1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend emits a target specifier matcher for converting parsed
10 // assembly operands in the MCInst structures. It also emits a matcher for
11 // custom operand parsing.
12 //
13 // Converting assembly operands into MCInst structures
14 // ---------------------------------------------------
15 //
16 // The input to the target specific matcher is a list of literal tokens and
17 // operands. The target specific parser should generally eliminate any syntax
18 // which is not relevant for matching; for example, comma tokens should have
19 // already been consumed and eliminated by the parser. Most instructions will
20 // end up with a single literal token (the instruction name) and some number of
21 // operands.
22 //
23 // Some example inputs, for X86:
24 //   'addl' (immediate ...) (register ...)
25 //   'add' (immediate ...) (memory ...)
26 //   'call' '*' %epc
27 //
28 // The assembly matcher is responsible for converting this input into a precise
29 // machine instruction (i.e., an instruction with a well defined encoding). This
30 // mapping has several properties which complicate matching:
31 //
32 //  - It may be ambiguous; many architectures can legally encode particular
33 //    variants of an instruction in different ways (for example, using a smaller
34 //    encoding for small immediates). Such ambiguities should never be
35 //    arbitrarily resolved by the assembler, the assembler is always responsible
36 //    for choosing the "best" available instruction.
37 //
38 //  - It may depend on the subtarget or the assembler context. Instructions
39 //    which are invalid for the current mode, but otherwise unambiguous (e.g.,
40 //    an SSE instruction in a file being assembled for i486) should be accepted
41 //    and rejected by the assembler front end. However, if the proper encoding
42 //    for an instruction is dependent on the assembler context then the matcher
43 //    is responsible for selecting the correct machine instruction for the
44 //    current mode.
45 //
46 // The core matching algorithm attempts to exploit the regularity in most
47 // instruction sets to quickly determine the set of possibly matching
48 // instructions, and the simplify the generated code. Additionally, this helps
49 // to ensure that the ambiguities are intentionally resolved by the user.
50 //
51 // The matching is divided into two distinct phases:
52 //
53 //   1. Classification: Each operand is mapped to the unique set which (a)
54 //      contains it, and (b) is the largest such subset for which a single
55 //      instruction could match all members.
56 //
57 //      For register classes, we can generate these subgroups automatically. For
58 //      arbitrary operands, we expect the user to define the classes and their
59 //      relations to one another (for example, 8-bit signed immediates as a
60 //      subset of 32-bit immediates).
61 //
62 //      By partitioning the operands in this way, we guarantee that for any
63 //      tuple of classes, any single instruction must match either all or none
64 //      of the sets of operands which could classify to that tuple.
65 //
66 //      In addition, the subset relation amongst classes induces a partial order
67 //      on such tuples, which we use to resolve ambiguities.
68 //
69 //   2. The input can now be treated as a tuple of classes (static tokens are
70 //      simple singleton sets). Each such tuple should generally map to a single
71 //      instruction (we currently ignore cases where this isn't true, whee!!!),
72 //      which we can emit a simple matcher for.
73 //
74 // Custom Operand Parsing
75 // ----------------------
76 //
77 //  Some targets need a custom way to parse operands, some specific instructions
78 //  can contain arguments that can represent processor flags and other kinds of
79 //  identifiers that need to be mapped to specific values in the final encoded
80 //  instructions. The target specific custom operand parsing works in the
81 //  following way:
82 //
83 //   1. A operand match table is built, each entry contains a mnemonic, an
84 //      operand class, a mask for all operand positions for that same
85 //      class/mnemonic and target features to be checked while trying to match.
86 //
87 //   2. The operand matcher will try every possible entry with the same
88 //      mnemonic and will check if the target feature for this mnemonic also
89 //      matches. After that, if the operand to be matched has its index
90 //      present in the mask, a successful match occurs. Otherwise, fallback
91 //      to the regular operand parsing.
92 //
93 //   3. For a match success, each operand class that has a 'ParserMethod'
94 //      becomes part of a switch from where the custom method is called.
95 //
96 //===----------------------------------------------------------------------===//
97 
98 #include "CodeGenTarget.h"
99 #include "SubtargetFeatureInfo.h"
100 #include "Types.h"
101 #include "llvm/ADT/CachedHashString.h"
102 #include "llvm/ADT/PointerUnion.h"
103 #include "llvm/ADT/STLExtras.h"
104 #include "llvm/ADT/SmallPtrSet.h"
105 #include "llvm/ADT/SmallVector.h"
106 #include "llvm/ADT/StringExtras.h"
107 #include "llvm/Config/llvm-config.h"
108 #include "llvm/Support/CommandLine.h"
109 #include "llvm/Support/Debug.h"
110 #include "llvm/Support/ErrorHandling.h"
111 #include "llvm/TableGen/Error.h"
112 #include "llvm/TableGen/Record.h"
113 #include "llvm/TableGen/StringMatcher.h"
114 #include "llvm/TableGen/StringToOffsetTable.h"
115 #include "llvm/TableGen/TableGenBackend.h"
116 #include <cassert>
117 #include <cctype>
118 #include <forward_list>
119 #include <map>
120 #include <set>
121 
122 using namespace llvm;
123 
124 #define DEBUG_TYPE "asm-matcher-emitter"
125 
126 cl::OptionCategory AsmMatcherEmitterCat("Options for -gen-asm-matcher");
127 
128 static cl::opt<std::string>
129     MatchPrefix("match-prefix", cl::init(""),
130                 cl::desc("Only match instructions with the given prefix"),
131                 cl::cat(AsmMatcherEmitterCat));
132 
133 namespace {
134 class AsmMatcherInfo;
135 
136 // Register sets are used as keys in some second-order sets TableGen creates
137 // when generating its data structures. This means that the order of two
138 // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and
139 // can even affect compiler output (at least seen in diagnostics produced when
140 // all matches fail). So we use a type that sorts them consistently.
141 typedef std::set<Record*, LessRecordByID> RegisterSet;
142 
143 class AsmMatcherEmitter {
144   RecordKeeper &Records;
145 public:
146   AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
147 
148   void run(raw_ostream &o);
149 };
150 
151 /// ClassInfo - Helper class for storing the information about a particular
152 /// class of operands which can be matched.
153 struct ClassInfo {
154   enum ClassInfoKind {
155     /// Invalid kind, for use as a sentinel value.
156     Invalid = 0,
157 
158     /// The class for a particular token.
159     Token,
160 
161     /// The (first) register class, subsequent register classes are
162     /// RegisterClass0+1, and so on.
163     RegisterClass0,
164 
165     /// The (first) user defined class, subsequent user defined classes are
166     /// UserClass0+1, and so on.
167     UserClass0 = 1<<16
168   };
169 
170   /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
171   /// N) for the Nth user defined class.
172   unsigned Kind;
173 
174   /// SuperClasses - The super classes of this class. Note that for simplicities
175   /// sake user operands only record their immediate super class, while register
176   /// operands include all superclasses.
177   std::vector<ClassInfo*> SuperClasses;
178 
179   /// Name - The full class name, suitable for use in an enum.
180   std::string Name;
181 
182   /// ClassName - The unadorned generic name for this class (e.g., Token).
183   std::string ClassName;
184 
185   /// ValueName - The name of the value this class represents; for a token this
186   /// is the literal token string, for an operand it is the TableGen class (or
187   /// empty if this is a derived class).
188   std::string ValueName;
189 
190   /// PredicateMethod - The name of the operand method to test whether the
191   /// operand matches this class; this is not valid for Token or register kinds.
192   std::string PredicateMethod;
193 
194   /// RenderMethod - The name of the operand method to add this operand to an
195   /// MCInst; this is not valid for Token or register kinds.
196   std::string RenderMethod;
197 
198   /// ParserMethod - The name of the operand method to do a target specific
199   /// parsing on the operand.
200   std::string ParserMethod;
201 
202   /// For register classes: the records for all the registers in this class.
203   RegisterSet Registers;
204 
205   /// For custom match classes: the diagnostic kind for when the predicate fails.
206   std::string DiagnosticType;
207 
208   /// For custom match classes: the diagnostic string for when the predicate fails.
209   std::string DiagnosticString;
210 
211   /// Is this operand optional and not always required.
212   bool IsOptional;
213 
214   /// DefaultMethod - The name of the method that returns the default operand
215   /// for optional operand
216   std::string DefaultMethod;
217 
218 public:
219   /// isRegisterClass() - Check if this is a register class.
220   bool isRegisterClass() const {
221     return Kind >= RegisterClass0 && Kind < UserClass0;
222   }
223 
224   /// isUserClass() - Check if this is a user defined class.
225   bool isUserClass() const {
226     return Kind >= UserClass0;
227   }
228 
229   /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
230   /// are related if they are in the same class hierarchy.
231   bool isRelatedTo(const ClassInfo &RHS) const {
232     // Tokens are only related to tokens.
233     if (Kind == Token || RHS.Kind == Token)
234       return Kind == Token && RHS.Kind == Token;
235 
236     // Registers classes are only related to registers classes, and only if
237     // their intersection is non-empty.
238     if (isRegisterClass() || RHS.isRegisterClass()) {
239       if (!isRegisterClass() || !RHS.isRegisterClass())
240         return false;
241 
242       RegisterSet Tmp;
243       std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin());
244       std::set_intersection(Registers.begin(), Registers.end(),
245                             RHS.Registers.begin(), RHS.Registers.end(),
246                             II, LessRecordByID());
247 
248       return !Tmp.empty();
249     }
250 
251     // Otherwise we have two users operands; they are related if they are in the
252     // same class hierarchy.
253     //
254     // FIXME: This is an oversimplification, they should only be related if they
255     // intersect, however we don't have that information.
256     assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
257     const ClassInfo *Root = this;
258     while (!Root->SuperClasses.empty())
259       Root = Root->SuperClasses.front();
260 
261     const ClassInfo *RHSRoot = &RHS;
262     while (!RHSRoot->SuperClasses.empty())
263       RHSRoot = RHSRoot->SuperClasses.front();
264 
265     return Root == RHSRoot;
266   }
267 
268   /// isSubsetOf - Test whether this class is a subset of \p RHS.
269   bool isSubsetOf(const ClassInfo &RHS) const {
270     // This is a subset of RHS if it is the same class...
271     if (this == &RHS)
272       return true;
273 
274     // ... or if any of its super classes are a subset of RHS.
275     SmallVector<const ClassInfo *, 16> Worklist(SuperClasses.begin(),
276                                                 SuperClasses.end());
277     SmallPtrSet<const ClassInfo *, 16> Visited;
278     while (!Worklist.empty()) {
279       auto *CI = Worklist.pop_back_val();
280       if (CI == &RHS)
281         return true;
282       for (auto *Super : CI->SuperClasses)
283         if (Visited.insert(Super).second)
284           Worklist.push_back(Super);
285     }
286 
287     return false;
288   }
289 
290   int getTreeDepth() const {
291     int Depth = 0;
292     const ClassInfo *Root = this;
293     while (!Root->SuperClasses.empty()) {
294       Depth++;
295       Root = Root->SuperClasses.front();
296     }
297     return Depth;
298   }
299 
300   const ClassInfo *findRoot() const {
301     const ClassInfo *Root = this;
302     while (!Root->SuperClasses.empty())
303       Root = Root->SuperClasses.front();
304     return Root;
305   }
306 
307   /// Compare two classes. This does not produce a total ordering, but does
308   /// guarantee that subclasses are sorted before their parents, and that the
309   /// ordering is transitive.
310   bool operator<(const ClassInfo &RHS) const {
311     if (this == &RHS)
312       return false;
313 
314     // First, enforce the ordering between the three different types of class.
315     // Tokens sort before registers, which sort before user classes.
316     if (Kind == Token) {
317       if (RHS.Kind != Token)
318         return true;
319       assert(RHS.Kind == Token);
320     } else if (isRegisterClass()) {
321       if (RHS.Kind == Token)
322         return false;
323       else if (RHS.isUserClass())
324         return true;
325       assert(RHS.isRegisterClass());
326     } else if (isUserClass()) {
327       if (!RHS.isUserClass())
328         return false;
329       assert(RHS.isUserClass());
330     } else {
331       llvm_unreachable("Unknown ClassInfoKind");
332     }
333 
334     if (Kind == Token || isUserClass()) {
335       // Related tokens and user classes get sorted by depth in the inheritence
336       // tree (so that subclasses are before their parents).
337       if (isRelatedTo(RHS)) {
338         if (getTreeDepth() > RHS.getTreeDepth())
339           return true;
340         if (getTreeDepth() < RHS.getTreeDepth())
341           return false;
342       } else {
343         // Unrelated tokens and user classes are ordered by the name of their
344         // root nodes, so that there is a consistent ordering between
345         // unconnected trees.
346         return findRoot()->ValueName < RHS.findRoot()->ValueName;
347       }
348     } else if (isRegisterClass()) {
349       // For register sets, sort by number of registers. This guarantees that
350       // a set will always sort before all of it's strict supersets.
351       if (Registers.size() != RHS.Registers.size())
352         return Registers.size() < RHS.Registers.size();
353     } else {
354       llvm_unreachable("Unknown ClassInfoKind");
355     }
356 
357     // FIXME: We should be able to just return false here, as we only need a
358     // partial order (we use stable sorts, so this is deterministic) and the
359     // name of a class shouldn't be significant. However, some of the backends
360     // accidentally rely on this behaviour, so it will have to stay like this
361     // until they are fixed.
362     return ValueName < RHS.ValueName;
363   }
364 };
365 
366 class AsmVariantInfo {
367 public:
368   StringRef RegisterPrefix;
369   StringRef TokenizingCharacters;
370   StringRef SeparatorCharacters;
371   StringRef BreakCharacters;
372   StringRef Name;
373   int AsmVariantNo;
374 };
375 
376 /// MatchableInfo - Helper class for storing the necessary information for an
377 /// instruction or alias which is capable of being matched.
378 struct MatchableInfo {
379   struct AsmOperand {
380     /// Token - This is the token that the operand came from.
381     StringRef Token;
382 
383     /// The unique class instance this operand should match.
384     ClassInfo *Class;
385 
386     /// The operand name this is, if anything.
387     StringRef SrcOpName;
388 
389     /// The operand name this is, before renaming for tied operands.
390     StringRef OrigSrcOpName;
391 
392     /// The suboperand index within SrcOpName, or -1 for the entire operand.
393     int SubOpIdx;
394 
395     /// Whether the token is "isolated", i.e., it is preceded and followed
396     /// by separators.
397     bool IsIsolatedToken;
398 
399     /// Register record if this token is singleton register.
400     Record *SingletonReg;
401 
402     explicit AsmOperand(bool IsIsolatedToken, StringRef T)
403         : Token(T), Class(nullptr), SubOpIdx(-1),
404           IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {}
405   };
406 
407   /// ResOperand - This represents a single operand in the result instruction
408   /// generated by the match.  In cases (like addressing modes) where a single
409   /// assembler operand expands to multiple MCOperands, this represents the
410   /// single assembler operand, not the MCOperand.
411   struct ResOperand {
412     enum {
413       /// RenderAsmOperand - This represents an operand result that is
414       /// generated by calling the render method on the assembly operand.  The
415       /// corresponding AsmOperand is specified by AsmOperandNum.
416       RenderAsmOperand,
417 
418       /// TiedOperand - This represents a result operand that is a duplicate of
419       /// a previous result operand.
420       TiedOperand,
421 
422       /// ImmOperand - This represents an immediate value that is dumped into
423       /// the operand.
424       ImmOperand,
425 
426       /// RegOperand - This represents a fixed register that is dumped in.
427       RegOperand
428     } Kind;
429 
430     /// Tuple containing the index of the (earlier) result operand that should
431     /// be copied from, as well as the indices of the corresponding (parsed)
432     /// operands in the asm string.
433     struct TiedOperandsTuple {
434       unsigned ResOpnd;
435       unsigned SrcOpnd1Idx;
436       unsigned SrcOpnd2Idx;
437     };
438 
439     union {
440       /// This is the operand # in the AsmOperands list that this should be
441       /// copied from.
442       unsigned AsmOperandNum;
443 
444       /// Description of tied operands.
445       TiedOperandsTuple TiedOperands;
446 
447       /// ImmVal - This is the immediate value added to the instruction.
448       int64_t ImmVal;
449 
450       /// Register - This is the register record.
451       Record *Register;
452     };
453 
454     /// MINumOperands - The number of MCInst operands populated by this
455     /// operand.
456     unsigned MINumOperands;
457 
458     static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
459       ResOperand X;
460       X.Kind = RenderAsmOperand;
461       X.AsmOperandNum = AsmOpNum;
462       X.MINumOperands = NumOperands;
463       return X;
464     }
465 
466     static ResOperand getTiedOp(unsigned TiedOperandNum, unsigned SrcOperand1,
467                                 unsigned SrcOperand2) {
468       ResOperand X;
469       X.Kind = TiedOperand;
470       X.TiedOperands = { TiedOperandNum, SrcOperand1, SrcOperand2 };
471       X.MINumOperands = 1;
472       return X;
473     }
474 
475     static ResOperand getImmOp(int64_t Val) {
476       ResOperand X;
477       X.Kind = ImmOperand;
478       X.ImmVal = Val;
479       X.MINumOperands = 1;
480       return X;
481     }
482 
483     static ResOperand getRegOp(Record *Reg) {
484       ResOperand X;
485       X.Kind = RegOperand;
486       X.Register = Reg;
487       X.MINumOperands = 1;
488       return X;
489     }
490   };
491 
492   /// AsmVariantID - Target's assembly syntax variant no.
493   int AsmVariantID;
494 
495   /// AsmString - The assembly string for this instruction (with variants
496   /// removed), e.g. "movsx $src, $dst".
497   std::string AsmString;
498 
499   /// TheDef - This is the definition of the instruction or InstAlias that this
500   /// matchable came from.
501   Record *const TheDef;
502 
503   /// DefRec - This is the definition that it came from.
504   PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
505 
506   const CodeGenInstruction *getResultInst() const {
507     if (DefRec.is<const CodeGenInstruction*>())
508       return DefRec.get<const CodeGenInstruction*>();
509     return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
510   }
511 
512   /// ResOperands - This is the operand list that should be built for the result
513   /// MCInst.
514   SmallVector<ResOperand, 8> ResOperands;
515 
516   /// Mnemonic - This is the first token of the matched instruction, its
517   /// mnemonic.
518   StringRef Mnemonic;
519 
520   /// AsmOperands - The textual operands that this instruction matches,
521   /// annotated with a class and where in the OperandList they were defined.
522   /// This directly corresponds to the tokenized AsmString after the mnemonic is
523   /// removed.
524   SmallVector<AsmOperand, 8> AsmOperands;
525 
526   /// Predicates - The required subtarget features to match this instruction.
527   SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures;
528 
529   /// ConversionFnKind - The enum value which is passed to the generated
530   /// convertToMCInst to convert parsed operands into an MCInst for this
531   /// function.
532   std::string ConversionFnKind;
533 
534   /// If this instruction is deprecated in some form.
535   bool HasDeprecation;
536 
537   /// If this is an alias, this is use to determine whether or not to using
538   /// the conversion function defined by the instruction's AsmMatchConverter
539   /// or to use the function generated by the alias.
540   bool UseInstAsmMatchConverter;
541 
542   MatchableInfo(const CodeGenInstruction &CGI)
543     : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI),
544       UseInstAsmMatchConverter(true) {
545   }
546 
547   MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias)
548     : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef),
549       DefRec(Alias.release()),
550       UseInstAsmMatchConverter(
551         TheDef->getValueAsBit("UseInstAsmMatchConverter")) {
552   }
553 
554   // Could remove this and the dtor if PointerUnion supported unique_ptr
555   // elements with a dynamic failure/assertion (like the one below) in the case
556   // where it was copied while being in an owning state.
557   MatchableInfo(const MatchableInfo &RHS)
558       : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString),
559         TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands),
560         Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands),
561         RequiredFeatures(RHS.RequiredFeatures),
562         ConversionFnKind(RHS.ConversionFnKind),
563         HasDeprecation(RHS.HasDeprecation),
564         UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) {
565     assert(!DefRec.is<const CodeGenInstAlias *>());
566   }
567 
568   ~MatchableInfo() {
569     delete DefRec.dyn_cast<const CodeGenInstAlias*>();
570   }
571 
572   // Two-operand aliases clone from the main matchable, but mark the second
573   // operand as a tied operand of the first for purposes of the assembler.
