1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the ELF-specific dumper for llvm-readobj.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMEHABIPrinter.h"
15 #include "DwarfCFIEHPrinter.h"
16 #include "ObjDumper.h"
17 #include "StackMapPrinter.h"
18 #include "llvm-readobj.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
31 #include "llvm/BinaryFormat/ELF.h"
32 #include "llvm/BinaryFormat/MsgPackDocument.h"
33 #include "llvm/Demangle/Demangle.h"
34 #include "llvm/Object/Archive.h"
35 #include "llvm/Object/ELF.h"
36 #include "llvm/Object/ELFObjectFile.h"
37 #include "llvm/Object/ELFTypes.h"
38 #include "llvm/Object/Error.h"
39 #include "llvm/Object/ObjectFile.h"
40 #include "llvm/Object/RelocationResolver.h"
41 #include "llvm/Object/StackMapParser.h"
42 #include "llvm/Support/AMDGPUMetadata.h"
43 #include "llvm/Support/ARMAttributeParser.h"
44 #include "llvm/Support/ARMBuildAttributes.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Endian.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/Format.h"
50 #include "llvm/Support/FormatVariadic.h"
51 #include "llvm/Support/FormattedStream.h"
52 #include "llvm/Support/LEB128.h"
53 #include "llvm/Support/MSP430AttributeParser.h"
54 #include "llvm/Support/MSP430Attributes.h"
55 #include "llvm/Support/MathExtras.h"
56 #include "llvm/Support/MipsABIFlags.h"
57 #include "llvm/Support/RISCVAttributeParser.h"
58 #include "llvm/Support/RISCVAttributes.h"
59 #include "llvm/Support/ScopedPrinter.h"
60 #include "llvm/Support/SystemZ/zOSSupport.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <algorithm>
63 #include <cinttypes>
64 #include <cstddef>
65 #include <cstdint>
66 #include <cstdlib>
67 #include <iterator>
68 #include <memory>
69 #include <optional>
70 #include <string>
71 #include <system_error>
72 #include <vector>
73 
74 using namespace llvm;
75 using namespace llvm::object;
76 using namespace ELF;
77 
78 #define LLVM_READOBJ_ENUM_CASE(ns, enum)                                       \
79   case ns::enum:                                                               \
80     return #enum;
81 
82 #define ENUM_ENT(enum, altName)                                                \
83   { #enum, altName, ELF::enum }
84 
85 #define ENUM_ENT_1(enum)                                                       \
86   { #enum, #enum, ELF::enum }
87 
88 namespace {
89 
90 template <class ELFT> struct RelSymbol {
91   RelSymbol(const typename ELFT::Sym *S, StringRef N)
92       : Sym(S), Name(N.str()) {}
93   const typename ELFT::Sym *Sym;
94   std::string Name;
95 };
96 
97 /// Represents a contiguous uniform range in the file. We cannot just create a
98 /// range directly because when creating one of these from the .dynamic table
99 /// the size, entity size and virtual address are different entries in arbitrary
100 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
101 struct DynRegionInfo {
102   DynRegionInfo(const Binary &Owner, const ObjDumper &D)
103       : Obj(&Owner), Dumper(&D) {}
104   DynRegionInfo(const Binary &Owner, const ObjDumper &D, const uint8_t *A,
105                 uint64_t S, uint64_t ES)
106       : Addr(A), Size(S), EntSize(ES), Obj(&Owner), Dumper(&D) {}
107 
108   /// Address in current address space.
109   const uint8_t *Addr = nullptr;
110   /// Size in bytes of the region.
111   uint64_t Size = 0;
112   /// Size of each entity in the region.
113   uint64_t EntSize = 0;
114 
115   /// Owner object. Used for error reporting.
116   const Binary *Obj;
117   /// Dumper used for error reporting.
118   const ObjDumper *Dumper;
119   /// Error prefix. Used for error reporting to provide more information.
120   std::string Context;
121   /// Region size name. Used for error reporting.
122   StringRef SizePrintName = "size";
123   /// Entry size name. Used for error reporting. If this field is empty, errors
124   /// will not mention the entry size.
125   StringRef EntSizePrintName = "entry size";
126 
127   template <typename Type> ArrayRef<Type> getAsArrayRef() const {
128     const Type *Start = reinterpret_cast<const Type *>(Addr);
129     if (!Start)
130       return {Start, Start};
131 
132     const uint64_t Offset =
133         Addr - (const uint8_t *)Obj->getMemoryBufferRef().getBufferStart();
134     const uint64_t ObjSize = Obj->getMemoryBufferRef().getBufferSize();
135 
136     if (Size > ObjSize - Offset) {
137       Dumper->reportUniqueWarning(
138           "unable to read data at 0x" + Twine::utohexstr(Offset) +
139           " of size 0x" + Twine::utohexstr(Size) + " (" + SizePrintName +
140           "): it goes past the end of the file of size 0x" +
141           Twine::utohexstr(ObjSize));
142       return {Start, Start};
143     }
144 
145     if (EntSize == sizeof(Type) && (Size % EntSize == 0))
146       return {Start, Start + (Size / EntSize)};
147 
148     std::string Msg;
149     if (!Context.empty())
150       Msg += Context + " has ";
151 
152     Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")")
153                .str();
154     if (!EntSizePrintName.empty())
155       Msg +=
156           (" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")")
157               .str();
158 
159     Dumper->reportUniqueWarning(Msg);
160     return {Start, Start};
161   }
162 };
163 
164 struct GroupMember {
165   StringRef Name;
166   uint64_t Index;
167 };
168 
169 struct GroupSection {
170   StringRef Name;
171   std::string Signature;
172   uint64_t ShName;
173   uint64_t Index;
174   uint32_t Link;
175   uint32_t Info;
176   uint32_t Type;
177   std::vector<GroupMember> Members;
178 };
179 
180 namespace {
181 
182 struct NoteType {
183   uint32_t ID;
184   StringRef Name;
185 };
186 
187 } // namespace
188 
189 template <class ELFT> class Relocation {
190 public:
191   Relocation(const typename ELFT::Rel &R, bool IsMips64EL)
192       : Type(R.getType(IsMips64EL)), Symbol(R.getSymbol(IsMips64EL)),
193         Offset(R.r_offset), Info(R.r_info) {}
194 
195   Relocation(const typename ELFT::Rela &R, bool IsMips64EL)
196       : Relocation((const typename ELFT::Rel &)R, IsMips64EL) {
197     Addend = R.r_addend;
198   }
199 
200   uint32_t Type;
201   uint32_t Symbol;
202   typename ELFT::uint Offset;
203   typename ELFT::uint Info;
204   std::optional<int64_t> Addend;
205 };
206 
207 template <class ELFT> class MipsGOTParser;
208 
209 template <typename ELFT> class ELFDumper : public ObjDumper {
210   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
211 
212 public:
213   ELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer);
214 
215   void printUnwindInfo() override;
216   void printNeededLibraries() override;
217   void printHashTable() override;
218   void printGnuHashTable() override;
219   void printLoadName() override;
220   void printVersionInfo() override;
221   void printArchSpecificInfo() override;
222   void printStackMap() const override;
223   void printMemtag() override;
224   ArrayRef<uint8_t> getMemtagGlobalsSectionContents(uint64_t ExpectedAddr);
225 
226   // Hash histogram shows statistics of how efficient the hash was for the
227   // dynamic symbol table. The table shows the number of hash buckets for
228   // different lengths of chains as an absolute number and percentage of the
229   // total buckets, and the cumulative coverage of symbols for each set of
230   // buckets.
231   void printHashHistograms() override;
232 
233   const object::ELFObjectFile<ELFT> &getElfObject() const { return ObjF; };
234 
235   std::string describe(const Elf_Shdr &Sec) const;
236 
237   unsigned getHashTableEntSize() const {
238     // EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH
239     // sections. This violates the ELF specification.
240     if (Obj.getHeader().e_machine == ELF::EM_S390 ||
241         Obj.getHeader().e_machine == ELF::EM_ALPHA)
242       return 8;
243     return 4;
244   }
245 
246   std::vector<EnumEntry<unsigned>>
247   getOtherFlagsFromSymbol(const Elf_Ehdr &Header, const Elf_Sym &Symbol) const;
248 
249   Elf_Dyn_Range dynamic_table() const {
250     // A valid .dynamic section contains an array of entries terminated
251     // with a DT_NULL entry. However, sometimes the section content may
252     // continue past the DT_NULL entry, so to dump the section correctly,
253     // we first find the end of the entries by iterating over them.
254     Elf_Dyn_Range Table = DynamicTable.template getAsArrayRef<Elf_Dyn>();
255 
256     size_t Size = 0;
257     while (Size < Table.size())
258       if (Table[Size++].getTag() == DT_NULL)
259         break;
260 
261     return Table.slice(0, Size);
262   }
263 
264   Elf_Sym_Range dynamic_symbols() const {
265     if (!DynSymRegion)
266       return Elf_Sym_Range();
267     return DynSymRegion->template getAsArrayRef<Elf_Sym>();
268   }
269 
270   const Elf_Shdr *findSectionByName(StringRef Name) const;
271 
272   StringRef getDynamicStringTable() const { return DynamicStringTable; }
273 
274 protected:
275   virtual void printVersionSymbolSection(const Elf_Shdr *Sec) = 0;
276   virtual void printVersionDefinitionSection(const Elf_Shdr *Sec) = 0;
277   virtual void printVersionDependencySection(const Elf_Shdr *Sec) = 0;
278 
279   void
280   printDependentLibsHelper(function_ref<void(const Elf_Shdr &)> OnSectionStart,
281                            function_ref<void(StringRef, uint64_t)> OnLibEntry);
282 
283   virtual void printRelRelaReloc(const Relocation<ELFT> &R,
284                                  const RelSymbol<ELFT> &RelSym) = 0;
285   virtual void printRelrReloc(const Elf_Relr &R) = 0;
286   virtual void printDynamicRelocHeader(unsigned Type, StringRef Name,
287                                        const DynRegionInfo &Reg) {}
288   void printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
289                   const Elf_Shdr &Sec, const Elf_Shdr *SymTab);
290   void printDynamicReloc(const Relocation<ELFT> &R);
291   void printDynamicRelocationsHelper();
292   void printRelocationsHelper(const Elf_Shdr &Sec);
293   void forEachRelocationDo(
294       const Elf_Shdr &Sec, bool RawRelr,
295       llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
296                               const Elf_Shdr &, const Elf_Shdr *)>
297           RelRelaFn,
298       llvm::function_ref<void(const Elf_Relr &)> RelrFn);
299 
300   virtual void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
301                                   bool NonVisibilityBitsUsed,
302                                   bool ExtraSymInfo) const {};
303   virtual void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
304                            DataRegion<Elf_Word> ShndxTable,
305                            std::optional<StringRef> StrTable, bool IsDynamic,
306                            bool NonVisibilityBitsUsed,
307                            bool ExtraSymInfo) const = 0;
308 
309   virtual void printMipsABIFlags() = 0;
310   virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
311   virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
312 
313   virtual void printMemtag(
314       const ArrayRef<std::pair<std::string, std::string>> DynamicEntries,
315       const ArrayRef<uint8_t> AndroidNoteDesc,
316       const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) = 0;
317 
318   virtual void printHashHistogram(const Elf_Hash &HashTable) const;
319   virtual void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable) const;
320   virtual void printHashHistogramStats(size_t NBucket, size_t MaxChain,
321                                        size_t TotalSyms, ArrayRef<size_t> Count,
322                                        bool IsGnu) const = 0;
323 
324   Expected<ArrayRef<Elf_Versym>>
325   getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
326                   StringRef *StrTab, const Elf_Shdr **SymTabSec) const;
327   StringRef getPrintableSectionName(const Elf_Shdr &Sec) const;
328 
329   std::vector<GroupSection> getGroups();
330 
331   // Returns the function symbol index for the given address. Matches the
332   // symbol's section with FunctionSec when specified.
333   // Returns std::nullopt if no function symbol can be found for the address or
334   // in case it is not defined in the specified section.
335   SmallVector<uint32_t> getSymbolIndexesForFunctionAddress(
336       uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec);
337   bool printFunctionStackSize(uint64_t SymValue,
338                               std::optional<const Elf_Shdr *> FunctionSec,
339                               const Elf_Shdr &StackSizeSec, DataExtractor Data,
340                               uint64_t *Offset);
341   void printStackSize(const Relocation<ELFT> &R, const Elf_Shdr &RelocSec,
342                       unsigned Ndx, const Elf_Shdr *SymTab,
343                       const Elf_Shdr *FunctionSec, const Elf_Shdr &StackSizeSec,
344                       const RelocationResolver &Resolver, DataExtractor Data);
345   virtual void printStackSizeEntry(uint64_t Size,
346                                    ArrayRef<std::string> FuncNames) = 0;
347 
348   void printRelocatableStackSizes(std::function<void()> PrintHeader);
349   void printNonRelocatableStackSizes(std::function<void()> PrintHeader);
350 
351   const object::ELFObjectFile<ELFT> &ObjF;
352   const ELFFile<ELFT> &Obj;
353   StringRef FileName;
354 
355   Expected<DynRegionInfo> createDRI(uint64_t Offset, uint64_t Size,
356                                     uint64_t EntSize) {
357     if (Offset + Size < Offset || Offset + Size > Obj.getBufSize())
358       return createError("offset (0x" + Twine::utohexstr(Offset) +
359                          ") + size (0x" + Twine::utohexstr(Size) +
360                          ") is greater than the file size (0x" +
361                          Twine::utohexstr(Obj.getBufSize()) + ")");
362     return DynRegionInfo(ObjF, *this, Obj.base() + Offset, Size, EntSize);
363   }
364 
365   void printAttributes(unsigned, std::unique_ptr<ELFAttributeParser>,
366                        llvm::endianness);
367   void printMipsReginfo();
368   void printMipsOptions();
369 
370   std::pair<const Elf_Phdr *, const Elf_Shdr *> findDynamic();
371   void loadDynamicTable();
372   void parseDynamicTable();
373 
374   Expected<StringRef> getSymbolVersion(const Elf_Sym &Sym,
375                                        bool &IsDefault) const;
376   Expected<SmallVector<std::optional<VersionEntry>, 0> *> getVersionMap() const;
377 
378   DynRegionInfo DynRelRegion;
379   DynRegionInfo DynRelaRegion;
380   DynRegionInfo DynRelrRegion;
381   DynRegionInfo DynPLTRelRegion;
382   std::optional<DynRegionInfo> DynSymRegion;
383   DynRegionInfo DynSymTabShndxRegion;
384   DynRegionInfo DynamicTable;
385   StringRef DynamicStringTable;
386   const Elf_Hash *HashTable = nullptr;
387   const Elf_GnuHash *GnuHashTable = nullptr;
388   const Elf_Shdr *DotSymtabSec = nullptr;
389   const Elf_Shdr *DotDynsymSec = nullptr;
390   const Elf_Shdr *DotAddrsigSec = nullptr;
391   DenseMap<const Elf_Shdr *, ArrayRef<Elf_Word>> ShndxTables;
392   std::optional<uint64_t> SONameOffset;
393   std::optional<DenseMap<uint64_t, std::vector<uint32_t>>> AddressToIndexMap;
394 
395   const Elf_Shdr *SymbolVersionSection = nullptr;   // .gnu.version
396   const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r
397   const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d
398 
399   std::string getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex,
400                                 DataRegion<Elf_Word> ShndxTable,
401                                 std::optional<StringRef> StrTable,
402                                 bool IsDynamic) const;
403   Expected<unsigned>
404   getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
405                         DataRegion<Elf_Word> ShndxTable) const;
406   Expected<StringRef> getSymbolSectionName(const Elf_Sym &Symbol,
407                                            unsigned SectionIndex) const;
408   std::string getStaticSymbolName(uint32_t Index) const;
409   StringRef getDynamicString(uint64_t Value) const;
410 
411   void printSymbolsHelper(bool IsDynamic, bool ExtraSymInfo) const;
412   std::string getDynamicEntry(uint64_t Type, uint64_t Value) const;
413 
414   Expected<RelSymbol<ELFT>> getRelocationTarget(const Relocation<ELFT> &R,
415                                                 const Elf_Shdr *SymTab) const;
416 
417   ArrayRef<Elf_Word> getShndxTable(const Elf_Shdr *Symtab) const;
418 
419 private:
420   mutable SmallVector<std::optional<VersionEntry>, 0> VersionMap;
421 };
422 
423 template <class ELFT>
424 std::string ELFDumper<ELFT>::describe(const Elf_Shdr &Sec) const {
425   return ::describe(Obj, Sec);
426 }
427 
428 namespace {
429 
430 template <class ELFT> struct SymtabLink {
431   typename ELFT::SymRange Symbols;
432   StringRef StringTable;
433   const typename ELFT::Shdr *SymTab;
434 };
435 
436 // Returns the linked symbol table, symbols and associated string table for a
437 // given section.
438 template <class ELFT>
439 Expected<SymtabLink<ELFT>> getLinkAsSymtab(const ELFFile<ELFT> &Obj,
440                                            const typename ELFT::Shdr &Sec,
441                                            unsigned ExpectedType) {
442   Expected<const typename ELFT::Shdr *> SymtabOrErr =
443       Obj.getSection(Sec.sh_link);
444   if (!SymtabOrErr)
445     return createError("invalid section linked to " + describe(Obj, Sec) +
446                        ": " + toString(SymtabOrErr.takeError()));
447 
448   if ((*SymtabOrErr)->sh_type != ExpectedType)
449     return createError(
450         "invalid section linked to " + describe(Obj, Sec) + ": expected " +
451         object::getELFSectionTypeName(Obj.getHeader().e_machine, ExpectedType) +
452         ", but got " +
453         object::getELFSectionTypeName(Obj.getHeader().e_machine,
454                                       (*SymtabOrErr)->sh_type));
455 
456   Expected<StringRef> StrTabOrErr = Obj.getLinkAsStrtab(**SymtabOrErr);
457   if (!StrTabOrErr)
458     return createError(
459         "can't get a string table for the symbol table linked to " +
460         describe(Obj, Sec) + ": " + toString(StrTabOrErr.takeError()));
461 
462   Expected<typename ELFT::SymRange> SymsOrErr = Obj.symbols(*SymtabOrErr);
463   if (!SymsOrErr)
464     return createError("unable to read symbols from the " + describe(Obj, Sec) +
465                        ": " + toString(SymsOrErr.takeError()));
466 
467   return SymtabLink<ELFT>{*SymsOrErr, *StrTabOrErr, *SymtabOrErr};
468 }
469 
470 } // namespace
471 
472 template <class ELFT>
473 Expected<ArrayRef<typename ELFT::Versym>>
474 ELFDumper<ELFT>::getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
475                                  StringRef *StrTab,
476                                  const Elf_Shdr **SymTabSec) const {
477   assert((!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec));
478   if (reinterpret_cast<uintptr_t>(Obj.base() + Sec.sh_offset) %
479           sizeof(uint16_t) !=
480       0)
481     return createError("the " + describe(Sec) + " is misaligned");
482 
483   Expected<ArrayRef<Elf_Versym>> VersionsOrErr =
484       Obj.template getSectionContentsAsArray<Elf_Versym>(Sec);
485   if (!VersionsOrErr)
486     return createError("cannot read content of " + describe(Sec) + ": " +
487                        toString(VersionsOrErr.takeError()));
488 
489   Expected<SymtabLink<ELFT>> SymTabOrErr =
490       getLinkAsSymtab(Obj, Sec, SHT_DYNSYM);
491   if (!SymTabOrErr) {
492     reportUniqueWarning(SymTabOrErr.takeError());
493     return *VersionsOrErr;
494   }
495 
496   if (SymTabOrErr->Symbols.size() != VersionsOrErr->size())
497     reportUniqueWarning(describe(Sec) + ": the number of entries (" +
498                         Twine(VersionsOrErr->size()) +
499                         ") does not match the number of symbols (" +
500                         Twine(SymTabOrErr->Symbols.size()) +
501                         ") in the symbol table with index " +
502                         Twine(Sec.sh_link));
503 
504   if (SymTab) {
505     *SymTab = SymTabOrErr->Symbols;
506     *StrTab = SymTabOrErr->StringTable;
507     *SymTabSec = SymTabOrErr->SymTab;
508   }
509   return *VersionsOrErr;
510 }
511 
512 template <class ELFT>
513 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic,
514                                          bool ExtraSymInfo) const {
515   std::optional<StringRef> StrTable;
516   size_t Entries = 0;
517   Elf_Sym_Range Syms(nullptr, nullptr);
518   const Elf_Shdr *SymtabSec = IsDynamic ? DotDynsymSec : DotSymtabSec;
519 
520   if (IsDynamic) {
521     StrTable = DynamicStringTable;
522     Syms = dynamic_symbols();
523     Entries = Syms.size();
524   } else if (DotSymtabSec) {
525     if (Expected<StringRef> StrTableOrErr =
526             Obj.getStringTableForSymtab(*DotSymtabSec))
527       StrTable = *StrTableOrErr;
528     else
529       reportUniqueWarning(
530           "unable to get the string table for the SHT_SYMTAB section: " +
531           toString(StrTableOrErr.takeError()));
532 
533     if (Expected<Elf_Sym_Range> SymsOrErr = Obj.symbols(DotSymtabSec))
534       Syms = *SymsOrErr;
535     else
536       reportUniqueWarning(
537           "unable to read symbols from the SHT_SYMTAB section: " +
538           toString(SymsOrErr.takeError()));
539     Entries = DotSymtabSec->getEntityCount();
540   }
541   if (Syms.empty())
542     return;
543 
544   // The st_other field has 2 logical parts. The first two bits hold the symbol
545   // visibility (STV_*) and the remainder hold other platform-specific values.
546   bool NonVisibilityBitsUsed =
547       llvm::any_of(Syms, [](const Elf_Sym &S) { return S.st_other & ~0x3; });
548 
549   DataRegion<Elf_Word> ShndxTable =
550       IsDynamic ? DataRegion<Elf_Word>(
551                       (const Elf_Word *)this->DynSymTabShndxRegion.Addr,
552                       this->getElfObject().getELFFile().end())
553                 : DataRegion<Elf_Word>(this->getShndxTable(SymtabSec));
554 
555   printSymtabMessage(SymtabSec, Entries, NonVisibilityBitsUsed, ExtraSymInfo);
556   for (const Elf_Sym &Sym : Syms)
557     printSymbol(Sym, &Sym - Syms.begin(), ShndxTable, StrTable, IsDynamic,
558                 NonVisibilityBitsUsed, ExtraSymInfo);
559 }
560 
561 template <typename ELFT> class GNUELFDumper : public ELFDumper<ELFT> {
562   formatted_raw_ostream &OS;
563 
564 public:
565   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
566 
567   GNUELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
568       : ELFDumper<ELFT>(ObjF, Writer),
569         OS(static_cast<formatted_raw_ostream &>(Writer.getOStream())) {
570     assert(&this->W.getOStream() == &llvm::fouts());
571   }
572 
573   void printFileSummary(StringRef FileStr, ObjectFile &Obj,
574                         ArrayRef<std::string> InputFilenames,
575                         const Archive *A) override;
576   void printFileHeaders() override;
577   void printGroupSections() override;
578   void printRelocations() override;
579   void printSectionHeaders() override;
580   void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols,
581                     bool ExtraSymInfo) override;
582   void printHashSymbols() override;
583   void printSectionDetails() override;
584   void printDependentLibs() override;
585   void printDynamicTable() override;
586   void printDynamicRelocations() override;
587   void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
588                           bool NonVisibilityBitsUsed,
589                           bool ExtraSymInfo) const override;
590   void printProgramHeaders(bool PrintProgramHeaders,
591                            cl::boolOrDefault PrintSectionMapping) override;
592   void printVersionSymbolSection(const Elf_Shdr *Sec) override;
593   void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
594   void printVersionDependencySection(const Elf_Shdr *Sec) override;
595   void printCGProfile() override;
596   void printBBAddrMaps() override;
597   void printAddrsig() override;
598   void printNotes() override;
599   void printELFLinkerOptions() override;
600   void printStackSizes() override;
601   void printMemtag(
602       const ArrayRef<std::pair<std::string, std::string>> DynamicEntries,
603       const ArrayRef<uint8_t> AndroidNoteDesc,
604       const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) override;
605   void printHashHistogramStats(size_t NBucket, size_t MaxChain,
606                                size_t TotalSyms, ArrayRef<size_t> Count,
607                                bool IsGnu) const override;
608 
609 private:
610   void printHashTableSymbols(const Elf_Hash &HashTable);
611   void printGnuHashTableSymbols(const Elf_GnuHash &GnuHashTable);
612 
613   struct Field {
614     std::string Str;
615     unsigned Column;
616 
617     Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {}
618     Field(unsigned Col) : Column(Col) {}
619   };
620 
621   template <typename T, typename TEnum>
622   std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues,
623                          TEnum EnumMask1 = {}, TEnum EnumMask2 = {},
624                          TEnum EnumMask3 = {}) const {
625     std::string Str;
626     for (const EnumEntry<TEnum> &Flag : EnumValues) {
627       if (Flag.Value == 0)
628         continue;
629 
630       TEnum EnumMask{};
631       if (Flag.Value & EnumMask1)
632         EnumMask = EnumMask1;
633       else if (Flag.Value & EnumMask2)
634         EnumMask = EnumMask2;
635       else if (Flag.Value & EnumMask3)
636         EnumMask = EnumMask3;
637       bool IsEnum = (Flag.Value & EnumMask) != 0;
638       if ((!IsEnum && (Value & Flag.Value) == Flag.Value) ||
639           (IsEnum && (Value & EnumMask) == Flag.Value)) {
640         if (!Str.empty())
641           Str += ", ";
642         Str += Flag.AltName;
643       }
644     }
645     return Str;
646   }
647 
648   formatted_raw_ostream &printField(struct Field F) const {
649     if (F.Column != 0)
650       OS.PadToColumn(F.Column);
651     OS << F.Str;
652     OS.flush();
653     return OS;
654   }
655   void printHashedSymbol(const Elf_Sym *Sym, unsigned SymIndex,
656                          DataRegion<Elf_Word> ShndxTable, StringRef StrTable,
657                          uint32_t Bucket);
658   void printRelrReloc(const Elf_Relr &R) override;
659   void printRelRelaReloc(const Relocation<ELFT> &R,
660                          const RelSymbol<ELFT> &RelSym) override;
661   void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
662                    DataRegion<Elf_Word> ShndxTable,
663                    std::optional<StringRef> StrTable, bool IsDynamic,
664                    bool NonVisibilityBitsUsed,
665                    bool ExtraSymInfo) const override;
666   void printDynamicRelocHeader(unsigned Type, StringRef Name,
667                                const DynRegionInfo &Reg) override;
668 
669   std::string getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex,
670                                   DataRegion<Elf_Word> ShndxTable,
671                                   bool ExtraSymInfo = false) const;
672   void printProgramHeaders() override;
673   void printSectionMapping() override;
674   void printGNUVersionSectionProlog(const typename ELFT::Shdr &Sec,
675                                     const Twine &Label, unsigned EntriesNum);
676 
677   void printStackSizeEntry(uint64_t Size,
678                            ArrayRef<std::string> FuncNames) override;
679 
680   void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
681   void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
682   void printMipsABIFlags() override;
683 };
684 
685 template <typename ELFT> class LLVMELFDumper : public ELFDumper<ELFT> {
686 public:
687   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
688 
689   LLVMELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
690       : ELFDumper<ELFT>(ObjF, Writer), W(Writer) {}
691 
692   void printFileHeaders() override;
693   void printGroupSections() override;
694   void printRelocations() override;
695   void printSectionHeaders() override;
696   void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols,
697                     bool ExtraSymInfo) override;
698   void printDependentLibs() override;
699   void printDynamicTable() override;
700   void printDynamicRelocations() override;
701   void printProgramHeaders(bool PrintProgramHeaders,
702                            cl::boolOrDefault PrintSectionMapping) override;
703   void printVersionSymbolSection(const Elf_Shdr *Sec) override;
704   void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
705   void printVersionDependencySection(const Elf_Shdr *Sec) override;
706   void printCGProfile() override;
707   void printBBAddrMaps() override;
708   void printAddrsig() override;
709   void printNotes() override;
710   void printELFLinkerOptions() override;
711   void printStackSizes() override;
712   void printMemtag(
713       const ArrayRef<std::pair<std::string, std::string>> DynamicEntries,
714       const ArrayRef<uint8_t> AndroidNoteDesc,
715       const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) override;
716   void printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex,
717                           DataRegion<Elf_Word> ShndxTable) const;
718   void printHashHistogramStats(size_t NBucket, size_t MaxChain,
719                                size_t TotalSyms, ArrayRef<size_t> Count,
720                                bool IsGnu) const override;
721 
722 private:
723   void printRelrReloc(const Elf_Relr &R) override;
724   void printRelRelaReloc(const Relocation<ELFT> &R,
725                          const RelSymbol<ELFT> &RelSym) override;
726 
727   void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
728                    DataRegion<Elf_Word> ShndxTable,
729                    std::optional<StringRef> StrTable, bool IsDynamic,
730                    bool /*NonVisibilityBitsUsed*/,
731                    bool /*ExtraSymInfo*/) const override;
732   void printProgramHeaders() override;
733   void printSectionMapping() override {}
734   void printStackSizeEntry(uint64_t Size,
735                            ArrayRef<std::string> FuncNames) override;
736 
737   void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
738   void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
739   void printMipsABIFlags() override;
740   virtual void printZeroSymbolOtherField(const Elf_Sym &Symbol) const;
741 
742 protected:
743   virtual std::string getGroupSectionHeaderName() const;
744   void printSymbolOtherField(const Elf_Sym &Symbol) const;
745   virtual void printExpandedRelRelaReloc(const Relocation<ELFT> &R,
746                                          StringRef SymbolName,
747                                          StringRef RelocName);
748   virtual void printDefaultRelRelaReloc(const Relocation<ELFT> &R,
749                                         StringRef SymbolName,
750                                         StringRef RelocName);
751   virtual void printRelocationSectionInfo(const Elf_Shdr &Sec, StringRef Name,
752                                           const unsigned SecNdx);
753   virtual void printSectionGroupMembers(StringRef Name, uint64_t Idx) const;
754   virtual void printEmptyGroupMessage() const;
755 
756   ScopedPrinter &W;
757 };
758 
759 // JSONELFDumper shares most of the same implementation as LLVMELFDumper except
760 // it uses a JSONScopedPrinter.
761 template <typename ELFT> class JSONELFDumper : public LLVMELFDumper<ELFT> {
762 public:
763   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
764 
765   JSONELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
766       : LLVMELFDumper<ELFT>(ObjF, Writer) {}
767 
768   std::string getGroupSectionHeaderName() const override;
769 
770   void printFileSummary(StringRef FileStr, ObjectFile &Obj,
771                         ArrayRef<std::string> InputFilenames,
772                         const Archive *A) override;
773   virtual void printZeroSymbolOtherField(const Elf_Sym &Symbol) const override;
774 
775   void printDefaultRelRelaReloc(const Relocation<ELFT> &R,
776                                 StringRef SymbolName,
777                                 StringRef RelocName) override;
778 
779   void printRelocationSectionInfo(const Elf_Shdr &Sec, StringRef Name,
780                                   const unsigned SecNdx) override;
781 
782   void printSectionGroupMembers(StringRef Name, uint64_t Idx) const override;
783 
784   void printEmptyGroupMessage() const override;
785 
786 private:
787   std::unique_ptr<DictScope> FileScope;
788 };
789 
790 } // end anonymous namespace
791 
792 namespace llvm {
793 
794 template <class ELFT>
795 static std::unique_ptr<ObjDumper>
796 createELFDumper(const ELFObjectFile<ELFT> &Obj, ScopedPrinter &Writer) {
797   if (opts::Output == opts::GNU)
798     return std::make_unique<GNUELFDumper<ELFT>>(Obj, Writer);
799   else if (opts::Output == opts::JSON)
800     return std::make_unique<JSONELFDumper<ELFT>>(Obj, Writer);
801   return std::make_unique<LLVMELFDumper<ELFT>>(Obj, Writer);
802 }
803 
804 std::unique_ptr<ObjDumper> createELFDumper(const object::ELFObjectFileBase &Obj,
805                                            ScopedPrinter &Writer) {
806   // Little-endian 32-bit
807   if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(&Obj))
808     return createELFDumper(*ELFObj, Writer);
809 
810   // Big-endian 32-bit
811   if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(&Obj))
812     return createELFDumper(*ELFObj, Writer);
813 
814   // Little-endian 64-bit
815   if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(&Obj))
816     return createELFDumper(*ELFObj, Writer);
817 
818   // Big-endian 64-bit
819   return createELFDumper(*cast<ELF64BEObjectFile>(&Obj), Writer);
820 }
821 
822 } // end namespace llvm
823 
824 template <class ELFT>
825 Expected<SmallVector<std::optional<VersionEntry>, 0> *>
826 ELFDumper<ELFT>::getVersionMap() const {
827   // If the VersionMap has already been loaded or if there is no dynamic symtab
828   // or version table, there is nothing to do.
829   if (!VersionMap.empty() || !DynSymRegion || !SymbolVersionSection)
830     return &VersionMap;
831 
832   Expected<SmallVector<std::optional<VersionEntry>, 0>> MapOrErr =
833       Obj.loadVersionMap(SymbolVersionNeedSection, SymbolVersionDefSection);
834   if (MapOrErr)
835     VersionMap = *MapOrErr;
836   else
837     return MapOrErr.takeError();
838 
839   return &VersionMap;
840 }
841 
842 template <typename ELFT>
843 Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym &Sym,
844                                                       bool &IsDefault) const {
845   // This is a dynamic symbol. Look in the GNU symbol version table.
846   if (!SymbolVersionSection) {
847     // No version table.
848     IsDefault = false;
849     return "";
850   }
851 
852   assert(DynSymRegion && "DynSymRegion has not been initialised");
853   // Determine the position in the symbol table of this entry.
854   size_t EntryIndex = (reinterpret_cast<uintptr_t>(&Sym) -
855                        reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) /
856                       sizeof(Elf_Sym);
857 
858   // Get the corresponding version index entry.
