErr = Obj.getLinkAsStrtab(**SymtabOrErr);
439   if (!StrTabOrErr)
440     return createError(
441         "can't get a string table for the symbol table linked to " +
442         describe(Obj, Sec) + ": " + toString(StrTabOrErr.takeError()));
443 
444   Expected<typename ELFT::SymRange> SymsOrErr = Obj.symbols(*SymtabOrErr);
445   if (!SymsOrErr)
446     return createError("unable to read symbols from the " + describe(Obj, Sec) +
447                        ": " + toString(SymsOrErr.takeError()));
448 
449   return SymtabLink<ELFT>{*SymsOrErr, *StrTabOrErr, *SymtabOrErr};
450 }
451 
452 } // namespace
453 
454 template <class ELFT>
455 Expected<ArrayRef<typename ELFT::Versym>>
456 ELFDumper<ELFT>::getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
457                                  StringRef *StrTab,
458                                  const Elf_Shdr **SymTabSec) const {
459   assert((!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec));
460   if (reinterpret_cast<uintptr_t>(Obj.base() + Sec.sh_offset) %
461           sizeof(uint16_t) !=
462       0)
463     return createError("the " + describe(Sec) + " is misaligned");
464 
465   Expected<ArrayRef<Elf_Versym>> VersionsOrErr =
466       Obj.template getSectionContentsAsArray<Elf_Versym>(Sec);
467   if (!VersionsOrErr)
468     return createError("cannot read content of " + describe(Sec) + ": " +
469                        toString(VersionsOrErr.takeError()));
470 
471   Expected<SymtabLink<ELFT>> SymTabOrErr =
472       getLinkAsSymtab(Obj, Sec, SHT_DYNSYM);
473   if (!SymTabOrErr) {
474     reportUniqueWarning(SymTabOrErr.takeError());
475     return *VersionsOrErr;
476   }
477 
478   if (SymTabOrErr->Symbols.size() != VersionsOrErr->size())
479     reportUniqueWarning(describe(Sec) + ": the number of entries (" +
480                         Twine(VersionsOrErr->size()) +
481                         ") does not match the number of symbols (" +
482                         Twine(SymTabOrErr->Symbols.size()) +
483                         ") in the symbol table with index " +
484                         Twine(Sec.sh_link));
485 
486   if (SymTab) {
487     *SymTab = SymTabOrErr->Symbols;
488     *StrTab = SymTabOrErr->StringTable;
489     *SymTabSec = SymTabOrErr->SymTab;
490   }
491   return *VersionsOrErr;
492 }
493 
494 template <class ELFT>
495 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const {
496   Optional<StringRef> StrTable;
497   size_t Entries = 0;
498   Elf_Sym_Range Syms(nullptr, nullptr);
499   const Elf_Shdr *SymtabSec = IsDynamic ? DotDynsymSec : DotSymtabSec;
500 
501   if (IsDynamic) {
502     StrTable = DynamicStringTable;
503     Syms = dynamic_symbols();
504     Entries = Syms.size();
505   } else if (DotSymtabSec) {
506     if (Expected<StringRef> StrTableOrErr =
507             Obj.getStringTableForSymtab(*DotSymtabSec))
508       StrTable = *StrTableOrErr;
509     else
510       reportUniqueWarning(
511           "unable to get the string table for the SHT_SYMTAB section: " +
512           toString(StrTableOrErr.takeError()));
513 
514     if (Expected<Elf_Sym_Range> SymsOrErr = Obj.symbols(DotSymtabSec))
515       Syms = *SymsOrErr;
516     else
517       reportUniqueWarning(
518           "unable to read symbols from the SHT_SYMTAB section: " +
519           toString(SymsOrErr.takeError()));
520     Entries = DotSymtabSec->getEntityCount();
521   }
522   if (Syms.empty())
523     return;
524 
525   // The st_other field has 2 logical parts. The first two bits hold the symbol
526   // visibility (STV_*) and the remainder hold other platform-specific values.
527   bool NonVisibilityBitsUsed =
528       llvm::any_of(Syms, [](const Elf_Sym &S) { return S.st_other & ~0x3; });
529 
530   DataRegion<Elf_Word> ShndxTable =
531       IsDynamic ? DataRegion<Elf_Word>(
532                       (const Elf_Word *)this->DynSymTabShndxRegion.Addr,
533                       this->getElfObject().getELFFile().end())
534                 : DataRegion<Elf_Word>(this->getShndxTable(SymtabSec));
535 
536   printSymtabMessage(SymtabSec, Entries, NonVisibilityBitsUsed);
537   for (const Elf_Sym &Sym : Syms)
538     printSymbol(Sym, &Sym - Syms.begin(), ShndxTable, StrTable, IsDynamic,
539                 NonVisibilityBitsUsed);
540 }
541 
542 template <typename ELFT> class GNUELFDumper : public ELFDumper<ELFT> {
543   formatted_raw_ostream &OS;
544 
545 public:
546   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
547 
548   GNUELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
549       : ELFDumper<ELFT>(ObjF, Writer),
550         OS(static_cast<formatted_raw_ostream &>(Writer.getOStream())) {
551     assert(&this->W.getOStream() == &llvm::fouts());
552   }
553 
554   void printFileSummary(StringRef FileStr, ObjectFile &Obj,
555                         ArrayRef<std::string> InputFilenames,
556                         const Archive *A) override;
557   void printFileHeaders() override;
558   void printGroupSections() override;
559   void printRelocations() override;
560   void printSectionHeaders() override;
561   void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
562   void printHashSymbols() override;
563   void printSectionDetails() override;
564   void printDependentLibs() override;
565   void printDynamicTable() override;
566   void printDynamicRelocations() override;
567   void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
568                           bool NonVisibilityBitsUsed) const override;
569   void printProgramHeaders(bool PrintProgramHeaders,
570                            cl::boolOrDefault PrintSectionMapping) override;
571   void printVersionSymbolSection(const Elf_Shdr *Sec) override;
572   void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
573   void printVersionDependencySection(const Elf_Shdr *Sec) override;
574   void printHashHistograms() override;
575   void printCGProfile() override;
576   void printBBAddrMaps() override;
577   void printAddrsig() override;
578   void printNotes() override;
579   void printELFLinkerOptions() override;
580   void printStackSizes() override;
581 
582 private:
583   void printHashHistogram(const Elf_Hash &HashTable);
584   void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable);
585   void printHashTableSymbols(const Elf_Hash &HashTable);
586   void printGnuHashTableSymbols(const Elf_GnuHash &GnuHashTable);
587 
588   struct Field {
589     std::string Str;
590     unsigned Column;
591 
592     Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {}
593     Field(unsigned Col) : Column(Col) {}
594   };
595 
596   template <typename T, typename TEnum>
597   std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues,
598                          TEnum EnumMask1 = {}, TEnum EnumMask2 = {},
599                          TEnum EnumMask3 = {}) const {
600     std::string Str;
601     for (const EnumEntry<TEnum> &Flag : EnumValues) {
602       if (Flag.Value == 0)
603         continue;
604 
605       TEnum EnumMask{};
606       if (Flag.Value & EnumMask1)
607         EnumMask = EnumMask1;
608       else if (Flag.Value & EnumMask2)
609         EnumMask = EnumMask2;
610       else if (Flag.Value & EnumMask3)
611         EnumMask = EnumMask3;
612       bool IsEnum = (Flag.Value & EnumMask) != 0;
613       if ((!IsEnum && (Value & Flag.Value) == Flag.Value) ||
614           (IsEnum && (Value & EnumMask) == Flag.Value)) {
615         if (!Str.empty())
616           Str += ", ";
617         Str += Flag.AltName;
618       }
619     }
620     return Str;
621   }
622 
623   formatted_raw_ostream &printField(struct Field F) const {
624     if (F.Column != 0)
625       OS.PadToColumn(F.Column);
626     OS << F.Str;
627     OS.flush();
628     return OS;
629   }
630   void printHashedSymbol(const Elf_Sym *Sym, unsigned SymIndex,
631                          DataRegion<Elf_Word> ShndxTable, StringRef StrTable,
632                          uint32_t Bucket);
633   void printRelrReloc(const Elf_Relr &R) override;
634   void printRelRelaReloc(const Relocation<ELFT> &R,
635                          const RelSymbol<ELFT> &RelSym) override;
636   void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
637                    DataRegion<Elf_Word> ShndxTable,
638                    Optional<StringRef> StrTable, bool IsDynamic,
639                    bool NonVisibilityBitsUsed) const override;
640   void printDynamicRelocHeader(unsigned Type, StringRef Name,
641                                const DynRegionInfo &Reg) override;
642 
643   std::string getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex,
644                                   DataRegion<Elf_Word> ShndxTable) const;
645   void printProgramHeaders() override;
646   void printSectionMapping() override;
647   void printGNUVersionSectionProlog(const typename ELFT::Shdr &Sec,
648                                     const Twine &Label, unsigned EntriesNum);
649 
650   void printStackSizeEntry(uint64_t Size,
651                            ArrayRef<std::string> FuncNames) override;
652 
653   void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
654   void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
655   void printMipsABIFlags() override;
656 };
657 
658 template <typename ELFT> class LLVMELFDumper : public ELFDumper<ELFT> {
659 public:
660   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
661 
662   LLVMELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
663       : ELFDumper<ELFT>(ObjF, Writer), W(Writer) {}
664 
665   void printFileHeaders() override;
666   void printGroupSections() override;
667   void printRelocations() override;
668   void printSectionHeaders() override;
669   void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
670   void printDependentLibs() override;
671   void printDynamicTable() override;
672   void printDynamicRelocations() override;
673   void printProgramHeaders(bool PrintProgramHeaders,
674                            cl::boolOrDefault PrintSectionMapping) override;
675   void printVersionSymbolSection(const Elf_Shdr *Sec) override;
676   void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
677   void printVersionDependencySection(const Elf_Shdr *Sec) override;
678   void printHashHistograms() override;
679   void printCGProfile() override;
680   void printBBAddrMaps() override;
681   void printAddrsig() override;
682   void printNotes() override;
683   void printELFLinkerOptions() override;
684   void printStackSizes() override;
685 
686 private:
687   void printRelrReloc(const Elf_Relr &R) override;
688   void printRelRelaReloc(const Relocation<ELFT> &R,
689                          const RelSymbol<ELFT> &RelSym) override;
690 
691   void printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex,
692                           DataRegion<Elf_Word> ShndxTable) const;
693   void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
694                    DataRegion<Elf_Word> ShndxTable,
695                    Optional<StringRef> StrTable, bool IsDynamic,
696                    bool /*NonVisibilityBitsUsed*/) const override;
697   void printProgramHeaders() override;
698   void printSectionMapping() override {}
699   void printStackSizeEntry(uint64_t Size,
700                            ArrayRef<std::string> FuncNames) override;
701 
702   void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
703   void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
704   void printMipsABIFlags() override;
705 
706 protected:
707   ScopedPrinter &W;
708 };
709 
710 // JSONELFDumper shares most of the same implementation as LLVMELFDumper except
711 // it uses a JSONScopedPrinter.
712 template <typename ELFT> class JSONELFDumper : public LLVMELFDumper<ELFT> {
713 public:
714   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
715 
716   JSONELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
717       : LLVMELFDumper<ELFT>(ObjF, Writer) {}
718 
719   void printFileSummary(StringRef FileStr, ObjectFile &Obj,
720                         ArrayRef<std::string> InputFilenames,
721                         const Archive *A) override;
722 
723 private:
724   std::unique_ptr<DictScope> FileScope;
725 };
726 
727 } // end anonymous namespace
728 
729 namespace llvm {
730 
731 template <class ELFT>
732 static std::unique_ptr<ObjDumper>
733 createELFDumper(const ELFObjectFile<ELFT> &Obj, ScopedPrinter &Writer) {
734   if (opts::Output == opts::GNU)
735     return std::make_unique<GNUELFDumper<ELFT>>(Obj, Writer);
736   else if (opts::Output == opts::JSON)
737     return std::make_unique<JSONELFDumper<ELFT>>(Obj, Writer);
738   return std::make_unique<LLVMELFDumper<ELFT>>(Obj, Writer);
739 }
740 
741 std::unique_ptr<ObjDumper> createELFDumper(const object::ELFObjectFileBase &Obj,
742                                            ScopedPrinter &Writer) {
743   // Little-endian 32-bit
744   if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(&Obj))
745     return createELFDumper(*ELFObj, Writer);
746 
747   // Big-endian 32-bit
748   if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(&Obj))
749     return createELFDumper(*ELFObj, Writer);
750 
751   // Little-endian 64-bit
752   if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(&Obj))
753     return createELFDumper(*ELFObj, Writer);
754 
755   // Big-endian 64-bit
756   return createELFDumper(*cast<ELF64BEObjectFile>(&Obj), Writer);
757 }
758 
759 } // end namespace llvm
760 
761 template <class ELFT>
762 Expected<SmallVector<Optional<VersionEntry>, 0> *>
763 ELFDumper<ELFT>::getVersionMap() const {
764   // If the VersionMap has already been loaded or if there is no dynamic symtab
765   // or version table, there is nothing to do.
766   if (!VersionMap.empty() || !DynSymRegion || !SymbolVersionSection)
767     return &VersionMap;
768 
769   Expected<SmallVector<Optional<VersionEntry>, 0>> MapOrErr =
770       Obj.loadVersionMap(SymbolVersionNeedSection, SymbolVersionDefSection);
771   if (MapOrErr)
772     VersionMap = *MapOrErr;
773   else
774     return MapOrErr.takeError();
775 
776   return &VersionMap;
777 }
778 
779 template <typename ELFT>
780 Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym &Sym,
781                                                       bool &IsDefault) const {
782   // This is a dynamic symbol. Look in the GNU symbol version table.
783   if (!SymbolVersionSection) {
784     // No version table.
785     IsDefault = false;
786     return "";
787   }
788 
789   assert(DynSymRegion && "DynSymRegion has not been initialised");
790   // Determine the position in the symbol table of this entry.
791   size_t EntryIndex = (reinterpret_cast<uintptr_t>(&Sym) -
792                        reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) /
793                       sizeof(Elf_Sym);
794 
795   // Get the corresponding version index entry.
796   Expected<const Elf_Versym *> EntryOrErr =
797       Obj.template getEntry<Elf_Versym>(*SymbolVersionSection, EntryIndex);
798   if (!EntryOrErr)
799     return EntryOrErr.takeError();
800 
801   unsigned Version = (*EntryOrErr)->vs_index;
802   if (Version == VER_NDX_LOCAL || Version == VER_NDX_GLOBAL) {
803     IsDefault = false;
804     return "";
805   }
806 
807   Expected<SmallVector<Optional<VersionEntry>, 0> *> MapOrErr =
808       getVersionMap();
809   if (!MapOrErr)
810     return MapOrErr.takeError();
811 
812   return Obj.getSymbolVersionByIndex(Version, IsDefault, **MapOrErr,
813                                      Sym.st_shndx == ELF::SHN_UNDEF);
814 }
815 
816 template <typename ELFT>
817 Expected<RelSymbol<ELFT>>
818 ELFDumper<ELFT>::getRelocationTarget(const Relocation<ELFT> &R,
819                                      const Elf_Shdr *SymTab) const {
820   if (R.Symbol == 0)
821     return RelSymbol<ELFT>(nullptr, "");
822 
823   Expected<const Elf_Sym *> SymOrErr =
824       Obj.template getEntry<Elf_Sym>(*SymTab, R.Symbol);
825   if (!SymOrErr)
826     return createError("unable to read an entry with index " + Twine(R.Symbol) +
827                        " from " + describe(*SymTab) + ": " +
828                        toString(SymOrErr.takeError()));
829   const Elf_Sym *Sym = *SymOrErr;
830   if (!Sym)
831     return RelSymbol<ELFT>(nullptr, "");
832 
833   Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(*SymTab);
834   if (!StrTableOrErr)
835     return StrTableOrErr.takeError();
836 
837   const Elf_Sym *FirstSym =
838       cantFail(Obj.template getEntry<Elf_Sym>(*SymTab, 0));
839   std::string SymbolName =
840       getFullSymbolName(*Sym, Sym - FirstSym, getShndxTable(SymTab),
841                         *StrTableOrErr, SymTab->sh_type == SHT_DYNSYM);
842   return RelSymbol<ELFT>(Sym, SymbolName);
843 }
844 
845 template <typename ELFT>
846 ArrayRef<typename ELFT::Word>
847 ELFDumper<ELFT>::getShndxTable(const Elf_Shdr *Symtab) const {
848   if (Symtab) {
849     auto It = ShndxTables.find(Symtab);
850     if (It != ShndxTables.end())
851       return It->second;
852   }
853   return {};
854 }
855 
856 static std::string maybeDemangle(StringRef Name) {
857   return opts::Demangle ? demangle(std::string(Name)) : Name.str();
858 }
859 
860 template <typename ELFT>
861 std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const {
862   auto Warn = [&](Error E) -> std::string {
863     reportUniqueWarning("unable to read the name of symbol with index " +
864                         Twine(Index) + ": " + toString(std::move(E)));
865     return "<?>";
866   };
867 
868   Expected<const typename ELFT::Sym *> SymOrErr =
869       Obj.getSymbol(DotSymtabSec, Index);
870   if (!SymOrErr)
871     return Warn(SymOrErr.takeError());
872 
873   Expected<StringRef> StrTabOrErr = Obj.getStringTableForSymtab(*DotSymtabSec);
874   if (!StrTabOrErr)
875     return Warn(StrTabOrErr.takeError());
876 
877   Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr);
878   if (!NameOrErr)
879     return Warn(NameOrErr.takeError());
880   return maybeDemangle(*NameOrErr);
881 }
882 
883 template <typename ELFT>
884 std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym &Symbol,
885                                                unsigned SymIndex,
886                                                DataRegion<Elf_Word> ShndxTable,
887                                                Optional<StringRef> StrTable,
888                                                bool IsDynamic) const {
889   if (!StrTable)
890     return "<?>";
891 
892   std::string SymbolName;
893   if (Expected<StringRef> NameOrErr = Symbol.getName(*StrTable)) {
894     SymbolName = maybeDemangle(*NameOrErr);
895   } else {
896     reportUniqueWarning(NameOrErr.takeError());
897     return "<?>";
898   }
899 
900   if (SymbolName.empty() && Symbol.getType() == ELF::STT_SECTION) {
901     Expected<unsigned> SectionIndex =
902         getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
903     if (!SectionIndex) {
904       reportUniqueWarning(SectionIndex.takeError());
905       return "<?>";
906     }
907     Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex);
908     if (!NameOrErr) {
909       reportUniqueWarning(NameOrErr.takeError());
910       return ("<section " + Twine(*SectionIndex) + ">").str();
911     }
912     return std::string(*NameOrErr);
913   }
914 
915   if (!IsDynamic)
916     return SymbolName;
917 
918   bool IsDefault;
919   Expected<StringRef> VersionOrErr = getSymbolVersion(Symbol, IsDefault);
920   if (!VersionOrErr) {
921     reportUniqueWarning(VersionOrErr.takeError());
922     return SymbolName + "@<corrupt>";
923   }
924 
925   if (!VersionOrErr->empty()) {
926     SymbolName += (IsDefault ? "@@" : "@");
927     SymbolName += *VersionOrErr;
928   }
929   return SymbolName;
930 }
931 
932 template <typename ELFT>
933 Expected<unsigned>
934 ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
935                                        DataRegion<Elf_Word> ShndxTable) const {
936   unsigned Ndx = Symbol.st_shndx;
937   if (Ndx == SHN_XINDEX)
938     return object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex,
939                                                      ShndxTable);
940   if (Ndx != SHN_UNDEF && Ndx < SHN_LORESERVE)
941     return Ndx;
942 
943   auto CreateErr = [&](const Twine &Name, Optional<unsigned> Offset = None) {
944     std::string Desc;
945     if (Offset)
946       Desc = (Name + "+0x" + Twine::utohexstr(*Offset)).str();
947     else
948       Desc = Name.str();
949     return createError(
950         "unable to get section index for symbol with st_shndx = 0x" +
951         Twine::utohexstr(Ndx) + " (" + Desc + ")");
952   };
953 
954   if (Ndx >= ELF::SHN_LOPROC && Ndx <= ELF::SHN_HIPROC)
955     return CreateErr("SHN_LOPROC", Ndx - ELF::SHN_LOPROC);
956   if (Ndx >= ELF::SHN_LOOS && Ndx <= ELF::SHN_HIOS)
957     return CreateErr("SHN_LOOS", Ndx - ELF::SHN_LOOS);
958   if (Ndx == ELF::SHN_UNDEF)
959     return CreateErr("SHN_UNDEF");
960   if (Ndx == ELF::SHN_ABS)
961     return CreateErr("SHN_ABS");
962   if (Ndx == ELF::SHN_COMMON)
963     return CreateErr("SHN_COMMON");
964   return CreateErr("SHN_LORESERVE", Ndx - SHN_LORESERVE);
965 }
966 
967 template <typename ELFT>
968 Expected<StringRef>
969 ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym &Symbol,
970                                       unsigned SectionIndex) const {
971   Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(SectionIndex);
972   if (!SecOrErr)
973     return SecOrErr.takeError();
974   return Obj.getSectionName(**SecOrErr);
975 }
976 
977 template <class ELFO>
978 static const typename ELFO::Elf_Shdr *
979 findNotEmptySectionByAddress(const ELFO &Obj, StringRef FileName,
980                              uint64_t Addr) {
981   for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections()))
982     if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
983       return &Shdr;
984   return nullptr;
985 }
986 
987 const EnumEntry<unsigned> ElfClass[] = {
988   {"None",   "none",   ELF::ELFCLASSNONE},
989   {"32-bit", "ELF32",  ELF::ELFCLASS32},
990   {"64-bit", "ELF64",  ELF::ELFCLASS64},
991 };
992 
993 const EnumEntry<unsigned> ElfDataEncoding[] = {
994   {"None",         "none",                          ELF::ELFDATANONE},
995   {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
996   {"BigEndian",    "2's complement, big endian",    ELF::ELFDATA2MSB},
997 };
998 
999 const EnumEntry<unsigned> ElfObjectFileType[] = {
1000   {"None",         "NONE (none)",              ELF::ET_NONE},
1001   {"Relocatable",  "REL (Relocatable file)",   ELF::ET_REL},
1002   {"Executable",   "EXEC (Executable file)",   ELF::ET_EXEC},
1003   {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
1004   {"Core",         "CORE (Core file)",         ELF::ET_CORE},
1005 };
1006 
1007 const EnumEntry<unsigned> ElfOSABI[] = {
1008   {"SystemV",      "UNIX - System V",      ELF::ELFOSABI_NONE},
1009   {"HPUX",         "UNIX - HP-UX",         ELF::ELFOSABI_HPUX},
1010   {"NetBSD",       "UNIX - NetBSD",        ELF::ELFOSABI_NETBSD},
1011   {"GNU/Linux",    "UNIX - GNU",           ELF::ELFOSABI_LINUX},
1012   {"GNU/Hurd",     "GNU/Hurd",             ELF::ELFOSABI_HURD},
1013   {"Solaris",      "UNIX - Solaris",       ELF::ELFOSABI_SOLARIS},
1014   {"AIX",          "UNIX - AIX",           ELF::ELFOSABI_AIX},
1015   {"IRIX",         "UNIX - IRIX",          ELF::ELFOSABI_IRIX},
1016   {"FreeBSD",      "UNIX - FreeBSD",       ELF::ELFOSABI_FREEBSD},
1017   {"TRU64",        "UNIX - TRU64",         ELF::ELFOSABI_TRU64},
1018   {"Modesto",      "Novell - Modesto",     ELF::ELFOSABI_MODESTO},
1019   {"OpenBSD",      "UNIX - OpenBSD",       ELF::ELFOSABI_OPENBSD},
1020   {"OpenVMS",      "VMS - OpenVMS",        ELF::ELFOSABI_OPENVMS},
1021   {"NSK",          "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
1022   {"AROS",         "AROS",                 ELF::ELFOSABI_AROS},
1023   {"FenixOS",      "FenixOS",              ELF::ELFOSABI_FENIXOS},
1024   {"CloudABI",     "CloudABI",             ELF::ELFOSABI_CLOUDABI},
1025   {"Standalone",   "Standalone App",       ELF::ELFOSABI_STANDALONE}
1026 };
1027 
1028 const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
1029   {"AMDGPU_HSA",    "AMDGPU - HSA",    ELF::ELFOSABI_AMDGPU_HSA},
1030   {"AMDGPU_PAL",    "AMDGPU - PAL",    ELF::ELFOSABI_AMDGPU_PAL},
1031   {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
1032 };
1033 
1034 const EnumEntry<unsigned> ARMElfOSABI[] = {
1035   {"ARM", "ARM", ELF::ELFOSABI_ARM}
1036 };
1037 
1038 const EnumEntry<unsigned> C6000ElfOSABI[] = {
1039   {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
1040   {"C6000_LINUX",  "Linux C6000",      ELF::ELFOSABI_C6000_LINUX}
1041 };
1042 
1043 const EnumEntry<unsigned> ElfMachineType[] = {
1044   ENUM_ENT(EM_NONE,          "None"),
1045   ENUM_ENT(EM_M32,           "WE32100"),
1046   ENUM_ENT(EM_SPARC,         "Sparc"),
1047   ENUM_ENT(EM_386,           "Intel 80386"),
1048   ENUM_ENT(EM_68K,           "MC68000"),
1049   ENUM_ENT(EM_88K,           "MC88000"),
1050   ENUM_ENT(EM_IAMCU,         "EM_IAMCU"),
1051   ENUM_ENT(EM_860,           "Intel 80860"),
1052   ENUM_ENT(EM_MIPS,          "MIPS R3000"),
1053   ENUM_ENT(EM_S370,          "IBM System/370"),
1054   ENUM_ENT(EM_MIPS_RS3_LE,   "MIPS R3000 little-endian"),
1055   ENUM_ENT(EM_PARISC,        "HPPA"),
1056   ENUM_ENT(EM_VPP500,        "Fujitsu VPP500"),
1057   ENUM_ENT(EM_SPARC32PLUS,   "Sparc v8+"),
1058   ENUM_ENT(EM_960,           "Intel 80960"),
1059   ENUM_ENT(EM_PPC,           "PowerPC"),
1060   ENUM_ENT(EM_PPC64,         "PowerPC64"),
1061   ENUM_ENT(EM_S390,          "IBM S/390"),
1062   ENUM_ENT(EM_SPU,           "SPU"),
1063   ENUM_ENT(EM_V800,          "NEC V800 series"),
1064   ENUM_ENT(EM_FR20,          "Fujistsu FR20"),
1065   ENUM_ENT(EM_RH32,          "TRW RH-32"),
1066   ENUM_ENT(EM_RCE,           "Motorola RCE"),
1067   ENUM_ENT(EM_ARM,           "ARM"),
1068   ENUM_ENT(EM_ALPHA,         "EM_ALPHA"),
1069   ENUM_ENT(EM_SH,            "Hitachi SH"),
1070   ENUM_ENT(EM_SPARCV9,       "Sparc v9"),
1071   ENUM_ENT(EM_TRICORE,       "Siemens Tricore"),
1072   ENUM_ENT(EM_ARC,           "ARC"),
1073   ENUM_ENT(EM_H8_300,        "Hitachi H8/300"),
1074   ENUM_ENT(EM_H8_300H,       "Hitachi H8/300H"),
1075   ENUM_ENT(EM_H8S,           "Hitachi H8S"),
1076   ENUM_ENT(EM_H8_500,        "Hitachi H8/500"),
1077   ENUM_ENT(EM_IA_64,         "Intel IA-64"),
1078   ENUM_ENT(EM_MIPS_X,        "Stanford MIPS-X"),
1079   ENUM_ENT(EM_COLDFIRE,      "Motorola Coldfire"),
1080   ENUM_ENT(EM_68HC12,        "Motorola MC68HC12 Microcontroller"),
1081   ENUM_ENT(EM_MMA,           "Fujitsu Multimedia Accelerator"),
1082   ENUM_ENT(EM_PCP,           "Siemens PCP"),
1083   ENUM_ENT(EM_NCPU,          "Sony nCPU embedded RISC processor"),
1084   ENUM_ENT(EM_NDR1,          "Denso NDR1 microprocesspr"),
1085   ENUM_ENT(EM_STARCORE,      "Motorola Star*Core processor"),
1086   ENUM_ENT(EM_ME16,          "Toyota ME16 processor"),
1087   ENUM_ENT(EM_ST100,         "STMicroelectronics ST100 processor"),
1088   ENUM_ENT(EM_TINYJ,         "Advanced Logic Corp. TinyJ embedded processor"),
1089   ENUM_ENT(EM_X86_64,        "Advanced Micro Devices X86-64"),
1090   ENUM_ENT(EM_PDSP,          "Sony DSP processor"),
1091   ENUM_ENT(EM_PDP10,         "Digital Equipment Corp. PDP-10"),
1092   ENUM_ENT(EM_PDP11,         "Digital Equipment Corp. PDP-11"),
1093   ENUM_ENT(EM_FX66,          "Siemens FX66 microcontroller"),
1094   ENUM_ENT(EM_ST9PLUS,       "STMicroelectronics ST9+ 8/16 bit microcontroller"),
1095   ENUM_ENT(EM_ST7,           "STMicroelectronics ST7 8-bit microcontroller"),
1096   ENUM_ENT(EM_68HC16,        "Motorola MC68HC16 Microcontroller"),
1097   ENUM_ENT(EM_68HC11,        "Motorola MC68HC11 Microcontroller"),
1098   ENUM_ENT(EM_68HC08,        "Motorola MC68HC08 Microcontroller"),
1099   ENUM_ENT(EM_68HC05,        "Motorola MC68HC05 Microcontroller"),
1100   ENUM_ENT(EM_SVX,           "Silicon Graphics SVx"),
1101   ENUM_ENT(EM_ST19,          "STMicroelectronics ST19 8-bit microcontroller"),
1102   ENUM_ENT(EM_VAX,           "Digital VAX"),
1103   ENUM_ENT(EM_CRIS,          "Axis Communications 32-bit embedded processor"),
1104   ENUM_ENT(EM_JAVELIN,       "Infineon Technologies 32-bit embedded cpu"),
1105   ENUM_ENT(EM_FIREPATH,      "Element 14 64-bit DSP processor"),
1106   ENUM_ENT(EM_ZSP,           "LSI Logic's 16-bit DSP processor"),
1107   ENUM_ENT(EM_MMIX,          "Donald Knuth's educational 64-bit processor"),
1108   ENUM_ENT(EM_HUANY,         "Harvard Universitys's machine-independent object format"),
1109   ENUM_ENT(EM_PRISM,         "Vitesse Prism"),
1110   ENUM_ENT(EM_AVR,           "Atmel AVR 8-bit microcontroller"),
1111   ENUM_ENT(EM_FR30,          "Fujitsu FR30"),
1112   ENUM_ENT(EM_D10V,          "Mitsubishi D10V"),
1113   ENUM_ENT(EM_D30V,          "Mitsubishi D30V"),
1114   ENUM_ENT(EM_V850,          "NEC v850"),
1115   ENUM_ENT(EM_M32R,          "Renesas M32R (formerly Mitsubishi M32r)"),
1116   ENUM_ENT(EM_MN10300,       "Matsushita MN10300"),
1117   ENUM_ENT(EM_MN10200,       "Matsushita MN10200"),
1118   ENUM_ENT(EM_PJ,            "picoJava"),
1119   ENUM_ENT(EM_OPENRISC,      "OpenRISC 32-bit embedded processor"),
1120   ENUM_ENT(EM_ARC_COMPACT,   "EM_ARC_COMPACT"),
1121   ENUM_ENT(EM_XTENSA,        "Tensilica Xtensa Processor"),
1122   ENUM_ENT(EM_VIDEOCORE,     "Alphamosaic VideoCore processor"),
1123   ENUM_ENT(EM_TMM_GPP,       "Thompson Multimedia General Purpose Processor"),
1124   ENUM_ENT(EM_NS32K,         "National Semiconductor 32000 series"),
1125   ENUM_ENT(EM_TPC,           "Tenor Network TPC processor"),
1126   ENUM_ENT(EM_SNP1K,         "EM_SNP1K"),
1127   ENUM_ENT(EM_ST200,         "STMicroelectronics ST200 microcontroller"),
1128   ENUM_ENT(EM_IP2K,          "Ubicom IP2xxx 8-bit microcontrollers"),
1129   ENUM_ENT(EM_MAX,           "MAX Processor"),
1130   ENUM_ENT(EM_CR,            "National Semiconductor CompactRISC"),
1131   ENUM_ENT(EM_F2MC16,        "Fujitsu F2MC16"),
1132   ENUM_ENT(EM_MSP430,        "Texas Instruments msp430 microcontroller"),
1133   ENUM_ENT(EM_BLACKFIN,      "Analog Devices Blackfin"),
1134   ENUM_ENT(EM_SE_C33,        "S1C33 Family of Seiko Epson processors"),
1135   ENUM_ENT(EM_SEP,           "Sharp embedded microprocessor"),
1136   ENUM_ENT(EM_ARCA,          "Arca RISC microprocessor"),
1137   ENUM_ENT(EM_UNICORE,       "Unicore"),
1138   ENUM_ENT(EM_EXCESS,        "eXcess 16/32/64-bit configurable embedded CPU"),
1139   ENUM_ENT(EM_DXP,           "Icera Semiconductor Inc. Deep Execution Processor"),
1140   ENUM_ENT(EM_ALTERA_NIOS2,  "Altera Nios"),
1141   ENUM_ENT(EM_CRX,           "National Semiconductor CRX microprocessor"),
1142   ENUM_ENT(EM_XGATE,         "Motorola XGATE embedded processor"),
1143   ENUM_ENT(EM_C166,          "Infineon Technologies xc16x"),
1144   ENUM_ENT(EM_M16C,          "Renesas M16C"),
1145   ENUM_ENT(EM_DSPIC30F,      "Microchip Technology dsPIC30F Digital Signal Controller"),
1146   ENUM_ENT(EM_CE,            "Freescale Communication Engine RISC core"),
1147   ENUM_ENT(EM_M32C,          "Renesas M32C"),
1148   ENUM_ENT(EM_TSK3000,       "Altium TSK3000 core"),
1149   ENUM_ENT(EM_RS08,          "Freescale RS08 embedded processor"),
1150   ENUM_ENT(EM_SHARC,         "EM_SHARC"),
1151   ENUM_ENT(EM_ECOG2,         "Cyan Technology eCOG2 microprocessor"),
1152   ENUM_ENT(EM_SCORE7,        "SUNPLUS S+Core"),
1153   ENUM_ENT(EM_DSP24,         "New Japan Radio (NJR) 24-bit DSP Processor"),
1154   ENUM_ENT(EM_VIDEOCORE3,    "Broadcom VideoCore III processor"),
1155   ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"),
1156   ENUM_ENT(EM_SE_C17,        "Seiko Epson C17 family"),
1157   ENUM_ENT(EM_TI_C6000,      "Texas Instruments TMS320C6000 DSP family"),
1158   ENUM_ENT(EM_TI_C2000,      "Texas Instruments TMS320C2000 DSP family"),
1159   ENUM_ENT(EM_TI_C5500,      "Texas Instruments TMS320C55x DSP family"),
1160   ENUM_ENT(EM_MMDSP_PLUS,    "STMicroelectronics 64bit VLIW Data Signal Processor"),
1161   ENUM_ENT(EM_CYPRESS_M8C,   "Cypress M8C microprocessor"),
1162   ENUM_ENT(EM_R32C,          "Renesas R32C series microprocessors"),
1163   ENUM_ENT(EM_TRIMEDIA,      "NXP Semiconductors TriMedia architecture family"),
1164   ENUM_ENT(EM_HEXAGON,       "Qualcomm Hexagon"),
1165   ENUM_ENT(EM_8051,          "Intel 8051 and variants"),
1166   ENUM_ENT(EM_STXP7X,        "STMicroelectronics STxP7x family"),
1167   ENUM_ENT(EM_NDS32,         "Andes Technology compact code size embedded RISC processor family"),
1168   ENUM_ENT(EM_ECOG1,         "Cyan Technology eCOG1 microprocessor"),
1169   // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has
1170   //        an identical number to EM_ECOG1.