574   void formTwoOperandAlias(StringRef Constraint);
575 
576   void initialize(const AsmMatcherInfo &Info,
577                   SmallPtrSetImpl<Record*> &SingletonRegisters,
578                   AsmVariantInfo const &Variant,
579                   bool HasMnemonicFirst);
580 
581   /// validate - Return true if this matchable is a valid thing to match against
582   /// and perform a bunch of validity checking.
583   bool validate(StringRef CommentDelimiter, bool IsAlias) const;
584 
585   /// findAsmOperand - Find the AsmOperand with the specified name and
586   /// suboperand index.
587   int findAsmOperand(StringRef N, int SubOpIdx) const {
588     auto I = find_if(AsmOperands, [&](const AsmOperand &Op) {
589       return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx;
590     });
591     return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
592   }
593 
594   /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
595   /// This does not check the suboperand index.
596   int findAsmOperandNamed(StringRef N, int LastIdx = -1) const {
597     auto I = std::find_if(AsmOperands.begin() + LastIdx + 1, AsmOperands.end(),
598                      [&](const AsmOperand &Op) { return Op.SrcOpName == N; });
599     return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
600   }
601 
602   int findAsmOperandOriginallyNamed(StringRef N) const {
603     auto I =
604         find_if(AsmOperands,
605                 [&](const AsmOperand &Op) { return Op.OrigSrcOpName == N; });
606     return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
607   }
608 
609   void buildInstructionResultOperands();
610   void buildAliasResultOperands(bool AliasConstraintsAreChecked);
611 
612   /// operator< - Compare two matchables.
613   bool operator<(const MatchableInfo &RHS) const {
614     // The primary comparator is the instruction mnemonic.
615     if (int Cmp = Mnemonic.compare_lower(RHS.Mnemonic))
616       return Cmp == -1;
617 
618     if (AsmOperands.size() != RHS.AsmOperands.size())
619       return AsmOperands.size() < RHS.AsmOperands.size();
620 
621     // Compare lexicographically by operand. The matcher validates that other
622     // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
623     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
624       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
625         return true;
626       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
627         return false;
628     }
629 
630     // Give matches that require more features higher precedence. This is useful
631     // because we cannot define AssemblerPredicates with the negation of
632     // processor features. For example, ARM v6 "nop" may be either a HINT or
633     // MOV. With v6, we want to match HINT. The assembler has no way to
634     // predicate MOV under "NoV6", but HINT will always match first because it
635     // requires V6 while MOV does not.
636     if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
637       return RequiredFeatures.size() > RHS.RequiredFeatures.size();
638 
639     return false;
640   }
641 
642   /// couldMatchAmbiguouslyWith - Check whether this matchable could
643   /// ambiguously match the same set of operands as \p RHS (without being a
644   /// strictly superior match).
645   bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const {
646     // The primary comparator is the instruction mnemonic.
647     if (Mnemonic != RHS.Mnemonic)
648       return false;
649 
650     // Different variants can't conflict.
651     if (AsmVariantID != RHS.AsmVariantID)
652       return false;
653 
654     // The number of operands is unambiguous.
655     if (AsmOperands.size() != RHS.AsmOperands.size())
656       return false;
657 
658     // Otherwise, make sure the ordering of the two instructions is unambiguous
659     // by checking that either (a) a token or operand kind discriminates them,
660     // or (b) the ordering among equivalent kinds is consistent.
661 
662     // Tokens and operand kinds are unambiguous (assuming a correct target
663     // specific parser).
664     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
665       if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
666           AsmOperands[i].Class->Kind == ClassInfo::Token)
667         if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
668             *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
669           return false;
670 
671     // Otherwise, this operand could commute if all operands are equivalent, or
672     // there is a pair of operands that compare less than and a pair that
673     // compare greater than.
674     bool HasLT = false, HasGT = false;
675     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
676       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
677         HasLT = true;
678       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
679         HasGT = true;
680     }
681 
682     return HasLT == HasGT;
683   }
684 
685   void dump() const;
686 
687 private:
688   void tokenizeAsmString(AsmMatcherInfo const &Info,
689                          AsmVariantInfo const &Variant);
690   void addAsmOperand(StringRef Token, bool IsIsolatedToken = false);
691 };
692 
693 struct OperandMatchEntry {
694   unsigned OperandMask;
695   const MatchableInfo* MI;
696   ClassInfo *CI;
697 
698   static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci,
699                                   unsigned opMask) {
700     OperandMatchEntry X;
701     X.OperandMask = opMask;
702     X.CI = ci;
703     X.MI = mi;
704     return X;
705   }
706 };
707 
708 class AsmMatcherInfo {
709 public:
710   /// Tracked Records
711   RecordKeeper &Records;
712 
713   /// The tablegen AsmParser record.
714   Record *AsmParser;
715 
716   /// Target - The target information.
717   CodeGenTarget &Target;
718 
719   /// The classes which are needed for matching.
720   std::forward_list<ClassInfo> Classes;
721 
722   /// The information on the matchables to match.
723   std::vector<std::unique_ptr<MatchableInfo>> Matchables;
724 
725   /// Info for custom matching operands by user defined methods.
726   std::vector<OperandMatchEntry> OperandMatchInfo;
727 
728   /// Map of Register records to their class information.
729   typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy;
730   RegisterClassesTy RegisterClasses;
731 
732   /// Map of Predicate records to their subtarget information.
733   std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures;
734 
735   /// Map of AsmOperandClass records to their class information.
736   std::map<Record*, ClassInfo*> AsmOperandClasses;
737 
738   /// Map of RegisterClass records to their class information.
739   std::map<Record*, ClassInfo*> RegisterClassClasses;
740 
741 private:
742   /// Map of token to class information which has already been constructed.
743   std::map<std::string, ClassInfo*> TokenClasses;
744 
745 private:
746   /// getTokenClass - Lookup or create the class for the given token.
747   ClassInfo *getTokenClass(StringRef Token);
748 
749   /// getOperandClass - Lookup or create the class for the given operand.
750   ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
751                              int SubOpIdx);
752   ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
753 
754   /// buildRegisterClasses - Build the ClassInfo* instances for register
755   /// classes.
756   void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters);
757 
758   /// buildOperandClasses - Build the ClassInfo* instances for user defined
759   /// operand classes.
760   void buildOperandClasses();
761 
762   void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
763                                         unsigned AsmOpIdx);
764   void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
765                                   MatchableInfo::AsmOperand &Op);
766 
767 public:
768   AsmMatcherInfo(Record *AsmParser,
769                  CodeGenTarget &Target,
770                  RecordKeeper &Records);
771 
772   /// Construct the various tables used during matching.
773   void buildInfo();
774 
775   /// buildOperandMatchInfo - Build the necessary information to handle user
776   /// defined operand parsing methods.
777   void buildOperandMatchInfo();
778 
779   /// getSubtargetFeature - Lookup or create the subtarget feature info for the
780   /// given operand.
781   const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
782     assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
783     const auto &I = SubtargetFeatures.find(Def);
784     return I == SubtargetFeatures.end() ? nullptr : &I->second;
785   }
786 
787   RecordKeeper &getRecords() const {
788     return Records;
789   }
790 
791   bool hasOptionalOperands() const {
792     return any_of(Classes,
793                   [](const ClassInfo &Class) { return Class.IsOptional; });
794   }
795 };
796 
797 } // end anonymous namespace
798 
799 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
800 LLVM_DUMP_METHOD void MatchableInfo::dump() const {
801   errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
802 
803   errs() << "  variant: " << AsmVariantID << "\n";
804 
805   for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
806     const AsmOperand &Op = AsmOperands[i];
807     errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
808     errs() << '\"' << Op.Token << "\"\n";
809   }
810 }
811 #endif
812 
813 static std::pair<StringRef, StringRef>
814 parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
815   // Split via the '='.
816   std::pair<StringRef, StringRef> Ops = S.split('=');
817   if (Ops.second == "")
818     PrintFatalError(Loc, "missing '=' in two-operand alias constraint");
819   // Trim whitespace and the leading '$' on the operand names.
820   size_t start = Ops.first.find_first_of('$');
821   if (start == std::string::npos)
822     PrintFatalError(Loc, "expected '$' prefix on asm operand name");
823   Ops.first = Ops.first.slice(start + 1, std::string::npos);
824   size_t end = Ops.first.find_last_of(" \t");
825   Ops.first = Ops.first.slice(0, end);
826   // Now the second operand.
827   start = Ops.second.find_first_of('$');
828   if (start == std::string::npos)
829     PrintFatalError(Loc, "expected '$' prefix on asm operand name");
830   Ops.second = Ops.second.slice(start + 1, std::string::npos);
831   end = Ops.second.find_last_of(" \t");
832   Ops.first = Ops.first.slice(0, end);
833   return Ops;
834 }
835 
836 void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
837   // Figure out which operands are aliased and mark them as tied.
838   std::pair<StringRef, StringRef> Ops =
839     parseTwoOperandConstraint(Constraint, TheDef->getLoc());
840 
841   // Find the AsmOperands that refer to the operands we're aliasing.
842   int SrcAsmOperand = findAsmOperandNamed(Ops.first);
843   int DstAsmOperand = findAsmOperandNamed(Ops.second);
844   if (SrcAsmOperand == -1)
845     PrintFatalError(TheDef->getLoc(),
846                     "unknown source two-operand alias operand '" + Ops.first +
847                     "'.");
848   if (DstAsmOperand == -1)
849     PrintFatalError(TheDef->getLoc(),
850                     "unknown destination two-operand alias operand '" +
851                     Ops.second + "'.");
852 
853   // Find the ResOperand that refers to the operand we're aliasing away
854   // and update it to refer to the combined operand instead.
855   for (ResOperand &Op : ResOperands) {
856     if (Op.Kind == ResOperand::RenderAsmOperand &&
857         Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
858       Op.AsmOperandNum = DstAsmOperand;
859       break;
860     }
861   }
862   // Remove the AsmOperand for the alias operand.
863   AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
864   // Adjust the ResOperand references to any AsmOperands that followed
865   // the one we just deleted.
866   for (ResOperand &Op : ResOperands) {
867     switch(Op.Kind) {
868     default:
869       // Nothing to do for operands that don't reference AsmOperands.
870       break;
871     case ResOperand::RenderAsmOperand:
872       if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
873         --Op.AsmOperandNum;
874       break;
875     }
876   }
877 }
878 
879 /// extractSingletonRegisterForAsmOperand - Extract singleton register,
880 /// if present, from specified token.
881 static void
882 extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op,
883                                       const AsmMatcherInfo &Info,
884                                       StringRef RegisterPrefix) {
885   StringRef Tok = Op.Token;
886 
887   // If this token is not an isolated token, i.e., it isn't separated from
888   // other tokens (e.g. with whitespace), don't interpret it as a register name.
889   if (!Op.IsIsolatedToken)
890     return;
891 
892   if (RegisterPrefix.empty()) {
893     std::string LoweredTok = Tok.lower();
894     if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
895       Op.SingletonReg = Reg->TheDef;
896     return;
897   }
898 
899   if (!Tok.startswith(RegisterPrefix))
900     return;
901 
902   StringRef RegName = Tok.substr(RegisterPrefix.size());
903   if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
904     Op.SingletonReg = Reg->TheDef;
905 
906   // If there is no register prefix (i.e. "%" in "%eax"), then this may
907   // be some random non-register token, just ignore it.
908 }
909 
910 void MatchableInfo::initialize(const AsmMatcherInfo &Info,
911                                SmallPtrSetImpl<Record*> &SingletonRegisters,
912                                AsmVariantInfo const &Variant,
913                                bool HasMnemonicFirst) {
914   AsmVariantID = Variant.AsmVariantNo;
915   AsmString =
916     CodeGenInstruction::FlattenAsmStringVariants(AsmString,
917                                                  Variant.AsmVariantNo);
918 
919   tokenizeAsmString(Info, Variant);
920 
921   // The first token of the instruction is the mnemonic, which must be a
922   // simple string, not a $foo variable or a singleton register.
923   if (AsmOperands.empty())
924     PrintFatalError(TheDef->getLoc(),
925                   "Instruction '" + TheDef->getName() + "' has no tokens");
926 
927   assert(!AsmOperands[0].Token.empty());
928   if (HasMnemonicFirst) {
929     Mnemonic = AsmOperands[0].Token;
930     if (Mnemonic[0] == '$')
931       PrintFatalError(TheDef->getLoc(),
932                       "Invalid instruction mnemonic '" + Mnemonic + "'!");
933 
934     // Remove the first operand, it is tracked in the mnemonic field.
935     AsmOperands.erase(AsmOperands.begin());
936   } else if (AsmOperands[0].Token[0] != '$')
937     Mnemonic = AsmOperands[0].Token;
938 
939   // Compute the require features.
940   for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates"))
941     if (const SubtargetFeatureInfo *Feature =
942             Info.getSubtargetFeature(Predicate))
943       RequiredFeatures.push_back(Feature);
944 
945   // Collect singleton registers, if used.
946   for (MatchableInfo::AsmOperand &Op : AsmOperands) {
947     extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix);
948     if (Record *Reg = Op.SingletonReg)
949       SingletonRegisters.insert(Reg);
950   }
951 
952   const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask");
953   if (!DepMask)
954     DepMask = TheDef->getValue("ComplexDeprecationPredicate");
955 
956   HasDeprecation =
957       DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false;
958 }
959 
960 /// Append an AsmOperand for the given substring of AsmString.
961 void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) {
962   AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token));
963 }
964 
965 /// tokenizeAsmString - Tokenize a simplified assembly string.
966 void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info,
967                                       AsmVariantInfo const &Variant) {
968   StringRef String = AsmString;
969   size_t Prev = 0;
970   bool InTok = false;
971   bool IsIsolatedToken = true;
972   for (size_t i = 0, e = String.size(); i != e; ++i) {
973     char Char = String[i];
974     if (Variant.BreakCharacters.find(Char) != std::string::npos) {
975       if (InTok) {
976         addAsmOperand(String.slice(Prev, i), false);
977         Prev = i;
978         IsIsolatedToken = false;
979       }
980       InTok = true;
981       continue;
982     }
983     if (Variant.TokenizingCharacters.find(Char) != std::string::npos) {
984       if (InTok) {
985         addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
986         InTok = false;
987         IsIsolatedToken = false;
988       }
989       addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
990       Prev = i + 1;
991       IsIsolatedToken = true;
992       continue;
993     }
994     if (Variant.SeparatorCharacters.find(Char) != std::string::npos) {
995       if (InTok) {
996         addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
997         InTok = false;
998       }
999       Prev = i + 1;
1000       IsIsolatedToken = true;
1001       continue;
1002     }
1003 
1004     switch (Char) {
1005     case '\\':
1006       if (InTok) {
1007         addAsmOperand(String.slice(Prev, i), false);
1008         InTok = false;
1009         IsIsolatedToken = false;
1010       }
1011       ++i;
1012       assert(i != String.size() && "Invalid quoted character");
1013       addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
1014       Prev = i + 1;
1015       IsIsolatedToken = false;
1016       break;
1017 
1018     case '$': {
1019       if (InTok) {
1020         addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
1021         InTok = false;
1022         IsIsolatedToken = false;
1023       }
1024 
1025       // If this isn't "${", start new identifier looking like "$xxx"
1026       if (i + 1 == String.size() || String[i + 1] != '{') {
1027         Prev = i;
1028         break;
1029       }
1030 
1031       size_t EndPos = String.find('}', i);
1032       assert(EndPos != StringRef::npos &&
1033              "Missing brace in operand reference!");
1034       addAsmOperand(String.slice(i, EndPos+1), IsIsolatedToken);
1035       Prev = EndPos + 1;
1036       i = EndPos;
1037       IsIsolatedToken = false;
1038       break;
1039     }
1040 
1041     default:
1042       InTok = true;
1043       break;
1044     }
1045   }
1046   if (InTok && Prev != String.size())
1047     addAsmOperand(String.substr(Prev), IsIsolatedToken);
1048 }
1049 
1050 bool MatchableInfo::validate(StringRef CommentDelimiter, bool IsAlias) const {
1051   // Reject matchables with no .s string.
1052   if (AsmString.empty())
1053     PrintFatalError(TheDef->getLoc(), "instruction with empty asm string");
1054 
1055   // Reject any matchables with a newline in them, they should be marked
1056   // isCodeGenOnly if they are pseudo instructions.
1057   if (AsmString.find('\n') != std::string::npos)
1058     PrintFatalError(TheDef->getLoc(),
1059                   "multiline instruction is not valid for the asmparser, "
1060                   "mark it isCodeGenOnly");
1061 
1062   // Remove comments from the asm string.  We know that the asmstring only
1063   // has one line.
1064   if (!CommentDelimiter.empty() &&
1065       StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
1066     PrintFatalError(TheDef->getLoc(),
1067                   "asmstring for instruction has comment character in it, "
1068                   "mark it isCodeGenOnly");
1069 
1070   // Reject matchables with operand modifiers, these aren't something we can
1071   // handle, the target should be refactored to use operands instead of
1072   // modifiers.
1073   //
1074   // Also, check for instructions which reference the operand multiple times,
1075   // if they don't define a custom AsmMatcher: this implies a constraint that
1076   // the built-in matching code would not honor.
1077   std::set<std::string> OperandNames;
1078   for (const AsmOperand &Op : AsmOperands) {
1079     StringRef Tok = Op.Token;
1080     if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
1081       PrintFatalError(TheDef->getLoc(),
1082                       "matchable with operand modifier '" + Tok +
1083                       "' not supported by asm matcher.  Mark isCodeGenOnly!");
1084     // Verify that any operand is only mentioned once.
1085     // We reject aliases and ignore instructions for now.
1086     if (!IsAlias && TheDef->getValueAsString("AsmMatchConverter").empty() &&
1087         Tok[0] == '$' && !OperandNames.insert(std::string(Tok)).second) {
1088       LLVM_DEBUG({
1089         errs() << "warning: '" << TheDef->getName() << "': "
1090                << "ignoring instruction with tied operand '"
1091                << Tok << "'\n";
1092       });
1093       return false;
1094     }
1095   }
1096 
1097   return true;
1098 }
1099 
1100 static std::string getEnumNameForToken(StringRef Str) {
1101   std::string Res;
1102 
1103   for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
1104     switch (*it) {
1105     case '*': Res += "_STAR_"; break;
1106     case '%': Res += "_PCT_"; break;
1107     case ':': Res += "_COLON_"; break;
1108     case '!': Res += "_EXCLAIM_"; break;
1109     case '.': Res += "_DOT_"; break;
1110     case '<': Res += "_LT_"; break;
1111     case '>': Res += "_GT_"; break;
1112     case '-': Res += "_MINUS_"; break;
1113     case '#': Res += "_HASH_"; break;
1114     default:
1115       if (isAlnum(*it))
1116         Res += *it;
1117       else
1118         Res += "_" + utostr((unsigned) *it) + "_";
1119     }
1120   }
1121 
1122   return Res;
1123 }
1124 
1125 ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
1126   ClassInfo *&Entry = TokenClasses[std::string(Token)];
1127 
1128   if (!Entry) {
1129     Classes.emplace_front();
1130     Entry = &Classes.front();
1131     Entry->Kind = ClassInfo::Token;
1132     Entry->ClassName = "Token";
1133     Entry->Name = "MCK_" + getEnumNameForToken(Token);
1134     Entry->ValueName = std::string(Token);
1135     Entry->PredicateMethod = "<invalid>";
1136     Entry->RenderMethod = "<invalid>";
1137     Entry->ParserMethod = "";
1138     Entry->DiagnosticType = "";
1139     Entry->IsOptional = false;
1140     Entry->DefaultMethod = "<invalid>";
1141   }
1142 
1143   return Entry;
1144 }
1145 
1146 ClassInfo *
1147 AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
1148                                 int SubOpIdx) {
1149   Record *Rec = OI.Rec;
1150   if (SubOpIdx != -1)
1151     Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
1152   return getOperandClass(Rec, SubOpIdx);
1153 }
1154 
1155 ClassInfo *
1156 AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
1157   if (Rec->isSubClassOf("RegisterOperand")) {
1158     // RegisterOperand may have an associated ParserMatchClass. If it does,
1159     // use it, else just fall back to the underlying register class.
