1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CodeGenDAGPatterns class, which is used to read and
10 // represent the patterns present in a .td file for instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenDAGPatterns.h"
15 #include "CodeGenInstruction.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/TypeSize.h"
27 #include "llvm/TableGen/Error.h"
28 #include "llvm/TableGen/Record.h"
29 #include <algorithm>
30 #include <cstdio>
31 #include <iterator>
32 #include <set>
33 using namespace llvm;
34 
35 #define DEBUG_TYPE "dag-patterns"
36 
37 static inline bool isIntegerOrPtr(MVT VT) {
38   return VT.isInteger() || VT == MVT::iPTR;
39 }
40 static inline bool isFloatingPoint(MVT VT) {
41   return VT.isFloatingPoint();
42 }
43 static inline bool isVector(MVT VT) {
44   return VT.isVector();
45 }
46 static inline bool isScalar(MVT VT) {
47   return !VT.isVector();
48 }
49 static inline bool isScalarInteger(MVT VT) {
50   return VT.isScalarInteger();
51 }
52 
53 template <typename Predicate>
54 static bool berase_if(MachineValueTypeSet &S, Predicate P) {
55   bool Erased = false;
56   // It is ok to iterate over MachineValueTypeSet and remove elements from it
57   // at the same time.
58   for (MVT T : S) {
59     if (!P(T))
60       continue;
61     Erased = true;
62     S.erase(T);
63   }
64   return Erased;
65 }
66 
67 void MachineValueTypeSet::writeToStream(raw_ostream &OS) const {
68   SmallVector<MVT, 4> Types(begin(), end());
69   array_pod_sort(Types.begin(), Types.end());
70 
71   OS << '[';
72   ListSeparator LS(" ");
73   for (const MVT &T : Types)
74     OS << LS << ValueTypeByHwMode::getMVTName(T);
75   OS << ']';
76 }
77 
78 // --- TypeSetByHwMode
79 
80 // This is a parameterized type-set class. For each mode there is a list
81 // of types that are currently possible for a given tree node. Type
82 // inference will apply to each mode separately.
83 
84 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
85   for (const ValueTypeByHwMode &VVT : VTList) {
86     insert(VVT);
87     AddrSpaces.push_back(VVT.PtrAddrSpace);
88   }
89 }
90 
91 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
92   for (const auto &I : *this) {
93     if (I.second.size() > 1)
94       return false;
95     if (!AllowEmpty && I.second.empty())
96       return false;
97   }
98   return true;
99 }
100 
101 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
102   assert(isValueTypeByHwMode(true) &&
103          "The type set has multiple types for at least one HW mode");
104   ValueTypeByHwMode VVT;
105   auto ASI = AddrSpaces.begin();
106 
107   for (const auto &I : *this) {
108     MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
109     VVT.getOrCreateTypeForMode(I.first, T);
110     if (ASI != AddrSpaces.end())
111       VVT.PtrAddrSpace = *ASI++;
112   }
113   return VVT;
114 }
115 
116 bool TypeSetByHwMode::isPossible() const {
117   for (const auto &I : *this)
118     if (!I.second.empty())
119       return true;
120   return false;
121 }
122 
123 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
124   bool Changed = false;
125   bool ContainsDefault = false;
126   MVT DT = MVT::Other;
127 
128   for (const auto &P : VVT) {
129     unsigned M = P.first;
130     // Make sure there exists a set for each specific mode from VVT.
131     Changed |= getOrCreate(M).insert(P.second).second;
132     // Cache VVT's default mode.
133     if (DefaultMode == M) {
134       ContainsDefault = true;
135       DT = P.second;
136     }
137   }
138 
139   // If VVT has a default mode, add the corresponding type to all
140   // modes in "this" that do not exist in VVT.
141   if (ContainsDefault)
142     for (auto &I : *this)
143       if (!VVT.hasMode(I.first))
144         Changed |= I.second.insert(DT).second;
145 
146   return Changed;
147 }
148 
149 // Constrain the type set to be the intersection with VTS.
150 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
151   bool Changed = false;
152   if (hasDefault()) {
153     for (const auto &I : VTS) {
154       unsigned M = I.first;
155       if (M == DefaultMode || hasMode(M))
156         continue;
157       Map.insert({M, Map.at(DefaultMode)});
158       Changed = true;
159     }
160   }
161 
162   for (auto &I : *this) {
163     unsigned M = I.first;
164     SetType &S = I.second;
165     if (VTS.hasMode(M) || VTS.hasDefault()) {
166       Changed |= intersect(I.second, VTS.get(M));
167     } else if (!S.empty()) {
168       S.clear();
169       Changed = true;
170     }
171   }
172   return Changed;
173 }
174 
175 template <typename Predicate>
176 bool TypeSetByHwMode::constrain(Predicate P) {
177   bool Changed = false;
178   for (auto &I : *this)
179     Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
180   return Changed;
181 }
182 
183 template <typename Predicate>
184 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
185   assert(empty());
186   for (const auto &I : VTS) {
187     SetType &S = getOrCreate(I.first);
188     for (auto J : I.second)
189       if (P(J))
190         S.insert(J);
191   }
192   return !empty();
193 }
194 
195 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
196   SmallVector<unsigned, 4> Modes;
197   Modes.reserve(Map.size());
198 
199   for (const auto &I : *this)
200     Modes.push_back(I.first);
201   if (Modes.empty()) {
202     OS << "{}";
203     return;
204   }
205   array_pod_sort(Modes.begin(), Modes.end());
206 
207   OS << '{';
208   for (unsigned M : Modes) {
209     OS << ' ' << getModeName(M) << ':';
210     get(M).writeToStream(OS);
211   }
212   OS << " }";
213 }
214 
215 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
216   // The isSimple call is much quicker than hasDefault - check this first.
217   bool IsSimple = isSimple();
218   bool VTSIsSimple = VTS.isSimple();
219   if (IsSimple && VTSIsSimple)
220     return *begin() == *VTS.begin();
221 
222   // Speedup: We have a default if the set is simple.
223   bool HaveDefault = IsSimple || hasDefault();
224   bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
225   if (HaveDefault != VTSHaveDefault)
226     return false;
227 
228   SmallSet<unsigned, 4> Modes;
229   for (auto &I : *this)
230     Modes.insert(I.first);
231   for (const auto &I : VTS)
232     Modes.insert(I.first);
233 
234   if (HaveDefault) {
235     // Both sets have default mode.
