1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CodeGenDAGPatterns class, which is used to read and
10 // represent the patterns present in a .td file for instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenDAGPatterns.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringMap.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/TypeSize.h"
26 #include "llvm/TableGen/Error.h"
27 #include "llvm/TableGen/Record.h"
28 #include <algorithm>
29 #include <cstdio>
30 #include <iterator>
31 #include <set>
32 using namespace llvm;
33 
34 #define DEBUG_TYPE "dag-patterns"
35 
36 static inline bool isIntegerOrPtr(MVT VT) {
37   return VT.isInteger() || VT == MVT::iPTR;
38 }
39 static inline bool isFloatingPoint(MVT VT) {
40   return VT.isFloatingPoint();
41 }
42 static inline bool isVector(MVT VT) {
43   return VT.isVector();
44 }
45 static inline bool isScalar(MVT VT) {
46   return !VT.isVector();
47 }
48 
49 template <typename Predicate>
50 static bool berase_if(MachineValueTypeSet &S, Predicate P) {
51   bool Erased = false;
52   // It is ok to iterate over MachineValueTypeSet and remove elements from it
53   // at the same time.
54   for (MVT T : S) {
55     if (!P(T))
56       continue;
57     Erased = true;
58     S.erase(T);
59   }
60   return Erased;
61 }
62 
63 // --- TypeSetByHwMode
64 
65 // This is a parameterized type-set class. For each mode there is a list
66 // of types that are currently possible for a given tree node. Type
67 // inference will apply to each mode separately.
68 
69 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
70   for (const ValueTypeByHwMode &VVT : VTList) {
71     insert(VVT);
72     AddrSpaces.push_back(VVT.PtrAddrSpace);
73   }
74 }
75 
76 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
77   for (const auto &I : *this) {
78     if (I.second.size() > 1)
79       return false;
80     if (!AllowEmpty && I.second.empty())
81       return false;
82   }
83   return true;
84 }
85 
86 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
87   assert(isValueTypeByHwMode(true) &&
88          "The type set has multiple types for at least one HW mode");
89   ValueTypeByHwMode VVT;
90   auto ASI = AddrSpaces.begin();
91 
92   for (const auto &I : *this) {
93     MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
94     VVT.getOrCreateTypeForMode(I.first, T);
95     if (ASI != AddrSpaces.end())
96       VVT.PtrAddrSpace = *ASI++;
97   }
98   return VVT;
99 }
100 
101 bool TypeSetByHwMode::isPossible() const {
102   for (const auto &I : *this)
103     if (!I.second.empty())
104       return true;
105   return false;
106 }
107 
108 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
109   bool Changed = false;
110   bool ContainsDefault = false;
111   MVT DT = MVT::Other;
112 
113   for (const auto &P : VVT) {
114     unsigned M = P.first;
115     // Make sure there exists a set for each specific mode from VVT.
116     Changed |= getOrCreate(M).insert(P.second).second;
117     // Cache VVT's default mode.
118     if (DefaultMode == M) {
119       ContainsDefault = true;
120       DT = P.second;
121     }
122   }
123 
124   // If VVT has a default mode, add the corresponding type to all
125   // modes in "this" that do not exist in VVT.
126   if (ContainsDefault)
127     for (auto &I : *this)
128       if (!VVT.hasMode(I.first))
129         Changed |= I.second.insert(DT).second;
130 
131   return Changed;
132 }
133 
134 // Constrain the type set to be the intersection with VTS.
135 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
136   bool Changed = false;
137   if (hasDefault()) {
138     for (const auto &I : VTS) {
139       unsigned M = I.first;
140       if (M == DefaultMode || hasMode(M))
141         continue;
142       Map.insert({M, Map.at(DefaultMode)});
143       Changed = true;
144     }
145   }
146 
147   for (auto &I : *this) {
148     unsigned M = I.first;
149     SetType &S = I.second;
150     if (VTS.hasMode(M) || VTS.hasDefault()) {
151       Changed |= intersect(I.second, VTS.get(M));
152     } else if (!S.empty()) {
153       S.clear();
154       Changed = true;
155     }
156   }
157   return Changed;
158 }
159 
160 template <typename Predicate>
161 bool TypeSetByHwMode::constrain(Predicate P) {
162   bool Changed = false;
163   for (auto &I : *this)
164     Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
165   return Changed;
166 }
167 
168 template <typename Predicate>
169 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
170   assert(empty());
171   for (const auto &I : VTS) {
172     SetType &S = getOrCreate(I.first);
173     for (auto J : I.second)
174       if (P(J))
175         S.insert(J);
176   }
177   return !empty();
178 }
179 
180 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
181   SmallVector<unsigned, 4> Modes;
182   Modes.reserve(Map.size());
183 
184   for (const auto &I : *this)
185     Modes.push_back(I.first);
186   if (Modes.empty()) {
187     OS << "{}";
188     return;
189   }
190   array_pod_sort(Modes.begin(), Modes.end());
191 
192   OS << '{';
193   for (unsigned M : Modes) {
194     OS << ' ' << getModeName(M) << ':';
195     writeToStream(get(M), OS);
196   }
197   OS << " }";
198 }
199 
200 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
201   SmallVector<MVT, 4> Types(S.begin(), S.end());
202   array_pod_sort(Types.begin(), Types.end());
203 
204   OS << '[';
205   ListSeparator LS(" ");
206   for (const MVT &T : Types)
207     OS << LS << ValueTypeByHwMode::getMVTName(T);
208   OS << ']';
209 }
210 
211 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
212   // The isSimple call is much quicker than hasDefault - check this first.
213   bool IsSimple = isSimple();
214   bool VTSIsSimple = VTS.isSimple();
215   if (IsSimple && VTSIsSimple)
216     return *begin() == *VTS.begin();
217 
218   // Speedup: We have a default if the set is simple.
219   bool HaveDefault = IsSimple || hasDefault();
220   bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
221   if (HaveDefault != VTSHaveDefault)
222     return false;
223 
224   SmallSet<unsigned, 4> Modes;
225   for (auto &I : *this)
226     Modes.insert(I.first);
227   for (const auto &I : VTS)
228     Modes.insert(I.first);
229 
230   if (HaveDefault) {
231     // Both sets have default mode.
232     for (unsigned M : Modes) {
233       if (get(M) != VTS.get(M))
234         return false;
235     }
236   } else {
237     // Neither set has default mode.
238     for (unsigned M : Modes) {
239       // If there is no default mode, an empty set is equivalent to not having
240       // the corresponding mode.
241       bool NoModeThis = !hasMode(M) || get(M).empty();
242       bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
243       if (NoModeThis != NoModeVTS)
244         return false;
245       if (!NoModeThis)
246         if (get(M) != VTS.get(M))
247           return false;
248     }
249   }
250 
251   return true;
252 }
253 
254 namespace llvm {
255   raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
256     T.writeToStream(OS);
257     return OS;
258   }
259 }
260 
261 LLVM_DUMP_METHOD
262 void TypeSetByHwMode::dump() const {
263   dbgs() << *this << '\n';
264 }
265 
266 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
267   bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
268   auto Int = [&In](MVT T) -> bool { return !In.count(T); };
269 
270   if (OutP == InP)
271     return berase_if(Out, Int);
272 
273   // Compute the intersection of scalars separately to account for only
274   // one set containing iPTR.
275   // The intersection of iPTR with a set of integer scalar types that does not
276   // include iPTR will result in the most specific scalar type:
277   // - iPTR is more specific than any set with two elements or more
278   // - iPTR is less specific than any single integer scalar type.
279   // For example
280   // { iPTR } * { i32 }     -> { i32 }
281   // { iPTR } * { i32 i64 } -> { iPTR }
282   // and
283   // { iPTR i32 } * { i32 }          -> { i32 }
284   // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
285   // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
286 
287   // Compute the difference between the two sets in such a way that the
288   // iPTR is in the set that is being subtracted. This is to see if there
289   // are any extra scalars in the set without iPTR that are not in the
290   // set containing iPTR. Then the iPTR could be considered a "wildcard"
291   // matching these scalars. If there is only one such scalar, it would
292   // replace the iPTR, if there are more, the iPTR would be retained.
293   SetType Diff;
294   if (InP) {
295     Diff = Out;
296     berase_if(Diff, [&In](MVT T) { return In.count(T); });
297     // Pre-remove these elements and rely only on InP/OutP to determine
298     // whether a change has been made.
299     berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
300   } else {
301     Diff = In;
302     berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
303     Out.erase(MVT::iPTR);
304   }
305 
306   // The actual intersection.
307   bool Changed = berase_if(Out, Int);
308   unsigned NumD = Diff.size();
309   if (NumD == 0)
310     return Changed;
311 
312   if (NumD == 1) {
313     Out.insert(*Diff.begin());
314     // This is a change only if Out was the one with iPTR (which is now
315     // being replaced).
316     Changed |= OutP;
317   } else {
318     // Multiple elements from Out are now replaced with iPTR.
319     Out.insert(MVT::iPTR);
320     Changed |= !OutP;
321   }
322   return Changed;
323 }
324 
325 bool TypeSetByHwMode::validate() const {
326 #ifndef NDEBUG
327   if (empty())
328     return true;
329   bool AllEmpty = true;
330   for (const auto &I : *this)
331     AllEmpty &= I.second.empty();
332   return !AllEmpty;
333 #endif
334   return true;
335 }
336 
337 // --- TypeInfer
338 
339 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
340                                 const TypeSetByHwMode &In) {
341   ValidateOnExit _1(Out, *this);
342   In.validate();
343   if (In.empty() || Out == In || TP.hasError())
344     return false;
345   if (Out.empty()) {
346     Out = In;
347     return true;
348   }
349 
350   bool Changed = Out.constrain(In);
351   if (Changed && Out.empty())
352     TP.error("Type contradiction");
353 
354   return Changed;
355 }
356 
357 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
358   ValidateOnExit _1(Out, *this);
359   if (TP.hasError())
360     return false;
361   assert(!Out.empty() && "cannot pick from an empty set");
362 
363   bool Changed = false;
364   for (auto &I : Out) {
365     TypeSetByHwMode::SetType &S = I.second;
366     if (S.size() <= 1)
367       continue;
368     MVT T = *S.begin(); // Pick the first element.
369     S.clear();
370     S.insert(T);
371     Changed = true;
372   }
373   return Changed;
374 }
375 
376 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
377   ValidateOnExit _1(Out, *this);
378   if (TP.hasError())
379     return false;
380   if (!Out.empty())
381     return Out.constrain(isIntegerOrPtr);
382 
383   return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
384 }
385 
386 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
387   ValidateOnExit _1(Out, *this);
388   if (TP.hasError())
389     return false;
390   if (!Out.empty())
391     return Out.constrain(isFloatingPoint);
392 
393   return Out.assign_if(getLegalTypes(), isFloatingPoint);
394 }
395 
396 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
397   ValidateOnExit _1(Out, *this);
398   if (TP.hasError())
399     return false;
400   if (!Out.empty())
401     return Out.constrain(isScalar);
402 
403   return Out.assign_if(getLegalTypes(), isScalar);
404 }
405 
406 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
407   ValidateOnExit _1(Out, *this);
408   if (TP.hasError())
409     return false;
410   if (!Out.empty())
411     return Out.constrain(isVector);
412 
413   return Out.assign_if(getLegalTypes(), isVector);
414 }
415 
416 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
417   ValidateOnExit _1(Out, *this);
418   if (TP.hasError() || !Out.empty())
419     return false;
420 
421   Out = getLegalTypes();
422   return true;
423 }
424 
425 template <typename Iter, typename Pred, typename Less>
426 static Iter min_if(Iter B, Iter E, Pred P, Less L) {
427   if (B == E)
428     return E;
429   Iter Min = E;
430   for (Iter I = B; I != E; ++I) {
431     if (!P(*I))
432       continue;
433     if (Min == E || L(*I, *Min))
434       Min = I;
435   }
436   return Min;
437 }
438 
439 template <typename Iter, typename Pred, typename Less>
440 static Iter max_if(Iter B, Iter E, Pred P, Less L) {
441   if (B == E)
442     return E;
443   Iter Max = E;
444   for (Iter I = B; I != E; ++I) {
445     if (!P(*I))
446       continue;
447     if (Max == E || L(*Max, *I))
448       Max = I;
449   }
450   return Max;
451 }
452 
453 /// Make sure that for each type in Small, there exists a larger type in Big.
454 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
455                                    TypeSetByHwMode &Big) {
456   ValidateOnExit _1(Small, *this), _2(Big, *this);
457   if (TP.hasError())
458     return false;
459   bool Changed = false;
460 
461   if (Small.empty())
462     Changed |= EnforceAny(Small);
463   if (Big.empty())
464     Changed |= EnforceAny(Big);
465 
466   assert(Small.hasDefault() && Big.hasDefault());
467 
468   SmallVector<unsigned, 4> Modes;
469   union_modes(Small, Big, Modes);
470 
471   // 1. Only allow integer or floating point types and make sure that
472   //    both sides are both integer or both floating point.
473   // 2. Make sure that either both sides have vector types, or neither
474   //    of them does.
475   for (unsigned M : Modes) {
476     TypeSetByHwMode::SetType &S = Small.get(M);
477     TypeSetByHwMode::SetType &B = Big.get(M);
478 
479     if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
480       auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
481       Changed |= berase_if(S, NotInt);
482       Changed |= berase_if(B, NotInt);
483     } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
484       auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
485       Changed |= berase_if(S, NotFP);
486       Changed |= berase_if(B, NotFP);
487     } else if (S.empty() || B.empty()) {
488       Changed = !S.empty() || !B.empty();
489       S.clear();
490       B.clear();
491     } else {
492       TP.error("Incompatible types");
493       return Changed;
494     }
495 
496     if (none_of(S, isVector) || none_of(B, isVector)) {
497       Changed |= berase_if(S, isVector);
498       Changed |= berase_if(B, isVector);
499     }
500   }
501 
502   auto LT = [](MVT A, MVT B) -> bool {
503     // Always treat non-scalable MVTs as smaller than scalable MVTs for the
504     // purposes of ordering.
505     auto ASize = std::make_tuple(A.isScalableVector(), A.getScalarSizeInBits(),
506                                  A.getSizeInBits().getKnownMinSize());
507     auto BSize = std::make_tuple(B.isScalableVector(), B.getScalarSizeInBits(),
508                                  B.getSizeInBits().getKnownMinSize());
509     return ASize < BSize;
510   };
511   auto SameKindLE = [](MVT A, MVT B) -> bool {
512     // This function is used when removing elements: when a vector is compared
513     // to a non-vector or a scalable vector to any non-scalable MVT, it should
514     // return false (to avoid removal).
515     if (std::make_tuple(A.isVector(), A.isScalableVector()) !=
516         std::make_tuple(B.isVector(), B.isScalableVector()))
517       return false;
518 
519     return std::make_tuple(A.getScalarSizeInBits(),
520                            A.getSizeInBits().getKnownMinSize()) <=
521            std::make_tuple(B.getScalarSizeInBits(),
522                            B.getSizeInBits().getKnownMinSize());
523   };
524 
525   for (unsigned M : Modes) {
526     TypeSetByHwMode::SetType &S = Small.get(M);
527     TypeSetByHwMode::SetType &B = Big.get(M);
528     // MinS = min scalar in Small, remove all scalars from Big that are
529     // smaller-or-equal than MinS.
530     auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
531     if (MinS != S.end())
532       Changed |= berase_if(B, std::bind(SameKindLE,
533                                         std::placeholders::_1, *MinS));
534 
535     // MaxS = max scalar in Big, remove all scalars from Small that are
536     // larger than MaxS.
537     auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
538     if (MaxS != B.end())
539       Changed |= berase_if(S, std::bind(SameKindLE,
540                                         *MaxS, std::placeholders::_1));
541 
542     // MinV = min vector in Small, remove all vectors from Big that are
543     // smaller-or-equal than MinV.
544     auto MinV = min_if(S.begin(), S.end(), isVector, LT);
545     if (MinV != S.end())
546       Changed |= berase_if(B, std::bind(SameKindLE,
547                                         std::placeholders::_1, *MinV));
548 
549     // MaxV = max vector in Big, remove all vectors from Small that are
550     // larger than MaxV.
551     auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
552     if (MaxV != B.end())
553       Changed |= berase_if(S, std::bind(SameKindLE,
554                                         *MaxV, std::placeholders::_1));
555   }
556 
557   return Changed;
558 }
559 
560 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
561 ///    for each type U in Elem, U is a scalar type.
562 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
563 ///    type T in Vec, such that U is the element type of T.
564 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
565                                        TypeSetByHwMode &Elem) {
566   ValidateOnExit _1(Vec, *this), _2(Elem, *this);
567   if (TP.hasError())
568     return false;
569   bool Changed = false;
570 
571   if (Vec.empty())
572     Changed |= EnforceVector(Vec);
573   if (Elem.empty())
574     Changed |= EnforceScalar(Elem);
575 
576   SmallVector<unsigned, 4> Modes;
577   union_modes(Vec, Elem, Modes);
578   for (unsigned M : Modes) {
579     TypeSetByHwMode::SetType &V = Vec.get(M);
580     TypeSetByHwMode::SetType &E = Elem.get(M);
581 
582     Changed |= berase_if(V, isScalar);  // Scalar = !vector
583     Changed |= berase_if(E, isVector);  // Vector = !scalar
584     assert(!V.empty() && !E.empty());
585 
586     MachineValueTypeSet VT, ST;
587     // Collect element types from the "vector" set.
588     for (MVT T : V)
589       VT.insert(T.getVectorElementType());
590     // Collect scalar types from the "element" set.
591     for (MVT T : E)
592       ST.insert(T);
593 
594     // Remove from V all (vector) types whose element type is not in S.
595     Changed |= berase_if(V, [&ST](MVT T) -> bool {
596                               return !ST.count(T.getVectorElementType());
597                             });
598     // Remove from E all (scalar) types, for which there is no corresponding
599     // type in V.
600     Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
601   }
602 
603   return Changed;
604 }
605 
606 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
607                                        const ValueTypeByHwMode &VVT) {
608   TypeSetByHwMode Tmp(VVT);
609   ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
610   return EnforceVectorEltTypeIs(Vec, Tmp);
611 }
612 
613 /// Ensure that for each type T in Sub, T is a vector type, and there
614 /// exists a type U in Vec such that U is a vector type with the same
615 /// element type as T and at least as many elements as T.
616 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
617                                              TypeSetByHwMode &Sub) {
618   ValidateOnExit _1(Vec, *this), _2(Sub, *this);
619   if (TP.hasError())
620     return false;
621 
622   /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
623   auto IsSubVec = [](MVT B, MVT P) -> bool {
624     if (!B.isVector() || !P.isVector())
625       return false;
626     // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
627     // but until there are obvious use-cases for this, keep the
628     // types separate.
629     if (B.isScalableVector() != P.isScalableVector())
630       return false;
631     if (B.getVectorElementType() != P.getVectorElementType())
632       return false;
633     return B.getVectorMinNumElements() < P.getVectorMinNumElements();
634   };
635 
636   /// Return true if S has no element (vector type) that T is a sub-vector of,
637   /// i.e. has the same element type as T and more elements.
638   auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
639     for (auto I : S)
640       if (IsSubVec(T, I))
641         return false;
642     return true;
643   };
644 
645   /// Return true if S has no element (vector type) that T is a super-vector
646   /// of, i.e. has the same element type as T and fewer elements.