1160     const RecordVal *R = Rec->getValue("ParserMatchClass");
1161     if (!R || !R->getValue())
1162       PrintFatalError(Rec->getLoc(),
1163                       "Record `" + Rec->getName() +
1164                           "' does not have a ParserMatchClass!\n");
1165 
1166     if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) {
1167       Record *MatchClass = DI->getDef();
1168       if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1169         return CI;
1170     }
1171 
1172     // No custom match class. Just use the register class.
1173     Record *ClassRec = Rec->getValueAsDef("RegClass");
1174     if (!ClassRec)
1175       PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
1176                     "' has no associated register class!\n");
1177     if (ClassInfo *CI = RegisterClassClasses[ClassRec])
1178       return CI;
1179     PrintFatalError(Rec->getLoc(), "register class has no class info!");
1180   }
1181 
1182   if (Rec->isSubClassOf("RegisterClass")) {
1183     if (ClassInfo *CI = RegisterClassClasses[Rec])
1184       return CI;
1185     PrintFatalError(Rec->getLoc(), "register class has no class info!");
1186   }
1187 
1188   if (!Rec->isSubClassOf("Operand"))
1189     PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() +
1190                   "' does not derive from class Operand!\n");
1191   Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1192   if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1193     return CI;
1194 
1195   PrintFatalError(Rec->getLoc(), "operand has no match class!");
1196 }
1197 
1198 struct LessRegisterSet {
1199   bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const {
1200     // std::set<T> defines its own compariso "operator<", but it
1201     // performs a lexicographical comparison by T's innate comparison
1202     // for some reason. We don't want non-deterministic pointer
1203     // comparisons so use this instead.
1204     return std::lexicographical_compare(LHS.begin(), LHS.end(),
1205                                         RHS.begin(), RHS.end(),
1206                                         LessRecordByID());
1207   }
1208 };
1209 
1210 void AsmMatcherInfo::
1211 buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) {
1212   const auto &Registers = Target.getRegBank().getRegisters();
1213   auto &RegClassList = Target.getRegBank().getRegClasses();
1214 
1215   typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet;
1216 
1217   // The register sets used for matching.
1218   RegisterSetSet RegisterSets;
1219 
1220   // Gather the defined sets.
1221   for (const CodeGenRegisterClass &RC : RegClassList)
1222     RegisterSets.insert(
1223         RegisterSet(RC.getOrder().begin(), RC.getOrder().end()));
1224 
1225   // Add any required singleton sets.
1226   for (Record *Rec : SingletonRegisters) {
1227     RegisterSets.insert(RegisterSet(&Rec, &Rec + 1));
1228   }
1229 
1230   // Introduce derived sets where necessary (when a register does not determine
1231   // a unique register set class), and build the mapping of registers to the set
1232   // they should classify to.
1233   std::map<Record*, RegisterSet> RegisterMap;
1234   for (const CodeGenRegister &CGR : Registers) {
1235     // Compute the intersection of all sets containing this register.
1236     RegisterSet ContainingSet;
1237 
1238     for (const RegisterSet &RS : RegisterSets) {
1239       if (!RS.count(CGR.TheDef))
1240         continue;
1241 
1242       if (ContainingSet.empty()) {
1243         ContainingSet = RS;
1244         continue;
1245       }
1246 
1247       RegisterSet Tmp;
1248       std::swap(Tmp, ContainingSet);
1249       std::insert_iterator<RegisterSet> II(ContainingSet,
1250                                            ContainingSet.begin());
1251       std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II,
1252                             LessRecordByID());
1253     }
1254 
1255     if (!ContainingSet.empty()) {
1256       RegisterSets.insert(ContainingSet);
1257       RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
1258     }
1259   }
1260 
1261   // Construct the register classes.
1262   std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses;
1263   unsigned Index = 0;
1264   for (const RegisterSet &RS : RegisterSets) {
1265     Classes.emplace_front();
1266     ClassInfo *CI = &Classes.front();
1267     CI->Kind = ClassInfo::RegisterClass0 + Index;
1268     CI->ClassName = "Reg" + utostr(Index);
1269     CI->Name = "MCK_Reg" + utostr(Index);
1270     CI->ValueName = "";
1271     CI->PredicateMethod = ""; // unused
1272     CI->RenderMethod = "addRegOperands";
1273     CI->Registers = RS;
1274     // FIXME: diagnostic type.
1275     CI->DiagnosticType = "";
1276     CI->IsOptional = false;
1277     CI->DefaultMethod = ""; // unused
1278     RegisterSetClasses.insert(std::make_pair(RS, CI));
1279     ++Index;
1280   }
1281 
1282   // Find the superclasses; we could compute only the subgroup lattice edges,
1283   // but there isn't really a point.
1284   for (const RegisterSet &RS : RegisterSets) {
1285     ClassInfo *CI = RegisterSetClasses[RS];
1286     for (const RegisterSet &RS2 : RegisterSets)
1287       if (RS != RS2 &&
1288           std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(),
1289                         LessRecordByID()))
1290         CI->SuperClasses.push_back(RegisterSetClasses[RS2]);
1291   }
1292 
1293   // Name the register classes which correspond to a user defined RegisterClass.
1294   for (const CodeGenRegisterClass &RC : RegClassList) {
1295     // Def will be NULL for non-user defined register classes.
1296     Record *Def = RC.getDef();
1297     if (!Def)
1298       continue;
1299     ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(),
1300                                                    RC.getOrder().end())];
1301     if (CI->ValueName.empty()) {
1302       CI->ClassName = RC.getName();
1303       CI->Name = "MCK_" + RC.getName();
1304       CI->ValueName = RC.getName();
1305     } else
1306       CI->ValueName = CI->ValueName + "," + RC.getName();
1307 
1308     Init *DiagnosticType = Def->getValueInit("DiagnosticType");
1309     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
1310       CI->DiagnosticType = std::string(SI->getValue());
1311 
1312     Init *DiagnosticString = Def->getValueInit("DiagnosticString");
1313     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString))
1314       CI->DiagnosticString = std::string(SI->getValue());
1315 
1316     // If we have a diagnostic string but the diagnostic type is not specified
1317     // explicitly, create an anonymous diagnostic type.
1318     if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty())
1319       CI->DiagnosticType = RC.getName();
1320 
1321     RegisterClassClasses.insert(std::make_pair(Def, CI));
1322   }
1323 
1324   // Populate the map for individual registers.
1325   for (std::map<Record*, RegisterSet>::iterator it = RegisterMap.begin(),
1326          ie = RegisterMap.end(); it != ie; ++it)
1327     RegisterClasses[it->first] = RegisterSetClasses[it->second];
1328 
1329   // Name the register classes which correspond to singleton registers.
1330   for (Record *Rec : SingletonRegisters) {
1331     ClassInfo *CI = RegisterClasses[Rec];
1332     assert(CI && "Missing singleton register class info!");
1333 
1334     if (CI->ValueName.empty()) {
1335       CI->ClassName = std::string(Rec->getName());
1336       CI->Name = "MCK_" + Rec->getName().str();
1337       CI->ValueName = std::string(Rec->getName());
1338     } else
1339       CI->ValueName = CI->ValueName + "," + Rec->getName().str();
1340   }
1341 }
1342 
1343 void AsmMatcherInfo::buildOperandClasses() {
1344   std::vector<Record*> AsmOperands =
1345     Records.getAllDerivedDefinitions("AsmOperandClass");
1346 
1347   // Pre-populate AsmOperandClasses map.
1348   for (Record *Rec : AsmOperands) {
1349     Classes.emplace_front();
1350     AsmOperandClasses[Rec] = &Classes.front();
1351   }
1352 
1353   unsigned Index = 0;
1354   for (Record *Rec : AsmOperands) {
1355     ClassInfo *CI = AsmOperandClasses[Rec];
1356     CI->Kind = ClassInfo::UserClass0 + Index;
1357 
1358     ListInit *Supers = Rec->getValueAsListInit("SuperClasses");
1359     for (Init *I : Supers->getValues()) {
1360       DefInit *DI = dyn_cast<DefInit>(I);
1361       if (!DI) {
1362         PrintError(Rec->getLoc(), "Invalid super class reference!");
1363         continue;
1364       }
1365 
1366       ClassInfo *SC = AsmOperandClasses[DI->getDef()];
1367       if (!SC)
1368         PrintError(Rec->getLoc(), "Invalid super class reference!");
1369       else
1370         CI->SuperClasses.push_back(SC);
1371     }
1372     CI->ClassName = std::string(Rec->getValueAsString("Name"));
1373     CI->Name = "MCK_" + CI->ClassName;
1374     CI->ValueName = std::string(Rec->getName());
1375 
1376     // Get or construct the predicate method name.
1377     Init *PMName = Rec->getValueInit("PredicateMethod");
1378     if (StringInit *SI = dyn_cast<StringInit>(PMName)) {
1379       CI->PredicateMethod = std::string(SI->getValue());
1380     } else {
1381       assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!");
1382       CI->PredicateMethod = "is" + CI->ClassName;
1383     }
1384 
1385     // Get or construct the render method name.
1386     Init *RMName = Rec->getValueInit("RenderMethod");
1387     if (StringInit *SI = dyn_cast<StringInit>(RMName)) {
1388       CI->RenderMethod = std::string(SI->getValue());
1389     } else {
1390       assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!");
1391       CI->RenderMethod = "add" + CI->ClassName + "Operands";
1392     }
1393 
1394     // Get the parse method name or leave it as empty.
1395     Init *PRMName = Rec->getValueInit("ParserMethod");
1396     if (StringInit *SI = dyn_cast<StringInit>(PRMName))
1397       CI->ParserMethod = std::string(SI->getValue());
1398 
1399     // Get the diagnostic type and string or leave them as empty.
1400     Init *DiagnosticType = Rec->getValueInit("DiagnosticType");
1401     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
1402       CI->DiagnosticType = std::string(SI->getValue());
1403     Init *DiagnosticString = Rec->getValueInit("DiagnosticString");
1404     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString))
1405       CI->DiagnosticString = std::string(SI->getValue());
1406     // If we have a DiagnosticString, we need a DiagnosticType for use within
1407     // the matcher.
1408     if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty())
1409       CI->DiagnosticType = CI->ClassName;
1410 
1411     Init *IsOptional = Rec->getValueInit("IsOptional");
1412     if (BitInit *BI = dyn_cast<BitInit>(IsOptional))
1413       CI->IsOptional = BI->getValue();
1414 
1415     // Get or construct the default method name.
1416     Init *DMName = Rec->getValueInit("DefaultMethod");
1417     if (StringInit *SI = dyn_cast<StringInit>(DMName)) {
1418       CI->DefaultMethod = std::string(SI->getValue());
1419     } else {
1420       assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!");
1421       CI->DefaultMethod = "default" + CI->ClassName + "Operands";
1422     }
1423 
1424     ++Index;
1425   }
1426 }
1427 
1428 AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
1429                                CodeGenTarget &target,
1430                                RecordKeeper &records)
1431   : Records(records), AsmParser(asmParser), Target(target) {
1432 }
1433 
1434 /// buildOperandMatchInfo - Build the necessary information to handle user
1435 /// defined operand parsing methods.
1436 void AsmMatcherInfo::buildOperandMatchInfo() {
1437 
1438   /// Map containing a mask with all operands indices that can be found for
1439   /// that class inside a instruction.
1440   typedef std::map<ClassInfo *, unsigned, deref<std::less<>>> OpClassMaskTy;
1441   OpClassMaskTy OpClassMask;
1442 
1443   for (const auto &MI : Matchables) {
1444     OpClassMask.clear();
1445 
1446     // Keep track of all operands of this instructions which belong to the
1447     // same class.
1448     for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
1449       const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
1450       if (Op.Class->ParserMethod.empty())
1451         continue;
1452       unsigned &OperandMask = OpClassMask[Op.Class];
1453       OperandMask |= (1 << i);
1454     }
1455 
1456     // Generate operand match info for each mnemonic/operand class pair.
1457     for (const auto &OCM : OpClassMask) {
1458       unsigned OpMask = OCM.second;
1459       ClassInfo *CI = OCM.first;
1460       OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI,
1461                                                            OpMask));
1462     }
1463   }
1464 }
1465 
1466 void AsmMatcherInfo::buildInfo() {
1467   // Build information about all of the AssemblerPredicates.
1468   const std::vector<std::pair<Record *, SubtargetFeatureInfo>>
1469       &SubtargetFeaturePairs = SubtargetFeatureInfo::getAll(Records);
1470   SubtargetFeatures.insert(SubtargetFeaturePairs.begin(),
1471                            SubtargetFeaturePairs.end());
1472 #ifndef NDEBUG
1473   for (const auto &Pair : SubtargetFeatures)
1474     LLVM_DEBUG(Pair.second.dump());
1475 #endif // NDEBUG
1476 
1477   bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
1478   bool ReportMultipleNearMisses =
1479       AsmParser->getValueAsBit("ReportMultipleNearMisses");
1480 
1481   // Parse the instructions; we need to do this first so that we can gather the
1482   // singleton register classes.
1483   SmallPtrSet<Record*, 16> SingletonRegisters;
1484   unsigned VariantCount = Target.getAsmParserVariantCount();
1485   for (unsigned VC = 0; VC != VariantCount; ++VC) {
1486     Record *AsmVariant = Target.getAsmParserVariant(VC);
1487     StringRef CommentDelimiter =
1488         AsmVariant->getValueAsString("CommentDelimiter");
1489     AsmVariantInfo Variant;
1490     Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
1491     Variant.TokenizingCharacters =
1492         AsmVariant->getValueAsString("TokenizingCharacters");
1493     Variant.SeparatorCharacters =
1494         AsmVariant->getValueAsString("SeparatorCharacters");
1495     Variant.BreakCharacters =
1496         AsmVariant->getValueAsString("BreakCharacters");
1497     Variant.Name = AsmVariant->getValueAsString("Name");
1498     Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant");
1499 
1500     for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) {
1501 
1502       // If the tblgen -match-prefix option is specified (for tblgen hackers),
1503       // filter the set of instructions we consider.
1504       if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix))
1505         continue;
1506 
1507       // Ignore "codegen only" instructions.
1508       if (CGI->TheDef->getValueAsBit("isCodeGenOnly"))
1509         continue;
1510 
1511       // Ignore instructions for different instructions
1512       StringRef V = CGI->TheDef->getValueAsString("AsmVariantName");
1513       if (!V.empty() && V != Variant.Name)
1514         continue;
1515 
1516       auto II = std::make_unique<MatchableInfo>(*CGI);
1517 
1518       II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
1519 
1520       // Ignore instructions which shouldn't be matched and diagnose invalid
1521       // instruction definitions with an error.
1522       if (!II->validate(CommentDelimiter, false))
1523         continue;
1524 
1525       Matchables.push_back(std::move(II));
1526     }
1527 
1528     // Parse all of the InstAlias definitions and stick them in the list of
1529     // matchables.
1530     std::vector<Record*> AllInstAliases =
1531       Records.getAllDerivedDefinitions("InstAlias");
1532     for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
1533       auto Alias = std::make_unique<CodeGenInstAlias>(AllInstAliases[i],
1534                                                        Target);
1535 
1536       // If the tblgen -match-prefix option is specified (for tblgen hackers),
1537       // filter the set of instruction aliases we consider, based on the target
1538       // instruction.
1539       if (!StringRef(Alias->ResultInst->TheDef->getName())
1540             .startswith( MatchPrefix))
1541         continue;
1542 
1543       StringRef V = Alias->TheDef->getValueAsString("AsmVariantName");
1544       if (!V.empty() && V != Variant.Name)
1545         continue;
1546 
1547       auto II = std::make_unique<MatchableInfo>(std::move(Alias));
1548 
1549       II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
1550 
1551       // Validate the alias definitions.
1552       II->validate(CommentDelimiter, true);
1553 
1554       Matchables.push_back(std::move(II));
1555     }
1556   }
1557 
1558   // Build info for the register classes.
1559   buildRegisterClasses(SingletonRegisters);
1560 
1561   // Build info for the user defined assembly operand classes.
1562   buildOperandClasses();
1563 
1564   // Build the information about matchables, now that we have fully formed
1565   // classes.
1566   std::vector<std::unique_ptr<MatchableInfo>> NewMatchables;
1567   for (auto &II : Matchables) {
1568     // Parse the tokens after the mnemonic.
1569     // Note: buildInstructionOperandReference may insert new AsmOperands, so
1570     // don't precompute the loop bound.
1571     for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
1572       MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
1573       StringRef Token = Op.Token;
1574 
1575       // Check for singleton registers.
1576       if (Record *RegRecord = Op.SingletonReg) {
1577         Op.Class = RegisterClasses[RegRecord];
1578         assert(Op.Class && Op.Class->Registers.size() == 1 &&
1579                "Unexpected class for singleton register");
1580         continue;
1581       }
1582 
1583       // Check for simple tokens.
1584       if (Token[0] != '$') {
1585         Op.Class = getTokenClass(Token);
1586         continue;
1587       }
1588 
1589       if (Token.size() > 1 && isdigit(Token[1])) {
1590         Op.Class = getTokenClass(Token);
1591         continue;
1592       }
1593 
1594       // Otherwise this is an operand reference.
1595       StringRef OperandName;
1596       if (Token[1] == '{')
1597         OperandName = Token.substr(2, Token.size() - 3);
1598       else
1599         OperandName = Token.substr(1);
1600 
1601       if (II->DefRec.is<const CodeGenInstruction*>())
1602         buildInstructionOperandReference(II.get(), OperandName, i);
1603       else
1604         buildAliasOperandReference(II.get(), OperandName, Op);
1605     }
1606 
1607     if (II->DefRec.is<const CodeGenInstruction*>()) {
1608       II->buildInstructionResultOperands();
1609       // If the instruction has a two-operand alias, build up the
1610       // matchable here. We'll add them in bulk at the end to avoid
1611       // confusing this loop.
1612       StringRef Constraint =
1613           II->TheDef->getValueAsString("TwoOperandAliasConstraint");
1614       if (Constraint != "") {
1615         // Start by making a copy of the original matchable.
1616         auto AliasII = std::make_unique<MatchableInfo>(*II);
1617 
1618         // Adjust it to be a two-operand alias.
1619         AliasII->formTwoOperandAlias(Constraint);
1620 
1621         // Add the alias to the matchables list.
1622         NewMatchables.push_back(std::move(AliasII));
1623       }
1624     } else
1625       // FIXME: The tied operands checking is not yet integrated with the
1626       // framework for reporting multiple near misses. To prevent invalid
1627       // formats from being matched with an alias if a tied-operands check
1628       // would otherwise have disallowed it, we just disallow such constructs
1629       // in TableGen completely.
1630       II->buildAliasResultOperands(!ReportMultipleNearMisses);
1631   }
1632   if (!NewMatchables.empty())
1633     Matchables.insert(Matchables.end(),
1634                       std::make_move_iterator(NewMatchables.begin()),
1635                       std::make_move_iterator(NewMatchables.end()));
1636 
1637   // Process token alias definitions and set up the associated superclass
1638   // information.
1639   std::vector<Record*> AllTokenAliases =
1640     Records.getAllDerivedDefinitions("TokenAlias");
1641   for (Record *Rec : AllTokenAliases) {
1642     ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
1643     ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
1644     if (FromClass == ToClass)
1645       PrintFatalError(Rec->getLoc(),
1646                     "error: Destination value identical to source value.");
1647     FromClass->SuperClasses.push_back(ToClass);
1648   }
1649 
1650   // Reorder classes so that classes precede super classes.
1651   Classes.sort();
1652 
1653 #ifdef EXPENSIVE_CHECKS
1654   // Verify that the table is sorted and operator < works transitively.
1655   for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) {
1656     for (auto J = I; J != E; ++J) {
1657       assert(!(*J < *I));
1658       assert(I == J || !J->isSubsetOf(*I));
1659     }
1660   }
1661 #endif
1662 }
1663 
1664 /// buildInstructionOperandReference - The specified operand is a reference to a
1665 /// named operand such as $src.  Resolve the Class and OperandInfo pointers.