236     for (unsigned M : Modes) {
237       if (get(M) != VTS.get(M))
238         return false;
239     }
240   } else {
241     // Neither set has default mode.
242     for (unsigned M : Modes) {
243       // If there is no default mode, an empty set is equivalent to not having
244       // the corresponding mode.
245       bool NoModeThis = !hasMode(M) || get(M).empty();
246       bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
247       if (NoModeThis != NoModeVTS)
248         return false;
249       if (!NoModeThis)
250         if (get(M) != VTS.get(M))
251           return false;
252     }
253   }
254 
255   return true;
256 }
257 
258 namespace llvm {
259   raw_ostream &operator<<(raw_ostream &OS, const MachineValueTypeSet &T) {
260     T.writeToStream(OS);
261     return OS;
262   }
263   raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
264     T.writeToStream(OS);
265     return OS;
266   }
267 }
268 
269 LLVM_DUMP_METHOD
270 void TypeSetByHwMode::dump() const {
271   dbgs() << *this << '\n';
272 }
273 
274 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
275   bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
276   // Complement of In.
277   auto CompIn = [&In](MVT T) -> bool { return !In.count(T); };
278 
279   if (OutP == InP)
280     return berase_if(Out, CompIn);
281 
282   // Compute the intersection of scalars separately to account for only
283   // one set containing iPTR.
284   // The intersection of iPTR with a set of integer scalar types that does not
285   // include iPTR will result in the most specific scalar type:
286   // - iPTR is more specific than any set with two elements or more
287   // - iPTR is less specific than any single integer scalar type.
288   // For example
289   // { iPTR } * { i32 }     -> { i32 }
290   // { iPTR } * { i32 i64 } -> { iPTR }
291   // and
292   // { iPTR i32 } * { i32 }          -> { i32 }
293   // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
294   // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
295 
296   // Let In' = elements only in In, Out' = elements only in Out, and
297   // IO = elements common to both. Normally IO would be returned as the result
298   // of the intersection, but we need to account for iPTR being a "wildcard" of
299   // sorts. Since elements in IO are those that match both sets exactly, they
300   // will all belong to the output. If any of the "leftovers" (i.e. In' or
301   // Out') contain iPTR, it means that the other set doesn't have it, but it
302   // could have (1) a more specific type, or (2) a set of types that is less
303   // specific. The "leftovers" from the other set is what we want to examine
304   // more closely.
305 
306   auto subtract = [](const SetType &A, const SetType &B) {
307     SetType Diff = A;
308     berase_if(Diff, [&B](MVT T) { return B.count(T); });
309     return Diff;
310   };
311 
312   if (InP) {
313     SetType OutOnly = subtract(Out, In);
314     if (OutOnly.empty()) {
315       // This means that Out \subset In, so no change to Out.
316       return false;
317     }
318     unsigned NumI = llvm::count_if(OutOnly, isScalarInteger);
319     if (NumI == 1 && OutOnly.size() == 1) {
320       // There is only one element in Out', and it happens to be a scalar
321       // integer that should be kept as a match for iPTR in In.
322       return false;
323     }
324     berase_if(Out, CompIn);
325     if (NumI == 1) {
326       // Replace the iPTR with the leftover scalar integer.
327       Out.insert(*llvm::find_if(OutOnly, isScalarInteger));
328     } else if (NumI > 1) {
329       Out.insert(MVT::iPTR);
330     }
331     return true;
332   }
333 
334   // OutP == true
335   SetType InOnly = subtract(In, Out);
336   unsigned SizeOut = Out.size();
337   berase_if(Out, CompIn);   // This will remove at least the iPTR.
338   unsigned NumI = llvm::count_if(InOnly, isScalarInteger);
339   if (NumI == 0) {
340     // iPTR deleted from Out.
341     return true;
342   }
343   if (NumI == 1) {
344     // Replace the iPTR with the leftover scalar integer.
345     Out.insert(*llvm::find_if(InOnly, isScalarInteger));
346     return true;
347   }
348 
349   // NumI > 1: Keep the iPTR in Out.
350   Out.insert(MVT::iPTR);
351   // If iPTR was the only element initially removed from Out, then Out
352   // has not changed.
353   return SizeOut != Out.size();
354 }
355 
356 bool TypeSetByHwMode::validate() const {
357 #ifndef NDEBUG
358   if (empty())
359     return true;
360   bool AllEmpty = true;
361   for (const auto &I : *this)
362     AllEmpty &= I.second.empty();
363   return !AllEmpty;
364 #endif
365   return true;
366 }
367 
368 // --- TypeInfer
369 
370 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
371                                 const TypeSetByHwMode &In) {
372   ValidateOnExit _1(Out, *this);
373   In.validate();
374   if (In.empty() || Out == In || TP.hasError())
375     return false;
376   if (Out.empty()) {
377     Out = In;
378     return true;
379   }
380 
381   bool Changed = Out.constrain(In);
382   if (Changed && Out.empty())
383     TP.error("Type contradiction");
384 
385   return Changed;
386 }
387 
388 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
389   ValidateOnExit _1(Out, *this);
390   if (TP.hasError())
391     return false;
392   assert(!Out.empty() && "cannot pick from an empty set");
393 
394   bool Changed = false;
395   for (auto &I : Out) {
396     TypeSetByHwMode::SetType &S = I.second;
397     if (S.size() <= 1)
398       continue;