1171   ENUM_ENT(EM_ECOG1X,        "Cyan Technology eCOG1X family"),
1172   ENUM_ENT(EM_MAXQ30,        "Dallas Semiconductor MAXQ30 Core microcontrollers"),
1173   ENUM_ENT(EM_XIMO16,        "New Japan Radio (NJR) 16-bit DSP Processor"),
1174   ENUM_ENT(EM_MANIK,         "M2000 Reconfigurable RISC Microprocessor"),
1175   ENUM_ENT(EM_CRAYNV2,       "Cray Inc. NV2 vector architecture"),
1176   ENUM_ENT(EM_RX,            "Renesas RX"),
1177   ENUM_ENT(EM_METAG,         "Imagination Technologies Meta processor architecture"),
1178   ENUM_ENT(EM_MCST_ELBRUS,   "MCST Elbrus general purpose hardware architecture"),
1179   ENUM_ENT(EM_ECOG16,        "Cyan Technology eCOG16 family"),
1180   ENUM_ENT(EM_CR16,          "National Semiconductor CompactRISC 16-bit processor"),
1181   ENUM_ENT(EM_ETPU,          "Freescale Extended Time Processing Unit"),
1182   ENUM_ENT(EM_SLE9X,         "Infineon Technologies SLE9X core"),
1183   ENUM_ENT(EM_L10M,          "EM_L10M"),
1184   ENUM_ENT(EM_K10M,          "EM_K10M"),
1185   ENUM_ENT(EM_AARCH64,       "AArch64"),
1186   ENUM_ENT(EM_AVR32,         "Atmel Corporation 32-bit microprocessor family"),
1187   ENUM_ENT(EM_STM8,          "STMicroeletronics STM8 8-bit microcontroller"),
1188   ENUM_ENT(EM_TILE64,        "Tilera TILE64 multicore architecture family"),
1189   ENUM_ENT(EM_TILEPRO,       "Tilera TILEPro multicore architecture family"),
1190   ENUM_ENT(EM_MICROBLAZE,    "Xilinx MicroBlaze 32-bit RISC soft processor core"),
1191   ENUM_ENT(EM_CUDA,          "NVIDIA CUDA architecture"),
1192   ENUM_ENT(EM_TILEGX,        "Tilera TILE-Gx multicore architecture family"),
1193   ENUM_ENT(EM_CLOUDSHIELD,   "EM_CLOUDSHIELD"),
1194   ENUM_ENT(EM_COREA_1ST,     "EM_COREA_1ST"),
1195   ENUM_ENT(EM_COREA_2ND,     "EM_COREA_2ND"),
1196   ENUM_ENT(EM_ARC_COMPACT2,  "EM_ARC_COMPACT2"),
1197   ENUM_ENT(EM_OPEN8,         "EM_OPEN8"),
1198   ENUM_ENT(EM_RL78,          "Renesas RL78"),
1199   ENUM_ENT(EM_VIDEOCORE5,    "Broadcom VideoCore V processor"),
1200   ENUM_ENT(EM_78KOR,         "EM_78KOR"),
1201   ENUM_ENT(EM_56800EX,       "EM_56800EX"),
1202   ENUM_ENT(EM_AMDGPU,        "EM_AMDGPU"),
1203   ENUM_ENT(EM_RISCV,         "RISC-V"),
1204   ENUM_ENT(EM_LANAI,         "EM_LANAI"),
1205   ENUM_ENT(EM_BPF,           "EM_BPF"),
1206   ENUM_ENT(EM_VE,            "NEC SX-Aurora Vector Engine"),
1207   ENUM_ENT(EM_LOONGARCH,     "LoongArch"),
1208 };
1209 
1210 const EnumEntry<unsigned> ElfSymbolBindings[] = {
1211     {"Local",  "LOCAL",  ELF::STB_LOCAL},
1212     {"Global", "GLOBAL", ELF::STB_GLOBAL},
1213     {"Weak",   "WEAK",   ELF::STB_WEAK},
1214     {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
1215 
1216 const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
1217     {"DEFAULT",   "DEFAULT",   ELF::STV_DEFAULT},
1218     {"INTERNAL",  "INTERNAL",  ELF::STV_INTERNAL},
1219     {"HIDDEN",    "HIDDEN",    ELF::STV_HIDDEN},
1220     {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
1221 
1222 const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
1223   { "AMDGPU_HSA_KERNEL",            ELF::STT_AMDGPU_HSA_KERNEL }
1224 };
1225 
1226 static const char *getGroupType(uint32_t Flag) {
1227   if (Flag & ELF::GRP_COMDAT)
1228     return "COMDAT";
1229   else
1230     return "(unknown)";
1231 }
1232 
1233 const EnumEntry<unsigned> ElfSectionFlags[] = {
1234   ENUM_ENT(SHF_WRITE,            "W"),
1235   ENUM_ENT(SHF_ALLOC,            "A"),
1236   ENUM_ENT(SHF_EXECINSTR,        "X"),
1237   ENUM_ENT(SHF_MERGE,            "M"),
1238   ENUM_ENT(SHF_STRINGS,          "S"),
1239   ENUM_ENT(SHF_INFO_LINK,        "I"),
1240   ENUM_ENT(SHF_LINK_ORDER,       "L"),
1241   ENUM_ENT(SHF_OS_NONCONFORMING, "O"),
1242   ENUM_ENT(SHF_GROUP,            "G"),
1243   ENUM_ENT(SHF_TLS,              "T"),
1244   ENUM_ENT(SHF_COMPRESSED,       "C"),
1245   ENUM_ENT(SHF_EXCLUDE,          "E"),
1246 };
1247 
1248 const EnumEntry<unsigned> ElfGNUSectionFlags[] = {
1249   ENUM_ENT(SHF_GNU_RETAIN, "R")
1250 };
1251 
1252 const EnumEntry<unsigned> ElfSolarisSectionFlags[] = {
1253   ENUM_ENT(SHF_SUNW_NODISCARD, "R")
1254 };
1255 
1256 const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
1257   ENUM_ENT(XCORE_SHF_CP_SECTION, ""),
1258   ENUM_ENT(XCORE_SHF_DP_SECTION, "")
1259 };
1260 
1261 const EnumEntry<unsigned> ElfARMSectionFlags[] = {
1262   ENUM_ENT(SHF_ARM_PURECODE, "y")
1263 };
1264 
1265 const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
1266   ENUM_ENT(SHF_HEX_GPREL, "")
1267 };
1268 
1269 const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
1270   ENUM_ENT(SHF_MIPS_NODUPES, ""),
1271   ENUM_ENT(SHF_MIPS_NAMES,   ""),
1272   ENUM_ENT(SHF_MIPS_LOCAL,   ""),
1273   ENUM_ENT(SHF_MIPS_NOSTRIP, ""),
1274   ENUM_ENT(SHF_MIPS_GPREL,   ""),
1275   ENUM_ENT(SHF_MIPS_MERGE,   ""),
1276   ENUM_ENT(SHF_MIPS_ADDR,    ""),
1277   ENUM_ENT(SHF_MIPS_STRING,  "")
1278 };
1279 
1280 const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
1281   ENUM_ENT(SHF_X86_64_LARGE, "l")
1282 };
1283 
1284 static std::vector<EnumEntry<unsigned>>
1285 getSectionFlagsForTarget(unsigned EOSAbi, unsigned EMachine) {
1286   std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags),
1287                                        std::end(ElfSectionFlags));
1288   switch (EOSAbi) {
1289   case ELFOSABI_SOLARIS:
1290     Ret.insert(Ret.end(), std::begin(ElfSolarisSectionFlags),
1291                std::end(ElfSolarisSectionFlags));
1292     break;
1293   default:
1294     Ret.insert(Ret.end(), std::begin(ElfGNUSectionFlags),
1295                std::end(ElfGNUSectionFlags));
1296     break;
1297   }
1298   switch (EMachine) {
1299   case EM_ARM:
1300     Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags),
1301                std::end(ElfARMSectionFlags));
1302     break;
1303   case EM_HEXAGON:
1304     Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags),
1305                std::end(ElfHexagonSectionFlags));
1306     break;
1307   case EM_MIPS:
1308     Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags),
1309                std::end(ElfMipsSectionFlags));
1310     break;
1311   case EM_X86_64:
1312     Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags),
1313                std::end(ElfX86_64SectionFlags));
1314     break;
1315   case EM_XCORE:
1316     Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags),
1317                std::end(ElfXCoreSectionFlags));
1318     break;
1319   default:
1320     break;
1321   }
1322   return Ret;
1323 }
1324 
1325 static std::string getGNUFlags(unsigned EOSAbi, unsigned EMachine,
1326                                uint64_t Flags) {
1327   // Here we are trying to build the flags string in the same way as GNU does.
1328   // It is not that straightforward. Imagine we have sh_flags == 0x90000000.
1329   // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000.
1330   // GNU readelf will not print "E" or "Ep" in this case, but will print just
1331   // "p". It only will print "E" when no other processor flag is set.
1332   std::string Str;
1333   bool HasUnknownFlag = false;
1334   bool HasOSFlag = false;
1335   bool HasProcFlag = false;
1336   std::vector<EnumEntry<unsigned>> FlagsList =
1337       getSectionFlagsForTarget(EOSAbi, EMachine);
1338   while (Flags) {
1339     // Take the least significant bit as a flag.
1340     uint64_t Flag = Flags & -Flags;
1341     Flags -= Flag;
1342 
1343     // Find the flag in the known flags list.
1344     auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) {
1345       // Flags with empty names are not printed in GNU style output.
1346       return E.Value == Flag && !E.AltName.empty();
1347     });
1348     if (I != FlagsList.end()) {
1349       Str += I->AltName;
1350       continue;
1351     }
1352 
1353     // If we did not find a matching regular flag, then we deal with an OS
1354     // specific flag, processor specific flag or an unknown flag.
1355     if (Flag & ELF::SHF_MASKOS) {
1356       HasOSFlag = true;
1357       Flags &= ~ELF::SHF_MASKOS;
1358     } else if (Flag & ELF::SHF_MASKPROC) {
1359       HasProcFlag = true;
1360       // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE
1361       // bit if set so that it doesn't also get printed.
1362       Flags &= ~ELF::SHF_MASKPROC;
1363     } else {
1364       HasUnknownFlag = true;
1365     }
1366   }
1367 
1368   // "o", "p" and "x" are printed last.
1369   if (HasOSFlag)
1370     Str += "o";
1371   if (HasProcFlag)
1372     Str += "p";
1373   if (HasUnknownFlag)
1374     Str += "x";
1375   return Str;
1376 }
1377 
1378 static StringRef segmentTypeToString(unsigned Arch, unsigned Type) {
1379   // Check potentially overlapped processor-specific program header type.
1380   switch (Arch) {
1381   case ELF::EM_ARM:
1382     switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); }
1383     break;
1384   case ELF::EM_MIPS:
1385   case ELF::EM_MIPS_RS3_LE:
1386     switch (Type) {
1387       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
1388       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
1389       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
1390       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
1391     }
1392     break;
1393   case ELF::EM_RISCV:
1394     switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_RISCV_ATTRIBUTES); }
1395   }
1396 
1397   switch (Type) {
1398     LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL);
1399     LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD);
1400     LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
1401     LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP);
1402     LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE);
1403     LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB);
1404     LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR);
1405     LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS);
1406 
1407     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
1408     LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);
1409 
1410     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
1411     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
1412     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY);
1413 
1414     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE);
1415     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED);
1416     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA);
1417   default:
1418     return "";
1419   }
1420 }
1421 
1422 static std::string getGNUPtType(unsigned Arch, unsigned Type) {
1423   StringRef Seg = segmentTypeToString(Arch, Type);
1424   if (Seg.empty())
1425     return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
1426 
1427   // E.g. "PT_ARM_EXIDX" -> "EXIDX".
1428   if (Seg.consume_front("PT_ARM_"))
1429     return Seg.str();
1430 
1431   // E.g. "PT_MIPS_REGINFO" -> "REGINFO".
1432   if (Seg.consume_front("PT_MIPS_"))
1433     return Seg.str();
1434 
1435   // E.g. "PT_RISCV_ATTRIBUTES"
1436   if (Seg.consume_front("PT_RISCV_"))
1437     return Seg.str();
1438 
1439   // E.g. "PT_LOAD" -> "LOAD".
1440   assert(Seg.startswith("PT_"));
1441   return Seg.drop_front(3).str();
1442 }
1443 
1444 const EnumEntry<unsigned> ElfSegmentFlags[] = {
1445   LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
1446   LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
1447   LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
1448 };
1449 
1450 const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
1451   ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"),
1452   ENUM_ENT(EF_MIPS_PIC, "pic"),
1453   ENUM_ENT(EF_MIPS_CPIC, "cpic"),
1454   ENUM_ENT(EF_MIPS_ABI2, "abi2"),
1455   ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"),
1456   ENUM_ENT(EF_MIPS_FP64, "fp64"),
1457   ENUM_ENT(EF_MIPS_NAN2008, "nan2008"),
1458   ENUM_ENT(EF_MIPS_ABI_O32, "o32"),
1459   ENUM_ENT(EF_MIPS_ABI_O64, "o64"),
1460   ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"),
1461   ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"),
1462   ENUM_ENT(EF_MIPS_MACH_3900, "3900"),
1463   ENUM_ENT(EF_MIPS_MACH_4010, "4010"),
1464   ENUM_ENT(EF_MIPS_MACH_4100, "4100"),
1465   ENUM_ENT(EF_MIPS_MACH_4650, "4650"),
1466   ENUM_ENT(EF_MIPS_MACH_4120, "4120"),
1467   ENUM_ENT(EF_MIPS_MACH_4111, "4111"),
1468   ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"),
1469   ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"),
1470   ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"),
1471   ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"),
1472   ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"),
1473   ENUM_ENT(EF_MIPS_MACH_5400, "5400"),
1474   ENUM_ENT(EF_MIPS_MACH_5900, "5900"),
1475   ENUM_ENT(EF_MIPS_MACH_5500, "5500"),
1476   ENUM_ENT(EF_MIPS_MACH_9000, "9000"),
1477   ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"),
1478   ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"),
1479   ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"),
1480   ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"),
1481   ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"),
1482   ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"),
1483   ENUM_ENT(EF_MIPS_ARCH_1, "mips1"),
1484   ENUM_ENT(EF_MIPS_ARCH_2, "mips2"),
1485   ENUM_ENT(EF_MIPS_ARCH_3, "mips3"),
1486   ENUM_ENT(EF_MIPS_ARCH_4, "mips4"),
1487   ENUM_ENT(EF_MIPS_ARCH_5, "mips5"),
1488   ENUM_ENT(EF_MIPS_ARCH_32, "mips32"),
1489   ENUM_ENT(EF_MIPS_ARCH_64, "mips64"),
1490   ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"),
1491   ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"),
1492   ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"),
1493   ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6")
1494 };
1495 
1496 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion3[] = {
1497   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
1498   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
1499   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
1500   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
1501   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
1502   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
1503   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
1504   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
1505   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
1506   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
1507   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
1508   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
1509   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
1510   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
1511   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
1512   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
1513   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
1514   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
1515   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
1516   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602),
1517   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
1518   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
1519   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
1520   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
1521   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
1522   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705),
1523   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
1524   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
1525   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
1526   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805),
1527   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
1528   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
1529   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
1530   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
1531   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
1532   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
1533   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
1534   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A),
1535   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C),
1536   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX940),
1537   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
1538   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
1539   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
1540   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013),
1541   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030),
1542   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031),
1543   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032),
1544   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033),
1545   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034),
1546   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035),
1547   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1036),
1548   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1100),
1549   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1101),
1550   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1102),
1551   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1103),
1552   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_V3),
1553   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_V3)
1554 };
1555 
1556 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion4[] = {
1557   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
1558   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
1559   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
1560   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
1561   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
1562   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
1563   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
1564   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
1565   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
1566   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
1567   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
1568   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
1569   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
1570   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
1571   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
1572   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
1573   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
1574   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
1575   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
1576   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602),
1577   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
1578   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
1579   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
1580   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
1581   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
1582   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705),
1583   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
1584   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
1585   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
1586   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805),
1587   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
1588   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
1589   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
1590   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
1591   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
1592   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
1593   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
1594   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A),
1595   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C),
1596   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX940),
1597   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
1598   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
1599   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
1600   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013),
1601   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030),
1602   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031),
1603   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032),
1604   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033),
1605   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034),
1606   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035),
1607   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1036),
1608   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1100),
1609   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1101),
1610   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1102),
1611   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1103),
1612   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ANY_V4),
1613   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_OFF_V4),
1614   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ON_V4),
1615   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ANY_V4),
1616   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_OFF_V4),
1617   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ON_V4)
1618 };
1619 
1620 const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
1621   ENUM_ENT(EF_RISCV_RVC, "RVC"),
1622   ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"),
1623   ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"),
1624   ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"),
1625   ENUM_ENT(EF_RISCV_RVE, "RVE"),
1626   ENUM_ENT(EF_RISCV_TSO, "TSO"),
1627 };
1628 
1629 const EnumEntry<unsigned> ElfHeaderAVRFlags[] = {
1630   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR1),
1631   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR2),
1632   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR25),
1633   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR3),
1634   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR31),
1635   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR35),
1636   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR4),
1637   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR5),
1638   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR51),
1639   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR6),
1640   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVRTINY),
1641   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA1),
1642   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA2),
1643   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA3),
1644   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA4),
1645   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA5),
1646   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA6),
1647   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA7),
1648   ENUM_ENT(EF_AVR_LINKRELAX_PREPARED, "relaxable"),
1649 };
1650 
1651 const EnumEntry<unsigned> ElfHeaderLoongArchFlags[] = {
1652   ENUM_ENT(EF_LOONGARCH_BASE_ABI_ILP32S, "ILP32, SOFT-FLOAT"),
1653   ENUM_ENT(EF_LOONGARCH_BASE_ABI_ILP32F, "ILP32, SINGLE-FLOAT"),
1654   ENUM_ENT(EF_LOONGARCH_BASE_ABI_ILP32D, "ILP32, DOUBLE-FLOAT"),
1655   ENUM_ENT(EF_LOONGARCH_BASE_ABI_LP64S, "LP64, SOFT-FLOAT"),
1656   ENUM_ENT(EF_LOONGARCH_BASE_ABI_LP64F, "LP64, SINGLE-FLOAT"),
1657   ENUM_ENT(EF_LOONGARCH_BASE_ABI_LP64D, "LP64, DOUBLE-FLOAT"),
1658 };
1659 
1660 
1661 const EnumEntry<unsigned> ElfSymOtherFlags[] = {
1662   LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL),
1663   LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN),
1664   LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED)
1665 };
1666 
1667 const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
1668   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1669   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1670   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC),
1671   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS)
1672 };
1673 
1674 const EnumEntry<unsigned> ElfAArch64SymOtherFlags[] = {
1675   LLVM_READOBJ_ENUM_ENT(ELF, STO_AARCH64_VARIANT_PCS)
1676 };
1677 
1678 const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
1679   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1680   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1681   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16)
1682 };
1683 
1684 const EnumEntry<unsigned> ElfRISCVSymOtherFlags[] = {
1685     LLVM_READOBJ_ENUM_ENT(ELF, STO_RISCV_VARIANT_CC)};
1686 
1687 static const char *getElfMipsOptionsOdkType(unsigned Odk) {
1688   switch (Odk) {
1689   LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL);
1690   LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO);
1691   LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS);
1692   LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD);
1693   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH);
1694   LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL);
1695   LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS);
1696   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND);
1697   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR);
1698   LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP);
1699   LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT);
1700   LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE);
1701   default:
1702     return "Unknown";
1703   }
1704 }
1705 
1706 template <typename ELFT>
1707 std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *>
1708 ELFDumper<ELFT>::findDynamic() {
1709   // Try to locate the PT_DYNAMIC header.
1710   const Elf_Phdr *DynamicPhdr = nullptr;
1711   if (Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj.program_headers()) {
1712     for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
1713       if (Phdr.p_type != ELF::PT_DYNAMIC)
1714         continue;
1715       DynamicPhdr = &Phdr;
1716       break;
1717     }
1718   } else {
1719     reportUniqueWarning(
1720         "unable to read program headers to locate the PT_DYNAMIC segment: " +
1721         toString(PhdrsOrErr.takeError()));
1722   }
1723 
1724   // Try to locate the .dynamic section in the sections header table.
1725   const Elf_Shdr *DynamicSec = nullptr;
1726   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
1727     if (Sec.sh_type != ELF::SHT_DYNAMIC)
1728       continue;
1729     DynamicSec = &Sec;
1730     break;
1731   }
1732 
1733   if (DynamicPhdr && ((DynamicPhdr->p_offset + DynamicPhdr->p_filesz >
1734                        ObjF.getMemoryBufferRef().getBufferSize()) ||
1735                       (DynamicPhdr->p_offset + DynamicPhdr->p_filesz <
1736                        DynamicPhdr->p_offset))) {
1737     reportUniqueWarning(
1738         "PT_DYNAMIC segment offset (0x" +
1739         Twine::utohexstr(DynamicPhdr->p_offset) + ") + file size (0x" +
1740         Twine::utohexstr(DynamicPhdr->p_filesz) +
1741         ") exceeds the size of the file (0x" +
1742         Twine::utohexstr(ObjF.getMemoryBufferRef().getBufferSize()) + ")");
1743     // Don't use the broken dynamic header.
1744     DynamicPhdr = nullptr;
1745   }
1746 
1747   if (DynamicPhdr && DynamicSec) {
1748     if (DynamicSec->sh_addr + DynamicSec->sh_size >
1749             DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz ||
1750         DynamicSec->sh_addr < DynamicPhdr->p_vaddr)
1751       reportUniqueWarning(describe(*DynamicSec) +
1752                           " is not contained within the "
1753                           "PT_DYNAMIC segment");
1754 
1755     if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr)
1756       reportUniqueWarning(describe(*DynamicSec) + " is not at the start of "
1757                                                   "PT_DYNAMIC segment");
1758   }
1759 
1760   return std::make_pair(DynamicPhdr, DynamicSec);
1761 }
1762 
1763 template <typename ELFT>
1764 void ELFDumper<ELFT>::loadDynamicTable() {
1765   const Elf_Phdr *DynamicPhdr;
1766   const Elf_Shdr *DynamicSec;
1767   std::tie(DynamicPhdr, DynamicSec) = findDynamic();
1768   if (!DynamicPhdr && !DynamicSec)
1769     return;
1770 
1771   DynRegionInfo FromPhdr(ObjF, *this);
1772   bool IsPhdrTableValid = false;
1773   if (DynamicPhdr) {
1774     // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are
1775     // validated in findDynamic() and so createDRI() is not expected to fail.
1776     FromPhdr = cantFail(createDRI(DynamicPhdr->p_offset, DynamicPhdr->p_filesz,
1777                                   sizeof(Elf_Dyn)));
1778     FromPhdr.SizePrintName = "PT_DYNAMIC size";
1779     FromPhdr.EntSizePrintName = "";
1780     IsPhdrTableValid = !FromPhdr.template getAsArrayRef<Elf_Dyn>().empty();
1781   }
1782 
1783   // Locate the dynamic table described in a section header.
1784   // Ignore sh_entsize and use the expected value for entry size explicitly.
1785   // This allows us to dump dynamic sections with a broken sh_entsize
1786   // field.
1787   DynRegionInfo FromSec(ObjF, *this);
1788   bool IsSecTableValid = false;
1789   if (DynamicSec) {
1790     Expected<DynRegionInfo> RegOrErr =
1791         createDRI(DynamicSec->sh_offset, DynamicSec->sh_size, sizeof(Elf_Dyn));
1792     if (RegOrErr) {
1793       FromSec = *RegOrErr;
1794       FromSec.Context = describe(*DynamicSec);
1795       FromSec.EntSizePrintName = "";
1796       IsSecTableValid = !FromSec.template getAsArrayRef<Elf_Dyn>().empty();
1797     } else {
1798       reportUniqueWarning("unable to read the dynamic table from " +
1799                           describe(*DynamicSec) + ": " +
1800                           toString(RegOrErr.takeError()));
1801     }
1802   }
1803 
1804   // When we only have information from one of the SHT_DYNAMIC section header or
1805   // PT_DYNAMIC program header, just use that.
1806   if (!DynamicPhdr || !DynamicSec) {
1807     if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) {
1808       DynamicTable = DynamicPhdr ? FromPhdr : FromSec;
1809       parseDynamicTable();
1810     } else {
1811       reportUniqueWarning("no valid dynamic table was found");
1812     }
1813     return;
1814   }
1815 
1816   // At this point we have tables found from the section header and from the
1817   // dynamic segment. Usually they match, but we have to do sanity checks to
1818   // verify that.
1819 
1820   if (FromPhdr.Addr != FromSec.Addr)
1821     reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC "
1822                         "program header disagree about "
1823                         "the location of the dynamic table");
1824 
1825   if (!IsPhdrTableValid && !IsSecTableValid) {
1826     reportUniqueWarning("no valid dynamic table was found");
1827     return;
1828   }
1829 
1830   // Information in the PT_DYNAMIC program header has priority over the
1831   // information in a section header.
1832   if (IsPhdrTableValid) {
1833     if (!IsSecTableValid)
1834       reportUniqueWarning(
1835           "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used");
1836     DynamicTable = FromPhdr;
1837   } else {
1838     reportUniqueWarning(
1839         "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used");
1840     DynamicTable = FromSec;
1841   }
1842 
1843   parseDynamicTable();
1844 }
1845 
1846 template <typename ELFT>
1847 ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> &O,
1848                            ScopedPrinter &Writer)
1849     : ObjDumper(Writer, O.getFileName()), ObjF(O), Obj(O.getELFFile()),
1850       FileName(O.getFileName()), DynRelRegion(O, *this),
1851       DynRelaRegion(O, *this), DynRelrRegion(O, *this),
1852       DynPLTRelRegion(O, *this), DynSymTabShndxRegion(O, *this),
1853       DynamicTable(O, *this) {
1854   if (!O.IsContentValid())
1855     return;
1856 
1857   typename ELFT::ShdrRange Sections = cantFail(Obj.sections());
1858   for (const Elf_Shdr &Sec : Sections) {
1859     switch (Sec.sh_type) {
1860     case ELF::SHT_SYMTAB:
1861       if (!DotSymtabSec)
1862         DotSymtabSec = &Sec;
1863       break;
1864     case ELF::SHT_DYNSYM:
1865       if (!DotDynsymSec)
1866         DotDynsymSec = &Sec;
1867 
1868       if (!DynSymRegion) {
1869         Expected<DynRegionInfo> RegOrErr =
1870             createDRI(Sec.sh_offset, Sec.sh_size, Sec.sh_entsize);
1871         if (RegOrErr) {
1872           DynSymRegion = *RegOrErr;
1873           DynSymRegion->Context = describe(Sec);
1874 
1875           if (Expected<StringRef> E = Obj.getStringTableForSymtab(Sec))
1876             DynamicStringTable = *E;
1877           else
1878             reportUniqueWarning("unable to get the string table for the " +
1879                                 describe(Sec) + ": " + toString(E.takeError()));
1880         } else {
1881           reportUniqueWarning("unable to read dynamic symbols from " +
1882                               describe(Sec) + ": " +
1883                               toString(RegOrErr.takeError()));
1884         }
1885       }
1886       break;
1887     case ELF::SHT_SYMTAB_SHNDX: {
1888       uint32_t SymtabNdx = Sec.sh_link;
1889       if (SymtabNdx >= Sections.size()) {
1890         reportUniqueWarning(
1891             "unable to get the associated symbol table for " + describe(Sec) +
1892             ": sh_link (" + Twine(SymtabNdx) +
1893             ") is greater than or equal to the total number of sections (" +
1894             Twine(Sections.size()) + ")");
1895         continue;
1896       }
1897 
1898       if (Expected<ArrayRef<Elf_Word>> ShndxTableOrErr =
1899               Obj.getSHNDXTable(Sec)) {
1900         if (!ShndxTables.insert({&Sections[SymtabNdx], *ShndxTableOrErr})
1901                  .second)
1902           reportUniqueWarning(
1903               "multiple SHT_SYMTAB_SHNDX sections are linked to " +
1904               describe(Sec));
1905       } else {
1906         reportUniqueWarning(ShndxTableOrErr.takeError());
1907       }
1908       break;
1909     }
1910     case ELF::SHT_GNU_versym:
1911       if (!SymbolVersionSection)
1912         SymbolVersionSection = &Sec;
1913       break;
1914     case ELF::SHT_GNU_verdef:
1915       if (!SymbolVersionDefSection)
1916         SymbolVersionDefSection = &Sec;
1917       break;
1918     case ELF::SHT_GNU_verneed:
1919       if (!SymbolVersionNeedSection)
1920         SymbolVersionNeedSection = &Sec;
1921       break;
1922     case ELF::SHT_LLVM_ADDRSIG:
1923       if (!DotAddrsigSec)
1924         DotAddrsigSec = &Sec;
1925       break;
1926     }
1927   }
1928 
1929   loadDynamicTable();
1930 }
1931 
1932 template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() {
1933   auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * {
1934     auto MappedAddrOrError = Obj.toMappedAddr(VAddr, [&](const Twine &Msg) {
1935       this->reportUniqueWarning(Msg);
1936       return Error::success();
1937     });
1938     if (!MappedAddrOrError) {
1939       this->reportUniqueWarning("unable to parse DT_" +
1940                                 Obj.getDynamicTagAsString(Tag) + ": " +
1941                                 llvm::toString(MappedAddrOrError.takeError()));
1942       return nullptr;
1943     }
1944     return MappedAddrOrError.get();
1945   };
1946 
1947   const char *StringTableBegin = nullptr;
1948   uint64_t StringTableSize = 0;
1949   Optional<DynRegionInfo> DynSymFromTable;
1950   for (const Elf_Dyn &Dyn : dynamic_table()) {
1951     switch (Dyn.d_tag) {
1952     case ELF::DT_HASH:
1953       HashTable = reinterpret_cast<const Elf_Hash *>(
1954           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1955       break;
1956     case ELF::DT_GNU_HASH:
1957       GnuHashTable = reinterpret_cast<const Elf_GnuHash *>(
1958           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1959       break;
1960     case ELF::DT_STRTAB:
1961       StringTableBegin = reinterpret_cast<const char *>(
1962           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1963       break;
1964     case ELF::DT_STRSZ:
1965       StringTableSize = Dyn.getVal();
1966       break;
1967     case ELF::DT_SYMTAB: {
1968       // If we can't map the DT_SYMTAB value to an address (e.g. when there are
1969       // no program headers), we ignore its value.
1970       if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) {
1971         DynSymFromTable.emplace(ObjF, *this);
1972         DynSymFromTable->Addr = VA;
1973         DynSymFromTable->EntSize = sizeof(Elf_Sym);
1974         DynSymFromTable->EntSizePrintName = "";
1975       }
1976       break;
1977     }
1978     case ELF::DT_SYMENT: {
1979       uint64_t Val = Dyn.getVal();
1980       if (Val != sizeof(Elf_Sym))
1981         this->reportUniqueWarning("DT_SYMENT value of 0x" +
1982                                   Twine::utohexstr(Val) +
1983                                   " is not the size of a symbol (0x" +
1984                                   Twine::utohexstr(sizeof(Elf_Sym)) + ")");
1985       break;
1986     }
1987     case ELF::DT_RELA:
1988       DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1989       break;
1990     case ELF::DT_RELASZ:
1991       DynRelaRegion.Size = Dyn.getVal();
1992       DynRelaRegion.SizePrintName = "DT_RELASZ value";
1993       break;
1994     case ELF::DT_RELAENT:
1995       DynRelaRegion.EntSize = Dyn.getVal();
1996       DynRelaRegion.EntSizePrintName = "DT_RELAENT value";
1997       break;
1998     case ELF::DT_SONAME:
1999       SONameOffset = Dyn.getVal();
2000       break;
2001     case ELF::DT_REL:
2002       DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2003       break;
2004     case ELF::DT_RELSZ:
2005       DynRelRegion.Size = Dyn.getVal();
2006       DynRelRegion.SizePrintName = "DT_RELSZ value";
2007       break;
2008     case ELF::DT_RELENT:
2009       DynRelRegion.EntSize = Dyn.getVal();
2010       DynRelRegion.EntSizePrintName = "DT_RELENT value";
2011       break;
2012     case ELF::DT_RELR:
2013     case ELF::DT_ANDROID_RELR:
2014       DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2015       break;
2016     case ELF::DT_RELRSZ:
2017     case ELF::DT_ANDROID_RELRSZ:
2018       DynRelrRegion.Size = Dyn.getVal();
2019       DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ
2020                                         ? "DT_RELRSZ value"
2021                                         : "DT_ANDROID_RELRSZ value";
2022       break;
2023     case ELF::DT_RELRENT:
2024     case ELF::DT_ANDROID_RELRENT:
2025       DynRelrRegion.EntSize = Dyn.getVal();
2026       DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT
2027                                            ? "DT_RELRENT value"
2028                                            : "DT_ANDROID_RELRENT value";
2029       break;
2030     case ELF::DT_PLTREL:
2031       if (Dyn.getVal() == DT_REL)
2032         DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
2033       else if (Dyn.getVal() == DT_RELA)
2034         DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
2035       else
2036         reportUniqueWarning(Twine("unknown DT_PLTREL value of ") +
2037                             Twine((uint64_t)Dyn.getVal()));
2038       DynPLTRelRegion.EntSizePrintName = "PLTREL entry size";
2039       break;
2040     case ELF::DT_JMPREL:
2041       DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2042       break;
2043     case ELF::DT_PLTRELSZ:
2044       DynPLTRelRegion.Size = Dyn.getVal();
2045       DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value";
2046       break;
2047     case ELF::DT_SYMTAB_SHNDX:
2048       DynSymTabShndxRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2049       DynSymTabShndxRegion.EntSize = sizeof(Elf_Word);
2050       break;
2051     }
2052   }
2053 
2054   if (StringTableBegin) {
2055     const uint64_t FileSize = Obj.getBufSize();
2056     const uint64_t Offset = (const uint8_t *)StringTableBegin - Obj.base();
2057     if (StringTableSize > FileSize - Offset)
2058       reportUniqueWarning(
2059           "the dynamic string table at 0x" + Twine::utohexstr(Offset) +
2060           " goes past the end of the file (0x" + Twine::utohexstr(FileSize) +
2061           ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize));
2062     else
2063       DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
2064   }
2065 
2066   const bool IsHashTableSupported = getHashTableEntSize() == 4;
2067   if (DynSymRegion) {
2068     // Often we find the information about the dynamic symbol table
2069     // location in the SHT_DYNSYM section header. However, the value in
2070     // DT_SYMTAB has priority, because it is used by dynamic loaders to
2071     // locate .dynsym at runtime. The location we find in the section header
2072     // and the location we find here should match.
2073     if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr)
2074       reportUniqueWarning(
2075           createError("SHT_DYNSYM section header and DT_SYMTAB disagree about "
2076                       "the location of the dynamic symbol table"));
2077 
2078     // According to the ELF gABI: "The number of symbol table entries should
2079     // equal nchain". Check to see if the DT_HASH hash table nchain value
2080     // conflicts with the number of symbols in the dynamic symbol table
2081     // according to the section header.
2082     if (HashTable && IsHashTableSupported) {
2083       if (DynSymRegion->EntSize == 0)
2084         reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0");
2085       else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize)
2086         reportUniqueWarning(
2087             "hash table nchain (" + Twine(HashTable->nchain) +
2088             ") differs from symbol count derived from SHT_DYNSYM section "
2089             "header (" +
2090             Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")");
2091     }
2092   }
2093 
2094   // Delay the creation of the actual dynamic symbol table until now, so that
2095   // checks can always be made against the section header-based properties,
2096   // without worrying about tag order.
2097   if (DynSymFromTable) {
2098     if (!DynSymRegion) {
2099       DynSymRegion = DynSymFromTable;
2100     } else {
2101       DynSymRegion->Addr = DynSymFromTable->Addr;
2102       DynSymRegion->EntSize = DynSymFromTable->EntSize;
2103       DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName;
2104     }
2105   }
2106 
2107   // Derive the dynamic symbol table size from the DT_HASH hash table, if
2108   // present.