1666 void AsmMatcherInfo::
1667 buildInstructionOperandReference(MatchableInfo *II,
1668                                  StringRef OperandName,
1669                                  unsigned AsmOpIdx) {
1670   const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
1671   const CGIOperandList &Operands = CGI.Operands;
1672   MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
1673 
1674   // Map this token to an operand.
1675   unsigned Idx;
1676   if (!Operands.hasOperandNamed(OperandName, Idx))
1677     PrintFatalError(II->TheDef->getLoc(),
1678                     "error: unable to find operand: '" + OperandName + "'");
1679 
1680   // If the instruction operand has multiple suboperands, but the parser
1681   // match class for the asm operand is still the default "ImmAsmOperand",
1682   // then handle each suboperand separately.
1683   if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
1684     Record *Rec = Operands[Idx].Rec;
1685     assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
1686     Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1687     if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
1688       // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
1689       StringRef Token = Op->Token; // save this in case Op gets moved
1690       for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
1691         MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token);
1692         NewAsmOp.SubOpIdx = SI;
1693         II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
1694       }
1695       // Replace Op with first suboperand.
1696       Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
1697       Op->SubOpIdx = 0;
1698     }
1699   }
1700 
1701   // Set up the operand class.
1702   Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
1703   Op->OrigSrcOpName = OperandName;
1704 
1705   // If the named operand is tied, canonicalize it to the untied operand.
1706   // For example, something like:
1707   //   (outs GPR:$dst), (ins GPR:$src)
1708   // with an asmstring of
1709   //   "inc $src"
1710   // we want to canonicalize to:
1711   //   "inc $dst"
1712   // so that we know how to provide the $dst operand when filling in the result.
1713   int OITied = -1;
1714   if (Operands[Idx].MINumOperands == 1)
1715     OITied = Operands[Idx].getTiedRegister();
1716   if (OITied != -1) {
1717     // The tied operand index is an MIOperand index, find the operand that
1718     // contains it.
1719     std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
1720     OperandName = Operands[Idx.first].Name;
1721     Op->SubOpIdx = Idx.second;
1722   }
1723 
1724   Op->SrcOpName = OperandName;
1725 }
1726 
1727 /// buildAliasOperandReference - When parsing an operand reference out of the
1728 /// matching string (e.g. "movsx $src, $dst"), determine what the class of the
1729 /// operand reference is by looking it up in the result pattern definition.
1730 void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
1731                                                 StringRef OperandName,
1732                                                 MatchableInfo::AsmOperand &Op) {
1733   const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
1734 
1735   // Set up the operand class.
1736   for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
1737     if (CGA.ResultOperands[i].isRecord() &&
1738         CGA.ResultOperands[i].getName() == OperandName) {
1739       // It's safe to go with the first one we find, because CodeGenInstAlias
1740       // validates that all operands with the same name have the same record.
1741       Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
1742       // Use the match class from the Alias definition, not the
1743       // destination instruction, as we may have an immediate that's
1744       // being munged by the match class.
1745       Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
1746                                  Op.SubOpIdx);
1747       Op.SrcOpName = OperandName;
1748       Op.OrigSrcOpName = OperandName;
1749       return;
1750     }
1751 
1752   PrintFatalError(II->TheDef->getLoc(),
1753                   "error: unable to find operand: '" + OperandName + "'");
1754 }
1755 
1756 void MatchableInfo::buildInstructionResultOperands() {
1757   const CodeGenInstruction *ResultInst = getResultInst();
1758 
1759   // Loop over all operands of the result instruction, determining how to
1760   // populate them.
1761   for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) {
1762     // If this is a tied operand, just copy from the previously handled operand.
1763     int TiedOp = -1;
1764     if (OpInfo.MINumOperands == 1)
1765       TiedOp = OpInfo.getTiedRegister();
1766     if (TiedOp != -1) {
1767       int TiedSrcOperand = findAsmOperandOriginallyNamed(OpInfo.Name);
1768       if (TiedSrcOperand != -1 &&
1769           ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand)
1770         ResOperands.push_back(ResOperand::getTiedOp(
1771             TiedOp, ResOperands[TiedOp].AsmOperandNum, TiedSrcOperand));
1772       else
1773         ResOperands.push_back(ResOperand::getTiedOp(TiedOp, 0, 0));
1774       continue;
1775     }
1776 
1777     int SrcOperand = findAsmOperandNamed(OpInfo.Name);
1778     if (OpInfo.Name.empty() || SrcOperand == -1) {
1779       // This may happen for operands that are tied to a suboperand of a
1780       // complex operand.  Simply use a dummy value here; nobody should
1781       // use this operand slot.
1782       // FIXME: The long term goal is for the MCOperand list to not contain
1783       // tied operands at all.
1784       ResOperands.push_back(ResOperand::getImmOp(0));
1785       continue;
1786     }
1787 
1788     // Check if the one AsmOperand populates the entire operand.
1789     unsigned NumOperands = OpInfo.MINumOperands;
1790     if (AsmOperands[SrcOperand].SubOpIdx == -1) {
1791       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
1792       continue;
1793     }
1794 
1795     // Add a separate ResOperand for each suboperand.
1796     for (unsigned AI = 0; AI < NumOperands; ++AI) {
1797       assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
1798              AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
1799              "unexpected AsmOperands for suboperands");
1800       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
1801     }
1802   }
1803 }
1804 
1805 void MatchableInfo::buildAliasResultOperands(bool AliasConstraintsAreChecked) {
1806   const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
1807   const CodeGenInstruction *ResultInst = getResultInst();
1808 
1809   // Map of:  $reg -> #lastref
1810   //   where $reg is the name of the operand in the asm string
1811   //   where #lastref is the last processed index where $reg was referenced in
1812   //   the asm string.
1813   SmallDenseMap<StringRef, int> OperandRefs;
1814 
1815   // Loop over all operands of the result instruction, determining how to
1816   // populate them.
1817   unsigned AliasOpNo = 0;
1818   unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
1819   for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1820     const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
1821 
1822     // If this is a tied operand, just copy from the previously handled operand.
1823     int TiedOp = -1;
1824     if (OpInfo->MINumOperands == 1)
1825       TiedOp = OpInfo->getTiedRegister();
1826     if (TiedOp != -1) {
1827       unsigned SrcOp1 = 0;
1828       unsigned SrcOp2 = 0;
1829 
1830       // If an operand has been specified twice in the asm string,
1831       // add the two source operand's indices to the TiedOp so that
1832       // at runtime the 'tied' constraint is checked.
1833       if (ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) {
1834         SrcOp1 = ResOperands[TiedOp].AsmOperandNum;
1835 
1836         // Find the next operand (similarly named operand) in the string.
1837         StringRef Name = AsmOperands[SrcOp1].SrcOpName;
1838         auto Insert = OperandRefs.try_emplace(Name, SrcOp1);
1839         SrcOp2 = findAsmOperandNamed(Name, Insert.first->second);
1840 
1841         // Not updating the record in OperandRefs will cause TableGen
1842         // to fail with an error at the end of this function.
1843         if (AliasConstraintsAreChecked)
1844           Insert.first->second = SrcOp2;
1845 
1846         // In case it only has one reference in the asm string,
1847         // it doesn't need to be checked for tied constraints.
1848         SrcOp2 = (SrcOp2 == (unsigned)-1) ? SrcOp1 : SrcOp2;
1849       }
1850 
1851       // If the alias operand is of a different operand class, we only want
1852       // to benefit from the tied-operands check and just match the operand
1853       // as a normal, but not copy the original (TiedOp) to the result
1854       // instruction. We do this by passing -1 as the tied operand to copy.
1855       if (ResultInst->Operands[i].Rec->getName() !=
1856           ResultInst->Operands[TiedOp].Rec->getName()) {
1857         SrcOp1 = ResOperands[TiedOp].AsmOperandNum;
1858         int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1859         StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1860         SrcOp2 = findAsmOperand(Name, SubIdx);
1861         ResOperands.push_back(
1862             ResOperand::getTiedOp((unsigned)-1, SrcOp1, SrcOp2));
1863       } else {
1864         ResOperands.push_back(ResOperand::getTiedOp(TiedOp, SrcOp1, SrcOp2));
1865         continue;
1866       }
1867     }
1868 
1869     // Handle all the suboperands for this operand.
1870     const std::string &OpName = OpInfo->Name;
1871     for ( ; AliasOpNo <  LastOpNo &&
1872             CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
1873       int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1874 
1875       // Find out what operand from the asmparser that this MCInst operand
1876       // comes from.
1877       switch (CGA.ResultOperands[AliasOpNo].Kind) {
1878       case CodeGenInstAlias::ResultOperand::K_Record: {
1879         StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1880         int SrcOperand = findAsmOperand(Name, SubIdx);
1881         if (SrcOperand == -1)
1882           PrintFatalError(TheDef->getLoc(), "Instruction '" +
1883                         TheDef->getName() + "' has operand '" + OpName +
1884                         "' that doesn't appear in asm string!");
1885 
1886         // Add it to the operand references. If it is added a second time, the
1887         // record won't be updated and it will fail later on.
1888         OperandRefs.try_emplace(Name, SrcOperand);
1889 
1890         unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
1891         ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
1892                                                         NumOperands));
1893         break;
1894       }
1895       case CodeGenInstAlias::ResultOperand::K_Imm: {
1896         int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
1897         ResOperands.push_back(ResOperand::getImmOp(ImmVal));
1898         break;
1899       }
1900       case CodeGenInstAlias::ResultOperand::K_Reg: {
1901         Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
1902         ResOperands.push_back(ResOperand::getRegOp(Reg));
1903         break;
1904       }
1905       }
1906     }
1907   }
1908 
1909   // Check that operands are not repeated more times than is supported.
1910   for (auto &T : OperandRefs) {
1911     if (T.second != -1 && findAsmOperandNamed(T.first, T.second) != -1)
1912       PrintFatalError(TheDef->getLoc(),
1913                       "Operand '" + T.first + "' can never be matched");
1914   }
1915 }
1916 
1917 static unsigned
1918 getConverterOperandID(const std::string &Name,
1919                       SmallSetVector<CachedHashString, 16> &Table,
1920                       bool &IsNew) {
1921   IsNew = Table.insert(CachedHashString(Name));
1922 
1923   unsigned ID = IsNew ? Table.size() - 1 : find(Table, Name) - Table.begin();
1924 
1925   assert(ID < Table.size());
1926 
1927   return ID;
1928 }
1929 
1930 static unsigned
1931 emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
1932                  std::vector<std::unique_ptr<MatchableInfo>> &Infos,
1933                  bool HasMnemonicFirst, bool HasOptionalOperands,
1934                  raw_ostream &OS) {
1935   SmallSetVector<CachedHashString, 16> OperandConversionKinds;
1936   SmallSetVector<CachedHashString, 16> InstructionConversionKinds;
1937   std::vector<std::vector<uint8_t> > ConversionTable;
1938   size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
1939 
1940   // TargetOperandClass - This is the target's operand class, like X86Operand.
1941   std::string TargetOperandClass = Target.getName().str() + "Operand";
1942 
1943   // Write the convert function to a separate stream, so we can drop it after
1944   // the enum. We'll build up the conversion handlers for the individual
1945   // operand types opportunistically as we encounter them.
1946   std::string ConvertFnBody;
1947   raw_string_ostream CvtOS(ConvertFnBody);
1948   // Start the unified conversion function.
1949   if (HasOptionalOperands) {
1950     CvtOS << "void " << Target.getName() << ClassName << "::\n"
1951           << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1952           << "unsigned Opcode,\n"
1953           << "                const OperandVector &Operands,\n"
1954           << "                const SmallBitVector &OptionalOperandsMask) {\n";
1955   } else {
1956     CvtOS << "void " << Target.getName() << ClassName << "::\n"
1957           << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1958           << "unsigned Opcode,\n"
1959           << "                const OperandVector &Operands) {\n";
1960   }
1961   CvtOS << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
1962   CvtOS << "  const uint8_t *Converter = ConversionTable[Kind];\n";
1963   if (HasOptionalOperands) {
1964     size_t MaxNumOperands = 0;
1965     for (const auto &MI : Infos) {
1966       MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
1967     }
1968     CvtOS << "  unsigned DefaultsOffset[" << (MaxNumOperands + 1)
1969           << "] = { 0 };\n";
1970     CvtOS << "  assert(OptionalOperandsMask.size() == " << (MaxNumOperands)
1971           << ");\n";
1972     CvtOS << "  for (unsigned i = 0, NumDefaults = 0; i < " << (MaxNumOperands)
1973           << "; ++i) {\n";
1974     CvtOS << "    DefaultsOffset[i + 1] = NumDefaults;\n";
1975     CvtOS << "    NumDefaults += (OptionalOperandsMask[i] ? 1 : 0);\n";
1976     CvtOS << "  }\n";
1977   }
1978   CvtOS << "  unsigned OpIdx;\n";
1979   CvtOS << "  Inst.setOpcode(Opcode);\n";
1980   CvtOS << "  for (const uint8_t *p = Converter; *p; p += 2) {\n";
1981   if (HasOptionalOperands) {
1982     CvtOS << "    OpIdx = *(p + 1) - DefaultsOffset[*(p + 1)];\n";
1983   } else {
1984     CvtOS << "    OpIdx = *(p + 1);\n";
1985   }
1986   CvtOS << "    switch (*p) {\n";
1987   CvtOS << "    default: llvm_unreachable(\"invalid conversion entry!\");\n";
1988   CvtOS << "    case CVT_Reg:\n";
1989   CvtOS << "      static_cast<" << TargetOperandClass
1990         << " &>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n";
1991   CvtOS << "      break;\n";
1992   CvtOS << "    case CVT_Tied: {\n";
1993   CvtOS << "      assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n";
1994   CvtOS << "                              std::begin(TiedAsmOperandTable)) &&\n";
1995   CvtOS << "             \"Tied operand not found\");\n";
1996   CvtOS << "      unsigned TiedResOpnd = TiedAsmOperandTable[OpIdx][0];\n";
1997   CvtOS << "      if (TiedResOpnd != (uint8_t)-1)\n";
1998   CvtOS << "        Inst.addOperand(Inst.getOperand(TiedResOpnd));\n";
1999   CvtOS << "      break;\n";
2000   CvtOS << "    }\n";
2001 
2002   std::string OperandFnBody;
2003   raw_string_ostream OpOS(OperandFnBody);
2004   // Start the operand number lookup function.
2005   OpOS << "void " << Target.getName() << ClassName << "::\n"
2006        << "convertToMapAndConstraints(unsigned Kind,\n";
2007   OpOS.indent(27);
2008   OpOS << "const OperandVector &Operands) {\n"
2009        << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
2010        << "  unsigned NumMCOperands = 0;\n"
2011        << "  const uint8_t *Converter = ConversionTable[Kind];\n"
2012        << "  for (const uint8_t *p = Converter; *p; p += 2) {\n"
2013        << "    switch (*p) {\n"
2014        << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
2015        << "    case CVT_Reg:\n"
2016        << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2017        << "      Operands[*(p + 1)]->setConstraint(\"r\");\n"
2018        << "      ++NumMCOperands;\n"
2019        << "      break;\n"
2020        << "    case CVT_Tied:\n"
2021        << "      ++NumMCOperands;\n"
2022        << "      break;\n";
2023 
2024   // Pre-populate the operand conversion kinds with the standard always
2025   // available entries.
2026   OperandConversionKinds.insert(CachedHashString("CVT_Done"));
2027   OperandConversionKinds.insert(CachedHashString("CVT_Reg"));
2028   OperandConversionKinds.insert(CachedHashString("CVT_Tied"));
2029   enum { CVT_Done, CVT_Reg, CVT_Tied };
2030 
2031   // Map of e.g. <0, 2, 3> -> "Tie_0_2_3" enum label.
2032   std::map<std::tuple<uint8_t, uint8_t, uint8_t>, std::string>
2033   TiedOperandsEnumMap;
2034 
2035   for (auto &II : Infos) {
2036     // Check if we have a custom match function.
2037     StringRef AsmMatchConverter =
2038         II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
2039     if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) {
2040       std::string Signature = ("ConvertCustom_" + AsmMatchConverter).str();
2041       II->ConversionFnKind = Signature;
2042 
2043       // Check if we have already generated this signature.
2044       if (!InstructionConversionKinds.insert(CachedHashString(Signature)))
2045         continue;
2046 
2047       // Remember this converter for the kind enum.
2048       unsigned KindID = OperandConversionKinds.size();
2049       OperandConversionKinds.insert(
2050           CachedHashString("CVT_" + getEnumNameForToken(AsmMatchConverter)));
2051 
2052       // Add the converter row for this instruction.
2053       ConversionTable.emplace_back();
2054       ConversionTable.back().push_back(KindID);
2055       ConversionTable.back().push_back(CVT_Done);
2056 
2057       // Add the handler to the conversion driver function.
2058       CvtOS << "    case CVT_"
2059             << getEnumNameForToken(AsmMatchConverter) << ":\n"
2060             << "      " << AsmMatchConverter << "(Inst, Operands);\n"
2061             << "      break;\n";
2062 
2063       // FIXME: Handle the operand number lookup for custom match functions.
2064       continue;
2065     }
2066 
2067     // Build the conversion function signature.
2068     std::string Signature = "Convert";
2069 
2070     std::vector<uint8_t> ConversionRow;
2071 
2072     // Compute the convert enum and the case body.
2073     MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 );
2074 
2075     for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) {
2076       const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i];
2077 
2078       // Generate code to populate each result operand.
2079       switch (OpInfo.Kind) {
2080       case MatchableInfo::ResOperand::RenderAsmOperand: {
2081         // This comes from something we parsed.
2082         const MatchableInfo::AsmOperand &Op =
2083           II->AsmOperands[OpInfo.AsmOperandNum];
2084 
2085         // Registers are always converted the same, don't duplicate the
2086         // conversion function based on them.
2087         Signature += "__";
2088         std::string Class;
2089         Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
2090         Signature += Class;
2091         Signature += utostr(OpInfo.MINumOperands);
2092         Signature += "_" + itostr(OpInfo.AsmOperandNum);
2093 
2094         // Add the conversion kind, if necessary, and get the associated ID
2095         // the index of its entry in the vector).
2096         std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" :
2097                                      Op.Class->RenderMethod);
2098         if (Op.Class->IsOptional) {
2099           // For optional operands we must also care about DefaultMethod
2100           assert(HasOptionalOperands);
2101           Name += "_" + Op.Class->DefaultMethod;
2102         }
2103         Name = getEnumNameForToken(Name);
2104 
2105         bool IsNewConverter = false;
2106         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2107                                             IsNewConverter);
2108 
2109         // Add the operand entry to the instruction kind conversion row.
2110         ConversionRow.push_back(ID);
2111         ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst);
2112 
2113         if (!IsNewConverter)
2114           break;
2115 
2116         // This is a new operand kind. Add a handler for it to the
2117         // converter driver.
2118         CvtOS << "    case " << Name << ":\n";
2119         if (Op.Class->IsOptional) {
2120           // If optional operand is not present in actual instruction then we
2121           // should call its DefaultMethod before RenderMethod
2122           assert(HasOptionalOperands);
2123           CvtOS << "      if (OptionalOperandsMask[*(p + 1) - 1]) {\n"
2124                 << "        " << Op.Class->DefaultMethod << "()"
2125                 << "->" << Op.Class->RenderMethod << "(Inst, "
2126                 << OpInfo.MINumOperands << ");\n"
2127                 << "      } else {\n"
2128                 << "        static_cast<" << TargetOperandClass
2129                 << " &>(*Operands[OpIdx])." << Op.Class->RenderMethod
2130                 << "(Inst, " << OpInfo.MINumOperands << ");\n"
2131                 << "      }\n";
2132         } else {
2133           CvtOS << "      static_cast<" << TargetOperandClass
2134                 << " &>(*Operands[OpIdx])." << Op.Class->RenderMethod
2135                 << "(Inst, " << OpInfo.MINumOperands << ");\n";
2136         }
2137         CvtOS << "      break;\n";
2138 
2139         // Add a handler for the operand number lookup.