647   auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
648     for (auto I : S)
649       if (IsSubVec(I, T))
650         return false;
651     return true;
652   };
653 
654   bool Changed = false;
655 
656   if (Vec.empty())
657     Changed |= EnforceVector(Vec);
658   if (Sub.empty())
659     Changed |= EnforceVector(Sub);
660 
661   SmallVector<unsigned, 4> Modes;
662   union_modes(Vec, Sub, Modes);
663   for (unsigned M : Modes) {
664     TypeSetByHwMode::SetType &S = Sub.get(M);
665     TypeSetByHwMode::SetType &V = Vec.get(M);
666 
667     Changed |= berase_if(S, isScalar);
668 
669     // Erase all types from S that are not sub-vectors of a type in V.
670     Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
671 
672     // Erase all types from V that are not super-vectors of a type in S.
673     Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
674   }
675 
676   return Changed;
677 }
678 
679 /// 1. Ensure that V has a scalar type iff W has a scalar type.
680 /// 2. Ensure that for each vector type T in V, there exists a vector
681 ///    type U in W, such that T and U have the same number of elements.
682 /// 3. Ensure that for each vector type U in W, there exists a vector
683 ///    type T in V, such that T and U have the same number of elements
684 ///    (reverse of 2).
685 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
686   ValidateOnExit _1(V, *this), _2(W, *this);
687   if (TP.hasError())
688     return false;
689 
690   bool Changed = false;
691   if (V.empty())
692     Changed |= EnforceAny(V);
693   if (W.empty())
694     Changed |= EnforceAny(W);
695 
696   // An actual vector type cannot have 0 elements, so we can treat scalars
697   // as zero-length vectors. This way both vectors and scalars can be
698   // processed identically.
699   auto NoLength = [](const SmallDenseSet<ElementCount> &Lengths,
700                      MVT T) -> bool {
701     return !Lengths.count(T.isVector() ? T.getVectorElementCount()
702                                        : ElementCount::getNull());
703   };
704 
705   SmallVector<unsigned, 4> Modes;
706   union_modes(V, W, Modes);
707   for (unsigned M : Modes) {
708     TypeSetByHwMode::SetType &VS = V.get(M);
709     TypeSetByHwMode::SetType &WS = W.get(M);
710 
711     SmallDenseSet<ElementCount> VN, WN;
712     for (MVT T : VS)
713       VN.insert(T.isVector() ? T.getVectorElementCount()
714                              : ElementCount::getNull());
715     for (MVT T : WS)
716       WN.insert(T.isVector() ? T.getVectorElementCount()
717                              : ElementCount::getNull());
718 
719     Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
720     Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
721   }
722   return Changed;
723 }
724 
725 namespace {
726 struct TypeSizeComparator {
727   bool operator()(const TypeSize &LHS, const TypeSize &RHS) const {
728     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
729            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
730   }
731 };
732 } // end anonymous namespace
733 
734 /// 1. Ensure that for each type T in A, there exists a type U in B,
735 ///    such that T and U have equal size in bits.
736 /// 2. Ensure that for each type U in B, there exists a type T in A
737 ///    such that T and U have equal size in bits (reverse of 1).
738 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
739   ValidateOnExit _1(A, *this), _2(B, *this);
740   if (TP.hasError())
741     return false;
742   bool Changed = false;
743   if (A.empty())
744     Changed |= EnforceAny(A);
745   if (B.empty())
746     Changed |= EnforceAny(B);
747 
748   typedef SmallSet<TypeSize, 2, TypeSizeComparator> TypeSizeSet;
749 
750   auto NoSize = [](const TypeSizeSet &Sizes, MVT T) -> bool {
751     return !Sizes.count(T.getSizeInBits());
752   };
753 
754   SmallVector<unsigned, 4> Modes;
755   union_modes(A, B, Modes);
756   for (unsigned M : Modes) {
757     TypeSetByHwMode::SetType &AS = A.get(M);
758     TypeSetByHwMode::SetType &BS = B.get(M);
759     TypeSizeSet AN, BN;
760 
761     for (MVT T : AS)
762       AN.insert(T.getSizeInBits());
763     for (MVT T : BS)
764       BN.insert(T.getSizeInBits());
765 
766     Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
767     Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
768   }
769 
770   return Changed;
771 }
772 
773 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
774   ValidateOnExit _1(VTS, *this);
775   const TypeSetByHwMode &Legal = getLegalTypes();
776   assert(Legal.isDefaultOnly() && "Default-mode only expected");
777   const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode);
778 
779   for (auto &I : VTS)
780     expandOverloads(I.second, LegalTypes);
781 }
782 
783 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
784                                 const TypeSetByHwMode::SetType &Legal) {
785   std::set<MVT> Ovs;
786   for (MVT T : Out) {
787     if (!T.isOverloaded())
788       continue;
789 
790     Ovs.insert(T);
791     // MachineValueTypeSet allows iteration and erasing.
792     Out.erase(T);
793   }
794 
795   for (MVT Ov : Ovs) {
796     switch (Ov.SimpleTy) {
797       case MVT::iPTRAny:
798         Out.insert(MVT::iPTR);
799         return;
800       case MVT::iAny:
801         for (MVT T : MVT::integer_valuetypes())
802           if (Legal.count(T))
803             Out.insert(T);
804         for (MVT T : MVT::integer_fixedlen_vector_valuetypes())
805           if (Legal.count(T))
806             Out.insert(T);
807         for (MVT T : MVT::integer_scalable_vector_valuetypes())
808           if (Legal.count(T))
809             Out.insert(T);
810         return;
811       case MVT::fAny:
812         for (MVT T : MVT::fp_valuetypes())
813           if (Legal.count(T))
814             Out.insert(T);
815         for (MVT T : MVT::fp_fixedlen_vector_valuetypes())
816           if (Legal.count(T))
817             Out.insert(T);
818         for (MVT T : MVT::fp_scalable_vector_valuetypes())
819           if (Legal.count(T))
820             Out.insert(T);
821         return;
822       case MVT::vAny:
823         for (MVT T : MVT::vector_valuetypes())
824           if (Legal.count(T))
825             Out.insert(T);
826         return;
827       case MVT::Any:
828         for (MVT T : MVT::all_valuetypes())
829           if (Legal.count(T))
830             Out.insert(T);
831         return;
832       default:
833         break;
834     }
835   }
836 }
837 
838 const TypeSetByHwMode &TypeInfer::getLegalTypes() {
839   if (!LegalTypesCached) {
840     TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
841     // Stuff all types from all modes into the default mode.
842     const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
843     for (const auto &I : LTS)
844       LegalTypes.insert(I.second);
845     LegalTypesCached = true;
846   }
847   assert(LegalCache.isDefaultOnly() && "Default-mode only expected");
848   return LegalCache;
849 }
850 
851 #ifndef NDEBUG
852 TypeInfer::ValidateOnExit::~ValidateOnExit() {
853   if (Infer.Validate && !VTS.validate()) {
854     dbgs() << "Type set is empty for each HW mode:\n"
855               "possible type contradiction in the pattern below "
856               "(use -print-records with llvm-tblgen to see all "
857               "expanded records).\n";
858     Infer.TP.dump();
859     dbgs() << "Generated from record:\n";
860     Infer.TP.getRecord()->dump();
861     PrintFatalError(Infer.TP.getRecord()->getLoc(),
862                     "Type set is empty for each HW mode in '" +
863                         Infer.TP.getRecord()->getName() + "'");
864   }
865 }
866 #endif
867 
868 
869 //===----------------------------------------------------------------------===//
870 // ScopedName Implementation
871 //===----------------------------------------------------------------------===//
872 
873 bool ScopedName::operator==(const ScopedName &o) const {
874   return Scope == o.Scope && Identifier == o.Identifier;
875 }
876 
877 bool ScopedName::operator!=(const ScopedName &o) const {
878   return !(*this == o);
879 }
880 
881 
882 //===----------------------------------------------------------------------===//
883 // TreePredicateFn Implementation
884 //===----------------------------------------------------------------------===//
885 
886 /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
887 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
888   assert(
889       (!hasPredCode() || !hasImmCode()) &&
890       ".td file corrupt: can't have a node predicate *and* an imm predicate");
891 }
892 
893 bool TreePredicateFn::hasPredCode() const {
894   return isLoad() || isStore() || isAtomic() ||
895          !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
896 }
897 
898 std::string TreePredicateFn::getPredCode() const {
899   std::string Code;
900 
901   if (!isLoad() && !isStore() && !isAtomic()) {
902     Record *MemoryVT = getMemoryVT();
903 
904     if (MemoryVT)
905       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
906                       "MemoryVT requires IsLoad or IsStore");
907   }
908 
909   if (!isLoad() && !isStore()) {
910     if (isUnindexed())
911       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
912                       "IsUnindexed requires IsLoad or IsStore");
913 
914     Record *ScalarMemoryVT = getScalarMemoryVT();
915 
916     if (ScalarMemoryVT)
917       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
918                       "ScalarMemoryVT requires IsLoad or IsStore");
919   }
920 
921   if (isLoad() + isStore() + isAtomic() > 1)
922     PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
923                     "IsLoad, IsStore, and IsAtomic are mutually exclusive");
924 
925   if (isLoad()) {
926     if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
927         !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
928         getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr &&
929         getMinAlignment() < 1)
930       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
931                       "IsLoad cannot be used by itself");
932   } else {
933     if (isNonExtLoad())
934       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
935                       "IsNonExtLoad requires IsLoad");
936     if (isAnyExtLoad())
937       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
938                       "IsAnyExtLoad requires IsLoad");
939     if (isSignExtLoad())
940       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
941                       "IsSignExtLoad requires IsLoad");
942     if (isZeroExtLoad())
943       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
944                       "IsZeroExtLoad requires IsLoad");
945   }
946 
947   if (isStore()) {
948     if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
949         getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr &&
950         getAddressSpaces() == nullptr && getMinAlignment() < 1)
951       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
952                       "IsStore cannot be used by itself");
953   } else {
954     if (isNonTruncStore())
955       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
956                       "IsNonTruncStore requires IsStore");
957     if (isTruncStore())
958       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
959                       "IsTruncStore requires IsStore");
960   }
961 
962   if (isAtomic()) {
963     if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
964         getAddressSpaces() == nullptr &&
965         !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
966         !isAtomicOrderingAcquireRelease() &&
967         !isAtomicOrderingSequentiallyConsistent() &&
968         !isAtomicOrderingAcquireOrStronger() &&
969         !isAtomicOrderingReleaseOrStronger() &&
970         !isAtomicOrderingWeakerThanAcquire() &&
971         !isAtomicOrderingWeakerThanRelease())
972       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
973                       "IsAtomic cannot be used by itself");
974   } else {
975     if (isAtomicOrderingMonotonic())
976       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
977                       "IsAtomicOrderingMonotonic requires IsAtomic");
978     if (isAtomicOrderingAcquire())
979       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
980                       "IsAtomicOrderingAcquire requires IsAtomic");
981     if (isAtomicOrderingRelease())
982       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
983                       "IsAtomicOrderingRelease requires IsAtomic");
984     if (isAtomicOrderingAcquireRelease())
985       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
986                       "IsAtomicOrderingAcquireRelease requires IsAtomic");
987     if (isAtomicOrderingSequentiallyConsistent())
988       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
989                       "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
990     if (isAtomicOrderingAcquireOrStronger())
991       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
992                       "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
993     if (isAtomicOrderingReleaseOrStronger())
994       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
995                       "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
996     if (isAtomicOrderingWeakerThanAcquire())
997       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
998                       "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
999   }
1000 
1001   if (isLoad() || isStore() || isAtomic()) {
1002     if (ListInit *AddressSpaces = getAddressSpaces()) {
1003       Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
1004         " if (";
1005 
1006       ListSeparator LS(" && ");
1007       for (Init *Val : AddressSpaces->getValues()) {
1008         Code += LS;
1009 
1010         IntInit *IntVal = dyn_cast<IntInit>(Val);
1011         if (!IntVal) {
1012           PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1013                           "AddressSpaces element must be integer");
1014         }
1015 
1016         Code += "AddrSpace != " + utostr(IntVal->getValue());
1017       }
1018 
1019       Code += ")\nreturn false;\n";
1020     }
1021 
1022     int64_t MinAlign = getMinAlignment();
1023     if (MinAlign > 0) {
1024       Code += "if (cast<MemSDNode>(N)->getAlign() < Align(";
1025       Code += utostr(MinAlign);
1026       Code += "))\nreturn false;\n";
1027     }
1028 
1029     Record *MemoryVT = getMemoryVT();
1030 
1031     if (MemoryVT)
1032       Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
1033                MemoryVT->getName() + ") return false;\n")
1034                   .str();
1035   }
1036 
1037   if (isAtomic() && isAtomicOrderingMonotonic())
1038     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1039             "AtomicOrdering::Monotonic) return false;\n";
1040   if (isAtomic() && isAtomicOrderingAcquire())
1041     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1042             "AtomicOrdering::Acquire) return false;\n";
1043   if (isAtomic() && isAtomicOrderingRelease())
1044     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1045             "AtomicOrdering::Release) return false;\n";
1046   if (isAtomic() && isAtomicOrderingAcquireRelease())
1047     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1048             "AtomicOrdering::AcquireRelease) return false;\n";
1049   if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
1050     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1051             "AtomicOrdering::SequentiallyConsistent) return false;\n";
1052 
1053   if (isAtomic() && isAtomicOrderingAcquireOrStronger())
1054     Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1055             "return false;\n";
1056   if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
1057     Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1058             "return false;\n";
1059 
1060   if (isAtomic() && isAtomicOrderingReleaseOrStronger())
1061     Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1062             "return false;\n";
1063   if (isAtomic() && isAtomicOrderingWeakerThanRelease())
1064     Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1065             "return false;\n";
1066 
1067   if (isLoad() || isStore()) {
1068     StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
1069 
1070     if (isUnindexed())
1071       Code += ("if (cast<" + SDNodeName +
1072                ">(N)->getAddressingMode() != ISD::UNINDEXED) "
1073                "return false;\n")
1074                   .str();
1075 
1076     if (isLoad()) {
1077       if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
1078            isZeroExtLoad()) > 1)
1079         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1080                         "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
1081                         "IsZeroExtLoad are mutually exclusive");
1082       if (isNonExtLoad())
1083         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
1084                 "ISD::NON_EXTLOAD) return false;\n";
1085       if (isAnyExtLoad())
1086         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1087                 "return false;\n";
1088       if (isSignExtLoad())
1089         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1090                 "return false;\n";
1091       if (isZeroExtLoad())
1092         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1093                 "return false;\n";
1094     } else {
1095       if ((isNonTruncStore() + isTruncStore()) > 1)
1096         PrintFatalError(
1097             getOrigPatFragRecord()->getRecord()->getLoc(),
1098             "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1099       if (isNonTruncStore())
1100         Code +=
1101             " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1102       if (isTruncStore())
1103         Code +=
1104             " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1105     }
1106 
1107     Record *ScalarMemoryVT = getScalarMemoryVT();
1108 
1109     if (ScalarMemoryVT)
1110       Code += ("if (cast<" + SDNodeName +
1111                ">(N)->getMemoryVT().getScalarType() != MVT::" +
1112                ScalarMemoryVT->getName() + ") return false;\n")
1113                   .str();
1114   }
1115 
1116   std::string PredicateCode =
1117       std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode"));
1118 
1119   Code += PredicateCode;
1120 
1121   if (PredicateCode.empty() && !Code.empty())
1122     Code += "return true;\n";
1123 
1124   return Code;
1125 }
1126 
1127 bool TreePredicateFn::hasImmCode() const {
1128   return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1129 }
1130 
1131 std::string TreePredicateFn::getImmCode() const {
1132   return std::string(
1133       PatFragRec->getRecord()->getValueAsString("ImmediateCode"));
1134 }
1135 
1136 bool TreePredicateFn::immCodeUsesAPInt() const {
1137   return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1138 }
1139 
1140 bool TreePredicateFn::immCodeUsesAPFloat() const {
1141   bool Unset;
1142   // The return value will be false when IsAPFloat is unset.
1143   return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1144                                                                    Unset);
1145 }
1146 
1147 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1148                                                    bool Value) const {
1149   bool Unset;
1150   bool Result =
1151       getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1152   if (Unset)
1153     return false;
1154   return Result == Value;
1155 }
1156 bool TreePredicateFn::usesOperands() const {
1157   return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
1158 }
1159 bool TreePredicateFn::isLoad() const {
1160   return isPredefinedPredicateEqualTo("IsLoad", true);
1161 }
1162 bool TreePredicateFn::isStore() const {
1163   return isPredefinedPredicateEqualTo("IsStore", true);
1164 }
1165 bool TreePredicateFn::isAtomic() const {
1166   return isPredefinedPredicateEqualTo("IsAtomic", true);
1167 }
1168 bool TreePredicateFn::isUnindexed() const {
1169   return isPredefinedPredicateEqualTo("IsUnindexed", true);
1170 }
1171 bool TreePredicateFn::isNonExtLoad() const {
1172   return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1173 }
1174 bool TreePredicateFn::isAnyExtLoad() const {
1175   return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1176 }
1177 bool TreePredicateFn::isSignExtLoad() const {
1178   return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1179 }
1180 bool TreePredicateFn::isZeroExtLoad() const {
1181   return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1182 }
1183 bool TreePredicateFn::isNonTruncStore() const {
1184   return isPredefinedPredicateEqualTo("IsTruncStore", false);
1185 }
1186 bool TreePredicateFn::isTruncStore() const {
1187   return isPredefinedPredicateEqualTo("IsTruncStore", true);
1188 }
1189 bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1190   return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1191 }
1192 bool TreePredicateFn::isAtomicOrderingAcquire() const {
1193   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1194 }
1195 bool TreePredicateFn::isAtomicOrderingRelease() const {
1196   return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1197 }
1198 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1199   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1200 }
1201 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1202   return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1203                                       true);
1204 }
1205 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1206   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1207 }
1208 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1209   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1210 }
1211 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1212   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1213 }
1214 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1215   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1216 }
1217 Record *TreePredicateFn::getMemoryVT() const {
1218   Record *R = getOrigPatFragRecord()->getRecord();
1219   if (R->isValueUnset("MemoryVT"))
1220     return nullptr;
1221   return R->getValueAsDef("MemoryVT");
1222 }
1223 
1224 ListInit *TreePredicateFn::getAddressSpaces() const {
1225   Record *R = getOrigPatFragRecord()->getRecord();
1226   if (R->isValueUnset("AddressSpaces"))
1227     return nullptr;
1228   return R->getValueAsListInit("AddressSpaces");
1229 }
1230 
1231 int64_t TreePredicateFn::getMinAlignment() const {
1232   Record *R = getOrigPatFragRecord()->getRecord();
1233   if (R->isValueUnset("MinAlignment"))
1234     return 0;
1235   return R->getValueAsInt("MinAlignment");
1236 }
1237 
1238 Record *TreePredicateFn::getScalarMemoryVT() const {
1239   Record *R = getOrigPatFragRecord()->getRecord();
1240   if (R->isValueUnset("ScalarMemoryVT"))
1241     return nullptr;
1242   return R->getValueAsDef("ScalarMemoryVT");
1243 }
1244 bool TreePredicateFn::hasGISelPredicateCode() const {
1245   return !PatFragRec->getRecord()
1246               ->getValueAsString("GISelPredicateCode")
1247               .empty();
1248 }
1249 std::string TreePredicateFn::getGISelPredicateCode() const {
1250   return std::string(
1251       PatFragRec->getRecord()->getValueAsString("GISelPredicateCode"));
1252 }
1253 
1254 StringRef TreePredicateFn::getImmType() const {
1255   if (immCodeUsesAPInt())
1256     return "const APInt &";
1257   if (immCodeUsesAPFloat())
1258     return "const APFloat &";
1259   return "int64_t";
1260 }
1261 
1262 StringRef TreePredicateFn::getImmTypeIdentifier() const {
1263   if (immCodeUsesAPInt())
1264     return "APInt";
1265   if (immCodeUsesAPFloat())
1266     return "APFloat";
1267   return "I64";
1268 }
1269 
1270 /// isAlwaysTrue - Return true if this is a noop predicate.