2109   if (HashTable && IsHashTableSupported && DynSymRegion) {
2110     const uint64_t FileSize = Obj.getBufSize();
2111     const uint64_t DerivedSize =
2112         (uint64_t)HashTable->nchain * DynSymRegion->EntSize;
2113     const uint64_t Offset = (const uint8_t *)DynSymRegion->Addr - Obj.base();
2114     if (DerivedSize > FileSize - Offset)
2115       reportUniqueWarning(
2116           "the size (0x" + Twine::utohexstr(DerivedSize) +
2117           ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset) +
2118           ", derived from the hash table, goes past the end of the file (0x" +
2119           Twine::utohexstr(FileSize) + ") and will be ignored");
2120     else
2121       DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize;
2122   }
2123 }
2124 
2125 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
2126   // Dump version symbol section.
2127   printVersionSymbolSection(SymbolVersionSection);
2128 
2129   // Dump version definition section.
2130   printVersionDefinitionSection(SymbolVersionDefSection);
2131 
2132   // Dump version dependency section.
2133   printVersionDependencySection(SymbolVersionNeedSection);
2134 }
2135 
2136 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum)                                 \
2137   { #enum, prefix##_##enum }
2138 
2139 const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
2140   LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
2141   LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
2142   LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
2143   LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
2144   LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
2145 };
2146 
2147 const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
2148   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
2149   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
2150   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
2151   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
2152   LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
2153   LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
2154   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
2155   LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
2156   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
2157   LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
2158   LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
2159   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
2160   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
2161   LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
2162   LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
2163   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
2164   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND),
2165   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
2166   LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
2167   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
2168   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
2169   LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
2170   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
2171   LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
2172   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
2173   LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON),
2174   LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE),
2175 };
2176 
2177 const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
2178   LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
2179   LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
2180   LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
2181   LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
2182   LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
2183   LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
2184   LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
2185   LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
2186   LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
2187   LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
2188   LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
2189   LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
2190   LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
2191   LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
2192   LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
2193   LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
2194 };
2195 
2196 #undef LLVM_READOBJ_DT_FLAG_ENT
2197 
2198 template <typename T, typename TFlag>
2199 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
2200   SmallVector<EnumEntry<TFlag>, 10> SetFlags;
2201   for (const EnumEntry<TFlag> &Flag : Flags)
2202     if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value)
2203       SetFlags.push_back(Flag);
2204 
2205   for (const EnumEntry<TFlag> &Flag : SetFlags)
2206     OS << Flag.Name << " ";
2207 }
2208 
2209 template <class ELFT>
2210 const typename ELFT::Shdr *
2211 ELFDumper<ELFT>::findSectionByName(StringRef Name) const {
2212   for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
2213     if (Expected<StringRef> NameOrErr = Obj.getSectionName(Shdr)) {
2214       if (*NameOrErr == Name)
2215         return &Shdr;
2216     } else {
2217       reportUniqueWarning("unable to read the name of " + describe(Shdr) +
2218                           ": " + toString(NameOrErr.takeError()));
2219     }
2220   }
2221   return nullptr;
2222 }
2223 
2224 template <class ELFT>
2225 std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type,
2226                                              uint64_t Value) const {
2227   auto FormatHexValue = [](uint64_t V) {
2228     std::string Str;
2229     raw_string_ostream OS(Str);
2230     const char *ConvChar =
2231         (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64;
2232     OS << format(ConvChar, V);
2233     return OS.str();
2234   };
2235 
2236   auto FormatFlags = [](uint64_t V,
2237                         llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) {
2238     std::string Str;
2239     raw_string_ostream OS(Str);
2240     printFlags(V, Array, OS);
2241     return OS.str();
2242   };
2243 
2244   // Handle custom printing of architecture specific tags
2245   switch (Obj.getHeader().e_machine) {
2246   case EM_AARCH64:
2247     switch (Type) {
2248     case DT_AARCH64_BTI_PLT:
2249     case DT_AARCH64_PAC_PLT:
2250     case DT_AARCH64_VARIANT_PCS:
2251       return std::to_string(Value);
2252     default:
2253       break;
2254     }
2255     break;
2256   case EM_HEXAGON:
2257     switch (Type) {
2258     case DT_HEXAGON_VER:
2259       return std::to_string(Value);
2260     case DT_HEXAGON_SYMSZ:
2261     case DT_HEXAGON_PLT:
2262       return FormatHexValue(Value);
2263     default:
2264       break;
2265     }
2266     break;
2267   case EM_MIPS:
2268     switch (Type) {
2269     case DT_MIPS_RLD_VERSION:
2270     case DT_MIPS_LOCAL_GOTNO:
2271     case DT_MIPS_SYMTABNO:
2272     case DT_MIPS_UNREFEXTNO:
2273       return std::to_string(Value);
2274     case DT_MIPS_TIME_STAMP:
2275     case DT_MIPS_ICHECKSUM:
2276     case DT_MIPS_IVERSION:
2277     case DT_MIPS_BASE_ADDRESS:
2278     case DT_MIPS_MSYM:
2279     case DT_MIPS_CONFLICT:
2280     case DT_MIPS_LIBLIST:
2281     case DT_MIPS_CONFLICTNO:
2282     case DT_MIPS_LIBLISTNO:
2283     case DT_MIPS_GOTSYM:
2284     case DT_MIPS_HIPAGENO:
2285     case DT_MIPS_RLD_MAP:
2286     case DT_MIPS_DELTA_CLASS:
2287     case DT_MIPS_DELTA_CLASS_NO:
2288     case DT_MIPS_DELTA_INSTANCE:
2289     case DT_MIPS_DELTA_RELOC:
2290     case DT_MIPS_DELTA_RELOC_NO:
2291     case DT_MIPS_DELTA_SYM:
2292     case DT_MIPS_DELTA_SYM_NO:
2293     case DT_MIPS_DELTA_CLASSSYM:
2294     case DT_MIPS_DELTA_CLASSSYM_NO:
2295     case DT_MIPS_CXX_FLAGS:
2296     case DT_MIPS_PIXIE_INIT:
2297     case DT_MIPS_SYMBOL_LIB:
2298     case DT_MIPS_LOCALPAGE_GOTIDX:
2299     case DT_MIPS_LOCAL_GOTIDX:
2300     case DT_MIPS_HIDDEN_GOTIDX:
2301     case DT_MIPS_PROTECTED_GOTIDX:
2302     case DT_MIPS_OPTIONS:
2303     case DT_MIPS_INTERFACE:
2304     case DT_MIPS_DYNSTR_ALIGN:
2305     case DT_MIPS_INTERFACE_SIZE:
2306     case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
2307     case DT_MIPS_PERF_SUFFIX:
2308     case DT_MIPS_COMPACT_SIZE:
2309     case DT_MIPS_GP_VALUE:
2310     case DT_MIPS_AUX_DYNAMIC:
2311     case DT_MIPS_PLTGOT:
2312     case DT_MIPS_RWPLT:
2313     case DT_MIPS_RLD_MAP_REL:
2314     case DT_MIPS_XHASH:
2315       return FormatHexValue(Value);
2316     case DT_MIPS_FLAGS:
2317       return FormatFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags));
2318     default:
2319       break;
2320     }
2321     break;
2322   default:
2323     break;
2324   }
2325 
2326   switch (Type) {
2327   case DT_PLTREL:
2328     if (Value == DT_REL)
2329       return "REL";
2330     if (Value == DT_RELA)
2331       return "RELA";
2332     LLVM_FALLTHROUGH;
2333   case DT_PLTGOT:
2334   case DT_HASH:
2335   case DT_STRTAB:
2336   case DT_SYMTAB:
2337   case DT_RELA:
2338   case DT_INIT:
2339   case DT_FINI:
2340   case DT_REL:
2341   case DT_JMPREL:
2342   case DT_INIT_ARRAY:
2343   case DT_FINI_ARRAY:
2344   case DT_PREINIT_ARRAY:
2345   case DT_DEBUG:
2346   case DT_VERDEF:
2347   case DT_VERNEED:
2348   case DT_VERSYM:
2349   case DT_GNU_HASH:
2350   case DT_NULL:
2351     return FormatHexValue(Value);
2352   case DT_RELACOUNT:
2353   case DT_RELCOUNT:
2354   case DT_VERDEFNUM:
2355   case DT_VERNEEDNUM:
2356     return std::to_string(Value);
2357   case DT_PLTRELSZ:
2358   case DT_RELASZ:
2359   case DT_RELAENT:
2360   case DT_STRSZ:
2361   case DT_SYMENT:
2362   case DT_RELSZ:
2363   case DT_RELENT:
2364   case DT_INIT_ARRAYSZ:
2365   case DT_FINI_ARRAYSZ:
2366   case DT_PREINIT_ARRAYSZ:
2367   case DT_RELRSZ:
2368   case DT_RELRENT:
2369   case DT_ANDROID_RELSZ:
2370   case DT_ANDROID_RELASZ:
2371     return std::to_string(Value) + " (bytes)";
2372   case DT_NEEDED:
2373   case DT_SONAME:
2374   case DT_AUXILIARY:
2375   case DT_USED:
2376   case DT_FILTER:
2377   case DT_RPATH:
2378   case DT_RUNPATH: {
2379     const std::map<uint64_t, const char *> TagNames = {
2380         {DT_NEEDED, "Shared library"},       {DT_SONAME, "Library soname"},
2381         {DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"},
2382         {DT_FILTER, "Filter library"},       {DT_RPATH, "Library rpath"},
2383         {DT_RUNPATH, "Library runpath"},
2384     };
2385 
2386     return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]")
2387         .str();
2388   }
2389   case DT_FLAGS:
2390     return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags));
2391   case DT_FLAGS_1:
2392     return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags1));
2393   default:
2394     return FormatHexValue(Value);
2395   }
2396 }
2397 
2398 template <class ELFT>
2399 StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
2400   if (DynamicStringTable.empty() && !DynamicStringTable.data()) {
2401     reportUniqueWarning("string table was not found");
2402     return "<?>";
2403   }
2404 
2405   auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) {
2406     reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset) +
2407                         Msg);
2408     return "<?>";
2409   };
2410 
2411   const uint64_t FileSize = Obj.getBufSize();
2412   const uint64_t Offset =
2413       (const uint8_t *)DynamicStringTable.data() - Obj.base();
2414   if (DynamicStringTable.size() > FileSize - Offset)
2415     return WarnAndReturn(" with size 0x" +
2416                              Twine::utohexstr(DynamicStringTable.size()) +
2417                              " goes past the end of the file (0x" +
2418                              Twine::utohexstr(FileSize) + ")",
2419                          Offset);
2420 
2421   if (Value >= DynamicStringTable.size())
2422     return WarnAndReturn(
2423         ": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) +
2424             ": it goes past the end of the table (0x" +
2425             Twine::utohexstr(Offset + DynamicStringTable.size()) + ")",
2426         Offset);
2427 
2428   if (DynamicStringTable.back() != '\0')
2429     return WarnAndReturn(": unable to read the string at 0x" +
2430                              Twine::utohexstr(Offset + Value) +
2431                              ": the string table is not null-terminated",
2432                          Offset);
2433 
2434   return DynamicStringTable.data() + Value;
2435 }
2436 
2437 template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() {
2438   DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF);
2439   Ctx.printUnwindInformation();
2440 }
2441 
2442 // The namespace is needed to fix the compilation with GCC older than 7.0+.
2443 namespace {
2444 template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
2445   if (Obj.getHeader().e_machine == EM_ARM) {
2446     ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF.getFileName(),
2447                                             DotSymtabSec);
2448     Ctx.PrintUnwindInformation();
2449   }
2450   DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF);
2451   Ctx.printUnwindInformation();
2452 }
2453 } // namespace
2454 
2455 template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() {
2456   ListScope D(W, "NeededLibraries");
2457 
2458   std::vector<StringRef> Libs;
2459   for (const auto &Entry : dynamic_table())
2460     if (Entry.d_tag == ELF::DT_NEEDED)
2461       Libs.push_back(getDynamicString(Entry.d_un.d_val));
2462 
2463   llvm::sort(Libs);
2464 
2465   for (StringRef L : Libs)
2466     W.startLine() << L << "\n";
2467 }
2468 
2469 template <class ELFT>
2470 static Error checkHashTable(const ELFDumper<ELFT> &Dumper,
2471                             const typename ELFT::Hash *H,
2472                             bool *IsHeaderValid = nullptr) {
2473   const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
2474   const uint64_t SecOffset = (const uint8_t *)H - Obj.base();
2475   if (Dumper.getHashTableEntSize() == 8) {
2476     auto It = llvm::find_if(ElfMachineType, [&](const EnumEntry<unsigned> &E) {
2477       return E.Value == Obj.getHeader().e_machine;
2478     });
2479     if (IsHeaderValid)
2480       *IsHeaderValid = false;
2481     return createError("the hash table at 0x" + Twine::utohexstr(SecOffset) +
2482                        " is not supported: it contains non-standard 8 "
2483                        "byte entries on " +
2484                        It->AltName + " platform");
2485   }
2486 
2487   auto MakeError = [&](const Twine &Msg = "") {
2488     return createError("the hash table at offset 0x" +
2489                        Twine::utohexstr(SecOffset) +
2490                        " goes past the end of the file (0x" +
2491                        Twine::utohexstr(Obj.getBufSize()) + ")" + Msg);
2492   };
2493 
2494   // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain.
2495   const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word);
2496 
2497   if (IsHeaderValid)
2498     *IsHeaderValid = Obj.getBufSize() - SecOffset >= HeaderSize;
2499 
2500   if (Obj.getBufSize() - SecOffset < HeaderSize)
2501     return MakeError();
2502 
2503   if (Obj.getBufSize() - SecOffset - HeaderSize <
2504       ((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word))
2505     return MakeError(", nbucket = " + Twine(H->nbucket) +
2506                      ", nchain = " + Twine(H->nchain));
2507   return Error::success();
2508 }
2509 
2510 template <class ELFT>
2511 static Error checkGNUHashTable(const ELFFile<ELFT> &Obj,
2512                                const typename ELFT::GnuHash *GnuHashTable,
2513                                bool *IsHeaderValid = nullptr) {
2514   const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable);
2515   assert(TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() &&
2516          "GnuHashTable must always point to a location inside the file");
2517 
2518   uint64_t TableOffset = TableData - Obj.base();
2519   if (IsHeaderValid)
2520     *IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj.getBufSize();
2521   if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 +
2522           (uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >=
2523       Obj.getBufSize())
2524     return createError("unable to dump the SHT_GNU_HASH "
2525                        "section at 0x" +
2526                        Twine::utohexstr(TableOffset) +
2527                        ": it goes past the end of the file");
2528   return Error::success();
2529 }
2530 
2531 template <typename ELFT> void ELFDumper<ELFT>::printHashTable() {
2532   DictScope D(W, "HashTable");
2533   if (!HashTable)
2534     return;
2535 
2536   bool IsHeaderValid;
2537   Error Err = checkHashTable(*this, HashTable, &IsHeaderValid);
2538   if (IsHeaderValid) {
2539     W.printNumber("Num Buckets", HashTable->nbucket);
2540     W.printNumber("Num Chains", HashTable->nchain);
2541   }
2542 
2543   if (Err) {
2544     reportUniqueWarning(std::move(Err));
2545     return;
2546   }
2547 
2548   W.printList("Buckets", HashTable->buckets());
2549   W.printList("Chains", HashTable->chains());
2550 }
2551 
2552 template <class ELFT>
2553 static Expected<ArrayRef<typename ELFT::Word>>
2554 getGnuHashTableChains(Optional<DynRegionInfo> DynSymRegion,
2555                       const typename ELFT::GnuHash *GnuHashTable) {
2556   if (!DynSymRegion)
2557     return createError("no dynamic symbol table found");
2558 
2559   ArrayRef<typename ELFT::Sym> DynSymTable =
2560       DynSymRegion->template getAsArrayRef<typename ELFT::Sym>();
2561   size_t NumSyms = DynSymTable.size();
2562   if (!NumSyms)
2563     return createError("the dynamic symbol table is empty");
2564 
2565   if (GnuHashTable->symndx < NumSyms)
2566     return GnuHashTable->values(NumSyms);
2567 
2568   // A normal empty GNU hash table section produced by linker might have
2569   // symndx set to the number of dynamic symbols + 1 (for the zero symbol)
2570   // and have dummy null values in the Bloom filter and in the buckets
2571   // vector (or no values at all). It happens because the value of symndx is not
2572   // important for dynamic loaders when the GNU hash table is empty. They just
2573   // skip the whole object during symbol lookup. In such cases, the symndx value
2574   // is irrelevant and we should not report a warning.
2575   ArrayRef<typename ELFT::Word> Buckets = GnuHashTable->buckets();
2576   if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; }))
2577     return createError(
2578         "the first hashed symbol index (" + Twine(GnuHashTable->symndx) +
2579         ") is greater than or equal to the number of dynamic symbols (" +
2580         Twine(NumSyms) + ")");
2581   // There is no way to represent an array of (dynamic symbols count - symndx)
2582   // length.
2583   return ArrayRef<typename ELFT::Word>();
2584 }
2585 
2586 template <typename ELFT>
2587 void ELFDumper<ELFT>::printGnuHashTable() {
2588   DictScope D(W, "GnuHashTable");
2589   if (!GnuHashTable)
2590     return;
2591 
2592   bool IsHeaderValid;
2593   Error Err = checkGNUHashTable<ELFT>(Obj, GnuHashTable, &IsHeaderValid);
2594   if (IsHeaderValid) {
2595     W.printNumber("Num Buckets", GnuHashTable->nbuckets);
2596     W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
2597     W.printNumber("Num Mask Words", GnuHashTable->maskwords);
2598     W.printNumber("Shift Count", GnuHashTable->shift2);
2599   }
2600 
2601   if (Err) {
2602     reportUniqueWarning(std::move(Err));
2603     return;
2604   }
2605 
2606   ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter();
2607   W.printHexList("Bloom Filter", BloomFilter);
2608 
2609   ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
2610   W.printList("Buckets", Buckets);
2611 
2612   Expected<ArrayRef<Elf_Word>> Chains =
2613       getGnuHashTableChains<ELFT>(DynSymRegion, GnuHashTable);
2614   if (!Chains) {
2615     reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH "
2616                         "section: " +
2617                         toString(Chains.takeError()));
2618     return;
2619   }
2620 
2621   W.printHexList("Values", *Chains);
2622 }
2623 
2624 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
2625   StringRef SOName = "<Not found>";
2626   if (SONameOffset)
2627     SOName = getDynamicString(*SONameOffset);
2628   W.printString("LoadName", SOName);
2629 }
2630 
2631 template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() {
2632   switch (Obj.getHeader().e_machine) {
2633   case EM_ARM:
2634     if (Obj.isLE())
2635       printAttributes(ELF::SHT_ARM_ATTRIBUTES,
2636                       std::make_unique<ARMAttributeParser>(&W),
2637                       support::little);
2638     else
2639       reportUniqueWarning("attribute printing not implemented for big-endian "
2640                           "ARM objects");
2641     break;
2642   case EM_RISCV:
2643     if (Obj.isLE())
2644       printAttributes(ELF::SHT_RISCV_ATTRIBUTES,
2645                       std::make_unique<RISCVAttributeParser>(&W),
2646                       support::little);
2647     else
2648       reportUniqueWarning("attribute printing not implemented for big-endian "
2649                           "RISC-V objects");
2650     break;
2651   case EM_MSP430:
2652     printAttributes(ELF::SHT_MSP430_ATTRIBUTES,
2653                     std::make_unique<MSP430AttributeParser>(&W),
2654                     support::little);
2655     break;
2656   case EM_MIPS: {
2657     printMipsABIFlags();
2658     printMipsOptions();
2659     printMipsReginfo();
2660     MipsGOTParser<ELFT> Parser(*this);
2661     if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols()))
2662       reportUniqueWarning(std::move(E));
2663     else if (!Parser.isGotEmpty())
2664       printMipsGOT(Parser);
2665 
2666     if (Error E = Parser.findPLT(dynamic_table()))
2667       reportUniqueWarning(std::move(E));
2668     else if (!Parser.isPltEmpty())
2669       printMipsPLT(Parser);
2670     break;
2671   }
2672   default:
2673     break;
2674   }
2675 }
2676 
2677 template <class ELFT>
2678 void ELFDumper<ELFT>::printAttributes(
2679     unsigned AttrShType, std::unique_ptr<ELFAttributeParser> AttrParser,
2680     support::endianness Endianness) {
2681   assert((AttrShType != ELF::SHT_NULL) && AttrParser &&
2682          "Incomplete ELF attribute implementation");
2683   DictScope BA(W, "BuildAttributes");
2684   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
2685     if (Sec.sh_type != AttrShType)
2686       continue;
2687 
2688     ArrayRef<uint8_t> Contents;
2689     if (Expected<ArrayRef<uint8_t>> ContentOrErr =
2690             Obj.getSectionContents(Sec)) {
2691       Contents = *ContentOrErr;
2692       if (Contents.empty()) {
2693         reportUniqueWarning("the " + describe(Sec) + " is empty");
2694         continue;
2695       }
2696     } else {
2697       reportUniqueWarning("unable to read the content of the " + describe(Sec) +
2698                           ": " + toString(ContentOrErr.takeError()));
2699       continue;
2700     }
2701 
2702     W.printHex("FormatVersion", Contents[0]);
2703 
2704     if (Error E = AttrParser->parse(Contents, Endianness))
2705       reportUniqueWarning("unable to dump attributes from the " +
2706                           describe(Sec) + ": " + toString(std::move(E)));
2707   }
2708 }
2709 
2710 namespace {
2711 
2712 template <class ELFT> class MipsGOTParser {
2713 public:
2714   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
2715   using Entry = typename ELFT::Addr;
2716   using Entries = ArrayRef<Entry>;
2717 
2718   const bool IsStatic;
2719   const ELFFile<ELFT> &Obj;
2720   const ELFDumper<ELFT> &Dumper;
2721 
2722   MipsGOTParser(const ELFDumper<ELFT> &D);
2723   Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms);
2724   Error findPLT(Elf_Dyn_Range DynTable);
2725 
2726   bool isGotEmpty() const { return GotEntries.empty(); }
2727   bool isPltEmpty() const { return PltEntries.empty(); }
2728 
2729   uint64_t getGp() const;
2730 
2731   const Entry *getGotLazyResolver() const;
2732   const Entry *getGotModulePointer() const;
2733   const Entry *getPltLazyResolver() const;
2734   const Entry *getPltModulePointer() const;
2735 
2736   Entries getLocalEntries() const;
2737   Entries getGlobalEntries() const;
2738   Entries getOtherEntries() const;
2739   Entries getPltEntries() const;
2740 
2741   uint64_t getGotAddress(const Entry * E) const;
2742   int64_t getGotOffset(const Entry * E) const;
2743   const Elf_Sym *getGotSym(const Entry *E) const;
2744 
2745   uint64_t getPltAddress(const Entry * E) const;
2746   const Elf_Sym *getPltSym(const Entry *E) const;
2747 
2748   StringRef getPltStrTable() const { return PltStrTable; }
2749   const Elf_Shdr *getPltSymTable() const { return PltSymTable; }
2750 
2751 private:
2752   const Elf_Shdr *GotSec;
2753   size_t LocalNum;
2754   size_t GlobalNum;
2755 
2756   const Elf_Shdr *PltSec;
2757   const Elf_Shdr *PltRelSec;
2758   const Elf_Shdr *PltSymTable;
2759   StringRef FileName;
2760 
2761   Elf_Sym_Range GotDynSyms;
2762   StringRef PltStrTable;
2763 
2764   Entries GotEntries;
2765   Entries PltEntries;
2766 };
2767 
2768 } // end anonymous namespace
2769 
2770 template <class ELFT>
2771 MipsGOTParser<ELFT>::MipsGOTParser(const ELFDumper<ELFT> &D)
2772     : IsStatic(D.dynamic_table().empty()), Obj(D.getElfObject().getELFFile()),
2773       Dumper(D), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr),
2774       PltRelSec(nullptr), PltSymTable(nullptr),
2775       FileName(D.getElfObject().getFileName()) {}
2776 
2777 template <class ELFT>
2778 Error MipsGOTParser<ELFT>::findGOT(Elf_Dyn_Range DynTable,
2779                                    Elf_Sym_Range DynSyms) {
2780   // See "Global Offset Table" in Chapter 5 in the following document
2781   // for detailed GOT description.
2782   // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2783 
2784   // Find static GOT secton.
2785   if (IsStatic) {
2786     GotSec = Dumper.findSectionByName(".got");
2787     if (!GotSec)
2788       return Error::success();
2789 
2790     ArrayRef<uint8_t> Content =
2791         unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
2792     GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2793                          Content.size() / sizeof(Entry));
2794     LocalNum = GotEntries.size();
2795     return Error::success();
2796   }
2797 
2798   // Lookup dynamic table tags which define the GOT layout.
2799   Optional<uint64_t> DtPltGot;
2800   Optional<uint64_t> DtLocalGotNum;
2801   Optional<uint64_t> DtGotSym;
2802   for (const auto &Entry : DynTable) {
2803     switch (Entry.getTag()) {
2804     case ELF::DT_PLTGOT:
2805       DtPltGot = Entry.getVal();
2806       break;
2807     case ELF::DT_MIPS_LOCAL_GOTNO:
2808       DtLocalGotNum = Entry.getVal();
2809       break;
2810     case ELF::DT_MIPS_GOTSYM:
2811       DtGotSym = Entry.getVal();
2812       break;
2813     }
2814   }
2815 
2816   if (!DtPltGot && !DtLocalGotNum && !DtGotSym)
2817     return Error::success();
2818 
2819   if (!DtPltGot)
2820     return createError("cannot find PLTGOT dynamic tag");
2821   if (!DtLocalGotNum)
2822     return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag");
2823   if (!DtGotSym)
2824     return createError("cannot find MIPS_GOTSYM dynamic tag");
2825 
2826   size_t DynSymTotal = DynSyms.size();
2827   if (*DtGotSym > DynSymTotal)
2828     return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) +
2829                        ") exceeds the number of dynamic symbols (" +
2830                        Twine(DynSymTotal) + ")");
2831 
2832   GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot);
2833   if (!GotSec)
2834     return createError("there is no non-empty GOT section at 0x" +
2835                        Twine::utohexstr(*DtPltGot));
2836 
2837   LocalNum = *DtLocalGotNum;
2838   GlobalNum = DynSymTotal - *DtGotSym;
2839 
2840   ArrayRef<uint8_t> Content =
2841       unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
2842   GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2843                        Content.size() / sizeof(Entry));
2844   GotDynSyms = DynSyms.drop_front(*DtGotSym);
2845 
2846   return Error::success();
2847 }
2848 
2849 template <class ELFT>
2850 Error MipsGOTParser<ELFT>::findPLT(Elf_Dyn_Range DynTable) {
2851   // Lookup dynamic table tags which define the PLT layout.
2852   Optional<uint64_t> DtMipsPltGot;
2853   Optional<uint64_t> DtJmpRel;
2854   for (const auto &Entry : DynTable) {
2855     switch (Entry.getTag()) {
2856     case ELF::DT_MIPS_PLTGOT:
2857       DtMipsPltGot = Entry.getVal();
2858       break;
2859     case ELF::DT_JMPREL:
2860       DtJmpRel = Entry.getVal();
2861       break;
2862     }
2863   }
2864 
2865   if (!DtMipsPltGot && !DtJmpRel)
2866     return Error::success();
2867 
2868   // Find PLT section.
2869   if (!DtMipsPltGot)
2870     return createError("cannot find MIPS_PLTGOT dynamic tag");
2871   if (!DtJmpRel)
2872     return createError("cannot find JMPREL dynamic tag");
2873 
2874   PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot);
2875   if (!PltSec)
2876     return createError("there is no non-empty PLTGOT section at 0x" +
2877                        Twine::utohexstr(*DtMipsPltGot));
2878 
2879   PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel);
2880   if (!PltRelSec)
2881     return createError("there is no non-empty RELPLT section at 0x" +
2882                        Twine::utohexstr(*DtJmpRel));
2883 
2884   if (Expected<ArrayRef<uint8_t>> PltContentOrErr =
2885           Obj.getSectionContents(*PltSec))
2886     PltEntries =
2887         Entries(reinterpret_cast<const Entry *>(PltContentOrErr->data()),
2888                 PltContentOrErr->size() / sizeof(Entry));
2889   else
2890     return createError("unable to read PLTGOT section content: " +
2891                        toString(PltContentOrErr.takeError()));
2892 
2893   if (Expected<const Elf_Shdr *> PltSymTableOrErr =
2894           Obj.getSection(PltRelSec->sh_link))
2895     PltSymTable = *PltSymTableOrErr;
2896   else
2897     return createError("unable to get a symbol table linked to the " +
2898                        describe(Obj, *PltRelSec) + ": " +
2899                        toString(PltSymTableOrErr.takeError()));
2900 
2901   if (Expected<StringRef> StrTabOrErr =
2902           Obj.getStringTableForSymtab(*PltSymTable))
2903     PltStrTable = *StrTabOrErr;
2904   else
2905     return createError("unable to get a string table for the " +
2906                        describe(Obj, *PltSymTable) + ": " +
2907                        toString(StrTabOrErr.takeError()));
2908 
2909   return Error::success();
2910 }
2911 
2912 template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
2913   return GotSec->sh_addr + 0x7ff0;
2914 }
2915 
2916 template <class ELFT>
2917 const typename MipsGOTParser<ELFT>::Entry *
2918 MipsGOTParser<ELFT>::getGotLazyResolver() const {
2919   return LocalNum > 0 ? &GotEntries[0] : nullptr;
2920 }
2921 
2922 template <class ELFT>
2923 const typename MipsGOTParser<ELFT>::Entry *
2924 MipsGOTParser<ELFT>::getGotModulePointer() const {
2925   if (LocalNum < 2)
2926     return nullptr;
2927   const Entry &E = GotEntries[1];
2928   if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
2929     return nullptr;
2930   return &E;
2931 }
2932 
2933 template <class ELFT>
2934 typename MipsGOTParser<ELFT>::Entries
2935 MipsGOTParser<ELFT>::getLocalEntries() const {
2936   size_t Skip = getGotModulePointer() ? 2 : 1;
2937   if (LocalNum - Skip <= 0)
2938     return Entries();
2939   return GotEntries.slice(Skip, LocalNum - Skip);
2940 }
2941 
2942 template <class ELFT>
2943 typename MipsGOTParser<ELFT>::Entries
2944 MipsGOTParser<ELFT>::getGlobalEntries() const {
2945   if (GlobalNum == 0)
2946     return Entries();
2947   return GotEntries.slice(LocalNum, GlobalNum);
2948 }
2949 
2950 template <class ELFT>
2951 typename MipsGOTParser<ELFT>::Entries
2952 MipsGOTParser<ELFT>::getOtherEntries() const {
2953   size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
2954   if (OtherNum == 0)
2955     return Entries();
2956   return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
2957 }
2958 
2959 template <class ELFT>
2960 uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
2961   int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2962   return GotSec->sh_addr + Offset;
2963 }
2964 
2965 template <class ELFT>
2966 int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
2967   int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2968   return Offset - 0x7ff0;
2969 }
2970 
2971 template <class ELFT>
2972 const typename MipsGOTParser<ELFT>::Elf_Sym *
2973 MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
2974   int64_t Offset = std::distance(GotEntries.data(), E);
2975   return &GotDynSyms[Offset - LocalNum];
2976 }
2977 
2978 template <class ELFT>
2979 const typename MipsGOTParser<ELFT>::Entry *
2980 MipsGOTParser<ELFT>::getPltLazyResolver() const {
2981   return PltEntries.empty() ? nullptr : &PltEntries[0];
2982 }
2983 
2984 template <class ELFT>
2985 const typename MipsGOTParser<ELFT>::Entry *
2986 MipsGOTParser<ELFT>::getPltModulePointer() const {
2987   return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
2988 }
2989 
2990 template <class ELFT>
2991 typename MipsGOTParser<ELFT>::Entries
2992 MipsGOTParser<ELFT>::getPltEntries() const {
2993   if (PltEntries.size() <= 2)
2994     return Entries();
2995   return PltEntries.slice(2, PltEntries.size() - 2);
2996 }
2997 
2998 template <class ELFT>
2999 uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
3000   int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
3001   return PltSec->sh_addr + Offset;
3002 }
3003 
3004 template <class ELFT>
3005 const typename MipsGOTParser<ELFT>::Elf_Sym *
3006 MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
3007   int64_t Offset = std::distance(getPltEntries().data(), E);
3008   if (PltRelSec->sh_type == ELF::SHT_REL) {
3009     Elf_Rel_Range Rels = unwrapOrError(FileName, Obj.rels(*PltRelSec));
3010     return unwrapOrError(FileName,
3011                          Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
3012   } else {
3013     Elf_Rela_Range Rels = unwrapOrError(FileName, Obj.relas(*PltRelSec));
3014     return unwrapOrError(FileName,
3015                          Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
3016   }
3017 }
3018 
3019 const EnumEntry<unsigned> ElfMipsISAExtType[] = {
3020   {"None",                    Mips::AFL_EXT_NONE},
3021   {"Broadcom SB-1",           Mips::AFL_EXT_SB1},
3022   {"Cavium Networks Octeon",  Mips::AFL_EXT_OCTEON},
3023   {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
3024   {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
3025   {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
3026   {"LSI R4010",               Mips::AFL_EXT_4010},
3027   {"Loongson 2E",             Mips::AFL_EXT_LOONGSON_2E},
3028   {"Loongson 2F",             Mips::AFL_EXT_LOONGSON_2F},
3029   {"Loongson 3A",             Mips::AFL_EXT_LOONGSON_3A},
3030   {"MIPS R4650",              Mips::AFL_EXT_4650},
3031   {"MIPS R5900",              Mips::AFL_EXT_5900},
3032   {"MIPS R10000",             Mips::AFL_EXT_10000},
3033   {"NEC VR4100",              Mips::AFL_EXT_4100},
3034   {"NEC VR4111/VR4181",       Mips::AFL_EXT_4111},
3035   {"NEC VR4120",              Mips::AFL_EXT_4120},
3036   {"NEC VR5400",              Mips::AFL_EXT_5400},
3037   {"NEC VR5500",              Mips::AFL_EXT_5500},
3038   {"RMI Xlr",                 Mips::AFL_EXT_XLR},
3039   {"Toshiba R3900",           Mips::AFL_EXT_3900}
3040 };
3041 
3042 const EnumEntry<unsigned> ElfMipsASEFlags[] = {
3043   {"DSP",                Mips::AFL_ASE_DSP},
3044   {"DSPR2",              Mips::AFL_ASE_DSPR2},
3045   {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
3046   {"MCU",                Mips::AFL_ASE_MCU},
3047   {"MDMX",               Mips::AFL_ASE_MDMX},
3048   {"MIPS-3D",            Mips::AFL_ASE_MIPS3D},
3049   {"MT",                 Mips::AFL_ASE_MT},
3050   {"SmartMIPS",          Mips::AFL_ASE_SMARTMIPS},
3051   {"VZ",                 Mips::AFL_ASE_VIRT},
3052   {"MSA",                Mips::AFL_ASE_MSA},
3053   {"MIPS16",             Mips::AFL_ASE_MIPS16},
3054   {"microMIPS",          Mips::AFL_ASE_MICROMIPS},
3055   {"XPA",                Mips::AFL_ASE_XPA},
3056   {"CRC",                Mips::AFL_ASE_CRC},
3057   {"GINV",               Mips::AFL_ASE_GINV},
3058 };
3059 
3060 const EnumEntry<unsigned> ElfMipsFpABIType[] = {
3061   {"Hard or soft float",                  Mips::Val_GNU_MIPS_ABI_FP_ANY},
3062   {"Hard float (double precision)",       Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
3063   {"Hard float (single precision)",       Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
3064   {"Soft float",                          Mips::Val_GNU_MIPS_ABI_FP_SOFT},
3065   {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
3066    Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
3067   {"Hard float (32-bit CPU, Any FPU)",    Mips::Val_GNU_MIPS_ABI_FP_XX},
3068   {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
3069   {"Hard float compat (32-bit CPU, 64-bit FPU)",
3070    Mips::Val_GNU_MIPS_ABI_FP_64A}
3071 };
3072 
3073 static const EnumEntry<unsigned> ElfMipsFlags1[] {
3074   {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
3075 };
3076 
3077 static int getMipsRegisterSize(uint8_t Flag) {
3078   switch (Flag) {
3079   case Mips::AFL_REG_NONE:
3080     return 0;
3081   case Mips::AFL_REG_32:
3082     return 32;
3083   case Mips::AFL_REG_64:
3084     return 64;
3085   case Mips::AFL_REG_128:
3086     return 128;
3087   default:
3088     return -1;
3089   }
3090 }
3091 
3092 template <class ELFT>
3093 static void printMipsReginfoData(ScopedPrinter &W,
3094                                  const Elf_Mips_RegInfo<ELFT> &Reginfo) {
3095   W.printHex("GP", Reginfo.ri_gp_value);
3096   W.printHex("General Mask", Reginfo.ri_gprmask);
3097   W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
3098   W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
3099   W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
3100   W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
3101 }
3102 
3103 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
3104   const Elf_Shdr *RegInfoSec = findSectionByName(".reginfo");
3105   if (!RegInfoSec) {
3106     W.startLine() << "There is no .reginfo section in the file.\n";
3107     return;
3108   }
3109 
3110   Expected<ArrayRef<uint8_t>> ContentsOrErr =
3111       Obj.getSectionContents(*RegInfoSec);
3112   if (!ContentsOrErr) {
3113     this->reportUniqueWarning(
3114         "unable to read the content of the .reginfo section (" +
3115         describe(*RegInfoSec) + "): " + toString(ContentsOrErr.takeError()));
3116     return;
3117   }
3118 
3119   if (ContentsOrErr->size() < sizeof(Elf_Mips_RegInfo<ELFT>)) {
3120     this->reportUniqueWarning("the .reginfo section has an invalid size (0x" +
3121                               Twine::utohexstr(ContentsOrErr->size()) + ")");
3122     return;
3123   }
3124 
3125   DictScope GS(W, "MIPS RegInfo");
3126   printMipsReginfoData(W, *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(
3127                               ContentsOrErr->data()));
3128 }
3129 
3130 template <class ELFT>
3131 static Expected<const Elf_Mips_Options<ELFT> *>
3132 readMipsOptions(const uint8_t *SecBegin, ArrayRef<uint8_t> &SecData,
3133                 bool &IsSupported) {
3134   if (SecData.size() < sizeof(Elf_Mips_Options<ELFT>))
3135     return createError("the .MIPS.options section has an invalid size (0x" +
3136                        Twine::utohexstr(SecData.size()) + ")");
3137 
3138   const Elf_Mips_Options<ELFT> *O =
3139       reinterpret_cast<const Elf_Mips_Options<ELFT> *>(SecData.data());
3140   const uint8_t Size = O->size;
3141   if (Size > SecData.size()) {
3142     const uint64_t Offset = SecData.data() - SecBegin;
3143     const uint64_t SecSize = Offset + SecData.size();
3144     return createError("a descriptor of size 0x" + Twine::utohexstr(Size) +
3145                        " at offset 0x" + Twine::utohexstr(Offset) +
3146                        " goes past the end of the .MIPS.options "
3147                        "section of size 0x" +
3148                        Twine::utohexstr(SecSize));
3149   }
3150 
3151   IsSupported = O->kind == ODK_REGINFO;
3152   const size_t ExpectedSize =
3153       sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>);
3154 
3155   if (IsSupported)
3156     if (Size < ExpectedSize)
3157       return createError(
3158           "a .MIPS.options entry of kind " +
3159           Twine(getElfMipsOptionsOdkType(O->kind)) +
3160           " has an invalid size (0x" + Twine::utohexstr(Size) +
3161           "), the expected size is 0x" + Twine::utohexstr(ExpectedSize));
3162 
3163   SecData = SecData.drop_front(Size);
3164   return O;
3165 }
3166 
3167 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
3168   const Elf_Shdr *MipsOpts = findSectionByName(".MIPS.options");
3169   if (!MipsOpts) {
3170     W.startLine() << "There is no .MIPS.options section in the file.\n";
3171     return;
3172   }
3173 
3174   DictScope GS(W, "MIPS Options");
3175 
3176   ArrayRef<uint8_t> Data =
3177       unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(*MipsOpts));
3178   const uint8_t *const SecBegin = Data.begin();
3179   while (!Data.empty()) {
3180     bool IsSupported;
3181     Expected<const Elf_Mips_Options<ELFT> *> OptsOrErr =
3182         readMipsOptions<ELFT>(SecBegin, Data, IsSupported);
3183     if (!OptsOrErr) {
3184       reportUniqueWarning(OptsOrErr.takeError());
3185       break;
3186     }
3187 
3188     unsigned Kind = (*OptsOrErr)->kind;
3189     const char *Type = getElfMipsOptionsOdkType(Kind);
3190     if (!IsSupported) {
3191       W.startLine() << "Unsupported MIPS options tag: " << Type << " (" << Kind
3192                     << ")\n";
3193       continue;
3194     }
3195 
3196     DictScope GS(W, Type);
3197     if (Kind == ODK_REGINFO)
3198       printMipsReginfoData(W, (*OptsOrErr)->getRegInfo());
3199     else
3200       llvm_unreachable("unexpected .MIPS.options section descriptor kind");
3201   }
3202 }
3203 
3204 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
3205   const Elf_Shdr *StackMapSection = findSectionByName(".llvm_stackmaps");
3206   if (!StackMapSection)
3207     return;
3208 
3209   auto Warn = [&](Error &&E) {
3210     this->reportUniqueWarning("unable to read the stack map from " +
3211                               describe(*StackMapSection) + ": " +
3212                               toString(std::move(E)));
3213   };
3214 
3215   Expected<ArrayRef<uint8_t>> ContentOrErr =
3216       Obj.getSectionContents(*StackMapSection);
3217   if (!ContentOrErr) {
3218     Warn(ContentOrErr.takeError());
3219     return;
3220   }
3221 
3222   if (Error E = StackMapParser<ELFT::TargetEndianness>::validateHeader(
3223           *ContentOrErr)) {
3224     Warn(std::move(E));
3225     return;
3226   }
3227 
3228   prettyPrintStackMap(W, StackMapParser<ELFT::TargetEndianness>(*ContentOrErr));
3229 }
3230 
3231 template <class ELFT>
3232 void ELFDumper<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
3233                                  const Elf_Shdr &Sec, const Elf_Shdr *SymTab) {
3234   Expected<RelSymbol<ELFT>> Target = getRelocationTarget(R, SymTab);
3235   if (!Target)
3236     reportUniqueWarning("unable to print relocation " + Twine(RelIndex) +
3237                         " in " + describe(Sec) + ": " +
3238                         toString(Target.takeError()));
3239   else
3240     printRelRelaReloc(R, *Target);
3241 }
3242 
3243 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
3244                                StringRef Str2) {
3245   OS.PadToColumn(2u);
3246   OS << Str1;
3247   OS.PadToColumn(37u);
3248   OS << Str2 << "\n";
3249   OS.flush();
3250 }
3251 
3252 template <class ELFT>
3253 static std::string getSectionHeadersNumString(const ELFFile<ELFT> &Obj,
3254                                               StringRef FileName) {
3255   const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3256   if (ElfHeader.e_shnum != 0)
3257     return to_string(ElfHeader.e_shnum);
3258 
3259   Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3260   if (!ArrOrErr) {
3261     // In this case we can ignore an error, because we have already reported a
3262     // warning about the broken section header table earlier.