2140         OpOS << "    case " << Name << ":\n"
2141              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n";
2142 
2143         if (Op.Class->isRegisterClass())
2144           OpOS << "      Operands[*(p + 1)]->setConstraint(\"r\");\n";
2145         else
2146           OpOS << "      Operands[*(p + 1)]->setConstraint(\"m\");\n";
2147         OpOS << "      NumMCOperands += " << OpInfo.MINumOperands << ";\n"
2148              << "      break;\n";
2149         break;
2150       }
2151       case MatchableInfo::ResOperand::TiedOperand: {
2152         // If this operand is tied to a previous one, just copy the MCInst
2153         // operand from the earlier one.We can only tie single MCOperand values.
2154         assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
2155         uint8_t TiedOp = OpInfo.TiedOperands.ResOpnd;
2156         uint8_t SrcOp1 =
2157             OpInfo.TiedOperands.SrcOpnd1Idx + HasMnemonicFirst;
2158         uint8_t SrcOp2 =
2159             OpInfo.TiedOperands.SrcOpnd2Idx + HasMnemonicFirst;
2160         assert((i > TiedOp || TiedOp == (uint8_t)-1) &&
2161                "Tied operand precedes its target!");
2162         auto TiedTupleName = std::string("Tie") + utostr(TiedOp) + '_' +
2163                              utostr(SrcOp1) + '_' + utostr(SrcOp2);
2164         Signature += "__" + TiedTupleName;
2165         ConversionRow.push_back(CVT_Tied);
2166         ConversionRow.push_back(TiedOp);
2167         ConversionRow.push_back(SrcOp1);
2168         ConversionRow.push_back(SrcOp2);
2169 
2170         // Also create an 'enum' for this combination of tied operands.
2171         auto Key = std::make_tuple(TiedOp, SrcOp1, SrcOp2);
2172         TiedOperandsEnumMap.emplace(Key, TiedTupleName);
2173         break;
2174       }
2175       case MatchableInfo::ResOperand::ImmOperand: {
2176         int64_t Val = OpInfo.ImmVal;
2177         std::string Ty = "imm_" + itostr(Val);
2178         Ty = getEnumNameForToken(Ty);
2179         Signature += "__" + Ty;
2180 
2181         std::string Name = "CVT_" + Ty;
2182         bool IsNewConverter = false;
2183         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2184                                             IsNewConverter);
2185         // Add the operand entry to the instruction kind conversion row.
2186         ConversionRow.push_back(ID);
2187         ConversionRow.push_back(0);
2188 
2189         if (!IsNewConverter)
2190           break;
2191 
2192         CvtOS << "    case " << Name << ":\n"
2193               << "      Inst.addOperand(MCOperand::createImm(" << Val << "));\n"
2194               << "      break;\n";
2195 
2196         OpOS << "    case " << Name << ":\n"
2197              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2198              << "      Operands[*(p + 1)]->setConstraint(\"\");\n"
2199              << "      ++NumMCOperands;\n"
2200              << "      break;\n";
2201         break;
2202       }
2203       case MatchableInfo::ResOperand::RegOperand: {
2204         std::string Reg, Name;
2205         if (!OpInfo.Register) {
2206           Name = "reg0";
2207           Reg = "0";
2208         } else {
2209           Reg = getQualifiedName(OpInfo.Register);
2210           Name = "reg" + OpInfo.Register->getName().str();
2211         }
2212         Signature += "__" + Name;
2213         Name = "CVT_" + Name;
2214         bool IsNewConverter = false;
2215         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2216                                             IsNewConverter);
2217         // Add the operand entry to the instruction kind conversion row.
2218         ConversionRow.push_back(ID);
2219         ConversionRow.push_back(0);
2220 
2221         if (!IsNewConverter)
2222           break;
2223         CvtOS << "    case " << Name << ":\n"
2224               << "      Inst.addOperand(MCOperand::createReg(" << Reg << "));\n"
2225               << "      break;\n";
2226 
2227         OpOS << "    case " << Name << ":\n"
2228              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2229              << "      Operands[*(p + 1)]->setConstraint(\"m\");\n"
2230              << "      ++NumMCOperands;\n"
2231              << "      break;\n";
2232       }
2233       }
2234     }
2235 
2236     // If there were no operands, add to the signature to that effect
2237     if (Signature == "Convert")
2238       Signature += "_NoOperands";
2239 
2240     II->ConversionFnKind = Signature;
2241 
2242     // Save the signature. If we already have it, don't add a new row
2243     // to the table.
2244     if (!InstructionConversionKinds.insert(CachedHashString(Signature)))
2245       continue;
2246 
2247     // Add the row to the table.
2248     ConversionTable.push_back(std::move(ConversionRow));
2249   }
2250 
2251   // Finish up the converter driver function.
2252   CvtOS << "    }\n  }\n}\n\n";
2253 
2254   // Finish up the operand number lookup function.
2255   OpOS << "    }\n  }\n}\n\n";
2256 
2257   // Output a static table for tied operands.
2258   if (TiedOperandsEnumMap.size()) {
2259     // The number of tied operand combinations will be small in practice,
2260     // but just add the assert to be sure.
2261     assert(TiedOperandsEnumMap.size() <= 254 &&
2262            "Too many tied-operand combinations to reference with "
2263            "an 8bit offset from the conversion table, where index "
2264            "'255' is reserved as operand not to be copied.");
2265 
2266     OS << "enum {\n";
2267     for (auto &KV : TiedOperandsEnumMap) {
2268       OS << "  " << KV.second << ",\n";
2269     }
2270     OS << "};\n\n";
2271 
2272     OS << "static const uint8_t TiedAsmOperandTable[][3] = {\n";
2273     for (auto &KV : TiedOperandsEnumMap) {
2274       OS << "  /* " << KV.second << " */ { "
2275          << utostr(std::get<0>(KV.first)) << ", "
2276          << utostr(std::get<1>(KV.first)) << ", "
2277          << utostr(std::get<2>(KV.first)) << " },\n";
2278     }
2279     OS << "};\n\n";
2280   } else
2281     OS << "static const uint8_t TiedAsmOperandTable[][3] = "
2282           "{ /* empty  */ {0, 0, 0} };\n\n";
2283 
2284   OS << "namespace {\n";
2285 
2286   // Output the operand conversion kind enum.
2287   OS << "enum OperatorConversionKind {\n";
2288   for (const auto &Converter : OperandConversionKinds)
2289     OS << "  " << Converter << ",\n";
2290   OS << "  CVT_NUM_CONVERTERS\n";
2291   OS << "};\n\n";
2292 
2293   // Output the instruction conversion kind enum.
2294   OS << "enum InstructionConversionKind {\n";
2295   for (const auto &Signature : InstructionConversionKinds)
2296     OS << "  " << Signature << ",\n";
2297   OS << "  CVT_NUM_SIGNATURES\n";
2298   OS << "};\n\n";
2299 
2300   OS << "} // end anonymous namespace\n\n";
2301 
2302   // Output the conversion table.
2303   OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
2304      << MaxRowLength << "] = {\n";
2305 
2306   for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
2307     assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
2308     OS << "  // " << InstructionConversionKinds[Row] << "\n";
2309     OS << "  { ";
2310     for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2) {
2311       OS << OperandConversionKinds[ConversionTable[Row][i]] << ", ";
2312       if (OperandConversionKinds[ConversionTable[Row][i]] !=
2313           CachedHashString("CVT_Tied")) {
2314         OS << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
2315         continue;
2316       }
2317 
2318       // For a tied operand, emit a reference to the TiedAsmOperandTable
2319       // that contains the operand to copy, and the parsed operands to
2320       // check for their tied constraints.
2321       auto Key = std::make_tuple((uint8_t)ConversionTable[Row][i + 1],
2322                                  (uint8_t)ConversionTable[Row][i + 2],
2323                                  (uint8_t)ConversionTable[Row][i + 3]);
2324       auto TiedOpndEnum = TiedOperandsEnumMap.find(Key);
2325       assert(TiedOpndEnum != TiedOperandsEnumMap.end() &&
2326              "No record for tied operand pair");
2327       OS << TiedOpndEnum->second << ", ";
2328       i += 2;
2329     }
2330     OS << "CVT_Done },\n";
2331   }
2332 
2333   OS << "};\n\n";
2334 
2335   // Spit out the conversion driver function.
2336   OS << CvtOS.str();
2337 
2338   // Spit out the operand number lookup function.
2339   OS << OpOS.str();
2340 
2341   return ConversionTable.size();
2342 }
2343 
2344 /// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
2345 static void emitMatchClassEnumeration(CodeGenTarget &Target,
2346                                       std::forward_list<ClassInfo> &Infos,
2347                                       raw_ostream &OS) {
2348   OS << "namespace {\n\n";
2349 
2350   OS << "/// MatchClassKind - The kinds of classes which participate in\n"
2351      << "/// instruction matching.\n";
2352   OS << "enum MatchClassKind {\n";
2353   OS << "  InvalidMatchClass = 0,\n";
2354   OS << "  OptionalMatchClass = 1,\n";
2355   ClassInfo::ClassInfoKind LastKind = ClassInfo::Token;
2356   StringRef LastName = "OptionalMatchClass";
2357   for (const auto &CI : Infos) {
2358     if (LastKind == ClassInfo::Token && CI.Kind != ClassInfo::Token) {
2359       OS << "  MCK_LAST_TOKEN = " << LastName << ",\n";
2360     } else if (LastKind < ClassInfo::UserClass0 &&
2361                CI.Kind >= ClassInfo::UserClass0) {
2362       OS << "  MCK_LAST_REGISTER = " << LastName << ",\n";
2363     }
2364     LastKind = (ClassInfo::ClassInfoKind)CI.Kind;
2365     LastName = CI.Name;
2366 
2367     OS << "  " << CI.Name << ", // ";
2368     if (CI.Kind == ClassInfo::Token) {
2369       OS << "'" << CI.ValueName << "'\n";
2370     } else if (CI.isRegisterClass()) {
2371       if (!CI.ValueName.empty())
2372         OS << "register class '" << CI.ValueName << "'\n";
2373       else
2374         OS << "derived register class\n";
2375     } else {
2376       OS << "user defined class '" << CI.ValueName << "'\n";
2377     }
2378   }
2379   OS << "  NumMatchClassKinds\n";
2380   OS << "};\n\n";
2381 
2382   OS << "} // end anonymous namespace\n\n";
2383 }
2384 
2385 /// emitMatchClassDiagStrings - Emit a function to get the diagnostic text to be
2386 /// used when an assembly operand does not match the expected operand class.
2387 static void emitOperandMatchErrorDiagStrings(AsmMatcherInfo &Info, raw_ostream &OS) {
2388   // If the target does not use DiagnosticString for any operands, don't emit
2389   // an unused function.
2390   if (llvm::all_of(Info.Classes, [](const ClassInfo &CI) {
2391         return CI.DiagnosticString.empty();
2392       }))
2393     return;
2394 
2395   OS << "static const char *getMatchKindDiag(" << Info.Target.getName()
2396      << "AsmParser::" << Info.Target.getName()
2397      << "MatchResultTy MatchResult) {\n";
2398   OS << "  switch (MatchResult) {\n";
2399 
2400   for (const auto &CI: Info.Classes) {
2401     if (!CI.DiagnosticString.empty()) {
2402       assert(!CI.DiagnosticType.empty() &&
2403              "DiagnosticString set without DiagnosticType");
2404       OS << "  case " << Info.Target.getName()
2405          << "AsmParser::Match_" << CI.DiagnosticType << ":\n";
2406       OS << "    return \"" << CI.DiagnosticString << "\";\n";
2407     }
2408   }
2409 
2410   OS << "  default:\n";
2411   OS << "    return nullptr;\n";
2412 
2413   OS << "  }\n";
2414   OS << "}\n\n";
2415 }
2416 
2417 static void emitRegisterMatchErrorFunc(AsmMatcherInfo &Info, raw_ostream &OS) {
2418   OS << "static unsigned getDiagKindFromRegisterClass(MatchClassKind "
2419         "RegisterClass) {\n";
2420   if (none_of(Info.Classes, [](const ClassInfo &CI) {
2421         return CI.isRegisterClass() && !CI.DiagnosticType.empty();
2422       })) {
2423     OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n";
2424   } else {
2425     OS << "  switch (RegisterClass) {\n";
2426     for (const auto &CI: Info.Classes) {
2427       if (CI.isRegisterClass() && !CI.DiagnosticType.empty()) {
2428         OS << "  case " << CI.Name << ":\n";
2429         OS << "    return " << Info.Target.getName() << "AsmParser::Match_"
2430            << CI.DiagnosticType << ";\n";
2431       }
2432     }
2433 
2434     OS << "  default:\n";
2435     OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n";
2436 
2437     OS << "  }\n";
2438   }
2439   OS << "}\n\n";
2440 }
2441 
2442 /// emitValidateOperandClass - Emit the function to validate an operand class.
2443 static void emitValidateOperandClass(AsmMatcherInfo &Info,
2444                                      raw_ostream &OS) {
2445   OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, "
2446      << "MatchClassKind Kind) {\n";
2447   OS << "  " << Info.Target.getName() << "Operand &Operand = ("
2448      << Info.Target.getName() << "Operand &)GOp;\n";
2449 
2450   // The InvalidMatchClass is not to match any operand.
2451   OS << "  if (Kind == InvalidMatchClass)\n";
2452   OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n\n";
2453 
2454   // Check for Token operands first.
2455   // FIXME: Use a more specific diagnostic type.
2456   OS << "  if (Operand.isToken() && Kind <= MCK_LAST_TOKEN)\n";
2457   OS << "    return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
2458      << "             MCTargetAsmParser::Match_Success :\n"
2459      << "             MCTargetAsmParser::Match_InvalidOperand;\n\n";
2460 
2461   // Check the user classes. We don't care what order since we're only
2462   // actually matching against one of them.
2463   OS << "  switch (Kind) {\n"
2464         "  default: break;\n";
2465   for (const auto &CI : Info.Classes) {
2466     if (!CI.isUserClass())
2467       continue;
2468 
2469     OS << "  // '" << CI.ClassName << "' class\n";
2470     OS << "  case " << CI.Name << ": {\n";
2471     OS << "    DiagnosticPredicate DP(Operand." << CI.PredicateMethod
2472        << "());\n";
2473     OS << "    if (DP.isMatch())\n";
2474     OS << "      return MCTargetAsmParser::Match_Success;\n";
2475     if (!CI.DiagnosticType.empty()) {
2476       OS << "    if (DP.isNearMatch())\n";
2477       OS << "      return " << Info.Target.getName() << "AsmParser::Match_"
2478          << CI.DiagnosticType << ";\n";
2479       OS << "    break;\n";
2480     }
2481     else
2482       OS << "    break;\n";
2483     OS << "    }\n";
2484   }
2485   OS << "  } // end switch (Kind)\n\n";
2486 
2487   // Check for register operands, including sub-classes.
2488   OS << "  if (Operand.isReg()) {\n";
2489   OS << "    MatchClassKind OpKind;\n";
2490   OS << "    switch (Operand.getReg()) {\n";
2491   OS << "    default: OpKind = InvalidMatchClass; break;\n";
2492   for (const auto &RC : Info.RegisterClasses)
2493     OS << "    case " << RC.first->getValueAsString("Namespace") << "::"
2494        << RC.first->getName() << ": OpKind = " << RC.second->Name
2495        << "; break;\n";
2496   OS << "    }\n";
2497   OS << "    return isSubclass(OpKind, Kind) ? "
2498      << "(unsigned)MCTargetAsmParser::Match_Success :\n                     "
2499      << "                 getDiagKindFromRegisterClass(Kind);\n  }\n\n";
2500 
2501   // Expected operand is a register, but actual is not.
2502   OS << "  if (Kind > MCK_LAST_TOKEN && Kind <= MCK_LAST_REGISTER)\n";
2503   OS << "    return getDiagKindFromRegisterClass(Kind);\n\n";
2504 
2505   // Generic fallthrough match failure case for operands that don't have
2506   // specialized diagnostic types.
2507   OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n";
2508   OS << "}\n\n";
2509 }
2510 
2511 /// emitIsSubclass - Emit the subclass predicate function.
2512 static void emitIsSubclass(CodeGenTarget &Target,
2513                            std::forward_list<ClassInfo> &Infos,
2514                            raw_ostream &OS) {
2515   OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
2516   OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
2517   OS << "  if (A == B)\n";
2518   OS << "    return true;\n\n";
2519 
2520   bool EmittedSwitch = false;
2521   for (const auto &A : Infos) {
2522     std::vector<StringRef> SuperClasses;
2523     if (A.IsOptional)
2524       SuperClasses.push_back("OptionalMatchClass");
2525     for (const auto &B : Infos) {
2526       if (&A != &B && A.isSubsetOf(B))
2527         SuperClasses.push_back(B.Name);
2528     }
2529 
2530     if (SuperClasses.empty())
2531       continue;
2532 
2533     // If this is the first SuperClass, emit the switch header.
2534     if (!EmittedSwitch) {
2535       OS << "  switch (A) {\n";
2536       OS << "  default:\n";
2537       OS << "    return false;\n";
2538       EmittedSwitch = true;
2539     }
2540 
2541     OS << "\n  case " << A.Name << ":\n";
2542 
2543     if (SuperClasses.size() == 1) {
2544       OS << "    return B == " << SuperClasses.back() << ";\n";
2545       continue;
2546     }
2547 
2548     if (!SuperClasses.empty()) {
2549       OS << "    switch (B) {\n";
2550       OS << "    default: return false;\n";
2551       for (StringRef SC : SuperClasses)
2552         OS << "    case " << SC << ": return true;\n";
2553       OS << "    }\n";
2554     } else {
2555       // No case statement to emit
2556       OS << "    return false;\n";
2557     }
2558   }
2559 
2560   // If there were case statements emitted into the string stream write the
2561   // default.
2562   if (EmittedSwitch)
2563     OS << "  }\n";
2564   else
2565     OS << "  return false;\n";
2566 
2567   OS << "}\n\n";
2568 }
2569 
2570 /// emitMatchTokenString - Emit the function to match a token string to the
2571 /// appropriate match class value.
2572 static void emitMatchTokenString(CodeGenTarget &Target,
2573                                  std::forward_list<ClassInfo> &Infos,
2574                                  raw_ostream &OS) {
2575   // Construct the match list.
2576   std::vector<StringMatcher::StringPair> Matches;
2577   for (const auto &CI : Infos) {
2578     if (CI.Kind == ClassInfo::Token)
2579       Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";");
2580   }
2581 
2582   OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
2583 
2584   StringMatcher("Name", Matches, OS).Emit();
2585 
2586   OS << "  return InvalidMatchClass;\n";
2587   OS << "}\n\n";
2588 }
2589 
2590 /// emitMatchRegisterName - Emit the function to match a string to the target
2591 /// specific register enum.
2592 static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
2593                                   raw_ostream &OS) {
2594   // Construct the match list.
2595   std::vector<StringMatcher::StringPair> Matches;
2596   const auto &Regs = Target.getRegBank().getRegisters();
2597   for (const CodeGenRegister &Reg : Regs) {
2598     if (Reg.TheDef->getValueAsString("AsmName").empty())
2599       continue;
2600 
2601     Matches.emplace_back(std::string(Reg.TheDef->getValueAsString("AsmName")),
2602                          "return " + utostr(Reg.EnumValue) + ";");
2603   }
2604 
2605   OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
2606 
2607   bool IgnoreDuplicates =
2608       AsmParser->getValueAsBit("AllowDuplicateRegisterNames");
2609   StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates);
2610 
2611   OS << "  return 0;\n";
2612   OS << "}\n\n";
2613 }
2614 
2615 /// Emit the function to match a string to the target
2616 /// specific register enum.
2617 static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser,
2618                                      raw_ostream &OS) {
2619   // Construct the match list.