859   Expected<const Elf_Versym *> EntryOrErr =
860       Obj.template getEntry<Elf_Versym>(*SymbolVersionSection, EntryIndex);
861   if (!EntryOrErr)
862     return EntryOrErr.takeError();
863 
864   unsigned Version = (*EntryOrErr)->vs_index;
865   if (Version == VER_NDX_LOCAL || Version == VER_NDX_GLOBAL) {
866     IsDefault = false;
867     return "";
868   }
869 
870   Expected<SmallVector<std::optional<VersionEntry>, 0> *> MapOrErr =
871       getVersionMap();
872   if (!MapOrErr)
873     return MapOrErr.takeError();
874 
875   return Obj.getSymbolVersionByIndex(Version, IsDefault, **MapOrErr,
876                                      Sym.st_shndx == ELF::SHN_UNDEF);
877 }
878 
879 template <typename ELFT>
880 Expected<RelSymbol<ELFT>>
881 ELFDumper<ELFT>::getRelocationTarget(const Relocation<ELFT> &R,
882                                      const Elf_Shdr *SymTab) const {
883   if (R.Symbol == 0)
884     return RelSymbol<ELFT>(nullptr, "");
885 
886   Expected<const Elf_Sym *> SymOrErr =
887       Obj.template getEntry<Elf_Sym>(*SymTab, R.Symbol);
888   if (!SymOrErr)
889     return createError("unable to read an entry with index " + Twine(R.Symbol) +
890                        " from " + describe(*SymTab) + ": " +
891                        toString(SymOrErr.takeError()));
892   const Elf_Sym *Sym = *SymOrErr;
893   if (!Sym)
894     return RelSymbol<ELFT>(nullptr, "");
895 
896   Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(*SymTab);
897   if (!StrTableOrErr)
898     return StrTableOrErr.takeError();
899 
900   const Elf_Sym *FirstSym =
901       cantFail(Obj.template getEntry<Elf_Sym>(*SymTab, 0));
902   std::string SymbolName =
903       getFullSymbolName(*Sym, Sym - FirstSym, getShndxTable(SymTab),
904                         *StrTableOrErr, SymTab->sh_type == SHT_DYNSYM);
905   return RelSymbol<ELFT>(Sym, SymbolName);
906 }
907 
908 template <typename ELFT>
909 ArrayRef<typename ELFT::Word>
910 ELFDumper<ELFT>::getShndxTable(const Elf_Shdr *Symtab) const {
911   if (Symtab) {
912     auto It = ShndxTables.find(Symtab);
913     if (It != ShndxTables.end())
914       return It->second;
915   }
916   return {};
917 }
918 
919 static std::string maybeDemangle(StringRef Name) {
920   return opts::Demangle ? demangle(Name) : Name.str();
921 }
922 
923 template <typename ELFT>
924 std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const {
925   auto Warn = [&](Error E) -> std::string {
926     reportUniqueWarning("unable to read the name of symbol with index " +
927                         Twine(Index) + ": " + toString(std::move(E)));
928     return "<?>";
929   };
930 
931   Expected<const typename ELFT::Sym *> SymOrErr =
932       Obj.getSymbol(DotSymtabSec, Index);
933   if (!SymOrErr)
934     return Warn(SymOrErr.takeError());
935 
936   Expected<StringRef> StrTabOrErr = Obj.getStringTableForSymtab(*DotSymtabSec);
937   if (!StrTabOrErr)
938     return Warn(StrTabOrErr.takeError());
939 
940   Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr);
941   if (!NameOrErr)
942     return Warn(NameOrErr.takeError());
943   return maybeDemangle(*NameOrErr);
944 }
945 
946 template <typename ELFT>
947 std::string ELFDumper<ELFT>::getFullSymbolName(
948     const Elf_Sym &Symbol, unsigned SymIndex, DataRegion<Elf_Word> ShndxTable,
949     std::optional<StringRef> StrTable, bool IsDynamic) const {
950   if (!StrTable)
951     return "<?>";
952 
953   std::string SymbolName;
954   if (Expected<StringRef> NameOrErr = Symbol.getName(*StrTable)) {
955     SymbolName = maybeDemangle(*NameOrErr);
956   } else {
957     reportUniqueWarning(NameOrErr.takeError());
958     return "<?>";
959   }
960 
961   if (SymbolName.empty() && Symbol.getType() == ELF::STT_SECTION) {
962     Expected<unsigned> SectionIndex =
963         getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
964     if (!SectionIndex) {
965       reportUniqueWarning(SectionIndex.takeError());
966       return "<?>";
967     }
968     Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex);
969     if (!NameOrErr) {
970       reportUniqueWarning(NameOrErr.takeError());
971       return ("<section " + Twine(*SectionIndex) + ">").str();
972     }
973     return std::string(*NameOrErr);
974   }
975 
976   if (!IsDynamic)
977     return SymbolName;
978 
979   bool IsDefault;
980   Expected<StringRef> VersionOrErr = getSymbolVersion(Symbol, IsDefault);
981   if (!VersionOrErr) {
982     reportUniqueWarning(VersionOrErr.takeError());
983     return SymbolName + "@<corrupt>";
984   }
985 
986   if (!VersionOrErr->empty()) {
987     SymbolName += (IsDefault ? "@@" : "@");
988     SymbolName += *VersionOrErr;
989   }
990   return SymbolName;
991 }
992 
993 template <typename ELFT>
994 Expected<unsigned>
995 ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
996                                        DataRegion<Elf_Word> ShndxTable) const {
997   unsigned Ndx = Symbol.st_shndx;
998   if (Ndx == SHN_XINDEX)
999     return object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex,
1000                                                      ShndxTable);
1001   if (Ndx != SHN_UNDEF && Ndx < SHN_LORESERVE)
1002     return Ndx;
1003 
1004   auto CreateErr = [&](const Twine &Name,
1005                        std::optional<unsigned> Offset = std::nullopt) {
1006     std::string Desc;
1007     if (Offset)
1008       Desc = (Name + "+0x" + Twine::utohexstr(*Offset)).str();
1009     else
1010       Desc = Name.str();
1011     return createError(
1012         "unable to get section index for symbol with st_shndx = 0x" +
1013         Twine::utohexstr(Ndx) + " (" + Desc + ")");
1014   };
1015 
1016   if (Ndx >= ELF::SHN_LOPROC && Ndx <= ELF::SHN_HIPROC)
1017     return CreateErr("SHN_LOPROC", Ndx - ELF::SHN_LOPROC);
1018   if (Ndx >= ELF::SHN_LOOS && Ndx <= ELF::SHN_HIOS)
1019     return CreateErr("SHN_LOOS", Ndx - ELF::SHN_LOOS);
1020   if (Ndx == ELF::SHN_UNDEF)
1021     return CreateErr("SHN_UNDEF");
1022   if (Ndx == ELF::SHN_ABS)
1023     return CreateErr("SHN_ABS");
1024   if (Ndx == ELF::SHN_COMMON)
1025     return CreateErr("SHN_COMMON");
1026   return CreateErr("SHN_LORESERVE", Ndx - SHN_LORESERVE);
1027 }
1028 
1029 template <typename ELFT>
1030 Expected<StringRef>
1031 ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym &Symbol,
1032                                       unsigned SectionIndex) const {
1033   Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(SectionIndex);
1034   if (!SecOrErr)
1035     return SecOrErr.takeError();
1036   return Obj.getSectionName(**SecOrErr);
1037 }
1038 
1039 template <class ELFO>
1040 static const typename ELFO::Elf_Shdr *
1041 findNotEmptySectionByAddress(const ELFO &Obj, StringRef FileName,
1042                              uint64_t Addr) {
1043   for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections()))
1044     if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
1045       return &Shdr;
1046   return nullptr;
1047 }
1048 
1049 const EnumEntry<unsigned> ElfClass[] = {
1050   {"None",   "none",   ELF::ELFCLASSNONE},
1051   {"32-bit", "ELF32",  ELF::ELFCLASS32},
1052   {"64-bit", "ELF64",  ELF::ELFCLASS64},
1053 };
1054 
1055 const EnumEntry<unsigned> ElfDataEncoding[] = {
1056   {"None",         "none",                          ELF::ELFDATANONE},
1057   {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
1058   {"BigEndian",    "2's complement, big endian",    ELF::ELFDATA2MSB},
1059 };
1060 
1061 const EnumEntry<unsigned> ElfObjectFileType[] = {
1062   {"None",         "NONE (none)",              ELF::ET_NONE},
1063   {"Relocatable",  "REL (Relocatable file)",   ELF::ET_REL},
1064   {"Executable",   "EXEC (Executable file)",   ELF::ET_EXEC},
1065   {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
1066   {"Core",         "CORE (Core file)",         ELF::ET_CORE},
1067 };
1068 
1069 const EnumEntry<unsigned> ElfOSABI[] = {
1070   {"SystemV",      "UNIX - System V",      ELF::ELFOSABI_NONE},
1071   {"HPUX",         "UNIX - HP-UX",         ELF::ELFOSABI_HPUX},
1072   {"NetBSD",       "UNIX - NetBSD",        ELF::ELFOSABI_NETBSD},
1073   {"GNU/Linux",    "UNIX - GNU",           ELF::ELFOSABI_LINUX},
1074   {"GNU/Hurd",     "GNU/Hurd",             ELF::ELFOSABI_HURD},
1075   {"Solaris",      "UNIX - Solaris",       ELF::ELFOSABI_SOLARIS},
1076   {"AIX",          "UNIX - AIX",           ELF::ELFOSABI_AIX},
1077   {"IRIX",         "UNIX - IRIX",          ELF::ELFOSABI_IRIX},
1078   {"FreeBSD",      "UNIX - FreeBSD",       ELF::ELFOSABI_FREEBSD},
1079   {"TRU64",        "UNIX - TRU64",         ELF::ELFOSABI_TRU64},
1080   {"Modesto",      "Novell - Modesto",     ELF::ELFOSABI_MODESTO},
1081   {"OpenBSD",      "UNIX - OpenBSD",       ELF::ELFOSABI_OPENBSD},
1082   {"OpenVMS",      "VMS - OpenVMS",        ELF::ELFOSABI_OPENVMS},
1083   {"NSK",          "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
1084   {"AROS",         "AROS",                 ELF::ELFOSABI_AROS},
1085   {"FenixOS",      "FenixOS",              ELF::ELFOSABI_FENIXOS},
1086   {"CloudABI",     "CloudABI",             ELF::ELFOSABI_CLOUDABI},
1087   {"Standalone",   "Standalone App",       ELF::ELFOSABI_STANDALONE}
1088 };
1089 
1090 const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
1091   {"AMDGPU_HSA",    "AMDGPU - HSA",    ELF::ELFOSABI_AMDGPU_HSA},
1092   {"AMDGPU_PAL",    "AMDGPU - PAL",    ELF::ELFOSABI_AMDGPU_PAL},
1093   {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
1094 };
1095 
1096 const EnumEntry<unsigned> ARMElfOSABI[] = {
1097   {"ARM", "ARM", ELF::ELFOSABI_ARM}
1098 };
1099 
1100 const EnumEntry<unsigned> C6000ElfOSABI[] = {
1101   {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
1102   {"C6000_LINUX",  "Linux C6000",      ELF::ELFOSABI_C6000_LINUX}
1103 };
1104 
1105 const EnumEntry<unsigned> ElfMachineType[] = {
1106   ENUM_ENT(EM_NONE,          "None"),
1107   ENUM_ENT(EM_M32,           "WE32100"),
1108   ENUM_ENT(EM_SPARC,         "Sparc"),
1109   ENUM_ENT(EM_386,           "Intel 80386"),
1110   ENUM_ENT(EM_68K,           "MC68000"),
1111   ENUM_ENT(EM_88K,           "MC88000"),
1112   ENUM_ENT(EM_IAMCU,         "EM_IAMCU"),
1113   ENUM_ENT(EM_860,           "Intel 80860"),
1114   ENUM_ENT(EM_MIPS,          "MIPS R3000"),
1115   ENUM_ENT(EM_S370,          "IBM System/370"),
1116   ENUM_ENT(EM_MIPS_RS3_LE,   "MIPS R3000 little-endian"),
1117   ENUM_ENT(EM_PARISC,        "HPPA"),
1118   ENUM_ENT(EM_VPP500,        "Fujitsu VPP500"),
1119   ENUM_ENT(EM_SPARC32PLUS,   "Sparc v8+"),
1120   ENUM_ENT(EM_960,           "Intel 80960"),
1121   ENUM_ENT(EM_PPC,           "PowerPC"),
1122   ENUM_ENT(EM_PPC64,         "PowerPC64"),
1123   ENUM_ENT(EM_S390,          "IBM S/390"),
1124   ENUM_ENT(EM_SPU,           "SPU"),
1125   ENUM_ENT(EM_V800,          "NEC V800 series"),
1126   ENUM_ENT(EM_FR20,          "Fujistsu FR20"),
1127   ENUM_ENT(EM_RH32,          "TRW RH-32"),
1128   ENUM_ENT(EM_RCE,           "Motorola RCE"),
1129   ENUM_ENT(EM_ARM,           "ARM"),
1130   ENUM_ENT(EM_ALPHA,         "EM_ALPHA"),
1131   ENUM_ENT(EM_SH,            "Hitachi SH"),
1132   ENUM_ENT(EM_SPARCV9,       "Sparc v9"),
1133   ENUM_ENT(EM_TRICORE,       "Siemens Tricore"),
1134   ENUM_ENT(EM_ARC,           "ARC"),
1135   ENUM_ENT(EM_H8_300,        "Hitachi H8/300"),
1136   ENUM_ENT(EM_H8_300H,       "Hitachi H8/300H"),
1137   ENUM_ENT(EM_H8S,           "Hitachi H8S"),
1138   ENUM_ENT(EM_H8_500,        "Hitachi H8/500"),
1139   ENUM_ENT(EM_IA_64,         "Intel IA-64"),
1140   ENUM_ENT(EM_MIPS_X,        "Stanford MIPS-X"),
1141   ENUM_ENT(EM_COLDFIRE,      "Motorola Coldfire"),
1142   ENUM_ENT(EM_68HC12,        "Motorola MC68HC12 Microcontroller"),
1143   ENUM_ENT(EM_MMA,           "Fujitsu Multimedia Accelerator"),
1144   ENUM_ENT(EM_PCP,           "Siemens PCP"),
1145   ENUM_ENT(EM_NCPU,          "Sony nCPU embedded RISC processor"),
1146   ENUM_ENT(EM_NDR1,          "Denso NDR1 microprocesspr"),
1147   ENUM_ENT(EM_STARCORE,      "Motorola Star*Core processor"),
1148   ENUM_ENT(EM_ME16,          "Toyota ME16 processor"),
1149   ENUM_ENT(EM_ST100,         "STMicroelectronics ST100 processor"),
1150   ENUM_ENT(EM_TINYJ,         "Advanced Logic Corp. TinyJ embedded processor"),
1151   ENUM_ENT(EM_X86_64,        "Advanced Micro Devices X86-64"),
1152   ENUM_ENT(EM_PDSP,          "Sony DSP processor"),
1153   ENUM_ENT(EM_PDP10,         "Digital Equipment Corp. PDP-10"),
1154   ENUM_ENT(EM_PDP11,         "Digital Equipment Corp. PDP-11"),
1155   ENUM_ENT(EM_FX66,          "Siemens FX66 microcontroller"),
1156   ENUM_ENT(EM_ST9PLUS,       "STMicroelectronics ST9+ 8/16 bit microcontroller"),
1157   ENUM_ENT(EM_ST7,           "STMicroelectronics ST7 8-bit microcontroller"),
1158   ENUM_ENT(EM_68HC16,        "Motorola MC68HC16 Microcontroller"),
1159   ENUM_ENT(EM_68HC11,        "Motorola MC68HC11 Microcontroller"),
1160   ENUM_ENT(EM_68HC08,        "Motorola MC68HC08 Microcontroller"),
1161   ENUM_ENT(EM_68HC05,        "Motorola MC68HC05 Microcontroller"),
1162   ENUM_ENT(EM_SVX,           "Silicon Graphics SVx"),
1163   ENUM_ENT(EM_ST19,          "STMicroelectronics ST19 8-bit microcontroller"),
1164   ENUM_ENT(EM_VAX,           "Digital VAX"),
1165   ENUM_ENT(EM_CRIS,          "Axis Communications 32-bit embedded processor"),
1166   ENUM_ENT(EM_JAVELIN,       "Infineon Technologies 32-bit embedded cpu"),
1167   ENUM_ENT(EM_FIREPATH,      "Element 14 64-bit DSP processor"),
1168   ENUM_ENT(EM_ZSP,           "LSI Logic's 16-bit DSP processor"),
1169   ENUM_ENT(EM_MMIX,          "Donald Knuth's educational 64-bit processor"),
1170   ENUM_ENT(EM_HUANY,         "Harvard Universitys's machine-independent object format"),
1171   ENUM_ENT(EM_PRISM,         "Vitesse Prism"),
1172   ENUM_ENT(EM_AVR,           "Atmel AVR 8-bit microcontroller"),
1173   ENUM_ENT(EM_FR30,          "Fujitsu FR30"),
1174   ENUM_ENT(EM_D10V,          "Mitsubishi D10V"),
1175   ENUM_ENT(EM_D30V,          "Mitsubishi D30V"),
1176   ENUM_ENT(EM_V850,          "NEC v850"),
1177   ENUM_ENT(EM_M32R,          "Renesas M32R (formerly Mitsubishi M32r)"),
1178   ENUM_ENT(EM_MN10300,       "Matsushita MN10300"),
1179   ENUM_ENT(EM_MN10200,       "Matsushita MN10200"),
1180   ENUM_ENT(EM_PJ,            "picoJava"),
1181   ENUM_ENT(EM_OPENRISC,      "OpenRISC 32-bit embedded processor"),
1182   ENUM_ENT(EM_ARC_COMPACT,   "EM_ARC_COMPACT"),
1183   ENUM_ENT(EM_XTENSA,        "Tensilica Xtensa Processor"),
1184   ENUM_ENT(EM_VIDEOCORE,     "Alphamosaic VideoCore processor"),
1185   ENUM_ENT(EM_TMM_GPP,       "Thompson Multimedia General Purpose Processor"),
1186   ENUM_ENT(EM_NS32K,         "National Semiconductor 32000 series"),
1187   ENUM_ENT(EM_TPC,           "Tenor Network TPC processor"),
1188   ENUM_ENT(EM_SNP1K,         "EM_SNP1K"),
1189   ENUM_ENT(EM_ST200,         "STMicroelectronics ST200 microcontroller"),
1190   ENUM_ENT(EM_IP2K,          "Ubicom IP2xxx 8-bit microcontrollers"),
1191   ENUM_ENT(EM_MAX,           "MAX Processor"),
1192   ENUM_ENT(EM_CR,            "National Semiconductor CompactRISC"),
1193   ENUM_ENT(EM_F2MC16,        "Fujitsu F2MC16"),
1194   ENUM_ENT(EM_MSP430,        "Texas Instruments msp430 microcontroller"),
1195   ENUM_ENT(EM_BLACKFIN,      "Analog Devices Blackfin"),
1196   ENUM_ENT(EM_SE_C33,        "S1C33 Family of Seiko Epson processors"),
1197   ENUM_ENT(EM_SEP,           "Sharp embedded microprocessor"),
1198   ENUM_ENT(EM_ARCA,          "Arca RISC microprocessor"),
1199   ENUM_ENT(EM_UNICORE,       "Unicore"),
1200   ENUM_ENT(EM_EXCESS,        "eXcess 16/32/64-bit configurable embedded CPU"),
1201   ENUM_ENT(EM_DXP,           "Icera Semiconductor Inc. Deep Execution Processor"),
1202   ENUM_ENT(EM_ALTERA_NIOS2,  "Altera Nios"),
1203   ENUM_ENT(EM_CRX,           "National Semiconductor CRX microprocessor"),
1204   ENUM_ENT(EM_XGATE,         "Motorola XGATE embedded processor"),
1205   ENUM_ENT(EM_C166,          "Infineon Technologies xc16x"),
1206   ENUM_ENT(EM_M16C,          "Renesas M16C"),
1207   ENUM_ENT(EM_DSPIC30F,      "Microchip Technology dsPIC30F Digital Signal Controller"),
1208   ENUM_ENT(EM_CE,            "Freescale Communication Engine RISC core"),
1209   ENUM_ENT(EM_M32C,          "Renesas M32C"),
1210   ENUM_ENT(EM_TSK3000,       "Altium TSK3000 core"),
1211   ENUM_ENT(EM_RS08,          "Freescale RS08 embedded processor"),
1212   ENUM_ENT(EM_SHARC,         "EM_SHARC"),
1213   ENUM_ENT(EM_ECOG2,         "Cyan Technology eCOG2 microprocessor"),
1214   ENUM_ENT(EM_SCORE7,        "SUNPLUS S+Core"),
1215   ENUM_ENT(EM_DSP24,         "New Japan Radio (NJR) 24-bit DSP Processor"),
1216   ENUM_ENT(EM_VIDEOCORE3,    "Broadcom VideoCore III processor"),
1217   ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"),
1218   ENUM_ENT(EM_SE_C17,        "Seiko Epson C17 family"),
1219   ENUM_ENT(EM_TI_C6000,      "Texas Instruments TMS320C6000 DSP family"),
1220   ENUM_ENT(EM_TI_C2000,      "Texas Instruments TMS320C2000 DSP family"),
1221   ENUM_ENT(EM_TI_C5500,      "Texas Instruments TMS320C55x DSP family"),
1222   ENUM_ENT(EM_MMDSP_PLUS,    "STMicroelectronics 64bit VLIW Data Signal Processor"),
1223   ENUM_ENT(EM_CYPRESS_M8C,   "Cypress M8C microprocessor"),
1224   ENUM_ENT(EM_R32C,          "Renesas R32C series microprocessors"),
1225   ENUM_ENT(EM_TRIMEDIA,      "NXP Semiconductors TriMedia architecture family"),
1226   ENUM_ENT(EM_HEXAGON,       "Qualcomm Hexagon"),
1227   ENUM_ENT(EM_8051,          "Intel 8051 and variants"),
1228   ENUM_ENT(EM_STXP7X,        "STMicroelectronics STxP7x family"),
1229   ENUM_ENT(EM_NDS32,         "Andes Technology compact code size embedded RISC processor family"),
1230   ENUM_ENT(EM_ECOG1,         "Cyan Technology eCOG1 microprocessor"),
1231   // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has
1232   //        an identical number to EM_ECOG1.
1233   ENUM_ENT(EM_ECOG1X,        "Cyan Technology eCOG1X family"),
1234   ENUM_ENT(EM_MAXQ30,        "Dallas Semiconductor MAXQ30 Core microcontrollers"),
1235   ENUM_ENT(EM_XIMO16,        "New Japan Radio (NJR) 16-bit DSP Processor"),
1236   ENUM_ENT(EM_MANIK,         "M2000 Reconfigurable RISC Microprocessor"),
1237   ENUM_ENT(EM_CRAYNV2,       "Cray Inc. NV2 vector architecture"),
1238   ENUM_ENT(EM_RX,            "Renesas RX"),
1239   ENUM_ENT(EM_METAG,         "Imagination Technologies Meta processor architecture"),
1240   ENUM_ENT(EM_MCST_ELBRUS,   "MCST Elbrus general purpose hardware architecture"),
1241   ENUM_ENT(EM_ECOG16,        "Cyan Technology eCOG16 family"),
1242   ENUM_ENT(EM_CR16,          "National Semiconductor CompactRISC 16-bit processor"),
1243   ENUM_ENT(EM_ETPU,          "Freescale Extended Time Processing Unit"),
1244   ENUM_ENT(EM_SLE9X,         "Infineon Technologies SLE9X core"),
1245   ENUM_ENT(EM_L10M,          "EM_L10M"),
1246   ENUM_ENT(EM_K10M,          "EM_K10M"),
1247   ENUM_ENT(EM_AARCH64,       "AArch64"),
1248   ENUM_ENT(EM_AVR32,         "Atmel Corporation 32-bit microprocessor family"),
1249   ENUM_ENT(EM_STM8,          "STMicroeletronics STM8 8-bit microcontroller"),
1250   ENUM_ENT(EM_TILE64,        "Tilera TILE64 multicore architecture family"),
1251   ENUM_ENT(EM_TILEPRO,       "Tilera TILEPro multicore architecture family"),
1252   ENUM_ENT(EM_MICROBLAZE,    "Xilinx MicroBlaze 32-bit RISC soft processor core"),
1253   ENUM_ENT(EM_CUDA,          "NVIDIA CUDA architecture"),
1254   ENUM_ENT(EM_TILEGX,        "Tilera TILE-Gx multicore architecture family"),
1255   ENUM_ENT(EM_CLOUDSHIELD,   "EM_CLOUDSHIELD"),
1256   ENUM_ENT(EM_COREA_1ST,     "EM_COREA_1ST"),
1257   ENUM_ENT(EM_COREA_2ND,     "EM_COREA_2ND"),
1258   ENUM_ENT(EM_ARC_COMPACT2,  "EM_ARC_COMPACT2"),
1259   ENUM_ENT(EM_OPEN8,         "EM_OPEN8"),
1260   ENUM_ENT(EM_RL78,          "Renesas RL78"),
1261   ENUM_ENT(EM_VIDEOCORE5,    "Broadcom VideoCore V processor"),
1262   ENUM_ENT(EM_78KOR,         "EM_78KOR"),
1263   ENUM_ENT(EM_56800EX,       "EM_56800EX"),
1264   ENUM_ENT(EM_AMDGPU,        "EM_AMDGPU"),
1265   ENUM_ENT(EM_RISCV,         "RISC-V"),
1266   ENUM_ENT(EM_LANAI,         "EM_LANAI"),
1267   ENUM_ENT(EM_BPF,           "EM_BPF"),
1268   ENUM_ENT(EM_VE,            "NEC SX-Aurora Vector Engine"),
1269   ENUM_ENT(EM_LOONGARCH,     "LoongArch"),
1270 };
1271 
1272 const EnumEntry<unsigned> ElfSymbolBindings[] = {
1273     {"Local",  "LOCAL",  ELF::STB_LOCAL},
1274     {"Global", "GLOBAL", ELF::STB_GLOBAL},
1275     {"Weak",   "WEAK",   ELF::STB_WEAK},
1276     {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
1277 
1278 const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
1279     {"DEFAULT",   "DEFAULT",   ELF::STV_DEFAULT},
1280     {"INTERNAL",  "INTERNAL",  ELF::STV_INTERNAL},
1281     {"HIDDEN",    "HIDDEN",    ELF::STV_HIDDEN},
1282     {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
1283 
1284 const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
1285   { "AMDGPU_HSA_KERNEL",            ELF::STT_AMDGPU_HSA_KERNEL }
1286 };
1287 
1288 static const char *getGroupType(uint32_t Flag) {
1289   if (Flag & ELF::GRP_COMDAT)
1290     return "COMDAT";
1291   else
1292     return "(unknown)";
1293 }
1294 
1295 const EnumEntry<unsigned> ElfSectionFlags[] = {
1296   ENUM_ENT(SHF_WRITE,            "W"),
1297   ENUM_ENT(SHF_ALLOC,            "A"),
1298   ENUM_ENT(SHF_EXECINSTR,        "X"),
1299   ENUM_ENT(SHF_MERGE,            "M"),
1300   ENUM_ENT(SHF_STRINGS,          "S"),
1301   ENUM_ENT(SHF_INFO_LINK,        "I"),
1302   ENUM_ENT(SHF_LINK_ORDER,       "L"),
1303   ENUM_ENT(SHF_OS_NONCONFORMING, "O"),
1304   ENUM_ENT(SHF_GROUP,            "G"),
1305   ENUM_ENT(SHF_TLS,              "T"),
1306   ENUM_ENT(SHF_COMPRESSED,       "C"),
1307   ENUM_ENT(SHF_EXCLUDE,          "E"),
1308 };
1309 
1310 const EnumEntry<unsigned> ElfGNUSectionFlags[] = {
1311   ENUM_ENT(SHF_GNU_RETAIN, "R")
1312 };
1313 
1314 const EnumEntry<unsigned> ElfSolarisSectionFlags[] = {
1315   ENUM_ENT(SHF_SUNW_NODISCARD, "R")
1316 };
1317 
1318 const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
1319   ENUM_ENT(XCORE_SHF_CP_SECTION, ""),
1320   ENUM_ENT(XCORE_SHF_DP_SECTION, "")
1321 };
1322 
1323 const EnumEntry<unsigned> ElfARMSectionFlags[] = {
1324   ENUM_ENT(SHF_ARM_PURECODE, "y")
1325 };
1326 
1327 const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
1328   ENUM_ENT(SHF_HEX_GPREL, "")
1329 };
1330 
1331 const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
1332   ENUM_ENT(SHF_MIPS_NODUPES, ""),
1333   ENUM_ENT(SHF_MIPS_NAMES,   ""),
1334   ENUM_ENT(SHF_MIPS_LOCAL,   ""),
1335   ENUM_ENT(SHF_MIPS_NOSTRIP, ""),
1336   ENUM_ENT(SHF_MIPS_GPREL,   ""),
1337   ENUM_ENT(SHF_MIPS_MERGE,   ""),
1338   ENUM_ENT(SHF_MIPS_ADDR,    ""),
1339   ENUM_ENT(SHF_MIPS_STRING,  "")
1340 };
1341 
1342 const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
1343   ENUM_ENT(SHF_X86_64_LARGE, "l")
1344 };
1345 
1346 static std::vector<EnumEntry<unsigned>>
1347 getSectionFlagsForTarget(unsigned EOSAbi, unsigned EMachine) {
1348   std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags),
1349                                        std::end(ElfSectionFlags));
1350   switch (EOSAbi) {
1351   case ELFOSABI_SOLARIS:
1352     Ret.insert(Ret.end(), std::begin(ElfSolarisSectionFlags),
1353                std::end(ElfSolarisSectionFlags));
1354     break;
1355   default:
1356     Ret.insert(Ret.end(), std::begin(ElfGNUSectionFlags),
1357                std::end(ElfGNUSectionFlags));
1358     break;
1359   }
1360   switch (EMachine) {
1361   case EM_ARM:
1362     Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags),
1363                std::end(ElfARMSectionFlags));
1364     break;
1365   case EM_HEXAGON:
1366     Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags),
1367                std::end(ElfHexagonSectionFlags));
1368     break;
1369   case EM_MIPS:
1370     Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags),
1371                std::end(ElfMipsSectionFlags));
1372     break;
1373   case EM_X86_64:
1374     Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags),
1375                std::end(ElfX86_64SectionFlags));
1376     break;
1377   case EM_XCORE:
1378     Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags),
1379                std::end(ElfXCoreSectionFlags));
1380     break;
1381   default:
1382     break;
1383   }
1384   return Ret;
1385 }
1386 
1387 static std::string getGNUFlags(unsigned EOSAbi, unsigned EMachine,
1388                                uint64_t Flags) {
1389   // Here we are trying to build the flags string in the same way as GNU does.
1390   // It is not that straightforward. Imagine we have sh_flags == 0x90000000.
1391   // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000.
1392   // GNU readelf will not print "E" or "Ep" in this case, but will print just
1393   // "p". It only will print "E" when no other processor flag is set.
1394   std::string Str;
1395   bool HasUnknownFlag = false;
1396   bool HasOSFlag = false;
1397   bool HasProcFlag = false;
1398   std::vector<EnumEntry<unsigned>> FlagsList =
1399       getSectionFlagsForTarget(EOSAbi, EMachine);
1400   while (Flags) {
1401     // Take the least significant bit as a flag.
1402     uint64_t Flag = Flags & -Flags;
1403     Flags -= Flag;
1404 
1405     // Find the flag in the known flags list.
1406     auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) {
1407       // Flags with empty names are not printed in GNU style output.
1408       return E.Value == Flag && !E.AltName.empty();
1409     });
1410     if (I != FlagsList.end()) {
1411       Str += I->AltName;
1412       continue;
1413     }
1414 
1415     // If we did not find a matching regular flag, then we deal with an OS
1416     // specific flag, processor specific flag or an unknown flag.
1417     if (Flag & ELF::SHF_MASKOS) {
1418       HasOSFlag = true;
1419       Flags &= ~ELF::SHF_MASKOS;
1420     } else if (Flag & ELF::SHF_MASKPROC) {
1421       HasProcFlag = true;
1422       // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE
1423       // bit if set so that it doesn't also get printed.
1424       Flags &= ~ELF::SHF_MASKPROC;
1425     } else {
1426       HasUnknownFlag = true;
1427     }
1428   }
1429 
1430   // "o", "p" and "x" are printed last.
1431   if (HasOSFlag)
1432     Str += "o";
1433   if (HasProcFlag)
1434     Str += "p";
1435   if (HasUnknownFlag)
1436     Str += "x";
1437   return Str;
1438 }
1439 
1440 static StringRef segmentTypeToString(unsigned Arch, unsigned Type) {
1441   // Check potentially overlapped processor-specific program header type.
1442   switch (Arch) {
1443   case ELF::EM_ARM:
1444     switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); }
1445     break;
1446   case ELF::EM_MIPS:
1447   case ELF::EM_MIPS_RS3_LE:
1448     switch (Type) {
1449       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
1450       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
1451       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
1452       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
1453     }
1454     break;
1455   case ELF::EM_RISCV:
1456     switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_RISCV_ATTRIBUTES); }
1457   }
1458 
1459   switch (Type) {
1460     LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL);
1461     LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD);
1462     LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
1463     LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP);
1464     LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE);
1465     LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB);
1466     LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR);
1467     LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS);
1468 
1469     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
1470     LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);
1471 
1472     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
1473     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
1474     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY);
1475 
1476     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_MUTABLE);
1477     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE);
1478     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED);
1479     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_NOBTCFI);
1480     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA);
1481   default:
1482     return "";
1483   }
1484 }
1485 
1486 static std::string getGNUPtType(unsigned Arch, unsigned Type) {
1487   StringRef Seg = segmentTypeToString(Arch, Type);
1488   if (Seg.empty())
1489     return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
1490 
1491   // E.g. "PT_ARM_EXIDX" -> "EXIDX".
1492   if (Seg.consume_front("PT_ARM_"))
1493     return Seg.str();
1494 
1495   // E.g. "PT_MIPS_REGINFO" -> "REGINFO".
1496   if (Seg.consume_front("PT_MIPS_"))
1497     return Seg.str();
1498 
1499   // E.g. "PT_RISCV_ATTRIBUTES"
1500   if (Seg.consume_front("PT_RISCV_"))
1501     return Seg.str();
1502 
1503   // E.g. "PT_LOAD" -> "LOAD".
1504   assert(Seg.starts_with("PT_"));
1505   return Seg.drop_front(3).str();
1506 }
1507 
1508 const EnumEntry<unsigned> ElfSegmentFlags[] = {
1509   LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
1510   LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
1511   LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
1512 };
1513 
1514 const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
1515   ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"),
1516   ENUM_ENT(EF_MIPS_PIC, "pic"),
1517   ENUM_ENT(EF_MIPS_CPIC, "cpic"),
1518   ENUM_ENT(EF_MIPS_ABI2, "abi2"),
1519   ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"),
1520   ENUM_ENT(EF_MIPS_FP64, "fp64"),
1521   ENUM_ENT(EF_MIPS_NAN2008, "nan2008"),
1522   ENUM_ENT(EF_MIPS_ABI_O32, "o32"),
1523   ENUM_ENT(EF_MIPS_ABI_O64, "o64"),
1524   ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"),
1525   ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"),
1526   ENUM_ENT(EF_MIPS_MACH_3900, "3900"),
1527   ENUM_ENT(EF_MIPS_MACH_4010, "4010"),
1528   ENUM_ENT(EF_MIPS_MACH_4100, "4100"),
1529   ENUM_ENT(EF_MIPS_MACH_4650, "4650"),
1530   ENUM_ENT(EF_MIPS_MACH_4120, "4120"),
1531   ENUM_ENT(EF_MIPS_MACH_4111, "4111"),
1532   ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"),
1533   ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"),
1534   ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"),
1535   ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"),
1536   ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"),
1537   ENUM_ENT(EF_MIPS_MACH_5400, "5400"),
1538   ENUM_ENT(EF_MIPS_MACH_5900, "5900"),
1539   ENUM_ENT(EF_MIPS_MACH_5500, "5500"),
1540   ENUM_ENT(EF_MIPS_MACH_9000, "9000"),
1541   ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"),
1542   ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"),
1543   ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"),
1544   ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"),
1545   ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"),
1546   ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"),
1547   ENUM_ENT(EF_MIPS_ARCH_1, "mips1"),
1548   ENUM_ENT(EF_MIPS_ARCH_2, "mips2"),
1549   ENUM_ENT(EF_MIPS_ARCH_3, "mips3"),
1550   ENUM_ENT(EF_MIPS_ARCH_4, "mips4"),
1551   ENUM_ENT(EF_MIPS_ARCH_5, "mips5"),
1552   ENUM_ENT(EF_MIPS_ARCH_32, "mips32"),
1553   ENUM_ENT(EF_MIPS_ARCH_64, "mips64"),
1554   ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"),
1555   ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"),
1556   ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"),
1557   ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6")
1558 };
1559 
1560 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion3[] = {
1561     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
1562     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
1563     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
1564     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
1565     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
1566     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
1567     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
1568     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
1569     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
1570     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
1571     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
1572     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
1573     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
1574     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
1575     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
1576     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
1577     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
1578     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
1579     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
1580     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602),
1581     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
1582     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
1583     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
1584     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
1585     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
1586     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705),
1587     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
1588     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
1589     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
1590     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805),
1591     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
1592     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
1593     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
1594     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
1595     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
1596     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
1597     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
1598     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A),
1599     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C),
1600     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX940),
1601     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX941),
1602     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX942),
1603     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
1604     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
1605     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
1606     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013),
1607     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030),
1608     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031),
1609     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032),
1610     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033),
1611     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034),
1612     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035),
1613     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1036),
1614     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1100),
1615     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1101),
1616     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1102),
1617     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1103),
1618     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1150),
1619     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1151),
1620     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1200),
1621     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1201),
1622     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_V3),
1623     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_V3),
1624 };
1625 
1626 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion4[] = {
1627     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
1628     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
1629     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
1630     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
1631     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
1632     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
1633     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
1634     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
1635     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
1636     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
1637     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
1638     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
1639     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
1640     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
1641     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
1642     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
1643     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
1644     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
1645     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
1646     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602),
1647     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
1648     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
1649     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
1650     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
1651     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
1652     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705),
1653     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
1654     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
1655     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
1656     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805),
1657     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
1658     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
1659     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
1660     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
1661     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
1662     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
1663     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
1664     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A),
1665     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C),
1666     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX940),
1667     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX941),
1668     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX942),
1669     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
1670     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
1671     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
1672     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013),
1673     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030),
1674     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031),
1675     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032),
1676     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033),
1677     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034),
1678     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035),
1679     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1036),
1680     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1100),
1681     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1101),
1682     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1102),
1683     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1103),
1684     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1150),
1685     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1151),
1686     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1200),
1687     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1201),
1688     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ANY_V4),
1689     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_OFF_V4),
1690     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ON_V4),
1691     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ANY_V4),
1692     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_OFF_V4),
1693     LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ON_V4),
1694 };
1695 
1696 const EnumEntry<unsigned> ElfHeaderNVPTXFlags[] = {
1697     ENUM_ENT(EF_CUDA_SM20, "sm_20"), ENUM_ENT(EF_CUDA_SM21, "sm_21"),
1698     ENUM_ENT(EF_CUDA_SM30, "sm_30"), ENUM_ENT(EF_CUDA_SM32, "sm_32"),
1699     ENUM_ENT(EF_CUDA_SM35, "sm_35"), ENUM_ENT(EF_CUDA_SM37, "sm_37"),
1700     ENUM_ENT(EF_CUDA_SM50, "sm_50"), ENUM_ENT(EF_CUDA_SM52, "sm_52"),
1701     ENUM_ENT(EF_CUDA_SM53, "sm_53"), ENUM_ENT(EF_CUDA_SM60, "sm_60"),
1702     ENUM_ENT(EF_CUDA_SM61, "sm_61"), ENUM_ENT(EF_CUDA_SM62, "sm_62"),
1703     ENUM_ENT(EF_CUDA_SM70, "sm_70"), ENUM_ENT(EF_CUDA_SM72, "sm_72"),
1704     ENUM_ENT(EF_CUDA_SM75, "sm_75"), ENUM_ENT(EF_CUDA_SM80, "sm_80"),
1705     ENUM_ENT(EF_CUDA_SM86, "sm_86"), ENUM_ENT(EF_CUDA_SM87, "sm_87"),
1706     ENUM_ENT(EF_CUDA_SM89, "sm_89"), ENUM_ENT(EF_CUDA_SM90, "sm_90"),
1707 };
1708 
1709 const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
1710   ENUM_ENT(EF_RISCV_RVC, "RVC"),
1711   ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"),
1712   ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"),
1713   ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"),
1714   ENUM_ENT(EF_RISCV_RVE, "RVE"),
1715   ENUM_ENT(EF_RISCV_TSO, "TSO"),
1716 };
1717 
1718 const EnumEntry<unsigned> ElfHeaderAVRFlags[] = {
1719   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR1),
1720   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR2),
1721   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR25),
1722   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR3),
1723   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR31),
1724   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR35),
1725   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR4),
1726   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR5),
1727   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR51),
1728   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR6),
1729   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVRTINY),
1730   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA1),
1731   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA2),
1732   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA3),
1733   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA4),
1734   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA5),
1735   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA6),
1736   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA7),
1737   ENUM_ENT(EF_AVR_LINKRELAX_PREPARED, "relaxable"),
1738 };
1739 
1740 const EnumEntry<unsigned> ElfHeaderLoongArchFlags[] = {
1741   ENUM_ENT(EF_LOONGARCH_ABI_SOFT_FLOAT, "SOFT-FLOAT"),
1742   ENUM_ENT(EF_LOONGARCH_ABI_SINGLE_FLOAT, "SINGLE-FLOAT"),
1743   ENUM_ENT(EF_LOONGARCH_ABI_DOUBLE_FLOAT, "DOUBLE-FLOAT"),
1744   ENUM_ENT(EF_LOONGARCH_OBJABI_V0, "OBJ-v0"),
1745   ENUM_ENT(EF_LOONGARCH_OBJABI_V1, "OBJ-v1"),
1746 };
1747 
1748 static const EnumEntry<unsigned> ElfHeaderXtensaFlags[] = {
1749   LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_MACH_NONE),
1750   LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_XT_INSN),
1751   LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_XT_LIT)
1752 };
1753 
1754 const EnumEntry<unsigned> ElfSymOtherFlags[] = {
1755   LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL),
1756   LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN),
1757   LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED)
1758 };
1759 
1760 const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
1761   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1762   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1763   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC),
1764   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS)
1765 };
1766 
1767 const EnumEntry<unsigned> ElfAArch64SymOtherFlags[] = {
1768   LLVM_READOBJ_ENUM_ENT(ELF, STO_AARCH64_VARIANT_PCS)
1769 };
1770 
1771 const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
1772   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1773   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1774   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16)
1775 };
1776 
1777 const EnumEntry<unsigned> ElfRISCVSymOtherFlags[] = {
1778     LLVM_READOBJ_ENUM_ENT(ELF, STO_RISCV_VARIANT_CC)};
1779 
1780 static const char *getElfMipsOptionsOdkType(unsigned Odk) {
1781   switch (Odk) {
1782   LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL);
1783   LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO);
1784   LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS);
1785   LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD);
1786   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH);
1787   LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL);
1788   LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS);
1789   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND);
1790   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR);
1791   LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP);
1792   LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT);
1793   LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE);
1794   default:
1795     return "Unknown";
1796   }
1797 }
1798 
1799 template <typename ELFT>
1800 std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *>
1801 ELFDumper<ELFT>::findDynamic() {
1802   // Try to locate the PT_DYNAMIC header.
1803   const Elf_Phdr *DynamicPhdr = nullptr;
1804   if (Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj.program_headers()) {
1805     for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
1806       if (Phdr.p_type != ELF::PT_DYNAMIC)
1807         continue;
1808       DynamicPhdr = &Phdr;
1809       break;
1810     }
1811   } else {
1812     reportUniqueWarning(
1813         "unable to read program headers to locate the PT_DYNAMIC segment: " +
1814         toString(PhdrsOrErr.takeError()));
1815   }
1816 
1817   // Try to locate the .dynamic section in the sections header table.
1818   const Elf_Shdr *DynamicSec = nullptr;
1819   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
1820     if (Sec.sh_type != ELF::SHT_DYNAMIC)
1821       continue;
1822     DynamicSec = &Sec;
1823     break;
1824   }
1825 
1826   if (DynamicPhdr && ((DynamicPhdr->p_offset + DynamicPhdr->p_filesz >
1827                        ObjF.getMemoryBufferRef().getBufferSize()) ||
1828                       (DynamicPhdr->p_offset + DynamicPhdr->p_filesz <
1829                        DynamicPhdr->p_offset))) {
1830     reportUniqueWarning(
1831         "PT_DYNAMIC segment offset (0x" +
1832         Twine::utohexstr(DynamicPhdr->p_offset) + ") + file size (0x" +
1833         Twine::utohexstr(DynamicPhdr->p_filesz) +
1834         ") exceeds the size of the file (0x" +
1835         Twine::utohexstr(ObjF.getMemoryBufferRef().getBufferSize()) + ")");
1836     // Don't use the broken dynamic header.
1837     DynamicPhdr = nullptr;
1838   }
1839 
1840   if (DynamicPhdr && DynamicSec) {
1841     if (DynamicSec->sh_addr + DynamicSec->sh_size >
1842             DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz ||
1843         DynamicSec->sh_addr < DynamicPhdr->p_vaddr)
1844       reportUniqueWarning(describe(*DynamicSec) +
1845                           " is not contained within the "
1846                           "PT_DYNAMIC segment");
1847 
1848     if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr)
1849       reportUniqueWarning(describe(*DynamicSec) + " is not at the start of "
1850                                                   "PT_DYNAMIC segment");
1851   }
1852 
1853   return std::make_pair(DynamicPhdr, DynamicSec);
1854 }
1855 
1856 template <typename ELFT>
1857 void ELFDumper<ELFT>::loadDynamicTable() {
1858   const Elf_Phdr *DynamicPhdr;
1859   const Elf_Shdr *DynamicSec;
1860   std::tie(DynamicPhdr, DynamicSec) = findDynamic();
1861   if (!DynamicPhdr && !DynamicSec)
1862     return;
1863 
1864   DynRegionInfo FromPhdr(ObjF, *this);
1865   bool IsPhdrTableValid = false;
1866   if (DynamicPhdr) {
1867     // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are
1868     // validated in findDynamic() and so createDRI() is not expected to fail.
1869     FromPhdr = cantFail(createDRI(DynamicPhdr->p_offset, DynamicPhdr->p_filesz,
1870                                   sizeof(Elf_Dyn)));
1871     FromPhdr.SizePrintName = "PT_DYNAMIC size";
1872     FromPhdr.EntSizePrintName = "";
1873     IsPhdrTableValid = !FromPhdr.template getAsArrayRef<Elf_Dyn>().empty();
1874   }
1875 
1876   // Locate the dynamic table described in a section header.
1877   // Ignore sh_entsize and use the expected value for entry size explicitly.
1878   // This allows us to dump dynamic sections with a broken sh_entsize
1879   // field.
1880   DynRegionInfo FromSec(ObjF, *this);
1881   bool IsSecTableValid = false;
1882   if (DynamicSec) {
1883     Expected<DynRegionInfo> RegOrErr =
1884         createDRI(DynamicSec->sh_offset, DynamicSec->sh_size, sizeof(Elf_Dyn));
1885     if (RegOrErr) {
1886       FromSec = *RegOrErr;
1887       FromSec.Context = describe(*DynamicSec);
1888       FromSec.EntSizePrintName = "";
1889       IsSecTableValid = !FromSec.template getAsArrayRef<Elf_Dyn>().empty();
1890     } else {
1891       reportUniqueWarning("unable to read the dynamic table from " +
1892                           describe(*DynamicSec) + ": " +
1893                           toString(RegOrErr.takeError()));
1894     }
1895   }
1896 
1897   // When we only have information from one of the SHT_DYNAMIC section header or
1898   // PT_DYNAMIC program header, just use that.
1899   if (!DynamicPhdr || !DynamicSec) {
1900     if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) {
1901       DynamicTable = DynamicPhdr ? FromPhdr : FromSec;
1902       parseDynamicTable();
1903     } else {
1904       reportUniqueWarning("no valid dynamic table was found");
1905     }
1906     return;
1907   }
1908 
1909   // At this point we have tables found from the section header and from the
1910   // dynamic segment. Usually they match, but we have to do sanity checks to
1911   // verify that.
1912 
1913   if (FromPhdr.Addr != FromSec.Addr)
1914     reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC "
1915                         "program header disagree about "
1916                         "the location of the dynamic table");
1917 
1918   if (!IsPhdrTableValid && !IsSecTableValid) {
1919     reportUniqueWarning("no valid dynamic table was found");
1920     return;
1921   }
1922 
1923   // Information in the PT_DYNAMIC program header has priority over the
1924   // information in a section header.