1271 bool TreePredicateFn::isAlwaysTrue() const {
1272   return !hasPredCode() && !hasImmCode();
1273 }
1274 
1275 /// Return the name to use in the generated code to reference this, this is
1276 /// "Predicate_foo" if from a pattern fragment "foo".
1277 std::string TreePredicateFn::getFnName() const {
1278   return "Predicate_" + PatFragRec->getRecord()->getName().str();
1279 }
1280 
1281 /// getCodeToRunOnSDNode - Return the code for the function body that
1282 /// evaluates this predicate.  The argument is expected to be in "Node",
1283 /// not N.  This handles casting and conversion to a concrete node type as
1284 /// appropriate.
1285 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1286   // Handle immediate predicates first.
1287   std::string ImmCode = getImmCode();
1288   if (!ImmCode.empty()) {
1289     if (isLoad())
1290       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1291                       "IsLoad cannot be used with ImmLeaf or its subclasses");
1292     if (isStore())
1293       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1294                       "IsStore cannot be used with ImmLeaf or its subclasses");
1295     if (isUnindexed())
1296       PrintFatalError(
1297           getOrigPatFragRecord()->getRecord()->getLoc(),
1298           "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1299     if (isNonExtLoad())
1300       PrintFatalError(
1301           getOrigPatFragRecord()->getRecord()->getLoc(),
1302           "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1303     if (isAnyExtLoad())
1304       PrintFatalError(
1305           getOrigPatFragRecord()->getRecord()->getLoc(),
1306           "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1307     if (isSignExtLoad())
1308       PrintFatalError(
1309           getOrigPatFragRecord()->getRecord()->getLoc(),
1310           "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1311     if (isZeroExtLoad())
1312       PrintFatalError(
1313           getOrigPatFragRecord()->getRecord()->getLoc(),
1314           "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1315     if (isNonTruncStore())
1316       PrintFatalError(
1317           getOrigPatFragRecord()->getRecord()->getLoc(),
1318           "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1319     if (isTruncStore())
1320       PrintFatalError(
1321           getOrigPatFragRecord()->getRecord()->getLoc(),
1322           "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1323     if (getMemoryVT())
1324       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1325                       "MemoryVT cannot be used with ImmLeaf or its subclasses");
1326     if (getScalarMemoryVT())
1327       PrintFatalError(
1328           getOrigPatFragRecord()->getRecord()->getLoc(),
1329           "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1330 
1331     std::string Result = ("    " + getImmType() + " Imm = ").str();
1332     if (immCodeUsesAPFloat())
1333       Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1334     else if (immCodeUsesAPInt())
1335       Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1336     else
1337       Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1338     return Result + ImmCode;
1339   }
1340 
1341   // Handle arbitrary node predicates.
1342   assert(hasPredCode() && "Don't have any predicate code!");
1343 
1344   // If this is using PatFrags, there are multiple trees to search. They should
1345   // all have the same class.  FIXME: Is there a way to find a common
1346   // superclass?
1347   StringRef ClassName;
1348   for (const auto &Tree : PatFragRec->getTrees()) {
1349     StringRef TreeClassName;
1350     if (Tree->isLeaf())
1351       TreeClassName = "SDNode";
1352     else {
1353       Record *Op = Tree->getOperator();
1354       const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op);
1355       TreeClassName = Info.getSDClassName();
1356     }
1357 
1358     if (ClassName.empty())
1359       ClassName = TreeClassName;
1360     else if (ClassName != TreeClassName) {
1361       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1362                       "PatFrags trees do not have consistent class");
1363     }
1364   }
1365 
1366   std::string Result;
1367   if (ClassName == "SDNode")
1368     Result = "    SDNode *N = Node;\n";
1369   else
1370     Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";
1371 
1372   return (Twine(Result) + "    (void)N;\n" + getPredCode()).str();
1373 }
1374 
1375 //===----------------------------------------------------------------------===//
1376 // PatternToMatch implementation
1377 //
1378 
1379 static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) {
1380   if (!P->isLeaf())
1381     return false;
1382   DefInit *DI = dyn_cast<DefInit>(P->getLeafValue());
1383   if (!DI)
1384     return false;
1385 
1386   Record *R = DI->getDef();
1387   return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
1388 }
1389 
1390 /// getPatternSize - Return the 'size' of this pattern.  We want to match large
1391 /// patterns before small ones.  This is used to determine the size of a
1392 /// pattern.
1393 static unsigned getPatternSize(const TreePatternNode *P,
1394                                const CodeGenDAGPatterns &CGP) {
1395   unsigned Size = 3;  // The node itself.
1396   // If the root node is a ConstantSDNode, increases its size.
1397   // e.g. (set R32:$dst, 0).
1398   if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1399     Size += 2;
1400 
1401   if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1402     Size += AM->getComplexity();
1403     // We don't want to count any children twice, so return early.
1404     return Size;
1405   }
1406 
1407   // If this node has some predicate function that must match, it adds to the
1408   // complexity of this node.
1409   if (!P->getPredicateCalls().empty())
1410     ++Size;
1411 
1412   // Count children in the count if they are also nodes.
1413   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1414     const TreePatternNode *Child = P->getChild(i);
1415     if (!Child->isLeaf() && Child->getNumTypes()) {
1416       const TypeSetByHwMode &T0 = Child->getExtType(0);
1417       // At this point, all variable type sets should be simple, i.e. only
1418       // have a default mode.
1419       if (T0.getMachineValueType() != MVT::Other) {
1420         Size += getPatternSize(Child, CGP);
1421         continue;
1422       }
1423     }
1424     if (Child->isLeaf()) {
1425       if (isa<IntInit>(Child->getLeafValue()))
1426         Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
1427       else if (Child->getComplexPatternInfo(CGP))
1428         Size += getPatternSize(Child, CGP);
1429       else if (isImmAllOnesAllZerosMatch(Child))
1430         Size += 4; // Matches a build_vector(+3) and a predicate (+1).
1431       else if (!Child->getPredicateCalls().empty())
1432         ++Size;
1433     }
1434   }
1435 
1436   return Size;
1437 }
1438 
1439 /// Compute the complexity metric for the input pattern.  This roughly
1440 /// corresponds to the number of nodes that are covered.
1441 int PatternToMatch::
1442 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1443   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1444 }
1445 
1446 void PatternToMatch::getPredicateRecords(
1447     SmallVectorImpl<Record *> &PredicateRecs) const {
1448   for (Init *I : Predicates->getValues()) {
1449     if (DefInit *Pred = dyn_cast<DefInit>(I)) {
1450       Record *Def = Pred->getDef();
1451       if (!Def->isSubClassOf("Predicate")) {
1452 #ifndef NDEBUG
1453         Def->dump();
1454 #endif
1455         llvm_unreachable("Unknown predicate type!");
1456       }
1457       PredicateRecs.push_back(Def);
1458     }
1459   }
1460   // Sort so that different orders get canonicalized to the same string.
1461   llvm::sort(PredicateRecs, LessRecord());
1462 }
1463 
1464 /// getPredicateCheck - Return a single string containing all of this
1465 /// pattern's predicates concatenated with "&&" operators.
1466 ///
1467 std::string PatternToMatch::getPredicateCheck() const {
1468   SmallVector<Record *, 4> PredicateRecs;
1469   getPredicateRecords(PredicateRecs);
1470 
1471   SmallString<128> PredicateCheck;
1472   for (Record *Pred : PredicateRecs) {
1473     StringRef CondString = Pred->getValueAsString("CondString");
1474     if (CondString.empty())
1475       continue;
1476     if (!PredicateCheck.empty())
1477       PredicateCheck += " && ";
1478     PredicateCheck += "(";
1479     PredicateCheck += CondString;
1480     PredicateCheck += ")";
1481   }
1482 
1483   if (!HwModeFeatures.empty()) {
1484     if (!PredicateCheck.empty())
1485       PredicateCheck += " && ";
1486     PredicateCheck += HwModeFeatures;
1487   }
1488 
1489   return std::string(PredicateCheck);
1490 }
1491 
1492 //===----------------------------------------------------------------------===//
1493 // SDTypeConstraint implementation
1494 //
1495 
1496 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1497   OperandNo = R->getValueAsInt("OperandNum");
1498 
1499   if (R->isSubClassOf("SDTCisVT")) {
1500     ConstraintType = SDTCisVT;
1501     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1502     for (const auto &P : VVT)
1503       if (P.second == MVT::isVoid)
1504         PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1505   } else if (R->isSubClassOf("SDTCisPtrTy")) {
1506     ConstraintType = SDTCisPtrTy;
1507   } else if (R->isSubClassOf("SDTCisInt")) {
1508     ConstraintType = SDTCisInt;
1509   } else if (R->isSubClassOf("SDTCisFP")) {
1510     ConstraintType = SDTCisFP;
1511   } else if (R->isSubClassOf("SDTCisVec")) {
1512     ConstraintType = SDTCisVec;
1513   } else if (R->isSubClassOf("SDTCisSameAs")) {
1514     ConstraintType = SDTCisSameAs;
1515     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1516   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1517     ConstraintType = SDTCisVTSmallerThanOp;
1518     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1519       R->getValueAsInt("OtherOperandNum");
1520   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1521     ConstraintType = SDTCisOpSmallerThanOp;
1522     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1523       R->getValueAsInt("BigOperandNum");
1524   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1525     ConstraintType = SDTCisEltOfVec;
1526     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1527   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1528     ConstraintType = SDTCisSubVecOfVec;
1529     x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1530       R->getValueAsInt("OtherOpNum");
1531   } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1532     ConstraintType = SDTCVecEltisVT;
1533     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1534     for (const auto &P : VVT) {
1535       MVT T = P.second;
1536       if (T.isVector())
1537         PrintFatalError(R->getLoc(),
1538                         "Cannot use vector type as SDTCVecEltisVT");
1539       if (!T.isInteger() && !T.isFloatingPoint())
1540         PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1541                                      "as SDTCVecEltisVT");
1542     }
1543   } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1544     ConstraintType = SDTCisSameNumEltsAs;
1545     x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1546       R->getValueAsInt("OtherOperandNum");
1547   } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1548     ConstraintType = SDTCisSameSizeAs;
1549     x.SDTCisSameSizeAs_Info.OtherOperandNum =
1550       R->getValueAsInt("OtherOperandNum");
1551   } else {
1552     PrintFatalError(R->getLoc(),
1553                     "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1554   }
1555 }
1556 
1557 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1558 /// N, and the result number in ResNo.
1559 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1560                                       const SDNodeInfo &NodeInfo,
1561                                       unsigned &ResNo) {
1562   unsigned NumResults = NodeInfo.getNumResults();
1563   if (OpNo < NumResults) {
1564     ResNo = OpNo;
1565     return N;
1566   }
1567 
1568   OpNo -= NumResults;
1569 
1570   if (OpNo >= N->getNumChildren()) {
1571     std::string S;
1572     raw_string_ostream OS(S);
1573     OS << "Invalid operand number in type constraint "
1574            << (OpNo+NumResults) << " ";
1575     N->print(OS);
1576     PrintFatalError(OS.str());
1577   }
1578 
1579   return N->getChild(OpNo);
1580 }
1581 
1582 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1583 /// constraint to the nodes operands.  This returns true if it makes a
1584 /// change, false otherwise.  If a type contradiction is found, flag an error.
1585 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1586                                            const SDNodeInfo &NodeInfo,
1587                                            TreePattern &TP) const {
1588   if (TP.hasError())
1589     return false;
1590 
1591   unsigned ResNo = 0; // The result number being referenced.
1592   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1593   TypeInfer &TI = TP.getInfer();
1594 
1595   switch (ConstraintType) {
1596   case SDTCisVT:
1597     // Operand must be a particular type.
1598     return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1599   case SDTCisPtrTy:
1600     // Operand must be same as target pointer type.
1601     return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1602   case SDTCisInt:
1603     // Require it to be one of the legal integer VTs.
1604      return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1605   case SDTCisFP:
1606     // Require it to be one of the legal fp VTs.
1607     return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1608   case SDTCisVec:
1609     // Require it to be one of the legal vector VTs.
1610     return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1611   case SDTCisSameAs: {
1612     unsigned OResNo = 0;
1613     TreePatternNode *OtherNode =
1614       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1615     return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1616            OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1617   }
1618   case SDTCisVTSmallerThanOp: {
1619     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1620     // have an integer type that is smaller than the VT.
1621     if (!NodeToApply->isLeaf() ||
1622         !isa<DefInit>(NodeToApply->getLeafValue()) ||
1623         !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1624                ->isSubClassOf("ValueType")) {
1625       TP.error(N->getOperator()->getName() + " expects a VT operand!");
1626       return false;
1627     }
1628     DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
1629     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1630     auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1631     TypeSetByHwMode TypeListTmp(VVT);
1632 
1633     unsigned OResNo = 0;
1634     TreePatternNode *OtherNode =
1635       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1636                     OResNo);
1637 
1638     return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
1639   }
1640   case SDTCisOpSmallerThanOp: {
1641     unsigned BResNo = 0;
1642     TreePatternNode *BigOperand =
1643       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1644                     BResNo);
1645     return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1646                                  BigOperand->getExtType(BResNo));
1647   }
1648   case SDTCisEltOfVec: {
1649     unsigned VResNo = 0;
1650     TreePatternNode *VecOperand =
1651       getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1652                     VResNo);
1653     // Filter vector types out of VecOperand that don't have the right element
1654     // type.
1655     return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1656                                      NodeToApply->getExtType(ResNo));
1657   }
1658   case SDTCisSubVecOfVec: {
1659     unsigned VResNo = 0;
1660     TreePatternNode *BigVecOperand =
1661       getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1662                     VResNo);
1663 
1664     // Filter vector types out of BigVecOperand that don't have the
1665     // right subvector type.
1666     return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1667                                            NodeToApply->getExtType(ResNo));
1668   }
1669   case SDTCVecEltisVT: {
1670     return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1671   }
1672   case SDTCisSameNumEltsAs: {
1673     unsigned OResNo = 0;
1674     TreePatternNode *OtherNode =
1675       getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1676                     N, NodeInfo, OResNo);
1677     return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1678                                  NodeToApply->getExtType(ResNo));
1679   }
1680   case SDTCisSameSizeAs: {
1681     unsigned OResNo = 0;
1682     TreePatternNode *OtherNode =
1683       getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1684                     N, NodeInfo, OResNo);
1685     return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1686                               NodeToApply->getExtType(ResNo));
1687   }
1688   }
1689   llvm_unreachable("Invalid ConstraintType!");
1690 }
1691 
1692 // Update the node type to match an instruction operand or result as specified
1693 // in the ins or outs lists on the instruction definition. Return true if the
1694 // type was actually changed.
1695 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1696                                              Record *Operand,
1697                                              TreePattern &TP) {
1698   // The 'unknown' operand indicates that types should be inferred from the
1699   // context.
1700   if (Operand->isSubClassOf("unknown_class"))
1701     return false;
1702 
1703   // The Operand class specifies a type directly.
1704   if (Operand->isSubClassOf("Operand")) {
1705     Record *R = Operand->getValueAsDef("Type");
1706     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1707     return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1708   }
1709 
1710   // PointerLikeRegClass has a type that is determined at runtime.
1711   if (Operand->isSubClassOf("PointerLikeRegClass"))
1712     return UpdateNodeType(ResNo, MVT::iPTR, TP);
1713 
1714   // Both RegisterClass and RegisterOperand operands derive their types from a
1715   // register class def.
1716   Record *RC = nullptr;
1717   if (Operand->isSubClassOf("RegisterClass"))
1718     RC = Operand;
1719   else if (Operand->isSubClassOf("RegisterOperand"))
1720     RC = Operand->getValueAsDef("RegClass");
1721 
1722   assert(RC && "Unknown operand type");
1723   CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1724   return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1725 }
1726 
1727 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1728   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1729     if (!TP.getInfer().isConcrete(Types[i], true))
1730       return true;
1731   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1732     if (getChild(i)->ContainsUnresolvedType(TP))
1733       return true;
1734   return false;
1735 }
1736 
1737 bool TreePatternNode::hasProperTypeByHwMode() const {
1738   for (const TypeSetByHwMode &S : Types)
1739     if (!S.isDefaultOnly())
1740       return true;
1741   for (const TreePatternNodePtr &C : Children)
1742     if (C->hasProperTypeByHwMode())
1743       return true;
1744   return false;
1745 }
1746 
1747 bool TreePatternNode::hasPossibleType() const {
1748   for (const TypeSetByHwMode &S : Types)
1749     if (!S.isPossible())
1750       return false;
1751   for (const TreePatternNodePtr &C : Children)
1752     if (!C->hasPossibleType())
1753       return false;
1754   return true;
1755 }
1756 
1757 bool TreePatternNode::setDefaultMode(unsigned Mode) {
1758   for (TypeSetByHwMode &S : Types) {
1759     S.makeSimple(Mode);
1760     // Check if the selected mode had a type conflict.
1761     if (S.get(DefaultMode).empty())
1762       return false;
1763   }
1764   for (const TreePatternNodePtr &C : Children)
1765     if (!C->setDefaultMode(Mode))
1766       return false;
1767   return true;
1768 }
1769 
1770 //===----------------------------------------------------------------------===//
1771 // SDNodeInfo implementation
1772 //
1773 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1774   EnumName    = R->getValueAsString("Opcode");
1775   SDClassName = R->getValueAsString("SDClass");
1776   Record *TypeProfile = R->getValueAsDef("TypeProfile");
1777   NumResults = TypeProfile->getValueAsInt("NumResults");
1778   NumOperands = TypeProfile->getValueAsInt("NumOperands");
1779 
1780   // Parse the properties.
1781   Properties = parseSDPatternOperatorProperties(R);
1782 
1783   // Parse the type constraints.
1784   std::vector<Record*> ConstraintList =
1785     TypeProfile->getValueAsListOfDefs("Constraints");
1786   for (Record *R : ConstraintList)
1787     TypeConstraints.emplace_back(R, CGH);
1788 }
1789 
1790 /// getKnownType - If the type constraints on this node imply a fixed type
1791 /// (e.g. all stores return void, etc), then return it as an
1792 /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1793 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1794   unsigned NumResults = getNumResults();
1795   assert(NumResults <= 1 &&
1796          "We only work with nodes with zero or one result so far!");
1797   assert(ResNo == 0 && "Only handles single result nodes so far");
1798 
1799   for (const SDTypeConstraint &Constraint : TypeConstraints) {
1800     // Make sure that this applies to the correct node result.
1801     if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
1802       continue;
1803 
1804     switch (Constraint.ConstraintType) {
1805     default: break;
1806     case SDTypeConstraint::SDTCisVT:
1807       if (Constraint.VVT.isSimple())
1808         return Constraint.VVT.getSimple().SimpleTy;
1809       break;
1810     case SDTypeConstraint::SDTCisPtrTy:
1811       return MVT::iPTR;
1812     }
1813   }
1814   return MVT::Other;
1815 }
1816 
1817 //===----------------------------------------------------------------------===//
1818 // TreePatternNode implementation
1819 //
1820 
1821 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1822   if (Operator->getName() == "set" ||
1823       Operator->getName() == "implicit")
1824     return 0;  // All return nothing.
1825 
1826   if (Operator->isSubClassOf("Intrinsic"))
1827     return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1828 
1829   if (Operator->isSubClassOf("SDNode"))
1830     return CDP.getSDNodeInfo(Operator).getNumResults();
1831 
1832   if (Operator->isSubClassOf("PatFrags")) {
1833     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1834     // the forward reference case where one pattern fragment references another
1835     // before it is processed.