2620   std::vector<StringMatcher::StringPair> Matches;
2621   const auto &Regs = Target.getRegBank().getRegisters();
2622   for (const CodeGenRegister &Reg : Regs) {
2623 
2624     auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames");
2625 
2626     for (auto AltName : AltNames) {
2627       AltName = StringRef(AltName).trim();
2628 
2629       // don't handle empty alternative names
2630       if (AltName.empty())
2631         continue;
2632 
2633       Matches.emplace_back(std::string(AltName),
2634                            "return " + utostr(Reg.EnumValue) + ";");
2635     }
2636   }
2637 
2638   OS << "static unsigned MatchRegisterAltName(StringRef Name) {\n";
2639 
2640   bool IgnoreDuplicates =
2641       AsmParser->getValueAsBit("AllowDuplicateRegisterNames");
2642   StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates);
2643 
2644   OS << "  return 0;\n";
2645   OS << "}\n\n";
2646 }
2647 
2648 /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
2649 static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
2650   // Get the set of diagnostic types from all of the operand classes.
2651   std::set<StringRef> Types;
2652   for (const auto &OpClassEntry : Info.AsmOperandClasses) {
2653     if (!OpClassEntry.second->DiagnosticType.empty())
2654       Types.insert(OpClassEntry.second->DiagnosticType);
2655   }
2656   for (const auto &OpClassEntry : Info.RegisterClassClasses) {
2657     if (!OpClassEntry.second->DiagnosticType.empty())
2658       Types.insert(OpClassEntry.second->DiagnosticType);
2659   }
2660 
2661   if (Types.empty()) return;
2662 
2663   // Now emit the enum entries.
2664   for (StringRef Type : Types)
2665     OS << "  Match_" << Type << ",\n";
2666   OS << "  END_OPERAND_DIAGNOSTIC_TYPES\n";
2667 }
2668 
2669 /// emitGetSubtargetFeatureName - Emit the helper function to get the
2670 /// user-level name for a subtarget feature.
2671 static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
2672   OS << "// User-level names for subtarget features that participate in\n"
2673      << "// instruction matching.\n"
2674      << "static const char *getSubtargetFeatureName(uint64_t Val) {\n";
2675   if (!Info.SubtargetFeatures.empty()) {
2676     OS << "  switch(Val) {\n";
2677     for (const auto &SF : Info.SubtargetFeatures) {
2678       const SubtargetFeatureInfo &SFI = SF.second;
2679       // FIXME: Totally just a placeholder name to get the algorithm working.
2680       OS << "  case " << SFI.getEnumBitName() << ": return \""
2681          << SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
2682     }
2683     OS << "  default: return \"(unknown)\";\n";
2684     OS << "  }\n";
2685   } else {
2686     // Nothing to emit, so skip the switch
2687     OS << "  return \"(unknown)\";\n";
2688   }
2689   OS << "}\n\n";
2690 }
2691 
2692 static std::string GetAliasRequiredFeatures(Record *R,
2693                                             const AsmMatcherInfo &Info) {
2694   std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
2695   std::string Result;
2696 
2697   if (ReqFeatures.empty())
2698     return Result;
2699 
2700   for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
2701     const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
2702 
2703     if (!F)
2704       PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
2705                     "' is not marked as an AssemblerPredicate!");
2706 
2707     if (i)
2708       Result += " && ";
2709 
2710     Result += "Features.test(" + F->getEnumBitName() + ')';
2711   }
2712 
2713   return Result;
2714 }
2715 
2716 static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info,
2717                                      std::vector<Record*> &Aliases,
2718                                      unsigned Indent = 0,
2719                                   StringRef AsmParserVariantName = StringRef()){
2720   // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
2721   // iteration order of the map is stable.
2722   std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
2723 
2724   for (Record *R : Aliases) {
2725     // FIXME: Allow AssemblerVariantName to be a comma separated list.
2726     StringRef AsmVariantName = R->getValueAsString("AsmVariantName");
2727     if (AsmVariantName != AsmParserVariantName)
2728       continue;
2729     AliasesFromMnemonic[std::string(R->getValueAsString("FromMnemonic"))]
2730         .push_back(R);
2731   }
2732   if (AliasesFromMnemonic.empty())
2733     return;
2734 
2735   // Process each alias a "from" mnemonic at a time, building the code executed
2736   // by the string remapper.
2737   std::vector<StringMatcher::StringPair> Cases;
2738   for (const auto &AliasEntry : AliasesFromMnemonic) {
2739     const std::vector<Record*> &ToVec = AliasEntry.second;
2740 
2741     // Loop through each alias and emit code that handles each case.  If there
2742     // are two instructions without predicates, emit an error.  If there is one,
2743     // emit it last.
2744     std::string MatchCode;
2745     int AliasWithNoPredicate = -1;
2746 
2747     for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
2748       Record *R = ToVec[i];
2749       std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
2750 
2751       // If this unconditionally matches, remember it for later and diagnose
2752       // duplicates.
2753       if (FeatureMask.empty()) {
2754         if (AliasWithNoPredicate != -1) {
2755           // We can't have two aliases from the same mnemonic with no predicate.
2756           PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
2757                      "two MnemonicAliases with the same 'from' mnemonic!");
2758           PrintFatalError(R->getLoc(), "this is the other MnemonicAlias.");
2759         }
2760 
2761         AliasWithNoPredicate = i;
2762         continue;
2763       }
2764       if (R->getValueAsString("ToMnemonic") == AliasEntry.first)
2765         PrintFatalError(R->getLoc(), "MnemonicAlias to the same string");
2766 
2767       if (!MatchCode.empty())
2768         MatchCode += "else ";
2769       MatchCode += "if (" + FeatureMask + ")\n";
2770       MatchCode += "  Mnemonic = \"";
2771       MatchCode += R->getValueAsString("ToMnemonic");
2772       MatchCode += "\";\n";
2773     }
2774 
2775     if (AliasWithNoPredicate != -1) {
2776       Record *R = ToVec[AliasWithNoPredicate];
2777       if (!MatchCode.empty())
2778         MatchCode += "else\n  ";
2779       MatchCode += "Mnemonic = \"";
2780       MatchCode += R->getValueAsString("ToMnemonic");
2781       MatchCode += "\";\n";
2782     }
2783 
2784     MatchCode += "return;";
2785 
2786     Cases.push_back(std::make_pair(AliasEntry.first, MatchCode));
2787   }
2788   StringMatcher("Mnemonic", Cases, OS).Emit(Indent);
2789 }
2790 
2791 /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
2792 /// emit a function for them and return true, otherwise return false.
2793 static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info,
2794                                 CodeGenTarget &Target) {
2795   // Ignore aliases when match-prefix is set.
2796   if (!MatchPrefix.empty())
2797     return false;
2798 
2799   std::vector<Record*> Aliases =
2800     Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
2801   if (Aliases.empty()) return false;
2802 
2803   OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
2804     "const FeatureBitset &Features, unsigned VariantID) {\n";
2805   OS << "  switch (VariantID) {\n";
2806   unsigned VariantCount = Target.getAsmParserVariantCount();
2807   for (unsigned VC = 0; VC != VariantCount; ++VC) {
2808     Record *AsmVariant = Target.getAsmParserVariant(VC);
2809     int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant");
2810     StringRef AsmParserVariantName = AsmVariant->getValueAsString("Name");
2811     OS << "  case " << AsmParserVariantNo << ":\n";
2812     emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2,
2813                              AsmParserVariantName);
2814     OS << "    break;\n";
2815   }
2816   OS << "  }\n";
2817 
2818   // Emit aliases that apply to all variants.
2819   emitMnemonicAliasVariant(OS, Info, Aliases);
2820 
2821   OS << "}\n\n";
2822 
2823   return true;
2824 }
2825 
2826 static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
2827                               const AsmMatcherInfo &Info, StringRef ClassName,
2828                               StringToOffsetTable &StringTable,
2829                               unsigned MaxMnemonicIndex,
2830                               unsigned MaxFeaturesIndex,
2831                               bool HasMnemonicFirst) {
2832   unsigned MaxMask = 0;
2833   for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
2834     MaxMask |= OMI.OperandMask;
2835   }
2836 
2837   // Emit the static custom operand parsing table;
2838   OS << "namespace {\n";
2839   OS << "  struct OperandMatchEntry {\n";
2840   OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
2841                << " Mnemonic;\n";
2842   OS << "    " << getMinimalTypeForRange(MaxMask)
2843                << " OperandMask;\n";
2844   OS << "    " << getMinimalTypeForRange(std::distance(
2845                       Info.Classes.begin(), Info.Classes.end())) << " Class;\n";
2846   OS << "    " << getMinimalTypeForRange(MaxFeaturesIndex)
2847                << " RequiredFeaturesIdx;\n\n";
2848   OS << "    StringRef getMnemonic() const {\n";
2849   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
2850   OS << "                       MnemonicTable[Mnemonic]);\n";
2851   OS << "    }\n";
2852   OS << "  };\n\n";
2853 
2854   OS << "  // Predicate for searching for an opcode.\n";
2855   OS << "  struct LessOpcodeOperand {\n";
2856   OS << "    bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
2857   OS << "      return LHS.getMnemonic()  < RHS;\n";
2858   OS << "    }\n";
2859   OS << "    bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
2860   OS << "      return LHS < RHS.getMnemonic();\n";
2861   OS << "    }\n";
2862   OS << "    bool operator()(const OperandMatchEntry &LHS,";
2863   OS << " const OperandMatchEntry &RHS) {\n";
2864   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
2865   OS << "    }\n";
2866   OS << "  };\n";
2867 
2868   OS << "} // end anonymous namespace\n\n";
2869 
2870   OS << "static const OperandMatchEntry OperandMatchTable["
2871      << Info.OperandMatchInfo.size() << "] = {\n";
2872 
2873   OS << "  /* Operand List Mnemonic, Mask, Operand Class, Features */\n";
2874   for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
2875     const MatchableInfo &II = *OMI.MI;
2876 
2877     OS << "  { ";
2878 
2879     // Store a pascal-style length byte in the mnemonic.
2880     std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.lower();
2881     OS << StringTable.GetOrAddStringOffset(LenMnemonic, false)
2882        << " /* " << II.Mnemonic << " */, ";
2883 
2884     OS << OMI.OperandMask;
2885     OS << " /* ";
2886     bool printComma = false;
2887     for (int i = 0, e = 31; i !=e; ++i)
2888       if (OMI.OperandMask & (1 << i)) {
2889         if (printComma)
2890           OS << ", ";
2891         OS << i;
2892         printComma = true;
2893       }
2894     OS << " */, ";
2895 
2896     OS << OMI.CI->Name;
2897 
2898     // Write the required features mask.
2899     OS << ", AMFBS";
2900     if (II.RequiredFeatures.empty())
2901       OS << "_None";
2902     else
2903       for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i)
2904         OS << '_' << II.RequiredFeatures[i]->TheDef->getName();
2905 
2906     OS << " },\n";
2907   }
2908   OS << "};\n\n";
2909 
2910   // Emit the operand class switch to call the correct custom parser for
2911   // the found operand class.
2912   OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n"
2913      << "tryCustomParseOperand(OperandVector"
2914      << " &Operands,\n                      unsigned MCK) {\n\n"
2915      << "  switch(MCK) {\n";
2916 
2917   for (const auto &CI : Info.Classes) {
2918     if (CI.ParserMethod.empty())
2919       continue;
2920     OS << "  case " << CI.Name << ":\n"
2921        << "    return " << CI.ParserMethod << "(Operands);\n";
2922   }
2923 
2924   OS << "  default:\n";
2925   OS << "    return MatchOperand_NoMatch;\n";
2926   OS << "  }\n";
2927   OS << "  return MatchOperand_NoMatch;\n";
2928   OS << "}\n\n";
2929 
2930   // Emit the static custom operand parser. This code is very similar with
2931   // the other matcher. Also use MatchResultTy here just in case we go for
2932   // a better error handling.
2933   OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n"
2934      << "MatchOperandParserImpl(OperandVector"
2935      << " &Operands,\n                       StringRef Mnemonic,\n"
2936      << "                       bool ParseForAllFeatures) {\n";
2937 
2938   // Emit code to get the available features.
2939   OS << "  // Get the current feature set.\n";
2940   OS << "  const FeatureBitset &AvailableFeatures = getAvailableFeatures();\n\n";
2941 
2942   OS << "  // Get the next operand index.\n";
2943   OS << "  unsigned NextOpNum = Operands.size()"
2944      << (HasMnemonicFirst ? " - 1" : "") << ";\n";
2945 
2946   // Emit code to search the table.
2947   OS << "  // Search the table.\n";
2948   if (HasMnemonicFirst) {
2949     OS << "  auto MnemonicRange =\n";
2950     OS << "    std::equal_range(std::begin(OperandMatchTable), "
2951           "std::end(OperandMatchTable),\n";
2952     OS << "                     Mnemonic, LessOpcodeOperand());\n\n";
2953   } else {
2954     OS << "  auto MnemonicRange = std::make_pair(std::begin(OperandMatchTable),"
2955           " std::end(OperandMatchTable));\n";
2956     OS << "  if (!Mnemonic.empty())\n";
2957     OS << "    MnemonicRange =\n";
2958     OS << "      std::equal_range(std::begin(OperandMatchTable), "
2959           "std::end(OperandMatchTable),\n";
2960     OS << "                       Mnemonic, LessOpcodeOperand());\n\n";
2961   }
2962 
2963   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
2964   OS << "    return MatchOperand_NoMatch;\n\n";
2965 
2966   OS << "  for (const OperandMatchEntry *it = MnemonicRange.first,\n"
2967      << "       *ie = MnemonicRange.second; it != ie; ++it) {\n";
2968 
2969   OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
2970   OS << "    assert(Mnemonic == it->getMnemonic());\n\n";
2971 
2972   // Emit check that the required features are available.
2973   OS << "    // check if the available features match\n";
2974   OS << "    const FeatureBitset &RequiredFeatures = "
2975         "FeatureBitsets[it->RequiredFeaturesIdx];\n";
2976   OS << "    if (!ParseForAllFeatures && (AvailableFeatures & "
2977         "RequiredFeatures) != RequiredFeatures)\n";
2978   OS << "      continue;\n\n";
2979 
2980   // Emit check to ensure the operand number matches.
2981   OS << "    // check if the operand in question has a custom parser.\n";
2982   OS << "    if (!(it->OperandMask & (1 << NextOpNum)))\n";
2983   OS << "      continue;\n\n";
2984 
2985   // Emit call to the custom parser method
2986   OS << "    // call custom parse method to handle the operand\n";
2987   OS << "    OperandMatchResultTy Result = ";
2988   OS << "tryCustomParseOperand(Operands, it->Class);\n";
2989   OS << "    if (Result != MatchOperand_NoMatch)\n";
2990   OS << "      return Result;\n";
2991   OS << "  }\n\n";
2992 
2993   OS << "  // Okay, we had no match.\n";
2994   OS << "  return MatchOperand_NoMatch;\n";
2995   OS << "}\n\n";
2996 }
2997 
2998 static void emitAsmTiedOperandConstraints(CodeGenTarget &Target,
2999                                           AsmMatcherInfo &Info,
3000                                           raw_ostream &OS) {
3001   std::string AsmParserName =
3002       std::string(Info.AsmParser->getValueAsString("AsmParserClassName"));
3003   OS << "static bool ";
3004   OS << "checkAsmTiedOperandConstraints(const " << Target.getName()
3005      << AsmParserName << "&AsmParser,\n";
3006   OS << "                               unsigned Kind,\n";
3007   OS << "                               const OperandVector &Operands,\n";
3008   OS << "                               uint64_t &ErrorInfo) {\n";
3009   OS << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
3010   OS << "  const uint8_t *Converter = ConversionTable[Kind];\n";
3011   OS << "  for (const uint8_t *p = Converter; *p; p += 2) {\n";
3012   OS << "    switch (*p) {\n";
3013   OS << "    case CVT_Tied: {\n";
3014   OS << "      unsigned OpIdx = *(p + 1);\n";
3015   OS << "      assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n";
3016   OS << "                              std::begin(TiedAsmOperandTable)) &&\n";
3017   OS << "             \"Tied operand not found\");\n";
3018   OS << "      unsigned OpndNum1 = TiedAsmOperandTable[OpIdx][1];\n";
3019   OS << "      unsigned OpndNum2 = TiedAsmOperandTable[OpIdx][2];\n";
3020   OS << "      if (OpndNum1 != OpndNum2) {\n";
3021   OS << "        auto &SrcOp1 = Operands[OpndNum1];\n";
3022   OS << "        auto &SrcOp2 = Operands[OpndNum2];\n";
3023   OS << "        if (SrcOp1->isReg() && SrcOp2->isReg()) {\n";
3024   OS << "          if (!AsmParser.regsEqual(*SrcOp1, *SrcOp2)) {\n";
3025   OS << "            ErrorInfo = OpndNum2;\n";
3026   OS << "            return false;\n";
3027   OS << "          }\n";
3028   OS << "        }\n";
3029   OS << "      }\n";
3030   OS << "      break;\n";
3031   OS << "    }\n";
3032   OS << "    default:\n";
3033   OS << "      break;\n";
3034   OS << "    }\n";
3035   OS << "  }\n";
3036   OS << "  return true;\n";
3037   OS << "}\n\n";
3038 }
3039 
3040 static void emitMnemonicSpellChecker(raw_ostream &OS, CodeGenTarget &Target,
3041                                      unsigned VariantCount) {
3042   OS << "static std::string " << Target.getName()
3043      << "MnemonicSpellCheck(StringRef S, const FeatureBitset &FBS,"
3044      << " unsigned VariantID) {\n";
3045   if (!VariantCount)
3046     OS <<  "  return \"\";";
3047   else {
3048     OS << "  const unsigned MaxEditDist = 2;\n";
3049     OS << "  std::vector<StringRef> Candidates;\n";
3050     OS << "  StringRef Prev = \"\";\n\n";
3051 
3052     OS << "  // Find the appropriate table for this asm variant.\n";
3053     OS << "  const MatchEntry *Start, *End;\n";
3054     OS << "  switch (VariantID) {\n";
3055     OS << "  default: llvm_unreachable(\"invalid variant!\");\n";
3056     for (unsigned VC = 0; VC != VariantCount; ++VC) {
3057       Record *AsmVariant = Target.getAsmParserVariant(VC);
3058       int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3059       OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3060          << "); End = std::end(MatchTable" << VC << "); break;\n";
3061     }
3062     OS << "  }\n\n";
3063     OS << "  for (auto I = Start; I < End; I++) {\n";
3064     OS << "    // Ignore unsupported instructions.\n";
3065     OS << "    const FeatureBitset &RequiredFeatures = "
3066           "FeatureBitsets[I->RequiredFeaturesIdx];\n";
3067     OS << "    if ((FBS & RequiredFeatures) != RequiredFeatures)\n";
3068     OS << "      continue;\n";
3069     OS << "\n";
3070     OS << "    StringRef T = I->getMnemonic();\n";
3071     OS << "    // Avoid recomputing the edit distance for the same string.\n";
3072     OS << "    if (T.equals(Prev))\n";
3073     OS << "      continue;\n";
3074     OS << "\n";
3075     OS << "    Prev = T;\n";
3076     OS << "    unsigned Dist = S.edit_distance(T, false, MaxEditDist);\n";
3077     OS << "    if (Dist <= MaxEditDist)\n";
3078     OS << "      Candidates.push_back(T);\n";
3079     OS << "  }\n";
3080     OS << "\n";
3081     OS << "  if (Candidates.empty())\n";
3082     OS << "    return \"\";\n";
3083     OS << "\n";
3084     OS << "  std::string Res = \", did you mean: \";\n";
3085     OS << "  unsigned i = 0;\n";
3086     OS << "  for (; i < Candidates.size() - 1; i++)\n";
3087     OS << "    Res += Candidates[i].str() + \", \";\n";
3088     OS << "  return Res + Candidates[i].str() + \"?\";\n";
3089   }
3090   OS << "}\n";
3091   OS << "\n";
3092 }
3093 
3094 static void emitMnemonicChecker(raw_ostream &OS,
3095                                 CodeGenTarget &Target,
3096                                 unsigned VariantCount,
3097                                 bool HasMnemonicFirst,
3098                                 bool HasMnemonicAliases) {
3099   OS << "static bool " << Target.getName()
3100      << "CheckMnemonic(StringRef Mnemonic,\n";
3101   OS << "                                "
3102      << "const FeatureBitset &AvailableFeatures,\n";
3103   OS << "                                "
3104      << "unsigned VariantID) {\n";
3105 
3106   if (!VariantCount) {
3107     OS <<  "  return false;\n";
3108   } else {
3109     if (HasMnemonicAliases) {
3110       OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
3111       OS << "  applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);";
3112       OS << "\n\n";
3113     }
3114     OS << "  // Find the appropriate table for this asm variant.\n";
3115     OS << "  const MatchEntry *Start, *End;\n";
3116     OS << "  switch (VariantID) {\n";
3117     OS << "  default: llvm_unreachable(\"invalid variant!\");\n";
3118     for (unsigned VC = 0; VC != VariantCount; ++VC) {
3119       Record *AsmVariant = Target.getAsmParserVariant(VC);
3120       int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3121       OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3122          << "); End = std::end(MatchTable" << VC << "); break;\n";
3123     }
3124     OS << "  }\n\n";
3125 
3126     OS << "  // Search the table.\n";
3127     if (HasMnemonicFirst) {
3128       OS << "  auto MnemonicRange = "
3129             "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
3130     } else {
3131       OS << "  auto MnemonicRange = std::make_pair(Start, End);\n";
3132       OS << "  unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n";
3133       OS << "  if (!Mnemonic.empty())\n";
3134       OS << "    MnemonicRange = "
3135          << "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n";
3136     }
3137 
3138     OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
3139     OS << "    return false;\n\n";
3140 
3141     OS << "  for (const MatchEntry *it = MnemonicRange.first, "
3142        << "*ie = MnemonicRange.second;\n";
3143     OS << "       it != ie; ++it) {\n";
3144     OS << "    const FeatureBitset &RequiredFeatures =\n";
3145     OS << "      FeatureBitsets[it->RequiredFeaturesIdx];\n";
3146     OS << "    if ((AvailableFeatures & RequiredFeatures) == ";
3147     OS << "RequiredFeatures)\n";
3148     OS << "      return true;\n";
3149     OS << "  }\n";
3150     OS << "  return false;\n";
3151   }
3152   OS << "}\n";
3153   OS << "\n";
3154 }
3155 
3156 // Emit a function mapping match classes to strings, for debugging.