1925   if (IsPhdrTableValid) {
1926     if (!IsSecTableValid)
1927       reportUniqueWarning(
1928           "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used");
1929     DynamicTable = FromPhdr;
1930   } else {
1931     reportUniqueWarning(
1932         "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used");
1933     DynamicTable = FromSec;
1934   }
1935 
1936   parseDynamicTable();
1937 }
1938 
1939 template <typename ELFT>
1940 ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> &O,
1941                            ScopedPrinter &Writer)
1942     : ObjDumper(Writer, O.getFileName()), ObjF(O), Obj(O.getELFFile()),
1943       FileName(O.getFileName()), DynRelRegion(O, *this),
1944       DynRelaRegion(O, *this), DynRelrRegion(O, *this),
1945       DynPLTRelRegion(O, *this), DynSymTabShndxRegion(O, *this),
1946       DynamicTable(O, *this) {
1947   if (!O.IsContentValid())
1948     return;
1949 
1950   typename ELFT::ShdrRange Sections = cantFail(Obj.sections());
1951   for (const Elf_Shdr &Sec : Sections) {
1952     switch (Sec.sh_type) {
1953     case ELF::SHT_SYMTAB:
1954       if (!DotSymtabSec)
1955         DotSymtabSec = &Sec;
1956       break;
1957     case ELF::SHT_DYNSYM:
1958       if (!DotDynsymSec)
1959         DotDynsymSec = &Sec;
1960 
1961       if (!DynSymRegion) {
1962         Expected<DynRegionInfo> RegOrErr =
1963             createDRI(Sec.sh_offset, Sec.sh_size, Sec.sh_entsize);
1964         if (RegOrErr) {
1965           DynSymRegion = *RegOrErr;
1966           DynSymRegion->Context = describe(Sec);
1967 
1968           if (Expected<StringRef> E = Obj.getStringTableForSymtab(Sec))
1969             DynamicStringTable = *E;
1970           else
1971             reportUniqueWarning("unable to get the string table for the " +
1972                                 describe(Sec) + ": " + toString(E.takeError()));
1973         } else {
1974           reportUniqueWarning("unable to read dynamic symbols from " +
1975                               describe(Sec) + ": " +
1976                               toString(RegOrErr.takeError()));
1977         }
1978       }
1979       break;
1980     case ELF::SHT_SYMTAB_SHNDX: {
1981       uint32_t SymtabNdx = Sec.sh_link;
1982       if (SymtabNdx >= Sections.size()) {
1983         reportUniqueWarning(
1984             "unable to get the associated symbol table for " + describe(Sec) +
1985             ": sh_link (" + Twine(SymtabNdx) +
1986             ") is greater than or equal to the total number of sections (" +
1987             Twine(Sections.size()) + ")");
1988         continue;
1989       }
1990 
1991       if (Expected<ArrayRef<Elf_Word>> ShndxTableOrErr =
1992               Obj.getSHNDXTable(Sec)) {
1993         if (!ShndxTables.insert({&Sections[SymtabNdx], *ShndxTableOrErr})
1994                  .second)
1995           reportUniqueWarning(
1996               "multiple SHT_SYMTAB_SHNDX sections are linked to " +
1997               describe(Sec));
1998       } else {
1999         reportUniqueWarning(ShndxTableOrErr.takeError());
2000       }
2001       break;
2002     }
2003     case ELF::SHT_GNU_versym:
2004       if (!SymbolVersionSection)
2005         SymbolVersionSection = &Sec;
2006       break;
2007     case ELF::SHT_GNU_verdef:
2008       if (!SymbolVersionDefSection)
2009         SymbolVersionDefSection = &Sec;
2010       break;
2011     case ELF::SHT_GNU_verneed:
2012       if (!SymbolVersionNeedSection)
2013         SymbolVersionNeedSection = &Sec;
2014       break;
2015     case ELF::SHT_LLVM_ADDRSIG:
2016       if (!DotAddrsigSec)
2017         DotAddrsigSec = &Sec;
2018       break;
2019     }
2020   }
2021 
2022   loadDynamicTable();
2023 }
2024 
2025 template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() {
2026   auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * {
2027     auto MappedAddrOrError = Obj.toMappedAddr(VAddr, [&](const Twine &Msg) {
2028       this->reportUniqueWarning(Msg);
2029       return Error::success();
2030     });
2031     if (!MappedAddrOrError) {
2032       this->reportUniqueWarning("unable to parse DT_" +
2033                                 Obj.getDynamicTagAsString(Tag) + ": " +
2034                                 llvm::toString(MappedAddrOrError.takeError()));
2035       return nullptr;
2036     }
2037     return MappedAddrOrError.get();
2038   };
2039 
2040   const char *StringTableBegin = nullptr;
2041   uint64_t StringTableSize = 0;
2042   std::optional<DynRegionInfo> DynSymFromTable;
2043   for (const Elf_Dyn &Dyn : dynamic_table()) {
2044     if (Obj.getHeader().e_machine == EM_AARCH64) {
2045       switch (Dyn.d_tag) {
2046       case ELF::DT_AARCH64_AUTH_RELRSZ:
2047         DynRelrRegion.Size = Dyn.getVal();
2048         DynRelrRegion.SizePrintName = "DT_AARCH64_AUTH_RELRSZ value";
2049         continue;
2050       case ELF::DT_AARCH64_AUTH_RELRENT:
2051         DynRelrRegion.EntSize = Dyn.getVal();
2052         DynRelrRegion.EntSizePrintName = "DT_AARCH64_AUTH_RELRENT value";
2053         continue;
2054       }
2055     }
2056     switch (Dyn.d_tag) {
2057     case ELF::DT_HASH:
2058       HashTable = reinterpret_cast<const Elf_Hash *>(
2059           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
2060       break;
2061     case ELF::DT_GNU_HASH:
2062       GnuHashTable = reinterpret_cast<const Elf_GnuHash *>(
2063           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
2064       break;
2065     case ELF::DT_STRTAB:
2066       StringTableBegin = reinterpret_cast<const char *>(
2067           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
2068       break;
2069     case ELF::DT_STRSZ:
2070       StringTableSize = Dyn.getVal();
2071       break;
2072     case ELF::DT_SYMTAB: {
2073       // If we can't map the DT_SYMTAB value to an address (e.g. when there are
2074       // no program headers), we ignore its value.
2075       if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) {
2076         DynSymFromTable.emplace(ObjF, *this);
2077         DynSymFromTable->Addr = VA;
2078         DynSymFromTable->EntSize = sizeof(Elf_Sym);
2079         DynSymFromTable->EntSizePrintName = "";
2080       }
2081       break;
2082     }
2083     case ELF::DT_SYMENT: {
2084       uint64_t Val = Dyn.getVal();
2085       if (Val != sizeof(Elf_Sym))
2086         this->reportUniqueWarning("DT_SYMENT value of 0x" +
2087                                   Twine::utohexstr(Val) +
2088                                   " is not the size of a symbol (0x" +
2089                                   Twine::utohexstr(sizeof(Elf_Sym)) + ")");
2090       break;
2091     }
2092     case ELF::DT_RELA:
2093       DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2094       break;
2095     case ELF::DT_RELASZ:
2096       DynRelaRegion.Size = Dyn.getVal();
2097       DynRelaRegion.SizePrintName = "DT_RELASZ value";
2098       break;
2099     case ELF::DT_RELAENT:
2100       DynRelaRegion.EntSize = Dyn.getVal();
2101       DynRelaRegion.EntSizePrintName = "DT_RELAENT value";
2102       break;
2103     case ELF::DT_SONAME:
2104       SONameOffset = Dyn.getVal();
2105       break;
2106     case ELF::DT_REL:
2107       DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2108       break;
2109     case ELF::DT_RELSZ:
2110       DynRelRegion.Size = Dyn.getVal();
2111       DynRelRegion.SizePrintName = "DT_RELSZ value";
2112       break;
2113     case ELF::DT_RELENT:
2114       DynRelRegion.EntSize = Dyn.getVal();
2115       DynRelRegion.EntSizePrintName = "DT_RELENT value";
2116       break;
2117     case ELF::DT_RELR:
2118     case ELF::DT_ANDROID_RELR:
2119     case ELF::DT_AARCH64_AUTH_RELR:
2120       DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2121       break;
2122     case ELF::DT_RELRSZ:
2123     case ELF::DT_ANDROID_RELRSZ:
2124     case ELF::DT_AARCH64_AUTH_RELRSZ:
2125       DynRelrRegion.Size = Dyn.getVal();
2126       DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ
2127                                         ? "DT_RELRSZ value"
2128                                         : "DT_ANDROID_RELRSZ value";
2129       break;
2130     case ELF::DT_RELRENT:
2131     case ELF::DT_ANDROID_RELRENT:
2132     case ELF::DT_AARCH64_AUTH_RELRENT:
2133       DynRelrRegion.EntSize = Dyn.getVal();
2134       DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT
2135                                            ? "DT_RELRENT value"
2136                                            : "DT_ANDROID_RELRENT value";
2137       break;
2138     case ELF::DT_PLTREL:
2139       if (Dyn.getVal() == DT_REL)
2140         DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
2141       else if (Dyn.getVal() == DT_RELA)
2142         DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
2143       else
2144         reportUniqueWarning(Twine("unknown DT_PLTREL value of ") +
2145                             Twine((uint64_t)Dyn.getVal()));
2146       DynPLTRelRegion.EntSizePrintName = "PLTREL entry size";
2147       break;
2148     case ELF::DT_JMPREL:
2149       DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2150       break;
2151     case ELF::DT_PLTRELSZ:
2152       DynPLTRelRegion.Size = Dyn.getVal();
2153       DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value";
2154       break;
2155     case ELF::DT_SYMTAB_SHNDX:
2156       DynSymTabShndxRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2157       DynSymTabShndxRegion.EntSize = sizeof(Elf_Word);
2158       break;
2159     }
2160   }
2161 
2162   if (StringTableBegin) {
2163     const uint64_t FileSize = Obj.getBufSize();
2164     const uint64_t Offset = (const uint8_t *)StringTableBegin - Obj.base();
2165     if (StringTableSize > FileSize - Offset)
2166       reportUniqueWarning(
2167           "the dynamic string table at 0x" + Twine::utohexstr(Offset) +
2168           " goes past the end of the file (0x" + Twine::utohexstr(FileSize) +
2169           ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize));
2170     else
2171       DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
2172   }
2173 
2174   const bool IsHashTableSupported = getHashTableEntSize() == 4;
2175   if (DynSymRegion) {
2176     // Often we find the information about the dynamic symbol table
2177     // location in the SHT_DYNSYM section header. However, the value in
2178     // DT_SYMTAB has priority, because it is used by dynamic loaders to
2179     // locate .dynsym at runtime. The location we find in the section header
2180     // and the location we find here should match.
2181     if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr)
2182       reportUniqueWarning(
2183           createError("SHT_DYNSYM section header and DT_SYMTAB disagree about "
2184                       "the location of the dynamic symbol table"));
2185 
2186     // According to the ELF gABI: "The number of symbol table entries should
2187     // equal nchain". Check to see if the DT_HASH hash table nchain value
2188     // conflicts with the number of symbols in the dynamic symbol table
2189     // according to the section header.
2190     if (HashTable && IsHashTableSupported) {
2191       if (DynSymRegion->EntSize == 0)
2192         reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0");
2193       else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize)
2194         reportUniqueWarning(
2195             "hash table nchain (" + Twine(HashTable->nchain) +
2196             ") differs from symbol count derived from SHT_DYNSYM section "
2197             "header (" +
2198             Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")");
2199     }
2200   }
2201 
2202   // Delay the creation of the actual dynamic symbol table until now, so that
2203   // checks can always be made against the section header-based properties,
2204   // without worrying about tag order.
2205   if (DynSymFromTable) {
2206     if (!DynSymRegion) {
2207       DynSymRegion = DynSymFromTable;
2208     } else {
2209       DynSymRegion->Addr = DynSymFromTable->Addr;
2210       DynSymRegion->EntSize = DynSymFromTable->EntSize;
2211       DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName;
2212     }
2213   }
2214 
2215   // Derive the dynamic symbol table size from the DT_HASH hash table, if
2216   // present.
2217   if (HashTable && IsHashTableSupported && DynSymRegion) {
2218     const uint64_t FileSize = Obj.getBufSize();
2219     const uint64_t DerivedSize =
2220         (uint64_t)HashTable->nchain * DynSymRegion->EntSize;
2221     const uint64_t Offset = (const uint8_t *)DynSymRegion->Addr - Obj.base();
2222     if (DerivedSize > FileSize - Offset)
2223       reportUniqueWarning(
2224           "the size (0x" + Twine::utohexstr(DerivedSize) +
2225           ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset) +
2226           ", derived from the hash table, goes past the end of the file (0x" +
2227           Twine::utohexstr(FileSize) + ") and will be ignored");
2228     else
2229       DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize;
2230   }
2231 }
2232 
2233 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
2234   // Dump version symbol section.
2235   printVersionSymbolSection(SymbolVersionSection);
2236 
2237   // Dump version definition section.
2238   printVersionDefinitionSection(SymbolVersionDefSection);
2239 
2240   // Dump version dependency section.
2241   printVersionDependencySection(SymbolVersionNeedSection);
2242 }
2243 
2244 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum)                                 \
2245   { #enum, prefix##_##enum }
2246 
2247 const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
2248   LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
2249   LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
2250   LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
2251   LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
2252   LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
2253 };
2254 
2255 const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
2256   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
2257   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
2258   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
2259   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
2260   LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
2261   LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
2262   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
2263   LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
2264   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
2265   LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
2266   LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
2267   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
2268   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
2269   LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
2270   LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
2271   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
2272   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND),
2273   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
2274   LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
2275   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
2276   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
2277   LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
2278   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
2279   LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
2280   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
2281   LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON),
2282   LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE),
2283 };
2284 
2285 const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
2286   LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
2287   LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
2288   LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
2289   LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
2290   LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
2291   LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
2292   LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
2293   LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
2294   LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
2295   LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
2296   LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
2297   LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
2298   LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
2299   LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
2300   LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
2301   LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
2302 };
2303 
2304 #undef LLVM_READOBJ_DT_FLAG_ENT
2305 
2306 template <typename T, typename TFlag>
2307 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
2308   SmallVector<EnumEntry<TFlag>, 10> SetFlags;
2309   for (const EnumEntry<TFlag> &Flag : Flags)
2310     if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value)
2311       SetFlags.push_back(Flag);
2312 
2313   for (const EnumEntry<TFlag> &Flag : SetFlags)
2314     OS << Flag.Name << " ";
2315 }
2316 
2317 template <class ELFT>
2318 const typename ELFT::Shdr *
2319 ELFDumper<ELFT>::findSectionByName(StringRef Name) const {
2320   for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
2321     if (Expected<StringRef> NameOrErr = Obj.getSectionName(Shdr)) {
2322       if (*NameOrErr == Name)
2323         return &Shdr;
2324     } else {
2325       reportUniqueWarning("unable to read the name of " + describe(Shdr) +
2326                           ": " + toString(NameOrErr.takeError()));
2327     }
2328   }
2329   return nullptr;
2330 }
2331 
2332 template <class ELFT>
2333 std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type,
2334                                              uint64_t Value) const {
2335   auto FormatHexValue = [](uint64_t V) {
2336     std::string Str;
2337     raw_string_ostream OS(Str);
2338     const char *ConvChar =
2339         (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64;
2340     OS << format(ConvChar, V);
2341     return OS.str();
2342   };
2343 
2344   auto FormatFlags = [](uint64_t V,
2345                         llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) {
2346     std::string Str;
2347     raw_string_ostream OS(Str);
2348     printFlags(V, Array, OS);
2349     return OS.str();
2350   };
2351 
2352   // Handle custom printing of architecture specific tags
2353   switch (Obj.getHeader().e_machine) {
2354   case EM_AARCH64:
2355     switch (Type) {
2356     case DT_AARCH64_BTI_PLT:
2357     case DT_AARCH64_PAC_PLT:
2358     case DT_AARCH64_VARIANT_PCS:
2359     case DT_AARCH64_MEMTAG_GLOBALSSZ:
2360       return std::to_string(Value);
2361     case DT_AARCH64_MEMTAG_MODE:
2362       switch (Value) {
2363         case 0:
2364           return "Synchronous (0)";
2365         case 1:
2366           return "Asynchronous (1)";
2367         default:
2368           return (Twine("Unknown (") + Twine(Value) + ")").str();
2369       }
2370     case DT_AARCH64_MEMTAG_HEAP:
2371     case DT_AARCH64_MEMTAG_STACK:
2372       switch (Value) {
2373         case 0:
2374           return "Disabled (0)";
2375         case 1:
2376           return "Enabled (1)";
2377         default:
2378           return (Twine("Unknown (") + Twine(Value) + ")").str();
2379       }
2380     case DT_AARCH64_MEMTAG_GLOBALS:
2381       return (Twine("0x") + utohexstr(Value, /*LowerCase=*/true)).str();
2382     default:
2383       break;
2384     }
2385     break;
2386   case EM_HEXAGON:
2387     switch (Type) {
2388     case DT_HEXAGON_VER:
2389       return std::to_string(Value);
2390     case DT_HEXAGON_SYMSZ:
2391     case DT_HEXAGON_PLT:
2392       return FormatHexValue(Value);
2393     default:
2394       break;
2395     }
2396     break;
2397   case EM_MIPS:
2398     switch (Type) {
2399     case DT_MIPS_RLD_VERSION:
2400     case DT_MIPS_LOCAL_GOTNO:
2401     case DT_MIPS_SYMTABNO:
2402     case DT_MIPS_UNREFEXTNO:
2403       return std::to_string(Value);
2404     case DT_MIPS_TIME_STAMP:
2405     case DT_MIPS_ICHECKSUM:
2406     case DT_MIPS_IVERSION:
2407     case DT_MIPS_BASE_ADDRESS:
2408     case DT_MIPS_MSYM:
2409     case DT_MIPS_CONFLICT:
2410     case DT_MIPS_LIBLIST:
2411     case DT_MIPS_CONFLICTNO:
2412     case DT_MIPS_LIBLISTNO:
2413     case DT_MIPS_GOTSYM:
2414     case DT_MIPS_HIPAGENO:
2415     case DT_MIPS_RLD_MAP:
2416     case DT_MIPS_DELTA_CLASS:
2417     case DT_MIPS_DELTA_CLASS_NO:
2418     case DT_MIPS_DELTA_INSTANCE:
2419     case DT_MIPS_DELTA_RELOC:
2420     case DT_MIPS_DELTA_RELOC_NO:
2421     case DT_MIPS_DELTA_SYM:
2422     case DT_MIPS_DELTA_SYM_NO:
2423     case DT_MIPS_DELTA_CLASSSYM:
2424     case DT_MIPS_DELTA_CLASSSYM_NO:
2425     case DT_MIPS_CXX_FLAGS:
2426     case DT_MIPS_PIXIE_INIT:
2427     case DT_MIPS_SYMBOL_LIB:
2428     case DT_MIPS_LOCALPAGE_GOTIDX:
2429     case DT_MIPS_LOCAL_GOTIDX:
2430     case DT_MIPS_HIDDEN_GOTIDX:
2431     case DT_MIPS_PROTECTED_GOTIDX:
2432     case DT_MIPS_OPTIONS:
2433     case DT_MIPS_INTERFACE:
2434     case DT_MIPS_DYNSTR_ALIGN:
2435     case DT_MIPS_INTERFACE_SIZE:
2436     case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
2437     case DT_MIPS_PERF_SUFFIX:
2438     case DT_MIPS_COMPACT_SIZE:
2439     case DT_MIPS_GP_VALUE:
2440     case DT_MIPS_AUX_DYNAMIC:
2441     case DT_MIPS_PLTGOT:
2442     case DT_MIPS_RWPLT:
2443     case DT_MIPS_RLD_MAP_REL:
2444     case DT_MIPS_XHASH:
2445       return FormatHexValue(Value);
2446     case DT_MIPS_FLAGS:
2447       return FormatFlags(Value, ArrayRef(ElfDynamicDTMipsFlags));
2448     default:
2449       break;
2450     }
2451     break;
2452   default:
2453     break;
2454   }
2455 
2456   switch (Type) {
2457   case DT_PLTREL:
2458     if (Value == DT_REL)
2459       return "REL";
2460     if (Value == DT_RELA)
2461       return "RELA";
2462     [[fallthrough]];
2463   case DT_PLTGOT:
2464   case DT_HASH:
2465   case DT_STRTAB:
2466   case DT_SYMTAB:
2467   case DT_RELA:
2468   case DT_INIT:
2469   case DT_FINI:
2470   case DT_REL:
2471   case DT_JMPREL:
2472   case DT_INIT_ARRAY:
2473   case DT_FINI_ARRAY:
2474   case DT_PREINIT_ARRAY:
2475   case DT_DEBUG:
2476   case DT_VERDEF:
2477   case DT_VERNEED:
2478   case DT_VERSYM:
2479   case DT_GNU_HASH:
2480   case DT_NULL:
2481     return FormatHexValue(Value);
2482   case DT_RELACOUNT:
2483   case DT_RELCOUNT:
2484   case DT_VERDEFNUM:
2485   case DT_VERNEEDNUM:
2486     return std::to_string(Value);
2487   case DT_PLTRELSZ:
2488   case DT_RELASZ:
2489   case DT_RELAENT:
2490   case DT_STRSZ:
2491   case DT_SYMENT:
2492   case DT_RELSZ:
2493   case DT_RELENT:
2494   case DT_INIT_ARRAYSZ:
2495   case DT_FINI_ARRAYSZ:
2496   case DT_PREINIT_ARRAYSZ:
2497   case DT_RELRSZ:
2498   case DT_RELRENT:
2499   case DT_AARCH64_AUTH_RELRSZ:
2500   case DT_AARCH64_AUTH_RELRENT:
2501   case DT_ANDROID_RELSZ:
2502   case DT_ANDROID_RELASZ:
2503     return std::to_string(Value) + " (bytes)";
2504   case DT_NEEDED:
2505   case DT_SONAME:
2506   case DT_AUXILIARY:
2507   case DT_USED:
2508   case DT_FILTER:
2509   case DT_RPATH:
2510   case DT_RUNPATH: {
2511     const std::map<uint64_t, const char *> TagNames = {
2512         {DT_NEEDED, "Shared library"},       {DT_SONAME, "Library soname"},
2513         {DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"},
2514         {DT_FILTER, "Filter library"},       {DT_RPATH, "Library rpath"},
2515         {DT_RUNPATH, "Library runpath"},
2516     };
2517 
2518     return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]")
2519         .str();
2520   }
2521   case DT_FLAGS:
2522     return FormatFlags(Value, ArrayRef(ElfDynamicDTFlags));
2523   case DT_FLAGS_1:
2524     return FormatFlags(Value, ArrayRef(ElfDynamicDTFlags1));
2525   default:
2526     return FormatHexValue(Value);
2527   }
2528 }
2529 
2530 template <class ELFT>
2531 StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
2532   if (DynamicStringTable.empty() && !DynamicStringTable.data()) {
2533     reportUniqueWarning("string table was not found");
2534     return "<?>";
2535   }
2536 
2537   auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) {
2538     reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset) +
2539                         Msg);
2540     return "<?>";
2541   };
2542 
2543   const uint64_t FileSize = Obj.getBufSize();
2544   const uint64_t Offset =
2545       (const uint8_t *)DynamicStringTable.data() - Obj.base();
2546   if (DynamicStringTable.size() > FileSize - Offset)
2547     return WarnAndReturn(" with size 0x" +
2548                              Twine::utohexstr(DynamicStringTable.size()) +
2549                              " goes past the end of the file (0x" +
2550                              Twine::utohexstr(FileSize) + ")",
2551                          Offset);
2552 
2553   if (Value >= DynamicStringTable.size())
2554     return WarnAndReturn(
2555         ": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) +
2556             ": it goes past the end of the table (0x" +
2557             Twine::utohexstr(Offset + DynamicStringTable.size()) + ")",
2558         Offset);
2559 
2560   if (DynamicStringTable.back() != '\0')
2561     return WarnAndReturn(": unable to read the string at 0x" +
2562                              Twine::utohexstr(Offset + Value) +
2563                              ": the string table is not null-terminated",
2564                          Offset);
2565 
2566   return DynamicStringTable.data() + Value;
2567 }
2568 
2569 template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() {
2570   DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF);
2571   Ctx.printUnwindInformation();
2572 }
2573 
2574 // The namespace is needed to fix the compilation with GCC older than 7.0+.
2575 namespace {
2576 template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
2577   if (Obj.getHeader().e_machine == EM_ARM) {
2578     ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF.getFileName(),
2579                                             DotSymtabSec);
2580     Ctx.PrintUnwindInformation();
2581   }
2582   DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF);
2583   Ctx.printUnwindInformation();
2584 }
2585 } // namespace
2586 
2587 template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() {
2588   ListScope D(W, "NeededLibraries");
2589 
2590   std::vector<StringRef> Libs;
2591   for (const auto &Entry : dynamic_table())
2592     if (Entry.d_tag == ELF::DT_NEEDED)
2593       Libs.push_back(getDynamicString(Entry.d_un.d_val));
2594 
2595   llvm::sort(Libs);
2596 
2597   for (StringRef L : Libs)
2598     W.printString(L);
2599 }
2600 
2601 template <class ELFT>
2602 static Error checkHashTable(const ELFDumper<ELFT> &Dumper,
2603                             const typename ELFT::Hash *H,
2604                             bool *IsHeaderValid = nullptr) {
2605   const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
2606   const uint64_t SecOffset = (const uint8_t *)H - Obj.base();
2607   if (Dumper.getHashTableEntSize() == 8) {
2608     auto It = llvm::find_if(ElfMachineType, [&](const EnumEntry<unsigned> &E) {
2609       return E.Value == Obj.getHeader().e_machine;
2610     });
2611     if (IsHeaderValid)
2612       *IsHeaderValid = false;
2613     return createError("the hash table at 0x" + Twine::utohexstr(SecOffset) +
2614                        " is not supported: it contains non-standard 8 "
2615                        "byte entries on " +
2616                        It->AltName + " platform");
2617   }
2618 
2619   auto MakeError = [&](const Twine &Msg = "") {
2620     return createError("the hash table at offset 0x" +
2621                        Twine::utohexstr(SecOffset) +
2622                        " goes past the end of the file (0x" +
2623                        Twine::utohexstr(Obj.getBufSize()) + ")" + Msg);
2624   };
2625 
2626   // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain.
2627   const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word);
2628 
2629   if (IsHeaderValid)
2630     *IsHeaderValid = Obj.getBufSize() - SecOffset >= HeaderSize;
2631 
2632   if (Obj.getBufSize() - SecOffset < HeaderSize)
2633     return MakeError();
2634 
2635   if (Obj.getBufSize() - SecOffset - HeaderSize <
2636       ((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word))
2637     return MakeError(", nbucket = " + Twine(H->nbucket) +
2638                      ", nchain = " + Twine(H->nchain));
2639   return Error::success();
2640 }
2641 
2642 template <class ELFT>
2643 static Error checkGNUHashTable(const ELFFile<ELFT> &Obj,
2644                                const typename ELFT::GnuHash *GnuHashTable,
2645                                bool *IsHeaderValid = nullptr) {
2646   const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable);
2647   assert(TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() &&
2648          "GnuHashTable must always point to a location inside the file");
2649 
2650   uint64_t TableOffset = TableData - Obj.base();
2651   if (IsHeaderValid)
2652     *IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj.getBufSize();
2653   if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 +
2654           (uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >=
2655       Obj.getBufSize())
2656     return createError("unable to dump the SHT_GNU_HASH "
2657                        "section at 0x" +
2658                        Twine::utohexstr(TableOffset) +
2659                        ": it goes past the end of the file");
2660   return Error::success();
2661 }
2662 
2663 template <typename ELFT> void ELFDumper<ELFT>::printHashTable() {
2664   DictScope D(W, "HashTable");
2665   if (!HashTable)
2666     return;
2667 
2668   bool IsHeaderValid;
2669   Error Err = checkHashTable(*this, HashTable, &IsHeaderValid);
2670   if (IsHeaderValid) {
2671     W.printNumber("Num Buckets", HashTable->nbucket);
2672     W.printNumber("Num Chains", HashTable->nchain);
2673   }
2674 
2675   if (Err) {
2676     reportUniqueWarning(std::move(Err));
2677     return;
2678   }
2679 
2680   W.printList("Buckets", HashTable->buckets());
2681   W.printList("Chains", HashTable->chains());
2682 }
2683 
2684 template <class ELFT>
2685 static Expected<ArrayRef<typename ELFT::Word>>
2686 getGnuHashTableChains(std::optional<DynRegionInfo> DynSymRegion,
2687                       const typename ELFT::GnuHash *GnuHashTable) {
2688   if (!DynSymRegion)
2689     return createError("no dynamic symbol table found");
2690 
2691   ArrayRef<typename ELFT::Sym> DynSymTable =
2692       DynSymRegion->template getAsArrayRef<typename ELFT::Sym>();
2693   size_t NumSyms = DynSymTable.size();
2694   if (!NumSyms)
2695     return createError("the dynamic symbol table is empty");
2696 
2697   if (GnuHashTable->symndx < NumSyms)
2698     return GnuHashTable->values(NumSyms);
2699 
2700   // A normal empty GNU hash table section produced by linker might have
2701   // symndx set to the number of dynamic symbols + 1 (for the zero symbol)
2702   // and have dummy null values in the Bloom filter and in the buckets
2703   // vector (or no values at all). It happens because the value of symndx is not
2704   // important for dynamic loaders when the GNU hash table is empty. They just
2705   // skip the whole object during symbol lookup. In such cases, the symndx value
2706   // is irrelevant and we should not report a warning.
2707   ArrayRef<typename ELFT::Word> Buckets = GnuHashTable->buckets();
2708   if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; }))
2709     return createError(
2710         "the first hashed symbol index (" + Twine(GnuHashTable->symndx) +
2711         ") is greater than or equal to the number of dynamic symbols (" +
2712         Twine(NumSyms) + ")");
2713   // There is no way to represent an array of (dynamic symbols count - symndx)
2714   // length.
2715   return ArrayRef<typename ELFT::Word>();
2716 }
2717 
2718 template <typename ELFT>
2719 void ELFDumper<ELFT>::printGnuHashTable() {
2720   DictScope D(W, "GnuHashTable");
2721   if (!GnuHashTable)
2722     return;
2723 
2724   bool IsHeaderValid;
2725   Error Err = checkGNUHashTable<ELFT>(Obj, GnuHashTable, &IsHeaderValid);
2726   if (IsHeaderValid) {
2727     W.printNumber("Num Buckets", GnuHashTable->nbuckets);
2728     W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
2729     W.printNumber("Num Mask Words", GnuHashTable->maskwords);
2730     W.printNumber("Shift Count", GnuHashTable->shift2);
2731   }
2732 
2733   if (Err) {
2734     reportUniqueWarning(std::move(Err));
2735     return;
2736   }
2737 
2738   ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter();
2739   W.printHexList("Bloom Filter", BloomFilter);
2740 
2741   ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
2742   W.printList("Buckets", Buckets);
2743 
2744   Expected<ArrayRef<Elf_Word>> Chains =
2745       getGnuHashTableChains<ELFT>(DynSymRegion, GnuHashTable);
2746   if (!Chains) {
2747     reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH "
2748                         "section: " +
2749                         toString(Chains.takeError()));
2750     return;
2751   }
2752 
2753   W.printHexList("Values", *Chains);
2754 }
2755 
2756 template <typename ELFT> void ELFDumper<ELFT>::printHashHistograms() {
2757   // Print histogram for the .hash section.
2758   if (this->HashTable) {
2759     if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
2760       this->reportUniqueWarning(std::move(E));
2761     else
2762       printHashHistogram(*this->HashTable);
2763   }
2764 
2765   // Print histogram for the .gnu.hash section.
2766   if (this->GnuHashTable) {
2767     if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
2768       this->reportUniqueWarning(std::move(E));
2769     else
2770       printGnuHashHistogram(*this->GnuHashTable);
2771   }
2772 }
2773 
2774 template <typename ELFT>
2775 void ELFDumper<ELFT>::printHashHistogram(const Elf_Hash &HashTable) const {
2776   size_t NBucket = HashTable.nbucket;
2777   size_t NChain = HashTable.nchain;
2778   ArrayRef<Elf_Word> Buckets = HashTable.buckets();
2779   ArrayRef<Elf_Word> Chains = HashTable.chains();
2780   size_t TotalSyms = 0;
2781   // If hash table is correct, we have at least chains with 0 length.
2782   size_t MaxChain = 1;
2783 
2784   if (NChain == 0 || NBucket == 0)
2785     return;
2786 
2787   std::vector<size_t> ChainLen(NBucket, 0);
2788   // Go over all buckets and note chain lengths of each bucket (total
2789   // unique chain lengths).
2790   for (size_t B = 0; B < NBucket; ++B) {
2791     BitVector Visited(NChain);
2792     for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) {
2793       if (C == ELF::STN_UNDEF)
2794           break;
2795       if (Visited[C]) {
2796           this->reportUniqueWarning(
2797               ".hash section is invalid: bucket " + Twine(C) +
2798               ": a cycle was detected in the linked chain");
2799           break;
2800       }
2801       Visited[C] = true;
2802       if (MaxChain <= ++ChainLen[B])
2803           ++MaxChain;
2804     }
2805     TotalSyms += ChainLen[B];
2806   }
2807 
2808   if (!TotalSyms)
2809     return;
2810 
2811   std::vector<size_t> Count(MaxChain, 0);
2812   // Count how long is the chain for each bucket.
2813   for (size_t B = 0; B < NBucket; B++)
2814     ++Count[ChainLen[B]];
2815   // Print Number of buckets with each chain lengths and their cumulative
2816   // coverage of the symbols.
2817   printHashHistogramStats(NBucket, MaxChain, TotalSyms, Count, /*IsGnu=*/false);
2818 }
2819 
2820 template <class ELFT>
2821 void ELFDumper<ELFT>::printGnuHashHistogram(
2822     const Elf_GnuHash &GnuHashTable) const {
2823   Expected<ArrayRef<Elf_Word>> ChainsOrErr =
2824       getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHashTable);
2825   if (!ChainsOrErr) {
2826     this->reportUniqueWarning("unable to print the GNU hash table histogram: " +
2827                               toString(ChainsOrErr.takeError()));
2828     return;
2829   }
2830 
2831   ArrayRef<Elf_Word> Chains = *ChainsOrErr;
2832   size_t Symndx = GnuHashTable.symndx;
2833   size_t TotalSyms = 0;
2834   size_t MaxChain = 1;
2835 
2836   size_t NBucket = GnuHashTable.nbuckets;
2837   if (Chains.empty() || NBucket == 0)
2838     return;
2839 
2840   ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets();
2841   std::vector<size_t> ChainLen(NBucket, 0);
2842   for (size_t B = 0; B < NBucket; ++B) {
2843     if (!Buckets[B])
2844       continue;
2845     size_t Len = 1;
2846     for (size_t C = Buckets[B] - Symndx;
2847          C < Chains.size() && (Chains[C] & 1) == 0; ++C)
2848       if (MaxChain < ++Len)
2849           ++MaxChain;
2850     ChainLen[B] = Len;
2851     TotalSyms += Len;
2852   }
2853   ++MaxChain;
2854 
2855   if (!TotalSyms)
2856     return;
2857 
2858   std::vector<size_t> Count(MaxChain, 0);
2859   for (size_t B = 0; B < NBucket; ++B)
2860     ++Count[ChainLen[B]];
2861   // Print Number of buckets with each chain lengths and their cumulative
2862   // coverage of the symbols.
2863   printHashHistogramStats(NBucket, MaxChain, TotalSyms, Count, /*IsGnu=*/true);
2864 }
2865 
2866 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
2867   StringRef SOName = "<Not found>";
2868   if (SONameOffset)
2869     SOName = getDynamicString(*SONameOffset);
2870   W.printString("LoadName", SOName);
2871 }
2872 
2873 template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() {
2874   switch (Obj.getHeader().e_machine) {
2875   case EM_ARM:
2876     if (Obj.isLE())
2877       printAttributes(ELF::SHT_ARM_ATTRIBUTES,
2878                       std::make_unique<ARMAttributeParser>(&W),
2879                       llvm::endianness::little);
2880     else
2881       reportUniqueWarning("attribute printing not implemented for big-endian "
2882                           "ARM objects");
2883     break;
2884   case EM_RISCV:
2885     if (Obj.isLE())
2886       printAttributes(ELF::SHT_RISCV_ATTRIBUTES,
2887                       std::make_unique<RISCVAttributeParser>(&W),
2888                       llvm::endianness::little);
2889     else
2890       reportUniqueWarning("attribute printing not implemented for big-endian "
2891                           "RISC-V objects");
2892     break;
2893   case EM_MSP430:
2894     printAttributes(ELF::SHT_MSP430_ATTRIBUTES,
2895                     std::make_unique<MSP430AttributeParser>(&W),
2896                     llvm::endianness::little);
2897     break;
2898   case EM_MIPS: {
2899     printMipsABIFlags();
2900     printMipsOptions();
2901     printMipsReginfo();
2902     MipsGOTParser<ELFT> Parser(*this);
2903     if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols()))
2904       reportUniqueWarning(std::move(E));
2905     else if (!Parser.isGotEmpty())
2906       printMipsGOT(Parser);
2907 
2908     if (Error E = Parser.findPLT(dynamic_table()))
2909       reportUniqueWarning(std::move(E));
2910     else if (!Parser.isPltEmpty())
2911       printMipsPLT(Parser);
2912     break;
2913   }
2914   default:
2915     break;
2916   }
2917 }
2918 
2919 template <class ELFT>
2920 void ELFDumper<ELFT>::printAttributes(
2921     unsigned AttrShType, std::unique_ptr<ELFAttributeParser> AttrParser,
2922     llvm::endianness Endianness) {
2923   assert((AttrShType != ELF::SHT_NULL) && AttrParser &&
2924          "Incomplete ELF attribute implementation");
2925   DictScope BA(W, "BuildAttributes");
2926   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
2927     if (Sec.sh_type != AttrShType)
2928       continue;
2929 
2930     ArrayRef<uint8_t> Contents;
2931     if (Expected<ArrayRef<uint8_t>> ContentOrErr =
2932             Obj.getSectionContents(Sec)) {
2933       Contents = *ContentOrErr;
2934       if (Contents.empty()) {
2935         reportUniqueWarning("the " + describe(Sec) + " is empty");
2936         continue;
2937       }
2938     } else {
2939       reportUniqueWarning("unable to read the content of the " + describe(Sec) +
2940                           ": " + toString(ContentOrErr.takeError()));
2941       continue;
2942     }
2943 
2944     W.printHex("FormatVersion", Contents[0]);
2945 
2946     if (Error E = AttrParser->parse(Contents, Endianness))
2947       reportUniqueWarning("unable to dump attributes from the " +
2948                           describe(Sec) + ": " + toString(std::move(E)));
2949   }
2950 }
2951 
2952 namespace {
2953 
2954 template <class ELFT> class MipsGOTParser {
2955 public:
2956   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
2957   using Entry = typename ELFT::Addr;
2958   using Entries = ArrayRef<Entry>;
2959 
2960   const bool IsStatic;
2961   const ELFFile<ELFT> &Obj;
2962   const ELFDumper<ELFT> &Dumper;
2963 
2964   MipsGOTParser(const ELFDumper<ELFT> &D);
2965   Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms);
2966   Error findPLT(Elf_Dyn_Range DynTable);
2967 
2968   bool isGotEmpty() const { return GotEntries.empty(); }
2969   bool isPltEmpty() const { return PltEntries.empty(); }
2970 
2971   uint64_t getGp() const;
2972 
2973   const Entry *getGotLazyResolver() const;
2974   const Entry *getGotModulePointer() const;
2975   const Entry *getPltLazyResolver() const;
2976   const Entry *getPltModulePointer() const;
2977 
2978   Entries getLocalEntries() const;
2979   Entries getGlobalEntries() const;
2980   Entries getOtherEntries() const;
2981   Entries getPltEntries() const;
2982 
2983   uint64_t getGotAddress(const Entry * E) const;
2984   int64_t getGotOffset(const Entry * E) const;
2985   const Elf_Sym *getGotSym(const Entry *E) const;
2986 
2987   uint64_t getPltAddress(const Entry * E) const;
2988   const Elf_Sym *getPltSym(const Entry *E) const;
2989 
2990   StringRef getPltStrTable() const { return PltStrTable; }
2991   const Elf_Shdr *getPltSymTable() const { return PltSymTable; }
2992 
2993 private:
2994   const Elf_Shdr *GotSec;
2995   size_t LocalNum;
2996   size_t GlobalNum;
2997 
2998   const Elf_Shdr *PltSec;
2999   const Elf_Shdr *PltRelSec;
3000   const Elf_Shdr *PltSymTable;
3001   StringRef FileName;
3002 
3003   Elf_Sym_Range GotDynSyms;
3004   StringRef PltStrTable;
3005 
3006   Entries GotEntries;
3007   Entries PltEntries;
3008 };
3009 
3010 } // end anonymous namespace
3011 
3012 template <class ELFT>
3013 MipsGOTParser<ELFT>::MipsGOTParser(const ELFDumper<ELFT> &D)
3014     : IsStatic(D.dynamic_table().empty()), Obj(D.getElfObject().getELFFile()),
3015       Dumper(D), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr),
3016       PltRelSec(nullptr), PltSymTable(nullptr),
3017       FileName(D.getElfObject().getFileName()) {}
3018 
3019 template <class ELFT>
3020 Error MipsGOTParser<ELFT>::findGOT(Elf_Dyn_Range DynTable,
3021                                    Elf_Sym_Range DynSyms) {
3022   // See "Global Offset Table" in Chapter 5 in the following document
3023   // for detailed GOT description.
3024   // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
3025 
3026   // Find static GOT secton.
3027   if (IsStatic) {
3028     GotSec = Dumper.findSectionByName(".got");
3029     if (!GotSec)
3030       return Error::success();
3031 
3032     ArrayRef<uint8_t> Content =
3033         unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
3034     GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
3035                          Content.size() / sizeof(Entry));
3036     LocalNum = GotEntries.size();
3037     return Error::success();
3038   }
3039 
3040   // Lookup dynamic table tags which define the GOT layout.