399     MVT T = *S.begin(); // Pick the first element.
400     S.clear();
401     S.insert(T);
402     Changed = true;
403   }
404   return Changed;
405 }
406 
407 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
408   ValidateOnExit _1(Out, *this);
409   if (TP.hasError())
410     return false;
411   if (!Out.empty())
412     return Out.constrain(isIntegerOrPtr);
413 
414   return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
415 }
416 
417 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
418   ValidateOnExit _1(Out, *this);
419   if (TP.hasError())
420     return false;
421   if (!Out.empty())
422     return Out.constrain(isFloatingPoint);
423 
424   return Out.assign_if(getLegalTypes(), isFloatingPoint);
425 }
426 
427 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
428   ValidateOnExit _1(Out, *this);
429   if (TP.hasError())
430     return false;
431   if (!Out.empty())
432     return Out.constrain(isScalar);
433 
434   return Out.assign_if(getLegalTypes(), isScalar);
435 }
436 
437 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
438   ValidateOnExit _1(Out, *this);
439   if (TP.hasError())
440     return false;
441   if (!Out.empty())
442     return Out.constrain(isVector);
443 
444   return Out.assign_if(getLegalTypes(), isVector);
445 }
446 
447 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
448   ValidateOnExit _1(Out, *this);
449   if (TP.hasError() || !Out.empty())
450     return false;
451 
452   Out = getLegalTypes();
453   return true;
454 }
455 
456 template <typename Iter, typename Pred, typename Less>
457 static Iter min_if(Iter B, Iter E, Pred P, Less L) {
458   if (B == E)
459     return E;
460   Iter Min = E;
461   for (Iter I = B; I != E; ++I) {
462     if (!P(*I))
463       continue;
464     if (Min == E || L(*I, *Min))
465       Min = I;
466   }
467   return Min;
468 }
469 
470 template <typename Iter, typename Pred, typename Less>
471 static Iter max_if(Iter B, Iter E, Pred P, Less L) {
472   if (B == E)
473     return E;
474   Iter Max = E;
475   for (Iter I = B; I != E; ++I) {
476     if (!P(*I))
477       continue;
478     if (Max == E || L(*Max, *I))
479       Max = I;
480   }
481   return Max;
482 }
483 
484 /// Make sure that for each type in Small, there exists a larger type in Big.
485 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big,
486                                    bool SmallIsVT) {
487   ValidateOnExit _1(Small, *this), _2(Big, *this);
488   if (TP.hasError())
489     return false;
490   bool Changed = false;
491 
492   assert((!SmallIsVT || !Small.empty()) &&
493          "Small should not be empty for SDTCisVTSmallerThanOp");
494 
495   if (Small.empty())
496     Changed |= EnforceAny(Small);
497   if (Big.empty())
498     Changed |= EnforceAny(Big);
499 
500   assert(Small.hasDefault() && Big.hasDefault());
501 
502   SmallVector<unsigned, 4> Modes;
503   union_modes(Small, Big, Modes);
504 
505   // 1. Only allow integer or floating point types and make sure that
506   //    both sides are both integer or both floating point.
507   // 2. Make sure that either both sides have vector types, or neither
508   //    of them does.
509   for (unsigned M : Modes) {
510     TypeSetByHwMode::SetType &S = Small.get(M);
511     TypeSetByHwMode::SetType &B = Big.get(M);
512 
513     assert((!SmallIsVT || !S.empty()) && "Expected non-empty type");
514 
515     if (any_of(S, isIntegerOrPtr) && any_of(B, isIntegerOrPtr)) {
516       auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
517       Changed |= berase_if(S, NotInt);
518       Changed |= berase_if(B, NotInt);
519     } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
520       auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
521       Changed |= berase_if(S, NotFP);
522       Changed |= berase_if(B, NotFP);
523     } else if (SmallIsVT && B.empty()) {
524       // B is empty and since S is a specific VT, it will never be empty. Don't
525       // report this as a change, just clear S and continue. This prevents an
526       // infinite loop.
527       S.clear();
528     } else if (S.empty() || B.empty()) {
529       Changed = !S.empty() || !B.empty();
530       S.clear();
531       B.clear();
532     } else {
533       TP.error("Incompatible types");
534       return Changed;
535     }
536 
537     if (none_of(S, isVector) || none_of(B, isVector)) {
538       Changed |= berase_if(S, isVector);
539       Changed |= berase_if(B, isVector);
540     }
541   }
542 
543   auto LT = [](MVT A, MVT B) -> bool {
544     // Always treat non-scalable MVTs as smaller than scalable MVTs for the
545     // purposes of ordering.
546     auto ASize = std::make_tuple(A.isScalableVector(), A.getScalarSizeInBits(),
547                                  A.getSizeInBits().getKnownMinValue());
548     auto BSize = std::make_tuple(B.isScalableVector(), B.getScalarSizeInBits(),
549                                  B.getSizeInBits().getKnownMinValue());
550     return ASize < BSize;
551   };
552   auto SameKindLE = [](MVT A, MVT B) -> bool {
553     // This function is used when removing elements: when a vector is compared
554     // to a non-vector or a scalable vector to any non-scalable MVT, it should
555     // return false (to avoid removal).
556     if (std::make_tuple(A.isVector(), A.isScalableVector()) !=
557         std::make_tuple(B.isVector(), B.isScalableVector()))
558       return false;
559 
560     return std::make_tuple(A.getScalarSizeInBits(),
561                            A.getSizeInBits().getKnownMinValue()) <=
562            std::make_tuple(B.getScalarSizeInBits(),
563                            B.getSizeInBits().getKnownMinValue());
564   };
565 
566   for (unsigned M : Modes) {
567     TypeSetByHwMode::SetType &S = Small.get(M);
568     TypeSetByHwMode::SetType &B = Big.get(M);
569     // MinS = min scalar in Small, remove all scalars from Big that are
570     // smaller-or-equal than MinS.
571     auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
572     if (MinS != S.end())
573       Changed |= berase_if(B, std::bind(SameKindLE,
574                                         std::placeholders::_1, *MinS));
575 
576     // MaxS = max scalar in Big, remove all scalars from Small that are
577     // larger than MaxS.
578     auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
579     if (MaxS != B.end())
580       Changed |= berase_if(S, std::bind(SameKindLE,
581                                         *MaxS, std::placeholders::_1));
582 
583     // MinV = min vector in Small, remove all vectors from Big that are
584     // smaller-or-equal than MinV.
585     auto MinV = min_if(S.begin(), S.end(), isVector, LT);
586     if (MinV != S.end())
587       Changed |= berase_if(B, std::bind(SameKindLE,
588                                         std::placeholders::_1, *MinV));
589 
590     // MaxV = max vector in Big, remove all vectors from Small that are
591     // larger than MaxV.
592     auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
593     if (MaxV != B.end())
594       Changed |= berase_if(S, std::bind(SameKindLE,
595                                         *MaxV, std::placeholders::_1));
596   }
597 
598   return Changed;
599 }
600 
601 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
602 ///    for each type U in Elem, U is a scalar type.
603 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
604 ///    type T in Vec, such that U is the element type of T.
605 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
606                                        TypeSetByHwMode &Elem) {
607   ValidateOnExit _1(Vec, *this), _2(Elem, *this);
608   if (TP.hasError())
609     return false;
610   bool Changed = false;
611 
612   if (Vec.empty())
613     Changed |= EnforceVector(Vec);
614   if (Elem.empty())
615     Changed |= EnforceScalar(Elem);
616 
617   SmallVector<unsigned, 4> Modes;
618   union_modes(Vec, Elem, Modes);
619   for (unsigned M : Modes) {
620     TypeSetByHwMode::SetType &V = Vec.get(M);
621     TypeSetByHwMode::SetType &E = Elem.get(M);
622 
623     Changed |= berase_if(V, isScalar);  // Scalar = !vector
624     Changed |= berase_if(E, isVector);  // Vector = !scalar
625     assert(!V.empty() && !E.empty());
626 
627     MachineValueTypeSet VT, ST;
628     // Collect element types from the "vector" set.