1836     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1837       // The number of results of a fragment with alternative records is the
1838       // maximum number of results across all alternatives.
1839       unsigned NumResults = 0;
1840       for (const auto &T : PFRec->getTrees())
1841         NumResults = std::max(NumResults, T->getNumTypes());
1842       return NumResults;
1843     }
1844 
1845     ListInit *LI = Operator->getValueAsListInit("Fragments");
1846     assert(LI && "Invalid Fragment");
1847     unsigned NumResults = 0;
1848     for (Init *I : LI->getValues()) {
1849       Record *Op = nullptr;
1850       if (DagInit *Dag = dyn_cast<DagInit>(I))
1851         if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1852           Op = DI->getDef();
1853       assert(Op && "Invalid Fragment");
1854       NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1855     }
1856     return NumResults;
1857   }
1858 
1859   if (Operator->isSubClassOf("Instruction")) {
1860     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1861 
1862     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1863 
1864     // Subtract any defaulted outputs.
1865     for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1866       Record *OperandNode = InstInfo.Operands[i].Rec;
1867 
1868       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1869           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1870         --NumDefsToAdd;
1871     }
1872 
1873     // Add on one implicit def if it has a resolvable type.
1874     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1875       ++NumDefsToAdd;
1876     return NumDefsToAdd;
1877   }
1878 
1879   if (Operator->isSubClassOf("SDNodeXForm"))
1880     return 1;  // FIXME: Generalize SDNodeXForm
1881 
1882   if (Operator->isSubClassOf("ValueType"))
1883     return 1;  // A type-cast of one result.
1884 
1885   if (Operator->isSubClassOf("ComplexPattern"))
1886     return 1;
1887 
1888   errs() << *Operator;
1889   PrintFatalError("Unhandled node in GetNumNodeResults");
1890 }
1891 
1892 void TreePatternNode::print(raw_ostream &OS) const {
1893   if (isLeaf())
1894     OS << *getLeafValue();
1895   else
1896     OS << '(' << getOperator()->getName();
1897 
1898   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1899     OS << ':';
1900     getExtType(i).writeToStream(OS);
1901   }
1902 
1903   if (!isLeaf()) {
1904     if (getNumChildren() != 0) {
1905       OS << " ";
1906       ListSeparator LS;
1907       for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1908         OS << LS;
1909         getChild(i)->print(OS);
1910       }
1911     }
1912     OS << ")";
1913   }
1914 
1915   for (const TreePredicateCall &Pred : PredicateCalls) {
1916     OS << "<<P:";
1917     if (Pred.Scope)
1918       OS << Pred.Scope << ":";
1919     OS << Pred.Fn.getFnName() << ">>";
1920   }
1921   if (TransformFn)
1922     OS << "<<X:" << TransformFn->getName() << ">>";
1923   if (!getName().empty())
1924     OS << ":$" << getName();
1925 
1926   for (const ScopedName &Name : NamesAsPredicateArg)
1927     OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
1928 }
1929 void TreePatternNode::dump() const {
1930   print(errs());
1931 }
1932 
1933 /// isIsomorphicTo - Return true if this node is recursively
1934 /// isomorphic to the specified node.  For this comparison, the node's
1935 /// entire state is considered. The assigned name is ignored, since
1936 /// nodes with differing names are considered isomorphic. However, if
1937 /// the assigned name is present in the dependent variable set, then
1938 /// the assigned name is considered significant and the node is
1939 /// isomorphic if the names match.
1940 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1941                                      const MultipleUseVarSet &DepVars) const {
1942   if (N == this) return true;
1943   if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1944       getPredicateCalls() != N->getPredicateCalls() ||
1945       getTransformFn() != N->getTransformFn())
1946     return false;
1947 
1948   if (isLeaf()) {
1949     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1950       if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1951         return ((DI->getDef() == NDI->getDef())
1952                 && (DepVars.find(getName()) == DepVars.end()
1953                     || getName() == N->getName()));
1954       }
1955     }
1956     return getLeafValue() == N->getLeafValue();
1957   }
1958 
1959   if (N->getOperator() != getOperator() ||
1960       N->getNumChildren() != getNumChildren()) return false;
1961   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1962     if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1963       return false;
1964   return true;
1965 }
1966 
1967 /// clone - Make a copy of this tree and all of its children.
1968 ///
1969 TreePatternNodePtr TreePatternNode::clone() const {
1970   TreePatternNodePtr New;
1971   if (isLeaf()) {
1972     New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
1973   } else {
1974     std::vector<TreePatternNodePtr> CChildren;
1975     CChildren.reserve(Children.size());
1976     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1977       CChildren.push_back(getChild(i)->clone());
1978     New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
1979                                             getNumTypes());
1980   }
1981   New->setName(getName());
1982   New->setNamesAsPredicateArg(getNamesAsPredicateArg());
1983   New->Types = Types;
1984   New->setPredicateCalls(getPredicateCalls());
1985   New->setTransformFn(getTransformFn());
1986   return New;
1987 }
1988 
1989 /// RemoveAllTypes - Recursively strip all the types of this tree.
1990 void TreePatternNode::RemoveAllTypes() {
1991   // Reset to unknown type.
1992   std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
1993   if (isLeaf()) return;
1994   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1995     getChild(i)->RemoveAllTypes();
1996 }
1997 
1998 
1999 /// SubstituteFormalArguments - Replace the formal arguments in this tree
2000 /// with actual values specified by ArgMap.
2001 void TreePatternNode::SubstituteFormalArguments(
2002     std::map<std::string, TreePatternNodePtr> &ArgMap) {
2003   if (isLeaf()) return;
2004 
2005   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
2006     TreePatternNode *Child = getChild(i);
2007     if (Child->isLeaf()) {
2008       Init *Val = Child->getLeafValue();
2009       // Note that, when substituting into an output pattern, Val might be an
2010       // UnsetInit.
2011       if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
2012           cast<DefInit>(Val)->getDef()->getName() == "node")) {
2013         // We found a use of a formal argument, replace it with its value.
2014         TreePatternNodePtr NewChild = ArgMap[Child->getName()];
2015         assert(NewChild && "Couldn't find formal argument!");
2016         assert((Child->getPredicateCalls().empty() ||
2017                 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
2018                "Non-empty child predicate clobbered!");
2019         setChild(i, std::move(NewChild));
2020       }
2021     } else {
2022       getChild(i)->SubstituteFormalArguments(ArgMap);
2023     }
2024   }
2025 }
2026 
2027 
2028 /// InlinePatternFragments - If this pattern refers to any pattern
2029 /// fragments, return the set of inlined versions (this can be more than
2030 /// one if a PatFrags record has multiple alternatives).
2031 void TreePatternNode::InlinePatternFragments(
2032   TreePatternNodePtr T, TreePattern &TP,
2033   std::vector<TreePatternNodePtr> &OutAlternatives) {
2034 
2035   if (TP.hasError())
2036     return;
2037 
2038   if (isLeaf()) {
2039     OutAlternatives.push_back(T);  // nothing to do.
2040     return;
2041   }
2042 
2043   Record *Op = getOperator();
2044 
2045   if (!Op->isSubClassOf("PatFrags")) {
2046     if (getNumChildren() == 0) {
2047       OutAlternatives.push_back(T);
2048       return;
2049     }
2050 
2051     // Recursively inline children nodes.
2052     std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
2053     ChildAlternatives.resize(getNumChildren());
2054     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
2055       TreePatternNodePtr Child = getChildShared(i);
2056       Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
2057       // If there are no alternatives for any child, there are no
2058       // alternatives for this expression as whole.
2059       if (ChildAlternatives[i].empty())
2060         return;
2061 
2062       assert((Child->getPredicateCalls().empty() ||
2063               llvm::all_of(ChildAlternatives[i],
2064                            [&](const TreePatternNodePtr &NewChild) {
2065                              return NewChild->getPredicateCalls() ==
2066                                     Child->getPredicateCalls();
2067                            })) &&
2068              "Non-empty child predicate clobbered!");
2069     }
2070 
2071     // The end result is an all-pairs construction of the resultant pattern.
2072     std::vector<unsigned> Idxs;
2073     Idxs.resize(ChildAlternatives.size());
2074     bool NotDone;
2075     do {
2076       // Create the variant and add it to the output list.
2077       std::vector<TreePatternNodePtr> NewChildren;
2078       for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
2079         NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
2080       TreePatternNodePtr R = std::make_shared<TreePatternNode>(
2081           getOperator(), std::move(NewChildren), getNumTypes());
2082 
2083       // Copy over properties.
2084       R->setName(getName());
2085       R->setNamesAsPredicateArg(getNamesAsPredicateArg());
2086       R->setPredicateCalls(getPredicateCalls());
2087       R->setTransformFn(getTransformFn());
2088       for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
2089         R->setType(i, getExtType(i));
2090       for (unsigned i = 0, e = getNumResults(); i != e; ++i)
2091         R->setResultIndex(i, getResultIndex(i));
2092 
2093       // Register alternative.
2094       OutAlternatives.push_back(R);
2095 
2096       // Increment indices to the next permutation by incrementing the
2097       // indices from last index backward, e.g., generate the sequence
2098       // [0, 0], [0, 1], [1, 0], [1, 1].
2099       int IdxsIdx;
2100       for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
2101         if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
2102           Idxs[IdxsIdx] = 0;
2103         else
2104           break;
2105       }
2106       NotDone = (IdxsIdx >= 0);
2107     } while (NotDone);
2108 
2109     return;
2110   }
2111 
2112   // Otherwise, we found a reference to a fragment.  First, look up its
2113   // TreePattern record.
2114   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
2115 
2116   // Verify that we are passing the right number of operands.
2117   if (Frag->getNumArgs() != Children.size()) {
2118     TP.error("'" + Op->getName() + "' fragment requires " +
2119              Twine(Frag->getNumArgs()) + " operands!");
2120     return;
2121   }
2122 
2123   TreePredicateFn PredFn(Frag);
2124   unsigned Scope = 0;
2125   if (TreePredicateFn(Frag).usesOperands())
2126     Scope = TP.getDAGPatterns().allocateScope();
2127 
2128   // Compute the map of formal to actual arguments.
2129   std::map<std::string, TreePatternNodePtr> ArgMap;
2130   for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
2131     TreePatternNodePtr Child = getChildShared(i);
2132     if (Scope != 0) {
2133       Child = Child->clone();
2134       Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
2135     }
2136     ArgMap[Frag->getArgName(i)] = Child;
2137   }
2138 
2139   // Loop over all fragment alternatives.
2140   for (const auto &Alternative : Frag->getTrees()) {
2141     TreePatternNodePtr FragTree = Alternative->clone();
2142 
2143     if (!PredFn.isAlwaysTrue())
2144       FragTree->addPredicateCall(PredFn, Scope);
2145 
2146     // Resolve formal arguments to their actual value.
2147     if (Frag->getNumArgs())
2148       FragTree->SubstituteFormalArguments(ArgMap);
2149 
2150     // Transfer types.  Note that the resolved alternative may have fewer
2151     // (but not more) results than the PatFrags node.
2152     FragTree->setName(getName());
2153     for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
2154       FragTree->UpdateNodeType(i, getExtType(i), TP);
2155 
2156     // Transfer in the old predicates.
2157     for (const TreePredicateCall &Pred : getPredicateCalls())
2158       FragTree->addPredicateCall(Pred);
2159 
2160     // The fragment we inlined could have recursive inlining that is needed.  See
2161     // if there are any pattern fragments in it and inline them as needed.
2162     FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
2163   }
2164 }
2165 
2166 /// getImplicitType - Check to see if the specified record has an implicit
2167 /// type which should be applied to it.  This will infer the type of register
2168 /// references from the register file information, for example.
2169 ///
2170 /// When Unnamed is set, return the type of a DAG operand with no name, such as
2171 /// the F8RC register class argument in:
2172 ///
2173 ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
2174 ///
2175 /// When Unnamed is false, return the type of a named DAG operand such as the
2176 /// GPR:$src operand above.
2177 ///
2178 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
2179                                        bool NotRegisters,
2180                                        bool Unnamed,
2181                                        TreePattern &TP) {
2182   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2183 
2184   // Check to see if this is a register operand.
2185   if (R->isSubClassOf("RegisterOperand")) {
2186     assert(ResNo == 0 && "Regoperand ref only has one result!");
2187     if (NotRegisters)
2188       return TypeSetByHwMode(); // Unknown.
2189     Record *RegClass = R->getValueAsDef("RegClass");
2190     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2191     return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2192   }
2193 
2194   // Check to see if this is a register or a register class.
2195   if (R->isSubClassOf("RegisterClass")) {
2196     assert(ResNo == 0 && "Regclass ref only has one result!");
2197     // An unnamed register class represents itself as an i32 immediate, for
2198     // example on a COPY_TO_REGCLASS instruction.
2199     if (Unnamed)
2200       return TypeSetByHwMode(MVT::i32);
2201 
2202     // In a named operand, the register class provides the possible set of
2203     // types.
2204     if (NotRegisters)
2205       return TypeSetByHwMode(); // Unknown.
2206     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2207     return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2208   }
2209 
2210   if (R->isSubClassOf("PatFrags")) {
2211     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
2212     // Pattern fragment types will be resolved when they are inlined.
2213     return TypeSetByHwMode(); // Unknown.
2214   }
2215 
2216   if (R->isSubClassOf("Register")) {
2217     assert(ResNo == 0 && "Registers only produce one result!");
2218     if (NotRegisters)
2219       return TypeSetByHwMode(); // Unknown.
2220     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2221     return TypeSetByHwMode(T.getRegisterVTs(R));
2222   }
2223 
2224   if (R->isSubClassOf("SubRegIndex")) {
2225     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
2226     return TypeSetByHwMode(MVT::i32);
2227   }
2228 
2229   if (R->isSubClassOf("ValueType")) {
2230     assert(ResNo == 0 && "This node only has one result!");
2231     // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2232     //
2233     //   (sext_inreg GPR:$src, i16)
2234     //                         ~~~
2235     if (Unnamed)
2236       return TypeSetByHwMode(MVT::Other);
2237     // With a name, the ValueType simply provides the type of the named
2238     // variable.
2239     //
2240     //   (sext_inreg i32:$src, i16)
2241     //               ~~~~~~~~
2242     if (NotRegisters)
2243       return TypeSetByHwMode(); // Unknown.
2244     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2245     return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2246   }
2247 
2248   if (R->isSubClassOf("CondCode")) {
2249     assert(ResNo == 0 && "This node only has one result!");
2250     // Using a CondCodeSDNode.
2251     return TypeSetByHwMode(MVT::Other);
2252   }
2253 
2254   if (R->isSubClassOf("ComplexPattern")) {
2255     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2256     if (NotRegisters)
2257       return TypeSetByHwMode(); // Unknown.
2258     return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
2259   }
2260   if (R->isSubClassOf("PointerLikeRegClass")) {
2261     assert(ResNo == 0 && "Regclass can only have one result!");
2262     TypeSetByHwMode VTS(MVT::iPTR);
2263     TP.getInfer().expandOverloads(VTS);
2264     return VTS;
2265   }
2266 
2267   if (R->getName() == "node" || R->getName() == "srcvalue" ||
2268       R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
2269       R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
2270     // Placeholder.
2271     return TypeSetByHwMode(); // Unknown.
2272   }
2273 
2274   if (R->isSubClassOf("Operand")) {
2275     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2276     Record *T = R->getValueAsDef("Type");
2277     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2278   }
2279 
2280   TP.error("Unknown node flavor used in pattern: " + R->getName());
2281   return TypeSetByHwMode(MVT::Other);
2282 }
2283 
2284 
2285 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2286 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
2287 const CodeGenIntrinsic *TreePatternNode::
2288 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2289   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2290       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2291       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2292     return nullptr;
2293 
2294   unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2295   return &CDP.getIntrinsicInfo(IID);
2296 }
2297 
2298 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2299 /// return the ComplexPattern information, otherwise return null.
2300 const ComplexPattern *
2301 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2302   Record *Rec;
2303   if (isLeaf()) {
2304     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2305     if (!DI)
2306       return nullptr;
2307     Rec = DI->getDef();
2308   } else
2309     Rec = getOperator();
2310 
2311   if (!Rec->isSubClassOf("ComplexPattern"))
2312     return nullptr;
2313   return &CGP.getComplexPattern(Rec);
2314 }
2315 
2316 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2317   // A ComplexPattern specifically declares how many results it fills in.
2318   if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2319     return CP->getNumOperands();
2320 
2321   // If MIOperandInfo is specified, that gives the count.
2322   if (isLeaf()) {
2323     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2324     if (DI && DI->getDef()->isSubClassOf("Operand")) {
2325       DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2326       if (MIOps->getNumArgs())
2327         return MIOps->getNumArgs();
2328     }
2329   }
2330 
2331   // Otherwise there is just one result.
2332   return 1;
2333 }
2334 
2335 /// NodeHasProperty - Return true if this node has the specified property.
2336 bool TreePatternNode::NodeHasProperty(SDNP Property,
2337                                       const CodeGenDAGPatterns &CGP) const {
2338   if (isLeaf()) {
2339     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2340       return CP->hasProperty(Property);
2341 
2342     return false;
2343   }
2344 
2345   if (Property != SDNPHasChain) {
2346     // The chain proprety is already present on the different intrinsic node
2347     // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2348     // on the intrinsic. Anything else is specific to the individual intrinsic.
2349     if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2350       return Int->hasProperty(Property);
2351   }
2352 
2353   if (!Operator->isSubClassOf("SDPatternOperator"))
2354     return false;
2355 
2356   return CGP.getSDNodeInfo(Operator).hasProperty(Property);
2357 }
2358 
2359 
2360 
2361 
2362 /// TreeHasProperty - Return true if any node in this tree has the specified
2363 /// property.
2364 bool TreePatternNode::TreeHasProperty(SDNP Property,
2365                                       const CodeGenDAGPatterns &CGP) const {
2366   if (NodeHasProperty(Property, CGP))
2367     return true;
2368   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2369     if (getChild(i)->TreeHasProperty(Property, CGP))
2370       return true;
2371   return false;
2372 }
2373 
2374 /// isCommutativeIntrinsic - Return true if the node corresponds to a
2375 /// commutative intrinsic.
2376 bool
2377 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2378   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2379     return Int->isCommutative;
2380   return false;
2381 }
2382 
2383 static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2384   if (!N->isLeaf())
2385     return N->getOperator()->isSubClassOf(Class);
2386 
2387   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2388   if (DI && DI->getDef()->isSubClassOf(Class))
2389     return true;
2390 
2391   return false;
2392 }
2393 
2394 static void emitTooManyOperandsError(TreePattern &TP,
2395                                      StringRef InstName,
2396                                      unsigned Expected,
2397                                      unsigned Actual) {
2398   TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2399            " operands but expected only " + Twine(Expected) + "!");
2400 }
2401 
2402 static void emitTooFewOperandsError(TreePattern &TP,
2403                                     StringRef InstName,
2404                                     unsigned Actual) {
2405   TP.error("Instruction '" + InstName +
2406            "' expects more than the provided " + Twine(Actual) + " operands!");
2407 }
2408 
2409 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
2410 /// this node and its children in the tree.  This returns true if it makes a
2411 /// change, false otherwise.  If a type contradiction is found, flag an error.
2412 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2413   if (TP.hasError())
2414     return false;
2415 
2416   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2417   if (isLeaf()) {
2418     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2419       // If it's a regclass or something else known, include the type.