3041   std::optional<uint64_t> DtPltGot;
3042   std::optional<uint64_t> DtLocalGotNum;
3043   std::optional<uint64_t> DtGotSym;
3044   for (const auto &Entry : DynTable) {
3045     switch (Entry.getTag()) {
3046     case ELF::DT_PLTGOT:
3047       DtPltGot = Entry.getVal();
3048       break;
3049     case ELF::DT_MIPS_LOCAL_GOTNO:
3050       DtLocalGotNum = Entry.getVal();
3051       break;
3052     case ELF::DT_MIPS_GOTSYM:
3053       DtGotSym = Entry.getVal();
3054       break;
3055     }
3056   }
3057 
3058   if (!DtPltGot && !DtLocalGotNum && !DtGotSym)
3059     return Error::success();
3060 
3061   if (!DtPltGot)
3062     return createError("cannot find PLTGOT dynamic tag");
3063   if (!DtLocalGotNum)
3064     return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag");
3065   if (!DtGotSym)
3066     return createError("cannot find MIPS_GOTSYM dynamic tag");
3067 
3068   size_t DynSymTotal = DynSyms.size();
3069   if (*DtGotSym > DynSymTotal)
3070     return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) +
3071                        ") exceeds the number of dynamic symbols (" +
3072                        Twine(DynSymTotal) + ")");
3073 
3074   GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot);
3075   if (!GotSec)
3076     return createError("there is no non-empty GOT section at 0x" +
3077                        Twine::utohexstr(*DtPltGot));
3078 
3079   LocalNum = *DtLocalGotNum;
3080   GlobalNum = DynSymTotal - *DtGotSym;
3081 
3082   ArrayRef<uint8_t> Content =
3083       unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
3084   GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
3085                        Content.size() / sizeof(Entry));
3086   GotDynSyms = DynSyms.drop_front(*DtGotSym);
3087 
3088   return Error::success();
3089 }
3090 
3091 template <class ELFT>
3092 Error MipsGOTParser<ELFT>::findPLT(Elf_Dyn_Range DynTable) {
3093   // Lookup dynamic table tags which define the PLT layout.
3094   std::optional<uint64_t> DtMipsPltGot;
3095   std::optional<uint64_t> DtJmpRel;
3096   for (const auto &Entry : DynTable) {
3097     switch (Entry.getTag()) {
3098     case ELF::DT_MIPS_PLTGOT:
3099       DtMipsPltGot = Entry.getVal();
3100       break;
3101     case ELF::DT_JMPREL:
3102       DtJmpRel = Entry.getVal();
3103       break;
3104     }
3105   }
3106 
3107   if (!DtMipsPltGot && !DtJmpRel)
3108     return Error::success();
3109 
3110   // Find PLT section.
3111   if (!DtMipsPltGot)
3112     return createError("cannot find MIPS_PLTGOT dynamic tag");
3113   if (!DtJmpRel)
3114     return createError("cannot find JMPREL dynamic tag");
3115 
3116   PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot);
3117   if (!PltSec)
3118     return createError("there is no non-empty PLTGOT section at 0x" +
3119                        Twine::utohexstr(*DtMipsPltGot));
3120 
3121   PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel);
3122   if (!PltRelSec)
3123     return createError("there is no non-empty RELPLT section at 0x" +
3124                        Twine::utohexstr(*DtJmpRel));
3125 
3126   if (Expected<ArrayRef<uint8_t>> PltContentOrErr =
3127           Obj.getSectionContents(*PltSec))
3128     PltEntries =
3129         Entries(reinterpret_cast<const Entry *>(PltContentOrErr->data()),
3130                 PltContentOrErr->size() / sizeof(Entry));
3131   else
3132     return createError("unable to read PLTGOT section content: " +
3133                        toString(PltContentOrErr.takeError()));
3134 
3135   if (Expected<const Elf_Shdr *> PltSymTableOrErr =
3136           Obj.getSection(PltRelSec->sh_link))
3137     PltSymTable = *PltSymTableOrErr;
3138   else
3139     return createError("unable to get a symbol table linked to the " +
3140                        describe(Obj, *PltRelSec) + ": " +
3141                        toString(PltSymTableOrErr.takeError()));
3142 
3143   if (Expected<StringRef> StrTabOrErr =
3144           Obj.getStringTableForSymtab(*PltSymTable))
3145     PltStrTable = *StrTabOrErr;
3146   else
3147     return createError("unable to get a string table for the " +
3148                        describe(Obj, *PltSymTable) + ": " +
3149                        toString(StrTabOrErr.takeError()));
3150 
3151   return Error::success();
3152 }
3153 
3154 template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
3155   return GotSec->sh_addr + 0x7ff0;
3156 }
3157 
3158 template <class ELFT>
3159 const typename MipsGOTParser<ELFT>::Entry *
3160 MipsGOTParser<ELFT>::getGotLazyResolver() const {
3161   return LocalNum > 0 ? &GotEntries[0] : nullptr;
3162 }
3163 
3164 template <class ELFT>
3165 const typename MipsGOTParser<ELFT>::Entry *
3166 MipsGOTParser<ELFT>::getGotModulePointer() const {
3167   if (LocalNum < 2)
3168     return nullptr;
3169   const Entry &E = GotEntries[1];
3170   if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
3171     return nullptr;
3172   return &E;
3173 }
3174 
3175 template <class ELFT>
3176 typename MipsGOTParser<ELFT>::Entries
3177 MipsGOTParser<ELFT>::getLocalEntries() const {
3178   size_t Skip = getGotModulePointer() ? 2 : 1;
3179   if (LocalNum - Skip <= 0)
3180     return Entries();
3181   return GotEntries.slice(Skip, LocalNum - Skip);
3182 }
3183 
3184 template <class ELFT>
3185 typename MipsGOTParser<ELFT>::Entries
3186 MipsGOTParser<ELFT>::getGlobalEntries() const {
3187   if (GlobalNum == 0)
3188     return Entries();
3189   return GotEntries.slice(LocalNum, GlobalNum);
3190 }
3191 
3192 template <class ELFT>
3193 typename MipsGOTParser<ELFT>::Entries
3194 MipsGOTParser<ELFT>::getOtherEntries() const {
3195   size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
3196   if (OtherNum == 0)
3197     return Entries();
3198   return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
3199 }
3200 
3201 template <class ELFT>
3202 uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
3203   int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
3204   return GotSec->sh_addr + Offset;
3205 }
3206 
3207 template <class ELFT>
3208 int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
3209   int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
3210   return Offset - 0x7ff0;
3211 }
3212 
3213 template <class ELFT>
3214 const typename MipsGOTParser<ELFT>::Elf_Sym *
3215 MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
3216   int64_t Offset = std::distance(GotEntries.data(), E);
3217   return &GotDynSyms[Offset - LocalNum];
3218 }
3219 
3220 template <class ELFT>
3221 const typename MipsGOTParser<ELFT>::Entry *
3222 MipsGOTParser<ELFT>::getPltLazyResolver() const {
3223   return PltEntries.empty() ? nullptr : &PltEntries[0];
3224 }
3225 
3226 template <class ELFT>
3227 const typename MipsGOTParser<ELFT>::Entry *
3228 MipsGOTParser<ELFT>::getPltModulePointer() const {
3229   return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
3230 }
3231 
3232 template <class ELFT>
3233 typename MipsGOTParser<ELFT>::Entries
3234 MipsGOTParser<ELFT>::getPltEntries() const {
3235   if (PltEntries.size() <= 2)
3236     return Entries();
3237   return PltEntries.slice(2, PltEntries.size() - 2);
3238 }
3239 
3240 template <class ELFT>
3241 uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
3242   int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
3243   return PltSec->sh_addr + Offset;
3244 }
3245 
3246 template <class ELFT>
3247 const typename MipsGOTParser<ELFT>::Elf_Sym *
3248 MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
3249   int64_t Offset = std::distance(getPltEntries().data(), E);
3250   if (PltRelSec->sh_type == ELF::SHT_REL) {
3251     Elf_Rel_Range Rels = unwrapOrError(FileName, Obj.rels(*PltRelSec));
3252     return unwrapOrError(FileName,
3253                          Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
3254   } else {
3255     Elf_Rela_Range Rels = unwrapOrError(FileName, Obj.relas(*PltRelSec));
3256     return unwrapOrError(FileName,
3257                          Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
3258   }
3259 }
3260 
3261 const EnumEntry<unsigned> ElfMipsISAExtType[] = {
3262   {"None",                    Mips::AFL_EXT_NONE},
3263   {"Broadcom SB-1",           Mips::AFL_EXT_SB1},
3264   {"Cavium Networks Octeon",  Mips::AFL_EXT_OCTEON},
3265   {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
3266   {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
3267   {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
3268   {"LSI R4010",               Mips::AFL_EXT_4010},
3269   {"Loongson 2E",             Mips::AFL_EXT_LOONGSON_2E},
3270   {"Loongson 2F",             Mips::AFL_EXT_LOONGSON_2F},
3271   {"Loongson 3A",             Mips::AFL_EXT_LOONGSON_3A},
3272   {"MIPS R4650",              Mips::AFL_EXT_4650},
3273   {"MIPS R5900",              Mips::AFL_EXT_5900},
3274   {"MIPS R10000",             Mips::AFL_EXT_10000},
3275   {"NEC VR4100",              Mips::AFL_EXT_4100},
3276   {"NEC VR4111/VR4181",       Mips::AFL_EXT_4111},
3277   {"NEC VR4120",              Mips::AFL_EXT_4120},
3278   {"NEC VR5400",              Mips::AFL_EXT_5400},
3279   {"NEC VR5500",              Mips::AFL_EXT_5500},
3280   {"RMI Xlr",                 Mips::AFL_EXT_XLR},
3281   {"Toshiba R3900",           Mips::AFL_EXT_3900}
3282 };
3283 
3284 const EnumEntry<unsigned> ElfMipsASEFlags[] = {
3285   {"DSP",                Mips::AFL_ASE_DSP},
3286   {"DSPR2",              Mips::AFL_ASE_DSPR2},
3287   {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
3288   {"MCU",                Mips::AFL_ASE_MCU},
3289   {"MDMX",               Mips::AFL_ASE_MDMX},
3290   {"MIPS-3D",            Mips::AFL_ASE_MIPS3D},
3291   {"MT",                 Mips::AFL_ASE_MT},
3292   {"SmartMIPS",          Mips::AFL_ASE_SMARTMIPS},
3293   {"VZ",                 Mips::AFL_ASE_VIRT},
3294   {"MSA",                Mips::AFL_ASE_MSA},
3295   {"MIPS16",             Mips::AFL_ASE_MIPS16},
3296   {"microMIPS",          Mips::AFL_ASE_MICROMIPS},
3297   {"XPA",                Mips::AFL_ASE_XPA},
3298   {"CRC",                Mips::AFL_ASE_CRC},
3299   {"GINV",               Mips::AFL_ASE_GINV},
3300 };
3301 
3302 const EnumEntry<unsigned> ElfMipsFpABIType[] = {
3303   {"Hard or soft float",                  Mips::Val_GNU_MIPS_ABI_FP_ANY},
3304   {"Hard float (double precision)",       Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
3305   {"Hard float (single precision)",       Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
3306   {"Soft float",                          Mips::Val_GNU_MIPS_ABI_FP_SOFT},
3307   {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
3308    Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
3309   {"Hard float (32-bit CPU, Any FPU)",    Mips::Val_GNU_MIPS_ABI_FP_XX},
3310   {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
3311   {"Hard float compat (32-bit CPU, 64-bit FPU)",
3312    Mips::Val_GNU_MIPS_ABI_FP_64A}
3313 };
3314 
3315 static const EnumEntry<unsigned> ElfMipsFlags1[] {
3316   {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
3317 };
3318 
3319 static int getMipsRegisterSize(uint8_t Flag) {
3320   switch (Flag) {
3321   case Mips::AFL_REG_NONE:
3322     return 0;
3323   case Mips::AFL_REG_32:
3324     return 32;
3325   case Mips::AFL_REG_64:
3326     return 64;
3327   case Mips::AFL_REG_128:
3328     return 128;
3329   default:
3330     return -1;
3331   }
3332 }
3333 
3334 template <class ELFT>
3335 static void printMipsReginfoData(ScopedPrinter &W,
3336                                  const Elf_Mips_RegInfo<ELFT> &Reginfo) {
3337   W.printHex("GP", Reginfo.ri_gp_value);
3338   W.printHex("General Mask", Reginfo.ri_gprmask);
3339   W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
3340   W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
3341   W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
3342   W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
3343 }
3344 
3345 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
3346   const Elf_Shdr *RegInfoSec = findSectionByName(".reginfo");
3347   if (!RegInfoSec) {
3348     W.startLine() << "There is no .reginfo section in the file.\n";
3349     return;
3350   }
3351 
3352   Expected<ArrayRef<uint8_t>> ContentsOrErr =
3353       Obj.getSectionContents(*RegInfoSec);
3354   if (!ContentsOrErr) {
3355     this->reportUniqueWarning(
3356         "unable to read the content of the .reginfo section (" +
3357         describe(*RegInfoSec) + "): " + toString(ContentsOrErr.takeError()));
3358     return;
3359   }
3360 
3361   if (ContentsOrErr->size() < sizeof(Elf_Mips_RegInfo<ELFT>)) {
3362     this->reportUniqueWarning("the .reginfo section has an invalid size (0x" +
3363                               Twine::utohexstr(ContentsOrErr->size()) + ")");
3364     return;
3365   }
3366 
3367   DictScope GS(W, "MIPS RegInfo");
3368   printMipsReginfoData(W, *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(
3369                               ContentsOrErr->data()));
3370 }
3371 
3372 template <class ELFT>
3373 static Expected<const Elf_Mips_Options<ELFT> *>
3374 readMipsOptions(const uint8_t *SecBegin, ArrayRef<uint8_t> &SecData,
3375                 bool &IsSupported) {
3376   if (SecData.size() < sizeof(Elf_Mips_Options<ELFT>))
3377     return createError("the .MIPS.options section has an invalid size (0x" +
3378                        Twine::utohexstr(SecData.size()) + ")");
3379 
3380   const Elf_Mips_Options<ELFT> *O =
3381       reinterpret_cast<const Elf_Mips_Options<ELFT> *>(SecData.data());
3382   const uint8_t Size = O->size;
3383   if (Size > SecData.size()) {
3384     const uint64_t Offset = SecData.data() - SecBegin;
3385     const uint64_t SecSize = Offset + SecData.size();
3386     return createError("a descriptor of size 0x" + Twine::utohexstr(Size) +
3387                        " at offset 0x" + Twine::utohexstr(Offset) +
3388                        " goes past the end of the .MIPS.options "
3389                        "section of size 0x" +
3390                        Twine::utohexstr(SecSize));
3391   }
3392 
3393   IsSupported = O->kind == ODK_REGINFO;
3394   const size_t ExpectedSize =
3395       sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>);
3396 
3397   if (IsSupported)
3398     if (Size < ExpectedSize)
3399       return createError(
3400           "a .MIPS.options entry of kind " +
3401           Twine(getElfMipsOptionsOdkType(O->kind)) +
3402           " has an invalid size (0x" + Twine::utohexstr(Size) +
3403           "), the expected size is 0x" + Twine::utohexstr(ExpectedSize));
3404 
3405   SecData = SecData.drop_front(Size);
3406   return O;
3407 }
3408 
3409 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
3410   const Elf_Shdr *MipsOpts = findSectionByName(".MIPS.options");
3411   if (!MipsOpts) {
3412     W.startLine() << "There is no .MIPS.options section in the file.\n";
3413     return;
3414   }
3415 
3416   DictScope GS(W, "MIPS Options");
3417 
3418   ArrayRef<uint8_t> Data =
3419       unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(*MipsOpts));
3420   const uint8_t *const SecBegin = Data.begin();
3421   while (!Data.empty()) {
3422     bool IsSupported;
3423     Expected<const Elf_Mips_Options<ELFT> *> OptsOrErr =
3424         readMipsOptions<ELFT>(SecBegin, Data, IsSupported);
3425     if (!OptsOrErr) {
3426       reportUniqueWarning(OptsOrErr.takeError());
3427       break;
3428     }
3429 
3430     unsigned Kind = (*OptsOrErr)->kind;
3431     const char *Type = getElfMipsOptionsOdkType(Kind);
3432     if (!IsSupported) {
3433       W.startLine() << "Unsupported MIPS options tag: " << Type << " (" << Kind
3434                     << ")\n";
3435       continue;
3436     }
3437 
3438     DictScope GS(W, Type);
3439     if (Kind == ODK_REGINFO)
3440       printMipsReginfoData(W, (*OptsOrErr)->getRegInfo());
3441     else
3442       llvm_unreachable("unexpected .MIPS.options section descriptor kind");
3443   }
3444 }
3445 
3446 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
3447   const Elf_Shdr *StackMapSection = findSectionByName(".llvm_stackmaps");
3448   if (!StackMapSection)
3449     return;
3450 
3451   auto Warn = [&](Error &&E) {
3452     this->reportUniqueWarning("unable to read the stack map from " +
3453                               describe(*StackMapSection) + ": " +
3454                               toString(std::move(E)));
3455   };
3456 
3457   Expected<ArrayRef<uint8_t>> ContentOrErr =
3458       Obj.getSectionContents(*StackMapSection);
3459   if (!ContentOrErr) {
3460     Warn(ContentOrErr.takeError());
3461     return;
3462   }
3463 
3464   if (Error E = StackMapParser<ELFT::TargetEndianness>::validateHeader(
3465           *ContentOrErr)) {
3466     Warn(std::move(E));
3467     return;
3468   }
3469 
3470   prettyPrintStackMap(W, StackMapParser<ELFT::TargetEndianness>(*ContentOrErr));
3471 }
3472 
3473 template <class ELFT>
3474 void ELFDumper<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
3475                                  const Elf_Shdr &Sec, const Elf_Shdr *SymTab) {
3476   Expected<RelSymbol<ELFT>> Target = getRelocationTarget(R, SymTab);
3477   if (!Target)
3478     reportUniqueWarning("unable to print relocation " + Twine(RelIndex) +
3479                         " in " + describe(Sec) + ": " +
3480                         toString(Target.takeError()));
3481   else
3482     printRelRelaReloc(R, *Target);
3483 }
3484 
3485 template <class ELFT>
3486 std::vector<EnumEntry<unsigned>>
3487 ELFDumper<ELFT>::getOtherFlagsFromSymbol(const Elf_Ehdr &Header,
3488                                          const Elf_Sym &Symbol) const {
3489   std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
3490                                                  std::end(ElfSymOtherFlags));
3491   if (Header.e_machine == EM_MIPS) {
3492     // Someone in their infinite wisdom decided to make STO_MIPS_MIPS16
3493     // flag overlap with other ST_MIPS_xxx flags. So consider both
3494     // cases separately.
3495     if ((Symbol.st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
3496       SymOtherFlags.insert(SymOtherFlags.end(),
3497                            std::begin(ElfMips16SymOtherFlags),
3498                            std::end(ElfMips16SymOtherFlags));
3499     else
3500       SymOtherFlags.insert(SymOtherFlags.end(),
3501                            std::begin(ElfMipsSymOtherFlags),
3502                            std::end(ElfMipsSymOtherFlags));
3503   } else if (Header.e_machine == EM_AARCH64) {
3504     SymOtherFlags.insert(SymOtherFlags.end(),
3505                          std::begin(ElfAArch64SymOtherFlags),
3506                          std::end(ElfAArch64SymOtherFlags));
3507   } else if (Header.e_machine == EM_RISCV) {
3508     SymOtherFlags.insert(SymOtherFlags.end(), std::begin(ElfRISCVSymOtherFlags),
3509                          std::end(ElfRISCVSymOtherFlags));
3510   }
3511   return SymOtherFlags;
3512 }
3513 
3514 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
3515                                StringRef Str2) {
3516   OS.PadToColumn(2u);
3517   OS << Str1;
3518   OS.PadToColumn(37u);
3519   OS << Str2 << "\n";
3520   OS.flush();
3521 }
3522 
3523 template <class ELFT>
3524 static std::string getSectionHeadersNumString(const ELFFile<ELFT> &Obj,
3525                                               StringRef FileName) {
3526   const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3527   if (ElfHeader.e_shnum != 0)
3528     return to_string(ElfHeader.e_shnum);
3529 
3530   Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3531   if (!ArrOrErr) {
3532     // In this case we can ignore an error, because we have already reported a
3533     // warning about the broken section header table earlier.
3534     consumeError(ArrOrErr.takeError());
3535     return "<?>";
3536   }
3537 
3538   if (ArrOrErr->empty())
3539     return "0";
3540   return "0 (" + to_string((*ArrOrErr)[0].sh_size) + ")";
3541 }
3542 
3543 template <class ELFT>
3544 static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> &Obj,
3545                                                     StringRef FileName) {
3546   const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3547   if (ElfHeader.e_shstrndx != SHN_XINDEX)
3548     return to_string(ElfHeader.e_shstrndx);
3549 
3550   Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3551   if (!ArrOrErr) {
3552     // In this case we can ignore an error, because we have already reported a
3553     // warning about the broken section header table earlier.
3554     consumeError(ArrOrErr.takeError());
3555     return "<?>";
3556   }
3557 
3558   if (ArrOrErr->empty())
3559     return "65535 (corrupt: out of range)";
3560   return to_string(ElfHeader.e_shstrndx) + " (" +
3561          to_string((*ArrOrErr)[0].sh_link) + ")";
3562 }
3563 
3564 static const EnumEntry<unsigned> *getObjectFileEnumEntry(unsigned Type) {
3565   auto It = llvm::find_if(ElfObjectFileType, [&](const EnumEntry<unsigned> &E) {
3566     return E.Value == Type;
3567   });
3568   if (It != ArrayRef(ElfObjectFileType).end())
3569     return It;
3570   return nullptr;
3571 }
3572 
3573 template <class ELFT>
3574 void GNUELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
3575                                           ArrayRef<std::string> InputFilenames,
3576                                           const Archive *A) {
3577   if (InputFilenames.size() > 1 || A) {
3578     this->W.startLine() << "\n";
3579     this->W.printString("File", FileStr);
3580   }
3581 }
3582 
3583 template <class ELFT> void GNUELFDumper<ELFT>::printFileHeaders() {
3584   const Elf_Ehdr &e = this->Obj.getHeader();
3585   OS << "ELF Header:\n";
3586   OS << "  Magic:  ";
3587   std::string Str;
3588   for (int i = 0; i < ELF::EI_NIDENT; i++)
3589     OS << format(" %02x", static_cast<int>(e.e_ident[i]));
3590   OS << "\n";
3591   Str = enumToString(e.e_ident[ELF::EI_CLASS], ArrayRef(ElfClass));
3592   printFields(OS, "Class:", Str);
3593   Str = enumToString(e.e_ident[ELF::EI_DATA], ArrayRef(ElfDataEncoding));
3594   printFields(OS, "Data:", Str);
3595   OS.PadToColumn(2u);
3596   OS << "Version:";
3597   OS.PadToColumn(37u);
3598   OS << utohexstr(e.e_ident[ELF::EI_VERSION]);
3599   if (e.e_version == ELF::EV_CURRENT)
3600     OS << " (current)";
3601   OS << "\n";
3602   Str = enumToString(e.e_ident[ELF::EI_OSABI], ArrayRef(ElfOSABI));
3603   printFields(OS, "OS/ABI:", Str);
3604   printFields(OS,
3605               "ABI Version:", std::to_string(e.e_ident[ELF::EI_ABIVERSION]));
3606 
3607   if (const EnumEntry<unsigned> *E = getObjectFileEnumEntry(e.e_type)) {
3608     Str = E->AltName.str();
3609   } else {
3610     if (e.e_type >= ET_LOPROC)
3611       Str = "Processor Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")";
3612     else if (e.e_type >= ET_LOOS)
3613       Str = "OS Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")";
3614     else
3615       Str = "<unknown>: " + utohexstr(e.e_type, /*LowerCase=*/true);
3616   }
3617   printFields(OS, "Type:", Str);
3618 
3619   Str = enumToString(e.e_machine, ArrayRef(ElfMachineType));
3620   printFields(OS, "Machine:", Str);
3621   Str = "0x" + utohexstr(e.e_version);
3622   printFields(OS, "Version:", Str);
3623   Str = "0x" + utohexstr(e.e_entry);
3624   printFields(OS, "Entry point address:", Str);
3625   Str = to_string(e.e_phoff) + " (bytes into file)";
3626   printFields(OS, "Start of program headers:", Str);
3627   Str = to_string(e.e_shoff) + " (bytes into file)";
3628   printFields(OS, "Start of section headers:", Str);
3629   std::string ElfFlags;
3630   if (e.e_machine == EM_MIPS)
3631     ElfFlags = printFlags(
3632         e.e_flags, ArrayRef(ElfHeaderMipsFlags), unsigned(ELF::EF_MIPS_ARCH),
3633         unsigned(ELF::EF_MIPS_ABI), unsigned(ELF::EF_MIPS_MACH));
3634   else if (e.e_machine == EM_RISCV)
3635     ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderRISCVFlags));
3636   else if (e.e_machine == EM_AVR)
3637     ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderAVRFlags),
3638                           unsigned(ELF::EF_AVR_ARCH_MASK));
3639   else if (e.e_machine == EM_LOONGARCH)
3640     ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderLoongArchFlags),
3641                           unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK),
3642                           unsigned(ELF::EF_LOONGARCH_OBJABI_MASK));
3643   else if (e.e_machine == EM_XTENSA)
3644     ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderXtensaFlags),
3645                           unsigned(ELF::EF_XTENSA_MACH));
3646   else if (e.e_machine == EM_CUDA)
3647     ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderNVPTXFlags),
3648                           unsigned(ELF::EF_CUDA_SM));
3649   Str = "0x" + utohexstr(e.e_flags);
3650   if (!ElfFlags.empty())
3651     Str = Str + ", " + ElfFlags;
3652   printFields(OS, "Flags:", Str);
3653   Str = to_string(e.e_ehsize) + " (bytes)";
3654   printFields(OS, "Size of this header:", Str);
3655   Str = to_string(e.e_phentsize) + " (bytes)";
3656   printFields(OS, "Size of program headers:", Str);
3657   Str = to_string(e.e_phnum);
3658   printFields(OS, "Number of program headers:", Str);
3659   Str = to_string(e.e_shentsize) + " (bytes)";
3660   printFields(OS, "Size of section headers:", Str);
3661   Str = getSectionHeadersNumString(this->Obj, this->FileName);
3662   printFields(OS, "Number of section headers:", Str);
3663   Str = getSectionHeaderTableIndexString(this->Obj, this->FileName);
3664   printFields(OS, "Section header string table index:", Str);
3665 }
3666 
3667 template <class ELFT> std::vector<GroupSection> ELFDumper<ELFT>::getGroups() {
3668   auto GetSignature = [&](const Elf_Sym &Sym, unsigned SymNdx,
3669                           const Elf_Shdr &Symtab) -> StringRef {
3670     Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(Symtab);
3671     if (!StrTableOrErr) {
3672       reportUniqueWarning("unable to get the string table for " +
3673                           describe(Symtab) + ": " +
3674                           toString(StrTableOrErr.takeError()));
3675       return "<?>";
3676     }
3677 
3678     StringRef Strings = *StrTableOrErr;
3679     if (Sym.st_name >= Strings.size()) {
3680       reportUniqueWarning("unable to get the name of the symbol with index " +
3681                           Twine(SymNdx) + ": st_name (0x" +
3682                           Twine::utohexstr(Sym.st_name) +
3683                           ") is past the end of the string table of size 0x" +
3684                           Twine::utohexstr(Strings.size()));
3685       return "<?>";
3686     }
3687 
3688     return StrTableOrErr->data() + Sym.st_name;
3689   };
3690 
3691   std::vector<GroupSection> Ret;
3692   uint64_t I = 0;
3693   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
3694     ++I;
3695     if (Sec.sh_type != ELF::SHT_GROUP)
3696       continue;
3697 
3698     StringRef Signature = "<?>";
3699     if (Expected<const Elf_Shdr *> SymtabOrErr = Obj.getSection(Sec.sh_link)) {
3700       if (Expected<const Elf_Sym *> SymOrErr =
3701               Obj.template getEntry<Elf_Sym>(**SymtabOrErr, Sec.sh_info))
3702         Signature = GetSignature(**SymOrErr, Sec.sh_info, **SymtabOrErr);
3703       else
3704         reportUniqueWarning("unable to get the signature symbol for " +
3705                             describe(Sec) + ": " +
3706                             toString(SymOrErr.takeError()));
3707     } else {
3708       reportUniqueWarning("unable to get the symbol table for " +
3709                           describe(Sec) + ": " +
3710                           toString(SymtabOrErr.takeError()));
3711     }
3712 
3713     ArrayRef<Elf_Word> Data;
3714     if (Expected<ArrayRef<Elf_Word>> ContentsOrErr =
3715             Obj.template getSectionContentsAsArray<Elf_Word>(Sec)) {
3716       if (ContentsOrErr->empty())
3717         reportUniqueWarning("unable to read the section group flag from the " +
3718                             describe(Sec) + ": the section is empty");
3719       else
3720         Data = *ContentsOrErr;
3721     } else {
3722       reportUniqueWarning("unable to get the content of the " + describe(Sec) +
3723                           ": " + toString(ContentsOrErr.takeError()));
3724     }
3725 
3726     Ret.push_back({getPrintableSectionName(Sec),
3727                    maybeDemangle(Signature),
3728                    Sec.sh_name,
3729                    I - 1,
3730                    Sec.sh_link,
3731                    Sec.sh_info,
3732                    Data.empty() ? Elf_Word(0) : Data[0],
3733                    {}});
3734 
3735     if (Data.empty())
3736       continue;
3737 
3738     std::vector<GroupMember> &GM = Ret.back().Members;
3739     for (uint32_t Ndx : Data.slice(1)) {
3740       if (Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(Ndx)) {
3741         GM.push_back({getPrintableSectionName(**SecOrErr), Ndx});
3742       } else {
3743         reportUniqueWarning("unable to get the section with index " +
3744                             Twine(Ndx) + " when dumping the " + describe(Sec) +
3745                             ": " + toString(SecOrErr.takeError()));
3746         GM.push_back({"<?>", Ndx});
3747       }
3748     }
3749   }
3750   return Ret;
3751 }
3752 
3753 static DenseMap<uint64_t, const GroupSection *>
3754 mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
3755   DenseMap<uint64_t, const GroupSection *> Ret;
3756   for (const GroupSection &G : Groups)
3757     for (const GroupMember &GM : G.Members)
3758       Ret.insert({GM.Index, &G});
3759   return Ret;
3760 }
3761 
3762 template <class ELFT> void GNUELFDumper<ELFT>::printGroupSections() {
3763   std::vector<GroupSection> V = this->getGroups();
3764   DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
3765   for (const GroupSection &G : V) {
3766     OS << "\n"
3767        << getGroupType(G.Type) << " group section ["
3768        << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
3769        << "] contains " << G.Members.size() << " sections:\n"
3770        << "   [Index]    Name\n";
3771     for (const GroupMember &GM : G.Members) {
3772       const GroupSection *MainGroup = Map[GM.Index];
3773       if (MainGroup != &G)
3774         this->reportUniqueWarning(
3775             "section with index " + Twine(GM.Index) +
3776             ", included in the group section with index " +
3777             Twine(MainGroup->Index) +
3778             ", was also found in the group section with index " +
3779             Twine(G.Index));
3780       OS << "   [" << format_decimal(GM.Index, 5) << "]   " << GM.Name << "\n";
3781     }
3782   }
3783 
3784   if (V.empty())
3785     OS << "There are no section groups in this file.\n";
3786 }
3787 
3788 template <class ELFT>
3789 void GNUELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
3790   OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8)) << "\n";
3791 }
3792 
3793 template <class ELFT>
3794 void GNUELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
3795                                            const RelSymbol<ELFT> &RelSym) {
3796   // First two fields are bit width dependent. The rest of them are fixed width.
3797   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3798   Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
3799   unsigned Width = ELFT::Is64Bits ? 16 : 8;
3800 
3801   Fields[0].Str = to_string(format_hex_no_prefix(R.Offset, Width));
3802   Fields[1].Str = to_string(format_hex_no_prefix(R.Info, Width));
3803 
3804   SmallString<32> RelocName;
3805   this->Obj.getRelocationTypeName(R.Type, RelocName);
3806   Fields[2].Str = RelocName.c_str();
3807 
3808   if (RelSym.Sym)
3809     Fields[3].Str =
3810         to_string(format_hex_no_prefix(RelSym.Sym->getValue(), Width));
3811   if (RelSym.Sym && RelSym.Name.empty())
3812     Fields[4].Str = "<null>";
3813   else
3814     Fields[4].Str = std::string(RelSym.Name);
3815 
3816   for (const Field &F : Fields)
3817     printField(F);
3818 
3819   std::string Addend;
3820   if (std::optional<int64_t> A = R.Addend) {
3821     int64_t RelAddend = *A;
3822     if (!Fields[4].Str.empty()) {
3823       if (RelAddend < 0) {
3824         Addend = " - ";
3825         RelAddend = -static_cast<uint64_t>(RelAddend);
3826       } else {
3827         Addend = " + ";
3828       }
3829     }
3830     Addend += utohexstr(RelAddend, /*LowerCase=*/true);
3831   }
3832   OS << Addend << "\n";
3833 }
3834 
3835 template <class ELFT>
3836 static void printRelocHeaderFields(formatted_raw_ostream &OS, unsigned SType,
3837                                    const typename ELFT::Ehdr &EHeader) {
3838   bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA;
3839   bool IsRelr =
3840       SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR ||
3841       (EHeader.e_machine == EM_AARCH64 && SType == ELF::SHT_AARCH64_AUTH_RELR);
3842   if (ELFT::Is64Bits)
3843     OS << "    ";
3844   else
3845     OS << " ";
3846   if (IsRelr && opts::RawRelr)
3847     OS << "Data  ";
3848   else
3849     OS << "Offset";
3850   if (ELFT::Is64Bits)
3851     OS << "             Info             Type"
3852        << "               Symbol's Value  Symbol's Name";
3853   else
3854     OS << "     Info    Type                Sym. Value  Symbol's Name";
3855   if (IsRela)
3856     OS << " + Addend";
3857   OS << "\n";
3858 }
3859 
3860 template <class ELFT>
3861 void GNUELFDumper<ELFT>::printDynamicRelocHeader(unsigned Type, StringRef Name,
3862                                                  const DynRegionInfo &Reg) {
3863   uint64_t Offset = Reg.Addr - this->Obj.base();
3864   OS << "\n'" << Name.str().c_str() << "' relocation section at offset 0x"
3865      << utohexstr(Offset, /*LowerCase=*/true) << " contains " << Reg.Size << " bytes:\n";
3866   printRelocHeaderFields<ELFT>(OS, Type, this->Obj.getHeader());
3867 }
3868 
3869 template <class ELFT>
3870 static bool isRelocationSec(const typename ELFT::Shdr &Sec,
3871                             const typename ELFT::Ehdr &EHeader) {
3872   return Sec.sh_type == ELF::SHT_REL || Sec.sh_type == ELF::SHT_RELA ||
3873          Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_REL ||
3874          Sec.sh_type == ELF::SHT_ANDROID_RELA ||
3875          Sec.sh_type == ELF::SHT_ANDROID_RELR ||
3876          (EHeader.e_machine == EM_AARCH64 &&
3877           Sec.sh_type == ELF::SHT_AARCH64_AUTH_RELR);
3878 }
3879 
3880 template <class ELFT> void GNUELFDumper<ELFT>::printRelocations() {
3881   auto GetEntriesNum = [&](const Elf_Shdr &Sec) -> Expected<size_t> {
3882     // Android's packed relocation section needs to be unpacked first
3883     // to get the actual number of entries.
3884     if (Sec.sh_type == ELF::SHT_ANDROID_REL ||
3885         Sec.sh_type == ELF::SHT_ANDROID_RELA) {
3886       Expected<std::vector<typename ELFT::Rela>> RelasOrErr =
3887           this->Obj.android_relas(Sec);
3888       if (!RelasOrErr)
3889         return RelasOrErr.takeError();
3890       return RelasOrErr->size();
3891     }
3892 
3893     if (!opts::RawRelr &&
3894         (Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_RELR ||
3895          (this->Obj.getHeader().e_machine == EM_AARCH64 &&
3896           Sec.sh_type == ELF::SHT_AARCH64_AUTH_RELR))) {
3897       Expected<Elf_Relr_Range> RelrsOrErr = this->Obj.relrs(Sec);
3898       if (!RelrsOrErr)
3899         return RelrsOrErr.takeError();
3900       return this->Obj.decode_relrs(*RelrsOrErr).size();
3901     }
3902 
3903     return Sec.getEntityCount();
3904   };
3905 
3906   bool HasRelocSections = false;
3907   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
3908     if (!isRelocationSec<ELFT>(Sec, this->Obj.getHeader()))
3909       continue;
3910     HasRelocSections = true;
3911 
3912     std::string EntriesNum = "<?>";
3913     if (Expected<size_t> NumOrErr = GetEntriesNum(Sec))
3914       EntriesNum = std::to_string(*NumOrErr);
3915     else
3916       this->reportUniqueWarning("unable to get the number of relocations in " +
3917                                 this->describe(Sec) + ": " +
3918                                 toString(NumOrErr.takeError()));
3919 
3920     uintX_t Offset = Sec.sh_offset;
3921     StringRef Name = this->getPrintableSectionName(Sec);
3922     OS << "\nRelocation section '" << Name << "' at offset 0x"
3923        << utohexstr(Offset, /*LowerCase=*/true) << " contains " << EntriesNum
3924        << " entries:\n";
3925     printRelocHeaderFields<ELFT>(OS, Sec.sh_type, this->Obj.getHeader());
3926     this->printRelocationsHelper(Sec);
3927   }
3928   if (!HasRelocSections)
3929     OS << "\nThere are no relocations in this file.\n";
3930 }
3931 
3932 // Print the offset of a particular section from anyone of the ranges:
3933 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
3934 // If 'Type' does not fall within any of those ranges, then a string is
3935 // returned as '<unknown>' followed by the type value.
3936 static std::string getSectionTypeOffsetString(unsigned Type) {
3937   if (Type >= SHT_LOOS && Type <= SHT_HIOS)
3938     return "LOOS+0x" + utohexstr(Type - SHT_LOOS);
3939   else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC)
3940     return "LOPROC+0x" + utohexstr(Type - SHT_LOPROC);
3941   else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER)
3942     return "LOUSER+0x" + utohexstr(Type - SHT_LOUSER);
3943   return "0x" + utohexstr(Type) + ": <unknown>";
3944 }
3945 
3946 static std::string getSectionTypeString(unsigned Machine, unsigned Type) {
3947   StringRef Name = getELFSectionTypeName(Machine, Type);
3948 
3949   // Handle SHT_GNU_* type names.
3950   if (Name.consume_front("SHT_GNU_")) {
3951     if (Name == "HASH")
3952       return "GNU_HASH";
3953     // E.g. SHT_GNU_verneed -> VERNEED.