629     for (MVT T : V)
630       VT.insert(T.getVectorElementType());
631     // Collect scalar types from the "element" set.
632     for (MVT T : E)
633       ST.insert(T);
634 
635     // Remove from V all (vector) types whose element type is not in S.
636     Changed |= berase_if(V, [&ST](MVT T) -> bool {
637                               return !ST.count(T.getVectorElementType());
638                             });
639     // Remove from E all (scalar) types, for which there is no corresponding
640     // type in V.
641     Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
642   }
643 
644   return Changed;
645 }
646 
647 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
648                                        const ValueTypeByHwMode &VVT) {
649   TypeSetByHwMode Tmp(VVT);
650   ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
651   return EnforceVectorEltTypeIs(Vec, Tmp);
652 }
653 
654 /// Ensure that for each type T in Sub, T is a vector type, and there
655 /// exists a type U in Vec such that U is a vector type with the same
656 /// element type as T and at least as many elements as T.
657 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
658                                              TypeSetByHwMode &Sub) {
659   ValidateOnExit _1(Vec, *this), _2(Sub, *this);
660   if (TP.hasError())
661     return false;
662 
663   /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
664   auto IsSubVec = [](MVT B, MVT P) -> bool {
665     if (!B.isVector() || !P.isVector())
666       return false;
667     // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
668     // but until there are obvious use-cases for this, keep the
669     // types separate.
670     if (B.isScalableVector() != P.isScalableVector())
671       return false;
672     if (B.getVectorElementType() != P.getVectorElementType())
673       return false;
674     return B.getVectorMinNumElements() < P.getVectorMinNumElements();
675   };
676 
677   /// Return true if S has no element (vector type) that T is a sub-vector of,
678   /// i.e. has the same element type as T and more elements.
679   auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
680     for (auto I : S)
681       if (IsSubVec(T, I))
682         return false;
683     return true;
684   };
685 
686   /// Return true if S has no element (vector type) that T is a super-vector
687   /// of, i.e. has the same element type as T and fewer elements.
688   auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
689     for (auto I : S)
690       if (IsSubVec(I, T))
691         return false;
692     return true;
693   };
694 
695   bool Changed = false;
696 
697   if (Vec.empty())
698     Changed |= EnforceVector(Vec);
699   if (Sub.empty())
700     Changed |= EnforceVector(Sub);
701 
702   SmallVector<unsigned, 4> Modes;
703   union_modes(Vec, Sub, Modes);
704   for (unsigned M : Modes) {
705     TypeSetByHwMode::SetType &S = Sub.get(M);
706     TypeSetByHwMode::SetType &V = Vec.get(M);
707 
708     Changed |= berase_if(S, isScalar);
709 
710     // Erase all types from S that are not sub-vectors of a type in V.
711     Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
712 
713     // Erase all types from V that are not super-vectors of a type in S.
714     Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
715   }
716 
717   return Changed;
718 }
719 
720 /// 1. Ensure that V has a scalar type iff W has a scalar type.
721 /// 2. Ensure that for each vector type T in V, there exists a vector
722 ///    type U in W, such that T and U have the same number of elements.
723 /// 3. Ensure that for each vector type U in W, there exists a vector
724 ///    type T in V, such that T and U have the same number of elements
725 ///    (reverse of 2).
726 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
727   ValidateOnExit _1(V, *this), _2(W, *this);
728   if (TP.hasError())
729     return false;
730 
731   bool Changed = false;
732   if (V.empty())
733     Changed |= EnforceAny(V);
734   if (W.empty())
735     Changed |= EnforceAny(W);
736 
737   // An actual vector type cannot have 0 elements, so we can treat scalars
738   // as zero-length vectors. This way both vectors and scalars can be
739   // processed identically.
740   auto NoLength = [](const SmallDenseSet<ElementCount> &Lengths,
741                      MVT T) -> bool {
742     return !Lengths.count(T.isVector() ? T.getVectorElementCount()
743                                        : ElementCount());
744   };
745 
746   SmallVector<unsigned, 4> Modes;
747   union_modes(V, W, Modes);
748   for (unsigned M : Modes) {
749     TypeSetByHwMode::SetType &VS = V.get(M);
750     TypeSetByHwMode::SetType &WS = W.get(M);
751 
752     SmallDenseSet<ElementCount> VN, WN;
753     for (MVT T : VS)
754       VN.insert(T.isVector() ? T.getVectorElementCount() : ElementCount());
755     for (MVT T : WS)
756       WN.insert(T.isVector() ? T.getVectorElementCount() : ElementCount());
757 
758     Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
759     Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
760   }
761   return Changed;
762 }
763 
764 namespace {
765 struct TypeSizeComparator {
766   bool operator()(const TypeSize &LHS, const TypeSize &RHS) const {
767     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
768            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
769   }
770 };
771 } // end anonymous namespace
772 
773 /// 1. Ensure that for each type T in A, there exists a type U in B,
774 ///    such that T and U have equal size in bits.
775 /// 2. Ensure that for each type U in B, there exists a type T in A
776 ///    such that T and U have equal size in bits (reverse of 1).
777 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
778   ValidateOnExit _1(A, *this), _2(B, *this);
779   if (TP.hasError())
780     return false;
781   bool Changed = false;
782   if (A.empty())
783     Changed |= EnforceAny(A);
784   if (B.empty())
785     Changed |= EnforceAny(B);
786 
787   typedef SmallSet<TypeSize, 2, TypeSizeComparator> TypeSizeSet;
788 
789   auto NoSize = [](const TypeSizeSet &Sizes, MVT T) -> bool {
790     return !Sizes.count(T.getSizeInBits());
791   };
792 
793   SmallVector<unsigned, 4> Modes;
794   union_modes(A, B, Modes);
795   for (unsigned M : Modes) {
796     TypeSetByHwMode::SetType &AS = A.get(M);
797     TypeSetByHwMode::SetType &BS = B.get(M);
798     TypeSizeSet AN, BN;
799 
800     for (MVT T : AS)
801       AN.insert(T.getSizeInBits());
802     for (MVT T : BS)
803       BN.insert(T.getSizeInBits());
804 
805     Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
806     Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
807   }
808 
809   return Changed;
810 }
811 
812 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
813   ValidateOnExit _1(VTS, *this);
814   const TypeSetByHwMode &Legal = getLegalTypes();
815   assert(Legal.isDefaultOnly() && "Default-mode only expected");
816   const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode);
817 
818   for (auto &I : VTS)
819     expandOverloads(I.second, LegalTypes);
820 }
821 
822 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
823                                 const TypeSetByHwMode::SetType &Legal) {
824   std::set<MVT> Ovs;
825   for (MVT T : Out) {
826     if (!T.isOverloaded())
827       continue;
828 
829     Ovs.insert(T);
830     // MachineValueTypeSet allows iteration and erasing.