2420       bool MadeChange = false;
2421       for (unsigned i = 0, e = Types.size(); i != e; ++i)
2422         MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2423                                                         NotRegisters,
2424                                                         !hasName(), TP), TP);
2425       return MadeChange;
2426     }
2427 
2428     if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2429       assert(Types.size() == 1 && "Invalid IntInit");
2430 
2431       // Int inits are always integers. :)
2432       bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2433 
2434       if (!TP.getInfer().isConcrete(Types[0], false))
2435         return MadeChange;
2436 
2437       ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2438       for (auto &P : VVT) {
2439         MVT::SimpleValueType VT = P.second.SimpleTy;
2440         if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2441           continue;
2442         unsigned Size = MVT(VT).getFixedSizeInBits();
2443         // Make sure that the value is representable for this type.
2444         if (Size >= 32)
2445           continue;
2446         // Check that the value doesn't use more bits than we have. It must
2447         // either be a sign- or zero-extended equivalent of the original.
2448         int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2449         if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2450             SignBitAndAbove == 1)
2451           continue;
2452 
2453         TP.error("Integer value '" + Twine(II->getValue()) +
2454                  "' is out of range for type '" + getEnumName(VT) + "'!");
2455         break;
2456       }
2457       return MadeChange;
2458     }
2459 
2460     return false;
2461   }
2462 
2463   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2464     bool MadeChange = false;
2465 
2466     // Apply the result type to the node.
2467     unsigned NumRetVTs = Int->IS.RetVTs.size();
2468     unsigned NumParamVTs = Int->IS.ParamVTs.size();
2469 
2470     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2471       MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
2472 
2473     if (getNumChildren() != NumParamVTs + 1) {
2474       TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2475                " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2476       return false;
2477     }
2478 
2479     // Apply type info to the intrinsic ID.
2480     MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2481 
2482     for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2483       MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2484 
2485       MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
2486       assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
2487       MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
2488     }
2489     return MadeChange;
2490   }
2491 
2492   if (getOperator()->isSubClassOf("SDNode")) {
2493     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2494 
2495     // Check that the number of operands is sane.  Negative operands -> varargs.
2496     if (NI.getNumOperands() >= 0 &&
2497         getNumChildren() != (unsigned)NI.getNumOperands()) {
2498       TP.error(getOperator()->getName() + " node requires exactly " +
2499                Twine(NI.getNumOperands()) + " operands!");
2500       return false;
2501     }
2502 
2503     bool MadeChange = false;
2504     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2505       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2506     MadeChange |= NI.ApplyTypeConstraints(this, TP);
2507     return MadeChange;
2508   }
2509 
2510   if (getOperator()->isSubClassOf("Instruction")) {
2511     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2512     CodeGenInstruction &InstInfo =
2513       CDP.getTargetInfo().getInstruction(getOperator());
2514 
2515     bool MadeChange = false;
2516 
2517     // Apply the result types to the node, these come from the things in the
2518     // (outs) list of the instruction.
2519     unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2520                                         Inst.getNumResults());
2521     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2522       MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2523 
2524     // If the instruction has implicit defs, we apply the first one as a result.
2525     // FIXME: This sucks, it should apply all implicit defs.
2526     if (!InstInfo.ImplicitDefs.empty()) {
2527       unsigned ResNo = NumResultsToAdd;
2528 
2529       // FIXME: Generalize to multiple possible types and multiple possible
2530       // ImplicitDefs.
2531       MVT::SimpleValueType VT =
2532         InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2533 
2534       if (VT != MVT::Other)
2535         MadeChange |= UpdateNodeType(ResNo, VT, TP);
2536     }
2537 
2538     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2539     // be the same.
2540     if (getOperator()->getName() == "INSERT_SUBREG") {
2541       assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
2542       MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2543       MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2544     } else if (getOperator()->getName() == "REG_SEQUENCE") {
2545       // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2546       // variadic.
2547 
2548       unsigned NChild = getNumChildren();
2549       if (NChild < 3) {
2550         TP.error("REG_SEQUENCE requires at least 3 operands!");
2551         return false;
2552       }
2553 
2554       if (NChild % 2 == 0) {
2555         TP.error("REG_SEQUENCE requires an odd number of operands!");
2556         return false;
2557       }
2558 
2559       if (!isOperandClass(getChild(0), "RegisterClass")) {
2560         TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2561         return false;
2562       }
2563 
2564       for (unsigned I = 1; I < NChild; I += 2) {
2565         TreePatternNode *SubIdxChild = getChild(I + 1);
2566         if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2567           TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2568                    Twine(I + 1) + "!");
2569           return false;
2570         }
2571       }
2572     }
2573 
2574     unsigned NumResults = Inst.getNumResults();
2575     unsigned NumFixedOperands = InstInfo.Operands.size();
2576 
2577     // If one or more operands with a default value appear at the end of the
2578     // formal operand list for an instruction, we allow them to be overridden
2579     // by optional operands provided in the pattern.
2580     //
2581     // But if an operand B without a default appears at any point after an
2582     // operand A with a default, then we don't allow A to be overridden,
2583     // because there would be no way to specify whether the next operand in
2584     // the pattern was intended to override A or skip it.
2585     unsigned NonOverridableOperands = NumFixedOperands;
2586     while (NonOverridableOperands > NumResults &&
2587            CDP.operandHasDefault(InstInfo.Operands[NonOverridableOperands-1].Rec))
2588       --NonOverridableOperands;
2589 
2590     unsigned ChildNo = 0;
2591     assert(NumResults <= NumFixedOperands);
2592     for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) {
2593       Record *OperandNode = InstInfo.Operands[i].Rec;
2594 
2595       // If the operand has a default value, do we use it? We must use the
2596       // default if we've run out of children of the pattern DAG to consume,
2597       // or if the operand is followed by a non-defaulted one.
2598       if (CDP.operandHasDefault(OperandNode) &&
2599           (i < NonOverridableOperands || ChildNo >= getNumChildren()))
2600         continue;
2601 
2602       // If we have run out of child nodes and there _isn't_ a default
2603       // value we can use for the next operand, give an error.
2604       if (ChildNo >= getNumChildren()) {
2605         emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2606         return false;
2607       }
2608 
2609       TreePatternNode *Child = getChild(ChildNo++);
2610       unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
2611 
2612       // If the operand has sub-operands, they may be provided by distinct
2613       // child patterns, so attempt to match each sub-operand separately.
2614       if (OperandNode->isSubClassOf("Operand")) {
2615         DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2616         if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2617           // But don't do that if the whole operand is being provided by
2618           // a single ComplexPattern-related Operand.
2619 
2620           if (Child->getNumMIResults(CDP) < NumArgs) {
2621             // Match first sub-operand against the child we already have.
2622             Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2623             MadeChange |=
2624               Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2625 
2626             // And the remaining sub-operands against subsequent children.
2627             for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2628               if (ChildNo >= getNumChildren()) {
2629                 emitTooFewOperandsError(TP, getOperator()->getName(),
2630                                         getNumChildren());
2631                 return false;
2632               }
2633               Child = getChild(ChildNo++);
2634 
2635               SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2636               MadeChange |=
2637                 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2638             }
2639             continue;
2640           }
2641         }
2642       }
2643 
2644       // If we didn't match by pieces above, attempt to match the whole
2645       // operand now.
2646       MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2647     }
2648 
2649     if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2650       emitTooManyOperandsError(TP, getOperator()->getName(),
2651                                ChildNo, getNumChildren());
2652       return false;
2653     }
2654 
2655     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2656       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2657     return MadeChange;
2658   }
2659 
2660   if (getOperator()->isSubClassOf("ComplexPattern")) {
2661     bool MadeChange = false;
2662 
2663     for (unsigned i = 0; i < getNumChildren(); ++i)
2664       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2665 
2666     return MadeChange;
2667   }
2668 
2669   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2670 
2671   // Node transforms always take one operand.
2672   if (getNumChildren() != 1) {
2673     TP.error("Node transform '" + getOperator()->getName() +
2674              "' requires one operand!");
2675     return false;
2676   }
2677 
2678   bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2679   return MadeChange;
2680 }
2681 
2682 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2683 /// RHS of a commutative operation, not the on LHS.
2684 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2685   if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2686     return true;
2687   if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2688     return true;
2689   if (isImmAllOnesAllZerosMatch(N))
2690     return true;
2691   return false;
2692 }
2693 
2694 
2695 /// canPatternMatch - If it is impossible for this pattern to match on this
2696 /// target, fill in Reason and return false.  Otherwise, return true.  This is
2697 /// used as a sanity check for .td files (to prevent people from writing stuff
2698 /// that can never possibly work), and to prevent the pattern permuter from
2699 /// generating stuff that is useless.
2700 bool TreePatternNode::canPatternMatch(std::string &Reason,
2701                                       const CodeGenDAGPatterns &CDP) {
2702   if (isLeaf()) return true;
2703 
2704   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2705     if (!getChild(i)->canPatternMatch(Reason, CDP))
2706       return false;
2707 
2708   // If this is an intrinsic, handle cases that would make it not match.  For
2709   // example, if an operand is required to be an immediate.
2710   if (getOperator()->isSubClassOf("Intrinsic")) {
2711     // TODO:
2712     return true;
2713   }
2714 
2715   if (getOperator()->isSubClassOf("ComplexPattern"))
2716     return true;
2717 
2718   // If this node is a commutative operator, check that the LHS isn't an
2719   // immediate.
2720   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2721   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2722   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2723     // Scan all of the operands of the node and make sure that only the last one
2724     // is a constant node, unless the RHS also is.
2725     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2726       unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2727       for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2728         if (OnlyOnRHSOfCommutative(getChild(i))) {
2729           Reason="Immediate value must be on the RHS of commutative operators!";
2730           return false;
2731         }
2732     }
2733   }
2734 
2735   return true;
2736 }
2737 
2738 //===----------------------------------------------------------------------===//
2739 // TreePattern implementation
2740 //
2741 
2742 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2743                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2744                          isInputPattern(isInput), HasError(false),
2745                          Infer(*this) {
2746   for (Init *I : RawPat->getValues())
2747     Trees.push_back(ParseTreePattern(I, ""));
2748 }
2749 
2750 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2751                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2752                          isInputPattern(isInput), HasError(false),
2753                          Infer(*this) {
2754   Trees.push_back(ParseTreePattern(Pat, ""));
2755 }
2756 
2757 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
2758                          CodeGenDAGPatterns &cdp)
2759     : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2760       Infer(*this) {
2761   Trees.push_back(Pat);
2762 }
2763 
2764 void TreePattern::error(const Twine &Msg) {
2765   if (HasError)
2766     return;
2767   dump();
2768   PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2769   HasError = true;
2770 }
2771 
2772 void TreePattern::ComputeNamedNodes() {
2773   for (TreePatternNodePtr &Tree : Trees)
2774     ComputeNamedNodes(Tree.get());
2775 }
2776 
2777 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2778   if (!N->getName().empty())
2779     NamedNodes[N->getName()].push_back(N);
2780 
2781   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2782     ComputeNamedNodes(N->getChild(i));
2783 }
2784 
2785 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2786                                                  StringRef OpName) {
2787   if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2788     Record *R = DI->getDef();
2789 
2790     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2791     // TreePatternNode of its own.  For example:
2792     ///   (foo GPR, imm) -> (foo GPR, (imm))
2793     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2794       return ParseTreePattern(
2795         DagInit::get(DI, nullptr,
2796                      std::vector<std::pair<Init*, StringInit*> >()),
2797         OpName);
2798 
2799     // Input argument?
2800     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
2801     if (R->getName() == "node" && !OpName.empty()) {
2802       if (OpName.empty())
2803         error("'node' argument requires a name to match with operand list");
2804       Args.push_back(std::string(OpName));
2805     }
2806 
2807     Res->setName(OpName);
2808     return Res;
2809   }
2810 
2811   // ?:$name or just $name.
2812   if (isa<UnsetInit>(TheInit)) {
2813     if (OpName.empty())
2814       error("'?' argument requires a name to match with operand list");
2815     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
2816     Args.push_back(std::string(OpName));
2817     Res->setName(OpName);
2818     return Res;
2819   }
2820 
2821   if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
2822     if (!OpName.empty())
2823       error("Constant int or bit argument should not have a name!");
2824     if (isa<BitInit>(TheInit))
2825       TheInit = TheInit->convertInitializerTo(IntRecTy::get());
2826     return std::make_shared<TreePatternNode>(TheInit, 1);
2827   }
2828 
2829   if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2830     // Turn this into an IntInit.
2831     Init *II = BI->convertInitializerTo(IntRecTy::get());
2832     if (!II || !isa<IntInit>(II))
2833       error("Bits value must be constants!");
2834     return ParseTreePattern(II, OpName);
2835   }
2836 
2837   DagInit *Dag = dyn_cast<DagInit>(TheInit);
2838   if (!Dag) {
2839     TheInit->print(errs());
2840     error("Pattern has unexpected init kind!");
2841   }
2842   DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2843   if (!OpDef) error("Pattern has unexpected operator type!");
2844   Record *Operator = OpDef->getDef();
2845 
2846   if (Operator->isSubClassOf("ValueType")) {
2847     // If the operator is a ValueType, then this must be "type cast" of a leaf
2848     // node.
2849     if (Dag->getNumArgs() != 1)
2850       error("Type cast only takes one operand!");
2851 
2852     TreePatternNodePtr New =
2853         ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2854 
2855     // Apply the type cast.
2856     if (New->getNumTypes() != 1)
2857       error("Type cast can only have one type!");
2858     const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2859     New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2860 
2861     if (!OpName.empty())
2862       error("ValueType cast should not have a name!");
2863     return New;
2864   }
2865 
2866   // Verify that this is something that makes sense for an operator.
2867   if (!Operator->isSubClassOf("PatFrags") &&
2868       !Operator->isSubClassOf("SDNode") &&
2869       !Operator->isSubClassOf("Instruction") &&
2870       !Operator->isSubClassOf("SDNodeXForm") &&
2871       !Operator->isSubClassOf("Intrinsic") &&
2872       !Operator->isSubClassOf("ComplexPattern") &&
2873       Operator->getName() != "set" &&
2874       Operator->getName() != "implicit")
2875     error("Unrecognized node '" + Operator->getName() + "'!");
2876 
2877   //  Check to see if this is something that is illegal in an input pattern.
2878   if (isInputPattern) {
2879     if (Operator->isSubClassOf("Instruction") ||
2880         Operator->isSubClassOf("SDNodeXForm"))
2881       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2882   } else {
2883     if (Operator->isSubClassOf("Intrinsic"))
2884       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2885 
2886     if (Operator->isSubClassOf("SDNode") &&
2887         Operator->getName() != "imm" &&
2888         Operator->getName() != "timm" &&
2889         Operator->getName() != "fpimm" &&
2890         Operator->getName() != "tglobaltlsaddr" &&
2891         Operator->getName() != "tconstpool" &&
2892         Operator->getName() != "tjumptable" &&
2893         Operator->getName() != "tframeindex" &&
2894         Operator->getName() != "texternalsym" &&
2895         Operator->getName() != "tblockaddress" &&
2896         Operator->getName() != "tglobaladdr" &&
2897         Operator->getName() != "bb" &&
2898         Operator->getName() != "vt" &&
2899         Operator->getName() != "mcsym")
2900       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2901   }
2902 
2903   std::vector<TreePatternNodePtr> Children;
2904 
2905   // Parse all the operands.
2906   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2907     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2908 
2909   // Get the actual number of results before Operator is converted to an intrinsic
2910   // node (which is hard-coded to have either zero or one result).
2911   unsigned NumResults = GetNumNodeResults(Operator, CDP);
2912 
2913   // If the operator is an intrinsic, then this is just syntactic sugar for
2914   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2915   // convert the intrinsic name to a number.
2916   if (Operator->isSubClassOf("Intrinsic")) {
2917     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2918     unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2919 
2920     // If this intrinsic returns void, it must have side-effects and thus a
2921     // chain.
2922     if (Int.IS.RetVTs.empty())
2923       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2924     else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects)
2925       // Has side-effects, requires chain.
2926       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2927     else // Otherwise, no chain.
2928       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2929 
2930     Children.insert(Children.begin(),
2931                     std::make_shared<TreePatternNode>(IntInit::get(IID), 1));
2932   }
2933 
2934   if (Operator->isSubClassOf("ComplexPattern")) {
2935     for (unsigned i = 0; i < Children.size(); ++i) {
2936       TreePatternNodePtr Child = Children[i];
2937 
2938       if (Child->getName().empty())
2939         error("All arguments to a ComplexPattern must be named");
2940 
2941       // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2942       // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2943       // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2944       auto OperandId = std::make_pair(Operator, i);
2945       auto PrevOp = ComplexPatternOperands.find(Child->getName());
2946       if (PrevOp != ComplexPatternOperands.end()) {
2947         if (PrevOp->getValue() != OperandId)
2948           error("All ComplexPattern operands must appear consistently: "
2949                 "in the same order in just one ComplexPattern instance.");
2950       } else
2951         ComplexPatternOperands[Child->getName()] = OperandId;
2952     }
2953   }
2954 
2955   TreePatternNodePtr Result =
2956       std::make_shared<TreePatternNode>(Operator, std::move(Children),
2957                                         NumResults);
2958   Result->setName(OpName);
2959 
2960   if (Dag->getName()) {
2961     assert(Result->getName().empty());
2962     Result->setName(Dag->getNameStr());
2963   }
2964   return Result;
2965 }
2966 
2967 /// SimplifyTree - See if we can simplify this tree to eliminate something that
2968 /// will never match in favor of something obvious that will.  This is here
2969 /// strictly as a convenience to target authors because it allows them to write
2970 /// more type generic things and have useless type casts fold away.
2971 ///
2972 /// This returns true if any change is made.
2973 static bool SimplifyTree(TreePatternNodePtr &N) {
2974   if (N->isLeaf())
2975     return false;
2976 
2977   // If we have a bitconvert with a resolved type and if the source and
2978   // destination types are the same, then the bitconvert is useless, remove it.
2979   //
2980   // We make an exception if the types are completely empty. This can come up
2981   // when the pattern being simplified is in the Fragments list of a PatFrags,
2982   // so that the operand is just an untyped "node". In that situation we leave
2983   // bitconverts unsimplified, and simplify them later once the fragment is
2984   // expanded into its true context.
2985   if (N->getOperator()->getName() == "bitconvert" &&
2986       N->getExtType(0).isValueTypeByHwMode(false) &&
2987       !N->getExtType(0).empty() &&
2988       N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2989       N->getName().empty()) {
2990     N = N->getChildShared(0);
2991     SimplifyTree(N);
2992     return true;
2993   }
2994 
2995   // Walk all children.
2996   bool MadeChange = false;
2997   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2998     TreePatternNodePtr Child = N->getChildShared(i);
2999     MadeChange |= SimplifyTree(Child);
3000     N->setChild(i, std::move(Child));
3001   }
3002   return MadeChange;
3003 }
3004 
3005 
3006 
3007 /// InferAllTypes - Infer/propagate as many types throughout the expression
3008 /// patterns as possible.  Return true if all types are inferred, false
3009 /// otherwise.  Flags an error if a type contradiction is found.
3010 bool TreePattern::
3011 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
3012   if (NamedNodes.empty())
3013     ComputeNamedNodes();
3014 
3015   bool MadeChange = true;
3016   while (MadeChange) {
3017     MadeChange = false;
3018     for (TreePatternNodePtr &Tree : Trees) {
3019       MadeChange |= Tree->ApplyTypeConstraints(*this, false);
3020       MadeChange |= SimplifyTree(Tree);
3021     }
3022 
3023     // If there are constraints on our named nodes, apply them.
3024     for (auto &Entry : NamedNodes) {
3025       SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
3026 
3027       // If we have input named node types, propagate their types to the named
3028       // values here.