3263     consumeError(ArrOrErr.takeError());
3264     return "<?>";
3265   }
3266 
3267   if (ArrOrErr->empty())
3268     return "0";
3269   return "0 (" + to_string((*ArrOrErr)[0].sh_size) + ")";
3270 }
3271 
3272 template <class ELFT>
3273 static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> &Obj,
3274                                                     StringRef FileName) {
3275   const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3276   if (ElfHeader.e_shstrndx != SHN_XINDEX)
3277     return to_string(ElfHeader.e_shstrndx);
3278 
3279   Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3280   if (!ArrOrErr) {
3281     // In this case we can ignore an error, because we have already reported a
3282     // warning about the broken section header table earlier.
3283     consumeError(ArrOrErr.takeError());
3284     return "<?>";
3285   }
3286 
3287   if (ArrOrErr->empty())
3288     return "65535 (corrupt: out of range)";
3289   return to_string(ElfHeader.e_shstrndx) + " (" +
3290          to_string((*ArrOrErr)[0].sh_link) + ")";
3291 }
3292 
3293 static const EnumEntry<unsigned> *getObjectFileEnumEntry(unsigned Type) {
3294   auto It = llvm::find_if(ElfObjectFileType, [&](const EnumEntry<unsigned> &E) {
3295     return E.Value == Type;
3296   });
3297   if (It != makeArrayRef(ElfObjectFileType).end())
3298     return It;
3299   return nullptr;
3300 }
3301 
3302 template <class ELFT>
3303 void GNUELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
3304                                           ArrayRef<std::string> InputFilenames,
3305                                           const Archive *A) {
3306   if (InputFilenames.size() > 1 || A) {
3307     this->W.startLine() << "\n";
3308     this->W.printString("File", FileStr);
3309   }
3310 }
3311 
3312 template <class ELFT> void GNUELFDumper<ELFT>::printFileHeaders() {
3313   const Elf_Ehdr &e = this->Obj.getHeader();
3314   OS << "ELF Header:\n";
3315   OS << "  Magic:  ";
3316   std::string Str;
3317   for (int i = 0; i < ELF::EI_NIDENT; i++)
3318     OS << format(" %02x", static_cast<int>(e.e_ident[i]));
3319   OS << "\n";
3320   Str = enumToString(e.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
3321   printFields(OS, "Class:", Str);
3322   Str = enumToString(e.e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding));
3323   printFields(OS, "Data:", Str);
3324   OS.PadToColumn(2u);
3325   OS << "Version:";
3326   OS.PadToColumn(37u);
3327   OS << utohexstr(e.e_ident[ELF::EI_VERSION]);
3328   if (e.e_version == ELF::EV_CURRENT)
3329     OS << " (current)";
3330   OS << "\n";
3331   Str = enumToString(e.e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI));
3332   printFields(OS, "OS/ABI:", Str);
3333   printFields(OS,
3334               "ABI Version:", std::to_string(e.e_ident[ELF::EI_ABIVERSION]));
3335 
3336   if (const EnumEntry<unsigned> *E = getObjectFileEnumEntry(e.e_type)) {
3337     Str = E->AltName.str();
3338   } else {
3339     if (e.e_type >= ET_LOPROC)
3340       Str = "Processor Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")";
3341     else if (e.e_type >= ET_LOOS)
3342       Str = "OS Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")";
3343     else
3344       Str = "<unknown>: " + utohexstr(e.e_type, /*LowerCase=*/true);
3345   }
3346   printFields(OS, "Type:", Str);
3347 
3348   Str = enumToString(e.e_machine, makeArrayRef(ElfMachineType));
3349   printFields(OS, "Machine:", Str);
3350   Str = "0x" + utohexstr(e.e_version);
3351   printFields(OS, "Version:", Str);
3352   Str = "0x" + utohexstr(e.e_entry);
3353   printFields(OS, "Entry point address:", Str);
3354   Str = to_string(e.e_phoff) + " (bytes into file)";
3355   printFields(OS, "Start of program headers:", Str);
3356   Str = to_string(e.e_shoff) + " (bytes into file)";
3357   printFields(OS, "Start of section headers:", Str);
3358   std::string ElfFlags;
3359   if (e.e_machine == EM_MIPS)
3360     ElfFlags =
3361         printFlags(e.e_flags, makeArrayRef(ElfHeaderMipsFlags),
3362                    unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
3363                    unsigned(ELF::EF_MIPS_MACH));
3364   else if (e.e_machine == EM_RISCV)
3365     ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderRISCVFlags));
3366   else if (e.e_machine == EM_AVR)
3367     ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderAVRFlags),
3368                           unsigned(ELF::EF_AVR_ARCH_MASK));
3369   else if (e.e_machine == EM_LOONGARCH)
3370     ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderLoongArchFlags),
3371                           unsigned(ELF::EF_LOONGARCH_BASE_ABI_MASK));
3372   Str = "0x" + utohexstr(e.e_flags);
3373   if (!ElfFlags.empty())
3374     Str = Str + ", " + ElfFlags;
3375   printFields(OS, "Flags:", Str);
3376   Str = to_string(e.e_ehsize) + " (bytes)";
3377   printFields(OS, "Size of this header:", Str);
3378   Str = to_string(e.e_phentsize) + " (bytes)";
3379   printFields(OS, "Size of program headers:", Str);
3380   Str = to_string(e.e_phnum);
3381   printFields(OS, "Number of program headers:", Str);
3382   Str = to_string(e.e_shentsize) + " (bytes)";
3383   printFields(OS, "Size of section headers:", Str);
3384   Str = getSectionHeadersNumString(this->Obj, this->FileName);
3385   printFields(OS, "Number of section headers:", Str);
3386   Str = getSectionHeaderTableIndexString(this->Obj, this->FileName);
3387   printFields(OS, "Section header string table index:", Str);
3388 }
3389 
3390 template <class ELFT> std::vector<GroupSection> ELFDumper<ELFT>::getGroups() {
3391   auto GetSignature = [&](const Elf_Sym &Sym, unsigned SymNdx,
3392                           const Elf_Shdr &Symtab) -> StringRef {
3393     Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(Symtab);
3394     if (!StrTableOrErr) {
3395       reportUniqueWarning("unable to get the string table for " +
3396                           describe(Symtab) + ": " +
3397                           toString(StrTableOrErr.takeError()));
3398       return "<?>";
3399     }
3400 
3401     StringRef Strings = *StrTableOrErr;
3402     if (Sym.st_name >= Strings.size()) {
3403       reportUniqueWarning("unable to get the name of the symbol with index " +
3404                           Twine(SymNdx) + ": st_name (0x" +
3405                           Twine::utohexstr(Sym.st_name) +
3406                           ") is past the end of the string table of size 0x" +
3407                           Twine::utohexstr(Strings.size()));
3408       return "<?>";
3409     }
3410 
3411     return StrTableOrErr->data() + Sym.st_name;
3412   };
3413 
3414   std::vector<GroupSection> Ret;
3415   uint64_t I = 0;
3416   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
3417     ++I;
3418     if (Sec.sh_type != ELF::SHT_GROUP)
3419       continue;
3420 
3421     StringRef Signature = "<?>";
3422     if (Expected<const Elf_Shdr *> SymtabOrErr = Obj.getSection(Sec.sh_link)) {
3423       if (Expected<const Elf_Sym *> SymOrErr =
3424               Obj.template getEntry<Elf_Sym>(**SymtabOrErr, Sec.sh_info))
3425         Signature = GetSignature(**SymOrErr, Sec.sh_info, **SymtabOrErr);
3426       else
3427         reportUniqueWarning("unable to get the signature symbol for " +
3428                             describe(Sec) + ": " +
3429                             toString(SymOrErr.takeError()));
3430     } else {
3431       reportUniqueWarning("unable to get the symbol table for " +
3432                           describe(Sec) + ": " +
3433                           toString(SymtabOrErr.takeError()));
3434     }
3435 
3436     ArrayRef<Elf_Word> Data;
3437     if (Expected<ArrayRef<Elf_Word>> ContentsOrErr =
3438             Obj.template getSectionContentsAsArray<Elf_Word>(Sec)) {
3439       if (ContentsOrErr->empty())
3440         reportUniqueWarning("unable to read the section group flag from the " +
3441                             describe(Sec) + ": the section is empty");
3442       else
3443         Data = *ContentsOrErr;
3444     } else {
3445       reportUniqueWarning("unable to get the content of the " + describe(Sec) +
3446                           ": " + toString(ContentsOrErr.takeError()));
3447     }
3448 
3449     Ret.push_back({getPrintableSectionName(Sec),
3450                    maybeDemangle(Signature),
3451                    Sec.sh_name,
3452                    I - 1,
3453                    Sec.sh_link,
3454                    Sec.sh_info,
3455                    Data.empty() ? Elf_Word(0) : Data[0],
3456                    {}});
3457 
3458     if (Data.empty())
3459       continue;
3460 
3461     std::vector<GroupMember> &GM = Ret.back().Members;
3462     for (uint32_t Ndx : Data.slice(1)) {
3463       if (Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(Ndx)) {
3464         GM.push_back({getPrintableSectionName(**SecOrErr), Ndx});
3465       } else {
3466         reportUniqueWarning("unable to get the section with index " +
3467                             Twine(Ndx) + " when dumping the " + describe(Sec) +
3468                             ": " + toString(SecOrErr.takeError()));
3469         GM.push_back({"<?>", Ndx});
3470       }
3471     }
3472   }
3473   return Ret;
3474 }
3475 
3476 static DenseMap<uint64_t, const GroupSection *>
3477 mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
3478   DenseMap<uint64_t, const GroupSection *> Ret;
3479   for (const GroupSection &G : Groups)
3480     for (const GroupMember &GM : G.Members)
3481       Ret.insert({GM.Index, &G});
3482   return Ret;
3483 }
3484 
3485 template <class ELFT> void GNUELFDumper<ELFT>::printGroupSections() {
3486   std::vector<GroupSection> V = this->getGroups();
3487   DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
3488   for (const GroupSection &G : V) {
3489     OS << "\n"
3490        << getGroupType(G.Type) << " group section ["
3491        << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
3492        << "] contains " << G.Members.size() << " sections:\n"
3493        << "   [Index]    Name\n";
3494     for (const GroupMember &GM : G.Members) {
3495       const GroupSection *MainGroup = Map[GM.Index];
3496       if (MainGroup != &G)
3497         this->reportUniqueWarning(
3498             "section with index " + Twine(GM.Index) +
3499             ", included in the group section with index " +
3500             Twine(MainGroup->Index) +
3501             ", was also found in the group section with index " +
3502             Twine(G.Index));
3503       OS << "   [" << format_decimal(GM.Index, 5) << "]   " << GM.Name << "\n";
3504     }
3505   }
3506 
3507   if (V.empty())
3508     OS << "There are no section groups in this file.\n";
3509 }
3510 
3511 template <class ELFT>
3512 void GNUELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
3513   OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8)) << "\n";
3514 }
3515 
3516 template <class ELFT>
3517 void GNUELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
3518                                            const RelSymbol<ELFT> &RelSym) {
3519   // First two fields are bit width dependent. The rest of them are fixed width.
3520   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3521   Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
3522   unsigned Width = ELFT::Is64Bits ? 16 : 8;
3523 
3524   Fields[0].Str = to_string(format_hex_no_prefix(R.Offset, Width));
3525   Fields[1].Str = to_string(format_hex_no_prefix(R.Info, Width));
3526 
3527   SmallString<32> RelocName;
3528   this->Obj.getRelocationTypeName(R.Type, RelocName);
3529   Fields[2].Str = RelocName.c_str();
3530 
3531   if (RelSym.Sym)
3532     Fields[3].Str =
3533         to_string(format_hex_no_prefix(RelSym.Sym->getValue(), Width));
3534 
3535   Fields[4].Str = std::string(RelSym.Name);
3536   for (const Field &F : Fields)
3537     printField(F);
3538 
3539   std::string Addend;
3540   if (Optional<int64_t> A = R.Addend) {
3541     int64_t RelAddend = *A;
3542     if (!RelSym.Name.empty()) {
3543       if (RelAddend < 0) {
3544         Addend = " - ";
3545         RelAddend = std::abs(RelAddend);
3546       } else {
3547         Addend = " + ";
3548       }
3549     }
3550     Addend += utohexstr(RelAddend, /*LowerCase=*/true);
3551   }
3552   OS << Addend << "\n";
3553 }
3554 
3555 template <class ELFT>
3556 static void printRelocHeaderFields(formatted_raw_ostream &OS, unsigned SType) {
3557   bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA;
3558   bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR;
3559   if (ELFT::Is64Bits)
3560     OS << "    ";
3561   else
3562     OS << " ";
3563   if (IsRelr && opts::RawRelr)
3564     OS << "Data  ";
3565   else
3566     OS << "Offset";
3567   if (ELFT::Is64Bits)
3568     OS << "             Info             Type"
3569        << "               Symbol's Value  Symbol's Name";
3570   else
3571     OS << "     Info    Type                Sym. Value  Symbol's Name";
3572   if (IsRela)
3573     OS << " + Addend";
3574   OS << "\n";
3575 }
3576 
3577 template <class ELFT>
3578 void GNUELFDumper<ELFT>::printDynamicRelocHeader(unsigned Type, StringRef Name,
3579                                                  const DynRegionInfo &Reg) {
3580   uint64_t Offset = Reg.Addr - this->Obj.base();
3581   OS << "\n'" << Name.str().c_str() << "' relocation section at offset 0x"
3582      << utohexstr(Offset, /*LowerCase=*/true) << " contains " << Reg.Size << " bytes:\n";
3583   printRelocHeaderFields<ELFT>(OS, Type);
3584 }
3585 
3586 template <class ELFT>
3587 static bool isRelocationSec(const typename ELFT::Shdr &Sec) {
3588   return Sec.sh_type == ELF::SHT_REL || Sec.sh_type == ELF::SHT_RELA ||
3589          Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_REL ||
3590          Sec.sh_type == ELF::SHT_ANDROID_RELA ||
3591          Sec.sh_type == ELF::SHT_ANDROID_RELR;
3592 }
3593 
3594 template <class ELFT> void GNUELFDumper<ELFT>::printRelocations() {
3595   auto GetEntriesNum = [&](const Elf_Shdr &Sec) -> Expected<size_t> {
3596     // Android's packed relocation section needs to be unpacked first
3597     // to get the actual number of entries.
3598     if (Sec.sh_type == ELF::SHT_ANDROID_REL ||
3599         Sec.sh_type == ELF::SHT_ANDROID_RELA) {
3600       Expected<std::vector<typename ELFT::Rela>> RelasOrErr =
3601           this->Obj.android_relas(Sec);
3602       if (!RelasOrErr)
3603         return RelasOrErr.takeError();
3604       return RelasOrErr->size();
3605     }
3606 
3607     if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR ||
3608                            Sec.sh_type == ELF::SHT_ANDROID_RELR)) {
3609       Expected<Elf_Relr_Range> RelrsOrErr = this->Obj.relrs(Sec);
3610       if (!RelrsOrErr)
3611         return RelrsOrErr.takeError();
3612       return this->Obj.decode_relrs(*RelrsOrErr).size();
3613     }
3614 
3615     return Sec.getEntityCount();
3616   };
3617 
3618   bool HasRelocSections = false;
3619   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
3620     if (!isRelocationSec<ELFT>(Sec))
3621       continue;
3622     HasRelocSections = true;
3623 
3624     std::string EntriesNum = "<?>";
3625     if (Expected<size_t> NumOrErr = GetEntriesNum(Sec))
3626       EntriesNum = std::to_string(*NumOrErr);
3627     else
3628       this->reportUniqueWarning("unable to get the number of relocations in " +
3629                                 this->describe(Sec) + ": " +
3630                                 toString(NumOrErr.takeError()));
3631 
3632     uintX_t Offset = Sec.sh_offset;
3633     StringRef Name = this->getPrintableSectionName(Sec);
3634     OS << "\nRelocation section '" << Name << "' at offset 0x"
3635        << utohexstr(Offset, /*LowerCase=*/true) << " contains " << EntriesNum
3636        << " entries:\n";
3637     printRelocHeaderFields<ELFT>(OS, Sec.sh_type);
3638     this->printRelocationsHelper(Sec);
3639   }
3640   if (!HasRelocSections)
3641     OS << "\nThere are no relocations in this file.\n";
3642 }
3643 
3644 // Print the offset of a particular section from anyone of the ranges:
3645 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
3646 // If 'Type' does not fall within any of those ranges, then a string is
3647 // returned as '<unknown>' followed by the type value.
3648 static std::string getSectionTypeOffsetString(unsigned Type) {
3649   if (Type >= SHT_LOOS && Type <= SHT_HIOS)
3650     return "LOOS+0x" + utohexstr(Type - SHT_LOOS);
3651   else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC)
3652     return "LOPROC+0x" + utohexstr(Type - SHT_LOPROC);
3653   else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER)
3654     return "LOUSER+0x" + utohexstr(Type - SHT_LOUSER);
3655   return "0x" + utohexstr(Type) + ": <unknown>";
3656 }
3657 
3658 static std::string getSectionTypeString(unsigned Machine, unsigned Type) {
3659   StringRef Name = getELFSectionTypeName(Machine, Type);
3660 
3661   // Handle SHT_GNU_* type names.
3662   if (Name.consume_front("SHT_GNU_")) {
3663     if (Name == "HASH")
3664       return "GNU_HASH";
3665     // E.g. SHT_GNU_verneed -> VERNEED.
3666     return Name.upper();
3667   }
3668 
3669   if (Name == "SHT_SYMTAB_SHNDX")
3670     return "SYMTAB SECTION INDICES";
3671 
3672   if (Name.consume_front("SHT_"))
3673     return Name.str();
3674   return getSectionTypeOffsetString(Type);
3675 }
3676 
3677 static void printSectionDescription(formatted_raw_ostream &OS,
3678                                     unsigned EMachine) {
3679   OS << "Key to Flags:\n";
3680   OS << "  W (write), A (alloc), X (execute), M (merge), S (strings), I "
3681         "(info),\n";
3682   OS << "  L (link order), O (extra OS processing required), G (group), T "
3683         "(TLS),\n";
3684   OS << "  C (compressed), x (unknown), o (OS specific), E (exclude),\n";
3685   OS << "  R (retain)";
3686 
3687   if (EMachine == EM_X86_64)
3688     OS << ", l (large)";
3689   else if (EMachine == EM_ARM)
3690     OS << ", y (purecode)";
3691 
3692   OS << ", p (processor specific)\n";
3693 }
3694 
3695 template <class ELFT> void GNUELFDumper<ELFT>::printSectionHeaders() {
3696   unsigned Bias = ELFT::Is64Bits ? 0 : 8;
3697   ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
3698   OS << "There are " << to_string(Sections.size())
3699      << " section headers, starting at offset "
3700      << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n";
3701   OS << "Section Headers:\n";
3702   Field Fields[11] = {
3703       {"[Nr]", 2},        {"Name", 7},        {"Type", 25},
3704       {"Address", 41},    {"Off", 58 - Bias}, {"Size", 65 - Bias},
3705       {"ES", 72 - Bias},  {"Flg", 75 - Bias}, {"Lk", 79 - Bias},
3706       {"Inf", 82 - Bias}, {"Al", 86 - Bias}};
3707   for (const Field &F : Fields)
3708     printField(F);
3709   OS << "\n";
3710 
3711   StringRef SecStrTable;
3712   if (Expected<StringRef> SecStrTableOrErr =
3713           this->Obj.getSectionStringTable(Sections, this->WarningHandler))
3714     SecStrTable = *SecStrTableOrErr;
3715   else
3716     this->reportUniqueWarning(SecStrTableOrErr.takeError());
3717 
3718   size_t SectionIndex = 0;
3719   for (const Elf_Shdr &Sec : Sections) {
3720     Fields[0].Str = to_string(SectionIndex);
3721     if (SecStrTable.empty())
3722       Fields[1].Str = "<no-strings>";
3723     else
3724       Fields[1].Str = std::string(unwrapOrError<StringRef>(
3725           this->FileName, this->Obj.getSectionName(Sec, SecStrTable)));
3726     Fields[2].Str =
3727         getSectionTypeString(this->Obj.getHeader().e_machine, Sec.sh_type);
3728     Fields[3].Str =
3729         to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8));
3730     Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
3731     Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6));
3732     Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
3733     Fields[7].Str = getGNUFlags(this->Obj.getHeader().e_ident[ELF::EI_OSABI],
3734                                 this->Obj.getHeader().e_machine, Sec.sh_flags);
3735     Fields[8].Str = to_string(Sec.sh_link);
3736     Fields[9].Str = to_string(Sec.sh_info);
3737     Fields[10].Str = to_string(Sec.sh_addralign);
3738 
3739     OS.PadToColumn(Fields[0].Column);
3740     OS << "[" << right_justify(Fields[0].Str, 2) << "]";
3741     for (int i = 1; i < 7; i++)
3742       printField(Fields[i]);
3743     OS.PadToColumn(Fields[7].Column);
3744     OS << right_justify(Fields[7].Str, 3);
3745     OS.PadToColumn(Fields[8].Column);
3746     OS << right_justify(Fields[8].Str, 2);
3747     OS.PadToColumn(Fields[9].Column);
3748     OS << right_justify(Fields[9].Str, 3);
3749     OS.PadToColumn(Fields[10].Column);
3750     OS << right_justify(Fields[10].Str, 2);
3751     OS << "\n";
3752     ++SectionIndex;
3753   }
3754   printSectionDescription(OS, this->Obj.getHeader().e_machine);
3755 }
3756 
3757 template <class ELFT>
3758 void GNUELFDumper<ELFT>::printSymtabMessage(const Elf_Shdr *Symtab,
3759                                             size_t Entries,
3760                                             bool NonVisibilityBitsUsed) const {
3761   StringRef Name;
3762   if (Symtab)
3763     Name = this->getPrintableSectionName(*Symtab);
3764   if (!Name.empty())
3765     OS << "\nSymbol table '" << Name << "'";
3766   else
3767     OS << "\nSymbol table for image";
3768   OS << " contains " << Entries << " entries:\n";
3769 
3770   if (ELFT::Is64Bits)
3771     OS << "   Num:    Value          Size Type    Bind   Vis";
3772   else
3773     OS << "   Num:    Value  Size Type    Bind   Vis";
3774 
3775   if (NonVisibilityBitsUsed)
3776     OS << "             ";
3777   OS << "       Ndx Name\n";
3778 }
3779 
3780 template <class ELFT>
3781 std::string
3782 GNUELFDumper<ELFT>::getSymbolSectionNdx(const Elf_Sym &Symbol,
3783                                         unsigned SymIndex,
3784                                         DataRegion<Elf_Word> ShndxTable) const {
3785   unsigned SectionIndex = Symbol.st_shndx;
3786   switch (SectionIndex) {
3787   case ELF::SHN_UNDEF:
3788     return "UND";
3789   case ELF::SHN_ABS:
3790     return "ABS";
3791   case ELF::SHN_COMMON:
3792     return "COM";
3793   case ELF::SHN_XINDEX: {
3794     Expected<uint32_t> IndexOrErr =
3795         object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, ShndxTable);
3796     if (!IndexOrErr) {
3797       assert(Symbol.st_shndx == SHN_XINDEX &&
3798              "getExtendedSymbolTableIndex should only fail due to an invalid "
3799              "SHT_SYMTAB_SHNDX table/reference");
3800       this->reportUniqueWarning(IndexOrErr.takeError());
3801       return "RSV[0xffff]";
3802     }
3803     return to_string(format_decimal(*IndexOrErr, 3));
3804   }
3805   default:
3806     // Find if:
3807     // Processor specific
3808     if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
3809       return std::string("PRC[0x") +
3810              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3811     // OS specific
3812     if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
3813       return std::string("OS[0x") +
3814              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3815     // Architecture reserved:
3816     if (SectionIndex >= ELF::SHN_LORESERVE &&
3817         SectionIndex <= ELF::SHN_HIRESERVE)
3818       return std::string("RSV[0x") +
3819              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3820     // A normal section with an index
3821     return to_string(format_decimal(SectionIndex, 3));
3822   }
3823 }
3824 
3825 template <class ELFT>
3826 void GNUELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
3827                                      DataRegion<Elf_Word> ShndxTable,
3828                                      Optional<StringRef> StrTable,
3829                                      bool IsDynamic,
3830                                      bool NonVisibilityBitsUsed) const {
3831   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3832   Field Fields[8] = {0,         8,         17 + Bias, 23 + Bias,
3833                      31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias};
3834   Fields[0].Str = to_string(format_decimal(SymIndex, 6)) + ":";
3835   Fields[1].Str =
3836       to_string(format_hex_no_prefix(Symbol.st_value, ELFT::Is64Bits ? 16 : 8));
3837   Fields[2].Str = to_string(format_decimal(Symbol.st_size, 5));
3838 
3839   unsigned char SymbolType = Symbol.getType();
3840   if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
3841       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3842     Fields[3].Str = enumToString(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
3843   else
3844     Fields[3].Str = enumToString(SymbolType, makeArrayRef(ElfSymbolTypes));
3845 
3846   Fields[4].Str =
3847       enumToString(Symbol.getBinding(), makeArrayRef(ElfSymbolBindings));
3848   Fields[5].Str =
3849       enumToString(Symbol.getVisibility(), makeArrayRef(ElfSymbolVisibilities));
3850 
3851   if (Symbol.st_other & ~0x3) {
3852     if (this->Obj.getHeader().e_machine == ELF::EM_AARCH64) {
3853       uint8_t Other = Symbol.st_other & ~0x3;
3854       if (Other & STO_AARCH64_VARIANT_PCS) {
3855         Other &= ~STO_AARCH64_VARIANT_PCS;
3856         Fields[5].Str += " [VARIANT_PCS";
3857         if (Other != 0)
3858           Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true));
3859         Fields[5].Str.append("]");
3860       }
3861     } else if (this->Obj.getHeader().e_machine == ELF::EM_RISCV) {
3862       uint8_t Other = Symbol.st_other & ~0x3;
3863       if (Other & STO_RISCV_VARIANT_CC) {
3864         Other &= ~STO_RISCV_VARIANT_CC;
3865         Fields[5].Str += " [VARIANT_CC";
3866         if (Other != 0)
3867           Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true));
3868         Fields[5].Str.append("]");
3869       }
3870     } else {
3871       Fields[5].Str +=
3872           " [<other: " + to_string(format_hex(Symbol.st_other, 2)) + ">]";
3873     }
3874   }
3875 
3876   Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0;
3877   Fields[6].Str = getSymbolSectionNdx(Symbol, SymIndex, ShndxTable);
3878 
3879   Fields[7].Str = this->getFullSymbolName(Symbol, SymIndex, ShndxTable,
3880                                           StrTable, IsDynamic);
3881   for (const Field &Entry : Fields)
3882     printField(Entry);
3883   OS << "\n";
3884 }
3885 
3886 template <class ELFT>
3887 void GNUELFDumper<ELFT>::printHashedSymbol(const Elf_Sym *Symbol,
3888                                            unsigned SymIndex,
3889                                            DataRegion<Elf_Word> ShndxTable,
3890                                            StringRef StrTable,
3891                                            uint32_t Bucket) {
3892   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3893   Field Fields[9] = {0,         6,         11,        20 + Bias, 25 + Bias,
3894                      34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
3895   Fields[0].Str = to_string(format_decimal(SymIndex, 5));
3896   Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":";
3897 
3898   Fields[2].Str = to_string(
3899       format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
3900   Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5));
3901 
3902   unsigned char SymbolType = Symbol->getType();
3903   if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
3904       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3905     Fields[4].Str = enumToString(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
3906   else
3907     Fields[4].Str = enumToString(SymbolType, makeArrayRef(ElfSymbolTypes));
3908 
3909   Fields[5].Str =
3910       enumToString(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
3911   Fields[6].Str = enumToString(Symbol->getVisibility(),
3912                                makeArrayRef(ElfSymbolVisibilities));
3913   Fields[7].Str = getSymbolSectionNdx(*Symbol, SymIndex, ShndxTable);
3914   Fields[8].Str =
3915       this->getFullSymbolName(*Symbol, SymIndex, ShndxTable, StrTable, true);
3916 
3917   for (const Field &Entry : Fields)
3918     printField(Entry);
3919   OS << "\n";
3920 }
3921 
3922 template <class ELFT>
3923 void GNUELFDumper<ELFT>::printSymbols(bool PrintSymbols,
3924                                       bool PrintDynamicSymbols) {
3925   if (!PrintSymbols && !PrintDynamicSymbols)
3926     return;
3927   // GNU readelf prints both the .dynsym and .symtab with --symbols.