831     Out.erase(T);
832   }
833 
834   for (MVT Ov : Ovs) {
835     switch (Ov.SimpleTy) {
836       case MVT::iPTRAny:
837         Out.insert(MVT::iPTR);
838         return;
839       case MVT::iAny:
840         for (MVT T : MVT::integer_valuetypes())
841           if (Legal.count(T))
842             Out.insert(T);
843         for (MVT T : MVT::integer_fixedlen_vector_valuetypes())
844           if (Legal.count(T))
845             Out.insert(T);
846         for (MVT T : MVT::integer_scalable_vector_valuetypes())
847           if (Legal.count(T))
848             Out.insert(T);
849         return;
850       case MVT::fAny:
851         for (MVT T : MVT::fp_valuetypes())
852           if (Legal.count(T))
853             Out.insert(T);
854         for (MVT T : MVT::fp_fixedlen_vector_valuetypes())
855           if (Legal.count(T))
856             Out.insert(T);
857         for (MVT T : MVT::fp_scalable_vector_valuetypes())
858           if (Legal.count(T))
859             Out.insert(T);
860         return;
861       case MVT::vAny:
862         for (MVT T : MVT::vector_valuetypes())
863           if (Legal.count(T))
864             Out.insert(T);
865         return;
866       case MVT::Any:
867         for (MVT T : MVT::all_valuetypes())
868           if (Legal.count(T))
869             Out.insert(T);
870         return;
871       default:
872         break;
873     }
874   }
875 }
876 
877 const TypeSetByHwMode &TypeInfer::getLegalTypes() {
878   if (!LegalTypesCached) {
879     TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
880     // Stuff all types from all modes into the default mode.
881     const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
882     for (const auto &I : LTS)
883       LegalTypes.insert(I.second);
884     LegalTypesCached = true;
885   }
886   assert(LegalCache.isDefaultOnly() && "Default-mode only expected");
887   return LegalCache;
888 }
889 
890 #ifndef NDEBUG
891 TypeInfer::ValidateOnExit::~ValidateOnExit() {
892   if (Infer.Validate && !VTS.validate()) {
893     dbgs() << "Type set is empty for each HW mode:\n"
894               "possible type contradiction in the pattern below "
895               "(use -print-records with llvm-tblgen to see all "
896               "expanded records).\n";
897     Infer.TP.dump();
898     dbgs() << "Generated from record:\n";
899     Infer.TP.getRecord()->dump();
900     PrintFatalError(Infer.TP.getRecord()->getLoc(),
901                     "Type set is empty for each HW mode in '" +
902                         Infer.TP.getRecord()->getName() + "'");
903   }
904 }
905 #endif
906 
907 
908 //===----------------------------------------------------------------------===//
909 // ScopedName Implementation
910 //===----------------------------------------------------------------------===//
911 
912 bool ScopedName::operator==(const ScopedName &o) const {
913   return Scope == o.Scope && Identifier == o.Identifier;
914 }
915 
916 bool ScopedName::operator!=(const ScopedName &o) const {
917   return !(*this == o);
918 }
919 
920 
921 //===----------------------------------------------------------------------===//
922 // TreePredicateFn Implementation
923 //===----------------------------------------------------------------------===//
924 
925 /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
926 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
927   assert(
928       (!hasPredCode() || !hasImmCode()) &&
929       ".td file corrupt: can't have a node predicate *and* an imm predicate");
930 }
931 
932 bool TreePredicateFn::hasPredCode() const {
933   return isLoad() || isStore() || isAtomic() || hasNoUse() ||
934          !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
935 }
936 
937 std::string TreePredicateFn::getPredCode() const {
938   std::string Code;
939 
940   if (!isLoad() && !isStore() && !isAtomic()) {
941     Record *MemoryVT = getMemoryVT();
942 
943     if (MemoryVT)
944       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
945                       "MemoryVT requires IsLoad or IsStore");
946   }
947 
948   if (!isLoad() && !isStore()) {
949     if (isUnindexed())
950       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
951                       "IsUnindexed requires IsLoad or IsStore");
952 
953     Record *ScalarMemoryVT = getScalarMemoryVT();
954 
955     if (ScalarMemoryVT)
956       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
957                       "ScalarMemoryVT requires IsLoad or IsStore");
958   }
959 
960   if (isLoad() + isStore() + isAtomic() > 1)
961     PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
962                     "IsLoad, IsStore, and IsAtomic are mutually exclusive");
963 
964   if (isLoad()) {
965     if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
966         !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
967         getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr &&
968         getMinAlignment() < 1)
969       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
970                       "IsLoad cannot be used by itself");
971   } else {
972     if (isNonExtLoad())
973       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
974                       "IsNonExtLoad requires IsLoad");
975     if (isAnyExtLoad())
976       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
977                       "IsAnyExtLoad requires IsLoad");
978 
979     if (!isAtomic()) {
980       if (isSignExtLoad())
981         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
982                         "IsSignExtLoad requires IsLoad or IsAtomic");
983       if (isZeroExtLoad())
984         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
985                         "IsZeroExtLoad requires IsLoad or IsAtomic");
986     }
987   }
988 
989   if (isStore()) {
990     if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
991         getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr &&
992         getAddressSpaces() == nullptr && getMinAlignment() < 1)
993       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
994                       "IsStore cannot be used by itself");
995   } else {
996     if (isNonTruncStore())
997       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
998                       "IsNonTruncStore requires IsStore");
999     if (isTruncStore())
1000       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1001                       "IsTruncStore requires IsStore");
1002   }
1003 
1004   if (isAtomic()) {
1005     if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
1006         getAddressSpaces() == nullptr &&
1007         // FIXME: Should atomic loads be IsLoad, IsAtomic, or both?