3954     return Name.upper();
3955   }
3956 
3957   if (Name == "SHT_SYMTAB_SHNDX")
3958     return "SYMTAB SECTION INDICES";
3959 
3960   if (Name.consume_front("SHT_"))
3961     return Name.str();
3962   return getSectionTypeOffsetString(Type);
3963 }
3964 
3965 static void printSectionDescription(formatted_raw_ostream &OS,
3966                                     unsigned EMachine) {
3967   OS << "Key to Flags:\n";
3968   OS << "  W (write), A (alloc), X (execute), M (merge), S (strings), I "
3969         "(info),\n";
3970   OS << "  L (link order), O (extra OS processing required), G (group), T "
3971         "(TLS),\n";
3972   OS << "  C (compressed), x (unknown), o (OS specific), E (exclude),\n";
3973   OS << "  R (retain)";
3974 
3975   if (EMachine == EM_X86_64)
3976     OS << ", l (large)";
3977   else if (EMachine == EM_ARM)
3978     OS << ", y (purecode)";
3979 
3980   OS << ", p (processor specific)\n";
3981 }
3982 
3983 template <class ELFT> void GNUELFDumper<ELFT>::printSectionHeaders() {
3984   ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
3985   if (Sections.empty()) {
3986     OS << "\nThere are no sections in this file.\n";
3987     Expected<StringRef> SecStrTableOrErr =
3988         this->Obj.getSectionStringTable(Sections, this->WarningHandler);
3989     if (!SecStrTableOrErr)
3990       this->reportUniqueWarning(SecStrTableOrErr.takeError());
3991     return;
3992   }
3993   unsigned Bias = ELFT::Is64Bits ? 0 : 8;
3994   OS << "There are " << to_string(Sections.size())
3995      << " section headers, starting at offset "
3996      << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n";
3997   OS << "Section Headers:\n";
3998   Field Fields[11] = {
3999       {"[Nr]", 2},        {"Name", 7},        {"Type", 25},
4000       {"Address", 41},    {"Off", 58 - Bias}, {"Size", 65 - Bias},
4001       {"ES", 72 - Bias},  {"Flg", 75 - Bias}, {"Lk", 79 - Bias},
4002       {"Inf", 82 - Bias}, {"Al", 86 - Bias}};
4003   for (const Field &F : Fields)
4004     printField(F);
4005   OS << "\n";
4006 
4007   StringRef SecStrTable;
4008   if (Expected<StringRef> SecStrTableOrErr =
4009           this->Obj.getSectionStringTable(Sections, this->WarningHandler))
4010     SecStrTable = *SecStrTableOrErr;
4011   else
4012     this->reportUniqueWarning(SecStrTableOrErr.takeError());
4013 
4014   size_t SectionIndex = 0;
4015   for (const Elf_Shdr &Sec : Sections) {
4016     Fields[0].Str = to_string(SectionIndex);
4017     if (SecStrTable.empty())
4018       Fields[1].Str = "<no-strings>";
4019     else
4020       Fields[1].Str = std::string(unwrapOrError<StringRef>(
4021           this->FileName, this->Obj.getSectionName(Sec, SecStrTable)));
4022     Fields[2].Str =
4023         getSectionTypeString(this->Obj.getHeader().e_machine, Sec.sh_type);
4024     Fields[3].Str =
4025         to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8));
4026     Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
4027     Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6));
4028     Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
4029     Fields[7].Str = getGNUFlags(this->Obj.getHeader().e_ident[ELF::EI_OSABI],
4030                                 this->Obj.getHeader().e_machine, Sec.sh_flags);
4031     Fields[8].Str = to_string(Sec.sh_link);
4032     Fields[9].Str = to_string(Sec.sh_info);
4033     Fields[10].Str = to_string(Sec.sh_addralign);
4034 
4035     OS.PadToColumn(Fields[0].Column);
4036     OS << "[" << right_justify(Fields[0].Str, 2) << "]";
4037     for (int i = 1; i < 7; i++)
4038       printField(Fields[i]);
4039     OS.PadToColumn(Fields[7].Column);
4040     OS << right_justify(Fields[7].Str, 3);
4041     OS.PadToColumn(Fields[8].Column);
4042     OS << right_justify(Fields[8].Str, 2);
4043     OS.PadToColumn(Fields[9].Column);
4044     OS << right_justify(Fields[9].Str, 3);
4045     OS.PadToColumn(Fields[10].Column);
4046     OS << right_justify(Fields[10].Str, 2);
4047     OS << "\n";
4048     ++SectionIndex;
4049   }
4050   printSectionDescription(OS, this->Obj.getHeader().e_machine);
4051 }
4052 
4053 template <class ELFT>
4054 void GNUELFDumper<ELFT>::printSymtabMessage(const Elf_Shdr *Symtab,
4055                                             size_t Entries,
4056                                             bool NonVisibilityBitsUsed,
4057                                             bool ExtraSymInfo) const {
4058   StringRef Name;
4059   if (Symtab)
4060     Name = this->getPrintableSectionName(*Symtab);
4061   if (!Name.empty())
4062     OS << "\nSymbol table '" << Name << "'";
4063   else
4064     OS << "\nSymbol table for image";
4065   OS << " contains " << Entries << " entries:\n";
4066 
4067   if (ELFT::Is64Bits) {
4068     OS << "   Num:    Value          Size Type    Bind   Vis";
4069     if (ExtraSymInfo)
4070       OS << "+Other";
4071   } else {
4072     OS << "   Num:    Value  Size Type    Bind   Vis";
4073     if (ExtraSymInfo)
4074       OS << "+Other";
4075   }
4076 
4077   OS.PadToColumn((ELFT::Is64Bits ? 56 : 48) + (NonVisibilityBitsUsed ? 13 : 0));
4078   if (ExtraSymInfo)
4079     OS << "Ndx(SecName) Name [+ Version Info]\n";
4080   else
4081     OS << "Ndx Name\n";
4082 }
4083 
4084 template <class ELFT>
4085 std::string GNUELFDumper<ELFT>::getSymbolSectionNdx(
4086     const Elf_Sym &Symbol, unsigned SymIndex, DataRegion<Elf_Word> ShndxTable,
4087     bool ExtraSymInfo) const {
4088   unsigned SectionIndex = Symbol.st_shndx;
4089   switch (SectionIndex) {
4090   case ELF::SHN_UNDEF:
4091     return "UND";
4092   case ELF::SHN_ABS:
4093     return "ABS";
4094   case ELF::SHN_COMMON:
4095     return "COM";
4096   case ELF::SHN_XINDEX: {
4097     Expected<uint32_t> IndexOrErr =
4098         object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, ShndxTable);
4099     if (!IndexOrErr) {
4100       assert(Symbol.st_shndx == SHN_XINDEX &&
4101              "getExtendedSymbolTableIndex should only fail due to an invalid "
4102              "SHT_SYMTAB_SHNDX table/reference");
4103       this->reportUniqueWarning(IndexOrErr.takeError());
4104       return "RSV[0xffff]";
4105     }
4106     SectionIndex = *IndexOrErr;
4107     break;
4108   }
4109   default:
4110     // Find if:
4111     // Processor specific
4112     if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
4113       return std::string("PRC[0x") +
4114              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
4115     // OS specific
4116     if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
4117       return std::string("OS[0x") +
4118              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
4119     // Architecture reserved:
4120     if (SectionIndex >= ELF::SHN_LORESERVE &&
4121         SectionIndex <= ELF::SHN_HIRESERVE)
4122       return std::string("RSV[0x") +
4123              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
4124     break;
4125   }
4126 
4127   std::string Extra;
4128   if (ExtraSymInfo) {
4129     auto Sec = this->Obj.getSection(SectionIndex);
4130     if (!Sec) {
4131       this->reportUniqueWarning(Sec.takeError());
4132     } else {
4133       auto SecName = this->Obj.getSectionName(**Sec);
4134       if (!SecName)
4135         this->reportUniqueWarning(SecName.takeError());
4136       else
4137         Extra = Twine(" (" + *SecName + ")").str();
4138     }
4139   }
4140   return to_string(format_decimal(SectionIndex, 3)) + Extra;
4141 }
4142 
4143 template <class ELFT>
4144 void GNUELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
4145                                      DataRegion<Elf_Word> ShndxTable,
4146                                      std::optional<StringRef> StrTable,
4147                                      bool IsDynamic, bool NonVisibilityBitsUsed,
4148                                      bool ExtraSymInfo) const {
4149   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4150   Field Fields[8] = {0,         8,         17 + Bias, 23 + Bias,
4151                      31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias};
4152   Fields[0].Str = to_string(format_decimal(SymIndex, 6)) + ":";
4153   Fields[1].Str =
4154       to_string(format_hex_no_prefix(Symbol.st_value, ELFT::Is64Bits ? 16 : 8));
4155   Fields[2].Str = to_string(format_decimal(Symbol.st_size, 5));
4156 
4157   unsigned char SymbolType = Symbol.getType();
4158   if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
4159       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
4160     Fields[3].Str = enumToString(SymbolType, ArrayRef(AMDGPUSymbolTypes));
4161   else
4162     Fields[3].Str = enumToString(SymbolType, ArrayRef(ElfSymbolTypes));
4163 
4164   Fields[4].Str =
4165       enumToString(Symbol.getBinding(), ArrayRef(ElfSymbolBindings));
4166   Fields[5].Str =
4167       enumToString(Symbol.getVisibility(), ArrayRef(ElfSymbolVisibilities));
4168 
4169   if (Symbol.st_other & ~0x3) {
4170     if (this->Obj.getHeader().e_machine == ELF::EM_AARCH64) {
4171       uint8_t Other = Symbol.st_other & ~0x3;
4172       if (Other & STO_AARCH64_VARIANT_PCS) {
4173         Other &= ~STO_AARCH64_VARIANT_PCS;
4174         Fields[5].Str += " [VARIANT_PCS";
4175         if (Other != 0)
4176           Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true));
4177         Fields[5].Str.append("]");
4178       }
4179     } else if (this->Obj.getHeader().e_machine == ELF::EM_RISCV) {
4180       uint8_t Other = Symbol.st_other & ~0x3;
4181       if (Other & STO_RISCV_VARIANT_CC) {
4182         Other &= ~STO_RISCV_VARIANT_CC;
4183         Fields[5].Str += " [VARIANT_CC";
4184         if (Other != 0)
4185           Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true));
4186         Fields[5].Str.append("]");
4187       }
4188     } else {
4189       Fields[5].Str +=
4190           " [<other: " + to_string(format_hex(Symbol.st_other, 2)) + ">]";
4191     }
4192   }
4193 
4194   Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0;
4195   Fields[6].Str =
4196       getSymbolSectionNdx(Symbol, SymIndex, ShndxTable, ExtraSymInfo);
4197 
4198   Fields[7].Column += ExtraSymInfo ? 10 : 0;
4199   Fields[7].Str = this->getFullSymbolName(Symbol, SymIndex, ShndxTable,
4200                                           StrTable, IsDynamic);
4201   for (const Field &Entry : Fields)
4202     printField(Entry);
4203   OS << "\n";
4204 }
4205 
4206 template <class ELFT>
4207 void GNUELFDumper<ELFT>::printHashedSymbol(const Elf_Sym *Symbol,
4208                                            unsigned SymIndex,
4209                                            DataRegion<Elf_Word> ShndxTable,
4210                                            StringRef StrTable,
4211                                            uint32_t Bucket) {
4212   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4213   Field Fields[9] = {0,         6,         11,        20 + Bias, 25 + Bias,
4214                      34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
4215   Fields[0].Str = to_string(format_decimal(SymIndex, 5));
4216   Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":";
4217 
4218   Fields[2].Str = to_string(
4219       format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
4220   Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5));
4221 
4222   unsigned char SymbolType = Symbol->getType();
4223   if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
4224       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
4225     Fields[4].Str = enumToString(SymbolType, ArrayRef(AMDGPUSymbolTypes));
4226   else
4227     Fields[4].Str = enumToString(SymbolType, ArrayRef(ElfSymbolTypes));
4228 
4229   Fields[5].Str =
4230       enumToString(Symbol->getBinding(), ArrayRef(ElfSymbolBindings));
4231   Fields[6].Str =
4232       enumToString(Symbol->getVisibility(), ArrayRef(ElfSymbolVisibilities));
4233   Fields[7].Str = getSymbolSectionNdx(*Symbol, SymIndex, ShndxTable);
4234   Fields[8].Str =
4235       this->getFullSymbolName(*Symbol, SymIndex, ShndxTable, StrTable, true);
4236 
4237   for (const Field &Entry : Fields)
4238     printField(Entry);
4239   OS << "\n";
4240 }
4241 
4242 template <class ELFT>
4243 void GNUELFDumper<ELFT>::printSymbols(bool PrintSymbols,
4244                                       bool PrintDynamicSymbols,
4245                                       bool ExtraSymInfo) {
4246   if (!PrintSymbols && !PrintDynamicSymbols)
4247     return;
4248   // GNU readelf prints both the .dynsym and .symtab with --symbols.
4249   this->printSymbolsHelper(true, ExtraSymInfo);
4250   if (PrintSymbols)
4251     this->printSymbolsHelper(false, ExtraSymInfo);
4252 }
4253 
4254 template <class ELFT>
4255 void GNUELFDumper<ELFT>::printHashTableSymbols(const Elf_Hash &SysVHash) {
4256   if (this->DynamicStringTable.empty())
4257     return;
4258 
4259   if (ELFT::Is64Bits)
4260     OS << "  Num Buc:    Value          Size   Type   Bind Vis      Ndx Name";
4261   else
4262     OS << "  Num Buc:    Value  Size   Type   Bind Vis      Ndx Name";
4263   OS << "\n";
4264 
4265   Elf_Sym_Range DynSyms = this->dynamic_symbols();
4266   const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
4267   if (!FirstSym) {
4268     this->reportUniqueWarning(
4269         Twine("unable to print symbols for the .hash table: the "
4270               "dynamic symbol table ") +
4271         (this->DynSymRegion ? "is empty" : "was not found"));
4272     return;
4273   }
4274 
4275   DataRegion<Elf_Word> ShndxTable(
4276       (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
4277   auto Buckets = SysVHash.buckets();
4278   auto Chains = SysVHash.chains();
4279   for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) {
4280     if (Buckets[Buc] == ELF::STN_UNDEF)
4281       continue;
4282     BitVector Visited(SysVHash.nchain);
4283     for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) {
4284       if (Ch == ELF::STN_UNDEF)
4285         break;
4286 
4287       if (Visited[Ch]) {
4288         this->reportUniqueWarning(".hash section is invalid: bucket " +
4289                                   Twine(Ch) +
4290                                   ": a cycle was detected in the linked chain");
4291         break;
4292       }
4293 
4294       printHashedSymbol(FirstSym + Ch, Ch, ShndxTable, this->DynamicStringTable,
4295                         Buc);
4296       Visited[Ch] = true;
4297     }
4298   }
4299 }
4300 
4301 template <class ELFT>
4302 void GNUELFDumper<ELFT>::printGnuHashTableSymbols(const Elf_GnuHash &GnuHash) {
4303   if (this->DynamicStringTable.empty())
4304     return;
4305 
4306   Elf_Sym_Range DynSyms = this->dynamic_symbols();
4307   const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
4308   if (!FirstSym) {
4309     this->reportUniqueWarning(
4310         Twine("unable to print symbols for the .gnu.hash table: the "
4311               "dynamic symbol table ") +
4312         (this->DynSymRegion ? "is empty" : "was not found"));
4313     return;
4314   }
4315 
4316   auto GetSymbol = [&](uint64_t SymIndex,
4317                        uint64_t SymsTotal) -> const Elf_Sym * {
4318     if (SymIndex >= SymsTotal) {
4319       this->reportUniqueWarning(
4320           "unable to print hashed symbol with index " + Twine(SymIndex) +
4321           ", which is greater than or equal to the number of dynamic symbols "
4322           "(" +
4323           Twine::utohexstr(SymsTotal) + ")");
4324       return nullptr;
4325     }
4326     return FirstSym + SymIndex;
4327   };
4328 
4329   Expected<ArrayRef<Elf_Word>> ValuesOrErr =
4330       getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHash);
4331   ArrayRef<Elf_Word> Values;
4332   if (!ValuesOrErr)
4333     this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH "
4334                               "section: " +
4335                               toString(ValuesOrErr.takeError()));
4336   else
4337     Values = *ValuesOrErr;
4338 
4339   DataRegion<Elf_Word> ShndxTable(
4340       (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
4341   ArrayRef<Elf_Word> Buckets = GnuHash.buckets();
4342   for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) {
4343     if (Buckets[Buc] == ELF::STN_UNDEF)
4344       continue;
4345     uint32_t Index = Buckets[Buc];
4346     // Print whole chain.
4347     while (true) {
4348       uint32_t SymIndex = Index++;
4349       if (const Elf_Sym *Sym = GetSymbol(SymIndex, DynSyms.size()))
4350         printHashedSymbol(Sym, SymIndex, ShndxTable, this->DynamicStringTable,
4351                           Buc);
4352       else
4353         break;
4354 
4355       if (SymIndex < GnuHash.symndx) {
4356         this->reportUniqueWarning(
4357             "unable to read the hash value for symbol with index " +
4358             Twine(SymIndex) +
4359             ", which is less than the index of the first hashed symbol (" +
4360             Twine(GnuHash.symndx) + ")");
4361         break;
4362       }
4363 
4364        // Chain ends at symbol with stopper bit.
4365       if ((Values[SymIndex - GnuHash.symndx] & 1) == 1)
4366         break;
4367     }
4368   }
4369 }
4370 
4371 template <class ELFT> void GNUELFDumper<ELFT>::printHashSymbols() {
4372   if (this->HashTable) {
4373     OS << "\n Symbol table of .hash for image:\n";
4374     if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
4375       this->reportUniqueWarning(std::move(E));
4376     else
4377       printHashTableSymbols(*this->HashTable);
4378   }
4379 
4380   // Try printing the .gnu.hash table.
4381   if (this->GnuHashTable) {
4382     OS << "\n Symbol table of .gnu.hash for image:\n";
4383     if (ELFT::Is64Bits)
4384       OS << "  Num Buc:    Value          Size   Type   Bind Vis      Ndx Name";
4385     else
4386       OS << "  Num Buc:    Value  Size   Type   Bind Vis      Ndx Name";
4387     OS << "\n";
4388 
4389     if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
4390       this->reportUniqueWarning(std::move(E));
4391     else
4392       printGnuHashTableSymbols(*this->GnuHashTable);
4393   }
4394 }
4395 
4396 template <class ELFT> void GNUELFDumper<ELFT>::printSectionDetails() {
4397   ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
4398   if (Sections.empty()) {
4399     OS << "\nThere are no sections in this file.\n";
4400     Expected<StringRef> SecStrTableOrErr =
4401         this->Obj.getSectionStringTable(Sections, this->WarningHandler);
4402     if (!SecStrTableOrErr)
4403       this->reportUniqueWarning(SecStrTableOrErr.takeError());
4404     return;
4405   }
4406   OS << "There are " << to_string(Sections.size())
4407      << " section headers, starting at offset "
4408      << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n";
4409 
4410   OS << "Section Headers:\n";
4411 
4412   auto PrintFields = [&](ArrayRef<Field> V) {
4413     for (const Field &F : V)
4414       printField(F);
4415     OS << "\n";
4416   };
4417 
4418   PrintFields({{"[Nr]", 2}, {"Name", 7}});
4419 
4420   constexpr bool Is64 = ELFT::Is64Bits;
4421   PrintFields({{"Type", 7},
4422                {Is64 ? "Address" : "Addr", 23},
4423                {"Off", Is64 ? 40 : 32},
4424                {"Size", Is64 ? 47 : 39},
4425                {"ES", Is64 ? 54 : 46},
4426                {"Lk", Is64 ? 59 : 51},
4427                {"Inf", Is64 ? 62 : 54},
4428                {"Al", Is64 ? 66 : 57}});
4429   PrintFields({{"Flags", 7}});
4430 
4431   StringRef SecStrTable;
4432   if (Expected<StringRef> SecStrTableOrErr =
4433           this->Obj.getSectionStringTable(Sections, this->WarningHandler))
4434     SecStrTable = *SecStrTableOrErr;
4435   else
4436     this->reportUniqueWarning(SecStrTableOrErr.takeError());
4437 
4438   size_t SectionIndex = 0;
4439   const unsigned AddrSize = Is64 ? 16 : 8;
4440   for (const Elf_Shdr &S : Sections) {
4441     StringRef Name = "<?>";
4442     if (Expected<StringRef> NameOrErr =
4443             this->Obj.getSectionName(S, SecStrTable))
4444       Name = *NameOrErr;
4445     else
4446       this->reportUniqueWarning(NameOrErr.takeError());
4447 
4448     OS.PadToColumn(2);
4449     OS << "[" << right_justify(to_string(SectionIndex), 2) << "]";
4450     PrintFields({{Name, 7}});
4451     PrintFields(
4452         {{getSectionTypeString(this->Obj.getHeader().e_machine, S.sh_type), 7},
4453          {to_string(format_hex_no_prefix(S.sh_addr, AddrSize)), 23},
4454          {to_string(format_hex_no_prefix(S.sh_offset, 6)), Is64 ? 39 : 32},
4455          {to_string(format_hex_no_prefix(S.sh_size, 6)), Is64 ? 47 : 39},
4456          {to_string(format_hex_no_prefix(S.sh_entsize, 2)), Is64 ? 54 : 46},
4457          {to_string(S.sh_link), Is64 ? 59 : 51},
4458          {to_string(S.sh_info), Is64 ? 63 : 55},
4459          {to_string(S.sh_addralign), Is64 ? 66 : 58}});
4460 
4461     OS.PadToColumn(7);
4462     OS << "[" << to_string(format_hex_no_prefix(S.sh_flags, AddrSize)) << "]: ";
4463 
4464     DenseMap<unsigned, StringRef> FlagToName = {
4465         {SHF_WRITE, "WRITE"},           {SHF_ALLOC, "ALLOC"},
4466         {SHF_EXECINSTR, "EXEC"},        {SHF_MERGE, "MERGE"},
4467         {SHF_STRINGS, "STRINGS"},       {SHF_INFO_LINK, "INFO LINK"},
4468         {SHF_LINK_ORDER, "LINK ORDER"}, {SHF_OS_NONCONFORMING, "OS NONCONF"},
4469         {SHF_GROUP, "GROUP"},           {SHF_TLS, "TLS"},
4470         {SHF_COMPRESSED, "COMPRESSED"}, {SHF_EXCLUDE, "EXCLUDE"}};
4471 
4472     uint64_t Flags = S.sh_flags;
4473     uint64_t UnknownFlags = 0;
4474     ListSeparator LS;
4475     while (Flags) {
4476       // Take the least significant bit as a flag.
4477       uint64_t Flag = Flags & -Flags;
4478       Flags -= Flag;
4479 
4480       auto It = FlagToName.find(Flag);
4481       if (It != FlagToName.end())
4482         OS << LS << It->second;
4483       else
4484         UnknownFlags |= Flag;
4485     }
4486 
4487     auto PrintUnknownFlags = [&](uint64_t Mask, StringRef Name) {
4488       uint64_t FlagsToPrint = UnknownFlags & Mask;
4489       if (!FlagsToPrint)
4490         return;
4491 
4492       OS << LS << Name << " ("
4493          << to_string(format_hex_no_prefix(FlagsToPrint, AddrSize)) << ")";
4494       UnknownFlags &= ~Mask;
4495     };
4496 
4497     PrintUnknownFlags(SHF_MASKOS, "OS");
4498     PrintUnknownFlags(SHF_MASKPROC, "PROC");
4499     PrintUnknownFlags(uint64_t(-1), "UNKNOWN");
4500 
4501     OS << "\n";
4502     ++SectionIndex;
4503 
4504     if (!(S.sh_flags & SHF_COMPRESSED))
4505       continue;
4506     Expected<ArrayRef<uint8_t>> Data = this->Obj.getSectionContents(S);
4507     if (!Data || Data->size() < sizeof(Elf_Chdr)) {
4508       consumeError(Data.takeError());
4509       reportWarning(createError("SHF_COMPRESSED section '" + Name +
4510                                 "' does not have an Elf_Chdr header"),
4511                     this->FileName);
4512       OS.indent(7);
4513       OS << "[<corrupt>]";
4514     } else {
4515       OS.indent(7);
4516       auto *Chdr = reinterpret_cast<const Elf_Chdr *>(Data->data());
4517       if (Chdr->ch_type == ELFCOMPRESS_ZLIB)
4518         OS << "ZLIB";
4519       else if (Chdr->ch_type == ELFCOMPRESS_ZSTD)
4520         OS << "ZSTD";
4521       else
4522         OS << format("[<unknown>: 0x%x]", unsigned(Chdr->ch_type));
4523       OS << ", " << format_hex_no_prefix(Chdr->ch_size, ELFT::Is64Bits ? 16 : 8)
4524          << ", " << Chdr->ch_addralign;
4525     }
4526     OS << '\n';
4527   }
4528 }
4529 
4530 static inline std::string printPhdrFlags(unsigned Flag) {
4531   std::string Str;
4532   Str = (Flag & PF_R) ? "R" : " ";
4533   Str += (Flag & PF_W) ? "W" : " ";
4534   Str += (Flag & PF_X) ? "E" : " ";
4535   return Str;
4536 }
4537 
4538 template <class ELFT>
4539 static bool checkTLSSections(const typename ELFT::Phdr &Phdr,
4540                              const typename ELFT::Shdr &Sec) {
4541   if (Sec.sh_flags & ELF::SHF_TLS) {
4542     // .tbss must only be shown in the PT_TLS segment.
4543     if (Sec.sh_type == ELF::SHT_NOBITS)
4544       return Phdr.p_type == ELF::PT_TLS;
4545 
4546     // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO
4547     // segments.
4548     return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
4549            (Phdr.p_type == ELF::PT_GNU_RELRO);
4550   }
4551 
4552   // PT_TLS must only have SHF_TLS sections.
4553   return Phdr.p_type != ELF::PT_TLS;
4554 }
4555 
4556 template <class ELFT>
4557 static bool checkPTDynamic(const typename ELFT::Phdr &Phdr,
4558                            const typename ELFT::Shdr &Sec) {
4559   if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0)
4560     return true;
4561 
4562   // We get here when we have an empty section. Only non-empty sections can be
4563   // at the start or at the end of PT_DYNAMIC.
4564   // Is section within the phdr both based on offset and VMA?
4565   bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) ||
4566                      (Sec.sh_offset > Phdr.p_offset &&
4567                       Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz);
4568   bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) ||
4569                  (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz);
4570   return CheckOffset && CheckVA;
4571 }
4572 
4573 template <class ELFT>
4574 void GNUELFDumper<ELFT>::printProgramHeaders(
4575     bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
4576   const bool ShouldPrintSectionMapping = (PrintSectionMapping != cl::BOU_FALSE);
4577   // Exit early if no program header or section mapping details were requested.
4578   if (!PrintProgramHeaders && !ShouldPrintSectionMapping)
4579     return;
4580 
4581   if (PrintProgramHeaders) {
4582     const Elf_Ehdr &Header = this->Obj.getHeader();
4583     if (Header.e_phnum == 0) {
4584       OS << "\nThere are no program headers in this file.\n";
4585     } else {
4586       printProgramHeaders();
4587     }
4588   }
4589 
4590   if (ShouldPrintSectionMapping)
4591     printSectionMapping();
4592 }
4593 
4594 template <class ELFT> void GNUELFDumper<ELFT>::printProgramHeaders() {
4595   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4596   const Elf_Ehdr &Header = this->Obj.getHeader();
4597   Field Fields[8] = {2,         17,        26,        37 + Bias,
4598                      48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
4599   OS << "\nElf file type is "
4600      << enumToString(Header.e_type, ArrayRef(ElfObjectFileType)) << "\n"
4601      << "Entry point " << format_hex(Header.e_entry, 3) << "\n"
4602      << "There are " << Header.e_phnum << " program headers,"
4603      << " starting at offset " << Header.e_phoff << "\n\n"
4604      << "Program Headers:\n";
4605   if (ELFT::Is64Bits)
4606     OS << "  Type           Offset   VirtAddr           PhysAddr         "
4607        << "  FileSiz  MemSiz   Flg Align\n";
4608   else
4609     OS << "  Type           Offset   VirtAddr   PhysAddr   FileSiz "
4610        << "MemSiz  Flg Align\n";
4611 
4612   unsigned Width = ELFT::Is64Bits ? 18 : 10;
4613   unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
4614 
4615   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4616   if (!PhdrsOrErr) {
4617     this->reportUniqueWarning("unable to dump program headers: " +
4618                               toString(PhdrsOrErr.takeError()));
4619     return;
4620   }
4621 
4622   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4623     Fields[0].Str = getGNUPtType(Header.e_machine, Phdr.p_type);
4624     Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8));
4625     Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width));
4626     Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width));
4627     Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth));
4628     Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth));
4629     Fields[6].Str = printPhdrFlags(Phdr.p_flags);
4630     Fields[7].Str = to_string(format_hex(Phdr.p_align, 1));
4631     for (const Field &F : Fields)
4632       printField(F);
4633     if (Phdr.p_type == ELF::PT_INTERP) {
4634       OS << "\n";
4635       auto ReportBadInterp = [&](const Twine &Msg) {
4636         this->reportUniqueWarning(
4637             "unable to read program interpreter name at offset 0x" +
4638             Twine::utohexstr(Phdr.p_offset) + ": " + Msg);
4639       };
4640 
4641       if (Phdr.p_offset >= this->Obj.getBufSize()) {
4642         ReportBadInterp("it goes past the end of the file (0x" +
4643                         Twine::utohexstr(this->Obj.getBufSize()) + ")");
4644         continue;
4645       }
4646 
4647       const char *Data =
4648           reinterpret_cast<const char *>(this->Obj.base()) + Phdr.p_offset;
4649       size_t MaxSize = this->Obj.getBufSize() - Phdr.p_offset;
4650       size_t Len = strnlen(Data, MaxSize);
4651       if (Len == MaxSize) {
4652         ReportBadInterp("it is not null-terminated");
4653         continue;
4654       }
4655 
4656       OS << "      [Requesting program interpreter: ";
4657       OS << StringRef(Data, Len) << "]";
4658     }
4659     OS << "\n";
4660   }
4661 }
4662 
4663 template <class ELFT> void GNUELFDumper<ELFT>::printSectionMapping() {
4664   OS << "\n Section to Segment mapping:\n  Segment Sections...\n";
4665   DenseSet<const Elf_Shdr *> BelongsToSegment;
4666   int Phnum = 0;
4667 
4668   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4669   if (!PhdrsOrErr) {
4670     this->reportUniqueWarning(
4671         "can't read program headers to build section to segment mapping: " +
4672         toString(PhdrsOrErr.takeError()));
4673     return;
4674   }
4675 
4676   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4677     std::string Sections;
4678     OS << format("   %2.2d     ", Phnum++);
4679     // Check if each section is in a segment and then print mapping.
4680     for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4681       if (Sec.sh_type == ELF::SHT_NULL)
4682         continue;
4683 
4684       // readelf additionally makes sure it does not print zero sized sections
4685       // at end of segments and for PT_DYNAMIC both start and end of section
4686       // .tbss must only be shown in PT_TLS section.
4687       if (isSectionInSegment<ELFT>(Phdr, Sec) &&
4688           checkTLSSections<ELFT>(Phdr, Sec) &&
4689           checkPTDynamic<ELFT>(Phdr, Sec)) {
4690         Sections +=
4691             unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4692             " ";
4693         BelongsToSegment.insert(&Sec);
4694       }
4695     }
4696     OS << Sections << "\n";
4697     OS.flush();
4698   }
4699 
4700   // Display sections that do not belong to a segment.
4701   std::string Sections;
4702   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4703     if (BelongsToSegment.find(&Sec) == BelongsToSegment.end())
4704       Sections +=
4705           unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4706           ' ';
4707   }
4708   if (!Sections.empty()) {
4709     OS << "   None  " << Sections << '\n';
4710     OS.flush();
4711   }
4712 }
4713 
4714 namespace {
4715 
4716 template <class ELFT>
4717 RelSymbol<ELFT> getSymbolForReloc(const ELFDumper<ELFT> &Dumper,
4718                                   const Relocation<ELFT> &Reloc) {
4719   using Elf_Sym = typename ELFT::Sym;
4720   auto WarnAndReturn = [&](const Elf_Sym *Sym,
4721                            const Twine &Reason) -> RelSymbol<ELFT> {
4722     Dumper.reportUniqueWarning(
4723         "unable to get name of the dynamic symbol with index " +
4724         Twine(Reloc.Symbol) + ": " + Reason);
4725     return {Sym, "<corrupt>"};
4726   };
4727 
4728   ArrayRef<Elf_Sym> Symbols = Dumper.dynamic_symbols();
4729   const Elf_Sym *FirstSym = Symbols.begin();
4730   if (!FirstSym)
4731     return WarnAndReturn(nullptr, "no dynamic symbol table found");
4732 
4733   // We might have an object without a section header. In this case the size of
4734   // Symbols is zero, because there is no way to know the size of the dynamic
4735   // table. We should allow this case and not print a warning.
4736   if (!Symbols.empty() && Reloc.Symbol >= Symbols.size())
4737     return WarnAndReturn(
4738         nullptr,
4739         "index is greater than or equal to the number of dynamic symbols (" +
4740             Twine(Symbols.size()) + ")");
4741 
4742   const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
4743   const uint64_t FileSize = Obj.getBufSize();
4744   const uint64_t SymOffset = ((const uint8_t *)FirstSym - Obj.base()) +
4745                              (uint64_t)Reloc.Symbol * sizeof(Elf_Sym);
4746   if (SymOffset + sizeof(Elf_Sym) > FileSize)
4747     return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset) +
4748                                       " goes past the end of the file (0x" +
4749                                       Twine::utohexstr(FileSize) + ")");
4750 
4751   const Elf_Sym *Sym = FirstSym + Reloc.Symbol;
4752   Expected<StringRef> ErrOrName = Sym->getName(Dumper.getDynamicStringTable());
4753   if (!ErrOrName)
4754     return WarnAndReturn(Sym, toString(ErrOrName.takeError()));
4755 
4756   return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(*ErrOrName)};
4757 }
4758 } // namespace
4759 
4760 template <class ELFT>
4761 static size_t getMaxDynamicTagSize(const ELFFile<ELFT> &Obj,
4762                                    typename ELFT::DynRange Tags) {
4763   size_t Max = 0;
4764   for (const typename ELFT::Dyn &Dyn : Tags)
4765     Max = std::max(Max, Obj.getDynamicTagAsString(Dyn.d_tag).size());
4766   return Max;
4767 }
4768 
4769 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicTable() {
4770   Elf_Dyn_Range Table = this->dynamic_table();
4771   if (Table.empty())
4772     return;
4773 
4774   OS << "Dynamic section at offset "
4775      << format_hex(reinterpret_cast<const uint8_t *>(this->DynamicTable.Addr) -
4776                        this->Obj.base(),
4777                    1)
4778      << " contains " << Table.size() << " entries:\n";
4779 
4780   // The type name is surrounded with round brackets, hence add 2.
4781   size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table) + 2;
4782   // The "Name/Value" column should be indented from the "Type" column by N
4783   // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
4784   // space (1) = 3.
4785   OS << "  Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type"
4786      << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
4787 
4788   std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s ";
4789   for (auto Entry : Table) {
4790     uintX_t Tag = Entry.getTag();
4791     std::string Type =
4792         std::string("(") + this->Obj.getDynamicTagAsString(Tag) + ")";
4793     std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
4794     OS << "  " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10)
4795        << format(ValueFmt.c_str(), Type.c_str()) << Value << "\n";
4796   }
4797 }
4798 
4799 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicRelocations() {
4800   this->printDynamicRelocationsHelper();
4801 }
4802 
4803 template <class ELFT>
4804 void ELFDumper<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) {
4805   printRelRelaReloc(R, getSymbolForReloc(*this, R));
4806 }
4807 
4808 template <class ELFT>
4809 void ELFDumper<ELFT>::printRelocationsHelper(const Elf_Shdr &Sec) {
4810   this->forEachRelocationDo(
4811       Sec, opts::RawRelr,
4812       [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
4813           const Elf_Shdr *SymTab) { printReloc(R, Ndx, Sec, SymTab); },
4814       [&](const Elf_Relr &R) { printRelrReloc(R); });
4815 }
4816 
4817 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocationsHelper() {
4818   const bool IsMips64EL = this->Obj.isMips64EL();
4819   if (this->DynRelaRegion.Size > 0) {
4820     printDynamicRelocHeader(ELF::SHT_RELA, "RELA", this->DynRelaRegion);
4821     for (const Elf_Rela &Rela :
4822          this->DynRelaRegion.template getAsArrayRef<Elf_Rela>())
4823       printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4824   }
4825 
4826   if (this->DynRelRegion.Size > 0) {
4827     printDynamicRelocHeader(ELF::SHT_REL, "REL", this->DynRelRegion);
4828     for (const Elf_Rel &Rel :
4829          this->DynRelRegion.template getAsArrayRef<Elf_Rel>())
4830       printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4831   }
4832 
4833   if (this->DynRelrRegion.Size > 0) {
4834     printDynamicRelocHeader(ELF::SHT_REL, "RELR", this->DynRelrRegion);
4835     Elf_Relr_Range Relrs =
4836         this->DynRelrRegion.template getAsArrayRef<Elf_Relr>();
4837     for (const Elf_Rel &Rel : Obj.decode_relrs(Relrs))
4838       printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4839   }
4840 
4841   if (this->DynPLTRelRegion.Size) {
4842     if (this->DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
4843       printDynamicRelocHeader(ELF::SHT_RELA, "PLT", this->DynPLTRelRegion);
4844       for (const Elf_Rela &Rela :
4845            this->DynPLTRelRegion.template getAsArrayRef<Elf_Rela>())
4846         printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4847     } else {
4848       printDynamicRelocHeader(ELF::SHT_REL, "PLT", this->DynPLTRelRegion);
4849       for (const Elf_Rel &Rel :
4850            this->DynPLTRelRegion.template getAsArrayRef<Elf_Rel>())
4851         printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4852     }
4853   }
4854 }
4855 
4856 template <class ELFT>
4857 void GNUELFDumper<ELFT>::printGNUVersionSectionProlog(
4858     const typename ELFT::Shdr &Sec, const Twine &Label, unsigned EntriesNum) {
4859   // Don't inline the SecName, because it might report a warning to stderr and
4860   // corrupt the output.
4861   StringRef SecName = this->getPrintableSectionName(Sec);
4862   OS << Label << " section '" << SecName << "' "
4863      << "contains " << EntriesNum << " entries:\n";
4864 
4865   StringRef LinkedSecName = "<corrupt>";
4866   if (Expected<const typename ELFT::Shdr *> LinkedSecOrErr =
4867           this->Obj.getSection(Sec.sh_link))
4868     LinkedSecName = this->getPrintableSectionName(**LinkedSecOrErr);
4869   else
4870     this->reportUniqueWarning("invalid section linked to " +
4871                               this->describe(Sec) + ": " +
4872                               toString(LinkedSecOrErr.takeError()));
4873 
4874   OS << " Addr: " << format_hex_no_prefix(Sec.sh_addr, 16)
4875      << "  Offset: " << format_hex(Sec.sh_offset, 8)
4876      << "  Link: " << Sec.sh_link << " (" << LinkedSecName << ")\n";
4877 }
4878 
4879 template <class ELFT>
4880 void GNUELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
4881   if (!Sec)
4882     return;
4883 
4884   printGNUVersionSectionProlog(*Sec, "Version symbols",
4885                                Sec->sh_size / sizeof(Elf_Versym));
4886   Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
4887       this->getVersionTable(*Sec, /*SymTab=*/nullptr,
4888                             /*StrTab=*/nullptr, /*SymTabSec=*/nullptr);
4889   if (!VerTableOrErr) {
4890     this->reportUniqueWarning(VerTableOrErr.takeError());
4891     return;
4892   }
4893 
4894   SmallVector<std::optional<VersionEntry>, 0> *VersionMap = nullptr;
4895   if (Expected<SmallVector<std::optional<VersionEntry>, 0> *> MapOrErr =
4896           this->getVersionMap())
4897     VersionMap = *MapOrErr;
4898   else
4899     this->reportUniqueWarning(MapOrErr.takeError());
4900 
4901   ArrayRef<Elf_Versym> VerTable = *VerTableOrErr;
4902   std::vector<StringRef> Versions;
4903   for (size_t I = 0, E = VerTable.size(); I < E; ++I) {
4904     unsigned Ndx = VerTable[I].vs_index;
4905     if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) {
4906       Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*");
4907       continue;
4908     }
4909 
4910     if (!VersionMap) {
4911       Versions.emplace_back("<corrupt>");
4912       continue;
4913     }
4914 
4915     bool IsDefault;
4916     Expected<StringRef> NameOrErr = this->Obj.getSymbolVersionByIndex(
4917         Ndx, IsDefault, *VersionMap, /*IsSymHidden=*/std::nullopt);
4918     if (!NameOrErr) {
4919       this->reportUniqueWarning("unable to get a version for entry " +
4920                                 Twine(I) + " of " + this->describe(*Sec) +
4921                                 ": " + toString(NameOrErr.takeError()));
4922       Versions.emplace_back("<corrupt>");
4923       continue;
4924     }
4925     Versions.emplace_back(*NameOrErr);
4926   }
4927 
4928   // readelf prints 4 entries per line.