3928   this->printSymbolsHelper(true);
3929   if (PrintSymbols)
3930     this->printSymbolsHelper(false);
3931 }
3932 
3933 template <class ELFT>
3934 void GNUELFDumper<ELFT>::printHashTableSymbols(const Elf_Hash &SysVHash) {
3935   if (this->DynamicStringTable.empty())
3936     return;
3937 
3938   if (ELFT::Is64Bits)
3939     OS << "  Num Buc:    Value          Size   Type   Bind Vis      Ndx Name";
3940   else
3941     OS << "  Num Buc:    Value  Size   Type   Bind Vis      Ndx Name";
3942   OS << "\n";
3943 
3944   Elf_Sym_Range DynSyms = this->dynamic_symbols();
3945   const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
3946   if (!FirstSym) {
3947     this->reportUniqueWarning(
3948         Twine("unable to print symbols for the .hash table: the "
3949               "dynamic symbol table ") +
3950         (this->DynSymRegion ? "is empty" : "was not found"));
3951     return;
3952   }
3953 
3954   DataRegion<Elf_Word> ShndxTable(
3955       (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
3956   auto Buckets = SysVHash.buckets();
3957   auto Chains = SysVHash.chains();
3958   for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) {
3959     if (Buckets[Buc] == ELF::STN_UNDEF)
3960       continue;
3961     BitVector Visited(SysVHash.nchain);
3962     for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) {
3963       if (Ch == ELF::STN_UNDEF)
3964         break;
3965 
3966       if (Visited[Ch]) {
3967         this->reportUniqueWarning(".hash section is invalid: bucket " +
3968                                   Twine(Ch) +
3969                                   ": a cycle was detected in the linked chain");
3970         break;
3971       }
3972 
3973       printHashedSymbol(FirstSym + Ch, Ch, ShndxTable, this->DynamicStringTable,
3974                         Buc);
3975       Visited[Ch] = true;
3976     }
3977   }
3978 }
3979 
3980 template <class ELFT>
3981 void GNUELFDumper<ELFT>::printGnuHashTableSymbols(const Elf_GnuHash &GnuHash) {
3982   if (this->DynamicStringTable.empty())
3983     return;
3984 
3985   Elf_Sym_Range DynSyms = this->dynamic_symbols();
3986   const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
3987   if (!FirstSym) {
3988     this->reportUniqueWarning(
3989         Twine("unable to print symbols for the .gnu.hash table: the "
3990               "dynamic symbol table ") +
3991         (this->DynSymRegion ? "is empty" : "was not found"));
3992     return;
3993   }
3994 
3995   auto GetSymbol = [&](uint64_t SymIndex,
3996                        uint64_t SymsTotal) -> const Elf_Sym * {
3997     if (SymIndex >= SymsTotal) {
3998       this->reportUniqueWarning(
3999           "unable to print hashed symbol with index " + Twine(SymIndex) +
4000           ", which is greater than or equal to the number of dynamic symbols "
4001           "(" +
4002           Twine::utohexstr(SymsTotal) + ")");
4003       return nullptr;
4004     }
4005     return FirstSym + SymIndex;
4006   };
4007 
4008   Expected<ArrayRef<Elf_Word>> ValuesOrErr =
4009       getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHash);
4010   ArrayRef<Elf_Word> Values;
4011   if (!ValuesOrErr)
4012     this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH "
4013                               "section: " +
4014                               toString(ValuesOrErr.takeError()));
4015   else
4016     Values = *ValuesOrErr;
4017 
4018   DataRegion<Elf_Word> ShndxTable(
4019       (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
4020   ArrayRef<Elf_Word> Buckets = GnuHash.buckets();
4021   for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) {
4022     if (Buckets[Buc] == ELF::STN_UNDEF)
4023       continue;
4024     uint32_t Index = Buckets[Buc];
4025     // Print whole chain.
4026     while (true) {
4027       uint32_t SymIndex = Index++;
4028       if (const Elf_Sym *Sym = GetSymbol(SymIndex, DynSyms.size()))
4029         printHashedSymbol(Sym, SymIndex, ShndxTable, this->DynamicStringTable,
4030                           Buc);
4031       else
4032         break;
4033 
4034       if (SymIndex < GnuHash.symndx) {
4035         this->reportUniqueWarning(
4036             "unable to read the hash value for symbol with index " +
4037             Twine(SymIndex) +
4038             ", which is less than the index of the first hashed symbol (" +
4039             Twine(GnuHash.symndx) + ")");
4040         break;
4041       }
4042 
4043        // Chain ends at symbol with stopper bit.
4044       if ((Values[SymIndex - GnuHash.symndx] & 1) == 1)
4045         break;
4046     }
4047   }
4048 }
4049 
4050 template <class ELFT> void GNUELFDumper<ELFT>::printHashSymbols() {
4051   if (this->HashTable) {
4052     OS << "\n Symbol table of .hash for image:\n";
4053     if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
4054       this->reportUniqueWarning(std::move(E));
4055     else
4056       printHashTableSymbols(*this->HashTable);
4057   }
4058 
4059   // Try printing the .gnu.hash table.
4060   if (this->GnuHashTable) {
4061     OS << "\n Symbol table of .gnu.hash for image:\n";
4062     if (ELFT::Is64Bits)
4063       OS << "  Num Buc:    Value          Size   Type   Bind Vis      Ndx Name";
4064     else
4065       OS << "  Num Buc:    Value  Size   Type   Bind Vis      Ndx Name";
4066     OS << "\n";
4067 
4068     if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
4069       this->reportUniqueWarning(std::move(E));
4070     else
4071       printGnuHashTableSymbols(*this->GnuHashTable);
4072   }
4073 }
4074 
4075 template <class ELFT> void GNUELFDumper<ELFT>::printSectionDetails() {
4076   ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
4077   OS << "There are " << to_string(Sections.size())
4078      << " section headers, starting at offset "
4079      << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n";
4080 
4081   OS << "Section Headers:\n";
4082 
4083   auto PrintFields = [&](ArrayRef<Field> V) {
4084     for (const Field &F : V)
4085       printField(F);
4086     OS << "\n";
4087   };
4088 
4089   PrintFields({{"[Nr]", 2}, {"Name", 7}});
4090 
4091   constexpr bool Is64 = ELFT::Is64Bits;
4092   PrintFields({{"Type", 7},
4093                {Is64 ? "Address" : "Addr", 23},
4094                {"Off", Is64 ? 40 : 32},
4095                {"Size", Is64 ? 47 : 39},
4096                {"ES", Is64 ? 54 : 46},
4097                {"Lk", Is64 ? 59 : 51},
4098                {"Inf", Is64 ? 62 : 54},
4099                {"Al", Is64 ? 66 : 57}});
4100   PrintFields({{"Flags", 7}});
4101 
4102   StringRef SecStrTable;
4103   if (Expected<StringRef> SecStrTableOrErr =
4104           this->Obj.getSectionStringTable(Sections, this->WarningHandler))
4105     SecStrTable = *SecStrTableOrErr;
4106   else
4107     this->reportUniqueWarning(SecStrTableOrErr.takeError());
4108 
4109   size_t SectionIndex = 0;
4110   const unsigned AddrSize = Is64 ? 16 : 8;
4111   for (const Elf_Shdr &S : Sections) {
4112     StringRef Name = "<?>";
4113     if (Expected<StringRef> NameOrErr =
4114             this->Obj.getSectionName(S, SecStrTable))
4115       Name = *NameOrErr;
4116     else
4117       this->reportUniqueWarning(NameOrErr.takeError());
4118 
4119     OS.PadToColumn(2);
4120     OS << "[" << right_justify(to_string(SectionIndex), 2) << "]";
4121     PrintFields({{Name, 7}});
4122     PrintFields(
4123         {{getSectionTypeString(this->Obj.getHeader().e_machine, S.sh_type), 7},
4124          {to_string(format_hex_no_prefix(S.sh_addr, AddrSize)), 23},
4125          {to_string(format_hex_no_prefix(S.sh_offset, 6)), Is64 ? 39 : 32},
4126          {to_string(format_hex_no_prefix(S.sh_size, 6)), Is64 ? 47 : 39},
4127          {to_string(format_hex_no_prefix(S.sh_entsize, 2)), Is64 ? 54 : 46},
4128          {to_string(S.sh_link), Is64 ? 59 : 51},
4129          {to_string(S.sh_info), Is64 ? 63 : 55},
4130          {to_string(S.sh_addralign), Is64 ? 66 : 58}});
4131 
4132     OS.PadToColumn(7);
4133     OS << "[" << to_string(format_hex_no_prefix(S.sh_flags, AddrSize)) << "]: ";
4134 
4135     DenseMap<unsigned, StringRef> FlagToName = {
4136         {SHF_WRITE, "WRITE"},           {SHF_ALLOC, "ALLOC"},
4137         {SHF_EXECINSTR, "EXEC"},        {SHF_MERGE, "MERGE"},
4138         {SHF_STRINGS, "STRINGS"},       {SHF_INFO_LINK, "INFO LINK"},
4139         {SHF_LINK_ORDER, "LINK ORDER"}, {SHF_OS_NONCONFORMING, "OS NONCONF"},
4140         {SHF_GROUP, "GROUP"},           {SHF_TLS, "TLS"},
4141         {SHF_COMPRESSED, "COMPRESSED"}, {SHF_EXCLUDE, "EXCLUDE"}};
4142 
4143     uint64_t Flags = S.sh_flags;
4144     uint64_t UnknownFlags = 0;
4145     ListSeparator LS;
4146     while (Flags) {
4147       // Take the least significant bit as a flag.
4148       uint64_t Flag = Flags & -Flags;
4149       Flags -= Flag;
4150 
4151       auto It = FlagToName.find(Flag);
4152       if (It != FlagToName.end())
4153         OS << LS << It->second;
4154       else
4155         UnknownFlags |= Flag;
4156     }
4157 
4158     auto PrintUnknownFlags = [&](uint64_t Mask, StringRef Name) {
4159       uint64_t FlagsToPrint = UnknownFlags & Mask;
4160       if (!FlagsToPrint)
4161         return;
4162 
4163       OS << LS << Name << " ("
4164          << to_string(format_hex_no_prefix(FlagsToPrint, AddrSize)) << ")";
4165       UnknownFlags &= ~Mask;
4166     };
4167 
4168     PrintUnknownFlags(SHF_MASKOS, "OS");
4169     PrintUnknownFlags(SHF_MASKPROC, "PROC");
4170     PrintUnknownFlags(uint64_t(-1), "UNKNOWN");
4171 
4172     OS << "\n";
4173     ++SectionIndex;
4174   }
4175 }
4176 
4177 static inline std::string printPhdrFlags(unsigned Flag) {
4178   std::string Str;
4179   Str = (Flag & PF_R) ? "R" : " ";
4180   Str += (Flag & PF_W) ? "W" : " ";
4181   Str += (Flag & PF_X) ? "E" : " ";
4182   return Str;
4183 }
4184 
4185 template <class ELFT>
4186 static bool checkTLSSections(const typename ELFT::Phdr &Phdr,
4187                              const typename ELFT::Shdr &Sec) {
4188   if (Sec.sh_flags & ELF::SHF_TLS) {
4189     // .tbss must only be shown in the PT_TLS segment.
4190     if (Sec.sh_type == ELF::SHT_NOBITS)
4191       return Phdr.p_type == ELF::PT_TLS;
4192 
4193     // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO
4194     // segments.
4195     return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
4196            (Phdr.p_type == ELF::PT_GNU_RELRO);
4197   }
4198 
4199   // PT_TLS must only have SHF_TLS sections.
4200   return Phdr.p_type != ELF::PT_TLS;
4201 }
4202 
4203 template <class ELFT>
4204 static bool checkOffsets(const typename ELFT::Phdr &Phdr,
4205                          const typename ELFT::Shdr &Sec) {
4206   // SHT_NOBITS sections don't need to have an offset inside the segment.
4207   if (Sec.sh_type == ELF::SHT_NOBITS)
4208     return true;
4209 
4210   if (Sec.sh_offset < Phdr.p_offset)
4211     return false;
4212 
4213   // Only non-empty sections can be at the end of a segment.
4214   if (Sec.sh_size == 0)
4215     return (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz);
4216   return Sec.sh_offset + Sec.sh_size <= Phdr.p_offset + Phdr.p_filesz;
4217 }
4218 
4219 // Check that an allocatable section belongs to a virtual address
4220 // space of a segment.
4221 template <class ELFT>
4222 static bool checkVMA(const typename ELFT::Phdr &Phdr,
4223                      const typename ELFT::Shdr &Sec) {
4224   if (!(Sec.sh_flags & ELF::SHF_ALLOC))
4225     return true;
4226 
4227   if (Sec.sh_addr < Phdr.p_vaddr)
4228     return false;
4229 
4230   bool IsTbss =
4231       (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
4232   // .tbss is special, it only has memory in PT_TLS and has NOBITS properties.
4233   bool IsTbssInNonTLS = IsTbss && Phdr.p_type != ELF::PT_TLS;
4234   // Only non-empty sections can be at the end of a segment.
4235   if (Sec.sh_size == 0 || IsTbssInNonTLS)
4236     return Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz;
4237   return Sec.sh_addr + Sec.sh_size <= Phdr.p_vaddr + Phdr.p_memsz;
4238 }
4239 
4240 template <class ELFT>
4241 static bool checkPTDynamic(const typename ELFT::Phdr &Phdr,
4242                            const typename ELFT::Shdr &Sec) {
4243   if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0)
4244     return true;
4245 
4246   // We get here when we have an empty section. Only non-empty sections can be
4247   // at the start or at the end of PT_DYNAMIC.
4248   // Is section within the phdr both based on offset and VMA?
4249   bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) ||
4250                      (Sec.sh_offset > Phdr.p_offset &&
4251                       Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz);
4252   bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) ||
4253                  (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz);
4254   return CheckOffset && CheckVA;
4255 }
4256 
4257 template <class ELFT>
4258 void GNUELFDumper<ELFT>::printProgramHeaders(
4259     bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
4260   if (PrintProgramHeaders)
4261     printProgramHeaders();
4262 
4263   // Display the section mapping along with the program headers, unless
4264   // -section-mapping is explicitly set to false.
4265   if (PrintSectionMapping != cl::BOU_FALSE)
4266     printSectionMapping();
4267 }
4268 
4269 template <class ELFT> void GNUELFDumper<ELFT>::printProgramHeaders() {
4270   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4271   const Elf_Ehdr &Header = this->Obj.getHeader();
4272   Field Fields[8] = {2,         17,        26,        37 + Bias,
4273                      48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
4274   OS << "\nElf file type is "
4275      << enumToString(Header.e_type, makeArrayRef(ElfObjectFileType)) << "\n"
4276      << "Entry point " << format_hex(Header.e_entry, 3) << "\n"
4277      << "There are " << Header.e_phnum << " program headers,"
4278      << " starting at offset " << Header.e_phoff << "\n\n"
4279      << "Program Headers:\n";
4280   if (ELFT::Is64Bits)
4281     OS << "  Type           Offset   VirtAddr           PhysAddr         "
4282        << "  FileSiz  MemSiz   Flg Align\n";
4283   else
4284     OS << "  Type           Offset   VirtAddr   PhysAddr   FileSiz "
4285        << "MemSiz  Flg Align\n";
4286 
4287   unsigned Width = ELFT::Is64Bits ? 18 : 10;
4288   unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
4289 
4290   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4291   if (!PhdrsOrErr) {
4292     this->reportUniqueWarning("unable to dump program headers: " +
4293                               toString(PhdrsOrErr.takeError()));
4294     return;
4295   }
4296 
4297   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4298     Fields[0].Str = getGNUPtType(Header.e_machine, Phdr.p_type);
4299     Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8));
4300     Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width));
4301     Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width));
4302     Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth));
4303     Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth));
4304     Fields[6].Str = printPhdrFlags(Phdr.p_flags);
4305     Fields[7].Str = to_string(format_hex(Phdr.p_align, 1));
4306     for (const Field &F : Fields)
4307       printField(F);
4308     if (Phdr.p_type == ELF::PT_INTERP) {
4309       OS << "\n";
4310       auto ReportBadInterp = [&](const Twine &Msg) {
4311         this->reportUniqueWarning(
4312             "unable to read program interpreter name at offset 0x" +
4313             Twine::utohexstr(Phdr.p_offset) + ": " + Msg);
4314       };
4315 
4316       if (Phdr.p_offset >= this->Obj.getBufSize()) {
4317         ReportBadInterp("it goes past the end of the file (0x" +
4318                         Twine::utohexstr(this->Obj.getBufSize()) + ")");
4319         continue;
4320       }
4321 
4322       const char *Data =
4323           reinterpret_cast<const char *>(this->Obj.base()) + Phdr.p_offset;
4324       size_t MaxSize = this->Obj.getBufSize() - Phdr.p_offset;
4325       size_t Len = strnlen(Data, MaxSize);
4326       if (Len == MaxSize) {
4327         ReportBadInterp("it is not null-terminated");
4328         continue;
4329       }
4330 
4331       OS << "      [Requesting program interpreter: ";
4332       OS << StringRef(Data, Len) << "]";
4333     }
4334     OS << "\n";
4335   }
4336 }
4337 
4338 template <class ELFT> void GNUELFDumper<ELFT>::printSectionMapping() {
4339   OS << "\n Section to Segment mapping:\n  Segment Sections...\n";
4340   DenseSet<const Elf_Shdr *> BelongsToSegment;
4341   int Phnum = 0;
4342 
4343   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4344   if (!PhdrsOrErr) {
4345     this->reportUniqueWarning(
4346         "can't read program headers to build section to segment mapping: " +
4347         toString(PhdrsOrErr.takeError()));
4348     return;
4349   }
4350 
4351   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4352     std::string Sections;
4353     OS << format("   %2.2d     ", Phnum++);
4354     // Check if each section is in a segment and then print mapping.
4355     for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4356       if (Sec.sh_type == ELF::SHT_NULL)
4357         continue;
4358 
4359       // readelf additionally makes sure it does not print zero sized sections
4360       // at end of segments and for PT_DYNAMIC both start and end of section
4361       // .tbss must only be shown in PT_TLS section.
4362       if (checkTLSSections<ELFT>(Phdr, Sec) && checkOffsets<ELFT>(Phdr, Sec) &&
4363           checkVMA<ELFT>(Phdr, Sec) && checkPTDynamic<ELFT>(Phdr, Sec)) {
4364         Sections +=
4365             unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4366             " ";
4367         BelongsToSegment.insert(&Sec);
4368       }
4369     }
4370     OS << Sections << "\n";
4371     OS.flush();
4372   }
4373 
4374   // Display sections that do not belong to a segment.
4375   std::string Sections;
4376   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4377     if (BelongsToSegment.find(&Sec) == BelongsToSegment.end())
4378       Sections +=
4379           unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4380           ' ';
4381   }
4382   if (!Sections.empty()) {
4383     OS << "   None  " << Sections << '\n';
4384     OS.flush();
4385   }
4386 }
4387 
4388 namespace {
4389 
4390 template <class ELFT>
4391 RelSymbol<ELFT> getSymbolForReloc(const ELFDumper<ELFT> &Dumper,
4392                                   const Relocation<ELFT> &Reloc) {
4393   using Elf_Sym = typename ELFT::Sym;
4394   auto WarnAndReturn = [&](const Elf_Sym *Sym,
4395                            const Twine &Reason) -> RelSymbol<ELFT> {
4396     Dumper.reportUniqueWarning(
4397         "unable to get name of the dynamic symbol with index " +
4398         Twine(Reloc.Symbol) + ": " + Reason);
4399     return {Sym, "<corrupt>"};
4400   };
4401 
4402   ArrayRef<Elf_Sym> Symbols = Dumper.dynamic_symbols();
4403   const Elf_Sym *FirstSym = Symbols.begin();
4404   if (!FirstSym)
4405     return WarnAndReturn(nullptr, "no dynamic symbol table found");
4406 
4407   // We might have an object without a section header. In this case the size of
4408   // Symbols is zero, because there is no way to know the size of the dynamic
4409   // table. We should allow this case and not print a warning.
4410   if (!Symbols.empty() && Reloc.Symbol >= Symbols.size())
4411     return WarnAndReturn(
4412         nullptr,
4413         "index is greater than or equal to the number of dynamic symbols (" +
4414             Twine(Symbols.size()) + ")");
4415 
4416   const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
4417   const uint64_t FileSize = Obj.getBufSize();
4418   const uint64_t SymOffset = ((const uint8_t *)FirstSym - Obj.base()) +
4419                              (uint64_t)Reloc.Symbol * sizeof(Elf_Sym);
4420   if (SymOffset + sizeof(Elf_Sym) > FileSize)
4421     return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset) +
4422                                       " goes past the end of the file (0x" +
4423                                       Twine::utohexstr(FileSize) + ")");
4424 
4425   const Elf_Sym *Sym = FirstSym + Reloc.Symbol;
4426   Expected<StringRef> ErrOrName = Sym->getName(Dumper.getDynamicStringTable());
4427   if (!ErrOrName)
4428     return WarnAndReturn(Sym, toString(ErrOrName.takeError()));
4429 
4430   return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(*ErrOrName)};
4431 }
4432 } // namespace
4433 
4434 template <class ELFT>
4435 static size_t getMaxDynamicTagSize(const ELFFile<ELFT> &Obj,
4436                                    typename ELFT::DynRange Tags) {
4437   size_t Max = 0;
4438   for (const typename ELFT::Dyn &Dyn : Tags)
4439     Max = std::max(Max, Obj.getDynamicTagAsString(Dyn.d_tag).size());
4440   return Max;
4441 }
4442 
4443 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicTable() {
4444   Elf_Dyn_Range Table = this->dynamic_table();
4445   if (Table.empty())
4446     return;
4447 
4448   OS << "Dynamic section at offset "
4449      << format_hex(reinterpret_cast<const uint8_t *>(this->DynamicTable.Addr) -
4450                        this->Obj.base(),
4451                    1)
4452      << " contains " << Table.size() << " entries:\n";
4453 
4454   // The type name is surrounded with round brackets, hence add 2.
4455   size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table) + 2;
4456   // The "Name/Value" column should be indented from the "Type" column by N
4457   // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
4458   // space (1) = 3.
4459   OS << "  Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type"
4460      << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
4461 
4462   std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s ";
4463   for (auto Entry : Table) {
4464     uintX_t Tag = Entry.getTag();
4465     std::string Type =
4466         std::string("(") + this->Obj.getDynamicTagAsString(Tag) + ")";
4467     std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
4468     OS << "  " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10)
4469        << format(ValueFmt.c_str(), Type.c_str()) << Value << "\n";
4470   }
4471 }
4472 
4473 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicRelocations() {
4474   this->printDynamicRelocationsHelper();
4475 }
4476 
4477 template <class ELFT>
4478 void ELFDumper<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) {
4479   printRelRelaReloc(R, getSymbolForReloc(*this, R));
4480 }
4481 
4482 template <class ELFT>
4483 void ELFDumper<ELFT>::printRelocationsHelper(const Elf_Shdr &Sec) {
4484   this->forEachRelocationDo(
4485       Sec, opts::RawRelr,
4486       [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
4487           const Elf_Shdr *SymTab) { printReloc(R, Ndx, Sec, SymTab); },
4488       [&](const Elf_Relr &R) { printRelrReloc(R); });
4489 }
4490 
4491 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocationsHelper() {
4492   const bool IsMips64EL = this->Obj.isMips64EL();
4493   if (this->DynRelaRegion.Size > 0) {
4494     printDynamicRelocHeader(ELF::SHT_RELA, "RELA", this->DynRelaRegion);
4495     for (const Elf_Rela &Rela :
4496          this->DynRelaRegion.template getAsArrayRef<Elf_Rela>())
4497       printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4498   }
4499 
4500   if (this->DynRelRegion.Size > 0) {
4501     printDynamicRelocHeader(ELF::SHT_REL, "REL", this->DynRelRegion);
4502     for (const Elf_Rel &Rel :
4503          this->DynRelRegion.template getAsArrayRef<Elf_Rel>())
4504       printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4505   }
4506 
4507   if (this->DynRelrRegion.Size > 0) {
4508     printDynamicRelocHeader(ELF::SHT_REL, "RELR", this->DynRelrRegion);
4509     Elf_Relr_Range Relrs =
4510         this->DynRelrRegion.template getAsArrayRef<Elf_Relr>();
4511     for (const Elf_Rel &Rel : Obj.decode_relrs(Relrs))
4512       printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4513   }
4514 
4515   if (this->DynPLTRelRegion.Size) {
4516     if (this->DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
4517       printDynamicRelocHeader(ELF::SHT_RELA, "PLT", this->DynPLTRelRegion);
4518       for (const Elf_Rela &Rela :
4519            this->DynPLTRelRegion.template getAsArrayRef<Elf_Rela>())
4520         printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4521     } else {
4522       printDynamicRelocHeader(ELF::SHT_REL, "PLT", this->DynPLTRelRegion);
4523       for (const Elf_Rel &Rel :
4524            this->DynPLTRelRegion.template getAsArrayRef<Elf_Rel>())
4525         printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4526     }
4527   }
4528 }
4529 
4530 template <class ELFT>
4531 void GNUELFDumper<ELFT>::printGNUVersionSectionProlog(
4532     const typename ELFT::Shdr &Sec, const Twine &Label, unsigned EntriesNum) {
4533   // Don't inline the SecName, because it might report a warning to stderr and
4534   // corrupt the output.
4535   StringRef SecName = this->getPrintableSectionName(Sec);
4536   OS << Label << " section '" << SecName << "' "
4537      << "contains " << EntriesNum << " entries:\n";
4538 
4539   StringRef LinkedSecName = "<corrupt>";
4540   if (Expected<const typename ELFT::Shdr *> LinkedSecOrErr =
4541           this->Obj.getSection(Sec.sh_link))
4542     LinkedSecName = this->getPrintableSectionName(**LinkedSecOrErr);
4543   else
4544     this->reportUniqueWarning("invalid section linked to " +
4545                               this->describe(Sec) + ": " +
4546                               toString(LinkedSecOrErr.takeError()));
4547 
4548   OS << " Addr: " << format_hex_no_prefix(Sec.sh_addr, 16)
4549      << "  Offset: " << format_hex(Sec.sh_offset, 8)
4550      << "  Link: " << Sec.sh_link << " (" << LinkedSecName << ")\n";
4551 }
4552 
4553 template <class ELFT>
4554 void GNUELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
4555   if (!Sec)
4556     return;
4557 
4558   printGNUVersionSectionProlog(*Sec, "Version symbols",
4559                                Sec->sh_size / sizeof(Elf_Versym));
4560   Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
4561       this->getVersionTable(*Sec, /*SymTab=*/nullptr,
4562                             /*StrTab=*/nullptr, /*SymTabSec=*/nullptr);
4563   if (!VerTableOrErr) {
4564     this->reportUniqueWarning(VerTableOrErr.takeError());
4565     return;
4566   }
4567 
4568   SmallVector<Optional<VersionEntry>, 0> *VersionMap = nullptr;
4569   if (Expected<SmallVector<Optional<VersionEntry>, 0> *> MapOrErr =
4570           this->getVersionMap())
4571     VersionMap = *MapOrErr;
4572   else
4573     this->reportUniqueWarning(MapOrErr.takeError());
4574 
4575   ArrayRef<Elf_Versym> VerTable = *VerTableOrErr;
4576   std::vector<StringRef> Versions;
4577   for (size_t I = 0, E = VerTable.size(); I < E; ++I) {
4578     unsigned Ndx = VerTable[I].vs_index;
4579     if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) {
4580       Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*");
4581       continue;
4582     }
4583 
4584     if (!VersionMap) {
4585       Versions.emplace_back("<corrupt>");
4586       continue;
4587     }
4588 
4589     bool IsDefault;
4590     Expected<StringRef> NameOrErr = this->Obj.getSymbolVersionByIndex(
4591         Ndx, IsDefault, *VersionMap, /*IsSymHidden=*/None);
4592     if (!NameOrErr) {
4593       this->reportUniqueWarning("unable to get a version for entry " +
4594                                 Twine(I) + " of " + this->describe(*Sec) +
4595                                 ": " + toString(NameOrErr.takeError()));
4596       Versions.emplace_back("<corrupt>");
4597       continue;
4598     }
4599     Versions.emplace_back(*NameOrErr);
4600   }
4601 
4602   // readelf prints 4 entries per line.
4603   uint64_t Entries = VerTable.size();
4604   for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) {
4605     OS << "  " << format_hex_no_prefix(VersymRow, 3) << ":";
4606     for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) {
4607       unsigned Ndx = VerTable[VersymRow + I].vs_index;
4608       OS << format("%4x%c", Ndx & VERSYM_VERSION,
4609                    Ndx & VERSYM_HIDDEN ? 'h' : ' ');
4610       OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13);
4611     }
4612     OS << '\n';
4613   }
4614   OS << '\n';
4615 }
4616 
4617 static std::string versionFlagToString(unsigned Flags) {
4618   if (Flags == 0)
4619     return "none";
4620 
4621   std::string Ret;
4622   auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) {
4623     if (!(Flags & Flag))
4624       return;
4625     if (!Ret.empty())
4626       Ret += " | ";
4627     Ret += Name;
4628     Flags &= ~Flag;
4629   };
4630 
4631   AddFlag(VER_FLG_BASE, "BASE");
4632   AddFlag(VER_FLG_WEAK, "WEAK");
4633   AddFlag(VER_FLG_INFO, "INFO");
4634   AddFlag(~0, "<unknown>");
4635   return Ret;
4636 }
4637 
4638 template <class ELFT>
4639 void GNUELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
4640   if (!Sec)
4641     return;
4642 
4643   printGNUVersionSectionProlog(*Sec, "Version definition", Sec->sh_info);
4644 
4645   Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
4646   if (!V) {
4647     this->reportUniqueWarning(V.takeError());
4648     return;
4649   }
4650 
4651   for (const VerDef &Def : *V) {
4652     OS << format("  0x%04x: Rev: %u  Flags: %s  Index: %u  Cnt: %u  Name: %s\n",
4653                  Def.Offset, Def.Version,
4654                  versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt,
4655                  Def.Name.data());
4656     unsigned I = 0;
4657     for (const VerdAux &Aux : Def.AuxV)
4658       OS << format("  0x%04x: Parent %u: %s\n", Aux.Offset, ++I,
4659                    Aux.Name.data());
4660   }
4661 
4662   OS << '\n';
4663 }
4664 
4665 template <class ELFT>
4666 void GNUELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
4667   if (!Sec)
4668     return;
4669 
4670   unsigned VerneedNum = Sec->sh_info;
4671   printGNUVersionSectionProlog(*Sec, "Version needs", VerneedNum);
4672 
4673   Expected<std::vector<VerNeed>> V =
4674       this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
4675   if (!V) {
4676     this->reportUniqueWarning(V.takeError());
4677     return;
4678   }
4679 
4680   for (const VerNeed &VN : *V) {
4681     OS << format("  0x%04x: Version: %u  File: %s  Cnt: %u\n", VN.Offset,
4682                  VN.Version, VN.File.data(), VN.Cnt);
4683     for (const VernAux &Aux : VN.AuxV)
4684       OS << format("  0x%04x:   Name: %s  Flags: %s  Version: %u\n", Aux.Offset,
4685                    Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(),
4686                    Aux.Other);
4687   }
4688   OS << '\n';
4689 }
4690 
4691 template <class ELFT>
4692 void GNUELFDumper<ELFT>::printHashHistogram(const Elf_Hash &HashTable) {
4693   size_t NBucket = HashTable.nbucket;
4694   size_t NChain = HashTable.nchain;
4695   ArrayRef<Elf_Word> Buckets = HashTable.buckets();
4696   ArrayRef<Elf_Word> Chains = HashTable.chains();
4697   size_t TotalSyms = 0;
4698   // If hash table is correct, we have at least chains with 0 length
4699   size_t MaxChain = 1;
4700   size_t CumulativeNonZero = 0;
4701 
4702   if (NChain == 0 || NBucket == 0)
4703     return;
4704 
4705   std::vector<size_t> ChainLen(NBucket, 0);
4706   // Go over all buckets and and note chain lengths of each bucket (total
4707   // unique chain lengths).
4708   for (size_t B = 0; B < NBucket; B++) {
4709     BitVector Visited(NChain);
4710     for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) {
4711       if (C == ELF::STN_UNDEF)
4712         break;
4713       if (Visited[C]) {
4714         this->reportUniqueWarning(".hash section is invalid: bucket " +
4715                                   Twine(C) +
4716                                   ": a cycle was detected in the linked chain");
4717         break;
4718       }
4719       Visited[C] = true;
4720       if (MaxChain <= ++ChainLen[B])
4721         MaxChain++;
4722     }
4723     TotalSyms += ChainLen[B];
4724   }
4725 
4726   if (!TotalSyms)
4727     return;
4728 
4729   std::vector<size_t> Count(MaxChain, 0);
4730   // Count how long is the chain for each bucket
4731   for (size_t B = 0; B < NBucket; B++)
4732     ++Count[ChainLen[B]];
4733   // Print Number of buckets with each chain lengths and their cumulative
4734   // coverage of the symbols
4735   OS << "Histogram for bucket list length (total of " << NBucket
4736      << " buckets)\n"
4737      << " Length  Number     % of total  Coverage\n";
4738   for (size_t I = 0; I < MaxChain; I++) {
4739     CumulativeNonZero += Count[I] * I;
4740     OS << format("%7lu  %-10lu (%5.1f%%)     %5.1f%%\n", I, Count[I],
4741                  (Count[I] * 100.0) / NBucket,
4742                  (CumulativeNonZero * 100.0) / TotalSyms);
4743   }
4744 }
4745 
4746 template <class ELFT>
4747 void GNUELFDumper<ELFT>::printGnuHashHistogram(
4748     const Elf_GnuHash &GnuHashTable) {
4749   Expected<ArrayRef<Elf_Word>> ChainsOrErr =
4750       getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHashTable);
4751   if (!ChainsOrErr) {
4752     this->reportUniqueWarning("unable to print the GNU hash table histogram: " +
4753                               toString(ChainsOrErr.takeError()));
4754     return;
4755   }
4756 
4757   ArrayRef<Elf_Word> Chains = *ChainsOrErr;
4758   size_t Symndx = GnuHashTable.symndx;
4759   size_t TotalSyms = 0;
4760   size_t MaxChain = 1;
4761   size_t CumulativeNonZero = 0;
4762 
4763   size_t NBucket = GnuHashTable.nbuckets;
4764   if (Chains.empty() || NBucket == 0)
4765     return;
4766 
4767   ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets();
4768   std::vector<size_t> ChainLen(NBucket, 0);
4769   for (size_t B = 0; B < NBucket; B++) {
4770     if (!Buckets[B])
4771       continue;
4772     size_t Len = 1;
4773     for (size_t C = Buckets[B] - Symndx;
4774          C < Chains.size() && (Chains[C] & 1) == 0; C++)
4775       if (MaxChain < ++Len)
4776         MaxChain++;
4777     ChainLen[B] = Len;
4778     TotalSyms += Len;
4779   }
4780   MaxChain++;
4781 
4782   if (!TotalSyms)
4783     return;
4784 
4785   std::vector<size_t> Count(MaxChain, 0);
4786   for (size_t B = 0; B < NBucket; B++)
4787     ++Count[ChainLen[B]];
4788   // Print Number of buckets with each chain lengths and their cumulative
4789   // coverage of the symbols
4790   OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
4791      << " buckets)\n"
4792      << " Length  Number     % of total  Coverage\n";
4793   for (size_t I = 0; I < MaxChain; I++) {
4794     CumulativeNonZero += Count[I] * I;
4795     OS << format("%7lu  %-10lu (%5.1f%%)     %5.1f%%\n", I, Count[I],
4796                  (Count[I] * 100.0) / NBucket,
4797                  (CumulativeNonZero * 100.0) / TotalSyms);
4798   }
4799 }
4800 
4801 // Hash histogram shows statistics of how efficient the hash was for the
4802 // dynamic symbol table. The table shows the number of hash buckets for
4803 // different lengths of chains as an absolute number and percentage of the total
4804 // buckets, and the cumulative coverage of symbols for each set of buckets.