3029       if (InNamedTypes) {
3030         if (!InNamedTypes->count(Entry.getKey())) {
3031           error("Node '" + std::string(Entry.getKey()) +
3032                 "' in output pattern but not input pattern");
3033           return true;
3034         }
3035 
3036         const SmallVectorImpl<TreePatternNode*> &InNodes =
3037           InNamedTypes->find(Entry.getKey())->second;
3038 
3039         // The input types should be fully resolved by now.
3040         for (TreePatternNode *Node : Nodes) {
3041           // If this node is a register class, and it is the root of the pattern
3042           // then we're mapping something onto an input register.  We allow
3043           // changing the type of the input register in this case.  This allows
3044           // us to match things like:
3045           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
3046           if (Node == Trees[0].get() && Node->isLeaf()) {
3047             DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
3048             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3049                        DI->getDef()->isSubClassOf("RegisterOperand")))
3050               continue;
3051           }
3052 
3053           assert(Node->getNumTypes() == 1 &&
3054                  InNodes[0]->getNumTypes() == 1 &&
3055                  "FIXME: cannot name multiple result nodes yet");
3056           MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
3057                                              *this);
3058         }
3059       }
3060 
3061       // If there are multiple nodes with the same name, they must all have the
3062       // same type.
3063       if (Entry.second.size() > 1) {
3064         for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
3065           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
3066           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
3067                  "FIXME: cannot name multiple result nodes yet");
3068 
3069           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
3070           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
3071         }
3072       }
3073     }
3074   }
3075 
3076   bool HasUnresolvedTypes = false;
3077   for (const TreePatternNodePtr &Tree : Trees)
3078     HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
3079   return !HasUnresolvedTypes;
3080 }
3081 
3082 void TreePattern::print(raw_ostream &OS) const {
3083   OS << getRecord()->getName();
3084   if (!Args.empty()) {
3085     OS << "(";
3086     ListSeparator LS;
3087     for (const std::string &Arg : Args)
3088       OS << LS << Arg;
3089     OS << ")";
3090   }
3091   OS << ": ";
3092 
3093   if (Trees.size() > 1)
3094     OS << "[\n";
3095   for (const TreePatternNodePtr &Tree : Trees) {
3096     OS << "\t";
3097     Tree->print(OS);
3098     OS << "\n";
3099   }
3100 
3101   if (Trees.size() > 1)
3102     OS << "]\n";
3103 }
3104 
3105 void TreePattern::dump() const { print(errs()); }
3106 
3107 //===----------------------------------------------------------------------===//
3108 // CodeGenDAGPatterns implementation
3109 //
3110 
3111 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
3112                                        PatternRewriterFn PatternRewriter)
3113     : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
3114       PatternRewriter(PatternRewriter) {
3115 
3116   Intrinsics = CodeGenIntrinsicTable(Records);
3117   ParseNodeInfo();
3118   ParseNodeTransforms();
3119   ParseComplexPatterns();
3120   ParsePatternFragments();
3121   ParseDefaultOperands();
3122   ParseInstructions();
3123   ParsePatternFragments(/*OutFrags*/true);
3124   ParsePatterns();
3125 
3126   // Generate variants.  For example, commutative patterns can match
3127   // multiple ways.  Add them to PatternsToMatch as well.
3128   GenerateVariants();
3129 
3130   // Break patterns with parameterized types into a series of patterns,
3131   // where each one has a fixed type and is predicated on the conditions
3132   // of the associated HW mode.
3133   ExpandHwModeBasedTypes();
3134 
3135   // Infer instruction flags.  For example, we can detect loads,
3136   // stores, and side effects in many cases by examining an
3137   // instruction's pattern.
3138   InferInstructionFlags();
3139 
3140   // Verify that instruction flags match the patterns.
3141   VerifyInstructionFlags();
3142 }
3143 
3144 Record *CodeGenDAGPatterns::getSDNodeNamed(StringRef Name) const {
3145   Record *N = Records.getDef(Name);
3146   if (!N || !N->isSubClassOf("SDNode"))
3147     PrintFatalError("Error getting SDNode '" + Name + "'!");
3148 
3149   return N;
3150 }
3151 
3152 // Parse all of the SDNode definitions for the target, populating SDNodes.
3153 void CodeGenDAGPatterns::ParseNodeInfo() {
3154   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
3155   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
3156 
3157   while (!Nodes.empty()) {
3158     Record *R = Nodes.back();
3159     SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
3160     Nodes.pop_back();
3161   }
3162 
3163   // Get the builtin intrinsic nodes.
3164   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
3165   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
3166   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
3167 }
3168 
3169 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
3170 /// map, and emit them to the file as functions.
3171 void CodeGenDAGPatterns::ParseNodeTransforms() {
3172   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
3173   while (!Xforms.empty()) {
3174     Record *XFormNode = Xforms.back();
3175     Record *SDNode = XFormNode->getValueAsDef("Opcode");
3176     StringRef Code = XFormNode->getValueAsString("XFormFunction");
3177     SDNodeXForms.insert(
3178         std::make_pair(XFormNode, NodeXForm(SDNode, std::string(Code))));
3179 
3180     Xforms.pop_back();
3181   }
3182 }
3183 
3184 void CodeGenDAGPatterns::ParseComplexPatterns() {
3185   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
3186   while (!AMs.empty()) {
3187     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
3188     AMs.pop_back();
3189   }
3190 }
3191 
3192 
3193 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
3194 /// file, building up the PatternFragments map.  After we've collected them all,
3195 /// inline fragments together as necessary, so that there are no references left
3196 /// inside a pattern fragment to a pattern fragment.
3197 ///
3198 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
3199   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
3200 
3201   // First step, parse all of the fragments.
3202   for (Record *Frag : Fragments) {
3203     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3204       continue;
3205 
3206     ListInit *LI = Frag->getValueAsListInit("Fragments");
3207     TreePattern *P =
3208         (PatternFragments[Frag] = std::make_unique<TreePattern>(
3209              Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
3210              *this)).get();
3211 
3212     // Validate the argument list, converting it to set, to discard duplicates.
3213     std::vector<std::string> &Args = P->getArgList();
3214     // Copy the args so we can take StringRefs to them.
3215     auto ArgsCopy = Args;
3216     SmallDenseSet<StringRef, 4> OperandsSet;
3217     OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3218 
3219     if (OperandsSet.count(""))
3220       P->error("Cannot have unnamed 'node' values in pattern fragment!");
3221 
3222     // Parse the operands list.
3223     DagInit *OpsList = Frag->getValueAsDag("Operands");
3224     DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3225     // Special cases: ops == outs == ins. Different names are used to
3226     // improve readability.
3227     if (!OpsOp ||
3228         (OpsOp->getDef()->getName() != "ops" &&
3229          OpsOp->getDef()->getName() != "outs" &&
3230          OpsOp->getDef()->getName() != "ins"))
3231       P->error("Operands list should start with '(ops ... '!");
3232 
3233     // Copy over the arguments.
3234     Args.clear();
3235     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3236       if (!isa<DefInit>(OpsList->getArg(j)) ||
3237           cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3238         P->error("Operands list should all be 'node' values.");
3239       if (!OpsList->getArgName(j))
3240         P->error("Operands list should have names for each operand!");
3241       StringRef ArgNameStr = OpsList->getArgNameStr(j);
3242       if (!OperandsSet.count(ArgNameStr))
3243         P->error("'" + ArgNameStr +
3244                  "' does not occur in pattern or was multiply specified!");
3245       OperandsSet.erase(ArgNameStr);
3246       Args.push_back(std::string(ArgNameStr));
3247     }
3248 
3249     if (!OperandsSet.empty())
3250       P->error("Operands list does not contain an entry for operand '" +
3251                *OperandsSet.begin() + "'!");
3252 
3253     // If there is a node transformation corresponding to this, keep track of
3254     // it.
3255     Record *Transform = Frag->getValueAsDef("OperandTransform");
3256     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
3257       for (const auto &T : P->getTrees())
3258         T->setTransformFn(Transform);
3259   }
3260 
3261   // Now that we've parsed all of the tree fragments, do a closure on them so
3262   // that there are not references to PatFrags left inside of them.
3263   for (Record *Frag : Fragments) {
3264     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3265       continue;
3266 
3267     TreePattern &ThePat = *PatternFragments[Frag];
3268     ThePat.InlinePatternFragments();
3269 
3270     // Infer as many types as possible.  Don't worry about it if we don't infer
3271     // all of them, some may depend on the inputs of the pattern.  Also, don't
3272     // validate type sets; validation may cause spurious failures e.g. if a
3273     // fragment needs floating-point types but the current target does not have
3274     // any (this is only an error if that fragment is ever used!).
3275     {
3276       TypeInfer::SuppressValidation SV(ThePat.getInfer());
3277       ThePat.InferAllTypes();
3278       ThePat.resetError();
3279     }
3280 
3281     // If debugging, print out the pattern fragment result.
3282     LLVM_DEBUG(ThePat.dump());
3283   }
3284 }
3285 
3286 void CodeGenDAGPatterns::ParseDefaultOperands() {
3287   std::vector<Record*> DefaultOps;
3288   DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3289 
3290   // Find some SDNode.
3291   assert(!SDNodes.empty() && "No SDNodes parsed?");
3292   Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3293 
3294   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3295     DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3296 
3297     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3298     // SomeSDnode so that we can parse this.
3299     std::vector<std::pair<Init*, StringInit*> > Ops;
3300     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3301       Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3302                                    DefaultInfo->getArgName(op)));
3303     DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3304 
3305     // Create a TreePattern to parse this.
3306     TreePattern P(DefaultOps[i], DI, false, *this);
3307     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3308 
3309     // Copy the operands over into a DAGDefaultOperand.
3310     DAGDefaultOperand DefaultOpInfo;
3311 
3312     const TreePatternNodePtr &T = P.getTree(0);
3313     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3314       TreePatternNodePtr TPN = T->getChildShared(op);
3315       while (TPN->ApplyTypeConstraints(P, false))
3316         /* Resolve all types */;
3317 
3318       if (TPN->ContainsUnresolvedType(P)) {
3319         PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3320                         DefaultOps[i]->getName() +
3321                         "' doesn't have a concrete type!");
3322       }
3323       DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3324     }
3325 
3326     // Insert it into the DefaultOperands map so we can find it later.
3327     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3328   }
3329 }
3330 
3331 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3332 /// instruction input.  Return true if this is a real use.
3333 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3334                       std::map<std::string, TreePatternNodePtr> &InstInputs) {
3335   // No name -> not interesting.
3336   if (Pat->getName().empty()) {
3337     if (Pat->isLeaf()) {
3338       DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3339       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3340                  DI->getDef()->isSubClassOf("RegisterOperand")))
3341         I.error("Input " + DI->getDef()->getName() + " must be named!");
3342     }
3343     return false;
3344   }
3345 
3346   Record *Rec;
3347   if (Pat->isLeaf()) {
3348     DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3349     if (!DI)
3350       I.error("Input $" + Pat->getName() + " must be an identifier!");
3351     Rec = DI->getDef();
3352   } else {
3353     Rec = Pat->getOperator();
3354   }
3355 
3356   // SRCVALUE nodes are ignored.
3357   if (Rec->getName() == "srcvalue")
3358     return false;
3359 
3360   TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3361   if (!Slot) {
3362     Slot = Pat;
3363     return true;
3364   }
3365   Record *SlotRec;
3366   if (Slot->isLeaf()) {
3367     SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3368   } else {
3369     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3370     SlotRec = Slot->getOperator();
3371   }
3372 
3373   // Ensure that the inputs agree if we've already seen this input.
3374   if (Rec != SlotRec)
3375     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3376   // Ensure that the types can agree as well.
3377   Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3378   Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3379   if (Slot->getExtTypes() != Pat->getExtTypes())
3380     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3381   return true;
3382 }
3383 
3384 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3385 /// part of "I", the instruction), computing the set of inputs and outputs of
3386 /// the pattern.  Report errors if we see anything naughty.
3387 void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3388     TreePattern &I, TreePatternNodePtr Pat,
3389     std::map<std::string, TreePatternNodePtr> &InstInputs,
3390     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3391         &InstResults,
3392     std::vector<Record *> &InstImpResults) {
3393 
3394   // The instruction pattern still has unresolved fragments.  For *named*
3395   // nodes we must resolve those here.  This may not result in multiple
3396   // alternatives.
3397   if (!Pat->getName().empty()) {
3398     TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3399     SrcPattern.InlinePatternFragments();
3400     SrcPattern.InferAllTypes();
3401     Pat = SrcPattern.getOnlyTree();
3402   }
3403 
3404   if (Pat->isLeaf()) {
3405     bool isUse = HandleUse(I, Pat, InstInputs);
3406     if (!isUse && Pat->getTransformFn())
3407       I.error("Cannot specify a transform function for a non-input value!");
3408     return;
3409   }
3410 
3411   if (Pat->getOperator()->getName() == "implicit") {
3412     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3413       TreePatternNode *Dest = Pat->getChild(i);
3414       if (!Dest->isLeaf())
3415         I.error("implicitly defined value should be a register!");
3416 
3417       DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3418       if (!Val || !Val->getDef()->isSubClassOf("Register"))
3419         I.error("implicitly defined value should be a register!");
3420       InstImpResults.push_back(Val->getDef());
3421     }
3422     return;
3423   }
3424 
3425   if (Pat->getOperator()->getName() != "set") {
3426     // If this is not a set, verify that the children nodes are not void typed,
3427     // and recurse.
3428     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3429       if (Pat->getChild(i)->getNumTypes() == 0)
3430         I.error("Cannot have void nodes inside of patterns!");
3431       FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3432                                   InstResults, InstImpResults);
3433     }
3434 
3435     // If this is a non-leaf node with no children, treat it basically as if
3436     // it were a leaf.  This handles nodes like (imm).
3437     bool isUse = HandleUse(I, Pat, InstInputs);
3438 
3439     if (!isUse && Pat->getTransformFn())
3440       I.error("Cannot specify a transform function for a non-input value!");
3441     return;
3442   }
3443 
3444   // Otherwise, this is a set, validate and collect instruction results.
3445   if (Pat->getNumChildren() == 0)
3446     I.error("set requires operands!");
3447 
3448   if (Pat->getTransformFn())
3449     I.error("Cannot specify a transform function on a set node!");
3450 
3451   // Check the set destinations.
3452   unsigned NumDests = Pat->getNumChildren()-1;
3453   for (unsigned i = 0; i != NumDests; ++i) {
3454     TreePatternNodePtr Dest = Pat->getChildShared(i);
3455     // For set destinations we also must resolve fragments here.
3456     TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3457     DestPattern.InlinePatternFragments();
3458     DestPattern.InferAllTypes();
3459     Dest = DestPattern.getOnlyTree();
3460 
3461     if (!Dest->isLeaf())
3462       I.error("set destination should be a register!");
3463 
3464     DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3465     if (!Val) {
3466       I.error("set destination should be a register!");
3467       continue;
3468     }
3469 
3470     if (Val->getDef()->isSubClassOf("RegisterClass") ||
3471         Val->getDef()->isSubClassOf("ValueType") ||
3472         Val->getDef()->isSubClassOf("RegisterOperand") ||
3473         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3474       if (Dest->getName().empty())
3475         I.error("set destination must have a name!");
3476       if (InstResults.count(Dest->getName()))
3477         I.error("cannot set '" + Dest->getName() + "' multiple times");
3478       InstResults[Dest->getName()] = Dest;
3479     } else if (Val->getDef()->isSubClassOf("Register")) {
3480       InstImpResults.push_back(Val->getDef());
3481     } else {
3482       I.error("set destination should be a register!");
3483     }
3484   }
3485 
3486   // Verify and collect info from the computation.
3487   FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3488                               InstResults, InstImpResults);
3489 }
3490 
3491 //===----------------------------------------------------------------------===//
3492 // Instruction Analysis
3493 //===----------------------------------------------------------------------===//
3494 
3495 class InstAnalyzer {
3496   const CodeGenDAGPatterns &CDP;
3497 public:
3498   bool hasSideEffects;
3499   bool mayStore;
3500   bool mayLoad;
3501   bool isBitcast;
3502   bool isVariadic;
3503   bool hasChain;
3504 
3505   InstAnalyzer(const CodeGenDAGPatterns &cdp)
3506     : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3507       isBitcast(false), isVariadic(false), hasChain(false) {}
3508 
3509   void Analyze(const PatternToMatch &Pat) {
3510     const TreePatternNode *N = Pat.getSrcPattern();
3511     AnalyzeNode(N);
3512     // These properties are detected only on the root node.
3513     isBitcast = IsNodeBitcast(N);
3514   }
3515 
3516 private:
3517   bool IsNodeBitcast(const TreePatternNode *N) const {
3518     if (hasSideEffects || mayLoad || mayStore || isVariadic)
3519       return false;
3520 
3521     if (N->isLeaf())
3522       return false;
3523     if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
3524       return false;
3525 
3526     if (N->getOperator()->isSubClassOf("ComplexPattern"))
3527       return false;
3528 
3529     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
3530     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3531       return false;
3532     return OpInfo.getEnumName() == "ISD::BITCAST";
3533   }
3534 
3535 public:
3536   void AnalyzeNode(const TreePatternNode *N) {
3537     if (N->isLeaf()) {
3538       if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3539         Record *LeafRec = DI->getDef();
3540         // Handle ComplexPattern leaves.
3541         if (LeafRec->isSubClassOf("ComplexPattern")) {
3542           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3543           if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3544           if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3545           if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3546         }
3547       }
3548       return;
3549     }
3550 
3551     // Analyze children.
3552     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3553       AnalyzeNode(N->getChild(i));
3554 
3555     // Notice properties of the node.
3556     if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3557     if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3558     if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3559     if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3560     if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
3561 
3562     if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3563       // If this is an intrinsic, analyze it.
3564       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
3565         mayLoad = true;// These may load memory.
3566 
3567       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
3568         mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
3569 
3570       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
3571           IntInfo->hasSideEffects)
3572         // ReadWriteMem intrinsics can have other strange effects.
3573         hasSideEffects = true;
3574     }
3575   }
3576 
3577 };
3578 
3579 static bool InferFromPattern(CodeGenInstruction &InstInfo,
3580                              const InstAnalyzer &PatInfo,
3581                              Record *PatDef) {
3582   bool Error = false;
3583 
3584   // Remember where InstInfo got its flags.
3585   if (InstInfo.hasUndefFlags())
3586       InstInfo.InferredFrom = PatDef;
3587 
3588   // Check explicitly set flags for consistency.
3589   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3590       !InstInfo.hasSideEffects_Unset) {
3591     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3592     // the pattern has no side effects. That could be useful for div/rem
3593     // instructions that may trap.
3594     if (!InstInfo.hasSideEffects) {
3595       Error = true;
3596       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3597                  Twine(InstInfo.hasSideEffects));
3598     }
3599   }
3600 
3601   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3602     Error = true;
3603     PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3604                Twine(InstInfo.mayStore));
3605   }
3606 
3607   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3608     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3609     // Some targets translate immediates to loads.
3610     if (!InstInfo.mayLoad) {
3611       Error = true;
3612       PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3613                  Twine(InstInfo.mayLoad));
3614     }
3615   }
3616 
3617   // Transfer inferred flags.
3618   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3619   InstInfo.mayStore |= PatInfo.mayStore;
3620   InstInfo.mayLoad |= PatInfo.mayLoad;
3621 
3622   // These flags are silently added without any verification.
3623   // FIXME: To match historical behavior of TableGen, for now add those flags
3624   // only when we're inferring from the primary instruction pattern.