3157 static void emitMatchClassKindNames(std::forward_list<ClassInfo> &Infos,
3158                                     raw_ostream &OS) {
3159   OS << "#ifndef NDEBUG\n";
3160   OS << "const char *getMatchClassName(MatchClassKind Kind) {\n";
3161   OS << "  switch (Kind) {\n";
3162 
3163   OS << "  case InvalidMatchClass: return \"InvalidMatchClass\";\n";
3164   OS << "  case OptionalMatchClass: return \"OptionalMatchClass\";\n";
3165   for (const auto &CI : Infos) {
3166     OS << "  case " << CI.Name << ": return \"" << CI.Name << "\";\n";
3167   }
3168   OS << "  case NumMatchClassKinds: return \"NumMatchClassKinds\";\n";
3169 
3170   OS << "  }\n";
3171   OS << "  llvm_unreachable(\"unhandled MatchClassKind!\");\n";
3172   OS << "}\n\n";
3173   OS << "#endif // NDEBUG\n";
3174 }
3175 
3176 static std::string
3177 getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) {
3178   std::string Name = "AMFBS";
3179   for (const auto &Feature : FeatureBitset)
3180     Name += ("_" + Feature->getName()).str();
3181   return Name;
3182 }
3183 
3184 void AsmMatcherEmitter::run(raw_ostream &OS) {
3185   CodeGenTarget Target(Records);
3186   Record *AsmParser = Target.getAsmParser();
3187   StringRef ClassName = AsmParser->getValueAsString("AsmParserClassName");
3188 
3189   // Compute the information on the instructions to match.
3190   AsmMatcherInfo Info(AsmParser, Target, Records);
3191   Info.buildInfo();
3192 
3193   // Sort the instruction table using the partial order on classes. We use
3194   // stable_sort to ensure that ambiguous instructions are still
3195   // deterministically ordered.
3196   llvm::stable_sort(
3197       Info.Matchables,
3198       [](const std::unique_ptr<MatchableInfo> &a,
3199          const std::unique_ptr<MatchableInfo> &b) { return *a < *b; });
3200 
3201 #ifdef EXPENSIVE_CHECKS
3202   // Verify that the table is sorted and operator < works transitively.
3203   for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
3204        ++I) {
3205     for (auto J = I; J != E; ++J) {
3206       assert(!(**J < **I));
3207     }
3208   }
3209 #endif
3210 
3211   DEBUG_WITH_TYPE("instruction_info", {
3212       for (const auto &MI : Info.Matchables)
3213         MI->dump();
3214     });
3215 
3216   // Check for ambiguous matchables.
3217   DEBUG_WITH_TYPE("ambiguous_instrs", {
3218     unsigned NumAmbiguous = 0;
3219     for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
3220          ++I) {
3221       for (auto J = std::next(I); J != E; ++J) {
3222         const MatchableInfo &A = **I;
3223         const MatchableInfo &B = **J;
3224 
3225         if (A.couldMatchAmbiguouslyWith(B)) {
3226           errs() << "warning: ambiguous matchables:\n";
3227           A.dump();
3228           errs() << "\nis incomparable with:\n";
3229           B.dump();
3230           errs() << "\n\n";
3231           ++NumAmbiguous;
3232         }
3233       }
3234     }
3235     if (NumAmbiguous)
3236       errs() << "warning: " << NumAmbiguous
3237              << " ambiguous matchables!\n";
3238   });
3239 
3240   // Compute the information on the custom operand parsing.
3241   Info.buildOperandMatchInfo();
3242 
3243   bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
3244   bool HasOptionalOperands = Info.hasOptionalOperands();
3245   bool ReportMultipleNearMisses =
3246       AsmParser->getValueAsBit("ReportMultipleNearMisses");
3247 
3248   // Write the output.
3249 
3250   // Information for the class declaration.
3251   OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
3252   OS << "#undef GET_ASSEMBLER_HEADER\n";
3253   OS << "  // This should be included into the middle of the declaration of\n";
3254   OS << "  // your subclasses implementation of MCTargetAsmParser.\n";
3255   OS << "  FeatureBitset ComputeAvailableFeatures(const FeatureBitset &FB) const;\n";
3256   if (HasOptionalOperands) {
3257     OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
3258        << "unsigned Opcode,\n"
3259        << "                       const OperandVector &Operands,\n"
3260        << "                       const SmallBitVector &OptionalOperandsMask);\n";
3261   } else {
3262     OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
3263        << "unsigned Opcode,\n"
3264        << "                       const OperandVector &Operands);\n";
3265   }
3266   OS << "  void convertToMapAndConstraints(unsigned Kind,\n                ";
3267   OS << "           const OperandVector &Operands) override;\n";
3268   OS << "  unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
3269      << "                                MCInst &Inst,\n";
3270   if (ReportMultipleNearMisses)
3271     OS << "                                SmallVectorImpl<NearMissInfo> *NearMisses,\n";
3272   else
3273     OS << "                                uint64_t &ErrorInfo,\n"
3274        << "                                FeatureBitset &MissingFeatures,\n";
3275   OS << "                                bool matchingInlineAsm,\n"
3276      << "                                unsigned VariantID = 0);\n";
3277   if (!ReportMultipleNearMisses)
3278     OS << "  unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
3279        << "                                MCInst &Inst,\n"
3280        << "                                uint64_t &ErrorInfo,\n"
3281        << "                                bool matchingInlineAsm,\n"
3282        << "                                unsigned VariantID = 0) {\n"
3283        << "    FeatureBitset MissingFeatures;\n"
3284        << "    return MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,\n"
3285        << "                                matchingInlineAsm, VariantID);\n"
3286        << "  }\n\n";
3287 
3288 
3289   if (!Info.OperandMatchInfo.empty()) {
3290     OS << "  OperandMatchResultTy MatchOperandParserImpl(\n";
3291     OS << "    OperandVector &Operands,\n";
3292     OS << "    StringRef Mnemonic,\n";
3293     OS << "    bool ParseForAllFeatures = false);\n";
3294 
3295     OS << "  OperandMatchResultTy tryCustomParseOperand(\n";
3296     OS << "    OperandVector &Operands,\n";
3297     OS << "    unsigned MCK);\n\n";
3298   }
3299 
3300   OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
3301 
3302   // Emit the operand match diagnostic enum names.
3303   OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
3304   OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
3305   emitOperandDiagnosticTypes(Info, OS);
3306   OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
3307 
3308   OS << "\n#ifdef GET_REGISTER_MATCHER\n";
3309   OS << "#undef GET_REGISTER_MATCHER\n\n";
3310 
3311   // Emit the subtarget feature enumeration.
3312   SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(
3313       Info.SubtargetFeatures, OS);
3314 
3315   // Emit the function to match a register name to number.
3316   // This should be omitted for Mips target
3317   if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
3318     emitMatchRegisterName(Target, AsmParser, OS);
3319 
3320   if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName"))
3321     emitMatchRegisterAltName(Target, AsmParser, OS);
3322 
3323   OS << "#endif // GET_REGISTER_MATCHER\n\n";
3324 
3325   OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
3326   OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
3327 
3328   // Generate the helper function to get the names for subtarget features.
3329   emitGetSubtargetFeatureName(Info, OS);
3330 
3331   OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
3332 
3333   OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
3334   OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
3335 
3336   // Generate the function that remaps for mnemonic aliases.
3337   bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target);
3338 
3339   // Generate the convertToMCInst function to convert operands into an MCInst.
3340   // Also, generate the convertToMapAndConstraints function for MS-style inline
3341   // assembly.  The latter doesn't actually generate a MCInst.
3342   unsigned NumConverters = emitConvertFuncs(Target, ClassName, Info.Matchables,
3343                                             HasMnemonicFirst,
3344                                             HasOptionalOperands, OS);
3345 
3346   // Emit the enumeration for classes which participate in matching.
3347   emitMatchClassEnumeration(Target, Info.Classes, OS);
3348 
3349   // Emit a function to get the user-visible string to describe an operand
3350   // match failure in diagnostics.
3351   emitOperandMatchErrorDiagStrings(Info, OS);
3352 
3353   // Emit a function to map register classes to operand match failure codes.
3354   emitRegisterMatchErrorFunc(Info, OS);
3355 
3356   // Emit the routine to match token strings to their match class.
3357   emitMatchTokenString(Target, Info.Classes, OS);
3358 
3359   // Emit the subclass predicate routine.
3360   emitIsSubclass(Target, Info.Classes, OS);
3361 
3362   // Emit the routine to validate an operand against a match class.
3363   emitValidateOperandClass(Info, OS);
3364 
3365   emitMatchClassKindNames(Info.Classes, OS);
3366 
3367   // Emit the available features compute function.
3368   SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures(
3369       Info.Target.getName(), ClassName, "ComputeAvailableFeatures",
3370       Info.SubtargetFeatures, OS);
3371 
3372   if (!ReportMultipleNearMisses)
3373     emitAsmTiedOperandConstraints(Target, Info, OS);
3374 
3375   StringToOffsetTable StringTable;
3376 
3377   size_t MaxNumOperands = 0;
3378   unsigned MaxMnemonicIndex = 0;
3379   bool HasDeprecation = false;
3380   for (const auto &MI : Info.Matchables) {
3381     MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
3382     HasDeprecation |= MI->HasDeprecation;
3383 
3384     // Store a pascal-style length byte in the mnemonic.
3385     std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.lower();
3386     MaxMnemonicIndex = std::max(MaxMnemonicIndex,
3387                         StringTable.GetOrAddStringOffset(LenMnemonic, false));
3388   }
3389 
3390   OS << "static const char *const MnemonicTable =\n";
3391   StringTable.EmitString(OS);
3392   OS << ";\n\n";
3393 
3394   std::vector<std::vector<Record *>> FeatureBitsets;
3395   for (const auto &MI : Info.Matchables) {
3396     if (MI->RequiredFeatures.empty())
3397       continue;
3398     FeatureBitsets.emplace_back();
3399     for (unsigned I = 0, E = MI->RequiredFeatures.size(); I != E; ++I)
3400       FeatureBitsets.back().push_back(MI->RequiredFeatures[I]->TheDef);
3401   }
3402 
3403   llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A,
3404                                  const std::vector<Record *> &B) {
3405     if (A.size() < B.size())
3406       return true;
3407     if (A.size() > B.size())
3408       return false;
3409     for (auto Pair : zip(A, B)) {
3410       if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName())
3411         return true;
3412       if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName())
3413         return false;
3414     }
3415     return false;
3416   });
3417   FeatureBitsets.erase(
3418       std::unique(FeatureBitsets.begin(), FeatureBitsets.end()),
3419       FeatureBitsets.end());
3420   OS << "// Feature bitsets.\n"
3421      << "enum : " << getMinimalTypeForRange(FeatureBitsets.size()) << " {\n"
3422      << "  AMFBS_None,\n";
3423   for (const auto &FeatureBitset : FeatureBitsets) {
3424     if (FeatureBitset.empty())
3425       continue;
3426     OS << "  " << getNameForFeatureBitset(FeatureBitset) << ",\n";
3427   }
3428   OS << "};\n\n"
3429      << "static constexpr FeatureBitset FeatureBitsets[] = {\n"
3430      << "  {}, // AMFBS_None\n";
3431   for (const auto &FeatureBitset : FeatureBitsets) {
3432     if (FeatureBitset.empty())
3433       continue;
3434     OS << "  {";
3435     for (const auto &Feature : FeatureBitset) {
3436       const auto &I = Info.SubtargetFeatures.find(Feature);
3437       assert(I != Info.SubtargetFeatures.end() && "Didn't import predicate?");
3438       OS << I->second.getEnumBitName() << ", ";
3439     }
3440     OS << "},\n";
3441   }
3442   OS << "};\n\n";
3443 
3444   // Emit the static match table; unused classes get initialized to 0 which is
3445   // guaranteed to be InvalidMatchClass.
3446   //
3447   // FIXME: We can reduce the size of this table very easily. First, we change
3448   // it so that store the kinds in separate bit-fields for each index, which
3449   // only needs to be the max width used for classes at that index (we also need
3450   // to reject based on this during classification). If we then make sure to
3451   // order the match kinds appropriately (putting mnemonics last), then we
3452   // should only end up using a few bits for each class, especially the ones
3453   // following the mnemonic.
3454   OS << "namespace {\n";
3455   OS << "  struct MatchEntry {\n";
3456   OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
3457                << " Mnemonic;\n";
3458   OS << "    uint16_t Opcode;\n";
3459   OS << "    " << getMinimalTypeForRange(NumConverters)
3460                << " ConvertFn;\n";
3461   OS << "    " << getMinimalTypeForRange(FeatureBitsets.size())
3462                << " RequiredFeaturesIdx;\n";
3463   OS << "    " << getMinimalTypeForRange(
3464                       std::distance(Info.Classes.begin(), Info.Classes.end()))
3465      << " Classes[" << MaxNumOperands << "];\n";
3466   OS << "    StringRef getMnemonic() const {\n";
3467   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
3468   OS << "                       MnemonicTable[Mnemonic]);\n";
3469   OS << "    }\n";
3470   OS << "  };\n\n";
3471 
3472   OS << "  // Predicate for searching for an opcode.\n";
3473   OS << "  struct LessOpcode {\n";
3474   OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
3475   OS << "      return LHS.getMnemonic() < RHS;\n";
3476   OS << "    }\n";
3477   OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
3478   OS << "      return LHS < RHS.getMnemonic();\n";
3479   OS << "    }\n";
3480   OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
3481   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
3482   OS << "    }\n";
3483   OS << "  };\n";
3484 
3485   OS << "} // end anonymous namespace\n\n";
3486 
3487   unsigned VariantCount = Target.getAsmParserVariantCount();
3488   for (unsigned VC = 0; VC != VariantCount; ++VC) {
3489     Record *AsmVariant = Target.getAsmParserVariant(VC);
3490     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3491 
3492     OS << "static const MatchEntry MatchTable" << VC << "[] = {\n";
3493 
3494     for (const auto &MI : Info.Matchables) {
3495       if (MI->AsmVariantID != AsmVariantNo)
3496         continue;
3497 
3498       // Store a pascal-style length byte in the mnemonic.
3499       std::string LenMnemonic =
3500           char(MI->Mnemonic.size()) + MI->Mnemonic.lower();
3501       OS << "  { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
3502          << " /* " << MI->Mnemonic << " */, "
3503          << Target.getInstNamespace() << "::"
3504          << MI->getResultInst()->TheDef->getName() << ", "
3505          << MI->ConversionFnKind << ", ";
3506 
3507       // Write the required features mask.
3508       OS << "AMFBS";
3509       if (MI->RequiredFeatures.empty())
3510         OS << "_None";
3511       else
3512         for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i)
3513           OS << '_' << MI->RequiredFeatures[i]->TheDef->getName();
3514 
3515       OS << ", { ";
3516       for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
3517         const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
3518 
3519         if (i) OS << ", ";
3520         OS << Op.Class->Name;
3521       }
3522       OS << " }, },\n";
3523     }
3524 
3525     OS << "};\n\n";
3526   }
3527 
3528   OS << "#include \"llvm/Support/Debug.h\"\n";
3529   OS << "#include \"llvm/Support/Format.h\"\n\n";
3530 
3531   // Finally, build the match function.
3532   OS << "unsigned " << Target.getName() << ClassName << "::\n"
3533      << "MatchInstructionImpl(const OperandVector &Operands,\n";
3534   OS << "                     MCInst &Inst,\n";
3535   if (ReportMultipleNearMisses)
3536     OS << "                     SmallVectorImpl<NearMissInfo> *NearMisses,\n";
3537   else
3538     OS << "                     uint64_t &ErrorInfo,\n"
3539        << "                     FeatureBitset &MissingFeatures,\n";
3540   OS << "                     bool matchingInlineAsm, unsigned VariantID) {\n";
3541 
3542   if (!ReportMultipleNearMisses) {
3543     OS << "  // Eliminate obvious mismatches.\n";
3544     OS << "  if (Operands.size() > "
3545        << (MaxNumOperands + HasMnemonicFirst) << ") {\n";
3546     OS << "    ErrorInfo = "
3547        << (MaxNumOperands + HasMnemonicFirst) << ";\n";
3548     OS << "    return Match_InvalidOperand;\n";
3549     OS << "  }\n\n";
3550   }
3551 
3552   // Emit code to get the available features.
3553   OS << "  // Get the current feature set.\n";
3554   OS << "  const FeatureBitset &AvailableFeatures = getAvailableFeatures();\n\n";
3555 
3556   OS << "  // Get the instruction mnemonic, which is the first token.\n";
3557   if (HasMnemonicFirst) {
3558     OS << "  StringRef Mnemonic = ((" << Target.getName()
3559        << "Operand &)*Operands[0]).getToken();\n\n";
3560   } else {
3561     OS << "  StringRef Mnemonic;\n";
3562     OS << "  if (Operands[0]->isToken())\n";
3563     OS << "    Mnemonic = ((" << Target.getName()
3564        << "Operand &)*Operands[0]).getToken();\n\n";
3565   }
3566 
3567   if (HasMnemonicAliases) {
3568     OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
3569     OS << "  applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n";
3570   }
3571 
3572   // Emit code to compute the class list for this operand vector.
3573   if (!ReportMultipleNearMisses) {
3574     OS << "  // Some state to try to produce better error messages.\n";
3575     OS << "  bool HadMatchOtherThanFeatures = false;\n";
3576     OS << "  bool HadMatchOtherThanPredicate = false;\n";
3577     OS << "  unsigned RetCode = Match_InvalidOperand;\n";
3578     OS << "  MissingFeatures.set();\n";
3579     OS << "  // Set ErrorInfo to the operand that mismatches if it is\n";
3580     OS << "  // wrong for all instances of the instruction.\n";
3581     OS << "  ErrorInfo = ~0ULL;\n";
3582   }
3583 
3584   if (HasOptionalOperands) {
3585     OS << "  SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n";
3586   }
3587 
3588   // Emit code to search the table.