4929   uint64_t Entries = VerTable.size();
4930   for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) {
4931     OS << "  " << format_hex_no_prefix(VersymRow, 3) << ":";
4932     for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) {
4933       unsigned Ndx = VerTable[VersymRow + I].vs_index;
4934       OS << format("%4x%c", Ndx & VERSYM_VERSION,
4935                    Ndx & VERSYM_HIDDEN ? 'h' : ' ');
4936       OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13);
4937     }
4938     OS << '\n';
4939   }
4940   OS << '\n';
4941 }
4942 
4943 static std::string versionFlagToString(unsigned Flags) {
4944   if (Flags == 0)
4945     return "none";
4946 
4947   std::string Ret;
4948   auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) {
4949     if (!(Flags & Flag))
4950       return;
4951     if (!Ret.empty())
4952       Ret += " | ";
4953     Ret += Name;
4954     Flags &= ~Flag;
4955   };
4956 
4957   AddFlag(VER_FLG_BASE, "BASE");
4958   AddFlag(VER_FLG_WEAK, "WEAK");
4959   AddFlag(VER_FLG_INFO, "INFO");
4960   AddFlag(~0, "<unknown>");
4961   return Ret;
4962 }
4963 
4964 template <class ELFT>
4965 void GNUELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
4966   if (!Sec)
4967     return;
4968 
4969   printGNUVersionSectionProlog(*Sec, "Version definition", Sec->sh_info);
4970 
4971   Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
4972   if (!V) {
4973     this->reportUniqueWarning(V.takeError());
4974     return;
4975   }
4976 
4977   for (const VerDef &Def : *V) {
4978     OS << format("  0x%04x: Rev: %u  Flags: %s  Index: %u  Cnt: %u  Name: %s\n",
4979                  Def.Offset, Def.Version,
4980                  versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt,
4981                  Def.Name.data());
4982     unsigned I = 0;
4983     for (const VerdAux &Aux : Def.AuxV)
4984       OS << format("  0x%04x: Parent %u: %s\n", Aux.Offset, ++I,
4985                    Aux.Name.data());
4986   }
4987 
4988   OS << '\n';
4989 }
4990 
4991 template <class ELFT>
4992 void GNUELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
4993   if (!Sec)
4994     return;
4995 
4996   unsigned VerneedNum = Sec->sh_info;
4997   printGNUVersionSectionProlog(*Sec, "Version needs", VerneedNum);
4998 
4999   Expected<std::vector<VerNeed>> V =
5000       this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
5001   if (!V) {
5002     this->reportUniqueWarning(V.takeError());
5003     return;
5004   }
5005 
5006   for (const VerNeed &VN : *V) {
5007     OS << format("  0x%04x: Version: %u  File: %s  Cnt: %u\n", VN.Offset,
5008                  VN.Version, VN.File.data(), VN.Cnt);
5009     for (const VernAux &Aux : VN.AuxV)
5010       OS << format("  0x%04x:   Name: %s  Flags: %s  Version: %u\n", Aux.Offset,
5011                    Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(),
5012                    Aux.Other);
5013   }
5014   OS << '\n';
5015 }
5016 
5017 template <class ELFT>
5018 void GNUELFDumper<ELFT>::printHashHistogramStats(size_t NBucket,
5019                                                  size_t MaxChain,
5020                                                  size_t TotalSyms,
5021                                                  ArrayRef<size_t> Count,
5022                                                  bool IsGnu) const {
5023   size_t CumulativeNonZero = 0;
5024   OS << "Histogram for" << (IsGnu ? " `.gnu.hash'" : "")
5025      << " bucket list length (total of " << NBucket << " buckets)\n"
5026      << " Length  Number     % of total  Coverage\n";
5027   for (size_t I = 0; I < MaxChain; ++I) {
5028     CumulativeNonZero += Count[I] * I;
5029     OS << format("%7lu  %-10lu (%5.1f%%)     %5.1f%%\n", I, Count[I],
5030                  (Count[I] * 100.0) / NBucket,
5031                  (CumulativeNonZero * 100.0) / TotalSyms);
5032   }
5033 }
5034 
5035 template <class ELFT> void GNUELFDumper<ELFT>::printCGProfile() {
5036   OS << "GNUStyle::printCGProfile not implemented\n";
5037 }
5038 
5039 template <class ELFT> void GNUELFDumper<ELFT>::printBBAddrMaps() {
5040   OS << "GNUStyle::printBBAddrMaps not implemented\n";
5041 }
5042 
5043 static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) {
5044   std::vector<uint64_t> Ret;
5045   const uint8_t *Cur = Data.begin();
5046   const uint8_t *End = Data.end();
5047   while (Cur != End) {
5048     unsigned Size;
5049     const char *Err = nullptr;
5050     Ret.push_back(decodeULEB128(Cur, &Size, End, &Err));
5051     if (Err)
5052       return createError(Err);
5053     Cur += Size;
5054   }
5055   return Ret;
5056 }
5057 
5058 template <class ELFT>
5059 static Expected<std::vector<uint64_t>>
5060 decodeAddrsigSection(const ELFFile<ELFT> &Obj, const typename ELFT::Shdr &Sec) {
5061   Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec);
5062   if (!ContentsOrErr)
5063     return ContentsOrErr.takeError();
5064 
5065   if (Expected<std::vector<uint64_t>> SymsOrErr =
5066           toULEB128Array(*ContentsOrErr))
5067     return *SymsOrErr;
5068   else
5069     return createError("unable to decode " + describe(Obj, Sec) + ": " +
5070                        toString(SymsOrErr.takeError()));
5071 }
5072 
5073 template <class ELFT> void GNUELFDumper<ELFT>::printAddrsig() {
5074   if (!this->DotAddrsigSec)
5075     return;
5076 
5077   Expected<std::vector<uint64_t>> SymsOrErr =
5078       decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
5079   if (!SymsOrErr) {
5080     this->reportUniqueWarning(SymsOrErr.takeError());
5081     return;
5082   }
5083 
5084   StringRef Name = this->getPrintableSectionName(*this->DotAddrsigSec);
5085   OS << "\nAddress-significant symbols section '" << Name << "'"
5086      << " contains " << SymsOrErr->size() << " entries:\n";
5087   OS << "   Num: Name\n";
5088 
5089   Field Fields[2] = {0, 8};
5090   size_t SymIndex = 0;
5091   for (uint64_t Sym : *SymsOrErr) {
5092     Fields[0].Str = to_string(format_decimal(++SymIndex, 6)) + ":";
5093     Fields[1].Str = this->getStaticSymbolName(Sym);
5094     for (const Field &Entry : Fields)
5095       printField(Entry);
5096     OS << "\n";
5097   }
5098 }
5099 
5100 template <typename ELFT>
5101 static std::string getGNUProperty(uint32_t Type, uint32_t DataSize,
5102                                   ArrayRef<uint8_t> Data) {
5103   std::string str;
5104   raw_string_ostream OS(str);
5105   uint32_t PrData;
5106   auto DumpBit = [&](uint32_t Flag, StringRef Name) {
5107     if (PrData & Flag) {
5108       PrData &= ~Flag;
5109       OS << Name;
5110       if (PrData)
5111         OS << ", ";
5112     }
5113   };
5114 
5115   switch (Type) {
5116   default:
5117     OS << format("<application-specific type 0x%x>", Type);
5118     return OS.str();
5119   case GNU_PROPERTY_STACK_SIZE: {
5120     OS << "stack size: ";
5121     if (DataSize == sizeof(typename ELFT::uint))
5122       OS << formatv("{0:x}",
5123                     (uint64_t)(*(const typename ELFT::Addr *)Data.data()));
5124     else
5125       OS << format("<corrupt length: 0x%x>", DataSize);
5126     return OS.str();
5127   }
5128   case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
5129     OS << "no copy on protected";
5130     if (DataSize)
5131       OS << format(" <corrupt length: 0x%x>", DataSize);
5132     return OS.str();
5133   case GNU_PROPERTY_AARCH64_FEATURE_1_AND:
5134   case GNU_PROPERTY_X86_FEATURE_1_AND:
5135     OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: "
5136                                                         : "x86 feature: ");
5137     if (DataSize != 4) {
5138       OS << format("<corrupt length: 0x%x>", DataSize);
5139       return OS.str();
5140     }
5141     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
5142     if (PrData == 0) {
5143       OS << "<None>";
5144       return OS.str();
5145     }
5146     if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
5147       DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI");
5148       DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC");
5149       DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_GCS, "GCS");
5150     } else {
5151       DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT");
5152       DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK");
5153     }
5154     if (PrData)
5155       OS << format("<unknown flags: 0x%x>", PrData);
5156     return OS.str();
5157   case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
5158   case GNU_PROPERTY_X86_FEATURE_2_USED:
5159     OS << "x86 feature "
5160        << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: ");
5161     if (DataSize != 4) {
5162       OS << format("<corrupt length: 0x%x>", DataSize);
5163       return OS.str();
5164     }
5165     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
5166     if (PrData == 0) {
5167       OS << "<None>";
5168       return OS.str();
5169     }
5170     DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86");
5171     DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87");
5172     DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX");
5173     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM");
5174     DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM");
5175     DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM");
5176     DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR");
5177     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE");
5178     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT");
5179     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC");
5180     if (PrData)
5181       OS << format("<unknown flags: 0x%x>", PrData);
5182     return OS.str();
5183   case GNU_PROPERTY_X86_ISA_1_NEEDED:
5184   case GNU_PROPERTY_X86_ISA_1_USED:
5185     OS << "x86 ISA "
5186        << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: ");
5187     if (DataSize != 4) {
5188       OS << format("<corrupt length: 0x%x>", DataSize);
5189       return OS.str();
5190     }
5191     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
5192     if (PrData == 0) {
5193       OS << "<None>";
5194       return OS.str();
5195     }
5196     DumpBit(GNU_PROPERTY_X86_ISA_1_BASELINE, "x86-64-baseline");
5197     DumpBit(GNU_PROPERTY_X86_ISA_1_V2, "x86-64-v2");
5198     DumpBit(GNU_PROPERTY_X86_ISA_1_V3, "x86-64-v3");
5199     DumpBit(GNU_PROPERTY_X86_ISA_1_V4, "x86-64-v4");
5200     if (PrData)
5201       OS << format("<unknown flags: 0x%x>", PrData);
5202     return OS.str();
5203   }
5204 }
5205 
5206 template <typename ELFT>
5207 static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) {
5208   using Elf_Word = typename ELFT::Word;
5209 
5210   SmallVector<std::string, 4> Properties;
5211   while (Arr.size() >= 8) {
5212     uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data());
5213     uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4);
5214     Arr = Arr.drop_front(8);
5215 
5216     // Take padding size into account if present.
5217     uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint));
5218     std::string str;
5219     raw_string_ostream OS(str);
5220     if (Arr.size() < PaddedSize) {
5221       OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize);
5222       Properties.push_back(OS.str());
5223       break;
5224     }
5225     Properties.push_back(
5226         getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize)));
5227     Arr = Arr.drop_front(PaddedSize);
5228   }
5229 
5230   if (!Arr.empty())
5231     Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
5232 
5233   return Properties;
5234 }
5235 
5236 struct GNUAbiTag {
5237   std::string OSName;
5238   std::string ABI;
5239   bool IsValid;
5240 };
5241 
5242 template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) {
5243   typedef typename ELFT::Word Elf_Word;
5244 
5245   ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()),
5246                            reinterpret_cast<const Elf_Word *>(Desc.end()));
5247 
5248   if (Words.size() < 4)
5249     return {"", "", /*IsValid=*/false};
5250 
5251   static const char *OSNames[] = {
5252       "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
5253   };
5254   StringRef OSName = "Unknown";
5255   if (Words[0] < std::size(OSNames))
5256     OSName = OSNames[Words[0]];
5257   uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
5258   std::string str;
5259   raw_string_ostream ABI(str);
5260   ABI << Major << "." << Minor << "." << Patch;
5261   return {std::string(OSName), ABI.str(), /*IsValid=*/true};
5262 }
5263 
5264 static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) {
5265   std::string str;
5266   raw_string_ostream OS(str);
5267   for (uint8_t B : Desc)
5268     OS << format_hex_no_prefix(B, 2);
5269   return OS.str();
5270 }
5271 
5272 static StringRef getDescAsStringRef(ArrayRef<uint8_t> Desc) {
5273   return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5274 }
5275 
5276 template <typename ELFT>
5277 static bool printGNUNote(raw_ostream &OS, uint32_t NoteType,
5278                          ArrayRef<uint8_t> Desc) {
5279   // Return true if we were able to pretty-print the note, false otherwise.
5280   switch (NoteType) {
5281   default:
5282     return false;
5283   case ELF::NT_GNU_ABI_TAG: {
5284     const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
5285     if (!AbiTag.IsValid)
5286       OS << "    <corrupt GNU_ABI_TAG>";
5287     else
5288       OS << "    OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI;
5289     break;
5290   }
5291   case ELF::NT_GNU_BUILD_ID: {
5292     OS << "    Build ID: " << getGNUBuildId(Desc);
5293     break;
5294   }
5295   case ELF::NT_GNU_GOLD_VERSION:
5296     OS << "    Version: " << getDescAsStringRef(Desc);
5297     break;
5298   case ELF::NT_GNU_PROPERTY_TYPE_0:
5299     OS << "    Properties:";
5300     for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
5301       OS << "    " << Property << "\n";
5302     break;
5303   }
5304   OS << '\n';
5305   return true;
5306 }
5307 
5308 using AndroidNoteProperties = std::vector<std::pair<StringRef, std::string>>;
5309 static AndroidNoteProperties getAndroidNoteProperties(uint32_t NoteType,
5310                                                       ArrayRef<uint8_t> Desc) {
5311   AndroidNoteProperties Props;
5312   switch (NoteType) {
5313   case ELF::NT_ANDROID_TYPE_MEMTAG:
5314     if (Desc.empty()) {
5315       Props.emplace_back("Invalid .note.android.memtag", "");
5316       return Props;
5317     }
5318 
5319     switch (Desc[0] & NT_MEMTAG_LEVEL_MASK) {
5320     case NT_MEMTAG_LEVEL_NONE:
5321       Props.emplace_back("Tagging Mode", "NONE");
5322       break;
5323     case NT_MEMTAG_LEVEL_ASYNC:
5324       Props.emplace_back("Tagging Mode", "ASYNC");
5325       break;
5326     case NT_MEMTAG_LEVEL_SYNC:
5327       Props.emplace_back("Tagging Mode", "SYNC");
5328       break;
5329     default:
5330       Props.emplace_back(
5331           "Tagging Mode",
5332           ("Unknown (" + Twine::utohexstr(Desc[0] & NT_MEMTAG_LEVEL_MASK) + ")")
5333               .str());
5334       break;
5335     }
5336     Props.emplace_back("Heap",
5337                        (Desc[0] & NT_MEMTAG_HEAP) ? "Enabled" : "Disabled");
5338     Props.emplace_back("Stack",
5339                        (Desc[0] & NT_MEMTAG_STACK) ? "Enabled" : "Disabled");
5340     break;
5341   default:
5342     return Props;
5343   }
5344   return Props;
5345 }
5346 
5347 static bool printAndroidNote(raw_ostream &OS, uint32_t NoteType,
5348                              ArrayRef<uint8_t> Desc) {
5349   // Return true if we were able to pretty-print the note, false otherwise.
5350   AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc);
5351   if (Props.empty())
5352     return false;
5353   for (const auto &KV : Props)
5354     OS << "    " << KV.first << ": " << KV.second << '\n';
5355   return true;
5356 }
5357 
5358 template <class ELFT>
5359 static bool printAArch64Note(raw_ostream &OS, uint32_t NoteType,
5360                              ArrayRef<uint8_t> Desc) {
5361   if (NoteType != NT_ARM_TYPE_PAUTH_ABI_TAG)
5362     return false;
5363 
5364   OS << "    AArch64 PAuth ABI tag: ";
5365   if (Desc.size() < 16) {
5366     OS << format("<corrupted size: expected at least 16, got %d>", Desc.size());
5367     return false;
5368   }
5369 
5370   uint64_t Platform =
5371       support::endian::read64<ELFT::TargetEndianness>(Desc.data() + 0);
5372   uint64_t Version =
5373       support::endian::read64<ELFT::TargetEndianness>(Desc.data() + 8);
5374   OS << format("platform 0x%" PRIx64 ", version 0x%" PRIx64, Platform, Version);
5375 
5376   if (Desc.size() > 16)
5377     OS << ", additional info 0x"
5378        << toHex(ArrayRef<uint8_t>(Desc.data() + 16, Desc.size() - 16));
5379 
5380   return true;
5381 }
5382 
5383 template <class ELFT>
5384 void GNUELFDumper<ELFT>::printMemtag(
5385     const ArrayRef<std::pair<std::string, std::string>> DynamicEntries,
5386     const ArrayRef<uint8_t> AndroidNoteDesc,
5387     const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) {
5388   OS << "Memtag Dynamic Entries:\n";
5389   if (DynamicEntries.empty())
5390     OS << "    < none found >\n";
5391   for (const auto &DynamicEntryKV : DynamicEntries)
5392     OS << "    " << DynamicEntryKV.first << ": " << DynamicEntryKV.second
5393        << "\n";
5394 
5395   if (!AndroidNoteDesc.empty()) {
5396     OS << "Memtag Android Note:\n";
5397     printAndroidNote(OS, ELF::NT_ANDROID_TYPE_MEMTAG, AndroidNoteDesc);
5398   }
5399 
5400   if (Descriptors.empty())
5401     return;
5402 
5403   OS << "Memtag Global Descriptors:\n";
5404   for (const auto &[Addr, BytesToTag] : Descriptors) {
5405     OS << "    0x" << utohexstr(Addr, /*LowerCase=*/true) << ": 0x"
5406        << utohexstr(BytesToTag, /*LowerCase=*/true) << "\n";
5407   }
5408 }
5409 
5410 template <typename ELFT>
5411 static bool printLLVMOMPOFFLOADNote(raw_ostream &OS, uint32_t NoteType,
5412                                     ArrayRef<uint8_t> Desc) {
5413   switch (NoteType) {
5414   default:
5415     return false;
5416   case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
5417     OS << "    Version: " << getDescAsStringRef(Desc);
5418     break;
5419   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
5420     OS << "    Producer: " << getDescAsStringRef(Desc);
5421     break;
5422   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
5423     OS << "    Producer version: " << getDescAsStringRef(Desc);
5424     break;
5425   }
5426   OS << '\n';
5427   return true;
5428 }
5429 
5430 const EnumEntry<unsigned> FreeBSDFeatureCtlFlags[] = {
5431     {"ASLR_DISABLE", NT_FREEBSD_FCTL_ASLR_DISABLE},
5432     {"PROTMAX_DISABLE", NT_FREEBSD_FCTL_PROTMAX_DISABLE},
5433     {"STKGAP_DISABLE", NT_FREEBSD_FCTL_STKGAP_DISABLE},
5434     {"WXNEEDED", NT_FREEBSD_FCTL_WXNEEDED},
5435     {"LA48", NT_FREEBSD_FCTL_LA48},
5436     {"ASG_DISABLE", NT_FREEBSD_FCTL_ASG_DISABLE},
5437 };
5438 
5439 struct FreeBSDNote {
5440   std::string Type;
5441   std::string Value;
5442 };
5443 
5444 template <typename ELFT>
5445 static std::optional<FreeBSDNote>
5446 getFreeBSDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc, bool IsCore) {
5447   if (IsCore)
5448     return std::nullopt; // No pretty-printing yet.
5449   switch (NoteType) {
5450   case ELF::NT_FREEBSD_ABI_TAG:
5451     if (Desc.size() != 4)
5452       return std::nullopt;
5453     return FreeBSDNote{
5454         "ABI tag",
5455         utostr(support::endian::read32<ELFT::TargetEndianness>(Desc.data()))};
5456   case ELF::NT_FREEBSD_ARCH_TAG:
5457     return FreeBSDNote{"Arch tag", toStringRef(Desc).str()};
5458   case ELF::NT_FREEBSD_FEATURE_CTL: {
5459     if (Desc.size() != 4)
5460       return std::nullopt;
5461     unsigned Value =
5462         support::endian::read32<ELFT::TargetEndianness>(Desc.data());
5463     std::string FlagsStr;
5464     raw_string_ostream OS(FlagsStr);
5465     printFlags(Value, ArrayRef(FreeBSDFeatureCtlFlags), OS);
5466     if (OS.str().empty())
5467       OS << "0x" << utohexstr(Value);
5468     else
5469       OS << "(0x" << utohexstr(Value) << ")";
5470     return FreeBSDNote{"Feature flags", OS.str()};
5471   }
5472   default:
5473     return std::nullopt;
5474   }
5475 }
5476 
5477 struct AMDNote {
5478   std::string Type;
5479   std::string Value;
5480 };
5481 
5482 template <typename ELFT>
5483 static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5484   switch (NoteType) {
5485   default:
5486     return {"", ""};
5487   case ELF::NT_AMD_HSA_CODE_OBJECT_VERSION: {
5488     struct CodeObjectVersion {
5489       support::aligned_ulittle32_t MajorVersion;
5490       support::aligned_ulittle32_t MinorVersion;
5491     };
5492     if (Desc.size() != sizeof(CodeObjectVersion))
5493       return {"AMD HSA Code Object Version",
5494               "Invalid AMD HSA Code Object Version"};
5495     std::string VersionString;
5496     raw_string_ostream StrOS(VersionString);
5497     auto Version = reinterpret_cast<const CodeObjectVersion *>(Desc.data());
5498     StrOS << "[Major: " << Version->MajorVersion
5499           << ", Minor: " << Version->MinorVersion << "]";
5500     return {"AMD HSA Code Object Version", VersionString};
5501   }
5502   case ELF::NT_AMD_HSA_HSAIL: {
5503     struct HSAILProperties {
5504       support::aligned_ulittle32_t HSAILMajorVersion;
5505       support::aligned_ulittle32_t HSAILMinorVersion;
5506       uint8_t Profile;
5507       uint8_t MachineModel;
5508       uint8_t DefaultFloatRound;
5509     };
5510     if (Desc.size() != sizeof(HSAILProperties))
5511       return {"AMD HSA HSAIL Properties", "Invalid AMD HSA HSAIL Properties"};
5512     auto Properties = reinterpret_cast<const HSAILProperties *>(Desc.data());
5513     std::string HSAILPropetiesString;
5514     raw_string_ostream StrOS(HSAILPropetiesString);
5515     StrOS << "[HSAIL Major: " << Properties->HSAILMajorVersion
5516           << ", HSAIL Minor: " << Properties->HSAILMinorVersion
5517           << ", Profile: " << uint32_t(Properties->Profile)
5518           << ", Machine Model: " << uint32_t(Properties->MachineModel)
5519           << ", Default Float Round: "
5520           << uint32_t(Properties->DefaultFloatRound) << "]";
5521     return {"AMD HSA HSAIL Properties", HSAILPropetiesString};
5522   }
5523   case ELF::NT_AMD_HSA_ISA_VERSION: {
5524     struct IsaVersion {
5525       support::aligned_ulittle16_t VendorNameSize;
5526       support::aligned_ulittle16_t ArchitectureNameSize;
5527       support::aligned_ulittle32_t Major;
5528       support::aligned_ulittle32_t Minor;
5529       support::aligned_ulittle32_t Stepping;
5530     };
5531     if (Desc.size() < sizeof(IsaVersion))
5532       return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5533     auto Isa = reinterpret_cast<const IsaVersion *>(Desc.data());
5534     if (Desc.size() < sizeof(IsaVersion) +
5535                           Isa->VendorNameSize + Isa->ArchitectureNameSize ||
5536         Isa->VendorNameSize == 0 || Isa->ArchitectureNameSize == 0)
5537       return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5538     std::string IsaString;
5539     raw_string_ostream StrOS(IsaString);
5540     StrOS << "[Vendor: "
5541           << StringRef((const char*)Desc.data() + sizeof(IsaVersion), Isa->VendorNameSize - 1)
5542           << ", Architecture: "
5543           << StringRef((const char*)Desc.data() + sizeof(IsaVersion) + Isa->VendorNameSize,
5544                        Isa->ArchitectureNameSize - 1)
5545           << ", Major: " << Isa->Major << ", Minor: " << Isa->Minor
5546           << ", Stepping: " << Isa->Stepping << "]";
5547     return {"AMD HSA ISA Version", IsaString};
5548   }
5549   case ELF::NT_AMD_HSA_METADATA: {
5550     if (Desc.size() == 0)
5551       return {"AMD HSA Metadata", ""};
5552     return {
5553         "AMD HSA Metadata",
5554         std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size() - 1)};
5555   }
5556   case ELF::NT_AMD_HSA_ISA_NAME: {
5557     if (Desc.size() == 0)
5558       return {"AMD HSA ISA Name", ""};
5559     return {
5560         "AMD HSA ISA Name",
5561         std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
5562   }
5563   case ELF::NT_AMD_PAL_METADATA: {
5564     struct PALMetadata {
5565       support::aligned_ulittle32_t Key;
5566       support::aligned_ulittle32_t Value;
5567     };
5568     if (Desc.size() % sizeof(PALMetadata) != 0)
5569       return {"AMD PAL Metadata", "Invalid AMD PAL Metadata"};
5570     auto Isa = reinterpret_cast<const PALMetadata *>(Desc.data());
5571     std::string MetadataString;
5572     raw_string_ostream StrOS(MetadataString);
5573     for (size_t I = 0, E = Desc.size() / sizeof(PALMetadata); I < E; ++I) {
5574       StrOS << "[" << Isa[I].Key << ": " << Isa[I].Value << "]";
5575     }
5576     return {"AMD PAL Metadata", MetadataString};
5577   }
5578   }
5579 }
5580 
5581 struct AMDGPUNote {
5582   std::string Type;
5583   std::string Value;
5584 };
5585 
5586 template <typename ELFT>
5587 static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5588   switch (NoteType) {
5589   default:
5590     return {"", ""};
5591   case ELF::NT_AMDGPU_METADATA: {
5592     StringRef MsgPackString =
5593         StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5594     msgpack::Document MsgPackDoc;
5595     if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false))
5596       return {"", ""};
5597 
5598     std::string MetadataString;
5599 
5600     // FIXME: Metadata Verifier only works with AMDHSA.
5601     //  This is an ugly workaround to avoid the verifier for other MD
5602     //  formats (e.g. amdpal)
5603     if (MsgPackString.contains("amdhsa.")) {
5604       AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true);
5605       if (!Verifier.verify(MsgPackDoc.getRoot()))
5606         MetadataString = "Invalid AMDGPU Metadata\n";
5607     }
5608 
5609     raw_string_ostream StrOS(MetadataString);
5610     if (MsgPackDoc.getRoot().isScalar()) {
5611       // TODO: passing a scalar root to toYAML() asserts:
5612       // (PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar &&
5613       //    "plain scalar documents are not supported")
5614       // To avoid this crash we print the raw data instead.
5615       return {"", ""};
5616     }
5617     MsgPackDoc.toYAML(StrOS);
5618     return {"AMDGPU Metadata", StrOS.str()};
5619   }
5620   }
5621 }
5622 
5623 struct CoreFileMapping {
5624   uint64_t Start, End, Offset;
5625   StringRef Filename;
5626 };
5627 
5628 struct CoreNote {
5629   uint64_t PageSize;
5630   std::vector<CoreFileMapping> Mappings;
5631 };
5632 
5633 static Expected<CoreNote> readCoreNote(DataExtractor Desc) {
5634   // Expected format of the NT_FILE note description:
5635   // 1. # of file mappings (call it N)
5636   // 2. Page size
5637   // 3. N (start, end, offset) triples
5638   // 4. N packed filenames (null delimited)
5639   // Each field is an Elf_Addr, except for filenames which are char* strings.
5640 
5641   CoreNote Ret;
5642   const int Bytes = Desc.getAddressSize();
5643 
5644   if (!Desc.isValidOffsetForAddress(2))
5645     return createError("the note of size 0x" + Twine::utohexstr(Desc.size()) +
5646                        " is too short, expected at least 0x" +
5647                        Twine::utohexstr(Bytes * 2));
5648   if (Desc.getData().back() != 0)
5649     return createError("the note is not NUL terminated");
5650 
5651   uint64_t DescOffset = 0;
5652   uint64_t FileCount = Desc.getAddress(&DescOffset);
5653   Ret.PageSize = Desc.getAddress(&DescOffset);
5654 
5655   if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes))
5656     return createError("unable to read file mappings (found " +
5657                        Twine(FileCount) + "): the note of size 0x" +
5658                        Twine::utohexstr(Desc.size()) + " is too short");
5659 
5660   uint64_t FilenamesOffset = 0;
5661   DataExtractor Filenames(
5662       Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes),
5663       Desc.isLittleEndian(), Desc.getAddressSize());
5664 
5665   Ret.Mappings.resize(FileCount);
5666   size_t I = 0;
5667   for (CoreFileMapping &Mapping : Ret.Mappings) {
5668     ++I;
5669     if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1))
5670       return createError(
5671           "unable to read the file name for the mapping with index " +
5672           Twine(I) + ": the note of size 0x" + Twine::utohexstr(Desc.size()) +
5673           " is truncated");
5674     Mapping.Start = Desc.getAddress(&DescOffset);
5675     Mapping.End = Desc.getAddress(&DescOffset);
5676     Mapping.Offset = Desc.getAddress(&DescOffset);
5677     Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset);
5678   }
5679 
5680   return Ret;
5681 }
5682 
5683 template <typename ELFT>
5684 static void printCoreNote(raw_ostream &OS, const CoreNote &Note) {
5685   // Length of "0x<address>" string.
5686   const int FieldWidth = ELFT::Is64Bits ? 18 : 10;
5687 
5688   OS << "    Page size: " << format_decimal(Note.PageSize, 0) << '\n';
5689   OS << "    " << right_justify("Start", FieldWidth) << "  "
5690      << right_justify("End", FieldWidth) << "  "
5691      << right_justify("Page Offset", FieldWidth) << '\n';
5692   for (const CoreFileMapping &Mapping : Note.Mappings) {
5693     OS << "    " << format_hex(Mapping.Start, FieldWidth) << "  "
5694        << format_hex(Mapping.End, FieldWidth) << "  "
5695        << format_hex(Mapping.Offset, FieldWidth) << "\n        "
5696        << Mapping.Filename << '\n';
5697   }
5698 }
5699 
5700 const NoteType GenericNoteTypes[] = {
5701     {ELF::NT_VERSION, "NT_VERSION (version)"},
5702     {ELF::NT_ARCH, "NT_ARCH (architecture)"},
5703     {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"},
5704     {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"},
5705 };
5706 
5707 const NoteType GNUNoteTypes[] = {
5708     {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
5709     {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
5710     {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
5711     {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
5712     {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
5713 };
5714 
5715 const NoteType FreeBSDCoreNoteTypes[] = {
5716     {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
5717     {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
5718     {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
5719     {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
5720     {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
5721     {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
5722     {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
5723     {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
5724     {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
5725      "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
5726     {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
5727 };
5728 
5729 const NoteType FreeBSDNoteTypes[] = {
5730     {ELF::NT_FREEBSD_ABI_TAG, "NT_FREEBSD_ABI_TAG (ABI version tag)"},
5731     {ELF::NT_FREEBSD_NOINIT_TAG, "NT_FREEBSD_NOINIT_TAG (no .init tag)"},
5732     {ELF::NT_FREEBSD_ARCH_TAG, "NT_FREEBSD_ARCH_TAG (architecture tag)"},
5733     {ELF::NT_FREEBSD_FEATURE_CTL,
5734      "NT_FREEBSD_FEATURE_CTL (FreeBSD feature control)"},
5735 };
5736 
5737 const NoteType NetBSDCoreNoteTypes[] = {
5738     {ELF::NT_NETBSDCORE_PROCINFO,
5739      "NT_NETBSDCORE_PROCINFO (procinfo structure)"},
5740     {ELF::NT_NETBSDCORE_AUXV, "NT_NETBSDCORE_AUXV (ELF auxiliary vector data)"},
5741     {ELF::NT_NETBSDCORE_LWPSTATUS, "PT_LWPSTATUS (ptrace_lwpstatus structure)"},
5742 };
5743 
5744 const NoteType OpenBSDCoreNoteTypes[] = {
5745     {ELF::NT_OPENBSD_PROCINFO, "NT_OPENBSD_PROCINFO (procinfo structure)"},
5746     {ELF::NT_OPENBSD_AUXV, "NT_OPENBSD_AUXV (ELF auxiliary vector data)"},
5747     {ELF::NT_OPENBSD_REGS, "NT_OPENBSD_REGS (regular registers)"},
5748     {ELF::NT_OPENBSD_FPREGS, "NT_OPENBSD_FPREGS (floating point registers)"},
5749     {ELF::NT_OPENBSD_WCOOKIE, "NT_OPENBSD_WCOOKIE (window cookie)"},
5750 };
5751 
5752 const NoteType AMDNoteTypes[] = {
5753     {ELF::NT_AMD_HSA_CODE_OBJECT_VERSION,
5754      "NT_AMD_HSA_CODE_OBJECT_VERSION (AMD HSA Code Object Version)"},
5755     {ELF::NT_AMD_HSA_HSAIL, "NT_AMD_HSA_HSAIL (AMD HSA HSAIL Properties)"},
5756     {ELF::NT_AMD_HSA_ISA_VERSION, "NT_AMD_HSA_ISA_VERSION (AMD HSA ISA Version)"},
5757     {ELF::NT_AMD_HSA_METADATA, "NT_AMD_HSA_METADATA (AMD HSA Metadata)"},
5758     {ELF::NT_AMD_HSA_ISA_NAME, "NT_AMD_HSA_ISA_NAME (AMD HSA ISA Name)"},
5759     {ELF::NT_AMD_PAL_METADATA, "NT_AMD_PAL_METADATA (AMD PAL Metadata)"},
5760 };
5761 
5762 const NoteType AMDGPUNoteTypes[] = {
5763     {ELF::NT_AMDGPU_METADATA, "NT_AMDGPU_METADATA (AMDGPU Metadata)"},
5764 };
5765 
5766 const NoteType LLVMOMPOFFLOADNoteTypes[] = {
5767     {ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION,
5768      "NT_LLVM_OPENMP_OFFLOAD_VERSION (image format version)"},
5769     {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER,
5770      "NT_LLVM_OPENMP_OFFLOAD_PRODUCER (producing toolchain)"},
5771     {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION,
5772      "NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION (producing toolchain version)"},
5773 };
5774 
5775 const NoteType AndroidNoteTypes[] = {
5776     {ELF::NT_ANDROID_TYPE_IDENT, "NT_ANDROID_TYPE_IDENT"},
5777     {ELF::NT_ANDROID_TYPE_KUSER, "NT_ANDROID_TYPE_KUSER"},
5778     {ELF::NT_ANDROID_TYPE_MEMTAG,
5779      "NT_ANDROID_TYPE_MEMTAG (Android memory tagging information)"},
5780 };
5781 
5782 const NoteType ARMNoteTypes[] = {
5783     {ELF::NT_ARM_TYPE_PAUTH_ABI_TAG, "NT_ARM_TYPE_PAUTH_ABI_TAG"},
5784 };
5785 
5786 const NoteType CoreNoteTypes[] = {
5787     {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"},
5788     {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"},
5789     {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"},
5790     {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"},
5791     {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"},
5792     {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"},
5793     {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"},
5794     {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"},
5795     {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"},
5796     {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"},
5797     {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"},
5798 
5799     {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"},
5800     {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"},
5801     {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"},
5802     {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"},
5803     {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"},
5804     {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"},
5805     {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"},
5806     {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
5807     {ELF::NT_PPC_TM_CFPR,
5808      "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
5809     {ELF::NT_PPC_TM_CVMX,
5810      "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
5811     {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
5812     {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
5813     {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
5814     {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
5815     {ELF::NT_PPC_TM_CDSCR, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
5816 
5817     {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"},
5818     {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"},
5819     {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"},
5820 
5821     {ELF::NT_S390_HIGH_GPRS, "NT_S390_HIGH_GPRS (s390 upper register halves)"},
5822     {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"},
5823     {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"},
5824     {ELF::NT_S390_TODPREG, "NT_S390_TODPREG (s390 TOD programmable register)"},
5825     {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"},
5826     {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"},
5827     {ELF::NT_S390_LAST_BREAK,
5828      "NT_S390_LAST_BREAK (s390 last breaking event address)"},
5829     {ELF::NT_S390_SYSTEM_CALL,
5830      "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
5831     {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"},
5832     {ELF::NT_S390_VXRS_LOW,
5833      "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
5834     {ELF::NT_S390_VXRS_HIGH, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
5835     {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"},
5836     {ELF::NT_S390_GS_BC,
5837      "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
5838 
5839     {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"},
5840     {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"},
5841     {ELF::NT_ARM_HW_BREAK,
5842      "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
5843     {ELF::NT_ARM_HW_WATCH,
5844      "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
5845     {ELF::NT_ARM_SVE, "NT_ARM_SVE (AArch64 SVE registers)"},
5846     {ELF::NT_ARM_PAC_MASK,
5847      "NT_ARM_PAC_MASK (AArch64 Pointer Authentication code masks)"},
5848     {ELF::NT_ARM_TAGGED_ADDR_CTRL,
5849      "NT_ARM_TAGGED_ADDR_CTRL (AArch64 Tagged Address Control)"},
5850     {ELF::NT_ARM_SSVE, "NT_ARM_SSVE (AArch64 Streaming SVE registers)"},
5851     {ELF::NT_ARM_ZA, "NT_ARM_ZA (AArch64 SME ZA registers)"},
5852     {ELF::NT_ARM_ZT, "NT_ARM_ZT (AArch64 SME ZT registers)"},
5853 
5854     {ELF::NT_FILE, "NT_FILE (mapped files)"},
5855     {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"},
5856     {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"},
5857 };
5858 
5859 template <class ELFT>
5860 StringRef getNoteTypeName(const typename ELFT::Note &Note, unsigned ELFType) {
5861   uint32_t Type = Note.getType();
5862   auto FindNote = [&](ArrayRef<NoteType> V) -> StringRef {
5863     for (const NoteType &N : V)
5864       if (N.ID == Type)
5865         return N.Name;
5866     return "";
5867   };
5868 
5869   StringRef Name = Note.getName();
5870   if (Name == "GNU")
5871     return FindNote(GNUNoteTypes);
5872   if (Name == "FreeBSD") {
5873     if (ELFType == ELF::ET_CORE) {
5874       // FreeBSD also places the generic core notes in the FreeBSD namespace.
5875       StringRef Result = FindNote(FreeBSDCoreNoteTypes);
5876       if (!Result.empty())
5877         return Result;
5878       return FindNote(CoreNoteTypes);
5879     } else {
5880       return FindNote(FreeBSDNoteTypes);
5881     }
5882   }
5883   if (ELFType == ELF::ET_CORE && Name.starts_with("NetBSD-CORE")) {
5884     StringRef Result = FindNote(NetBSDCoreNoteTypes);
5885     if (!Result.empty())
5886       return Result;
5887     return FindNote(CoreNoteTypes);
5888   }
5889   if (ELFType == ELF::ET_CORE && Name.starts_with("OpenBSD")) {
5890     // OpenBSD also places the generic core notes in the OpenBSD namespace.
5891     StringRef Result = FindNote(OpenBSDCoreNoteTypes);
5892     if (!Result.empty())
5893       return Result;
5894     return FindNote(CoreNoteTypes);
5895   }
5896   if (Name == "AMD")
5897     return FindNote(AMDNoteTypes);
5898   if (Name == "AMDGPU")
5899     return FindNote(AMDGPUNoteTypes);
5900   if (Name == "LLVMOMPOFFLOAD")
5901     return FindNote(LLVMOMPOFFLOADNoteTypes);
5902   if (Name == "Android")
5903     return FindNote(AndroidNoteTypes);
5904   if (Name == "ARM")
5905     return FindNote(ARMNoteTypes);
5906 
5907   if (ELFType == ELF::ET_CORE)
5908     return FindNote(CoreNoteTypes);
5909   return FindNote(GenericNoteTypes);
5910 }
5911 
5912 template <class ELFT>
5913 static void processNotesHelper(
5914     const ELFDumper<ELFT> &Dumper,
5915     llvm::function_ref<void(std::optional<StringRef>, typename ELFT::Off,
5916                             typename ELFT::Addr, size_t)>
5917         StartNotesFn,
5918     llvm::function_ref<Error(const typename ELFT::Note &, bool)> ProcessNoteFn,
5919     llvm::function_ref<void()> FinishNotesFn) {
5920   const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
5921   bool IsCoreFile = Obj.getHeader().e_type == ELF::ET_CORE;
5922 
5923   ArrayRef<typename ELFT::Shdr> Sections = cantFail(Obj.sections());
5924   if (!IsCoreFile && !Sections.empty()) {
5925     for (const typename ELFT::Shdr &S : Sections) {
5926       if (S.sh_type != SHT_NOTE)
5927         continue;
5928       StartNotesFn(expectedToStdOptional(Obj.getSectionName(S)), S.sh_offset,
5929                    S.sh_size, S.sh_addralign);
5930       Error Err = Error::success();
5931       size_t I = 0;
5932       for (const typename ELFT::Note Note : Obj.notes(S, Err)) {
5933         if (Error E = ProcessNoteFn(Note, IsCoreFile))
5934           Dumper.reportUniqueWarning(
5935               "unable to read note with index " + Twine(I) + " from the " +
5936               describe(Obj, S) + ": " + toString(std::move(E)));
5937         ++I;
5938       }
5939       if (Err)
5940         Dumper.reportUniqueWarning("unable to read notes from the " +
5941                                    describe(Obj, S) + ": " +
5942                                    toString(std::move(Err)));
5943       FinishNotesFn();
5944     }
5945     return;
5946   }
5947 
5948   Expected<ArrayRef<typename ELFT::Phdr>> PhdrsOrErr = Obj.program_headers();
5949   if (!PhdrsOrErr) {
5950     Dumper.reportUniqueWarning(
5951         "unable to read program headers to locate the PT_NOTE segment: " +
5952         toString(PhdrsOrErr.takeError()));
5953     return;
5954   }
5955 
5956   for (size_t I = 0, E = (*PhdrsOrErr).size(); I != E; ++I) {
5957     const typename ELFT::Phdr &P = (*PhdrsOrErr)[I];
5958     if (P.p_type != PT_NOTE)
5959       continue;
5960     StartNotesFn(/*SecName=*/std::nullopt, P.p_offset, P.p_filesz, P.p_align);
5961     Error Err = Error::success();
5962     size_t Index = 0;
5963     for (const typename ELFT::Note Note : Obj.notes(P, Err)) {
5964       if (Error E = ProcessNoteFn(Note, IsCoreFile))
5965         Dumper.reportUniqueWarning("unable to read note with index " +
5966                                    Twine(Index) +
5967                                    " from the PT_NOTE segment with index " +
5968                                    Twine(I) + ": " + toString(std::move(E)));
5969       ++Index;
5970     }
5971     if (Err)
5972       Dumper.reportUniqueWarning(
5973           "unable to read notes from the PT_NOTE segment with index " +
5974           Twine(I) + ": " + toString(std::move(Err)));
5975     FinishNotesFn();
5976   }
5977 }
5978 
5979 template <class ELFT> void GNUELFDumper<ELFT>::printNotes() {
5980   size_t Align = 0;
5981   bool IsFirstHeader = true;
5982   auto PrintHeader = [&](std::optional<StringRef> SecName,
5983                          const typename ELFT::Off Offset,
5984                          const typename ELFT::Addr Size, size_t Al) {
5985     Align = std::max<size_t>(Al, 4);
5986     // Print a newline between notes sections to match GNU readelf.
5987     if (!IsFirstHeader) {
5988       OS << '\n';
5989     } else {
5990       IsFirstHeader = false;
5991     }
5992 
5993     OS << "Displaying notes found ";
5994 
5995     if (SecName)
5996       OS << "in: " << *SecName << "\n";
5997     else
5998       OS << "at file offset " << format_hex(Offset, 10) << " with length "
5999          << format_hex(Size, 10) << ":\n";
6000 
6001     OS << "  Owner                Data size \tDescription\n";
6002   };
6003 
6004   auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
6005     StringRef Name = Note.getName();
6006     ArrayRef<uint8_t> Descriptor = Note.getDesc(Align);
6007     Elf_Word Type = Note.getType();
6008 
6009     // Print the note owner/type.
6010     OS << "  " << left_justify(Name, 20) << ' '
6011        << format_hex(Descriptor.size(), 10) << '\t';
6012 
6013     StringRef NoteType =
6014         getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
6015     if (!NoteType.empty())
6016       OS << NoteType << '\n';
6017     else
6018       OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n";
6019 
6020     // Print the description, or fallback to printing raw bytes for unknown
6021     // owners/if we fail to pretty-print the contents.