4805 template <class ELFT> void GNUELFDumper<ELFT>::printHashHistograms() {
4806   // Print histogram for the .hash section.
4807   if (this->HashTable) {
4808     if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
4809       this->reportUniqueWarning(std::move(E));
4810     else
4811       printHashHistogram(*this->HashTable);
4812   }
4813 
4814   // Print histogram for the .gnu.hash section.
4815   if (this->GnuHashTable) {
4816     if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
4817       this->reportUniqueWarning(std::move(E));
4818     else
4819       printGnuHashHistogram(*this->GnuHashTable);
4820   }
4821 }
4822 
4823 template <class ELFT> void GNUELFDumper<ELFT>::printCGProfile() {
4824   OS << "GNUStyle::printCGProfile not implemented\n";
4825 }
4826 
4827 template <class ELFT> void GNUELFDumper<ELFT>::printBBAddrMaps() {
4828   OS << "GNUStyle::printBBAddrMaps not implemented\n";
4829 }
4830 
4831 static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) {
4832   std::vector<uint64_t> Ret;
4833   const uint8_t *Cur = Data.begin();
4834   const uint8_t *End = Data.end();
4835   while (Cur != End) {
4836     unsigned Size;
4837     const char *Err;
4838     Ret.push_back(decodeULEB128(Cur, &Size, End, &Err));
4839     if (Err)
4840       return createError(Err);
4841     Cur += Size;
4842   }
4843   return Ret;
4844 }
4845 
4846 template <class ELFT>
4847 static Expected<std::vector<uint64_t>>
4848 decodeAddrsigSection(const ELFFile<ELFT> &Obj, const typename ELFT::Shdr &Sec) {
4849   Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec);
4850   if (!ContentsOrErr)
4851     return ContentsOrErr.takeError();
4852 
4853   if (Expected<std::vector<uint64_t>> SymsOrErr =
4854           toULEB128Array(*ContentsOrErr))
4855     return *SymsOrErr;
4856   else
4857     return createError("unable to decode " + describe(Obj, Sec) + ": " +
4858                        toString(SymsOrErr.takeError()));
4859 }
4860 
4861 template <class ELFT> void GNUELFDumper<ELFT>::printAddrsig() {
4862   if (!this->DotAddrsigSec)
4863     return;
4864 
4865   Expected<std::vector<uint64_t>> SymsOrErr =
4866       decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
4867   if (!SymsOrErr) {
4868     this->reportUniqueWarning(SymsOrErr.takeError());
4869     return;
4870   }
4871 
4872   StringRef Name = this->getPrintableSectionName(*this->DotAddrsigSec);
4873   OS << "\nAddress-significant symbols section '" << Name << "'"
4874      << " contains " << SymsOrErr->size() << " entries:\n";
4875   OS << "   Num: Name\n";
4876 
4877   Field Fields[2] = {0, 8};
4878   size_t SymIndex = 0;
4879   for (uint64_t Sym : *SymsOrErr) {
4880     Fields[0].Str = to_string(format_decimal(++SymIndex, 6)) + ":";
4881     Fields[1].Str = this->getStaticSymbolName(Sym);
4882     for (const Field &Entry : Fields)
4883       printField(Entry);
4884     OS << "\n";
4885   }
4886 }
4887 
4888 template <typename ELFT>
4889 static std::string getGNUProperty(uint32_t Type, uint32_t DataSize,
4890                                   ArrayRef<uint8_t> Data) {
4891   std::string str;
4892   raw_string_ostream OS(str);
4893   uint32_t PrData;
4894   auto DumpBit = [&](uint32_t Flag, StringRef Name) {
4895     if (PrData & Flag) {
4896       PrData &= ~Flag;
4897       OS << Name;
4898       if (PrData)
4899         OS << ", ";
4900     }
4901   };
4902 
4903   switch (Type) {
4904   default:
4905     OS << format("<application-specific type 0x%x>", Type);
4906     return OS.str();
4907   case GNU_PROPERTY_STACK_SIZE: {
4908     OS << "stack size: ";
4909     if (DataSize == sizeof(typename ELFT::uint))
4910       OS << formatv("{0:x}",
4911                     (uint64_t)(*(const typename ELFT::Addr *)Data.data()));
4912     else
4913       OS << format("<corrupt length: 0x%x>", DataSize);
4914     return OS.str();
4915   }
4916   case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
4917     OS << "no copy on protected";
4918     if (DataSize)
4919       OS << format(" <corrupt length: 0x%x>", DataSize);
4920     return OS.str();
4921   case GNU_PROPERTY_AARCH64_FEATURE_1_AND:
4922   case GNU_PROPERTY_X86_FEATURE_1_AND:
4923     OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: "
4924                                                         : "x86 feature: ");
4925     if (DataSize != 4) {
4926       OS << format("<corrupt length: 0x%x>", DataSize);
4927       return OS.str();
4928     }
4929     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4930     if (PrData == 0) {
4931       OS << "<None>";
4932       return OS.str();
4933     }
4934     if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
4935       DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI");
4936       DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC");
4937     } else {
4938       DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT");
4939       DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK");
4940     }
4941     if (PrData)
4942       OS << format("<unknown flags: 0x%x>", PrData);
4943     return OS.str();
4944   case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
4945   case GNU_PROPERTY_X86_FEATURE_2_USED:
4946     OS << "x86 feature "
4947        << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: ");
4948     if (DataSize != 4) {
4949       OS << format("<corrupt length: 0x%x>", DataSize);
4950       return OS.str();
4951     }
4952     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4953     if (PrData == 0) {
4954       OS << "<None>";
4955       return OS.str();
4956     }
4957     DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86");
4958     DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87");
4959     DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX");
4960     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM");
4961     DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM");
4962     DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM");
4963     DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR");
4964     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE");
4965     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT");
4966     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC");
4967     if (PrData)
4968       OS << format("<unknown flags: 0x%x>", PrData);
4969     return OS.str();
4970   case GNU_PROPERTY_X86_ISA_1_NEEDED:
4971   case GNU_PROPERTY_X86_ISA_1_USED:
4972     OS << "x86 ISA "
4973        << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: ");
4974     if (DataSize != 4) {
4975       OS << format("<corrupt length: 0x%x>", DataSize);
4976       return OS.str();
4977     }
4978     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4979     if (PrData == 0) {
4980       OS << "<None>";
4981       return OS.str();
4982     }
4983     DumpBit(GNU_PROPERTY_X86_ISA_1_BASELINE, "x86-64-baseline");
4984     DumpBit(GNU_PROPERTY_X86_ISA_1_V2, "x86-64-v2");
4985     DumpBit(GNU_PROPERTY_X86_ISA_1_V3, "x86-64-v3");
4986     DumpBit(GNU_PROPERTY_X86_ISA_1_V4, "x86-64-v4");
4987     if (PrData)
4988       OS << format("<unknown flags: 0x%x>", PrData);
4989     return OS.str();
4990   }
4991 }
4992 
4993 template <typename ELFT>
4994 static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) {
4995   using Elf_Word = typename ELFT::Word;
4996 
4997   SmallVector<std::string, 4> Properties;
4998   while (Arr.size() >= 8) {
4999     uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data());
5000     uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4);
5001     Arr = Arr.drop_front(8);
5002 
5003     // Take padding size into account if present.
5004     uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint));
5005     std::string str;
5006     raw_string_ostream OS(str);
5007     if (Arr.size() < PaddedSize) {
5008       OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize);
5009       Properties.push_back(OS.str());
5010       break;
5011     }
5012     Properties.push_back(
5013         getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize)));
5014     Arr = Arr.drop_front(PaddedSize);
5015   }
5016 
5017   if (!Arr.empty())
5018     Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
5019 
5020   return Properties;
5021 }
5022 
5023 struct GNUAbiTag {
5024   std::string OSName;
5025   std::string ABI;
5026   bool IsValid;
5027 };
5028 
5029 template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) {
5030   typedef typename ELFT::Word Elf_Word;
5031 
5032   ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()),
5033                            reinterpret_cast<const Elf_Word *>(Desc.end()));
5034 
5035   if (Words.size() < 4)
5036     return {"", "", /*IsValid=*/false};
5037 
5038   static const char *OSNames[] = {
5039       "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
5040   };
5041   StringRef OSName = "Unknown";
5042   if (Words[0] < array_lengthof(OSNames))
5043     OSName = OSNames[Words[0]];
5044   uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
5045   std::string str;
5046   raw_string_ostream ABI(str);
5047   ABI << Major << "." << Minor << "." << Patch;
5048   return {std::string(OSName), ABI.str(), /*IsValid=*/true};
5049 }
5050 
5051 static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) {
5052   std::string str;
5053   raw_string_ostream OS(str);
5054   for (uint8_t B : Desc)
5055     OS << format_hex_no_prefix(B, 2);
5056   return OS.str();
5057 }
5058 
5059 static StringRef getDescAsStringRef(ArrayRef<uint8_t> Desc) {
5060   return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5061 }
5062 
5063 template <typename ELFT>
5064 static bool printGNUNote(raw_ostream &OS, uint32_t NoteType,
5065                          ArrayRef<uint8_t> Desc) {
5066   // Return true if we were able to pretty-print the note, false otherwise.
5067   switch (NoteType) {
5068   default:
5069     return false;
5070   case ELF::NT_GNU_ABI_TAG: {
5071     const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
5072     if (!AbiTag.IsValid)
5073       OS << "    <corrupt GNU_ABI_TAG>";
5074     else
5075       OS << "    OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI;
5076     break;
5077   }
5078   case ELF::NT_GNU_BUILD_ID: {
5079     OS << "    Build ID: " << getGNUBuildId(Desc);
5080     break;
5081   }
5082   case ELF::NT_GNU_GOLD_VERSION:
5083     OS << "    Version: " << getDescAsStringRef(Desc);
5084     break;
5085   case ELF::NT_GNU_PROPERTY_TYPE_0:
5086     OS << "    Properties:";
5087     for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
5088       OS << "    " << Property << "\n";
5089     break;
5090   }
5091   OS << '\n';
5092   return true;
5093 }
5094 
5095 using AndroidNoteProperties = std::vector<std::pair<StringRef, std::string>>;
5096 static AndroidNoteProperties getAndroidNoteProperties(uint32_t NoteType,
5097                                                       ArrayRef<uint8_t> Desc) {
5098   AndroidNoteProperties Props;
5099   switch (NoteType) {
5100   case ELF::NT_ANDROID_TYPE_MEMTAG:
5101     if (Desc.empty()) {
5102       Props.emplace_back("Invalid .note.android.memtag", "");
5103       return Props;
5104     }
5105 
5106     switch (Desc[0] & NT_MEMTAG_LEVEL_MASK) {
5107     case NT_MEMTAG_LEVEL_NONE:
5108       Props.emplace_back("Tagging Mode", "NONE");
5109       break;
5110     case NT_MEMTAG_LEVEL_ASYNC:
5111       Props.emplace_back("Tagging Mode", "ASYNC");
5112       break;
5113     case NT_MEMTAG_LEVEL_SYNC:
5114       Props.emplace_back("Tagging Mode", "SYNC");
5115       break;
5116     default:
5117       Props.emplace_back(
5118           "Tagging Mode",
5119           ("Unknown (" + Twine::utohexstr(Desc[0] & NT_MEMTAG_LEVEL_MASK) + ")")
5120               .str());
5121       break;
5122     }
5123     Props.emplace_back("Heap",
5124                        (Desc[0] & NT_MEMTAG_HEAP) ? "Enabled" : "Disabled");
5125     Props.emplace_back("Stack",
5126                        (Desc[0] & NT_MEMTAG_STACK) ? "Enabled" : "Disabled");
5127     break;
5128   default:
5129     return Props;
5130   }
5131   return Props;
5132 }
5133 
5134 static bool printAndroidNote(raw_ostream &OS, uint32_t NoteType,
5135                              ArrayRef<uint8_t> Desc) {
5136   // Return true if we were able to pretty-print the note, false otherwise.
5137   AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc);
5138   if (Props.empty())
5139     return false;
5140   for (const auto &KV : Props)
5141     OS << "    " << KV.first << ": " << KV.second << '\n';
5142   OS << '\n';
5143   return true;
5144 }
5145 
5146 template <typename ELFT>
5147 static bool printLLVMOMPOFFLOADNote(raw_ostream &OS, uint32_t NoteType,
5148                                     ArrayRef<uint8_t> Desc) {
5149   switch (NoteType) {
5150   default:
5151     return false;
5152   case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
5153     OS << "    Version: " << getDescAsStringRef(Desc);
5154     break;
5155   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
5156     OS << "    Producer: " << getDescAsStringRef(Desc);
5157     break;
5158   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
5159     OS << "    Producer version: " << getDescAsStringRef(Desc);
5160     break;
5161   }
5162   OS << '\n';
5163   return true;
5164 }
5165 
5166 const EnumEntry<unsigned> FreeBSDFeatureCtlFlags[] = {
5167     {"ASLR_DISABLE", NT_FREEBSD_FCTL_ASLR_DISABLE},
5168     {"PROTMAX_DISABLE", NT_FREEBSD_FCTL_PROTMAX_DISABLE},
5169     {"STKGAP_DISABLE", NT_FREEBSD_FCTL_STKGAP_DISABLE},
5170     {"WXNEEDED", NT_FREEBSD_FCTL_WXNEEDED},
5171     {"LA48", NT_FREEBSD_FCTL_LA48},
5172     {"ASG_DISABLE", NT_FREEBSD_FCTL_ASG_DISABLE},
5173 };
5174 
5175 struct FreeBSDNote {
5176   std::string Type;
5177   std::string Value;
5178 };
5179 
5180 template <typename ELFT>
5181 static Optional<FreeBSDNote>
5182 getFreeBSDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc, bool IsCore) {
5183   if (IsCore)
5184     return None; // No pretty-printing yet.
5185   switch (NoteType) {
5186   case ELF::NT_FREEBSD_ABI_TAG:
5187     if (Desc.size() != 4)
5188       return None;
5189     return FreeBSDNote{
5190         "ABI tag",
5191         utostr(support::endian::read32<ELFT::TargetEndianness>(Desc.data()))};
5192   case ELF::NT_FREEBSD_ARCH_TAG:
5193     return FreeBSDNote{"Arch tag", toStringRef(Desc).str()};
5194   case ELF::NT_FREEBSD_FEATURE_CTL: {
5195     if (Desc.size() != 4)
5196       return None;
5197     unsigned Value =
5198         support::endian::read32<ELFT::TargetEndianness>(Desc.data());
5199     std::string FlagsStr;
5200     raw_string_ostream OS(FlagsStr);
5201     printFlags(Value, makeArrayRef(FreeBSDFeatureCtlFlags), OS);
5202     if (OS.str().empty())
5203       OS << "0x" << utohexstr(Value);
5204     else
5205       OS << "(0x" << utohexstr(Value) << ")";
5206     return FreeBSDNote{"Feature flags", OS.str()};
5207   }
5208   default:
5209     return None;
5210   }
5211 }
5212 
5213 struct AMDNote {
5214   std::string Type;
5215   std::string Value;
5216 };
5217 
5218 template <typename ELFT>
5219 static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5220   switch (NoteType) {
5221   default:
5222     return {"", ""};
5223   case ELF::NT_AMD_HSA_CODE_OBJECT_VERSION: {
5224     struct CodeObjectVersion {
5225       uint32_t MajorVersion;
5226       uint32_t MinorVersion;
5227     };
5228     if (Desc.size() != sizeof(CodeObjectVersion))
5229       return {"AMD HSA Code Object Version",
5230               "Invalid AMD HSA Code Object Version"};
5231     std::string VersionString;
5232     raw_string_ostream StrOS(VersionString);
5233     auto Version = reinterpret_cast<const CodeObjectVersion *>(Desc.data());
5234     StrOS << "[Major: " << Version->MajorVersion
5235           << ", Minor: " << Version->MinorVersion << "]";
5236     return {"AMD HSA Code Object Version", VersionString};
5237   }
5238   case ELF::NT_AMD_HSA_HSAIL: {
5239     struct HSAILProperties {
5240       uint32_t HSAILMajorVersion;
5241       uint32_t HSAILMinorVersion;
5242       uint8_t Profile;
5243       uint8_t MachineModel;
5244       uint8_t DefaultFloatRound;
5245     };
5246     if (Desc.size() != sizeof(HSAILProperties))
5247       return {"AMD HSA HSAIL Properties", "Invalid AMD HSA HSAIL Properties"};
5248     auto Properties = reinterpret_cast<const HSAILProperties *>(Desc.data());
5249     std::string HSAILPropetiesString;
5250     raw_string_ostream StrOS(HSAILPropetiesString);
5251     StrOS << "[HSAIL Major: " << Properties->HSAILMajorVersion
5252           << ", HSAIL Minor: " << Properties->HSAILMinorVersion
5253           << ", Profile: " << uint32_t(Properties->Profile)
5254           << ", Machine Model: " << uint32_t(Properties->MachineModel)
5255           << ", Default Float Round: "
5256           << uint32_t(Properties->DefaultFloatRound) << "]";
5257     return {"AMD HSA HSAIL Properties", HSAILPropetiesString};
5258   }
5259   case ELF::NT_AMD_HSA_ISA_VERSION: {
5260     struct IsaVersion {
5261       uint16_t VendorNameSize;
5262       uint16_t ArchitectureNameSize;
5263       uint32_t Major;
5264       uint32_t Minor;
5265       uint32_t Stepping;
5266     };
5267     if (Desc.size() < sizeof(IsaVersion))
5268       return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5269     auto Isa = reinterpret_cast<const IsaVersion *>(Desc.data());
5270     if (Desc.size() < sizeof(IsaVersion) +
5271                           Isa->VendorNameSize + Isa->ArchitectureNameSize ||
5272         Isa->VendorNameSize == 0 || Isa->ArchitectureNameSize == 0)
5273       return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5274     std::string IsaString;
5275     raw_string_ostream StrOS(IsaString);
5276     StrOS << "[Vendor: "
5277           << StringRef((const char*)Desc.data() + sizeof(IsaVersion), Isa->VendorNameSize - 1)
5278           << ", Architecture: "
5279           << StringRef((const char*)Desc.data() + sizeof(IsaVersion) + Isa->VendorNameSize,
5280                        Isa->ArchitectureNameSize - 1)
5281           << ", Major: " << Isa->Major << ", Minor: " << Isa->Minor
5282           << ", Stepping: " << Isa->Stepping << "]";
5283     return {"AMD HSA ISA Version", IsaString};
5284   }
5285   case ELF::NT_AMD_HSA_METADATA: {
5286     if (Desc.size() == 0)
5287       return {"AMD HSA Metadata", ""};
5288     return {
5289         "AMD HSA Metadata",
5290         std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size() - 1)};
5291   }
5292   case ELF::NT_AMD_HSA_ISA_NAME: {
5293     if (Desc.size() == 0)
5294       return {"AMD HSA ISA Name", ""};
5295     return {
5296         "AMD HSA ISA Name",
5297         std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
5298   }
5299   case ELF::NT_AMD_PAL_METADATA: {
5300     struct PALMetadata {
5301       uint32_t Key;
5302       uint32_t Value;
5303     };
5304     if (Desc.size() % sizeof(PALMetadata) != 0)
5305       return {"AMD PAL Metadata", "Invalid AMD PAL Metadata"};
5306     auto Isa = reinterpret_cast<const PALMetadata *>(Desc.data());
5307     std::string MetadataString;
5308     raw_string_ostream StrOS(MetadataString);
5309     for (size_t I = 0, E = Desc.size() / sizeof(PALMetadata); I < E; ++I) {
5310       StrOS << "[" << Isa[I].Key << ": " << Isa[I].Value << "]";
5311     }
5312     return {"AMD PAL Metadata", MetadataString};
5313   }
5314   }
5315 }
5316 
5317 struct AMDGPUNote {
5318   std::string Type;
5319   std::string Value;
5320 };
5321 
5322 template <typename ELFT>
5323 static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5324   switch (NoteType) {
5325   default:
5326     return {"", ""};
5327   case ELF::NT_AMDGPU_METADATA: {
5328     StringRef MsgPackString =
5329         StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5330     msgpack::Document MsgPackDoc;
5331     if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false))
5332       return {"", ""};
5333 
5334     AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true);
5335     std::string MetadataString;
5336     if (!Verifier.verify(MsgPackDoc.getRoot()))
5337       MetadataString = "Invalid AMDGPU Metadata\n";
5338 
5339     raw_string_ostream StrOS(MetadataString);
5340     if (MsgPackDoc.getRoot().isScalar()) {
5341       // TODO: passing a scalar root to toYAML() asserts:
5342       // (PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar &&
5343       //    "plain scalar documents are not supported")
5344       // To avoid this crash we print the raw data instead.
5345       return {"", ""};
5346     }
5347     MsgPackDoc.toYAML(StrOS);
5348     return {"AMDGPU Metadata", StrOS.str()};
5349   }
5350   }
5351 }
5352 
5353 struct CoreFileMapping {
5354   uint64_t Start, End, Offset;
5355   StringRef Filename;
5356 };
5357 
5358 struct CoreNote {
5359   uint64_t PageSize;
5360   std::vector<CoreFileMapping> Mappings;
5361 };
5362 
5363 static Expected<CoreNote> readCoreNote(DataExtractor Desc) {
5364   // Expected format of the NT_FILE note description:
5365   // 1. # of file mappings (call it N)
5366   // 2. Page size
5367   // 3. N (start, end, offset) triples
5368   // 4. N packed filenames (null delimited)
5369   // Each field is an Elf_Addr, except for filenames which are char* strings.
5370 
5371   CoreNote Ret;
5372   const int Bytes = Desc.getAddressSize();
5373 
5374   if (!Desc.isValidOffsetForAddress(2))
5375     return createError("the note of size 0x" + Twine::utohexstr(Desc.size()) +
5376                        " is too short, expected at least 0x" +
5377                        Twine::utohexstr(Bytes * 2));
5378   if (Desc.getData().back() != 0)
5379     return createError("the note is not NUL terminated");
5380 
5381   uint64_t DescOffset = 0;
5382   uint64_t FileCount = Desc.getAddress(&DescOffset);
5383   Ret.PageSize = Desc.getAddress(&DescOffset);
5384 
5385   if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes))
5386     return createError("unable to read file mappings (found " +
5387                        Twine(FileCount) + "): the note of size 0x" +
5388                        Twine::utohexstr(Desc.size()) + " is too short");
5389 
5390   uint64_t FilenamesOffset = 0;
5391   DataExtractor Filenames(
5392       Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes),
5393       Desc.isLittleEndian(), Desc.getAddressSize());
5394 
5395   Ret.Mappings.resize(FileCount);
5396   size_t I = 0;
5397   for (CoreFileMapping &Mapping : Ret.Mappings) {
5398     ++I;
5399     if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1))
5400       return createError(
5401           "unable to read the file name for the mapping with index " +
5402           Twine(I) + ": the note of size 0x" + Twine::utohexstr(Desc.size()) +
5403           " is truncated");
5404     Mapping.Start = Desc.getAddress(&DescOffset);
5405     Mapping.End = Desc.getAddress(&DescOffset);
5406     Mapping.Offset = Desc.getAddress(&DescOffset);
5407     Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset);
5408   }
5409 
5410   return Ret;
5411 }
5412 
5413 template <typename ELFT>
5414 static void printCoreNote(raw_ostream &OS, const CoreNote &Note) {
5415   // Length of "0x<address>" string.
5416   const int FieldWidth = ELFT::Is64Bits ? 18 : 10;
5417 
5418   OS << "    Page size: " << format_decimal(Note.PageSize, 0) << '\n';
5419   OS << "    " << right_justify("Start", FieldWidth) << "  "
5420      << right_justify("End", FieldWidth) << "  "
5421      << right_justify("Page Offset", FieldWidth) << '\n';
5422   for (const CoreFileMapping &Mapping : Note.Mappings) {
5423     OS << "    " << format_hex(Mapping.Start, FieldWidth) << "  "
5424        << format_hex(Mapping.End, FieldWidth) << "  "
5425        << format_hex(Mapping.Offset, FieldWidth) << "\n        "
5426        << Mapping.Filename << '\n';
5427   }
5428 }
5429 
5430 const NoteType GenericNoteTypes[] = {
5431     {ELF::NT_VERSION, "NT_VERSION (version)"},
5432     {ELF::NT_ARCH, "NT_ARCH (architecture)"},
5433     {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"},
5434     {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"},
5435 };
5436 
5437 const NoteType GNUNoteTypes[] = {
5438     {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
5439     {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
5440     {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
5441     {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
5442     {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
5443 };
5444 
5445 const NoteType FreeBSDCoreNoteTypes[] = {
5446     {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
5447     {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
5448     {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
5449     {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
5450     {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
5451     {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
5452     {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
5453     {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
5454     {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
5455      "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
5456     {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
5457 };
5458 
5459 const NoteType FreeBSDNoteTypes[] = {
5460     {ELF::NT_FREEBSD_ABI_TAG, "NT_FREEBSD_ABI_TAG (ABI version tag)"},
5461     {ELF::NT_FREEBSD_NOINIT_TAG, "NT_FREEBSD_NOINIT_TAG (no .init tag)"},
5462     {ELF::NT_FREEBSD_ARCH_TAG, "NT_FREEBSD_ARCH_TAG (architecture tag)"},
5463     {ELF::NT_FREEBSD_FEATURE_CTL,
5464      "NT_FREEBSD_FEATURE_CTL (FreeBSD feature control)"},
5465 };
5466 
5467 const NoteType NetBSDCoreNoteTypes[] = {
5468     {ELF::NT_NETBSDCORE_PROCINFO,
5469      "NT_NETBSDCORE_PROCINFO (procinfo structure)"},
5470     {ELF::NT_NETBSDCORE_AUXV, "NT_NETBSDCORE_AUXV (ELF auxiliary vector data)"},
5471     {ELF::NT_NETBSDCORE_LWPSTATUS, "PT_LWPSTATUS (ptrace_lwpstatus structure)"},
5472 };
5473 
5474 const NoteType OpenBSDCoreNoteTypes[] = {
5475     {ELF::NT_OPENBSD_PROCINFO, "NT_OPENBSD_PROCINFO (procinfo structure)"},
5476     {ELF::NT_OPENBSD_AUXV, "NT_OPENBSD_AUXV (ELF auxiliary vector data)"},
5477     {ELF::NT_OPENBSD_REGS, "NT_OPENBSD_REGS (regular registers)"},
5478     {ELF::NT_OPENBSD_FPREGS, "NT_OPENBSD_FPREGS (floating point registers)"},
5479     {ELF::NT_OPENBSD_WCOOKIE, "NT_OPENBSD_WCOOKIE (window cookie)"},
5480 };
5481 
5482 const NoteType AMDNoteTypes[] = {
5483     {ELF::NT_AMD_HSA_CODE_OBJECT_VERSION,
5484      "NT_AMD_HSA_CODE_OBJECT_VERSION (AMD HSA Code Object Version)"},
5485     {ELF::NT_AMD_HSA_HSAIL, "NT_AMD_HSA_HSAIL (AMD HSA HSAIL Properties)"},
5486     {ELF::NT_AMD_HSA_ISA_VERSION, "NT_AMD_HSA_ISA_VERSION (AMD HSA ISA Version)"},
5487     {ELF::NT_AMD_HSA_METADATA, "NT_AMD_HSA_METADATA (AMD HSA Metadata)"},
5488     {ELF::NT_AMD_HSA_ISA_NAME, "NT_AMD_HSA_ISA_NAME (AMD HSA ISA Name)"},
5489     {ELF::NT_AMD_PAL_METADATA, "NT_AMD_PAL_METADATA (AMD PAL Metadata)"},
5490 };
5491 
5492 const NoteType AMDGPUNoteTypes[] = {
5493     {ELF::NT_AMDGPU_METADATA, "NT_AMDGPU_METADATA (AMDGPU Metadata)"},
5494 };
5495 
5496 const NoteType LLVMOMPOFFLOADNoteTypes[] = {
5497     {ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION,
5498      "NT_LLVM_OPENMP_OFFLOAD_VERSION (image format version)"},
5499     {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER,
5500      "NT_LLVM_OPENMP_OFFLOAD_PRODUCER (producing toolchain)"},
5501     {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION,
5502      "NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION (producing toolchain version)"},
5503 };
5504 
5505 const NoteType AndroidNoteTypes[] = {
5506     {ELF::NT_ANDROID_TYPE_IDENT, "NT_ANDROID_TYPE_IDENT"},
5507     {ELF::NT_ANDROID_TYPE_KUSER, "NT_ANDROID_TYPE_KUSER"},
5508     {ELF::NT_ANDROID_TYPE_MEMTAG,
5509      "NT_ANDROID_TYPE_MEMTAG (Android memory tagging information)"},
5510 };
5511 
5512 const NoteType CoreNoteTypes[] = {
5513     {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"},
5514     {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"},
5515     {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"},
5516     {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"},
5517     {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"},
5518     {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"},
5519     {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"},
5520     {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"},
5521     {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"},
5522     {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"},
5523     {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"},
5524 
5525     {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"},
5526     {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"},
5527     {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"},
5528     {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"},
5529     {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"},
5530     {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"},
5531     {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"},
5532     {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
5533     {ELF::NT_PPC_TM_CFPR,
5534      "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
5535     {ELF::NT_PPC_TM_CVMX,
5536      "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
5537     {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
5538     {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
5539     {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
5540     {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
5541     {ELF::NT_PPC_TM_CDSCR, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
5542 
5543     {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"},
5544     {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"},
5545     {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"},
5546 
5547     {ELF::NT_S390_HIGH_GPRS, "NT_S390_HIGH_GPRS (s390 upper register halves)"},
5548     {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"},
5549     {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"},
5550     {ELF::NT_S390_TODPREG, "NT_S390_TODPREG (s390 TOD programmable register)"},
5551     {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"},
5552     {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"},
5553     {ELF::NT_S390_LAST_BREAK,
5554      "NT_S390_LAST_BREAK (s390 last breaking event address)"},
5555     {ELF::NT_S390_SYSTEM_CALL,
5556      "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
5557     {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"},
5558     {ELF::NT_S390_VXRS_LOW,
5559      "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
5560     {ELF::NT_S390_VXRS_HIGH, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
5561     {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"},
5562     {ELF::NT_S390_GS_BC,
5563      "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
5564 
5565     {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"},
5566     {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"},
5567     {ELF::NT_ARM_HW_BREAK,
5568      "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
5569     {ELF::NT_ARM_HW_WATCH,
5570      "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
5571 
5572     {ELF::NT_FILE, "NT_FILE (mapped files)"},
5573     {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"},
5574     {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"},
5575 };
5576 
5577 template <class ELFT>
5578 StringRef getNoteTypeName(const typename ELFT::Note &Note, unsigned ELFType) {
5579   uint32_t Type = Note.getType();
5580   auto FindNote = [&](ArrayRef<NoteType> V) -> StringRef {
5581     for (const NoteType &N : V)
5582       if (N.ID == Type)
5583         return N.Name;
5584     return "";
5585   };
5586 
5587   StringRef Name = Note.getName();
5588   if (Name == "GNU")
5589     return FindNote(GNUNoteTypes);
5590   if (Name == "FreeBSD") {
5591     if (ELFType == ELF::ET_CORE) {
5592       // FreeBSD also places the generic core notes in the FreeBSD namespace.
5593       StringRef Result = FindNote(FreeBSDCoreNoteTypes);
5594       if (!Result.empty())
5595         return Result;
5596       return FindNote(CoreNoteTypes);
5597     } else {
5598       return FindNote(FreeBSDNoteTypes);
5599     }
5600   }
5601   if (ELFType == ELF::ET_CORE && Name.startswith("NetBSD-CORE")) {
5602     StringRef Result = FindNote(NetBSDCoreNoteTypes);
5603     if (!Result.empty())
5604       return Result;
5605     return FindNote(CoreNoteTypes);
5606   }
5607   if (ELFType == ELF::ET_CORE && Name.startswith("OpenBSD")) {
5608     // OpenBSD also places the generic core notes in the OpenBSD namespace.
5609     StringRef Result = FindNote(OpenBSDCoreNoteTypes);
5610     if (!Result.empty())
5611       return Result;
5612     return FindNote(CoreNoteTypes);
5613   }
5614   if (Name == "AMD")
5615     return FindNote(AMDNoteTypes);
5616   if (Name == "AMDGPU")
5617     return FindNote(AMDGPUNoteTypes);
5618   if (Name == "LLVMOMPOFFLOAD")
5619     return FindNote(LLVMOMPOFFLOADNoteTypes);
5620   if (Name == "Android")
5621     return FindNote(AndroidNoteTypes);
5622 
5623   if (ELFType == ELF::ET_CORE)
5624     return FindNote(CoreNoteTypes);
5625   return FindNote(GenericNoteTypes);
5626 }
5627 
5628 template <class ELFT>
5629 static void printNotesHelper(
5630     const ELFDumper<ELFT> &Dumper,
5631     llvm::function_ref<void(Optional<StringRef>, typename ELFT::Off,
5632                             typename ELFT::Addr)>
5633         StartNotesFn,
5634     llvm::function_ref<Error(const typename ELFT::Note &, bool)> ProcessNoteFn,
5635     llvm::function_ref<void()> FinishNotesFn) {
5636   const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
5637   bool IsCoreFile = Obj.getHeader().e_type == ELF::ET_CORE;
5638 
5639   ArrayRef<typename ELFT::Shdr> Sections = cantFail(Obj.sections());
5640   if (!IsCoreFile && !Sections.empty()) {
5641     for (const typename ELFT::Shdr &S : Sections) {
5642       if (S.sh_type != SHT_NOTE)
5643         continue;
5644       StartNotesFn(expectedToOptional(Obj.getSectionName(S)), S.sh_offset,
5645                    S.sh_size);
5646       Error Err = Error::success();
5647       size_t I = 0;
5648       for (const typename ELFT::Note Note : Obj.notes(S, Err)) {
5649         if (Error E = ProcessNoteFn(Note, IsCoreFile))
5650           Dumper.reportUniqueWarning(
5651               "unable to read note with index " + Twine(I) + " from the " +
5652               describe(Obj, S) + ": " + toString(std::move(E)));
5653         ++I;
5654       }
5655       if (Err)
5656         Dumper.reportUniqueWarning("unable to read notes from the " +
5657                                    describe(Obj, S) + ": " +
5658                                    toString(std::move(Err)));
5659       FinishNotesFn();
5660     }
5661     return;
5662   }
5663 
5664   Expected<ArrayRef<typename ELFT::Phdr>> PhdrsOrErr = Obj.program_headers();
5665   if (!PhdrsOrErr) {
5666     Dumper.reportUniqueWarning(
5667         "unable to read program headers to locate the PT_NOTE segment: " +
5668         toString(PhdrsOrErr.takeError()));
5669     return;
5670   }
5671 
5672   for (size_t I = 0, E = (*PhdrsOrErr).size(); I != E; ++I) {
5673     const typename ELFT::Phdr &P = (*PhdrsOrErr)[I];
5674     if (P.p_type != PT_NOTE)
5675       continue;
5676     StartNotesFn(/*SecName=*/None, P.p_offset, P.p_filesz);
5677     Error Err = Error::success();
5678     size_t Index = 0;
5679     for (const typename ELFT::Note Note : Obj.notes(P, Err)) {
5680       if (Error E = ProcessNoteFn(Note, IsCoreFile))
5681         Dumper.reportUniqueWarning("unable to read note with index " +
5682                                    Twine(Index) +
5683                                    " from the PT_NOTE segment with index " +
5684                                    Twine(I) + ": " + toString(std::move(E)));
5685       ++Index;
5686     }
5687     if (Err)
5688       Dumper.reportUniqueWarning(
5689           "unable to read notes from the PT_NOTE segment with index " +
5690           Twine(I) + ": " + toString(std::move(Err)));
5691     FinishNotesFn();
5692   }
5693 }
5694 
5695 template <class ELFT> void GNUELFDumper<ELFT>::printNotes() {
5696   bool IsFirstHeader = true;
5697   auto PrintHeader = [&](Optional<StringRef> SecName,
5698                          const typename ELFT::Off Offset,
5699                          const typename ELFT::Addr Size) {
5700     // Print a newline between notes sections to match GNU readelf.