3625   if (PatDef->isSubClassOf("Instruction")) {
3626     InstInfo.isBitcast |= PatInfo.isBitcast;
3627     InstInfo.hasChain |= PatInfo.hasChain;
3628     InstInfo.hasChain_Inferred = true;
3629   }
3630 
3631   // Don't infer isVariadic. This flag means something different on SDNodes and
3632   // instructions. For example, a CALL SDNode is variadic because it has the
3633   // call arguments as operands, but a CALL instruction is not variadic - it
3634   // has argument registers as implicit, not explicit uses.
3635 
3636   return Error;
3637 }
3638 
3639 /// hasNullFragReference - Return true if the DAG has any reference to the
3640 /// null_frag operator.
3641 static bool hasNullFragReference(DagInit *DI) {
3642   DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3643   if (!OpDef) return false;
3644   Record *Operator = OpDef->getDef();
3645 
3646   // If this is the null fragment, return true.
3647   if (Operator->getName() == "null_frag") return true;
3648   // If any of the arguments reference the null fragment, return true.
3649   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3650     if (auto Arg = dyn_cast<DefInit>(DI->getArg(i)))
3651       if (Arg->getDef()->getName() == "null_frag")
3652         return true;
3653     DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3654     if (Arg && hasNullFragReference(Arg))
3655       return true;
3656   }
3657 
3658   return false;
3659 }
3660 
3661 /// hasNullFragReference - Return true if any DAG in the list references
3662 /// the null_frag operator.
3663 static bool hasNullFragReference(ListInit *LI) {
3664   for (Init *I : LI->getValues()) {
3665     DagInit *DI = dyn_cast<DagInit>(I);
3666     assert(DI && "non-dag in an instruction Pattern list?!");
3667     if (hasNullFragReference(DI))
3668       return true;
3669   }
3670   return false;
3671 }
3672 
3673 /// Get all the instructions in a tree.
3674 static void
3675 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3676   if (Tree->isLeaf())
3677     return;
3678   if (Tree->getOperator()->isSubClassOf("Instruction"))
3679     Instrs.push_back(Tree->getOperator());
3680   for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3681     getInstructionsInTree(Tree->getChild(i), Instrs);
3682 }
3683 
3684 /// Check the class of a pattern leaf node against the instruction operand it
3685 /// represents.
3686 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3687                               Record *Leaf) {
3688   if (OI.Rec == Leaf)
3689     return true;
3690 
3691   // Allow direct value types to be used in instruction set patterns.
3692   // The type will be checked later.
3693   if (Leaf->isSubClassOf("ValueType"))
3694     return true;
3695 
3696   // Patterns can also be ComplexPattern instances.
3697   if (Leaf->isSubClassOf("ComplexPattern"))
3698     return true;
3699 
3700   return false;
3701 }
3702 
3703 void CodeGenDAGPatterns::parseInstructionPattern(
3704     CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3705 
3706   assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3707 
3708   // Parse the instruction.
3709   TreePattern I(CGI.TheDef, Pat, true, *this);
3710 
3711   // InstInputs - Keep track of all of the inputs of the instruction, along
3712   // with the record they are declared as.
3713   std::map<std::string, TreePatternNodePtr> InstInputs;
3714 
3715   // InstResults - Keep track of all the virtual registers that are 'set'
3716   // in the instruction, including what reg class they are.
3717   MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3718       InstResults;
3719 
3720   std::vector<Record*> InstImpResults;
3721 
3722   // Verify that the top-level forms in the instruction are of void type, and
3723   // fill in the InstResults map.
3724   SmallString<32> TypesString;
3725   for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3726     TypesString.clear();
3727     TreePatternNodePtr Pat = I.getTree(j);
3728     if (Pat->getNumTypes() != 0) {
3729       raw_svector_ostream OS(TypesString);
3730       ListSeparator LS;
3731       for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3732         OS << LS;
3733         Pat->getExtType(k).writeToStream(OS);
3734       }
3735       I.error("Top-level forms in instruction pattern should have"
3736                " void types, has types " +
3737                OS.str());
3738     }
3739 
3740     // Find inputs and outputs, and verify the structure of the uses/defs.
3741     FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3742                                 InstImpResults);
3743   }
3744 
3745   // Now that we have inputs and outputs of the pattern, inspect the operands
3746   // list for the instruction.  This determines the order that operands are
3747   // added to the machine instruction the node corresponds to.
3748   unsigned NumResults = InstResults.size();
3749 
3750   // Parse the operands list from the (ops) list, validating it.
3751   assert(I.getArgList().empty() && "Args list should still be empty here!");
3752 
3753   // Check that all of the results occur first in the list.
3754   std::vector<Record*> Results;
3755   std::vector<unsigned> ResultIndices;
3756   SmallVector<TreePatternNodePtr, 2> ResNodes;
3757   for (unsigned i = 0; i != NumResults; ++i) {
3758     if (i == CGI.Operands.size()) {
3759       const std::string &OpName =
3760           llvm::find_if(
3761               InstResults,
3762               [](const std::pair<std::string, TreePatternNodePtr> &P) {
3763                 return P.second;
3764               })
3765               ->first;
3766 
3767       I.error("'" + OpName + "' set but does not appear in operand list!");
3768     }
3769 
3770     const std::string &OpName = CGI.Operands[i].Name;
3771 
3772     // Check that it exists in InstResults.
3773     auto InstResultIter = InstResults.find(OpName);
3774     if (InstResultIter == InstResults.end() || !InstResultIter->second)
3775       I.error("Operand $" + OpName + " does not exist in operand list!");
3776 
3777     TreePatternNodePtr RNode = InstResultIter->second;
3778     Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3779     ResNodes.push_back(std::move(RNode));
3780     if (!R)
3781       I.error("Operand $" + OpName + " should be a set destination: all "
3782                "outputs must occur before inputs in operand list!");
3783 
3784     if (!checkOperandClass(CGI.Operands[i], R))
3785       I.error("Operand $" + OpName + " class mismatch!");
3786 
3787     // Remember the return type.
3788     Results.push_back(CGI.Operands[i].Rec);
3789 
3790     // Remember the result index.
3791     ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
3792 
3793     // Okay, this one checks out.
3794     InstResultIter->second = nullptr;
3795   }
3796 
3797   // Loop over the inputs next.
3798   std::vector<TreePatternNodePtr> ResultNodeOperands;
3799   std::vector<Record*> Operands;
3800   for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3801     CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3802     const std::string &OpName = Op.Name;
3803     if (OpName.empty())
3804       I.error("Operand #" + Twine(i) + " in operands list has no name!");
3805 
3806     if (!InstInputs.count(OpName)) {
3807       // If this is an operand with a DefaultOps set filled in, we can ignore
3808       // this.  When we codegen it, we will do so as always executed.
3809       if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3810         // Does it have a non-empty DefaultOps field?  If so, ignore this
3811         // operand.
3812         if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3813           continue;
3814       }
3815       I.error("Operand $" + OpName +
3816                " does not appear in the instruction pattern");
3817     }
3818     TreePatternNodePtr InVal = InstInputs[OpName];
3819     InstInputs.erase(OpName);   // It occurred, remove from map.
3820 
3821     if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3822       Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3823       if (!checkOperandClass(Op, InRec))
3824         I.error("Operand $" + OpName + "'s register class disagrees"
3825                  " between the operand and pattern");
3826     }
3827     Operands.push_back(Op.Rec);
3828 
3829     // Construct the result for the dest-pattern operand list.
3830     TreePatternNodePtr OpNode = InVal->clone();
3831 
3832     // No predicate is useful on the result.
3833     OpNode->clearPredicateCalls();
3834 
3835     // Promote the xform function to be an explicit node if set.
3836     if (Record *Xform = OpNode->getTransformFn()) {
3837       OpNode->setTransformFn(nullptr);
3838       std::vector<TreePatternNodePtr> Children;
3839       Children.push_back(OpNode);
3840       OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
3841                                                  OpNode->getNumTypes());
3842     }
3843 
3844     ResultNodeOperands.push_back(std::move(OpNode));
3845   }
3846 
3847   if (!InstInputs.empty())
3848     I.error("Input operand $" + InstInputs.begin()->first +
3849             " occurs in pattern but not in operands list!");
3850 
3851   TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
3852       I.getRecord(), std::move(ResultNodeOperands),
3853       GetNumNodeResults(I.getRecord(), *this));
3854   // Copy fully inferred output node types to instruction result pattern.
3855   for (unsigned i = 0; i != NumResults; ++i) {
3856     assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3857     ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3858     ResultPattern->setResultIndex(i, ResultIndices[i]);
3859   }
3860 
3861   // FIXME: Assume only the first tree is the pattern. The others are clobber
3862   // nodes.
3863   TreePatternNodePtr Pattern = I.getTree(0);
3864   TreePatternNodePtr SrcPattern;
3865   if (Pattern->getOperator()->getName() == "set") {
3866     SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3867   } else{
3868     // Not a set (store or something?)
3869     SrcPattern = Pattern;
3870   }
3871 
3872   // Create and insert the instruction.
3873   // FIXME: InstImpResults should not be part of DAGInstruction.
3874   Record *R = I.getRecord();
3875   DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
3876                    std::forward_as_tuple(Results, Operands, InstImpResults,
3877                                          SrcPattern, ResultPattern));
3878 
3879   LLVM_DEBUG(I.dump());
3880 }
3881 
3882 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3883 /// any fragments involved.  This populates the Instructions list with fully
3884 /// resolved instructions.
3885 void CodeGenDAGPatterns::ParseInstructions() {
3886   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3887 
3888   for (Record *Instr : Instrs) {
3889     ListInit *LI = nullptr;
3890 
3891     if (isa<ListInit>(Instr->getValueInit("Pattern")))
3892       LI = Instr->getValueAsListInit("Pattern");
3893 
3894     // If there is no pattern, only collect minimal information about the
3895     // instruction for its operand list.  We have to assume that there is one
3896     // result, as we have no detailed info. A pattern which references the
3897     // null_frag operator is as-if no pattern were specified. Normally this
3898     // is from a multiclass expansion w/ a SDPatternOperator passed in as
3899     // null_frag.
3900     if (!LI || LI->empty() || hasNullFragReference(LI)) {
3901       std::vector<Record*> Results;
3902       std::vector<Record*> Operands;
3903 
3904       CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3905 
3906       if (InstInfo.Operands.size() != 0) {
3907         for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3908           Results.push_back(InstInfo.Operands[j].Rec);
3909 
3910         // The rest are inputs.
3911         for (unsigned j = InstInfo.Operands.NumDefs,
3912                e = InstInfo.Operands.size(); j < e; ++j)
3913           Operands.push_back(InstInfo.Operands[j].Rec);
3914       }
3915 
3916       // Create and insert the instruction.
3917       std::vector<Record*> ImpResults;
3918       Instructions.insert(std::make_pair(Instr,
3919                             DAGInstruction(Results, Operands, ImpResults)));
3920       continue;  // no pattern.
3921     }
3922 
3923     CodeGenInstruction &CGI = Target.getInstruction(Instr);
3924     parseInstructionPattern(CGI, LI, Instructions);
3925   }
3926 
3927   // If we can, convert the instructions to be patterns that are matched!
3928   for (auto &Entry : Instructions) {
3929     Record *Instr = Entry.first;
3930     DAGInstruction &TheInst = Entry.second;
3931     TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
3932     TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
3933 
3934     if (SrcPattern && ResultPattern) {
3935       TreePattern Pattern(Instr, SrcPattern, true, *this);
3936       TreePattern Result(Instr, ResultPattern, false, *this);
3937       ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
3938     }
3939   }
3940 }
3941 
3942 typedef std::pair<TreePatternNode *, unsigned> NameRecord;
3943 
3944 static void FindNames(TreePatternNode *P,
3945                       std::map<std::string, NameRecord> &Names,
3946                       TreePattern *PatternTop) {
3947   if (!P->getName().empty()) {
3948     NameRecord &Rec = Names[P->getName()];
3949     // If this is the first instance of the name, remember the node.
3950     if (Rec.second++ == 0)
3951       Rec.first = P;
3952     else if (Rec.first->getExtTypes() != P->getExtTypes())
3953       PatternTop->error("repetition of value: $" + P->getName() +
3954                         " where different uses have different types!");
3955   }
3956 
3957   if (!P->isLeaf()) {
3958     for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3959       FindNames(P->getChild(i), Names, PatternTop);
3960   }
3961 }
3962 
3963 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3964                                            PatternToMatch &&PTM) {
3965   // Do some sanity checking on the pattern we're about to match.
3966   std::string Reason;
3967   if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3968     PrintWarning(Pattern->getRecord()->getLoc(),
3969       Twine("Pattern can never match: ") + Reason);
3970     return;
3971   }
3972 
3973   // If the source pattern's root is a complex pattern, that complex pattern
3974   // must specify the nodes it can potentially match.
3975   if (const ComplexPattern *CP =
3976         PTM.getSrcPattern()->getComplexPatternInfo(*this))
3977     if (CP->getRootNodes().empty())
3978       Pattern->error("ComplexPattern at root must specify list of opcodes it"
3979                      " could match");
3980 
3981 
3982   // Find all of the named values in the input and output, ensure they have the
3983   // same type.
3984   std::map<std::string, NameRecord> SrcNames, DstNames;
3985   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3986   FindNames(PTM.getDstPattern(), DstNames, Pattern);
3987 
3988   // Scan all of the named values in the destination pattern, rejecting them if
3989   // they don't exist in the input pattern.
3990   for (const auto &Entry : DstNames) {
3991     if (SrcNames[Entry.first].first == nullptr)
3992       Pattern->error("Pattern has input without matching name in output: $" +
3993                      Entry.first);
3994   }
3995 
3996   // Scan all of the named values in the source pattern, rejecting them if the
3997   // name isn't used in the dest, and isn't used to tie two values together.
3998   for (const auto &Entry : SrcNames)
3999     if (DstNames[Entry.first].first == nullptr &&
4000         SrcNames[Entry.first].second == 1)
4001       Pattern->error("Pattern has dead named input: $" + Entry.first);
4002 
4003   PatternsToMatch.push_back(std::move(PTM));
4004 }
4005 
4006 void CodeGenDAGPatterns::InferInstructionFlags() {
4007   ArrayRef<const CodeGenInstruction*> Instructions =
4008     Target.getInstructionsByEnumValue();
4009 
4010   unsigned Errors = 0;
4011 
4012   // Try to infer flags from all patterns in PatternToMatch.  These include
4013   // both the primary instruction patterns (which always come first) and
4014   // patterns defined outside the instruction.
4015   for (const PatternToMatch &PTM : ptms()) {
4016     // We can only infer from single-instruction patterns, otherwise we won't
4017     // know which instruction should get the flags.
4018     SmallVector<Record*, 8> PatInstrs;
4019     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
4020     if (PatInstrs.size() != 1)
4021       continue;
4022 
4023     // Get the single instruction.
4024     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
4025 
4026     // Only infer properties from the first pattern. We'll verify the others.
4027     if (InstInfo.InferredFrom)
4028       continue;
4029 
4030     InstAnalyzer PatInfo(*this);
4031     PatInfo.Analyze(PTM);
4032     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
4033   }
4034 
4035   if (Errors)
4036     PrintFatalError("pattern conflicts");
4037 
4038   // If requested by the target, guess any undefined properties.
4039   if (Target.guessInstructionProperties()) {
4040     for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
4041       CodeGenInstruction *InstInfo =
4042         const_cast<CodeGenInstruction *>(Instructions[i]);
4043       if (InstInfo->InferredFrom)
4044         continue;
4045       // The mayLoad and mayStore flags default to false.
4046       // Conservatively assume hasSideEffects if it wasn't explicit.
4047       if (InstInfo->hasSideEffects_Unset)
4048         InstInfo->hasSideEffects = true;
4049     }
4050     return;
4051   }
4052 
4053   // Complain about any flags that are still undefined.
4054   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
4055     CodeGenInstruction *InstInfo =
4056       const_cast<CodeGenInstruction *>(Instructions[i]);
4057     if (InstInfo->InferredFrom)
4058       continue;
4059     if (InstInfo->hasSideEffects_Unset)
4060       PrintError(InstInfo->TheDef->getLoc(),
4061                  "Can't infer hasSideEffects from patterns");
4062     if (InstInfo->mayStore_Unset)
4063       PrintError(InstInfo->TheDef->getLoc(),
4064                  "Can't infer mayStore from patterns");
4065     if (InstInfo->mayLoad_Unset)
4066       PrintError(InstInfo->TheDef->getLoc(),
4067                  "Can't infer mayLoad from patterns");
4068   }
4069 }
4070 
4071 
4072 /// Verify instruction flags against pattern node properties.
4073 void CodeGenDAGPatterns::VerifyInstructionFlags() {
4074   unsigned Errors = 0;
4075   for (const PatternToMatch &PTM : ptms()) {
4076     SmallVector<Record*, 8> Instrs;
4077     getInstructionsInTree(PTM.getDstPattern(), Instrs);
4078     if (Instrs.empty())
4079       continue;
4080 
4081     // Count the number of instructions with each flag set.
4082     unsigned NumSideEffects = 0;
4083     unsigned NumStores = 0;
4084     unsigned NumLoads = 0;
4085     for (const Record *Instr : Instrs) {
4086       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4087       NumSideEffects += InstInfo.hasSideEffects;
4088       NumStores += InstInfo.mayStore;
4089       NumLoads += InstInfo.mayLoad;
4090     }
4091 
4092     // Analyze the source pattern.
4093     InstAnalyzer PatInfo(*this);
4094     PatInfo.Analyze(PTM);
4095 
4096     // Collect error messages.
4097     SmallVector<std::string, 4> Msgs;
4098 
4099     // Check for missing flags in the output.
4100     // Permit extra flags for now at least.
4101     if (PatInfo.hasSideEffects && !NumSideEffects)
4102       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
4103 
4104     // Don't verify store flags on instructions with side effects. At least for
4105     // intrinsics, side effects implies mayStore.
4106     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
4107       Msgs.push_back("pattern may store, but mayStore isn't set");
4108 
4109     // Similarly, mayStore implies mayLoad on intrinsics.
4110     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
4111       Msgs.push_back("pattern may load, but mayLoad isn't set");
4112 
4113     // Print error messages.
4114     if (Msgs.empty())
4115       continue;
4116     ++Errors;
4117 
4118     for (const std::string &Msg : Msgs)
4119       PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
4120                  (Instrs.size() == 1 ?
4121                   "instruction" : "output instructions"));
4122     // Provide the location of the relevant instruction definitions.
4123     for (const Record *Instr : Instrs) {
4124       if (Instr != PTM.getSrcRecord())
4125         PrintError(Instr->getLoc(), "defined here");
4126       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4127       if (InstInfo.InferredFrom &&
4128           InstInfo.InferredFrom != InstInfo.TheDef &&
4129           InstInfo.InferredFrom != PTM.getSrcRecord())
4130         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
4131     }
4132   }
4133   if (Errors)
4134     PrintFatalError("Errors in DAG patterns");
4135 }
4136 
4137 /// Given a pattern result with an unresolved type, see if we can find one
4138 /// instruction with an unresolved result type.  Force this result type to an
4139 /// arbitrary element if it's possible types to converge results.
4140 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
4141   if (N->isLeaf())
4142     return false;
4143 
4144   // Analyze children.
4145   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4146     if (ForceArbitraryInstResultType(N->getChild(i), TP))
4147       return true;
4148 
4149   if (!N->getOperator()->isSubClassOf("Instruction"))
4150     return false;
4151 
4152   // If this type is already concrete or completely unknown we can't do
4153   // anything.
4154   TypeInfer &TI = TP.getInfer();
4155   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
4156     if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
4157       continue;
4158 
4159     // Otherwise, force its type to an arbitrary choice.
4160     if (TI.forceArbitrary(N->getExtType(i)))
4161       return true;
4162   }
4163 
4164   return false;
4165 }
4166 
4167 // Promote xform function to be an explicit node wherever set.