6022     if (Name == "GNU") {
6023       if (printGNUNote<ELFT>(OS, Type, Descriptor))
6024         return Error::success();
6025     } else if (Name == "FreeBSD") {
6026       if (std::optional<FreeBSDNote> N =
6027               getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
6028         OS << "    " << N->Type << ": " << N->Value << '\n';
6029         return Error::success();
6030       }
6031     } else if (Name == "AMD") {
6032       const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
6033       if (!N.Type.empty()) {
6034         OS << "    " << N.Type << ":\n        " << N.Value << '\n';
6035         return Error::success();
6036       }
6037     } else if (Name == "AMDGPU") {
6038       const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
6039       if (!N.Type.empty()) {
6040         OS << "    " << N.Type << ":\n        " << N.Value << '\n';
6041         return Error::success();
6042       }
6043     } else if (Name == "LLVMOMPOFFLOAD") {
6044       if (printLLVMOMPOFFLOADNote<ELFT>(OS, Type, Descriptor))
6045         return Error::success();
6046     } else if (Name == "CORE") {
6047       if (Type == ELF::NT_FILE) {
6048         DataExtractor DescExtractor(
6049             Descriptor, ELFT::TargetEndianness == llvm::endianness::little,
6050             sizeof(Elf_Addr));
6051         if (Expected<CoreNote> NoteOrErr = readCoreNote(DescExtractor)) {
6052           printCoreNote<ELFT>(OS, *NoteOrErr);
6053           return Error::success();
6054         } else {
6055           return NoteOrErr.takeError();
6056         }
6057       }
6058     } else if (Name == "Android") {
6059       if (printAndroidNote(OS, Type, Descriptor))
6060         return Error::success();
6061     } else if (Name == "ARM") {
6062       if (printAArch64Note<ELFT>(OS, Type, Descriptor))
6063         return Error::success();
6064     }
6065     if (!Descriptor.empty()) {
6066       OS << "   description data:";
6067       for (uint8_t B : Descriptor)
6068         OS << " " << format("%02x", B);
6069       OS << '\n';
6070     }
6071     return Error::success();
6072   };
6073 
6074   processNotesHelper(*this, /*StartNotesFn=*/PrintHeader,
6075                      /*ProcessNoteFn=*/ProcessNote, /*FinishNotesFn=*/[]() {});
6076 }
6077 
6078 template <class ELFT>
6079 ArrayRef<uint8_t>
6080 ELFDumper<ELFT>::getMemtagGlobalsSectionContents(uint64_t ExpectedAddr) {
6081   for (const typename ELFT::Shdr &Sec : cantFail(Obj.sections())) {
6082     if (Sec.sh_type != SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC)
6083       continue;
6084     if (Sec.sh_addr != ExpectedAddr) {
6085       reportUniqueWarning(
6086           "SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section was unexpectedly at 0x" +
6087           Twine::utohexstr(Sec.sh_addr) +
6088           ", when DT_AARCH64_MEMTAG_GLOBALS says it should be at 0x" +
6089           Twine::utohexstr(ExpectedAddr));
6090       return ArrayRef<uint8_t>();
6091     }
6092     Expected<ArrayRef<uint8_t>> Contents = Obj.getSectionContents(Sec);
6093     if (auto E = Contents.takeError()) {
6094       reportUniqueWarning(
6095           "couldn't get SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section contents: " +
6096           toString(std::move(E)));
6097       return ArrayRef<uint8_t>();
6098     }
6099     return Contents.get();
6100   }
6101   return ArrayRef<uint8_t>();
6102 }
6103 
6104 // Reserve the lower three bits of the first byte of the step distance when
6105 // encoding the memtag descriptors. Found to be the best overall size tradeoff
6106 // when compiling Android T with full MTE globals enabled.
6107 constexpr uint64_t MemtagStepVarintReservedBits = 3;
6108 constexpr uint64_t MemtagGranuleSize = 16;
6109 
6110 template <typename ELFT> void ELFDumper<ELFT>::printMemtag() {
6111   if (Obj.getHeader().e_machine != EM_AARCH64) return;
6112   std::vector<std::pair<std::string, std::string>> DynamicEntries;
6113   uint64_t MemtagGlobalsSz = 0;
6114   uint64_t MemtagGlobals = 0;
6115   for (const typename ELFT::Dyn &Entry : dynamic_table()) {
6116     uintX_t Tag = Entry.getTag();
6117     switch (Tag) {
6118     case DT_AARCH64_MEMTAG_GLOBALSSZ:
6119       MemtagGlobalsSz = Entry.getVal();
6120       DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag),
6121                                   getDynamicEntry(Tag, Entry.getVal()));
6122       break;
6123     case DT_AARCH64_MEMTAG_GLOBALS:
6124       MemtagGlobals = Entry.getVal();
6125       DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag),
6126                                   getDynamicEntry(Tag, Entry.getVal()));
6127       break;
6128     case DT_AARCH64_MEMTAG_MODE:
6129     case DT_AARCH64_MEMTAG_HEAP:
6130     case DT_AARCH64_MEMTAG_STACK:
6131       DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag),
6132                                   getDynamicEntry(Tag, Entry.getVal()));
6133       break;
6134     }
6135   }
6136 
6137   ArrayRef<uint8_t> AndroidNoteDesc;
6138   auto FindAndroidNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
6139     if (Note.getName() == "Android" &&
6140         Note.getType() == ELF::NT_ANDROID_TYPE_MEMTAG)
6141       AndroidNoteDesc = Note.getDesc(4);
6142     return Error::success();
6143   };
6144 
6145   processNotesHelper(
6146       *this,
6147       /*StartNotesFn=*/
6148       [](std::optional<StringRef>, const typename ELFT::Off,
6149          const typename ELFT::Addr, size_t) {},
6150       /*ProcessNoteFn=*/FindAndroidNote, /*FinishNotesFn=*/[]() {});
6151 
6152   ArrayRef<uint8_t> Contents = getMemtagGlobalsSectionContents(MemtagGlobals);
6153   if (Contents.size() != MemtagGlobalsSz) {
6154     reportUniqueWarning(
6155         "mismatch between DT_AARCH64_MEMTAG_GLOBALSSZ (0x" +
6156         Twine::utohexstr(MemtagGlobalsSz) +
6157         ") and SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section size (0x" +
6158         Twine::utohexstr(Contents.size()) + ")");
6159     Contents = ArrayRef<uint8_t>();
6160   }
6161 
6162   std::vector<std::pair<uint64_t, uint64_t>> GlobalDescriptors;
6163   uint64_t Address = 0;
6164   // See the AArch64 MemtagABI document for a description of encoding scheme:
6165   // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#83encoding-of-sht_aarch64_memtag_globals_dynamic
6166   for (size_t I = 0; I < Contents.size();) {
6167     const char *Error = nullptr;
6168     unsigned DecodedBytes = 0;
6169     uint64_t Value = decodeULEB128(Contents.data() + I, &DecodedBytes,
6170                                    Contents.end(), &Error);
6171     I += DecodedBytes;
6172     if (Error) {
6173       reportUniqueWarning(
6174           "error decoding distance uleb, " + Twine(DecodedBytes) +
6175           " byte(s) into SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC: " + Twine(Error));
6176       GlobalDescriptors.clear();
6177       break;
6178     }
6179     uint64_t Distance = Value >> MemtagStepVarintReservedBits;
6180     uint64_t GranulesToTag = Value & ((1 << MemtagStepVarintReservedBits) - 1);
6181     if (GranulesToTag == 0) {
6182       GranulesToTag = decodeULEB128(Contents.data() + I, &DecodedBytes,
6183                                     Contents.end(), &Error) +
6184                       1;
6185       I += DecodedBytes;
6186       if (Error) {
6187         reportUniqueWarning(
6188             "error decoding size-only uleb, " + Twine(DecodedBytes) +
6189             " byte(s) into SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC: " + Twine(Error));
6190         GlobalDescriptors.clear();
6191         break;
6192       }
6193     }
6194     Address += Distance * MemtagGranuleSize;
6195     GlobalDescriptors.emplace_back(Address, GranulesToTag * MemtagGranuleSize);
6196     Address += GranulesToTag * MemtagGranuleSize;
6197   }
6198 
6199   printMemtag(DynamicEntries, AndroidNoteDesc, GlobalDescriptors);
6200 }
6201 
6202 template <class ELFT> void GNUELFDumper<ELFT>::printELFLinkerOptions() {
6203   OS << "printELFLinkerOptions not implemented!\n";
6204 }
6205 
6206 template <class ELFT>
6207 void ELFDumper<ELFT>::printDependentLibsHelper(
6208     function_ref<void(const Elf_Shdr &)> OnSectionStart,
6209     function_ref<void(StringRef, uint64_t)> OnLibEntry) {
6210   auto Warn = [this](unsigned SecNdx, StringRef Msg) {
6211     this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " +
6212                               Twine(SecNdx) + " is broken: " + Msg);
6213   };
6214 
6215   unsigned I = -1;
6216   for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
6217     ++I;
6218     if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES)
6219       continue;
6220 
6221     OnSectionStart(Shdr);
6222 
6223     Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Shdr);
6224     if (!ContentsOrErr) {
6225       Warn(I, toString(ContentsOrErr.takeError()));
6226       continue;
6227     }
6228 
6229     ArrayRef<uint8_t> Contents = *ContentsOrErr;
6230     if (!Contents.empty() && Contents.back() != 0) {
6231       Warn(I, "the content is not null-terminated");
6232       continue;
6233     }
6234 
6235     for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) {
6236       StringRef Lib((const char *)I);
6237       OnLibEntry(Lib, I - Contents.begin());
6238       I += Lib.size() + 1;
6239     }
6240   }
6241 }
6242 
6243 template <class ELFT>
6244 void ELFDumper<ELFT>::forEachRelocationDo(
6245     const Elf_Shdr &Sec, bool RawRelr,
6246     llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
6247                             const Elf_Shdr &, const Elf_Shdr *)>
6248         RelRelaFn,
6249     llvm::function_ref<void(const Elf_Relr &)> RelrFn) {
6250   auto Warn = [&](Error &&E,
6251                   const Twine &Prefix = "unable to read relocations from") {
6252     this->reportUniqueWarning(Prefix + " " + describe(Sec) + ": " +
6253                               toString(std::move(E)));
6254   };
6255 
6256   // SHT_RELR/SHT_ANDROID_RELR/SHT_AARCH64_AUTH_RELR sections do not have an
6257   // associated symbol table. For them we should not treat the value of the
6258   // sh_link field as an index of a symbol table.
6259   const Elf_Shdr *SymTab;
6260   if (Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_RELR &&
6261       !(Obj.getHeader().e_machine == EM_AARCH64 &&
6262         Sec.sh_type == ELF::SHT_AARCH64_AUTH_RELR)) {
6263     Expected<const Elf_Shdr *> SymTabOrErr = Obj.getSection(Sec.sh_link);
6264     if (!SymTabOrErr) {
6265       Warn(SymTabOrErr.takeError(), "unable to locate a symbol table for");
6266       return;
6267     }
6268     SymTab = *SymTabOrErr;
6269   }
6270 
6271   unsigned RelNdx = 0;
6272   const bool IsMips64EL = this->Obj.isMips64EL();
6273   switch (Sec.sh_type) {
6274   case ELF::SHT_REL:
6275     if (Expected<Elf_Rel_Range> RangeOrErr = Obj.rels(Sec)) {
6276       for (const Elf_Rel &R : *RangeOrErr)
6277         RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
6278     } else {
6279       Warn(RangeOrErr.takeError());
6280     }
6281     break;
6282   case ELF::SHT_RELA:
6283     if (Expected<Elf_Rela_Range> RangeOrErr = Obj.relas(Sec)) {
6284       for (const Elf_Rela &R : *RangeOrErr)
6285         RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
6286     } else {
6287       Warn(RangeOrErr.takeError());
6288     }
6289     break;
6290   case ELF::SHT_AARCH64_AUTH_RELR:
6291     if (Obj.getHeader().e_machine != EM_AARCH64)
6292       break;
6293     [[fallthrough]];
6294   case ELF::SHT_RELR:
6295   case ELF::SHT_ANDROID_RELR: {
6296     Expected<Elf_Relr_Range> RangeOrErr = Obj.relrs(Sec);
6297     if (!RangeOrErr) {
6298       Warn(RangeOrErr.takeError());
6299       break;
6300     }
6301     if (RawRelr) {
6302       for (const Elf_Relr &R : *RangeOrErr)
6303         RelrFn(R);
6304       break;
6305     }
6306 
6307     for (const Elf_Rel &R : Obj.decode_relrs(*RangeOrErr))
6308       RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec,
6309                 /*SymTab=*/nullptr);
6310     break;
6311   }
6312   case ELF::SHT_ANDROID_REL:
6313   case ELF::SHT_ANDROID_RELA:
6314     if (Expected<std::vector<Elf_Rela>> RelasOrErr = Obj.android_relas(Sec)) {
6315       for (const Elf_Rela &R : *RelasOrErr)
6316         RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
6317     } else {
6318       Warn(RelasOrErr.takeError());
6319     }
6320     break;
6321   }
6322 }
6323 
6324 template <class ELFT>
6325 StringRef ELFDumper<ELFT>::getPrintableSectionName(const Elf_Shdr &Sec) const {
6326   StringRef Name = "<?>";
6327   if (Expected<StringRef> SecNameOrErr =
6328           Obj.getSectionName(Sec, this->WarningHandler))
6329     Name = *SecNameOrErr;
6330   else
6331     this->reportUniqueWarning("unable to get the name of " + describe(Sec) +
6332                               ": " + toString(SecNameOrErr.takeError()));
6333   return Name;
6334 }
6335 
6336 template <class ELFT> void GNUELFDumper<ELFT>::printDependentLibs() {
6337   bool SectionStarted = false;
6338   struct NameOffset {
6339     StringRef Name;
6340     uint64_t Offset;
6341   };
6342   std::vector<NameOffset> SecEntries;
6343   NameOffset Current;
6344   auto PrintSection = [&]() {
6345     OS << "Dependent libraries section " << Current.Name << " at offset "
6346        << format_hex(Current.Offset, 1) << " contains " << SecEntries.size()
6347        << " entries:\n";
6348     for (NameOffset Entry : SecEntries)
6349       OS << "  [" << format("%6" PRIx64, Entry.Offset) << "]  " << Entry.Name
6350          << "\n";
6351     OS << "\n";
6352     SecEntries.clear();
6353   };
6354 
6355   auto OnSectionStart = [&](const Elf_Shdr &Shdr) {
6356     if (SectionStarted)
6357       PrintSection();
6358     SectionStarted = true;
6359     Current.Offset = Shdr.sh_offset;
6360     Current.Name = this->getPrintableSectionName(Shdr);
6361   };
6362   auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) {
6363     SecEntries.push_back(NameOffset{Lib, Offset});
6364   };
6365 
6366   this->printDependentLibsHelper(OnSectionStart, OnLibEntry);
6367   if (SectionStarted)
6368     PrintSection();
6369 }
6370 
6371 template <class ELFT>
6372 SmallVector<uint32_t> ELFDumper<ELFT>::getSymbolIndexesForFunctionAddress(
6373     uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec) {
6374   SmallVector<uint32_t> SymbolIndexes;
6375   if (!this->AddressToIndexMap) {
6376     // Populate the address to index map upon the first invocation of this
6377     // function.
6378     this->AddressToIndexMap.emplace();
6379     if (this->DotSymtabSec) {
6380       if (Expected<Elf_Sym_Range> SymsOrError =
6381               Obj.symbols(this->DotSymtabSec)) {
6382         uint32_t Index = (uint32_t)-1;
6383         for (const Elf_Sym &Sym : *SymsOrError) {
6384           ++Index;
6385 
6386           if (Sym.st_shndx == ELF::SHN_UNDEF || Sym.getType() != ELF::STT_FUNC)
6387             continue;
6388 
6389           Expected<uint64_t> SymAddrOrErr =
6390               ObjF.toSymbolRef(this->DotSymtabSec, Index).getAddress();
6391           if (!SymAddrOrErr) {
6392             std::string Name = this->getStaticSymbolName(Index);
6393             reportUniqueWarning("unable to get address of symbol '" + Name +
6394                                 "': " + toString(SymAddrOrErr.takeError()));
6395             return SymbolIndexes;
6396           }
6397 
6398           (*this->AddressToIndexMap)[*SymAddrOrErr].push_back(Index);
6399         }
6400       } else {
6401         reportUniqueWarning("unable to read the symbol table: " +
6402                             toString(SymsOrError.takeError()));
6403       }
6404     }
6405   }
6406 
6407   auto Symbols = this->AddressToIndexMap->find(SymValue);
6408   if (Symbols == this->AddressToIndexMap->end())
6409     return SymbolIndexes;
6410 
6411   for (uint32_t Index : Symbols->second) {
6412     // Check if the symbol is in the right section. FunctionSec == None
6413     // means "any section".
6414     if (FunctionSec) {
6415       const Elf_Sym &Sym = *cantFail(Obj.getSymbol(this->DotSymtabSec, Index));
6416       if (Expected<const Elf_Shdr *> SecOrErr =
6417               Obj.getSection(Sym, this->DotSymtabSec,
6418                              this->getShndxTable(this->DotSymtabSec))) {
6419         if (*FunctionSec != *SecOrErr)
6420           continue;
6421       } else {
6422         std::string Name = this->getStaticSymbolName(Index);
6423         // Note: it is impossible to trigger this error currently, it is
6424         // untested.
6425         reportUniqueWarning("unable to get section of symbol '" + Name +
6426                             "': " + toString(SecOrErr.takeError()));
6427         return SymbolIndexes;
6428       }
6429     }
6430 
6431     SymbolIndexes.push_back(Index);
6432   }
6433 
6434   return SymbolIndexes;
6435 }
6436 
6437 template <class ELFT>
6438 bool ELFDumper<ELFT>::printFunctionStackSize(
6439     uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec,
6440     const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset) {
6441   SmallVector<uint32_t> FuncSymIndexes =
6442       this->getSymbolIndexesForFunctionAddress(SymValue, FunctionSec);
6443   if (FuncSymIndexes.empty())
6444     reportUniqueWarning(
6445         "could not identify function symbol for stack size entry in " +
6446         describe(StackSizeSec));
6447 
6448   // Extract the size. The expectation is that Offset is pointing to the right
6449   // place, i.e. past the function address.
6450   Error Err = Error::success();
6451   uint64_t StackSize = Data.getULEB128(Offset, &Err);
6452   if (Err) {
6453     reportUniqueWarning("could not extract a valid stack size from " +
6454                         describe(StackSizeSec) + ": " +
6455                         toString(std::move(Err)));
6456     return false;
6457   }
6458 
6459   if (FuncSymIndexes.empty()) {
6460     printStackSizeEntry(StackSize, {"?"});
6461   } else {
6462     SmallVector<std::string> FuncSymNames;
6463     for (uint32_t Index : FuncSymIndexes)
6464       FuncSymNames.push_back(this->getStaticSymbolName(Index));
6465     printStackSizeEntry(StackSize, FuncSymNames);
6466   }
6467 
6468   return true;
6469 }
6470 
6471 template <class ELFT>
6472 void GNUELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
6473                                              ArrayRef<std::string> FuncNames) {
6474   OS.PadToColumn(2);
6475   OS << format_decimal(Size, 11);
6476   OS.PadToColumn(18);
6477 
6478   OS << join(FuncNames.begin(), FuncNames.end(), ", ") << "\n";
6479 }
6480 
6481 template <class ELFT>
6482 void ELFDumper<ELFT>::printStackSize(const Relocation<ELFT> &R,
6483                                      const Elf_Shdr &RelocSec, unsigned Ndx,
6484                                      const Elf_Shdr *SymTab,
6485                                      const Elf_Shdr *FunctionSec,
6486                                      const Elf_Shdr &StackSizeSec,
6487                                      const RelocationResolver &Resolver,
6488                                      DataExtractor Data) {
6489   // This function ignores potentially erroneous input, unless it is directly
6490   // related to stack size reporting.
6491   const Elf_Sym *Sym = nullptr;
6492   Expected<RelSymbol<ELFT>> TargetOrErr = this->getRelocationTarget(R, SymTab);
6493   if (!TargetOrErr)
6494     reportUniqueWarning("unable to get the target of relocation with index " +
6495                         Twine(Ndx) + " in " + describe(RelocSec) + ": " +
6496                         toString(TargetOrErr.takeError()));
6497   else
6498     Sym = TargetOrErr->Sym;
6499 
6500   uint64_t RelocSymValue = 0;
6501   if (Sym) {
6502     Expected<const Elf_Shdr *> SectionOrErr =
6503         this->Obj.getSection(*Sym, SymTab, this->getShndxTable(SymTab));
6504     if (!SectionOrErr) {
6505       reportUniqueWarning(
6506           "cannot identify the section for relocation symbol '" +
6507           (*TargetOrErr).Name + "': " + toString(SectionOrErr.takeError()));
6508     } else if (*SectionOrErr != FunctionSec) {
6509       reportUniqueWarning("relocation symbol '" + (*TargetOrErr).Name +
6510                           "' is not in the expected section");
6511       // Pretend that the symbol is in the correct section and report its
6512       // stack size anyway.
6513       FunctionSec = *SectionOrErr;
6514     }
6515 
6516     RelocSymValue = Sym->st_value;
6517   }
6518 
6519   uint64_t Offset = R.Offset;
6520   if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6521     reportUniqueWarning("found invalid relocation offset (0x" +
6522                         Twine::utohexstr(Offset) + ") into " +
6523                         describe(StackSizeSec) +
6524                         " while trying to extract a stack size entry");
6525     return;
6526   }
6527 
6528   uint64_t SymValue = Resolver(R.Type, Offset, RelocSymValue,
6529                                Data.getAddress(&Offset), R.Addend.value_or(0));
6530   this->printFunctionStackSize(SymValue, FunctionSec, StackSizeSec, Data,
6531                                &Offset);
6532 }
6533 
6534 template <class ELFT>
6535 void ELFDumper<ELFT>::printNonRelocatableStackSizes(
6536     std::function<void()> PrintHeader) {
6537   // This function ignores potentially erroneous input, unless it is directly
6538   // related to stack size reporting.
6539   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
6540     if (this->getPrintableSectionName(Sec) != ".stack_sizes")
6541       continue;
6542     PrintHeader();
6543     ArrayRef<uint8_t> Contents =
6544         unwrapOrError(this->FileName, Obj.getSectionContents(Sec));
6545     DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6546     uint64_t Offset = 0;
6547     while (Offset < Contents.size()) {
6548       // The function address is followed by a ULEB representing the stack
6549       // size. Check for an extra byte before we try to process the entry.
6550       if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6551         reportUniqueWarning(
6552             describe(Sec) +
6553             " ended while trying to extract a stack size entry");
6554         break;
6555       }
6556       uint64_t SymValue = Data.getAddress(&Offset);
6557       if (!printFunctionStackSize(SymValue, /*FunctionSec=*/std::nullopt, Sec,
6558                                   Data, &Offset))
6559         break;
6560     }
6561   }
6562 }
6563 
6564 template <class ELFT>
6565 void ELFDumper<ELFT>::printRelocatableStackSizes(
6566     std::function<void()> PrintHeader) {
6567   // Build a map between stack size sections and their corresponding relocation
6568   // sections.
6569   auto IsMatch = [&](const Elf_Shdr &Sec) -> bool {
6570     StringRef SectionName;
6571     if (Expected<StringRef> NameOrErr = Obj.getSectionName(Sec))
6572       SectionName = *NameOrErr;
6573     else
6574       consumeError(NameOrErr.takeError());
6575 
6576     return SectionName == ".stack_sizes";
6577   };
6578 
6579   Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>>
6580       StackSizeRelocMapOrErr = Obj.getSectionAndRelocations(IsMatch);
6581   if (!StackSizeRelocMapOrErr) {
6582     reportUniqueWarning("unable to get stack size map section(s): " +
6583                         toString(StackSizeRelocMapOrErr.takeError()));
6584     return;
6585   }
6586 
6587   for (const auto &StackSizeMapEntry : *StackSizeRelocMapOrErr) {
6588     PrintHeader();
6589     const Elf_Shdr *StackSizesELFSec = StackSizeMapEntry.first;
6590     const Elf_Shdr *RelocSec = StackSizeMapEntry.second;
6591 
6592     // Warn about stack size sections without a relocation section.
6593     if (!RelocSec) {
6594       reportWarning(createError(".stack_sizes (" + describe(*StackSizesELFSec) +
6595                                 ") does not have a corresponding "
6596                                 "relocation section"),
6597                     FileName);
6598       continue;
6599     }
6600 
6601     // A .stack_sizes section header's sh_link field is supposed to point
6602     // to the section that contains the functions whose stack sizes are
6603     // described in it.
6604     const Elf_Shdr *FunctionSec = unwrapOrError(
6605         this->FileName, Obj.getSection(StackSizesELFSec->sh_link));
6606 
6607     SupportsRelocation IsSupportedFn;
6608     RelocationResolver Resolver;
6609     std::tie(IsSupportedFn, Resolver) = getRelocationResolver(this->ObjF);
6610     ArrayRef<uint8_t> Contents =
6611         unwrapOrError(this->FileName, Obj.getSectionContents(*StackSizesELFSec));
6612     DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6613 
6614     forEachRelocationDo(
6615         *RelocSec, /*RawRelr=*/false,
6616         [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
6617             const Elf_Shdr *SymTab) {
6618           if (!IsSupportedFn || !IsSupportedFn(R.Type)) {
6619             reportUniqueWarning(
6620                 describe(*RelocSec) +
6621                 " contains an unsupported relocation with index " + Twine(Ndx) +
6622                 ": " + Obj.getRelocationTypeName(R.Type));
6623             return;
6624           }
6625 
6626           this->printStackSize(R, *RelocSec, Ndx, SymTab, FunctionSec,
6627                                *StackSizesELFSec, Resolver, Data);
6628         },
6629         [](const Elf_Relr &) {
6630           llvm_unreachable("can't get here, because we only support "
6631                            "SHT_REL/SHT_RELA sections");
6632         });
6633   }
6634 }
6635 
6636 template <class ELFT>
6637 void GNUELFDumper<ELFT>::printStackSizes() {
6638   bool HeaderHasBeenPrinted = false;
6639   auto PrintHeader = [&]() {
6640     if (HeaderHasBeenPrinted)
6641       return;
6642     OS << "\nStack Sizes:\n";
6643     OS.PadToColumn(9);
6644     OS << "Size";
6645     OS.PadToColumn(18);
6646     OS << "Functions\n";
6647     HeaderHasBeenPrinted = true;
6648   };
6649 
6650   // For non-relocatable objects, look directly for sections whose name starts
6651   // with .stack_sizes and process the contents.
6652   if (this->Obj.getHeader().e_type == ELF::ET_REL)
6653     this->printRelocatableStackSizes(PrintHeader);
6654   else
6655     this->printNonRelocatableStackSizes(PrintHeader);
6656 }
6657 
6658 template <class ELFT>
6659 void GNUELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
6660   size_t Bias = ELFT::Is64Bits ? 8 : 0;
6661   auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6662     OS.PadToColumn(2);
6663     OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
6664     OS.PadToColumn(11 + Bias);
6665     OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
6666     OS.PadToColumn(22 + Bias);
6667     OS << format_hex_no_prefix(*E, 8 + Bias);
6668     OS.PadToColumn(31 + 2 * Bias);
6669     OS << Purpose << "\n";
6670   };
6671 
6672   OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
6673   OS << " Canonical gp value: "
6674      << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";
6675 
6676   OS << " Reserved entries:\n";
6677   if (ELFT::Is64Bits)
6678     OS << "           Address     Access          Initial Purpose\n";
6679   else
6680     OS << "   Address     Access  Initial Purpose\n";
6681   PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
6682   if (Parser.getGotModulePointer())
6683     PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");
6684 
6685   if (!Parser.getLocalEntries().empty()) {
6686     OS << "\n";
6687     OS << " Local entries:\n";
6688     if (ELFT::Is64Bits)
6689       OS << "           Address     Access          Initial\n";
6690     else
6691       OS << "   Address     Access  Initial\n";
6692     for (auto &E : Parser.getLocalEntries())
6693       PrintEntry(&E, "");
6694   }
6695 
6696   if (Parser.IsStatic)
6697     return;
6698 
6699   if (!Parser.getGlobalEntries().empty()) {
6700     OS << "\n";
6701     OS << " Global entries:\n";
6702     if (ELFT::Is64Bits)
6703       OS << "           Address     Access          Initial         Sym.Val."
6704          << " Type    Ndx Name\n";
6705     else
6706       OS << "   Address     Access  Initial Sym.Val. Type    Ndx Name\n";
6707 
6708     DataRegion<Elf_Word> ShndxTable(
6709         (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6710     for (auto &E : Parser.getGlobalEntries()) {
6711       const Elf_Sym &Sym = *Parser.getGotSym(&E);
6712       const Elf_Sym &FirstSym = this->dynamic_symbols()[0];
6713       std::string SymName = this->getFullSymbolName(
6714           Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6715 
6716       OS.PadToColumn(2);
6717       OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
6718       OS.PadToColumn(11 + Bias);
6719       OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
6720       OS.PadToColumn(22 + Bias);
6721       OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6722       OS.PadToColumn(31 + 2 * Bias);
6723       OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6724       OS.PadToColumn(40 + 3 * Bias);
6725       OS << enumToString(Sym.getType(), ArrayRef(ElfSymbolTypes));
6726       OS.PadToColumn(48 + 3 * Bias);
6727       OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6728                                 ShndxTable);
6729       OS.PadToColumn(52 + 3 * Bias);
6730       OS << SymName << "\n";
6731     }
6732   }
6733 
6734   if (!Parser.getOtherEntries().empty())
6735     OS << "\n Number of TLS and multi-GOT entries "
6736        << Parser.getOtherEntries().size() << "\n";
6737 }
6738 
6739 template <class ELFT>
6740 void GNUELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
6741   size_t Bias = ELFT::Is64Bits ? 8 : 0;
6742   auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6743     OS.PadToColumn(2);
6744     OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias);
6745     OS.PadToColumn(11 + Bias);
6746     OS << format_hex_no_prefix(*E, 8 + Bias);
6747     OS.PadToColumn(20 + 2 * Bias);
6748     OS << Purpose << "\n";
6749   };
6750 
6751   OS << "PLT GOT:\n\n";
6752 
6753   OS << " Reserved entries:\n";
6754   OS << "   Address  Initial Purpose\n";
6755   PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
6756   if (Parser.getPltModulePointer())
6757     PrintEntry(Parser.getPltModulePointer(), "Module pointer");
6758 
6759   if (!Parser.getPltEntries().empty()) {
6760     OS << "\n";
6761     OS << " Entries:\n";
6762     OS << "   Address  Initial Sym.Val. Type    Ndx Name\n";
6763     DataRegion<Elf_Word> ShndxTable(
6764         (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6765     for (auto &E : Parser.getPltEntries()) {
6766       const Elf_Sym &Sym = *Parser.getPltSym(&E);
6767       const Elf_Sym &FirstSym = *cantFail(
6768           this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
6769       std::string SymName = this->getFullSymbolName(
6770           Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6771 
6772       OS.PadToColumn(2);
6773       OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias));
6774       OS.PadToColumn(11 + Bias);
6775       OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6776       OS.PadToColumn(20 + 2 * Bias);
6777       OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6778       OS.PadToColumn(29 + 3 * Bias);
6779       OS << enumToString(Sym.getType(), ArrayRef(ElfSymbolTypes));
6780       OS.PadToColumn(37 + 3 * Bias);
6781       OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6782                                 ShndxTable);
6783       OS.PadToColumn(41 + 3 * Bias);
6784       OS << SymName << "\n";
6785     }
6786   }
6787 }
6788 
6789 template <class ELFT>
6790 Expected<const Elf_Mips_ABIFlags<ELFT> *>
6791 getMipsAbiFlagsSection(const ELFDumper<ELFT> &Dumper) {
6792   const typename ELFT::Shdr *Sec = Dumper.findSectionByName(".MIPS.abiflags");
6793   if (Sec == nullptr)
6794     return nullptr;
6795 
6796   constexpr StringRef ErrPrefix = "unable to read the .MIPS.abiflags section: ";
6797   Expected<ArrayRef<uint8_t>> DataOrErr =
6798       Dumper.getElfObject().getELFFile().getSectionContents(*Sec);
6799   if (!DataOrErr)
6800     return createError(ErrPrefix + toString(DataOrErr.takeError()));
6801 
6802   if (DataOrErr->size() != sizeof(Elf_Mips_ABIFlags<ELFT>))
6803     return createError(ErrPrefix + "it has a wrong size (" +
6804         Twine(DataOrErr->size()) + ")");
6805   return reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(DataOrErr->data());
6806 }
6807 
6808 template <class ELFT> void GNUELFDumper<ELFT>::printMipsABIFlags() {
6809   const Elf_Mips_ABIFlags<ELFT> *Flags = nullptr;
6810   if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
6811           getMipsAbiFlagsSection(*this))
6812     Flags = *SecOrErr;
6813   else
6814     this->reportUniqueWarning(SecOrErr.takeError());
6815   if (!Flags)
6816     return;
6817 
6818   OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n";
6819   OS << "ISA: MIPS" << int(Flags->isa_level);
6820   if (Flags->isa_rev > 1)
6821     OS << "r" << int(Flags->isa_rev);
6822   OS << "\n";
6823   OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n";
6824   OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n";
6825   OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n";
6826   OS << "FP ABI: " << enumToString(Flags->fp_abi, ArrayRef(ElfMipsFpABIType))
6827      << "\n";
6828   OS << "ISA Extension: "
6829      << enumToString(Flags->isa_ext, ArrayRef(ElfMipsISAExtType)) << "\n";
6830   if (Flags->ases == 0)
6831     OS << "ASEs: None\n";
6832   else
6833     // FIXME: Print each flag on a separate line.
6834     OS << "ASEs: " << printFlags(Flags->ases, ArrayRef(ElfMipsASEFlags))
6835        << "\n";
6836   OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n";
6837   OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n";
6838   OS << "\n";
6839 }
6840 
6841 template <class ELFT> void LLVMELFDumper<ELFT>::printFileHeaders() {
6842   const Elf_Ehdr &E = this->Obj.getHeader();
6843   {
6844     DictScope D(W, "ElfHeader");
6845     {
6846       DictScope D(W, "Ident");
6847       W.printBinary("Magic",
6848                     ArrayRef<unsigned char>(E.e_ident).slice(ELF::EI_MAG0, 4));
6849       W.printEnum("Class", E.e_ident[ELF::EI_CLASS], ArrayRef(ElfClass));
6850       W.printEnum("DataEncoding", E.e_ident[ELF::EI_DATA],
6851                   ArrayRef(ElfDataEncoding));
6852       W.printNumber("FileVersion", E.e_ident[ELF::EI_VERSION]);
6853 
6854       auto OSABI = ArrayRef(ElfOSABI);
6855       if (E.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
6856           E.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
6857         switch (E.e_machine) {
6858         case ELF::EM_AMDGPU:
6859           OSABI = ArrayRef(AMDGPUElfOSABI);
6860           break;
6861         case ELF::EM_ARM:
6862           OSABI = ArrayRef(ARMElfOSABI);
6863           break;
6864         case ELF::EM_TI_C6000:
6865           OSABI = ArrayRef(C6000ElfOSABI);
6866           break;
6867         }
6868       }
6869       W.printEnum("OS/ABI", E.e_ident[ELF::EI_OSABI], OSABI);
6870       W.printNumber("ABIVersion", E.e_ident[ELF::EI_ABIVERSION]);
6871       W.printBinary("Unused",
6872                     ArrayRef<unsigned char>(E.e_ident).slice(ELF::EI_PAD));
6873     }
6874 
6875     std::string TypeStr;
6876     if (const EnumEntry<unsigned> *Ent = getObjectFileEnumEntry(E.e_type)) {
6877       TypeStr = Ent->Name.str();
6878     } else {
6879       if (E.e_type >= ET_LOPROC)
6880         TypeStr = "Processor Specific";
6881       else if (E.e_type >= ET_LOOS)
6882         TypeStr = "OS Specific";
6883       else
6884         TypeStr = "Unknown";
6885     }
6886     W.printString("Type", TypeStr + " (0x" + utohexstr(E.e_type) + ")");
6887 
6888     W.printEnum("Machine", E.e_machine, ArrayRef(ElfMachineType));
6889     W.printNumber("Version", E.e_version);
6890     W.printHex("Entry", E.e_entry);
6891     W.printHex("ProgramHeaderOffset", E.e_phoff);
6892     W.printHex("SectionHeaderOffset", E.e_shoff);
6893     if (E.e_machine == EM_MIPS)
6894       W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderMipsFlags),
6895                    unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
6896                    unsigned(ELF::EF_MIPS_MACH));
6897     else if (E.e_machine == EM_AMDGPU) {
6898       switch (E.e_ident[ELF::EI_ABIVERSION]) {
6899       default:
6900         W.printHex("Flags", E.e_flags);
6901         break;
6902       case 0:
6903         // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags.
6904         [[fallthrough]];
6905       case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
6906         W.printFlags("Flags", E.e_flags,
6907                      ArrayRef(ElfHeaderAMDGPUFlagsABIVersion3),
6908                      unsigned(ELF::EF_AMDGPU_MACH));
6909         break;
6910       case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
6911       case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
6912         W.printFlags("Flags", E.e_flags,
6913                      ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4),
6914                      unsigned(ELF::EF_AMDGPU_MACH),
6915                      unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4),
6916                      unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4));
6917         break;
6918       }
6919     } else if (E.e_machine == EM_RISCV)
6920       W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderRISCVFlags));
6921     else if (E.e_machine == EM_AVR)
6922       W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderAVRFlags),
6923                    unsigned(ELF::EF_AVR_ARCH_MASK));
6924     else if (E.e_machine == EM_LOONGARCH)
6925       W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderLoongArchFlags),
6926                    unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK),
6927                    unsigned(ELF::EF_LOONGARCH_OBJABI_MASK));
6928     else if (E.e_machine == EM_XTENSA)
6929       W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderXtensaFlags),
6930                    unsigned(ELF::EF_XTENSA_MACH));
6931     else if (E.e_machine == EM_CUDA)
6932       W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderNVPTXFlags),
6933                    unsigned(ELF::EF_CUDA_SM));
6934     else
6935       W.printFlags("Flags", E.e_flags);
6936     W.printNumber("HeaderSize", E.e_ehsize);
6937     W.printNumber("ProgramHeaderEntrySize", E.e_phentsize);
6938     W.printNumber("ProgramHeaderCount", E.e_phnum);
6939     W.printNumber("SectionHeaderEntrySize", E.e_shentsize);
6940     W.printString("SectionHeaderCount",
6941                   getSectionHeadersNumString(this->Obj, this->FileName));
6942     W.printString("StringTableSectionIndex",
6943                   getSectionHeaderTableIndexString(this->Obj, this->FileName));
6944   }
6945 }
6946 
6947 template <class ELFT> void LLVMELFDumper<ELFT>::printGroupSections() {
6948   DictScope Lists(W, "Groups");
6949   std::vector<GroupSection> V = this->getGroups();
6950   DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
6951   for (const GroupSection &G : V) {
6952     DictScope D(W, "Group");
6953     W.printNumber("Name", G.Name, G.ShName);
6954     W.printNumber("Index", G.Index);
6955     W.printNumber("Link", G.Link);
6956     W.printNumber("Info", G.Info);
6957     W.printHex("Type", getGroupType(G.Type), G.Type);
6958     W.printString("Signature", G.Signature);
6959 
6960     ListScope L(W, getGroupSectionHeaderName());
6961     for (const GroupMember &GM : G.Members) {
6962       const GroupSection *MainGroup = Map[GM.Index];
6963       if (MainGroup != &G)
6964         this->reportUniqueWarning(
6965             "section with index " + Twine(GM.Index) +
6966             ", included in the group section with index " +
6967             Twine(MainGroup->Index) +
6968             ", was also found in the group section with index " +
6969             Twine(G.Index));
6970       printSectionGroupMembers(GM.Name, GM.Index);
6971     }
6972   }
6973 
6974   if (V.empty())
6975     printEmptyGroupMessage();
6976 }
6977 
6978 template <class ELFT>
6979 std::string LLVMELFDumper<ELFT>::getGroupSectionHeaderName() const {
6980   return "Section(s) in group";
6981 }
6982 
6983 template <class ELFT>
6984 void LLVMELFDumper<ELFT>::printSectionGroupMembers(StringRef Name,
6985                                                    uint64_t Idx) const {
6986   W.startLine() << Name << " (" << Idx << ")\n";
6987 }
6988 
6989 template <class ELFT> void LLVMELFDumper<ELFT>::printRelocations() {
6990   ListScope D(W, "Relocations");
6991 
6992   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6993     if (!isRelocationSec<ELFT>(Sec, this->Obj.getHeader()))
6994       continue;
6995 
6996     StringRef Name = this->getPrintableSectionName(Sec);
6997     unsigned SecNdx = &Sec - &cantFail(this->Obj.sections()).front();
6998     printRelocationSectionInfo(Sec, Name, SecNdx);
6999   }
7000 }
7001 
7002 template <class ELFT>
7003 void LLVMELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
7004   W.startLine() << W.hex(R) << "\n";
7005 }
7006 
7007 template <class ELFT>
7008 void LLVMELFDumper<ELFT>::printExpandedRelRelaReloc(const Relocation<ELFT> &R,
7009                                                     StringRef SymbolName,
7010                                                     StringRef RelocName) {
7011   DictScope Group(W, "Relocation");
7012   W.printHex("Offset", R.Offset);
7013   W.printNumber("Type", RelocName, R.Type);
7014   W.printNumber("Symbol", !SymbolName.empty() ? SymbolName : "-", R.Symbol);
7015   if (R.Addend)
7016     W.printHex("Addend", (uintX_t)*R.Addend);
7017 }
7018 
7019 template <class ELFT>
7020 void LLVMELFDumper<ELFT>::printDefaultRelRelaReloc(const Relocation<ELFT> &R,
7021                                                    StringRef SymbolName,
7022                                                    StringRef RelocName) {
7023   raw_ostream &OS = W.startLine();
7024   OS << W.hex(R.Offset) << " " << RelocName << " "
7025      << (!SymbolName.empty() ? SymbolName : "-");
7026   if (R.Addend)
7027     OS << " " << W.hex((uintX_t)*R.Addend);
7028   OS << "\n";
7029 }
7030 
7031 template <class ELFT>
7032 void LLVMELFDumper<ELFT>::printRelocationSectionInfo(const Elf_Shdr &Sec,
7033                                                      StringRef Name,
7034                                                      const unsigned SecNdx) {
7035   DictScope D(W, (Twine("Section (") + Twine(SecNdx) + ") " + Name).str());
7036   this->printRelocationsHelper(Sec);
7037 }
7038 
7039 template <class ELFT> void LLVMELFDumper<ELFT>::printEmptyGroupMessage() const {
7040   W.startLine() << "There are no group sections in the file.\n";
7041 }
7042 
7043 template <class ELFT>
7044 void LLVMELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
7045                                             const RelSymbol<ELFT> &RelSym) {
7046   StringRef SymbolName = RelSym.Name;
7047   if (RelSym.Sym && RelSym.Name.empty())
7048     SymbolName = "<null>";
7049   SmallString<32> RelocName;
7050   this->Obj.getRelocationTypeName(R.Type, RelocName);
7051 
7052   if (opts::ExpandRelocs) {
7053     printExpandedRelRelaReloc(R, SymbolName, RelocName);
7054   } else {
7055     printDefaultRelRelaReloc(R, SymbolName, RelocName);
7056   }
7057 }
7058 
7059 template <class ELFT> void LLVMELFDumper<ELFT>::printSectionHeaders() {
7060   ListScope SectionsD(W, "Sections");
7061 
7062   int SectionIndex = -1;
7063   std::vector<EnumEntry<unsigned>> FlagsList =
7064       getSectionFlagsForTarget(this->Obj.getHeader().e_ident[ELF::EI_OSABI],
7065                                this->Obj.getHeader().e_machine);
7066   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
7067     DictScope SectionD(W, "Section");
7068     W.printNumber("Index", ++SectionIndex);
7069     W.printNumber("Name", this->getPrintableSectionName(Sec), Sec.sh_name);
7070     W.printHex("Type",
7071                object::getELFSectionTypeName(this->Obj.getHeader().e_machine,
7072                                              Sec.sh_type),
7073                Sec.sh_type);
7074     W.printFlags("Flags", Sec.sh_flags, ArrayRef(FlagsList));
7075     W.printHex("Address", Sec.sh_addr);
7076     W.printHex("Offset", Sec.sh_offset);
7077     W.printNumber("Size", Sec.sh_size);
7078     W.printNumber("Link", Sec.sh_link);
7079     W.printNumber("Info", Sec.sh_info);
7080     W.printNumber("AddressAlignment", Sec.sh_addralign);
7081     W.printNumber("EntrySize", Sec.sh_entsize);
7082 
7083     if (opts::SectionRelocations) {
7084       ListScope D(W, "Relocations");
7085       this->printRelocationsHelper(Sec);
7086     }
7087 
7088     if (opts::SectionSymbols) {
7089       ListScope D(W, "Symbols");
7090       if (this->DotSymtabSec) {
7091         StringRef StrTable = unwrapOrError(
7092             this->FileName,
7093             this->Obj.getStringTableForSymtab(*this->DotSymtabSec));
7094         ArrayRef<Elf_Word> ShndxTable = this->getShndxTable(this->DotSymtabSec);
7095 
7096         typename ELFT::SymRange Symbols = unwrapOrError(
7097             this->FileName, this->Obj.symbols(this->DotSymtabSec));
7098         for (const Elf_Sym &Sym : Symbols) {
7099           const Elf_Shdr *SymSec = unwrapOrError(
7100               this->FileName,
7101               this->Obj.getSection(Sym, this->DotSymtabSec, ShndxTable));
7102           if (SymSec == &Sec)
7103             printSymbol(Sym, &Sym - &Symbols[0], ShndxTable, StrTable, false,
7104                         /*NonVisibilityBitsUsed=*/false,
7105                         /*ExtraSymInfo=*/false);
7106         }
7107       }
7108     }
7109 
7110     if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
7111       ArrayRef<uint8_t> Data =
7112           unwrapOrError(this->FileName, this->Obj.getSectionContents(Sec));
7113       W.printBinaryBlock(
7114           "SectionData",
7115           StringRef(reinterpret_cast<const char *>(Data.data()), Data.size()));
7116     }
7117   }
7118 }
7119 
7120 template <class ELFT>
7121 void LLVMELFDumper<ELFT>::printSymbolSection(
7122     const Elf_Sym &Symbol, unsigned SymIndex,
7123     DataRegion<Elf_Word> ShndxTable) const {
7124   auto GetSectionSpecialType = [&]() -> std::optional<StringRef> {
7125     if (Symbol.isUndefined())
7126       return StringRef("Undefined");
7127     if (Symbol.isProcessorSpecific())
7128       return StringRef("Processor Specific");
7129     if (Symbol.isOSSpecific())
7130       return StringRef("Operating System Specific");
7131     if (Symbol.isAbsolute())
7132       return StringRef("Absolute");
7133     if (Symbol.isCommon())
7134       return StringRef("Common");
7135     if (Symbol.isReserved() && Symbol.st_shndx != SHN_XINDEX)
7136       return StringRef("Reserved");
7137     return std::nullopt;
7138   };
7139 
7140   if (std::optional<StringRef> Type = GetSectionSpecialType()) {
7141     W.printHex("Section", *Type, Symbol.st_shndx);
7142     return;
7143   }
7144 
7145   Expected<unsigned> SectionIndex =
7146       this->getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
7147   if (!SectionIndex) {
7148     assert(Symbol.st_shndx == SHN_XINDEX &&
7149            "getSymbolSectionIndex should only fail due to an invalid "
7150            "SHT_SYMTAB_SHNDX table/reference");
7151     this->reportUniqueWarning(SectionIndex.takeError());
7152     W.printHex("Section", "Reserved", SHN_XINDEX);
7153     return;
7154   }
7155 
7156   Expected<StringRef> SectionName =
7157       this->getSymbolSectionName(Symbol, *SectionIndex);
7158   if (!SectionName) {
7159     // Don't report an invalid section name if the section headers are missing.