5701     if (!IsFirstHeader) {
5702       OS << '\n';
5703     } else {
5704       IsFirstHeader = false;
5705     }
5706 
5707     OS << "Displaying notes found ";
5708 
5709     if (SecName)
5710       OS << "in: " << *SecName << "\n";
5711     else
5712       OS << "at file offset " << format_hex(Offset, 10) << " with length "
5713          << format_hex(Size, 10) << ":\n";
5714 
5715     OS << "  Owner                Data size \tDescription\n";
5716   };
5717 
5718   auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
5719     StringRef Name = Note.getName();
5720     ArrayRef<uint8_t> Descriptor = Note.getDesc();
5721     Elf_Word Type = Note.getType();
5722 
5723     // Print the note owner/type.
5724     OS << "  " << left_justify(Name, 20) << ' '
5725        << format_hex(Descriptor.size(), 10) << '\t';
5726 
5727     StringRef NoteType =
5728         getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
5729     if (!NoteType.empty())
5730       OS << NoteType << '\n';
5731     else
5732       OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n";
5733 
5734     // Print the description, or fallback to printing raw bytes for unknown
5735     // owners/if we fail to pretty-print the contents.
5736     if (Name == "GNU") {
5737       if (printGNUNote<ELFT>(OS, Type, Descriptor))
5738         return Error::success();
5739     } else if (Name == "FreeBSD") {
5740       if (Optional<FreeBSDNote> N =
5741               getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
5742         OS << "    " << N->Type << ": " << N->Value << '\n';
5743         return Error::success();
5744       }
5745     } else if (Name == "AMD") {
5746       const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
5747       if (!N.Type.empty()) {
5748         OS << "    " << N.Type << ":\n        " << N.Value << '\n';
5749         return Error::success();
5750       }
5751     } else if (Name == "AMDGPU") {
5752       const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
5753       if (!N.Type.empty()) {
5754         OS << "    " << N.Type << ":\n        " << N.Value << '\n';
5755         return Error::success();
5756       }
5757     } else if (Name == "LLVMOMPOFFLOAD") {
5758       if (printLLVMOMPOFFLOADNote<ELFT>(OS, Type, Descriptor))
5759         return Error::success();
5760     } else if (Name == "CORE") {
5761       if (Type == ELF::NT_FILE) {
5762         DataExtractor DescExtractor(Descriptor,
5763                                     ELFT::TargetEndianness == support::little,
5764                                     sizeof(Elf_Addr));
5765         if (Expected<CoreNote> NoteOrErr = readCoreNote(DescExtractor)) {
5766           printCoreNote<ELFT>(OS, *NoteOrErr);
5767           return Error::success();
5768         } else {
5769           return NoteOrErr.takeError();
5770         }
5771       }
5772     } else if (Name == "Android") {
5773       if (printAndroidNote(OS, Type, Descriptor))
5774         return Error::success();
5775     }
5776     if (!Descriptor.empty()) {
5777       OS << "   description data:";
5778       for (uint8_t B : Descriptor)
5779         OS << " " << format("%02x", B);
5780       OS << '\n';
5781     }
5782     return Error::success();
5783   };
5784 
5785   printNotesHelper(*this, PrintHeader, ProcessNote, []() {});
5786 }
5787 
5788 template <class ELFT> void GNUELFDumper<ELFT>::printELFLinkerOptions() {
5789   OS << "printELFLinkerOptions not implemented!\n";
5790 }
5791 
5792 template <class ELFT>
5793 void ELFDumper<ELFT>::printDependentLibsHelper(
5794     function_ref<void(const Elf_Shdr &)> OnSectionStart,
5795     function_ref<void(StringRef, uint64_t)> OnLibEntry) {
5796   auto Warn = [this](unsigned SecNdx, StringRef Msg) {
5797     this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " +
5798                               Twine(SecNdx) + " is broken: " + Msg);
5799   };
5800 
5801   unsigned I = -1;
5802   for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
5803     ++I;
5804     if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES)
5805       continue;
5806 
5807     OnSectionStart(Shdr);
5808 
5809     Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Shdr);
5810     if (!ContentsOrErr) {
5811       Warn(I, toString(ContentsOrErr.takeError()));
5812       continue;
5813     }
5814 
5815     ArrayRef<uint8_t> Contents = *ContentsOrErr;
5816     if (!Contents.empty() && Contents.back() != 0) {
5817       Warn(I, "the content is not null-terminated");
5818       continue;
5819     }
5820 
5821     for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) {
5822       StringRef Lib((const char *)I);
5823       OnLibEntry(Lib, I - Contents.begin());
5824       I += Lib.size() + 1;
5825     }
5826   }
5827 }
5828 
5829 template <class ELFT>
5830 void ELFDumper<ELFT>::forEachRelocationDo(
5831     const Elf_Shdr &Sec, bool RawRelr,
5832     llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
5833                             const Elf_Shdr &, const Elf_Shdr *)>
5834         RelRelaFn,
5835     llvm::function_ref<void(const Elf_Relr &)> RelrFn) {
5836   auto Warn = [&](Error &&E,
5837                   const Twine &Prefix = "unable to read relocations from") {
5838     this->reportUniqueWarning(Prefix + " " + describe(Sec) + ": " +
5839                               toString(std::move(E)));
5840   };
5841 
5842   // SHT_RELR/SHT_ANDROID_RELR sections do not have an associated symbol table.
5843   // For them we should not treat the value of the sh_link field as an index of
5844   // a symbol table.
5845   const Elf_Shdr *SymTab;
5846   if (Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_RELR) {
5847     Expected<const Elf_Shdr *> SymTabOrErr = Obj.getSection(Sec.sh_link);
5848     if (!SymTabOrErr) {
5849       Warn(SymTabOrErr.takeError(), "unable to locate a symbol table for");
5850       return;
5851     }
5852     SymTab = *SymTabOrErr;
5853   }
5854 
5855   unsigned RelNdx = 0;
5856   const bool IsMips64EL = this->Obj.isMips64EL();
5857   switch (Sec.sh_type) {
5858   case ELF::SHT_REL:
5859     if (Expected<Elf_Rel_Range> RangeOrErr = Obj.rels(Sec)) {
5860       for (const Elf_Rel &R : *RangeOrErr)
5861         RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5862     } else {
5863       Warn(RangeOrErr.takeError());
5864     }
5865     break;
5866   case ELF::SHT_RELA:
5867     if (Expected<Elf_Rela_Range> RangeOrErr = Obj.relas(Sec)) {
5868       for (const Elf_Rela &R : *RangeOrErr)
5869         RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5870     } else {
5871       Warn(RangeOrErr.takeError());
5872     }
5873     break;
5874   case ELF::SHT_RELR:
5875   case ELF::SHT_ANDROID_RELR: {
5876     Expected<Elf_Relr_Range> RangeOrErr = Obj.relrs(Sec);
5877     if (!RangeOrErr) {
5878       Warn(RangeOrErr.takeError());
5879       break;
5880     }
5881     if (RawRelr) {
5882       for (const Elf_Relr &R : *RangeOrErr)
5883         RelrFn(R);
5884       break;
5885     }
5886 
5887     for (const Elf_Rel &R : Obj.decode_relrs(*RangeOrErr))
5888       RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec,
5889                 /*SymTab=*/nullptr);
5890     break;
5891   }
5892   case ELF::SHT_ANDROID_REL:
5893   case ELF::SHT_ANDROID_RELA:
5894     if (Expected<std::vector<Elf_Rela>> RelasOrErr = Obj.android_relas(Sec)) {
5895       for (const Elf_Rela &R : *RelasOrErr)
5896         RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5897     } else {
5898       Warn(RelasOrErr.takeError());
5899     }
5900     break;
5901   }
5902 }
5903 
5904 template <class ELFT>
5905 StringRef ELFDumper<ELFT>::getPrintableSectionName(const Elf_Shdr &Sec) const {
5906   StringRef Name = "<?>";
5907   if (Expected<StringRef> SecNameOrErr =
5908           Obj.getSectionName(Sec, this->WarningHandler))
5909     Name = *SecNameOrErr;
5910   else
5911     this->reportUniqueWarning("unable to get the name of " + describe(Sec) +
5912                               ": " + toString(SecNameOrErr.takeError()));
5913   return Name;
5914 }
5915 
5916 template <class ELFT> void GNUELFDumper<ELFT>::printDependentLibs() {
5917   bool SectionStarted = false;
5918   struct NameOffset {
5919     StringRef Name;
5920     uint64_t Offset;
5921   };
5922   std::vector<NameOffset> SecEntries;
5923   NameOffset Current;
5924   auto PrintSection = [&]() {
5925     OS << "Dependent libraries section " << Current.Name << " at offset "
5926        << format_hex(Current.Offset, 1) << " contains " << SecEntries.size()
5927        << " entries:\n";
5928     for (NameOffset Entry : SecEntries)
5929       OS << "  [" << format("%6" PRIx64, Entry.Offset) << "]  " << Entry.Name
5930          << "\n";
5931     OS << "\n";
5932     SecEntries.clear();
5933   };
5934 
5935   auto OnSectionStart = [&](const Elf_Shdr &Shdr) {
5936     if (SectionStarted)
5937       PrintSection();
5938     SectionStarted = true;
5939     Current.Offset = Shdr.sh_offset;
5940     Current.Name = this->getPrintableSectionName(Shdr);
5941   };
5942   auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) {
5943     SecEntries.push_back(NameOffset{Lib, Offset});
5944   };
5945 
5946   this->printDependentLibsHelper(OnSectionStart, OnLibEntry);
5947   if (SectionStarted)
5948     PrintSection();
5949 }
5950 
5951 template <class ELFT>
5952 SmallVector<uint32_t> ELFDumper<ELFT>::getSymbolIndexesForFunctionAddress(
5953     uint64_t SymValue, Optional<const Elf_Shdr *> FunctionSec) {
5954   SmallVector<uint32_t> SymbolIndexes;
5955   if (!this->AddressToIndexMap) {
5956     // Populate the address to index map upon the first invocation of this
5957     // function.
5958     this->AddressToIndexMap.emplace();
5959     if (this->DotSymtabSec) {
5960       if (Expected<Elf_Sym_Range> SymsOrError =
5961               Obj.symbols(this->DotSymtabSec)) {
5962         uint32_t Index = (uint32_t)-1;
5963         for (const Elf_Sym &Sym : *SymsOrError) {
5964           ++Index;
5965 
5966           if (Sym.st_shndx == ELF::SHN_UNDEF || Sym.getType() != ELF::STT_FUNC)
5967             continue;
5968 
5969           Expected<uint64_t> SymAddrOrErr =
5970               ObjF.toSymbolRef(this->DotSymtabSec, Index).getAddress();
5971           if (!SymAddrOrErr) {
5972             std::string Name = this->getStaticSymbolName(Index);
5973             reportUniqueWarning("unable to get address of symbol '" + Name +
5974                                 "': " + toString(SymAddrOrErr.takeError()));
5975             return SymbolIndexes;
5976           }
5977 
5978           (*this->AddressToIndexMap)[*SymAddrOrErr].push_back(Index);
5979         }
5980       } else {
5981         reportUniqueWarning("unable to read the symbol table: " +
5982                             toString(SymsOrError.takeError()));
5983       }
5984     }
5985   }
5986 
5987   auto Symbols = this->AddressToIndexMap->find(SymValue);
5988   if (Symbols == this->AddressToIndexMap->end())
5989     return SymbolIndexes;
5990 
5991   for (uint32_t Index : Symbols->second) {
5992     // Check if the symbol is in the right section. FunctionSec == None
5993     // means "any section".
5994     if (FunctionSec) {
5995       const Elf_Sym &Sym = *cantFail(Obj.getSymbol(this->DotSymtabSec, Index));
5996       if (Expected<const Elf_Shdr *> SecOrErr =
5997               Obj.getSection(Sym, this->DotSymtabSec,
5998                              this->getShndxTable(this->DotSymtabSec))) {
5999         if (*FunctionSec != *SecOrErr)
6000           continue;
6001       } else {
6002         std::string Name = this->getStaticSymbolName(Index);
6003         // Note: it is impossible to trigger this error currently, it is
6004         // untested.
6005         reportUniqueWarning("unable to get section of symbol '" + Name +
6006                             "': " + toString(SecOrErr.takeError()));
6007         return SymbolIndexes;
6008       }
6009     }
6010 
6011     SymbolIndexes.push_back(Index);
6012   }
6013 
6014   return SymbolIndexes;
6015 }
6016 
6017 template <class ELFT>
6018 bool ELFDumper<ELFT>::printFunctionStackSize(
6019     uint64_t SymValue, Optional<const Elf_Shdr *> FunctionSec,
6020     const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset) {
6021   SmallVector<uint32_t> FuncSymIndexes =
6022       this->getSymbolIndexesForFunctionAddress(SymValue, FunctionSec);
6023   if (FuncSymIndexes.empty())
6024     reportUniqueWarning(
6025         "could not identify function symbol for stack size entry in " +
6026         describe(StackSizeSec));
6027 
6028   // Extract the size. The expectation is that Offset is pointing to the right
6029   // place, i.e. past the function address.
6030   Error Err = Error::success();
6031   uint64_t StackSize = Data.getULEB128(Offset, &Err);
6032   if (Err) {
6033     reportUniqueWarning("could not extract a valid stack size from " +
6034                         describe(StackSizeSec) + ": " +
6035                         toString(std::move(Err)));
6036     return false;
6037   }
6038 
6039   if (FuncSymIndexes.empty()) {
6040     printStackSizeEntry(StackSize, {"?"});
6041   } else {
6042     SmallVector<std::string> FuncSymNames;
6043     for (uint32_t Index : FuncSymIndexes)
6044       FuncSymNames.push_back(this->getStaticSymbolName(Index));
6045     printStackSizeEntry(StackSize, FuncSymNames);
6046   }
6047 
6048   return true;
6049 }
6050 
6051 template <class ELFT>
6052 void GNUELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
6053                                              ArrayRef<std::string> FuncNames) {
6054   OS.PadToColumn(2);
6055   OS << format_decimal(Size, 11);
6056   OS.PadToColumn(18);
6057 
6058   OS << join(FuncNames.begin(), FuncNames.end(), ", ") << "\n";
6059 }
6060 
6061 template <class ELFT>
6062 void ELFDumper<ELFT>::printStackSize(const Relocation<ELFT> &R,
6063                                      const Elf_Shdr &RelocSec, unsigned Ndx,
6064                                      const Elf_Shdr *SymTab,
6065                                      const Elf_Shdr *FunctionSec,
6066                                      const Elf_Shdr &StackSizeSec,
6067                                      const RelocationResolver &Resolver,
6068                                      DataExtractor Data) {
6069   // This function ignores potentially erroneous input, unless it is directly
6070   // related to stack size reporting.
6071   const Elf_Sym *Sym = nullptr;
6072   Expected<RelSymbol<ELFT>> TargetOrErr = this->getRelocationTarget(R, SymTab);
6073   if (!TargetOrErr)
6074     reportUniqueWarning("unable to get the target of relocation with index " +
6075                         Twine(Ndx) + " in " + describe(RelocSec) + ": " +
6076                         toString(TargetOrErr.takeError()));
6077   else
6078     Sym = TargetOrErr->Sym;
6079 
6080   uint64_t RelocSymValue = 0;
6081   if (Sym) {
6082     Expected<const Elf_Shdr *> SectionOrErr =
6083         this->Obj.getSection(*Sym, SymTab, this->getShndxTable(SymTab));
6084     if (!SectionOrErr) {
6085       reportUniqueWarning(
6086           "cannot identify the section for relocation symbol '" +
6087           (*TargetOrErr).Name + "': " + toString(SectionOrErr.takeError()));
6088     } else if (*SectionOrErr != FunctionSec) {
6089       reportUniqueWarning("relocation symbol '" + (*TargetOrErr).Name +
6090                           "' is not in the expected section");
6091       // Pretend that the symbol is in the correct section and report its
6092       // stack size anyway.
6093       FunctionSec = *SectionOrErr;
6094     }
6095 
6096     RelocSymValue = Sym->st_value;
6097   }
6098 
6099   uint64_t Offset = R.Offset;
6100   if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6101     reportUniqueWarning("found invalid relocation offset (0x" +
6102                         Twine::utohexstr(Offset) + ") into " +
6103                         describe(StackSizeSec) +
6104                         " while trying to extract a stack size entry");
6105     return;
6106   }
6107 
6108   uint64_t SymValue = Resolver(R.Type, Offset, RelocSymValue,
6109                                Data.getAddress(&Offset), R.Addend.value_or(0));
6110   this->printFunctionStackSize(SymValue, FunctionSec, StackSizeSec, Data,
6111                                &Offset);
6112 }
6113 
6114 template <class ELFT>
6115 void ELFDumper<ELFT>::printNonRelocatableStackSizes(
6116     std::function<void()> PrintHeader) {
6117   // This function ignores potentially erroneous input, unless it is directly
6118   // related to stack size reporting.
6119   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
6120     if (this->getPrintableSectionName(Sec) != ".stack_sizes")
6121       continue;
6122     PrintHeader();
6123     ArrayRef<uint8_t> Contents =
6124         unwrapOrError(this->FileName, Obj.getSectionContents(Sec));
6125     DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6126     uint64_t Offset = 0;
6127     while (Offset < Contents.size()) {
6128       // The function address is followed by a ULEB representing the stack
6129       // size. Check for an extra byte before we try to process the entry.
6130       if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6131         reportUniqueWarning(
6132             describe(Sec) +
6133             " ended while trying to extract a stack size entry");
6134         break;
6135       }
6136       uint64_t SymValue = Data.getAddress(&Offset);
6137       if (!printFunctionStackSize(SymValue, /*FunctionSec=*/None, Sec, Data,
6138                                   &Offset))
6139         break;
6140     }
6141   }
6142 }
6143 
6144 template <class ELFT>
6145 void ELFDumper<ELFT>::getSectionAndRelocations(
6146     std::function<bool(const Elf_Shdr &)> IsMatch,
6147     llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> &SecToRelocMap) {
6148   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
6149     if (IsMatch(Sec))
6150       if (SecToRelocMap.insert(std::make_pair(&Sec, (const Elf_Shdr *)nullptr))
6151               .second)
6152         continue;
6153 
6154     if (Sec.sh_type != ELF::SHT_RELA && Sec.sh_type != ELF::SHT_REL)
6155       continue;
6156 
6157     Expected<const Elf_Shdr *> RelSecOrErr = Obj.getSection(Sec.sh_info);
6158     if (!RelSecOrErr) {
6159       reportUniqueWarning(describe(Sec) +
6160                           ": failed to get a relocated section: " +
6161                           toString(RelSecOrErr.takeError()));
6162       continue;
6163     }
6164     const Elf_Shdr *ContentsSec = *RelSecOrErr;
6165     if (IsMatch(*ContentsSec))
6166       SecToRelocMap[ContentsSec] = &Sec;
6167   }
6168 }
6169 
6170 template <class ELFT>
6171 void ELFDumper<ELFT>::printRelocatableStackSizes(
6172     std::function<void()> PrintHeader) {
6173   // Build a map between stack size sections and their corresponding relocation
6174   // sections.
6175   llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> StackSizeRelocMap;
6176   auto IsMatch = [&](const Elf_Shdr &Sec) -> bool {
6177     StringRef SectionName;
6178     if (Expected<StringRef> NameOrErr = Obj.getSectionName(Sec))
6179       SectionName = *NameOrErr;
6180     else
6181       consumeError(NameOrErr.takeError());
6182 
6183     return SectionName == ".stack_sizes";
6184   };
6185   getSectionAndRelocations(IsMatch, StackSizeRelocMap);
6186 
6187   for (const auto &StackSizeMapEntry : StackSizeRelocMap) {
6188     PrintHeader();
6189     const Elf_Shdr *StackSizesELFSec = StackSizeMapEntry.first;
6190     const Elf_Shdr *RelocSec = StackSizeMapEntry.second;
6191 
6192     // Warn about stack size sections without a relocation section.
6193     if (!RelocSec) {
6194       reportWarning(createError(".stack_sizes (" + describe(*StackSizesELFSec) +
6195                                 ") does not have a corresponding "
6196                                 "relocation section"),
6197                     FileName);
6198       continue;
6199     }
6200 
6201     // A .stack_sizes section header's sh_link field is supposed to point
6202     // to the section that contains the functions whose stack sizes are
6203     // described in it.
6204     const Elf_Shdr *FunctionSec = unwrapOrError(
6205         this->FileName, Obj.getSection(StackSizesELFSec->sh_link));
6206 
6207     SupportsRelocation IsSupportedFn;
6208     RelocationResolver Resolver;
6209     std::tie(IsSupportedFn, Resolver) = getRelocationResolver(this->ObjF);
6210     ArrayRef<uint8_t> Contents =
6211         unwrapOrError(this->FileName, Obj.getSectionContents(*StackSizesELFSec));
6212     DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6213 
6214     forEachRelocationDo(
6215         *RelocSec, /*RawRelr=*/false,
6216         [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
6217             const Elf_Shdr *SymTab) {
6218           if (!IsSupportedFn || !IsSupportedFn(R.Type)) {
6219             reportUniqueWarning(
6220                 describe(*RelocSec) +
6221                 " contains an unsupported relocation with index " + Twine(Ndx) +
6222                 ": " + Obj.getRelocationTypeName(R.Type));
6223             return;
6224           }
6225 
6226           this->printStackSize(R, *RelocSec, Ndx, SymTab, FunctionSec,
6227                                *StackSizesELFSec, Resolver, Data);
6228         },
6229         [](const Elf_Relr &) {
6230           llvm_unreachable("can't get here, because we only support "
6231                            "SHT_REL/SHT_RELA sections");
6232         });
6233   }
6234 }
6235 
6236 template <class ELFT>
6237 void GNUELFDumper<ELFT>::printStackSizes() {
6238   bool HeaderHasBeenPrinted = false;
6239   auto PrintHeader = [&]() {
6240     if (HeaderHasBeenPrinted)
6241       return;
6242     OS << "\nStack Sizes:\n";
6243     OS.PadToColumn(9);
6244     OS << "Size";
6245     OS.PadToColumn(18);
6246     OS << "Functions\n";
6247     HeaderHasBeenPrinted = true;
6248   };
6249 
6250   // For non-relocatable objects, look directly for sections whose name starts
6251   // with .stack_sizes and process the contents.
6252   if (this->Obj.getHeader().e_type == ELF::ET_REL)
6253     this->printRelocatableStackSizes(PrintHeader);
6254   else
6255     this->printNonRelocatableStackSizes(PrintHeader);
6256 }
6257 
6258 template <class ELFT>
6259 void GNUELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
6260   size_t Bias = ELFT::Is64Bits ? 8 : 0;
6261   auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6262     OS.PadToColumn(2);
6263     OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
6264     OS.PadToColumn(11 + Bias);
6265     OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
6266     OS.PadToColumn(22 + Bias);
6267     OS << format_hex_no_prefix(*E, 8 + Bias);
6268     OS.PadToColumn(31 + 2 * Bias);
6269     OS << Purpose << "\n";
6270   };
6271 
6272   OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
6273   OS << " Canonical gp value: "
6274      << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";
6275 
6276   OS << " Reserved entries:\n";
6277   if (ELFT::Is64Bits)
6278     OS << "           Address     Access          Initial Purpose\n";
6279   else
6280     OS << "   Address     Access  Initial Purpose\n";
6281   PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
6282   if (Parser.getGotModulePointer())
6283     PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");
6284 
6285   if (!Parser.getLocalEntries().empty()) {
6286     OS << "\n";
6287     OS << " Local entries:\n";
6288     if (ELFT::Is64Bits)
6289       OS << "           Address     Access          Initial\n";
6290     else
6291       OS << "   Address     Access  Initial\n";
6292     for (auto &E : Parser.getLocalEntries())
6293       PrintEntry(&E, "");
6294   }
6295 
6296   if (Parser.IsStatic)
6297     return;
6298 
6299   if (!Parser.getGlobalEntries().empty()) {
6300     OS << "\n";
6301     OS << " Global entries:\n";
6302     if (ELFT::Is64Bits)
6303       OS << "           Address     Access          Initial         Sym.Val."
6304          << " Type    Ndx Name\n";
6305     else
6306       OS << "   Address     Access  Initial Sym.Val. Type    Ndx Name\n";
6307 
6308     DataRegion<Elf_Word> ShndxTable(
6309         (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6310     for (auto &E : Parser.getGlobalEntries()) {
6311       const Elf_Sym &Sym = *Parser.getGotSym(&E);
6312       const Elf_Sym &FirstSym = this->dynamic_symbols()[0];
6313       std::string SymName = this->getFullSymbolName(
6314           Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6315 
6316       OS.PadToColumn(2);
6317       OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
6318       OS.PadToColumn(11 + Bias);
6319       OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
6320       OS.PadToColumn(22 + Bias);
6321       OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6322       OS.PadToColumn(31 + 2 * Bias);
6323       OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6324       OS.PadToColumn(40 + 3 * Bias);
6325       OS << enumToString(Sym.getType(), makeArrayRef(ElfSymbolTypes));
6326       OS.PadToColumn(48 + 3 * Bias);
6327       OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6328                                 ShndxTable);
6329       OS.PadToColumn(52 + 3 * Bias);
6330       OS << SymName << "\n";
6331     }
6332   }
6333 
6334   if (!Parser.getOtherEntries().empty())
6335     OS << "\n Number of TLS and multi-GOT entries "
6336        << Parser.getOtherEntries().size() << "\n";
6337 }
6338 
6339 template <class ELFT>
6340 void GNUELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
6341   size_t Bias = ELFT::Is64Bits ? 8 : 0;
6342   auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6343     OS.PadToColumn(2);
6344     OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias);
6345     OS.PadToColumn(11 + Bias);
6346     OS << format_hex_no_prefix(*E, 8 + Bias);
6347     OS.PadToColumn(20 + 2 * Bias);
6348     OS << Purpose << "\n";
6349   };
6350 
6351   OS << "PLT GOT:\n\n";
6352 
6353   OS << " Reserved entries:\n";
6354   OS << "   Address  Initial Purpose\n";
6355   PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
6356   if (Parser.getPltModulePointer())
6357     PrintEntry(Parser.getPltModulePointer(), "Module pointer");
6358 
6359   if (!Parser.getPltEntries().empty()) {
6360     OS << "\n";
6361     OS << " Entries:\n";
6362     OS << "   Address  Initial Sym.Val. Type    Ndx Name\n";
6363     DataRegion<Elf_Word> ShndxTable(
6364         (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6365     for (auto &E : Parser.getPltEntries()) {
6366       const Elf_Sym &Sym = *Parser.getPltSym(&E);
6367       const Elf_Sym &FirstSym = *cantFail(
6368           this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
6369       std::string SymName = this->getFullSymbolName(
6370           Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6371 
6372       OS.PadToColumn(2);
6373       OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias));
6374       OS.PadToColumn(11 + Bias);
6375       OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6376       OS.PadToColumn(20 + 2 * Bias);
6377       OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6378       OS.PadToColumn(29 + 3 * Bias);
6379       OS << enumToString(Sym.getType(), makeArrayRef(ElfSymbolTypes));
6380       OS.PadToColumn(37 + 3 * Bias);
6381       OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6382                                 ShndxTable);
6383       OS.PadToColumn(41 + 3 * Bias);
6384       OS << SymName << "\n";
6385     }
6386   }
6387 }
6388 
6389 template <class ELFT>
6390 Expected<const Elf_Mips_ABIFlags<ELFT> *>
6391 getMipsAbiFlagsSection(const ELFDumper<ELFT> &Dumper) {
6392   const typename ELFT::Shdr *Sec = Dumper.findSectionByName(".MIPS.abiflags");
6393   if (Sec == nullptr)
6394     return nullptr;
6395 
6396   constexpr StringRef ErrPrefix = "unable to read the .MIPS.abiflags section: ";
6397   Expected<ArrayRef<uint8_t>> DataOrErr =
6398       Dumper.getElfObject().getELFFile().getSectionContents(*Sec);
6399   if (!DataOrErr)
6400     return createError(ErrPrefix + toString(DataOrErr.takeError()));
6401 
6402   if (DataOrErr->size() != sizeof(Elf_Mips_ABIFlags<ELFT>))
6403     return createError(ErrPrefix + "it has a wrong size (" +
6404         Twine(DataOrErr->size()) + ")");
6405   return reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(DataOrErr->data());
6406 }
6407 
6408 template <class ELFT> void GNUELFDumper<ELFT>::printMipsABIFlags() {
6409   const Elf_Mips_ABIFlags<ELFT> *Flags = nullptr;
6410   if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
6411           getMipsAbiFlagsSection(*this))
6412     Flags = *SecOrErr;
6413   else
6414     this->reportUniqueWarning(SecOrErr.takeError());
6415   if (!Flags)
6416     return;
6417 
6418   OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n";
6419   OS << "ISA: MIPS" << int(Flags->isa_level);
6420   if (Flags->isa_rev > 1)
6421     OS << "r" << int(Flags->isa_rev);
6422   OS << "\n";
6423   OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n";
6424   OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n";
6425   OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n";
6426   OS << "FP ABI: "
6427      << enumToString(Flags->fp_abi, makeArrayRef(ElfMipsFpABIType)) << "\n";
6428   OS << "ISA Extension: "
6429      << enumToString(Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)) << "\n";
6430   if (Flags->ases == 0)
6431     OS << "ASEs: None\n";
6432   else
6433     // FIXME: Print each flag on a separate line.
6434     OS << "ASEs: " << printFlags(Flags->ases, makeArrayRef(ElfMipsASEFlags))
6435        << "\n";
6436   OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n";
6437   OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n";
6438   OS << "\n";
6439 }
6440 
6441 template <class ELFT> void LLVMELFDumper<ELFT>::printFileHeaders() {
6442   const Elf_Ehdr &E = this->Obj.getHeader();
6443   {
6444     DictScope D(W, "ElfHeader");
6445     {
6446       DictScope D(W, "Ident");
6447       W.printBinary("Magic", makeArrayRef(E.e_ident).slice(ELF::EI_MAG0, 4));
6448       W.printEnum("Class", E.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
6449       W.printEnum("DataEncoding", E.e_ident[ELF::EI_DATA],
6450                   makeArrayRef(ElfDataEncoding));
6451       W.printNumber("FileVersion", E.e_ident[ELF::EI_VERSION]);
6452 
6453       auto OSABI = makeArrayRef(ElfOSABI);
6454       if (E.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
6455           E.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
6456         switch (E.e_machine) {
6457         case ELF::EM_AMDGPU:
6458           OSABI = makeArrayRef(AMDGPUElfOSABI);
6459           break;
6460         case ELF::EM_ARM:
6461           OSABI = makeArrayRef(ARMElfOSABI);
6462           break;
6463         case ELF::EM_TI_C6000:
6464           OSABI = makeArrayRef(C6000ElfOSABI);
6465           break;
6466         }
6467       }
6468       W.printEnum("OS/ABI", E.e_ident[ELF::EI_OSABI], OSABI);
6469       W.printNumber("ABIVersion", E.e_ident[ELF::EI_ABIVERSION]);
6470       W.printBinary("Unused", makeArrayRef(E.e_ident).slice(ELF::EI_PAD));
6471     }
6472 
6473     std::string TypeStr;
6474     if (const EnumEntry<unsigned> *Ent = getObjectFileEnumEntry(E.e_type)) {
6475       TypeStr = Ent->Name.str();
6476     } else {
6477       if (E.e_type >= ET_LOPROC)
6478         TypeStr = "Processor Specific";
6479       else if (E.e_type >= ET_LOOS)
6480         TypeStr = "OS Specific";
6481       else
6482         TypeStr = "Unknown";
6483     }
6484     W.printString("Type", TypeStr + " (0x" + utohexstr(E.e_type) + ")");
6485 
6486     W.printEnum("Machine", E.e_machine, makeArrayRef(ElfMachineType));
6487     W.printNumber("Version", E.e_version);
6488     W.printHex("Entry", E.e_entry);
6489     W.printHex("ProgramHeaderOffset", E.e_phoff);
6490     W.printHex("SectionHeaderOffset", E.e_shoff);
6491     if (E.e_machine == EM_MIPS)
6492       W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderMipsFlags),
6493                    unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
6494                    unsigned(ELF::EF_MIPS_MACH));
6495     else if (E.e_machine == EM_AMDGPU) {
6496       switch (E.e_ident[ELF::EI_ABIVERSION]) {
6497       default:
6498         W.printHex("Flags", E.e_flags);
6499         break;
6500       case 0:
6501         // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags.