3589   OS << "  // Find the appropriate table for this asm variant.\n";
3590   OS << "  const MatchEntry *Start, *End;\n";
3591   OS << "  switch (VariantID) {\n";
3592   OS << "  default: llvm_unreachable(\"invalid variant!\");\n";
3593   for (unsigned VC = 0; VC != VariantCount; ++VC) {
3594     Record *AsmVariant = Target.getAsmParserVariant(VC);
3595     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3596     OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3597        << "); End = std::end(MatchTable" << VC << "); break;\n";
3598   }
3599   OS << "  }\n";
3600 
3601   OS << "  // Search the table.\n";
3602   if (HasMnemonicFirst) {
3603     OS << "  auto MnemonicRange = "
3604           "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
3605   } else {
3606     OS << "  auto MnemonicRange = std::make_pair(Start, End);\n";
3607     OS << "  unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n";
3608     OS << "  if (!Mnemonic.empty())\n";
3609     OS << "    MnemonicRange = "
3610           "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n";
3611   }
3612 
3613   OS << "  DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"AsmMatcher: found \" <<\n"
3614      << "  std::distance(MnemonicRange.first, MnemonicRange.second) <<\n"
3615      << "  \" encodings with mnemonic '\" << Mnemonic << \"'\\n\");\n\n";
3616 
3617   OS << "  // Return a more specific error code if no mnemonics match.\n";
3618   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
3619   OS << "    return Match_MnemonicFail;\n\n";
3620 
3621   OS << "  for (const MatchEntry *it = MnemonicRange.first, "
3622      << "*ie = MnemonicRange.second;\n";
3623   OS << "       it != ie; ++it) {\n";
3624   OS << "    const FeatureBitset &RequiredFeatures = "
3625         "FeatureBitsets[it->RequiredFeaturesIdx];\n";
3626   OS << "    bool HasRequiredFeatures =\n";
3627   OS << "      (AvailableFeatures & RequiredFeatures) == RequiredFeatures;\n";
3628   OS << "    DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Trying to match opcode \"\n";
3629   OS << "                                          << MII.getName(it->Opcode) << \"\\n\");\n";
3630 
3631   if (ReportMultipleNearMisses) {
3632     OS << "    // Some state to record ways in which this instruction did not match.\n";
3633     OS << "    NearMissInfo OperandNearMiss = NearMissInfo::getSuccess();\n";
3634     OS << "    NearMissInfo FeaturesNearMiss = NearMissInfo::getSuccess();\n";
3635     OS << "    NearMissInfo EarlyPredicateNearMiss = NearMissInfo::getSuccess();\n";
3636     OS << "    NearMissInfo LatePredicateNearMiss = NearMissInfo::getSuccess();\n";
3637     OS << "    bool MultipleInvalidOperands = false;\n";
3638   }
3639 
3640   if (HasMnemonicFirst) {
3641     OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
3642     OS << "    assert(Mnemonic == it->getMnemonic());\n";
3643   }
3644 
3645   // Emit check that the subclasses match.
3646   if (!ReportMultipleNearMisses)
3647     OS << "    bool OperandsValid = true;\n";
3648   if (HasOptionalOperands) {
3649     OS << "    OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n";
3650   }
3651   OS << "    for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex")
3652      << ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex")
3653      << "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n";
3654   OS << "      auto Formal = "
3655      << "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n";
3656   OS << "      DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3657   OS << "                      dbgs() << \"  Matching formal operand class \" << getMatchClassName(Formal)\n";
3658   OS << "                             << \" against actual operand at index \" << ActualIdx);\n";
3659   OS << "      if (ActualIdx < Operands.size())\n";
3660   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \" (\";\n";
3661   OS << "                        Operands[ActualIdx]->print(dbgs()); dbgs() << \"): \");\n";
3662   OS << "      else\n";
3663   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \": \");\n";
3664   OS << "      if (ActualIdx >= Operands.size()) {\n";
3665   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"actual operand index out of range \");\n";
3666   if (ReportMultipleNearMisses) {
3667     OS << "        bool ThisOperandValid = (Formal == " <<"InvalidMatchClass) || "
3668                                    "isSubclass(Formal, OptionalMatchClass);\n";
3669     OS << "        if (!ThisOperandValid) {\n";
3670     OS << "          if (!OperandNearMiss) {\n";
3671     OS << "            // Record info about match failure for later use.\n";
3672     OS << "            DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"recording too-few-operands near miss\\n\");\n";
3673     OS << "            OperandNearMiss =\n";
3674     OS << "                NearMissInfo::getTooFewOperands(Formal, it->Opcode);\n";
3675     OS << "          } else if (OperandNearMiss.getKind() != NearMissInfo::NearMissTooFewOperands) {\n";
3676     OS << "            // If more than one operand is invalid, give up on this match entry.\n";
3677     OS << "            DEBUG_WITH_TYPE(\n";
3678     OS << "                \"asm-matcher\",\n";
3679     OS << "                dbgs() << \"second invalid operand, giving up on this opcode\\n\");\n";
3680     OS << "            MultipleInvalidOperands = true;\n";
3681     OS << "            break;\n";
3682     OS << "          }\n";
3683     OS << "        } else {\n";
3684     OS << "          DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"but formal operand not required\\n\");\n";
3685     OS << "          break;\n";
3686     OS << "        }\n";
3687     OS << "        continue;\n";
3688   } else {
3689     OS << "        OperandsValid = (Formal == InvalidMatchClass) || isSubclass(Formal, OptionalMatchClass);\n";
3690     OS << "        if (!OperandsValid) ErrorInfo = ActualIdx;\n";
3691     if (HasOptionalOperands) {
3692       OS << "        OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands
3693          << ");\n";
3694     }
3695     OS << "        break;\n";
3696   }
3697   OS << "      }\n";
3698   OS << "      MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n";
3699   OS << "      unsigned Diag = validateOperandClass(Actual, Formal);\n";
3700   OS << "      if (Diag == Match_Success) {\n";
3701   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3702   OS << "                        dbgs() << \"match success using generic matcher\\n\");\n";
3703   OS << "        ++ActualIdx;\n";
3704   OS << "        continue;\n";
3705   OS << "      }\n";
3706   OS << "      // If the generic handler indicates an invalid operand\n";
3707   OS << "      // failure, check for a special case.\n";
3708   OS << "      if (Diag != Match_Success) {\n";
3709   OS << "        unsigned TargetDiag = validateTargetOperandClass(Actual, Formal);\n";
3710   OS << "        if (TargetDiag == Match_Success) {\n";
3711   OS << "          DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3712   OS << "                          dbgs() << \"match success using target matcher\\n\");\n";
3713   OS << "          ++ActualIdx;\n";
3714   OS << "          continue;\n";
3715   OS << "        }\n";
3716   OS << "        // If the target matcher returned a specific error code use\n";
3717   OS << "        // that, else use the one from the generic matcher.\n";
3718   OS << "        if (TargetDiag != Match_InvalidOperand && "
3719         "HasRequiredFeatures)\n";
3720   OS << "          Diag = TargetDiag;\n";
3721   OS << "      }\n";
3722   OS << "      // If current formal operand wasn't matched and it is optional\n"
3723      << "      // then try to match next formal operand\n";
3724   OS << "      if (Diag == Match_InvalidOperand "
3725      << "&& isSubclass(Formal, OptionalMatchClass)) {\n";
3726   if (HasOptionalOperands) {
3727     OS << "        OptionalOperandsMask.set(FormalIdx);\n";
3728   }
3729     OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"ignoring optional operand\\n\");\n";
3730   OS << "        continue;\n";
3731   OS << "      }\n";
3732 
3733   if (ReportMultipleNearMisses) {
3734     OS << "      if (!OperandNearMiss) {\n";
3735     OS << "        // If this is the first invalid operand we have seen, record some\n";
3736     OS << "        // information about it.\n";
3737     OS << "        DEBUG_WITH_TYPE(\n";
3738     OS << "            \"asm-matcher\",\n";
3739     OS << "            dbgs()\n";
3740     OS << "                << \"operand match failed, recording near-miss with diag code \"\n";
3741     OS << "                << Diag << \"\\n\");\n";
3742     OS << "        OperandNearMiss =\n";
3743     OS << "            NearMissInfo::getMissedOperand(Diag, Formal, it->Opcode, ActualIdx);\n";
3744     OS << "        ++ActualIdx;\n";
3745     OS << "      } else {\n";
3746     OS << "        // If more than one operand is invalid, give up on this match entry.\n";
3747     OS << "        DEBUG_WITH_TYPE(\n";
3748     OS << "            \"asm-matcher\",\n";
3749     OS << "            dbgs() << \"second operand mismatch, skipping this opcode\\n\");\n";
3750     OS << "        MultipleInvalidOperands = true;\n";
3751     OS << "        break;\n";
3752     OS << "      }\n";
3753     OS << "    }\n\n";
3754   } else {
3755     OS << "      // If this operand is broken for all of the instances of this\n";
3756     OS << "      // mnemonic, keep track of it so we can report loc info.\n";
3757     OS << "      // If we already had a match that only failed due to a\n";
3758     OS << "      // target predicate, that diagnostic is preferred.\n";
3759     OS << "      if (!HadMatchOtherThanPredicate &&\n";
3760     OS << "          (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) {\n";
3761     OS << "        if (HasRequiredFeatures && (ErrorInfo != ActualIdx || Diag "
3762           "!= Match_InvalidOperand))\n";
3763     OS << "          RetCode = Diag;\n";
3764     OS << "        ErrorInfo = ActualIdx;\n";
3765     OS << "      }\n";
3766     OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
3767     OS << "      OperandsValid = false;\n";
3768     OS << "      break;\n";
3769     OS << "    }\n\n";
3770   }
3771 
3772   if (ReportMultipleNearMisses)
3773     OS << "    if (MultipleInvalidOperands) {\n";
3774   else
3775     OS << "    if (!OperandsValid) {\n";
3776   OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
3777   OS << "                                               \"operand mismatches, ignoring \"\n";
3778   OS << "                                               \"this opcode\\n\");\n";
3779   OS << "      continue;\n";
3780   OS << "    }\n";
3781 
3782   // Emit check that the required features are available.
3783   OS << "    if (!HasRequiredFeatures) {\n";
3784   if (!ReportMultipleNearMisses)
3785     OS << "      HadMatchOtherThanFeatures = true;\n";
3786   OS << "      FeatureBitset NewMissingFeatures = RequiredFeatures & "
3787         "~AvailableFeatures;\n";
3788   OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Missing target features:\";\n";
3789   OS << "                      for (unsigned I = 0, E = NewMissingFeatures.size(); I != E; ++I)\n";
3790   OS << "                        if (NewMissingFeatures[I])\n";
3791   OS << "                          dbgs() << ' ' << I;\n";
3792   OS << "                      dbgs() << \"\\n\");\n";
3793   if (ReportMultipleNearMisses) {
3794     OS << "      FeaturesNearMiss = NearMissInfo::getMissedFeature(NewMissingFeatures);\n";
3795   } else {
3796     OS << "      if (NewMissingFeatures.count() <=\n"
3797           "          MissingFeatures.count())\n";
3798     OS << "        MissingFeatures = NewMissingFeatures;\n";
3799     OS << "      continue;\n";
3800   }
3801   OS << "    }\n";
3802   OS << "\n";
3803   OS << "    Inst.clear();\n\n";
3804   OS << "    Inst.setOpcode(it->Opcode);\n";
3805   // Verify the instruction with the target-specific match predicate function.
3806   OS << "    // We have a potential match but have not rendered the operands.\n"
3807      << "    // Check the target predicate to handle any context sensitive\n"
3808         "    // constraints.\n"
3809      << "    // For example, Ties that are referenced multiple times must be\n"
3810         "    // checked here to ensure the input is the same for each match\n"
3811         "    // constraints. If we leave it any later the ties will have been\n"
3812         "    // canonicalized\n"
3813      << "    unsigned MatchResult;\n"
3814      << "    if ((MatchResult = checkEarlyTargetMatchPredicate(Inst, "
3815         "Operands)) != Match_Success) {\n"
3816      << "      Inst.clear();\n";
3817   OS << "      DEBUG_WITH_TYPE(\n";
3818   OS << "          \"asm-matcher\",\n";
3819   OS << "          dbgs() << \"Early target match predicate failed with diag code \"\n";
3820   OS << "                 << MatchResult << \"\\n\");\n";
3821   if (ReportMultipleNearMisses) {
3822     OS << "      EarlyPredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n";
3823   } else {
3824     OS << "      RetCode = MatchResult;\n"
3825        << "      HadMatchOtherThanPredicate = true;\n"
3826        << "      continue;\n";
3827   }
3828   OS << "    }\n\n";
3829 
3830   if (ReportMultipleNearMisses) {
3831     OS << "    // If we did not successfully match the operands, then we can't convert to\n";
3832     OS << "    // an MCInst, so bail out on this instruction variant now.\n";
3833     OS << "    if (OperandNearMiss) {\n";
3834     OS << "      // If the operand mismatch was the only problem, reprrt it as a near-miss.\n";
3835     OS << "      if (NearMisses && !FeaturesNearMiss && !EarlyPredicateNearMiss) {\n";
3836     OS << "        DEBUG_WITH_TYPE(\n";
3837     OS << "            \"asm-matcher\",\n";
3838     OS << "            dbgs()\n";
3839     OS << "                << \"Opcode result: one mismatched operand, adding near-miss\\n\");\n";
3840     OS << "        NearMisses->push_back(OperandNearMiss);\n";
3841     OS << "      } else {\n";
3842     OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
3843     OS << "                                                 \"types of mismatch, so not \"\n";
3844     OS << "                                                 \"reporting near-miss\\n\");\n";
3845     OS << "      }\n";
3846     OS << "      continue;\n";
3847     OS << "    }\n\n";
3848   }
3849 
3850   OS << "    if (matchingInlineAsm) {\n";
3851   OS << "      convertToMapAndConstraints(it->ConvertFn, Operands);\n";
3852   if (!ReportMultipleNearMisses) {
3853     OS << "      if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, "
3854           "Operands, ErrorInfo))\n";
3855     OS << "        return Match_InvalidTiedOperand;\n";
3856     OS << "\n";
3857   }
3858   OS << "      return Match_Success;\n";
3859   OS << "    }\n\n";
3860   OS << "    // We have selected a definite instruction, convert the parsed\n"
3861      << "    // operands into the appropriate MCInst.\n";
3862   if (HasOptionalOperands) {
3863     OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n"
3864        << "                    OptionalOperandsMask);\n";
3865   } else {
3866     OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
3867   }
3868   OS << "\n";
3869 
3870   // Verify the instruction with the target-specific match predicate function.
3871   OS << "    // We have a potential match. Check the target predicate to\n"
3872      << "    // handle any context sensitive constraints.\n"
3873      << "    if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
3874      << " Match_Success) {\n"
3875      << "      DEBUG_WITH_TYPE(\"asm-matcher\",\n"
3876      << "                      dbgs() << \"Target match predicate failed with diag code \"\n"
3877      << "                             << MatchResult << \"\\n\");\n"
3878      << "      Inst.clear();\n";
3879   if (ReportMultipleNearMisses) {
3880     OS << "      LatePredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n";
3881   } else {
3882     OS << "      RetCode = MatchResult;\n"
3883        << "      HadMatchOtherThanPredicate = true;\n"
3884        << "      continue;\n";
3885   }
3886   OS << "    }\n\n";
3887 
3888   if (ReportMultipleNearMisses) {
3889     OS << "    int NumNearMisses = ((int)(bool)OperandNearMiss +\n";
3890     OS << "                         (int)(bool)FeaturesNearMiss +\n";
3891     OS << "                         (int)(bool)EarlyPredicateNearMiss +\n";
3892     OS << "                         (int)(bool)LatePredicateNearMiss);\n";
3893     OS << "    if (NumNearMisses == 1) {\n";
3894     OS << "      // We had exactly one type of near-miss, so add that to the list.\n";
3895     OS << "      assert(!OperandNearMiss && \"OperandNearMiss was handled earlier\");\n";
3896     OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: found one type of \"\n";
3897     OS << "                                            \"mismatch, so reporting a \"\n";
3898     OS << "                                            \"near-miss\\n\");\n";
3899     OS << "      if (NearMisses && FeaturesNearMiss)\n";
3900     OS << "        NearMisses->push_back(FeaturesNearMiss);\n";
3901     OS << "      else if (NearMisses && EarlyPredicateNearMiss)\n";
3902     OS << "        NearMisses->push_back(EarlyPredicateNearMiss);\n";
3903     OS << "      else if (NearMisses && LatePredicateNearMiss)\n";
3904     OS << "        NearMisses->push_back(LatePredicateNearMiss);\n";
3905     OS << "\n";
3906     OS << "      continue;\n";
3907     OS << "    } else if (NumNearMisses > 1) {\n";
3908     OS << "      // This instruction missed in more than one way, so ignore it.\n";
3909     OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
3910     OS << "                                               \"types of mismatch, so not \"\n";
3911     OS << "                                               \"reporting near-miss\\n\");\n";
3912     OS << "      continue;\n";
3913     OS << "    }\n";
3914   }
3915 
3916   // Call the post-processing function, if used.
3917   StringRef InsnCleanupFn = AsmParser->getValueAsString("AsmParserInstCleanup");
3918   if (!InsnCleanupFn.empty())
3919     OS << "    " << InsnCleanupFn << "(Inst);\n";
3920 
3921   if (HasDeprecation) {
3922     OS << "    std::string Info;\n";
3923     OS << "    if (!getParser().getTargetParser().\n";
3924     OS << "        getTargetOptions().MCNoDeprecatedWarn &&\n";
3925     OS << "        MII.getDeprecatedInfo(Inst, getSTI(), Info)) {\n";
3926     OS << "      SMLoc Loc = ((" << Target.getName()
3927        << "Operand &)*Operands[0]).getStartLoc();\n";
3928     OS << "      getParser().Warning(Loc, Info, None);\n";
3929     OS << "    }\n";
3930   }
3931 
3932   if (!ReportMultipleNearMisses) {
3933     OS << "    if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, "
3934           "Operands, ErrorInfo))\n";
3935     OS << "      return Match_InvalidTiedOperand;\n";
3936     OS << "\n";
3937   }
3938 
3939   OS << "    DEBUG_WITH_TYPE(\n";
3940   OS << "        \"asm-matcher\",\n";
3941   OS << "        dbgs() << \"Opcode result: complete match, selecting this opcode\\n\");\n";
3942   OS << "    return Match_Success;\n";
3943   OS << "  }\n\n";
3944 
3945   if (ReportMultipleNearMisses) {
3946     OS << "  // No instruction variants matched exactly.\n";
3947     OS << "  return Match_NearMisses;\n";
3948   } else {
3949     OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
3950     OS << "  if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
3951     OS << "    return RetCode;\n\n";
3952     OS << "  ErrorInfo = 0;\n";
3953     OS << "  return Match_MissingFeature;\n";
3954   }
3955   OS << "}\n\n";
3956 
3957   if (!Info.OperandMatchInfo.empty())
3958     emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
3959                              MaxMnemonicIndex, FeatureBitsets.size(),
3960                              HasMnemonicFirst);
3961 
3962   OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
3963 
3964   OS << "\n#ifdef GET_MNEMONIC_SPELL_CHECKER\n";
3965   OS << "#undef GET_MNEMONIC_SPELL_CHECKER\n\n";
3966 
3967   emitMnemonicSpellChecker(OS, Target, VariantCount);
3968 
3969   OS << "#endif // GET_MNEMONIC_SPELL_CHECKER\n\n";
3970 
3971   OS << "\n#ifdef GET_MNEMONIC_CHECKER\n";
3972   OS << "#undef GET_MNEMONIC_CHECKER\n\n";
3973 
3974   emitMnemonicChecker(OS, Target, VariantCount,
3975                       HasMnemonicFirst, HasMnemonicAliases);
3976 
3977   OS << "#endif // GET_MNEMONIC_CHECKER\n\n";
3978 }
3979 
3980 namespace llvm {
3981 
3982 void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) {
3983   emitSourceFileHeader("Assembly Matcher Source Fragment", OS);
3984   AsmMatcherEmitter(RK).run(OS);
3985 }
3986 
3987 } // end namespace llvm
3988