7160     // In such situations, all sections will be "invalid".
7161     if (!this->ObjF.sections().empty())
7162       this->reportUniqueWarning(SectionName.takeError());
7163     else
7164       consumeError(SectionName.takeError());
7165     W.printHex("Section", "<?>", *SectionIndex);
7166   } else {
7167     W.printHex("Section", *SectionName, *SectionIndex);
7168   }
7169 }
7170 
7171 template <class ELFT>
7172 void LLVMELFDumper<ELFT>::printSymbolOtherField(const Elf_Sym &Symbol) const {
7173   std::vector<EnumEntry<unsigned>> SymOtherFlags =
7174       this->getOtherFlagsFromSymbol(this->Obj.getHeader(), Symbol);
7175   W.printFlags("Other", Symbol.st_other, ArrayRef(SymOtherFlags), 0x3u);
7176 }
7177 
7178 template <class ELFT>
7179 void LLVMELFDumper<ELFT>::printZeroSymbolOtherField(
7180     const Elf_Sym &Symbol) const {
7181   assert(Symbol.st_other == 0 && "non-zero Other Field");
7182   // Usually st_other flag is zero. Do not pollute the output
7183   // by flags enumeration in that case.
7184   W.printNumber("Other", 0);
7185 }
7186 
7187 template <class ELFT>
7188 void LLVMELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
7189                                       DataRegion<Elf_Word> ShndxTable,
7190                                       std::optional<StringRef> StrTable,
7191                                       bool IsDynamic,
7192                                       bool /*NonVisibilityBitsUsed*/,
7193                                       bool /*ExtraSymInfo*/) const {
7194   std::string FullSymbolName = this->getFullSymbolName(
7195       Symbol, SymIndex, ShndxTable, StrTable, IsDynamic);
7196   unsigned char SymbolType = Symbol.getType();
7197 
7198   DictScope D(W, "Symbol");
7199   W.printNumber("Name", FullSymbolName, Symbol.st_name);
7200   W.printHex("Value", Symbol.st_value);
7201   W.printNumber("Size", Symbol.st_size);
7202   W.printEnum("Binding", Symbol.getBinding(), ArrayRef(ElfSymbolBindings));
7203   if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
7204       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
7205     W.printEnum("Type", SymbolType, ArrayRef(AMDGPUSymbolTypes));
7206   else
7207     W.printEnum("Type", SymbolType, ArrayRef(ElfSymbolTypes));
7208   if (Symbol.st_other == 0)
7209     printZeroSymbolOtherField(Symbol);
7210   else
7211     printSymbolOtherField(Symbol);
7212   printSymbolSection(Symbol, SymIndex, ShndxTable);
7213 }
7214 
7215 template <class ELFT>
7216 void LLVMELFDumper<ELFT>::printSymbols(bool PrintSymbols,
7217                                        bool PrintDynamicSymbols,
7218                                        bool ExtraSymInfo) {
7219   if (PrintSymbols) {
7220     ListScope Group(W, "Symbols");
7221     this->printSymbolsHelper(false, ExtraSymInfo);
7222   }
7223   if (PrintDynamicSymbols) {
7224     ListScope Group(W, "DynamicSymbols");
7225     this->printSymbolsHelper(true, ExtraSymInfo);
7226   }
7227 }
7228 
7229 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicTable() {
7230   Elf_Dyn_Range Table = this->dynamic_table();
7231   if (Table.empty())
7232     return;
7233 
7234   W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n";
7235 
7236   size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table);
7237   // The "Name/Value" column should be indented from the "Type" column by N
7238   // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
7239   // space (1) = -3.
7240   W.startLine() << "  Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ')
7241                 << "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
7242 
7243   std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s ";
7244   for (auto Entry : Table) {
7245     uintX_t Tag = Entry.getTag();
7246     std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
7247     W.startLine() << "  " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true)
7248                   << " "
7249                   << format(ValueFmt.c_str(),
7250                             this->Obj.getDynamicTagAsString(Tag).c_str())
7251                   << Value << "\n";
7252   }
7253   W.startLine() << "]\n";
7254 }
7255 
7256 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicRelocations() {
7257   W.startLine() << "Dynamic Relocations {\n";
7258   W.indent();
7259   this->printDynamicRelocationsHelper();
7260   W.unindent();
7261   W.startLine() << "}\n";
7262 }
7263 
7264 template <class ELFT>
7265 void LLVMELFDumper<ELFT>::printProgramHeaders(
7266     bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
7267   if (PrintProgramHeaders)
7268     printProgramHeaders();
7269   if (PrintSectionMapping == cl::BOU_TRUE)
7270     printSectionMapping();
7271 }
7272 
7273 template <class ELFT> void LLVMELFDumper<ELFT>::printProgramHeaders() {
7274   ListScope L(W, "ProgramHeaders");
7275 
7276   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
7277   if (!PhdrsOrErr) {
7278     this->reportUniqueWarning("unable to dump program headers: " +
7279                               toString(PhdrsOrErr.takeError()));
7280     return;
7281   }
7282 
7283   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
7284     DictScope P(W, "ProgramHeader");
7285     StringRef Type =
7286         segmentTypeToString(this->Obj.getHeader().e_machine, Phdr.p_type);
7287 
7288     W.printHex("Type", Type.empty() ? "Unknown" : Type, Phdr.p_type);
7289     W.printHex("Offset", Phdr.p_offset);
7290     W.printHex("VirtualAddress", Phdr.p_vaddr);
7291     W.printHex("PhysicalAddress", Phdr.p_paddr);
7292     W.printNumber("FileSize", Phdr.p_filesz);
7293     W.printNumber("MemSize", Phdr.p_memsz);
7294     W.printFlags("Flags", Phdr.p_flags, ArrayRef(ElfSegmentFlags));
7295     W.printNumber("Alignment", Phdr.p_align);
7296   }
7297 }
7298 
7299 template <class ELFT>
7300 void LLVMELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
7301   ListScope SS(W, "VersionSymbols");
7302   if (!Sec)
7303     return;
7304 
7305   StringRef StrTable;
7306   ArrayRef<Elf_Sym> Syms;
7307   const Elf_Shdr *SymTabSec;
7308   Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
7309       this->getVersionTable(*Sec, &Syms, &StrTable, &SymTabSec);
7310   if (!VerTableOrErr) {
7311     this->reportUniqueWarning(VerTableOrErr.takeError());
7312     return;
7313   }
7314 
7315   if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size())
7316     return;
7317 
7318   ArrayRef<Elf_Word> ShNdxTable = this->getShndxTable(SymTabSec);
7319   for (size_t I = 0, E = Syms.size(); I < E; ++I) {
7320     DictScope S(W, "Symbol");
7321     W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION);
7322     W.printString("Name",
7323                   this->getFullSymbolName(Syms[I], I, ShNdxTable, StrTable,
7324                                           /*IsDynamic=*/true));
7325   }
7326 }
7327 
7328 const EnumEntry<unsigned> SymVersionFlags[] = {
7329     {"Base", "BASE", VER_FLG_BASE},
7330     {"Weak", "WEAK", VER_FLG_WEAK},
7331     {"Info", "INFO", VER_FLG_INFO}};
7332 
7333 template <class ELFT>
7334 void LLVMELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
7335   ListScope SD(W, "VersionDefinitions");
7336   if (!Sec)
7337     return;
7338 
7339   Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
7340   if (!V) {
7341     this->reportUniqueWarning(V.takeError());
7342     return;
7343   }
7344 
7345   for (const VerDef &D : *V) {
7346     DictScope Def(W, "Definition");
7347     W.printNumber("Version", D.Version);
7348     W.printFlags("Flags", D.Flags, ArrayRef(SymVersionFlags));
7349     W.printNumber("Index", D.Ndx);
7350     W.printNumber("Hash", D.Hash);
7351     W.printString("Name", D.Name.c_str());
7352     W.printList(
7353         "Predecessors", D.AuxV,
7354         [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); });
7355   }
7356 }
7357 
7358 template <class ELFT>
7359 void LLVMELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
7360   ListScope SD(W, "VersionRequirements");
7361   if (!Sec)
7362     return;
7363 
7364   Expected<std::vector<VerNeed>> V =
7365       this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
7366   if (!V) {
7367     this->reportUniqueWarning(V.takeError());
7368     return;
7369   }
7370 
7371   for (const VerNeed &VN : *V) {
7372     DictScope Entry(W, "Dependency");
7373     W.printNumber("Version", VN.Version);
7374     W.printNumber("Count", VN.Cnt);
7375     W.printString("FileName", VN.File.c_str());
7376 
7377     ListScope L(W, "Entries");
7378     for (const VernAux &Aux : VN.AuxV) {
7379       DictScope Entry(W, "Entry");
7380       W.printNumber("Hash", Aux.Hash);
7381       W.printFlags("Flags", Aux.Flags, ArrayRef(SymVersionFlags));
7382       W.printNumber("Index", Aux.Other);
7383       W.printString("Name", Aux.Name.c_str());
7384     }
7385   }
7386 }
7387 
7388 template <class ELFT>
7389 void LLVMELFDumper<ELFT>::printHashHistogramStats(size_t NBucket,
7390                                                   size_t MaxChain,
7391                                                   size_t TotalSyms,
7392                                                   ArrayRef<size_t> Count,
7393                                                   bool IsGnu) const {
7394   StringRef HistName = IsGnu ? "GnuHashHistogram" : "HashHistogram";
7395   StringRef BucketName = IsGnu ? "Bucket" : "Chain";
7396   StringRef ListName = IsGnu ? "Buckets" : "Chains";
7397   DictScope Outer(W, HistName);
7398   W.printNumber("TotalBuckets", NBucket);
7399   ListScope Buckets(W, ListName);
7400   size_t CumulativeNonZero = 0;
7401   for (size_t I = 0; I < MaxChain; ++I) {
7402     CumulativeNonZero += Count[I] * I;
7403     DictScope Bucket(W, BucketName);
7404     W.printNumber("Length", I);
7405     W.printNumber("Count", Count[I]);
7406     W.printNumber("Percentage", (float)(Count[I] * 100.0) / NBucket);
7407     W.printNumber("Coverage", (float)(CumulativeNonZero * 100.0) / TotalSyms);
7408   }
7409 }
7410 
7411 // Returns true if rel/rela section exists, and populates SymbolIndices.
7412 // Otherwise returns false.
7413 template <class ELFT>
7414 static bool getSymbolIndices(const typename ELFT::Shdr *CGRelSection,
7415                              const ELFFile<ELFT> &Obj,
7416                              const LLVMELFDumper<ELFT> *Dumper,
7417                              SmallVector<uint32_t, 128> &SymbolIndices) {
7418   if (!CGRelSection) {
7419     Dumper->reportUniqueWarning(
7420         "relocation section for a call graph section doesn't exist");
7421     return false;
7422   }
7423 
7424   if (CGRelSection->sh_type == SHT_REL) {
7425     typename ELFT::RelRange CGProfileRel;
7426     Expected<typename ELFT::RelRange> CGProfileRelOrError =
7427         Obj.rels(*CGRelSection);
7428     if (!CGProfileRelOrError) {
7429       Dumper->reportUniqueWarning("unable to load relocations for "
7430                                   "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7431                                   toString(CGProfileRelOrError.takeError()));
7432       return false;
7433     }
7434 
7435     CGProfileRel = *CGProfileRelOrError;
7436     for (const typename ELFT::Rel &Rel : CGProfileRel)
7437       SymbolIndices.push_back(Rel.getSymbol(Obj.isMips64EL()));
7438   } else {
7439     // MC unconditionally produces SHT_REL, but GNU strip/objcopy may convert
7440     // the format to SHT_RELA
7441     // (https://sourceware.org/bugzilla/show_bug.cgi?id=28035)
7442     typename ELFT::RelaRange CGProfileRela;
7443     Expected<typename ELFT::RelaRange> CGProfileRelaOrError =
7444         Obj.relas(*CGRelSection);
7445     if (!CGProfileRelaOrError) {
7446       Dumper->reportUniqueWarning("unable to load relocations for "
7447                                   "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7448                                   toString(CGProfileRelaOrError.takeError()));
7449       return false;
7450     }
7451 
7452     CGProfileRela = *CGProfileRelaOrError;
7453     for (const typename ELFT::Rela &Rela : CGProfileRela)
7454       SymbolIndices.push_back(Rela.getSymbol(Obj.isMips64EL()));
7455   }
7456 
7457   return true;
7458 }
7459 
7460 template <class ELFT> void LLVMELFDumper<ELFT>::printCGProfile() {
7461   auto IsMatch = [](const Elf_Shdr &Sec) -> bool {
7462     return Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE;
7463   };
7464 
7465   Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> SecToRelocMapOrErr =
7466       this->Obj.getSectionAndRelocations(IsMatch);
7467   if (!SecToRelocMapOrErr) {
7468     this->reportUniqueWarning("unable to get CG Profile section(s): " +
7469                               toString(SecToRelocMapOrErr.takeError()));
7470     return;
7471   }
7472 
7473   for (const auto &CGMapEntry : *SecToRelocMapOrErr) {
7474     const Elf_Shdr *CGSection = CGMapEntry.first;
7475     const Elf_Shdr *CGRelSection = CGMapEntry.second;
7476 
7477     Expected<ArrayRef<Elf_CGProfile>> CGProfileOrErr =
7478         this->Obj.template getSectionContentsAsArray<Elf_CGProfile>(*CGSection);
7479     if (!CGProfileOrErr) {
7480       this->reportUniqueWarning(
7481           "unable to load the SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7482           toString(CGProfileOrErr.takeError()));
7483       return;
7484     }
7485 
7486     SmallVector<uint32_t, 128> SymbolIndices;
7487     bool UseReloc =
7488         getSymbolIndices<ELFT>(CGRelSection, this->Obj, this, SymbolIndices);
7489     if (UseReloc && SymbolIndices.size() != CGProfileOrErr->size() * 2) {
7490       this->reportUniqueWarning(
7491           "number of from/to pairs does not match number of frequencies");
7492       UseReloc = false;
7493     }
7494 
7495     ListScope L(W, "CGProfile");
7496     for (uint32_t I = 0, Size = CGProfileOrErr->size(); I != Size; ++I) {
7497       const Elf_CGProfile &CGPE = (*CGProfileOrErr)[I];
7498       DictScope D(W, "CGProfileEntry");
7499       if (UseReloc) {
7500         uint32_t From = SymbolIndices[I * 2];
7501         uint32_t To = SymbolIndices[I * 2 + 1];
7502         W.printNumber("From", this->getStaticSymbolName(From), From);
7503         W.printNumber("To", this->getStaticSymbolName(To), To);
7504       }
7505       W.printNumber("Weight", CGPE.cgp_weight);
7506     }
7507   }
7508 }
7509 
7510 template <class ELFT> void LLVMELFDumper<ELFT>::printBBAddrMaps() {
7511   bool IsRelocatable = this->Obj.getHeader().e_type == ELF::ET_REL;
7512   using Elf_Shdr = typename ELFT::Shdr;
7513   auto IsMatch = [](const Elf_Shdr &Sec) -> bool {
7514     return Sec.sh_type == ELF::SHT_LLVM_BB_ADDR_MAP ||
7515            Sec.sh_type == ELF::SHT_LLVM_BB_ADDR_MAP_V0;
7516   };
7517   Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> SecRelocMapOrErr =
7518       this->Obj.getSectionAndRelocations(IsMatch);
7519   if (!SecRelocMapOrErr) {
7520     this->reportUniqueWarning(
7521         "failed to get SHT_LLVM_BB_ADDR_MAP section(s): " +
7522         toString(SecRelocMapOrErr.takeError()));
7523     return;
7524   }
7525   for (auto const &[Sec, RelocSec] : *SecRelocMapOrErr) {
7526     std::optional<const Elf_Shdr *> FunctionSec;
7527     if (IsRelocatable)
7528       FunctionSec =
7529           unwrapOrError(this->FileName, this->Obj.getSection(Sec->sh_link));
7530     ListScope L(W, "BBAddrMap");
7531     if (IsRelocatable && !RelocSec) {
7532       this->reportUniqueWarning("unable to get relocation section for " +
7533                                 this->describe(*Sec));
7534       continue;
7535     }
7536     Expected<std::vector<BBAddrMap>> BBAddrMapOrErr =
7537         this->Obj.decodeBBAddrMap(*Sec, RelocSec);
7538     if (!BBAddrMapOrErr) {
7539       this->reportUniqueWarning("unable to dump " + this->describe(*Sec) +
7540                                 ": " + toString(BBAddrMapOrErr.takeError()));
7541       continue;
7542     }
7543     for (const BBAddrMap &AM : *BBAddrMapOrErr) {
7544       DictScope D(W, "Function");
7545       W.printHex("At", AM.Addr);
7546       SmallVector<uint32_t> FuncSymIndex =
7547           this->getSymbolIndexesForFunctionAddress(AM.Addr, FunctionSec);
7548       std::string FuncName = "<?>";
7549       if (FuncSymIndex.empty())
7550         this->reportUniqueWarning(
7551             "could not identify function symbol for address (0x" +
7552             Twine::utohexstr(AM.Addr) + ") in " + this->describe(*Sec));
7553       else
7554         FuncName = this->getStaticSymbolName(FuncSymIndex.front());
7555       W.printString("Name", FuncName);
7556 
7557       ListScope L(W, "BB entries");
7558       for (const BBAddrMap::BBEntry &BBE : AM.BBEntries) {
7559         DictScope L(W);
7560         W.printNumber("ID", BBE.ID);
7561         W.printHex("Offset", BBE.Offset);
7562         W.printHex("Size", BBE.Size);
7563         W.printBoolean("HasReturn", BBE.hasReturn());
7564         W.printBoolean("HasTailCall", BBE.hasTailCall());
7565         W.printBoolean("IsEHPad", BBE.isEHPad());
7566         W.printBoolean("CanFallThrough", BBE.canFallThrough());
7567         W.printBoolean("HasIndirectBranch", BBE.hasIndirectBranch());
7568       }
7569     }
7570   }
7571 }
7572 
7573 template <class ELFT> void LLVMELFDumper<ELFT>::printAddrsig() {
7574   ListScope L(W, "Addrsig");
7575   if (!this->DotAddrsigSec)
7576     return;
7577 
7578   Expected<std::vector<uint64_t>> SymsOrErr =
7579       decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
7580   if (!SymsOrErr) {
7581     this->reportUniqueWarning(SymsOrErr.takeError());
7582     return;
7583   }
7584 
7585   for (uint64_t Sym : *SymsOrErr)
7586     W.printNumber("Sym", this->getStaticSymbolName(Sym), Sym);
7587 }
7588 
7589 template <typename ELFT>
7590 static bool printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7591                                   ScopedPrinter &W) {
7592   // Return true if we were able to pretty-print the note, false otherwise.
7593   switch (NoteType) {
7594   default:
7595     return false;
7596   case ELF::NT_GNU_ABI_TAG: {
7597     const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
7598     if (!AbiTag.IsValid) {
7599       W.printString("ABI", "<corrupt GNU_ABI_TAG>");
7600       return false;
7601     } else {
7602       W.printString("OS", AbiTag.OSName);
7603       W.printString("ABI", AbiTag.ABI);
7604     }
7605     break;
7606   }
7607   case ELF::NT_GNU_BUILD_ID: {
7608     W.printString("Build ID", getGNUBuildId(Desc));
7609     break;
7610   }
7611   case ELF::NT_GNU_GOLD_VERSION:
7612     W.printString("Version", getDescAsStringRef(Desc));
7613     break;
7614   case ELF::NT_GNU_PROPERTY_TYPE_0:
7615     ListScope D(W, "Property");
7616     for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
7617       W.printString(Property);
7618     break;
7619   }
7620   return true;
7621 }
7622 
7623 static bool printAndroidNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7624                                       ScopedPrinter &W) {
7625   // Return true if we were able to pretty-print the note, false otherwise.
7626   AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc);
7627   if (Props.empty())
7628     return false;
7629   for (const auto &KV : Props)
7630     W.printString(KV.first, KV.second);
7631   return true;
7632 }
7633 
7634 template <class ELFT>
7635 static bool printAarch64NoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7636                                       ScopedPrinter &W) {
7637   if (NoteType != NT_ARM_TYPE_PAUTH_ABI_TAG)
7638     return false;
7639 
7640   if (Desc.size() < 16)
7641     return false;
7642 
7643   uint64_t platform =
7644       support::endian::read64<ELFT::TargetEndianness>(Desc.data() + 0);
7645   uint64_t version =
7646       support::endian::read64<ELFT::TargetEndianness>(Desc.data() + 8);
7647   W.printNumber("Platform", platform);
7648   W.printNumber("Version", version);
7649 
7650   if (Desc.size() > 16)
7651     W.printString("Additional info",
7652                   toHex(ArrayRef<uint8_t>(Desc.data() + 16, Desc.size() - 16)));
7653 
7654   return true;
7655 }
7656 
7657 template <class ELFT>
7658 void LLVMELFDumper<ELFT>::printMemtag(
7659     const ArrayRef<std::pair<std::string, std::string>> DynamicEntries,
7660     const ArrayRef<uint8_t> AndroidNoteDesc,
7661     const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) {
7662   {
7663     ListScope L(W, "Memtag Dynamic Entries:");
7664     if (DynamicEntries.empty())
7665       W.printString("< none found >");
7666     for (const auto &DynamicEntryKV : DynamicEntries)
7667       W.printString(DynamicEntryKV.first, DynamicEntryKV.second);
7668   }
7669 
7670   if (!AndroidNoteDesc.empty()) {
7671     ListScope L(W, "Memtag Android Note:");
7672     printAndroidNoteLLVMStyle(ELF::NT_ANDROID_TYPE_MEMTAG, AndroidNoteDesc, W);
7673   }
7674 
7675   if (Descriptors.empty())
7676     return;
7677 
7678   {
7679     ListScope L(W, "Memtag Global Descriptors:");
7680     for (const auto &[Addr, BytesToTag] : Descriptors) {
7681       W.printHex("0x" + utohexstr(Addr), BytesToTag);
7682     }
7683   }
7684 }
7685 
7686 template <typename ELFT>
7687 static bool printLLVMOMPOFFLOADNoteLLVMStyle(uint32_t NoteType,
7688                                              ArrayRef<uint8_t> Desc,
7689                                              ScopedPrinter &W) {
7690   switch (NoteType) {
7691   default:
7692     return false;
7693   case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
7694     W.printString("Version", getDescAsStringRef(Desc));
7695     break;
7696   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
7697     W.printString("Producer", getDescAsStringRef(Desc));
7698     break;
7699   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
7700     W.printString("Producer version", getDescAsStringRef(Desc));
7701     break;
7702   }
7703   return true;
7704 }
7705 
7706 static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) {
7707   W.printNumber("Page Size", Note.PageSize);
7708   for (const CoreFileMapping &Mapping : Note.Mappings) {
7709     ListScope D(W, "Mapping");
7710     W.printHex("Start", Mapping.Start);
7711     W.printHex("End", Mapping.End);
7712     W.printHex("Offset", Mapping.Offset);
7713     W.printString("Filename", Mapping.Filename);
7714   }
7715 }
7716 
7717 template <class ELFT> void LLVMELFDumper<ELFT>::printNotes() {
7718   ListScope L(W, "Notes");
7719 
7720   std::unique_ptr<DictScope> NoteScope;
7721   size_t Align = 0;
7722   auto StartNotes = [&](std::optional<StringRef> SecName,
7723                         const typename ELFT::Off Offset,
7724                         const typename ELFT::Addr Size, size_t Al) {
7725     Align = std::max<size_t>(Al, 4);
7726     NoteScope = std::make_unique<DictScope>(W, "NoteSection");
7727     W.printString("Name", SecName ? *SecName : "<?>");
7728     W.printHex("Offset", Offset);
7729     W.printHex("Size", Size);
7730   };
7731 
7732   auto EndNotes = [&] { NoteScope.reset(); };
7733 
7734   auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
7735     DictScope D2(W, "Note");
7736     StringRef Name = Note.getName();
7737     ArrayRef<uint8_t> Descriptor = Note.getDesc(Align);
7738     Elf_Word Type = Note.getType();
7739 
7740     // Print the note owner/type.
7741     W.printString("Owner", Name);
7742     W.printHex("Data size", Descriptor.size());
7743 
7744     StringRef NoteType =
7745         getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
7746     if (!NoteType.empty())
7747       W.printString("Type", NoteType);
7748     else
7749       W.printString("Type",
7750                     "Unknown (" + to_string(format_hex(Type, 10)) + ")");
7751 
7752     // Print the description, or fallback to printing raw bytes for unknown
7753     // owners/if we fail to pretty-print the contents.
7754     if (Name == "GNU") {
7755       if (printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W))
7756         return Error::success();
7757     } else if (Name == "FreeBSD") {
7758       if (std::optional<FreeBSDNote> N =
7759               getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
7760         W.printString(N->Type, N->Value);
7761         return Error::success();
7762       }
7763     } else if (Name == "AMD") {
7764       const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
7765       if (!N.Type.empty()) {
7766         W.printString(N.Type, N.Value);
7767         return Error::success();
7768       }
7769     } else if (Name == "AMDGPU") {
7770       const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
7771       if (!N.Type.empty()) {
7772         W.printString(N.Type, N.Value);
7773         return Error::success();
7774       }
7775     } else if (Name == "LLVMOMPOFFLOAD") {
7776       if (printLLVMOMPOFFLOADNoteLLVMStyle<ELFT>(Type, Descriptor, W))
7777         return Error::success();
7778     } else if (Name == "CORE") {
7779       if (Type == ELF::NT_FILE) {
7780         DataExtractor DescExtractor(
7781             Descriptor, ELFT::TargetEndianness == llvm::endianness::little,
7782             sizeof(Elf_Addr));
7783         if (Expected<CoreNote> N = readCoreNote(DescExtractor)) {
7784           printCoreNoteLLVMStyle(*N, W);
7785           return Error::success();
7786         } else {
7787           return N.takeError();
7788         }
7789       }
7790     } else if (Name == "Android") {
7791       if (printAndroidNoteLLVMStyle(Type, Descriptor, W))
7792         return Error::success();
7793     } else if (Name == "ARM") {
7794       if (printAarch64NoteLLVMStyle<ELFT>(Type, Descriptor, W))
7795         return Error::success();
7796     }
7797     if (!Descriptor.empty()) {
7798       W.printBinaryBlock("Description data", Descriptor);
7799     }
7800     return Error::success();
7801   };
7802 
7803   processNotesHelper(*this, /*StartNotesFn=*/StartNotes,
7804                      /*ProcessNoteFn=*/ProcessNote, /*FinishNotesFn=*/EndNotes);
7805 }
7806 
7807 template <class ELFT> void LLVMELFDumper<ELFT>::printELFLinkerOptions() {
7808   ListScope L(W, "LinkerOptions");
7809 
7810   unsigned I = -1;
7811   for (const Elf_Shdr &Shdr : cantFail(this->Obj.sections())) {
7812     ++I;
7813     if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
7814       continue;
7815 
7816     Expected<ArrayRef<uint8_t>> ContentsOrErr =
7817         this->Obj.getSectionContents(Shdr);
7818     if (!ContentsOrErr) {
7819       this->reportUniqueWarning("unable to read the content of the "
7820                                 "SHT_LLVM_LINKER_OPTIONS section: " +
7821                                 toString(ContentsOrErr.takeError()));
7822       continue;
7823     }
7824     if (ContentsOrErr->empty())
7825       continue;
7826 
7827     if (ContentsOrErr->back() != 0) {
7828       this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " +
7829                                 Twine(I) +
7830                                 " is broken: the "
7831                                 "content is not null-terminated");
7832       continue;
7833     }
7834 
7835     SmallVector<StringRef, 16> Strings;
7836     toStringRef(ContentsOrErr->drop_back()).split(Strings, '\0');
7837     if (Strings.size() % 2 != 0) {
7838       this->reportUniqueWarning(
7839           "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) +
7840           " is broken: an incomplete "
7841           "key-value pair was found. The last possible key was: \"" +
7842           Strings.back() + "\"");
7843       continue;
7844     }
7845 
7846     for (size_t I = 0; I < Strings.size(); I += 2)
7847       W.printString(Strings[I], Strings[I + 1]);
7848   }
7849 }
7850 
7851 template <class ELFT> void LLVMELFDumper<ELFT>::printDependentLibs() {
7852   ListScope L(W, "DependentLibs");
7853   this->printDependentLibsHelper(
7854       [](const Elf_Shdr &) {},
7855       [this](StringRef Lib, uint64_t) { W.printString(Lib); });
7856 }
7857 
7858 template <class ELFT> void LLVMELFDumper<ELFT>::printStackSizes() {
7859   ListScope L(W, "StackSizes");
7860   if (this->Obj.getHeader().e_type == ELF::ET_REL)
7861     this->printRelocatableStackSizes([]() {});
7862   else
7863     this->printNonRelocatableStackSizes([]() {});
7864 }
7865 
7866 template <class ELFT>
7867 void LLVMELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
7868                                               ArrayRef<std::string> FuncNames) {
7869   DictScope D(W, "Entry");
7870   W.printList("Functions", FuncNames);
7871   W.printHex("Size", Size);
7872 }
7873 
7874 template <class ELFT>
7875 void LLVMELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
7876   auto PrintEntry = [&](const Elf_Addr *E) {
7877     W.printHex("Address", Parser.getGotAddress(E));
7878     W.printNumber("Access", Parser.getGotOffset(E));
7879     W.printHex("Initial", *E);
7880   };
7881 
7882   DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");
7883 
7884   W.printHex("Canonical gp value", Parser.getGp());
7885   {
7886     ListScope RS(W, "Reserved entries");
7887     {
7888       DictScope D(W, "Entry");
7889       PrintEntry(Parser.getGotLazyResolver());
7890       W.printString("Purpose", StringRef("Lazy resolver"));
7891     }
7892 
7893     if (Parser.getGotModulePointer()) {
7894       DictScope D(W, "Entry");
7895       PrintEntry(Parser.getGotModulePointer());
7896       W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
7897     }
7898   }
7899   {
7900     ListScope LS(W, "Local entries");
7901     for (auto &E : Parser.getLocalEntries()) {
7902       DictScope D(W, "Entry");
7903       PrintEntry(&E);
7904     }
7905   }
7906 
7907   if (Parser.IsStatic)
7908     return;
7909 
7910   {
7911     ListScope GS(W, "Global entries");
7912     for (auto &E : Parser.getGlobalEntries()) {
7913       DictScope D(W, "Entry");
7914 
7915       PrintEntry(&E);
7916 
7917       const Elf_Sym &Sym = *Parser.getGotSym(&E);
7918       W.printHex("Value", Sym.st_value);
7919       W.printEnum("Type", Sym.getType(), ArrayRef(ElfSymbolTypes));
7920 
7921       const unsigned SymIndex = &Sym - this->dynamic_symbols().begin();
7922       DataRegion<Elf_Word> ShndxTable(
7923           (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7924       printSymbolSection(Sym, SymIndex, ShndxTable);
7925 
7926       std::string SymName = this->getFullSymbolName(
7927           Sym, SymIndex, ShndxTable, this->DynamicStringTable, true);
7928       W.printNumber("Name", SymName, Sym.st_name);
7929     }
7930   }
7931 
7932   W.printNumber("Number of TLS and multi-GOT entries",
7933                 uint64_t(Parser.getOtherEntries().size()));
7934 }
7935 
7936 template <class ELFT>
7937 void LLVMELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
7938   auto PrintEntry = [&](const Elf_Addr *E) {
7939     W.printHex("Address", Parser.getPltAddress(E));
7940     W.printHex("Initial", *E);
7941   };
7942 
7943   DictScope GS(W, "PLT GOT");
7944 
7945   {
7946     ListScope RS(W, "Reserved entries");
7947     {
7948       DictScope D(W, "Entry");
7949       PrintEntry(Parser.getPltLazyResolver());
7950       W.printString("Purpose", StringRef("PLT lazy resolver"));
7951     }
7952 
7953     if (auto E = Parser.getPltModulePointer()) {
7954       DictScope D(W, "Entry");
7955       PrintEntry(E);
7956       W.printString("Purpose", StringRef("Module pointer"));
7957     }
7958   }
7959   {
7960     ListScope LS(W, "Entries");
7961     DataRegion<Elf_Word> ShndxTable(
7962         (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7963     for (auto &E : Parser.getPltEntries()) {
7964       DictScope D(W, "Entry");
7965       PrintEntry(&E);
7966 
7967       const Elf_Sym &Sym = *Parser.getPltSym(&E);
7968       W.printHex("Value", Sym.st_value);
7969       W.printEnum("Type", Sym.getType(), ArrayRef(ElfSymbolTypes));
7970       printSymbolSection(Sym, &Sym - this->dynamic_symbols().begin(),
7971                          ShndxTable);
7972 
7973       const Elf_Sym *FirstSym = cantFail(
7974           this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
7975       std::string SymName = this->getFullSymbolName(
7976           Sym, &Sym - FirstSym, ShndxTable, Parser.getPltStrTable(), true);
7977       W.printNumber("Name", SymName, Sym.st_name);
7978     }
7979   }
7980 }
7981 
7982 template <class ELFT> void LLVMELFDumper<ELFT>::printMipsABIFlags() {
7983   const Elf_Mips_ABIFlags<ELFT> *Flags;
7984   if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
7985           getMipsAbiFlagsSection(*this)) {
7986     Flags = *SecOrErr;
7987     if (!Flags) {
7988       W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
7989       return;
7990     }
7991   } else {
7992     this->reportUniqueWarning(SecOrErr.takeError());
7993     return;
7994   }
7995 
7996   raw_ostream &OS = W.getOStream();
7997   DictScope GS(W, "MIPS ABI Flags");
7998 
7999   W.printNumber("Version", Flags->version);
8000   W.startLine() << "ISA: ";
8001   if (Flags->isa_rev <= 1)
8002     OS << format("MIPS%u", Flags->isa_level);
8003   else
8004     OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
8005   OS << "\n";
8006   W.printEnum("ISA Extension", Flags->isa_ext, ArrayRef(ElfMipsISAExtType));
8007   W.printFlags("ASEs", Flags->ases, ArrayRef(ElfMipsASEFlags));
8008   W.printEnum("FP ABI", Flags->fp_abi, ArrayRef(ElfMipsFpABIType));
8009   W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
8010   W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
8011   W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
8012   W.printFlags("Flags 1", Flags->flags1, ArrayRef(ElfMipsFlags1));
8013   W.printHex("Flags 2", Flags->flags2);
8014 }
8015 
8016 template <class ELFT>
8017 void JSONELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
8018                                            ArrayRef<std::string> InputFilenames,
8019                                            const Archive *A) {
8020   FileScope = std::make_unique<DictScope>(this->W);
8021   DictScope D(this->W, "FileSummary");
8022   this->W.printString("File", FileStr);
8023   this->W.printString("Format", Obj.getFileFormatName());
8024   this->W.printString("Arch", Triple::getArchTypeName(Obj.getArch()));
8025   this->W.printString(
8026       "AddressSize",
8027       std::string(formatv("{0}bit", 8 * Obj.getBytesInAddress())));
8028   this->printLoadName();
8029 }
8030 
8031 template <class ELFT>
8032 void JSONELFDumper<ELFT>::printZeroSymbolOtherField(
8033     const Elf_Sym &Symbol) const {
8034   // We want the JSON format to be uniform, since it is machine readable, so
8035   // always print the `Other` field the same way.
8036   this->printSymbolOtherField(Symbol);
8037 }
8038 
8039 template <class ELFT>
8040 void JSONELFDumper<ELFT>::printDefaultRelRelaReloc(const Relocation<ELFT> &R,
8041                                                    StringRef SymbolName,
8042                                                    StringRef RelocName) {
8043   this->printExpandedRelRelaReloc(R, SymbolName, RelocName);
8044 }
8045 
8046 template <class ELFT>
8047 void JSONELFDumper<ELFT>::printRelocationSectionInfo(const Elf_Shdr &Sec,
8048                                                      StringRef Name,
8049                                                      const unsigned SecNdx) {
8050   DictScope Group(this->W);
8051   this->W.printNumber("SectionIndex", SecNdx);
8052   ListScope D(this->W, "Relocs");
8053   this->printRelocationsHelper(Sec);
8054 }
8055 
8056 template <class ELFT>
8057 std::string JSONELFDumper<ELFT>::getGroupSectionHeaderName() const {
8058   return "GroupSections";
8059 }
8060 
8061 template <class ELFT>
8062 void JSONELFDumper<ELFT>::printSectionGroupMembers(StringRef Name,
8063                                                    uint64_t Idx) const {
8064   DictScope Grp(this->W);
8065   this->W.printString("Name", Name);
8066   this->W.printNumber("Index", Idx);
8067 }
8068 
8069 template <class ELFT> void JSONELFDumper<ELFT>::printEmptyGroupMessage() const {
8070   // JSON output does not need to print anything for empty groups
8071 }
8072