1008         !isZeroExtLoad() && !isSignExtLoad() && !isAtomicOrderingAcquire() &&
1009         !isAtomicOrderingRelease() && !isAtomicOrderingAcquireRelease() &&
1010         !isAtomicOrderingSequentiallyConsistent() &&
1011         !isAtomicOrderingAcquireOrStronger() &&
1012         !isAtomicOrderingReleaseOrStronger() &&
1013         !isAtomicOrderingWeakerThanAcquire() &&
1014         !isAtomicOrderingWeakerThanRelease())
1015       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1016                       "IsAtomic cannot be used by itself");
1017   } else {
1018     if (isAtomicOrderingMonotonic())
1019       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1020                       "IsAtomicOrderingMonotonic requires IsAtomic");
1021     if (isAtomicOrderingAcquire())
1022       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1023                       "IsAtomicOrderingAcquire requires IsAtomic");
1024     if (isAtomicOrderingRelease())
1025       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1026                       "IsAtomicOrderingRelease requires IsAtomic");
1027     if (isAtomicOrderingAcquireRelease())
1028       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1029                       "IsAtomicOrderingAcquireRelease requires IsAtomic");
1030     if (isAtomicOrderingSequentiallyConsistent())
1031       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1032                       "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
1033     if (isAtomicOrderingAcquireOrStronger())
1034       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1035                       "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
1036     if (isAtomicOrderingReleaseOrStronger())
1037       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1038                       "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
1039     if (isAtomicOrderingWeakerThanAcquire())
1040       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1041                       "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
1042   }
1043 
1044   if (isLoad() || isStore() || isAtomic()) {
1045     if (ListInit *AddressSpaces = getAddressSpaces()) {
1046       Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
1047         " if (";
1048 
1049       ListSeparator LS(" && ");
1050       for (Init *Val : AddressSpaces->getValues()) {
1051         Code += LS;
1052 
1053         IntInit *IntVal = dyn_cast<IntInit>(Val);
1054         if (!IntVal) {
1055           PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1056                           "AddressSpaces element must be integer");
1057         }
1058 
1059         Code += "AddrSpace != " + utostr(IntVal->getValue());
1060       }
1061 
1062       Code += ")\nreturn false;\n";
1063     }
1064 
1065     int64_t MinAlign = getMinAlignment();
1066     if (MinAlign > 0) {
1067       Code += "if (cast<MemSDNode>(N)->getAlign() < Align(";
1068       Code += utostr(MinAlign);
1069       Code += "))\nreturn false;\n";
1070     }
1071 
1072     Record *MemoryVT = getMemoryVT();
1073 
1074     if (MemoryVT)
1075       Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
1076                MemoryVT->getName() + ") return false;\n")
1077                   .str();
1078   }
1079 
1080   if (isAtomic() && isAtomicOrderingMonotonic())
1081     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1082             "AtomicOrdering::Monotonic) return false;\n";
1083   if (isAtomic() && isAtomicOrderingAcquire())
1084     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1085             "AtomicOrdering::Acquire) return false;\n";
1086   if (isAtomic() && isAtomicOrderingRelease())
1087     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1088             "AtomicOrdering::Release) return false;\n";
1089   if (isAtomic() && isAtomicOrderingAcquireRelease())
1090     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1091             "AtomicOrdering::AcquireRelease) return false;\n";
1092   if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
1093     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1094             "AtomicOrdering::SequentiallyConsistent) return false;\n";
1095 
1096   if (isAtomic() && isAtomicOrderingAcquireOrStronger())
1097     Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1098             "return false;\n";
1099   if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
1100     Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1101             "return false;\n";
1102 
1103   if (isAtomic() && isAtomicOrderingReleaseOrStronger())
1104     Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1105             "return false;\n";
1106   if (isAtomic() && isAtomicOrderingWeakerThanRelease())
1107     Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1108             "return false;\n";
1109 
1110   // TODO: Handle atomic sextload/zextload normally when ATOMIC_LOAD is removed.
1111   if (isAtomic() && (isZeroExtLoad() || isSignExtLoad()))
1112     Code += "return false;\n";
1113 
1114   if (isLoad() || isStore()) {
1115     StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
1116 
1117     if (isUnindexed())
1118       Code += ("if (cast<" + SDNodeName +
1119                ">(N)->getAddressingMode() != ISD::UNINDEXED) "
1120                "return false;\n")
1121                   .str();
1122 
1123     if (isLoad()) {
1124       if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
1125            isZeroExtLoad()) > 1)
1126         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1127                         "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
1128                         "IsZeroExtLoad are mutually exclusive");
1129       if (isNonExtLoad())
1130         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
1131                 "ISD::NON_EXTLOAD) return false;\n";
1132       if (isAnyExtLoad())
1133         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1134                 "return false;\n";
1135       if (isSignExtLoad())
1136         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1137                 "return false;\n";
1138       if (isZeroExtLoad())
1139         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1140                 "return false;\n";
1141     } else {
1142       if ((isNonTruncStore() + isTruncStore()) > 1)
1143         PrintFatalError(
1144             getOrigPatFragRecord()->getRecord()->getLoc(),
1145             "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1146       if (isNonTruncStore())
1147         Code +=
1148             " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1149       if (isTruncStore())
1150         Code +=
1151             " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1152     }
1153 
1154     Record *ScalarMemoryVT = getScalarMemoryVT();
1155 
1156     if (ScalarMemoryVT)
1157       Code += ("if (cast<" + SDNodeName +
1158                ">(N)->getMemoryVT().getScalarType() != MVT::" +
1159                ScalarMemoryVT->getName() + ") return false;\n")
1160                   .str();
1161   }
1162 
1163   if (hasNoUse())
1164     Code += "if (!SDValue(N, 0).use_empty()) return false;\n";
1165 
1166   std::string PredicateCode =
1167       std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode"));
1168 
1169   Code += PredicateCode;
1170 
1171   if (PredicateCode.empty() && !Code.empty())
1172     Code += "return true;\n";
1173 
1174   return Code;
1175 }
1176 
1177 bool TreePredicateFn::hasImmCode() const {
1178   return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1179 }
1180 
1181 std::string TreePredicateFn::getImmCode() const {
1182   return std::string(
1183       PatFragRec->getRecord()->getValueAsString("ImmediateCode"));
1184 }
1185 
1186 bool TreePredicateFn::immCodeUsesAPInt() const {
1187   return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1188 }
1189 
1190 bool TreePredicateFn::immCodeUsesAPFloat() const {
1191   bool Unset;
1192   // The return value will be false when IsAPFloat is unset.