4168 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
4169   if (Record *Xform = N->getTransformFn()) {
4170       N->setTransformFn(nullptr);
4171       std::vector<TreePatternNodePtr> Children;
4172       Children.push_back(PromoteXForms(N));
4173       return std::make_shared<TreePatternNode>(Xform, std::move(Children),
4174                                                N->getNumTypes());
4175   }
4176 
4177   if (!N->isLeaf())
4178     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4179       TreePatternNodePtr Child = N->getChildShared(i);
4180       N->setChild(i, PromoteXForms(Child));
4181     }
4182   return N;
4183 }
4184 
4185 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
4186        TreePattern &Pattern, TreePattern &Result,
4187        const std::vector<Record *> &InstImpResults) {
4188 
4189   // Inline pattern fragments and expand multiple alternatives.
4190   Pattern.InlinePatternFragments();
4191   Result.InlinePatternFragments();
4192 
4193   if (Result.getNumTrees() != 1)
4194     Result.error("Cannot use multi-alternative fragments in result pattern!");
4195 
4196   // Infer types.
4197   bool IterateInference;
4198   bool InferredAllPatternTypes, InferredAllResultTypes;
4199   do {
4200     // Infer as many types as possible.  If we cannot infer all of them, we
4201     // can never do anything with this pattern: report it to the user.
4202     InferredAllPatternTypes =
4203         Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
4204 
4205     // Infer as many types as possible.  If we cannot infer all of them, we
4206     // can never do anything with this pattern: report it to the user.
4207     InferredAllResultTypes =
4208         Result.InferAllTypes(&Pattern.getNamedNodesMap());
4209 
4210     IterateInference = false;
4211 
4212     // Apply the type of the result to the source pattern.  This helps us
4213     // resolve cases where the input type is known to be a pointer type (which
4214     // is considered resolved), but the result knows it needs to be 32- or
4215     // 64-bits.  Infer the other way for good measure.
4216     for (const auto &T : Pattern.getTrees())
4217       for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4218                                         T->getNumTypes());
4219          i != e; ++i) {
4220         IterateInference |= T->UpdateNodeType(
4221             i, Result.getOnlyTree()->getExtType(i), Result);
4222         IterateInference |= Result.getOnlyTree()->UpdateNodeType(
4223             i, T->getExtType(i), Result);
4224       }
4225 
4226     // If our iteration has converged and the input pattern's types are fully
4227     // resolved but the result pattern is not fully resolved, we may have a
4228     // situation where we have two instructions in the result pattern and
4229     // the instructions require a common register class, but don't care about
4230     // what actual MVT is used.  This is actually a bug in our modelling:
4231     // output patterns should have register classes, not MVTs.
4232     //
4233     // In any case, to handle this, we just go through and disambiguate some
4234     // arbitrary types to the result pattern's nodes.
4235     if (!IterateInference && InferredAllPatternTypes &&
4236         !InferredAllResultTypes)
4237       IterateInference =
4238           ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
4239   } while (IterateInference);
4240 
4241   // Verify that we inferred enough types that we can do something with the
4242   // pattern and result.  If these fire the user has to add type casts.
4243   if (!InferredAllPatternTypes)
4244     Pattern.error("Could not infer all types in pattern!");
4245   if (!InferredAllResultTypes) {
4246     Pattern.dump();
4247     Result.error("Could not infer all types in pattern result!");
4248   }
4249 
4250   // Promote xform function to be an explicit node wherever set.
4251   TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4252 
4253   TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4254   Temp.InferAllTypes();
4255 
4256   ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4257   int Complexity = TheDef->getValueAsInt("AddedComplexity");
4258 
4259   if (PatternRewriter)
4260     PatternRewriter(&Pattern);
4261 
4262   // A pattern may end up with an "impossible" type, i.e. a situation
4263   // where all types have been eliminated for some node in this pattern.
4264   // This could occur for intrinsics that only make sense for a specific
4265   // value type, and use a specific register class. If, for some mode,
4266   // that register class does not accept that type, the type inference
4267   // will lead to a contradiction, which is not an error however, but
4268   // a sign that this pattern will simply never match.
4269   if (Temp.getOnlyTree()->hasPossibleType())
4270     for (const auto &T : Pattern.getTrees())
4271       if (T->hasPossibleType())
4272         AddPatternToMatch(&Pattern,
4273                           PatternToMatch(TheDef, Preds, T, Temp.getOnlyTree(),
4274                                          InstImpResults, Complexity,
4275                                          TheDef->getID()));
4276 }
4277 
4278 void CodeGenDAGPatterns::ParsePatterns() {
4279   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
4280 
4281   for (Record *CurPattern : Patterns) {
4282     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4283 
4284     // If the pattern references the null_frag, there's nothing to do.
4285     if (hasNullFragReference(Tree))
4286       continue;
4287 
4288     TreePattern Pattern(CurPattern, Tree, true, *this);
4289 
4290     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4291     if (LI->empty()) continue;  // no pattern.
4292 
4293     // Parse the instruction.
4294     TreePattern Result(CurPattern, LI, false, *this);
4295 
4296     if (Result.getNumTrees() != 1)
4297       Result.error("Cannot handle instructions producing instructions "
4298                    "with temporaries yet!");
4299 
4300     // Validate that the input pattern is correct.
4301     std::map<std::string, TreePatternNodePtr> InstInputs;
4302     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
4303         InstResults;
4304     std::vector<Record*> InstImpResults;
4305     for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4306       FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4307                                   InstResults, InstImpResults);
4308 
4309     ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
4310   }
4311 }
4312 
4313 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4314   for (const TypeSetByHwMode &VTS : N->getExtTypes())
4315     for (const auto &I : VTS)
4316       Modes.insert(I.first);
4317 
4318   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4319     collectModes(Modes, N->getChild(i));
4320 }
4321 
4322 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4323   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4324   std::vector<PatternToMatch> Copy;
4325   PatternsToMatch.swap(Copy);
4326 
4327   auto AppendPattern = [this](PatternToMatch &P, unsigned Mode,
4328                               StringRef Check) {
4329     TreePatternNodePtr NewSrc = P.getSrcPattern()->clone();
4330     TreePatternNodePtr NewDst = P.getDstPattern()->clone();
4331     if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4332       return;
4333     }
4334 
4335     PatternsToMatch.emplace_back(P.getSrcRecord(), P.getPredicates(),
4336                                  std::move(NewSrc), std::move(NewDst),
4337                                  P.getDstRegs(), P.getAddedComplexity(),
4338                                  Record::getNewUID(), Mode, Check);
4339   };
4340 
4341   for (PatternToMatch &P : Copy) {
4342     TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
4343     if (P.getSrcPattern()->hasProperTypeByHwMode())
4344       SrcP = P.getSrcPatternShared();
4345     if (P.getDstPattern()->hasProperTypeByHwMode())
4346       DstP = P.getDstPatternShared();
4347     if (!SrcP && !DstP) {
4348       PatternsToMatch.push_back(P);
4349       continue;
4350     }
4351 
4352     std::set<unsigned> Modes;
4353     if (SrcP)
4354       collectModes(Modes, SrcP.get());
4355     if (DstP)
4356       collectModes(Modes, DstP.get());
4357 
4358     // The predicate for the default mode needs to be constructed for each
4359     // pattern separately.
4360     // Since not all modes must be present in each pattern, if a mode m is
4361     // absent, then there is no point in constructing a check for m. If such
4362     // a check was created, it would be equivalent to checking the default
4363     // mode, except not all modes' predicates would be a part of the checking
4364     // code. The subsequently generated check for the default mode would then
4365     // have the exact same patterns, but a different predicate code. To avoid
4366     // duplicated patterns with different predicate checks, construct the
4367     // default check as a negation of all predicates that are actually present
4368     // in the source/destination patterns.
4369     SmallString<128> DefaultCheck;
4370 
4371     for (unsigned M : Modes) {
4372       if (M == DefaultMode)
4373         continue;
4374 
4375       // Fill the map entry for this mode.
4376       const HwMode &HM = CGH.getMode(M);
4377       AppendPattern(P, M, "(MF->getSubtarget().checkFeatures(\"" + HM.Features + "\"))");
4378 
4379       // Add negations of the HM's predicates to the default predicate.
4380       if (!DefaultCheck.empty())
4381         DefaultCheck += " && ";
4382       DefaultCheck += "(!(MF->getSubtarget().checkFeatures(\"";
4383       DefaultCheck += HM.Features;
4384       DefaultCheck += "\")))";
4385     }
4386 
4387     bool HasDefault = Modes.count(DefaultMode);
4388     if (HasDefault)
4389       AppendPattern(P, DefaultMode, DefaultCheck);
4390   }
4391 }
4392 
4393 /// Dependent variable map for CodeGenDAGPattern variant generation
4394 typedef StringMap<int> DepVarMap;
4395 
4396 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4397   if (N->isLeaf()) {
4398     if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4399       DepMap[N->getName()]++;
4400   } else {
4401     for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4402       FindDepVarsOf(N->getChild(i), DepMap);
4403   }
4404 }
4405 
4406 /// Find dependent variables within child patterns
4407 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4408   DepVarMap depcounts;
4409   FindDepVarsOf(N, depcounts);
4410   for (const auto &Pair : depcounts) {
4411     if (Pair.getValue() > 1)
4412       DepVars.insert(Pair.getKey());
4413   }
4414 }
4415 
4416 #ifndef NDEBUG
4417 /// Dump the dependent variable set:
4418 static void DumpDepVars(MultipleUseVarSet &DepVars) {
4419   if (DepVars.empty()) {
4420     LLVM_DEBUG(errs() << "<empty set>");
4421   } else {
4422     LLVM_DEBUG(errs() << "[ ");
4423     for (const auto &DepVar : DepVars) {
4424       LLVM_DEBUG(errs() << DepVar.getKey() << " ");
4425     }
4426     LLVM_DEBUG(errs() << "]");
4427   }
4428 }
4429 #endif
4430 
4431 
4432 /// CombineChildVariants - Given a bunch of permutations of each child of the
4433 /// 'operator' node, put them together in all possible ways.
4434 static void CombineChildVariants(
4435     TreePatternNodePtr Orig,
4436     const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4437     std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4438     const MultipleUseVarSet &DepVars) {
4439   // Make sure that each operand has at least one variant to choose from.
4440   for (const auto &Variants : ChildVariants)
4441     if (Variants.empty())
4442       return;
4443 
4444   // The end result is an all-pairs construction of the resultant pattern.
4445   std::vector<unsigned> Idxs;
4446   Idxs.resize(ChildVariants.size());
4447   bool NotDone;
4448   do {
4449 #ifndef NDEBUG
4450     LLVM_DEBUG(if (!Idxs.empty()) {
4451       errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4452       for (unsigned Idx : Idxs) {
4453         errs() << Idx << " ";
4454       }
4455       errs() << "]\n";
4456     });
4457 #endif
4458     // Create the variant and add it to the output list.
4459     std::vector<TreePatternNodePtr> NewChildren;
4460     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4461       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4462     TreePatternNodePtr R = std::make_shared<TreePatternNode>(
4463         Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4464 
4465     // Copy over properties.
4466     R->setName(Orig->getName());
4467     R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
4468     R->setPredicateCalls(Orig->getPredicateCalls());
4469     R->setTransformFn(Orig->getTransformFn());
4470     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4471       R->setType(i, Orig->getExtType(i));
4472 
4473     // If this pattern cannot match, do not include it as a variant.
4474     std::string ErrString;
4475     // Scan to see if this pattern has already been emitted.  We can get
4476     // duplication due to things like commuting:
4477     //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4478     // which are the same pattern.  Ignore the dups.
4479     if (R->canPatternMatch(ErrString, CDP) &&
4480         none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4481           return R->isIsomorphicTo(Variant.get(), DepVars);
4482         }))
4483       OutVariants.push_back(R);
4484 
4485     // Increment indices to the next permutation by incrementing the
4486     // indices from last index backward, e.g., generate the sequence
4487     // [0, 0], [0, 1], [1, 0], [1, 1].
4488     int IdxsIdx;
4489     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4490       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4491         Idxs[IdxsIdx] = 0;
4492       else
4493         break;
4494     }
4495     NotDone = (IdxsIdx >= 0);
4496   } while (NotDone);
4497 }
4498 
4499 /// CombineChildVariants - A helper function for binary operators.
4500 ///
4501 static void CombineChildVariants(TreePatternNodePtr Orig,
4502                                  const std::vector<TreePatternNodePtr> &LHS,
4503                                  const std::vector<TreePatternNodePtr> &RHS,
4504                                  std::vector<TreePatternNodePtr> &OutVariants,
4505                                  CodeGenDAGPatterns &CDP,
4506                                  const MultipleUseVarSet &DepVars) {
4507   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4508   ChildVariants.push_back(LHS);
4509   ChildVariants.push_back(RHS);
4510   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4511 }
4512 
4513 static void
4514 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4515                                   std::vector<TreePatternNodePtr> &Children) {
4516   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
4517   Record *Operator = N->getOperator();
4518 
4519   // Only permit raw nodes.
4520   if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
4521       N->getTransformFn()) {
4522     Children.push_back(N);
4523     return;
4524   }
4525 
4526   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4527     Children.push_back(N->getChildShared(0));
4528   else
4529     GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4530 
4531   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4532     Children.push_back(N->getChildShared(1));
4533   else
4534     GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4535 }
4536 
4537 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4538 /// the (potentially recursive) pattern by using algebraic laws.
4539 ///
4540 static void GenerateVariantsOf(TreePatternNodePtr N,
4541                                std::vector<TreePatternNodePtr> &OutVariants,
4542                                CodeGenDAGPatterns &CDP,
4543                                const MultipleUseVarSet &DepVars) {
4544   // We cannot permute leaves or ComplexPattern uses.
4545   if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4546     OutVariants.push_back(N);
4547     return;
4548   }
4549 
4550   // Look up interesting info about the node.
4551   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4552 
4553   // If this node is associative, re-associate.
4554   if (NodeInfo.hasProperty(SDNPAssociative)) {
4555     // Re-associate by pulling together all of the linked operators
4556     std::vector<TreePatternNodePtr> MaximalChildren;
4557     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4558 
4559     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
4560     // permutations.
4561     if (MaximalChildren.size() == 3) {
4562       // Find the variants of all of our maximal children.
4563       std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4564       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4565       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4566       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4567 
4568       // There are only two ways we can permute the tree:
4569       //   (A op B) op C    and    A op (B op C)
4570       // Within these forms, we can also permute A/B/C.
4571 
4572       // Generate legal pair permutations of A/B/C.
4573       std::vector<TreePatternNodePtr> ABVariants;
4574       std::vector<TreePatternNodePtr> BAVariants;
4575       std::vector<TreePatternNodePtr> ACVariants;
4576       std::vector<TreePatternNodePtr> CAVariants;
4577       std::vector<TreePatternNodePtr> BCVariants;
4578       std::vector<TreePatternNodePtr> CBVariants;
4579       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4580       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4581       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4582       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4583       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4584       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4585 
4586       // Combine those into the result: (x op x) op x
4587       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4588       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4589       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4590       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4591       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4592       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4593 
4594       // Combine those into the result: x op (x op x)
4595       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4596       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4597       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4598       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4599       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4600       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4601       return;
4602     }
4603   }
4604 
4605   // Compute permutations of all children.
4606   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4607   ChildVariants.resize(N->getNumChildren());
4608   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4609     GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4610 
4611   // Build all permutations based on how the children were formed.
4612   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4613 
4614   // If this node is commutative, consider the commuted order.
4615   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4616   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4617     assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
4618            "Commutative but doesn't have 2 children!");
4619     // Don't count children which are actually register references.
4620     unsigned NC = 0;
4621     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4622       TreePatternNode *Child = N->getChild(i);
4623       if (Child->isLeaf())
4624         if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4625           Record *RR = DI->getDef();
4626           if (RR->isSubClassOf("Register"))
4627             continue;
4628         }
4629       NC++;
4630     }
4631     // Consider the commuted order.
4632     if (isCommIntrinsic) {
4633       // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
4634       // operands are the commutative operands, and there might be more operands
4635       // after those.
4636       assert(NC >= 3 &&
4637              "Commutative intrinsic should have at least 3 children!");
4638       std::vector<std::vector<TreePatternNodePtr>> Variants;
4639       Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id.
4640       Variants.push_back(std::move(ChildVariants[2]));
4641       Variants.push_back(std::move(ChildVariants[1]));
4642       for (unsigned i = 3; i != NC; ++i)
4643         Variants.push_back(std::move(ChildVariants[i]));
4644       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4645     } else if (NC == N->getNumChildren()) {
4646       std::vector<std::vector<TreePatternNodePtr>> Variants;
4647       Variants.push_back(std::move(ChildVariants[1]));
4648       Variants.push_back(std::move(ChildVariants[0]));
4649       for (unsigned i = 2; i != NC; ++i)
4650         Variants.push_back(std::move(ChildVariants[i]));
4651       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4652     }
4653   }
4654 }
4655 
4656 
4657 // GenerateVariants - Generate variants.  For example, commutative patterns can
4658 // match multiple ways.  Add them to PatternsToMatch as well.
4659 void CodeGenDAGPatterns::GenerateVariants() {
4660   LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4661 
4662   // Loop over all of the patterns we've collected, checking to see if we can
4663   // generate variants of the instruction, through the exploitation of
4664   // identities.  This permits the target to provide aggressive matching without
4665   // the .td file having to contain tons of variants of instructions.
4666   //
4667   // Note that this loop adds new patterns to the PatternsToMatch list, but we
4668   // intentionally do not reconsider these.  Any variants of added patterns have
4669   // already been added.
4670   //
4671   for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
4672     MultipleUseVarSet DepVars;
4673     std::vector<TreePatternNodePtr> Variants;
4674     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4675     LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4676     LLVM_DEBUG(DumpDepVars(DepVars));
4677     LLVM_DEBUG(errs() << "\n");
4678     GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4679                        *this, DepVars);
4680 
4681     assert(PatternsToMatch[i].getHwModeFeatures().empty() &&
4682            "HwModes should not have been expanded yet!");
4683 
4684     assert(!Variants.empty() && "Must create at least original variant!");
4685     if (Variants.size() == 1) // No additional variants for this pattern.
4686       continue;
4687 
4688     LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4689                PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n");
4690 
4691     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4692       TreePatternNodePtr Variant = Variants[v];
4693 
4694       LLVM_DEBUG(errs() << "  VAR#" << v << ": "; Variant->dump();
4695                  errs() << "\n");
4696 
4697       // Scan to see if an instruction or explicit pattern already matches this.
4698       bool AlreadyExists = false;
4699       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4700         // Skip if the top level predicates do not match.
4701         if ((i != p) && (PatternsToMatch[i].getPredicates() !=
4702                          PatternsToMatch[p].getPredicates()))
4703           continue;
4704         // Check to see if this variant already exists.
4705         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4706                                     DepVars)) {
4707           LLVM_DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
4708           AlreadyExists = true;
4709           break;
4710         }
4711       }
4712       // If we already have it, ignore the variant.
4713       if (AlreadyExists) continue;
4714 
4715       // Otherwise, add it to the list of patterns we have.
4716       PatternsToMatch.emplace_back(
4717           PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4718           Variant, PatternsToMatch[i].getDstPatternShared(),
4719           PatternsToMatch[i].getDstRegs(),
4720           PatternsToMatch[i].getAddedComplexity(), Record::getNewUID(),
4721           PatternsToMatch[i].getForceMode(),
4722           PatternsToMatch[i].getHwModeFeatures());
4723     }
4724 
4725     LLVM_DEBUG(errs() << "\n");
4726   }
4727 }
4728