6502         LLVM_FALLTHROUGH;
6503       case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
6504         W.printFlags("Flags", E.e_flags,
6505                      makeArrayRef(ElfHeaderAMDGPUFlagsABIVersion3),
6506                      unsigned(ELF::EF_AMDGPU_MACH));
6507         break;
6508       case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
6509       case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
6510         W.printFlags("Flags", E.e_flags,
6511                      makeArrayRef(ElfHeaderAMDGPUFlagsABIVersion4),
6512                      unsigned(ELF::EF_AMDGPU_MACH),
6513                      unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4),
6514                      unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4));
6515         break;
6516       }
6517     } else if (E.e_machine == EM_RISCV)
6518       W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderRISCVFlags));
6519     else if (E.e_machine == EM_AVR)
6520       W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderAVRFlags),
6521                    unsigned(ELF::EF_AVR_ARCH_MASK));
6522     else if (E.e_machine == EM_LOONGARCH)
6523       W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderLoongArchFlags),
6524                    unsigned(ELF::EF_LOONGARCH_BASE_ABI_MASK));
6525     else
6526       W.printFlags("Flags", E.e_flags);
6527     W.printNumber("HeaderSize", E.e_ehsize);
6528     W.printNumber("ProgramHeaderEntrySize", E.e_phentsize);
6529     W.printNumber("ProgramHeaderCount", E.e_phnum);
6530     W.printNumber("SectionHeaderEntrySize", E.e_shentsize);
6531     W.printString("SectionHeaderCount",
6532                   getSectionHeadersNumString(this->Obj, this->FileName));
6533     W.printString("StringTableSectionIndex",
6534                   getSectionHeaderTableIndexString(this->Obj, this->FileName));
6535   }
6536 }
6537 
6538 template <class ELFT> void LLVMELFDumper<ELFT>::printGroupSections() {
6539   DictScope Lists(W, "Groups");
6540   std::vector<GroupSection> V = this->getGroups();
6541   DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
6542   for (const GroupSection &G : V) {
6543     DictScope D(W, "Group");
6544     W.printNumber("Name", G.Name, G.ShName);
6545     W.printNumber("Index", G.Index);
6546     W.printNumber("Link", G.Link);
6547     W.printNumber("Info", G.Info);
6548     W.printHex("Type", getGroupType(G.Type), G.Type);
6549     W.startLine() << "Signature: " << G.Signature << "\n";
6550 
6551     ListScope L(W, "Section(s) in group");
6552     for (const GroupMember &GM : G.Members) {
6553       const GroupSection *MainGroup = Map[GM.Index];
6554       if (MainGroup != &G)
6555         this->reportUniqueWarning(
6556             "section with index " + Twine(GM.Index) +
6557             ", included in the group section with index " +
6558             Twine(MainGroup->Index) +
6559             ", was also found in the group section with index " +
6560             Twine(G.Index));
6561       W.startLine() << GM.Name << " (" << GM.Index << ")\n";
6562     }
6563   }
6564 
6565   if (V.empty())
6566     W.startLine() << "There are no group sections in the file.\n";
6567 }
6568 
6569 template <class ELFT> void LLVMELFDumper<ELFT>::printRelocations() {
6570   ListScope D(W, "Relocations");
6571 
6572   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6573     if (!isRelocationSec<ELFT>(Sec))
6574       continue;
6575 
6576     StringRef Name = this->getPrintableSectionName(Sec);
6577     unsigned SecNdx = &Sec - &cantFail(this->Obj.sections()).front();
6578     W.startLine() << "Section (" << SecNdx << ") " << Name << " {\n";
6579     W.indent();
6580     this->printRelocationsHelper(Sec);
6581     W.unindent();
6582     W.startLine() << "}\n";
6583   }
6584 }
6585 
6586 template <class ELFT>
6587 void LLVMELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
6588   W.startLine() << W.hex(R) << "\n";
6589 }
6590 
6591 template <class ELFT>
6592 void LLVMELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
6593                                             const RelSymbol<ELFT> &RelSym) {
6594   StringRef SymbolName = RelSym.Name;
6595   SmallString<32> RelocName;
6596   this->Obj.getRelocationTypeName(R.Type, RelocName);
6597 
6598   if (opts::ExpandRelocs) {
6599     DictScope Group(W, "Relocation");
6600     W.printHex("Offset", R.Offset);
6601     W.printNumber("Type", RelocName, R.Type);
6602     W.printNumber("Symbol", !SymbolName.empty() ? SymbolName : "-", R.Symbol);
6603     if (R.Addend)
6604       W.printHex("Addend", (uintX_t)*R.Addend);
6605   } else {
6606     raw_ostream &OS = W.startLine();
6607     OS << W.hex(R.Offset) << " " << RelocName << " "
6608        << (!SymbolName.empty() ? SymbolName : "-");
6609     if (R.Addend)
6610       OS << " " << W.hex((uintX_t)*R.Addend);
6611     OS << "\n";
6612   }
6613 }
6614 
6615 template <class ELFT> void LLVMELFDumper<ELFT>::printSectionHeaders() {
6616   ListScope SectionsD(W, "Sections");
6617 
6618   int SectionIndex = -1;
6619   std::vector<EnumEntry<unsigned>> FlagsList =
6620       getSectionFlagsForTarget(this->Obj.getHeader().e_ident[ELF::EI_OSABI],
6621                                this->Obj.getHeader().e_machine);
6622   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6623     DictScope SectionD(W, "Section");
6624     W.printNumber("Index", ++SectionIndex);
6625     W.printNumber("Name", this->getPrintableSectionName(Sec), Sec.sh_name);
6626     W.printHex("Type",
6627                object::getELFSectionTypeName(this->Obj.getHeader().e_machine,
6628                                              Sec.sh_type),
6629                Sec.sh_type);
6630     W.printFlags("Flags", Sec.sh_flags, makeArrayRef(FlagsList));
6631     W.printHex("Address", Sec.sh_addr);
6632     W.printHex("Offset", Sec.sh_offset);
6633     W.printNumber("Size", Sec.sh_size);
6634     W.printNumber("Link", Sec.sh_link);
6635     W.printNumber("Info", Sec.sh_info);
6636     W.printNumber("AddressAlignment", Sec.sh_addralign);
6637     W.printNumber("EntrySize", Sec.sh_entsize);
6638 
6639     if (opts::SectionRelocations) {
6640       ListScope D(W, "Relocations");
6641       this->printRelocationsHelper(Sec);
6642     }
6643 
6644     if (opts::SectionSymbols) {
6645       ListScope D(W, "Symbols");
6646       if (this->DotSymtabSec) {
6647         StringRef StrTable = unwrapOrError(
6648             this->FileName,
6649             this->Obj.getStringTableForSymtab(*this->DotSymtabSec));
6650         ArrayRef<Elf_Word> ShndxTable = this->getShndxTable(this->DotSymtabSec);
6651 
6652         typename ELFT::SymRange Symbols = unwrapOrError(
6653             this->FileName, this->Obj.symbols(this->DotSymtabSec));
6654         for (const Elf_Sym &Sym : Symbols) {
6655           const Elf_Shdr *SymSec = unwrapOrError(
6656               this->FileName,
6657               this->Obj.getSection(Sym, this->DotSymtabSec, ShndxTable));
6658           if (SymSec == &Sec)
6659             printSymbol(Sym, &Sym - &Symbols[0], ShndxTable, StrTable, false,
6660                         false);
6661         }
6662       }
6663     }
6664 
6665     if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
6666       ArrayRef<uint8_t> Data =
6667           unwrapOrError(this->FileName, this->Obj.getSectionContents(Sec));
6668       W.printBinaryBlock(
6669           "SectionData",
6670           StringRef(reinterpret_cast<const char *>(Data.data()), Data.size()));
6671     }
6672   }
6673 }
6674 
6675 template <class ELFT>
6676 void LLVMELFDumper<ELFT>::printSymbolSection(
6677     const Elf_Sym &Symbol, unsigned SymIndex,
6678     DataRegion<Elf_Word> ShndxTable) const {
6679   auto GetSectionSpecialType = [&]() -> Optional<StringRef> {
6680     if (Symbol.isUndefined())
6681       return StringRef("Undefined");
6682     if (Symbol.isProcessorSpecific())
6683       return StringRef("Processor Specific");
6684     if (Symbol.isOSSpecific())
6685       return StringRef("Operating System Specific");
6686     if (Symbol.isAbsolute())
6687       return StringRef("Absolute");
6688     if (Symbol.isCommon())
6689       return StringRef("Common");
6690     if (Symbol.isReserved() && Symbol.st_shndx != SHN_XINDEX)
6691       return StringRef("Reserved");
6692     return None;
6693   };
6694 
6695   if (Optional<StringRef> Type = GetSectionSpecialType()) {
6696     W.printHex("Section", *Type, Symbol.st_shndx);
6697     return;
6698   }
6699 
6700   Expected<unsigned> SectionIndex =
6701       this->getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
6702   if (!SectionIndex) {
6703     assert(Symbol.st_shndx == SHN_XINDEX &&
6704            "getSymbolSectionIndex should only fail due to an invalid "
6705            "SHT_SYMTAB_SHNDX table/reference");
6706     this->reportUniqueWarning(SectionIndex.takeError());
6707     W.printHex("Section", "Reserved", SHN_XINDEX);
6708     return;
6709   }
6710 
6711   Expected<StringRef> SectionName =
6712       this->getSymbolSectionName(Symbol, *SectionIndex);
6713   if (!SectionName) {
6714     // Don't report an invalid section name if the section headers are missing.
6715     // In such situations, all sections will be "invalid".
6716     if (!this->ObjF.sections().empty())
6717       this->reportUniqueWarning(SectionName.takeError());
6718     else
6719       consumeError(SectionName.takeError());
6720     W.printHex("Section", "<?>", *SectionIndex);
6721   } else {
6722     W.printHex("Section", *SectionName, *SectionIndex);
6723   }
6724 }
6725 
6726 template <class ELFT>
6727 void LLVMELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
6728                                       DataRegion<Elf_Word> ShndxTable,
6729                                       Optional<StringRef> StrTable,
6730                                       bool IsDynamic,
6731                                       bool /*NonVisibilityBitsUsed*/) const {
6732   std::string FullSymbolName = this->getFullSymbolName(
6733       Symbol, SymIndex, ShndxTable, StrTable, IsDynamic);
6734   unsigned char SymbolType = Symbol.getType();
6735 
6736   DictScope D(W, "Symbol");
6737   W.printNumber("Name", FullSymbolName, Symbol.st_name);
6738   W.printHex("Value", Symbol.st_value);
6739   W.printNumber("Size", Symbol.st_size);
6740   W.printEnum("Binding", Symbol.getBinding(), makeArrayRef(ElfSymbolBindings));
6741   if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
6742       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
6743     W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes));
6744   else
6745     W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes));
6746   if (Symbol.st_other == 0)
6747     // Usually st_other flag is zero. Do not pollute the output
6748     // by flags enumeration in that case.
6749     W.printNumber("Other", 0);
6750   else {
6751     std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
6752                                                    std::end(ElfSymOtherFlags));
6753     if (this->Obj.getHeader().e_machine == EM_MIPS) {
6754       // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
6755       // flag overlapped with other ST_MIPS_xxx flags. So consider both
6756       // cases separately.
6757       if ((Symbol.st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
6758         SymOtherFlags.insert(SymOtherFlags.end(),
6759                              std::begin(ElfMips16SymOtherFlags),
6760                              std::end(ElfMips16SymOtherFlags));
6761       else
6762         SymOtherFlags.insert(SymOtherFlags.end(),
6763                              std::begin(ElfMipsSymOtherFlags),
6764                              std::end(ElfMipsSymOtherFlags));
6765     } else if (this->Obj.getHeader().e_machine == EM_AARCH64) {
6766       SymOtherFlags.insert(SymOtherFlags.end(),
6767                            std::begin(ElfAArch64SymOtherFlags),
6768                            std::end(ElfAArch64SymOtherFlags));
6769     } else if (this->Obj.getHeader().e_machine == EM_RISCV) {
6770       SymOtherFlags.insert(SymOtherFlags.end(),
6771                            std::begin(ElfRISCVSymOtherFlags),
6772                            std::end(ElfRISCVSymOtherFlags));
6773     }
6774     W.printFlags("Other", Symbol.st_other, makeArrayRef(SymOtherFlags), 0x3u);
6775   }
6776   printSymbolSection(Symbol, SymIndex, ShndxTable);
6777 }
6778 
6779 template <class ELFT>
6780 void LLVMELFDumper<ELFT>::printSymbols(bool PrintSymbols,
6781                                        bool PrintDynamicSymbols) {
6782   if (PrintSymbols) {
6783     ListScope Group(W, "Symbols");
6784     this->printSymbolsHelper(false);
6785   }
6786   if (PrintDynamicSymbols) {
6787     ListScope Group(W, "DynamicSymbols");
6788     this->printSymbolsHelper(true);
6789   }
6790 }
6791 
6792 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicTable() {
6793   Elf_Dyn_Range Table = this->dynamic_table();
6794   if (Table.empty())
6795     return;
6796 
6797   W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n";
6798 
6799   size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table);
6800   // The "Name/Value" column should be indented from the "Type" column by N
6801   // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
6802   // space (1) = -3.
6803   W.startLine() << "  Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ')
6804                 << "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
6805 
6806   std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s ";
6807   for (auto Entry : Table) {
6808     uintX_t Tag = Entry.getTag();
6809     std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
6810     W.startLine() << "  " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true)
6811                   << " "
6812                   << format(ValueFmt.c_str(),
6813                             this->Obj.getDynamicTagAsString(Tag).c_str())
6814                   << Value << "\n";
6815   }
6816   W.startLine() << "]\n";
6817 }
6818 
6819 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicRelocations() {
6820   W.startLine() << "Dynamic Relocations {\n";
6821   W.indent();
6822   this->printDynamicRelocationsHelper();
6823   W.unindent();
6824   W.startLine() << "}\n";
6825 }
6826 
6827 template <class ELFT>
6828 void LLVMELFDumper<ELFT>::printProgramHeaders(
6829     bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
6830   if (PrintProgramHeaders)
6831     printProgramHeaders();
6832   if (PrintSectionMapping == cl::BOU_TRUE)
6833     printSectionMapping();
6834 }
6835 
6836 template <class ELFT> void LLVMELFDumper<ELFT>::printProgramHeaders() {
6837   ListScope L(W, "ProgramHeaders");
6838 
6839   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
6840   if (!PhdrsOrErr) {
6841     this->reportUniqueWarning("unable to dump program headers: " +
6842                               toString(PhdrsOrErr.takeError()));
6843     return;
6844   }
6845 
6846   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
6847     DictScope P(W, "ProgramHeader");
6848     StringRef Type =
6849         segmentTypeToString(this->Obj.getHeader().e_machine, Phdr.p_type);
6850 
6851     W.printHex("Type", Type.empty() ? "Unknown" : Type, Phdr.p_type);
6852     W.printHex("Offset", Phdr.p_offset);
6853     W.printHex("VirtualAddress", Phdr.p_vaddr);
6854     W.printHex("PhysicalAddress", Phdr.p_paddr);
6855     W.printNumber("FileSize", Phdr.p_filesz);
6856     W.printNumber("MemSize", Phdr.p_memsz);
6857     W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags));
6858     W.printNumber("Alignment", Phdr.p_align);
6859   }
6860 }
6861 
6862 template <class ELFT>
6863 void LLVMELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
6864   ListScope SS(W, "VersionSymbols");
6865   if (!Sec)
6866     return;
6867 
6868   StringRef StrTable;
6869   ArrayRef<Elf_Sym> Syms;
6870   const Elf_Shdr *SymTabSec;
6871   Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
6872       this->getVersionTable(*Sec, &Syms, &StrTable, &SymTabSec);
6873   if (!VerTableOrErr) {
6874     this->reportUniqueWarning(VerTableOrErr.takeError());
6875     return;
6876   }
6877 
6878   if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size())
6879     return;
6880 
6881   ArrayRef<Elf_Word> ShNdxTable = this->getShndxTable(SymTabSec);
6882   for (size_t I = 0, E = Syms.size(); I < E; ++I) {
6883     DictScope S(W, "Symbol");
6884     W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION);
6885     W.printString("Name",
6886                   this->getFullSymbolName(Syms[I], I, ShNdxTable, StrTable,
6887                                           /*IsDynamic=*/true));
6888   }
6889 }
6890 
6891 const EnumEntry<unsigned> SymVersionFlags[] = {
6892     {"Base", "BASE", VER_FLG_BASE},
6893     {"Weak", "WEAK", VER_FLG_WEAK},
6894     {"Info", "INFO", VER_FLG_INFO}};
6895 
6896 template <class ELFT>
6897 void LLVMELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
6898   ListScope SD(W, "VersionDefinitions");
6899   if (!Sec)
6900     return;
6901 
6902   Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
6903   if (!V) {
6904     this->reportUniqueWarning(V.takeError());
6905     return;
6906   }
6907 
6908   for (const VerDef &D : *V) {
6909     DictScope Def(W, "Definition");
6910     W.printNumber("Version", D.Version);
6911     W.printFlags("Flags", D.Flags, makeArrayRef(SymVersionFlags));
6912     W.printNumber("Index", D.Ndx);
6913     W.printNumber("Hash", D.Hash);
6914     W.printString("Name", D.Name.c_str());
6915     W.printList(
6916         "Predecessors", D.AuxV,
6917         [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); });
6918   }
6919 }
6920 
6921 template <class ELFT>
6922 void LLVMELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
6923   ListScope SD(W, "VersionRequirements");
6924   if (!Sec)
6925     return;
6926 
6927   Expected<std::vector<VerNeed>> V =
6928       this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
6929   if (!V) {
6930     this->reportUniqueWarning(V.takeError());
6931     return;
6932   }
6933 
6934   for (const VerNeed &VN : *V) {
6935     DictScope Entry(W, "Dependency");
6936     W.printNumber("Version", VN.Version);
6937     W.printNumber("Count", VN.Cnt);
6938     W.printString("FileName", VN.File.c_str());
6939 
6940     ListScope L(W, "Entries");
6941     for (const VernAux &Aux : VN.AuxV) {
6942       DictScope Entry(W, "Entry");
6943       W.printNumber("Hash", Aux.Hash);
6944       W.printFlags("Flags", Aux.Flags, makeArrayRef(SymVersionFlags));
6945       W.printNumber("Index", Aux.Other);
6946       W.printString("Name", Aux.Name.c_str());
6947     }
6948   }
6949 }
6950 
6951 template <class ELFT> void LLVMELFDumper<ELFT>::printHashHistograms() {
6952   W.startLine() << "Hash Histogram not implemented!\n";
6953 }
6954 
6955 // Returns true if rel/rela section exists, and populates SymbolIndices.
6956 // Otherwise returns false.
6957 template <class ELFT>
6958 static bool getSymbolIndices(const typename ELFT::Shdr *CGRelSection,
6959                              const ELFFile<ELFT> &Obj,
6960                              const LLVMELFDumper<ELFT> *Dumper,
6961                              SmallVector<uint32_t, 128> &SymbolIndices) {
6962   if (!CGRelSection) {
6963     Dumper->reportUniqueWarning(
6964         "relocation section for a call graph section doesn't exist");
6965     return false;
6966   }
6967 
6968   if (CGRelSection->sh_type == SHT_REL) {
6969     typename ELFT::RelRange CGProfileRel;
6970     Expected<typename ELFT::RelRange> CGProfileRelOrError =
6971         Obj.rels(*CGRelSection);
6972     if (!CGProfileRelOrError) {
6973       Dumper->reportUniqueWarning("unable to load relocations for "
6974                                   "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
6975                                   toString(CGProfileRelOrError.takeError()));
6976       return false;
6977     }
6978 
6979     CGProfileRel = *CGProfileRelOrError;
6980     for (const typename ELFT::Rel &Rel : CGProfileRel)
6981       SymbolIndices.push_back(Rel.getSymbol(Obj.isMips64EL()));
6982   } else {
6983     // MC unconditionally produces SHT_REL, but GNU strip/objcopy may convert
6984     // the format to SHT_RELA
6985     // (https://sourceware.org/bugzilla/show_bug.cgi?id=28035)
6986     typename ELFT::RelaRange CGProfileRela;
6987     Expected<typename ELFT::RelaRange> CGProfileRelaOrError =
6988         Obj.relas(*CGRelSection);
6989     if (!CGProfileRelaOrError) {
6990       Dumper->reportUniqueWarning("unable to load relocations for "
6991                                   "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
6992                                   toString(CGProfileRelaOrError.takeError()));
6993       return false;
6994     }
6995 
6996     CGProfileRela = *CGProfileRelaOrError;
6997     for (const typename ELFT::Rela &Rela : CGProfileRela)
6998       SymbolIndices.push_back(Rela.getSymbol(Obj.isMips64EL()));
6999   }
7000 
7001   return true;
7002 }
7003 
7004 template <class ELFT> void LLVMELFDumper<ELFT>::printCGProfile() {
7005   llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> SecToRelocMap;
7006 
7007   auto IsMatch = [](const Elf_Shdr &Sec) -> bool {
7008     return Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE;
7009   };
7010   this->getSectionAndRelocations(IsMatch, SecToRelocMap);
7011 
7012   for (const auto &CGMapEntry : SecToRelocMap) {
7013     const Elf_Shdr *CGSection = CGMapEntry.first;
7014     const Elf_Shdr *CGRelSection = CGMapEntry.second;
7015 
7016     Expected<ArrayRef<Elf_CGProfile>> CGProfileOrErr =
7017         this->Obj.template getSectionContentsAsArray<Elf_CGProfile>(*CGSection);
7018     if (!CGProfileOrErr) {
7019       this->reportUniqueWarning(
7020           "unable to load the SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7021           toString(CGProfileOrErr.takeError()));
7022       return;
7023     }
7024 
7025     SmallVector<uint32_t, 128> SymbolIndices;
7026     bool UseReloc =
7027         getSymbolIndices<ELFT>(CGRelSection, this->Obj, this, SymbolIndices);
7028     if (UseReloc && SymbolIndices.size() != CGProfileOrErr->size() * 2) {
7029       this->reportUniqueWarning(
7030           "number of from/to pairs does not match number of frequencies");
7031       UseReloc = false;
7032     }
7033 
7034     ListScope L(W, "CGProfile");
7035     for (uint32_t I = 0, Size = CGProfileOrErr->size(); I != Size; ++I) {
7036       const Elf_CGProfile &CGPE = (*CGProfileOrErr)[I];
7037       DictScope D(W, "CGProfileEntry");
7038       if (UseReloc) {
7039         uint32_t From = SymbolIndices[I * 2];
7040         uint32_t To = SymbolIndices[I * 2 + 1];
7041         W.printNumber("From", this->getStaticSymbolName(From), From);
7042         W.printNumber("To", this->getStaticSymbolName(To), To);
7043       }
7044       W.printNumber("Weight", CGPE.cgp_weight);
7045     }
7046   }
7047 }
7048 
7049 template <class ELFT> void LLVMELFDumper<ELFT>::printBBAddrMaps() {
7050   bool IsRelocatable = this->Obj.getHeader().e_type == ELF::ET_REL;
7051   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
7052     if (Sec.sh_type != SHT_LLVM_BB_ADDR_MAP &&
7053         Sec.sh_type != SHT_LLVM_BB_ADDR_MAP_V0) {
7054       continue;
7055     }
7056     Optional<const Elf_Shdr *> FunctionSec = None;
7057     if (IsRelocatable)
7058       FunctionSec =
7059           unwrapOrError(this->FileName, this->Obj.getSection(Sec.sh_link));
7060     ListScope L(W, "BBAddrMap");
7061     Expected<std::vector<BBAddrMap>> BBAddrMapOrErr =
7062         this->Obj.decodeBBAddrMap(Sec);
7063     if (!BBAddrMapOrErr) {
7064       this->reportUniqueWarning("unable to dump " + this->describe(Sec) + ": " +
7065                                 toString(BBAddrMapOrErr.takeError()));
7066       continue;
7067     }
7068     for (const BBAddrMap &AM : *BBAddrMapOrErr) {
7069       DictScope D(W, "Function");
7070       W.printHex("At", AM.Addr);
7071       SmallVector<uint32_t> FuncSymIndex =
7072           this->getSymbolIndexesForFunctionAddress(AM.Addr, FunctionSec);
7073       std::string FuncName = "<?>";
7074       if (FuncSymIndex.empty())
7075         this->reportUniqueWarning(
7076             "could not identify function symbol for address (0x" +
7077             Twine::utohexstr(AM.Addr) + ") in " + this->describe(Sec));
7078       else
7079         FuncName = this->getStaticSymbolName(FuncSymIndex.front());
7080       W.printString("Name", FuncName);
7081 
7082       ListScope L(W, "BB entries");
7083       for (const BBAddrMap::BBEntry &BBE : AM.BBEntries) {
7084         DictScope L(W);
7085         W.printHex("Offset", BBE.Offset);
7086         W.printHex("Size", BBE.Size);
7087         W.printBoolean("HasReturn", BBE.HasReturn);
7088         W.printBoolean("HasTailCall", BBE.HasTailCall);
7089         W.printBoolean("IsEHPad", BBE.IsEHPad);
7090         W.printBoolean("CanFallThrough", BBE.CanFallThrough);
7091       }
7092     }
7093   }
7094 }
7095 
7096 template <class ELFT> void LLVMELFDumper<ELFT>::printAddrsig() {
7097   ListScope L(W, "Addrsig");
7098   if (!this->DotAddrsigSec)
7099     return;
7100 
7101   Expected<std::vector<uint64_t>> SymsOrErr =
7102       decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
7103   if (!SymsOrErr) {
7104     this->reportUniqueWarning(SymsOrErr.takeError());
7105     return;
7106   }
7107 
7108   for (uint64_t Sym : *SymsOrErr)
7109     W.printNumber("Sym", this->getStaticSymbolName(Sym), Sym);
7110 }
7111 
7112 template <typename ELFT>
7113 static bool printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7114                                   ScopedPrinter &W) {
7115   // Return true if we were able to pretty-print the note, false otherwise.
7116   switch (NoteType) {
7117   default:
7118     return false;
7119   case ELF::NT_GNU_ABI_TAG: {
7120     const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
7121     if (!AbiTag.IsValid) {
7122       W.printString("ABI", "<corrupt GNU_ABI_TAG>");
7123       return false;
7124     } else {
7125       W.printString("OS", AbiTag.OSName);
7126       W.printString("ABI", AbiTag.ABI);
7127     }
7128     break;
7129   }
7130   case ELF::NT_GNU_BUILD_ID: {
7131     W.printString("Build ID", getGNUBuildId(Desc));
7132     break;
7133   }
7134   case ELF::NT_GNU_GOLD_VERSION:
7135     W.printString("Version", getDescAsStringRef(Desc));
7136     break;
7137   case ELF::NT_GNU_PROPERTY_TYPE_0:
7138     ListScope D(W, "Property");
7139     for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
7140       W.printString(Property);
7141     break;
7142   }
7143   return true;
7144 }
7145 
7146 static bool printAndroidNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7147                                       ScopedPrinter &W) {
7148   // Return true if we were able to pretty-print the note, false otherwise.
7149   AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc);
7150   if (Props.empty())
7151     return false;
7152   for (const auto &KV : Props)
7153     W.printString(KV.first, KV.second);
7154   return true;
7155 }
7156 
7157 template <typename ELFT>
7158 static bool printLLVMOMPOFFLOADNoteLLVMStyle(uint32_t NoteType,
7159                                              ArrayRef<uint8_t> Desc,
7160                                              ScopedPrinter &W) {
7161   switch (NoteType) {
7162   default:
7163     return false;
7164   case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
7165     W.printString("Version", getDescAsStringRef(Desc));
7166     break;
7167   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
7168     W.printString("Producer", getDescAsStringRef(Desc));
7169     break;
7170   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
7171     W.printString("Producer version", getDescAsStringRef(Desc));
7172     break;
7173   }
7174   return true;
7175 }
7176 
7177 static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) {
7178   W.printNumber("Page Size", Note.PageSize);
7179   for (const CoreFileMapping &Mapping : Note.Mappings) {
7180     ListScope D(W, "Mapping");
7181     W.printHex("Start", Mapping.Start);
7182     W.printHex("End", Mapping.End);
7183     W.printHex("Offset", Mapping.Offset);
7184     W.printString("Filename", Mapping.Filename);
7185   }
7186 }
7187 
7188 template <class ELFT> void LLVMELFDumper<ELFT>::printNotes() {
7189   ListScope L(W, "Notes");
7190 
7191   std::unique_ptr<DictScope> NoteScope;
7192   auto StartNotes = [&](Optional<StringRef> SecName,
7193                         const typename ELFT::Off Offset,
7194                         const typename ELFT::Addr Size) {
7195     NoteScope = std::make_unique<DictScope>(W, "NoteSection");
7196     W.printString("Name", SecName ? *SecName : "<?>");
7197     W.printHex("Offset", Offset);
7198     W.printHex("Size", Size);
7199   };
7200 
7201   auto EndNotes = [&] { NoteScope.reset(); };
7202 
7203   auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
7204     DictScope D2(W, "Note");
7205     StringRef Name = Note.getName();
7206     ArrayRef<uint8_t> Descriptor = Note.getDesc();
7207     Elf_Word Type = Note.getType();
7208 
7209     // Print the note owner/type.
7210     W.printString("Owner", Name);
7211     W.printHex("Data size", Descriptor.size());
7212 
7213     StringRef NoteType =
7214         getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
7215     if (!NoteType.empty())
7216       W.printString("Type", NoteType);
7217     else
7218       W.printString("Type",
7219                     "Unknown (" + to_string(format_hex(Type, 10)) + ")");
7220 
7221     // Print the description, or fallback to printing raw bytes for unknown
7222     // owners/if we fail to pretty-print the contents.
7223     if (Name == "GNU") {
7224       if (printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W))
7225         return Error::success();
7226     } else if (Name == "FreeBSD") {
7227       if (Optional<FreeBSDNote> N =
7228               getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
7229         W.printString(N->Type, N->Value);
7230         return Error::success();
7231       }
7232     } else if (Name == "AMD") {
7233       const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
7234       if (!N.Type.empty()) {
7235         W.printString(N.Type, N.Value);
7236         return Error::success();
7237       }
7238     } else if (Name == "AMDGPU") {
7239       const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
7240       if (!N.Type.empty()) {
7241         W.printString(N.Type, N.Value);
7242         return Error::success();
7243       }
7244     } else if (Name == "LLVMOMPOFFLOAD") {
7245       if (printLLVMOMPOFFLOADNoteLLVMStyle<ELFT>(Type, Descriptor, W))
7246         return Error::success();
7247     } else if (Name == "CORE") {
7248       if (Type == ELF::NT_FILE) {
7249         DataExtractor DescExtractor(Descriptor,
7250                                     ELFT::TargetEndianness == support::little,
7251                                     sizeof(Elf_Addr));
7252         if (Expected<CoreNote> N = readCoreNote(DescExtractor)) {
7253           printCoreNoteLLVMStyle(*N, W);
7254           return Error::success();
7255         } else {
7256           return N.takeError();
7257         }
7258       }
7259     } else if (Name == "Android") {
7260       if (printAndroidNoteLLVMStyle(Type, Descriptor, W))
7261         return Error::success();
7262     }
7263     if (!Descriptor.empty()) {
7264       W.printBinaryBlock("Description data", Descriptor);
7265     }
7266     return Error::success();
7267   };
7268 
7269   printNotesHelper(*this, StartNotes, ProcessNote, EndNotes);
7270 }
7271 
7272 template <class ELFT> void LLVMELFDumper<ELFT>::printELFLinkerOptions() {
7273   ListScope L(W, "LinkerOptions");
7274 
7275   unsigned I = -1;
7276   for (const Elf_Shdr &Shdr : cantFail(this->Obj.sections())) {
7277     ++I;
7278     if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
7279       continue;
7280 
7281     Expected<ArrayRef<uint8_t>> ContentsOrErr =
7282         this->Obj.getSectionContents(Shdr);
7283     if (!ContentsOrErr) {
7284       this->reportUniqueWarning("unable to read the content of the "
7285                                 "SHT_LLVM_LINKER_OPTIONS section: " +
7286                                 toString(ContentsOrErr.takeError()));
7287       continue;
7288     }
7289     if (ContentsOrErr->empty())
7290       continue;
7291 
7292     if (ContentsOrErr->back() != 0) {
7293       this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " +
7294                                 Twine(I) +
7295                                 " is broken: the "
7296                                 "content is not null-terminated");
7297       continue;
7298     }
7299 
7300     SmallVector<StringRef, 16> Strings;
7301     toStringRef(ContentsOrErr->drop_back()).split(Strings, '\0');
7302     if (Strings.size() % 2 != 0) {
7303       this->reportUniqueWarning(
7304           "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) +
7305           " is broken: an incomplete "
7306           "key-value pair was found. The last possible key was: \"" +
7307           Strings.back() + "\"");
7308       continue;
7309     }
7310 
7311     for (size_t I = 0; I < Strings.size(); I += 2)
7312       W.printString(Strings[I], Strings[I + 1]);
7313   }
7314 }
7315 
7316 template <class ELFT> void LLVMELFDumper<ELFT>::printDependentLibs() {
7317   ListScope L(W, "DependentLibs");
7318   this->printDependentLibsHelper(
7319       [](const Elf_Shdr &) {},
7320       [this](StringRef Lib, uint64_t) { W.printString(Lib); });
7321 }
7322 
7323 template <class ELFT> void LLVMELFDumper<ELFT>::printStackSizes() {
7324   ListScope L(W, "StackSizes");
7325   if (this->Obj.getHeader().e_type == ELF::ET_REL)
7326     this->printRelocatableStackSizes([]() {});
7327   else
7328     this->printNonRelocatableStackSizes([]() {});
7329 }
7330 
7331 template <class ELFT>
7332 void LLVMELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
7333                                               ArrayRef<std::string> FuncNames) {
7334   DictScope D(W, "Entry");
7335   W.printList("Functions", FuncNames);
7336   W.printHex("Size", Size);
7337 }
7338 
7339 template <class ELFT>
7340 void LLVMELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
7341   auto PrintEntry = [&](const Elf_Addr *E) {
7342     W.printHex("Address", Parser.getGotAddress(E));
7343     W.printNumber("Access", Parser.getGotOffset(E));
7344     W.printHex("Initial", *E);
7345   };
7346 
7347   DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");
7348 
7349   W.printHex("Canonical gp value", Parser.getGp());
7350   {
7351     ListScope RS(W, "Reserved entries");
7352     {
7353       DictScope D(W, "Entry");
7354       PrintEntry(Parser.getGotLazyResolver());
7355       W.printString("Purpose", StringRef("Lazy resolver"));
7356     }
7357 
7358     if (Parser.getGotModulePointer()) {
7359       DictScope D(W, "Entry");
7360       PrintEntry(Parser.getGotModulePointer());
7361       W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
7362     }
7363   }
7364   {
7365     ListScope LS(W, "Local entries");
7366     for (auto &E : Parser.getLocalEntries()) {
7367       DictScope D(W, "Entry");
7368       PrintEntry(&E);
7369     }
7370   }
7371 
7372   if (Parser.IsStatic)
7373     return;
7374 
7375   {
7376     ListScope GS(W, "Global entries");
7377     for (auto &E : Parser.getGlobalEntries()) {
7378       DictScope D(W, "Entry");
7379 
7380       PrintEntry(&E);
7381 
7382       const Elf_Sym &Sym = *Parser.getGotSym(&E);
7383       W.printHex("Value", Sym.st_value);
7384       W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes));
7385 
7386       const unsigned SymIndex = &Sym - this->dynamic_symbols().begin();
7387       DataRegion<Elf_Word> ShndxTable(
7388           (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7389       printSymbolSection(Sym, SymIndex, ShndxTable);
7390 
7391       std::string SymName = this->getFullSymbolName(
7392           Sym, SymIndex, ShndxTable, this->DynamicStringTable, true);
7393       W.printNumber("Name", SymName, Sym.st_name);
7394     }
7395   }
7396 
7397   W.printNumber("Number of TLS and multi-GOT entries",
7398                 uint64_t(Parser.getOtherEntries().size()));
7399 }
7400 
7401 template <class ELFT>
7402 void LLVMELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
7403   auto PrintEntry = [&](const Elf_Addr *E) {
7404     W.printHex("Address", Parser.getPltAddress(E));
7405     W.printHex("Initial", *E);
7406   };
7407 
7408   DictScope GS(W, "PLT GOT");
7409 
7410   {
7411     ListScope RS(W, "Reserved entries");
7412     {
7413       DictScope D(W, "Entry");
7414       PrintEntry(Parser.getPltLazyResolver());
7415       W.printString("Purpose", StringRef("PLT lazy resolver"));
7416     }
7417 
7418     if (auto E = Parser.getPltModulePointer()) {
7419       DictScope D(W, "Entry");
7420       PrintEntry(E);
7421       W.printString("Purpose", StringRef("Module pointer"));
7422     }
7423   }
7424   {
7425     ListScope LS(W, "Entries");
7426     DataRegion<Elf_Word> ShndxTable(
7427         (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7428     for (auto &E : Parser.getPltEntries()) {
7429       DictScope D(W, "Entry");
7430       PrintEntry(&E);
7431 
7432       const Elf_Sym &Sym = *Parser.getPltSym(&E);
7433       W.printHex("Value", Sym.st_value);
7434       W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes));
7435       printSymbolSection(Sym, &Sym - this->dynamic_symbols().begin(),
7436                          ShndxTable);
7437 
7438       const Elf_Sym *FirstSym = cantFail(
7439           this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
7440       std::string SymName = this->getFullSymbolName(
7441           Sym, &Sym - FirstSym, ShndxTable, Parser.getPltStrTable(), true);
7442       W.printNumber("Name", SymName, Sym.st_name);
7443     }
7444   }
7445 }
7446 
7447 template <class ELFT> void LLVMELFDumper<ELFT>::printMipsABIFlags() {
7448   const Elf_Mips_ABIFlags<ELFT> *Flags;
7449   if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
7450           getMipsAbiFlagsSection(*this)) {
7451     Flags = *SecOrErr;
7452     if (!Flags) {
7453       W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
7454       return;
7455     }
7456   } else {
7457     this->reportUniqueWarning(SecOrErr.takeError());
7458     return;
7459   }
7460 
7461   raw_ostream &OS = W.getOStream();
7462   DictScope GS(W, "MIPS ABI Flags");
7463 
7464   W.printNumber("Version", Flags->version);
7465   W.startLine() << "ISA: ";
7466   if (Flags->isa_rev <= 1)
7467     OS << format("MIPS%u", Flags->isa_level);
7468   else
7469     OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
7470   OS << "\n";
7471   W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType));
7472   W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags));
7473   W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType));
7474   W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
7475   W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
7476   W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
7477   W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1));
7478   W.printHex("Flags 2", Flags->flags2);
7479 }
7480 
7481 template <class ELFT>
7482 void JSONELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
7483                                            ArrayRef<std::string> InputFilenames,
7484                                            const Archive *A) {
7485   FileScope = std::make_unique<DictScope>(this->W, FileStr);
7486   DictScope D(this->W, "FileSummary");
7487   this->W.printString("File", FileStr);
7488   this->W.printString("Format", Obj.getFileFormatName());
7489   this->W.printString("Arch", Triple::getArchTypeName(Obj.getArch()));
7490   this->W.printString(
7491       "AddressSize",
7492       std::string(formatv("{0}bit", 8 * Obj.getBytesInAddress())));
7493   this->printLoadName();
7494 }
7495