1193   return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1194                                                                    Unset);
1195 }
1196 
1197 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1198                                                    bool Value) const {
1199   bool Unset;
1200   bool Result =
1201       getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1202   if (Unset)
1203     return false;
1204   return Result == Value;
1205 }
1206 bool TreePredicateFn::usesOperands() const {
1207   return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
1208 }
1209 bool TreePredicateFn::hasNoUse() const {
1210   return isPredefinedPredicateEqualTo("HasNoUse", true);
1211 }
1212 bool TreePredicateFn::isLoad() const {
1213   return isPredefinedPredicateEqualTo("IsLoad", true);
1214 }
1215 bool TreePredicateFn::isStore() const {
1216   return isPredefinedPredicateEqualTo("IsStore", true);
1217 }
1218 bool TreePredicateFn::isAtomic() const {
1219   return isPredefinedPredicateEqualTo("IsAtomic", true);
1220 }
1221 bool TreePredicateFn::isUnindexed() const {
1222   return isPredefinedPredicateEqualTo("IsUnindexed", true);
1223 }
1224 bool TreePredicateFn::isNonExtLoad() const {
1225   return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1226 }
1227 bool TreePredicateFn::isAnyExtLoad() const {
1228   return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1229 }
1230 bool TreePredicateFn::isSignExtLoad() const {
1231   return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1232 }
1233 bool TreePredicateFn::isZeroExtLoad() const {
1234   return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1235 }
1236 bool TreePredicateFn::isNonTruncStore() const {
1237   return isPredefinedPredicateEqualTo("IsTruncStore", false);
1238 }
1239 bool TreePredicateFn::isTruncStore() const {
1240   return isPredefinedPredicateEqualTo("IsTruncStore", true);
1241 }
1242 bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1243   return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1244 }
1245 bool TreePredicateFn::isAtomicOrderingAcquire() const {
1246   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1247 }
1248 bool TreePredicateFn::isAtomicOrderingRelease() const {
1249   return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1250 }
1251 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1252   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1253 }
1254 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1255   return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1256                                       true);
1257 }
1258 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1259   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1260 }
1261 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1262   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1263 }
1264 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1265   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1266 }
1267 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1268   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1269 }
1270 Record *TreePredicateFn::getMemoryVT() const {
1271   Record *R = getOrigPatFragRecord()->getRecord();
1272   if (R->isValueUnset("MemoryVT"))
1273     return nullptr;
1274   return R->getValueAsDef("MemoryVT");
1275 }
1276 
1277 ListInit *TreePredicateFn::getAddressSpaces() const {
1278   Record *R = getOrigPatFragRecord()->getRecord();
1279   if (R->isValueUnset("AddressSpaces"))
1280     return nullptr;
1281   return R->getValueAsListInit("AddressSpaces");
1282 }
1283 
1284 int64_t TreePredicateFn::getMinAlignment() const {
1285   Record *R = getOrigPatFragRecord()->getRecord();
1286   if (R->isValueUnset("MinAlignment"))
1287     return 0;
1288   return R->getValueAsInt("MinAlignment");
1289 }
1290 
1291 Record *TreePredicateFn::getScalarMemoryVT() const {
1292   Record *R = getOrigPatFragRecord()->getRecord();
1293   if (R->isValueUnset("ScalarMemoryVT"))
1294     return nullptr;
1295   return R->getValueAsDef("ScalarMemoryVT");
1296 }
1297 bool TreePredicateFn::hasGISelPredicateCode() const {
1298   return !PatFragRec->getRecord()
1299               ->getValueAsString("GISelPredicateCode")
1300               .empty();
1301 }
1302 std::string TreePredicateFn::getGISelPredicateCode() const {
1303   return std::string(
1304       PatFragRec->getRecord()->getValueAsString("GISelPredicateCode"));
1305 }
1306 
1307 StringRef TreePredicateFn::getImmType() const {
1308   if (immCodeUsesAPInt())
1309     return "const APInt &";
1310   if (immCodeUsesAPFloat())
1311     return "const APFloat &";
1312   return "int64_t";
1313 }
1314 
1315 StringRef TreePredicateFn::getImmTypeIdentifier() const {
1316   if (immCodeUsesAPInt())
1317     return "APInt";
1318   if (immCodeUsesAPFloat())
1319     return "APFloat";
1320   return "I64";
1321 }
1322 
1323 /// isAlwaysTrue - Return true if this is a noop predicate.
1324 bool TreePredicateFn::isAlwaysTrue() const {
1325   return !hasPredCode() && !hasImmCode();
1326 }
1327 
1328 /// Return the name to use in the generated code to reference this, this is
1329 /// "Predicate_foo" if from a pattern fragment "foo".
1330 std::string TreePredicateFn::getFnName() const {
1331   return "Predicate_" + PatFragRec->getRecord()->getName().str();
1332 }
1333 
1334 /// getCodeToRunOnSDNode - Return the code for the function body that
1335 /// evaluates this predicate.  The argument is expected to be in "Node",
1336 /// not N.  This handles casting and conversion to a concrete node type as
1337 /// appropriate.
1338 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1339   // Handle immediate predicates first.
1340   std::string ImmCode = getImmCode();
1341   if (!ImmCode.empty()) {
1342     if (isLoad())
1343       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1344                       "IsLoad cannot be used with ImmLeaf or its subclasses");
1345     if (isStore())
1346       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1347                       "IsStore cannot be used with ImmLeaf or its subclasses");
1348     if (isUnindexed())
1349       PrintFatalError(
1350           getOrigPatFragRecord()->getRecord()->getLoc(),
1351           "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1352     if (isNonExtLoad())
1353       PrintFatalError(
1354           getOrigPatFragRecord()->getRecord()->getLoc(),
1355           "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1356     if (isAnyExtLoad())
1357       PrintFatalError(
1358           getOrigPatFragRecord()->getRecord()->getLoc(),
1359           "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1360     if (isSignExtLoad())
1361       PrintFatalError(
1362           getOrigPatFragRecord()->getRecord()->getLoc(),
1363           "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1364     if (isZeroExtLoad())
1365       PrintFatalError(
1366           getOrigPatFragRecord()->getRecord()->getLoc(),
1367           "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1368     if (isNonTruncStore())
1369       PrintFatalError(
1370           getOrigPatFragRecord()->getRecord()->getLoc(),
1371           "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1372     if (isTruncStore())
1373       PrintFatalError(
1374           getOrigPatFragRecord()->getRecord()->getLoc(),
1375           "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1376     if (getMemoryVT())
1377       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1378                       "MemoryVT cannot be used with ImmLeaf or its subclasses");
1379     if (getScalarMemoryVT())
1380       PrintFatalError(
1381           getOrigPatFragRecord()->getRecord()->getLoc(),
1382           "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1383 
1384     std::string Result = ("    " + getImmType() + " Imm = ").str();
1385     if (immCodeUsesAPFloat())
1386       Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1387     else if (immCodeUsesAPInt())
1388       Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1389     else
1390       Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1391     return Result + ImmCode;
1392   }
1393 
1394   // Handle arbitrary node predicates.
1395   assert(hasPredCode() && "Don't have any predicate code!");
1396 
1397   // If this is using PatFrags, there are multiple trees to search. They should
1398   // all have the same class.  FIXME: Is there a way to find a common
1399   // superclass?
1400   StringRef ClassName;
1401   for (const auto &Tree : PatFragRec->getTrees()) {
1402     StringRef TreeClassName;
1403     if (Tree->isLeaf())
1404       TreeClassName = "SDNode";
1405     else {
1406       Record *Op = Tree->getOperator();
1407       const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op);
1408       TreeClassName = Info.getSDClassName();
1409     }
1410 
1411     if (ClassName.empty())
1412       ClassName = TreeClassName;
1413     else if (ClassName != TreeClassName) {
1414       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1415                       "PatFrags trees do not have consistent class");
1416     }
1417   }
1418 
1419   std::string Result;
1420   if (ClassName == "SDNode")
1421     Result = "    SDNode *N = Node;\n";
1422   else
1423     Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";
1424 
1425   return (Twine(Result) + "    (void)N;\n" + getPredCode()).str();
1426 }
1427 
1428 //===----------------------------------------------------------------------===//
1429 // PatternToMatch implementation
1430 //
1431 
1432 static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) {
1433   if (!P->isLeaf())
1434     return false;
1435   DefInit *DI = dyn_cast<DefInit>(P->getLeafValue());
1436   if (!DI)
1437     return false;
1438 
1439   Record *R = DI->getDef();
1440   return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
1441 }
1442 
1443 /// getPatternSize - Return the 'size' of this pattern.  We want to match large
1444 /// patterns before small ones.  This is used to determine the size of a
1445 /// pattern.
1446 static unsigned getPatternSize(const TreePatternNode *P,
1447                                const CodeGenDAGPatterns &CGP) {
1448   unsigned Size = 3;  // The node itself.
1449   // If the root node is a ConstantSDNode, increases its size.
1450   // e.g. (set R32:$dst, 0).
1451   if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1452     Size += 2;
1453 
1454   if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1455     Size += AM->getComplexity();
1456     // We don't want to count any children twice, so return early.
1457     return Size;
1458   }
1459 
1460   // If this node has some predicate function that must match, it adds to the
1461   // complexity of this node.
1462   if (!P->getPredicateCalls().empty())
1463     ++Size;
1464 
1465   // Count children in the count if they are also nodes.
1466   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1467     const TreePatternNode *Child = P->getChild(i);
1468     if (!Child->isLeaf() && Child->getNumTypes()) {
1469       const TypeSetByHwMode &T0 = Child->getExtType(0);
1470       // At this point, all variable type sets should be simple, i.e. only
1471       // have a default mode.
1472       if (T0.getMachineValueType() != MVT::Other) {
1473         Size += getPatternSize(Child, CGP);
1474         continue;
1475       }
1476     }
1477     if (Child->isLeaf()) {
1478       if (isa<IntInit>(Child->getLeafValue()))
1479         Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
1480       else if (Child->getComplexPatternInfo(CGP))
1481         Size += getPatternSize(Child, CGP);
1482       else if (isImmAllOnesAllZerosMatch(Child))
1483         Size += 4; // Matches a build_vector(+3) and a predicate (+1).
1484       else if (!Child->getPredicateCalls().empty())
1485         ++Size;
1486     }
1487   }
1488 
1489   return Size;
1490 }
1491 
1492 /// Compute the complexity metric for the input pattern.  This roughly
1493 /// corresponds to the number of nodes that are covered.
1494 int PatternToMatch::
1495 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1496   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1497 }
1498 
1499 void PatternToMatch::getPredicateRecords(
1500     SmallVectorImpl<Record *> &PredicateRecs) const {
1501   for (Init *I : Predicates->getValues()) {
1502     if (DefInit *Pred = dyn_cast<DefInit>(I)) {
1503       Record *Def = Pred->getDef();
1504       if (!Def->isSubClassOf("Predicate")) {
1505 #ifndef NDEBUG
1506         Def->dump();
1507 #endif
1508         llvm_unreachable("Unknown predicate type!");
1509       }
1510       PredicateRecs.push_back(Def);
1511     }
1512   }
1513   // Sort so that different orders get canonicalized to the same string.
1514   llvm::sort(PredicateRecs, LessRecord());
1515 }
1516 
1517 /// getPredicateCheck - Return a single string containing all of this
1518 /// pattern's predicates concatenated with "&&" operators.
1519 ///
1520 std::string PatternToMatch::getPredicateCheck() const {
1521   SmallVector<Record *, 4> PredicateRecs;
1522   getPredicateRecords(PredicateRecs);
1523 
1524   SmallString<128> PredicateCheck;
1525   for (Record *Pred : PredicateRecs) {
1526     StringRef CondString = Pred->getValueAsString("CondString");
1527     if (CondString.empty())
1528       continue;
1529     if (!PredicateCheck.empty())
1530       PredicateCheck += " && ";
1531     PredicateCheck += "(";
1532     PredicateCheck += CondString;
1533     PredicateCheck += ")";
1534   }
1535 
1536   if (!HwModeFeatures.empty()) {
1537     if (!PredicateCheck.empty())
1538       PredicateCheck += " && ";
1539     PredicateCheck += HwModeFeatures;
1540   }
1541 
1542   return std::string(PredicateCheck);
1543 }
1544 
1545 //===----------------------------------------------------------------------===//
1546 // SDTypeConstraint implementation
1547 //
1548 
1549 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1550   OperandNo = R->getValueAsInt("OperandNum");
1551 
1552   if (R->isSubClassOf("SDTCisVT")) {
1553     ConstraintType = SDTCisVT;
1554     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1555     for (const auto &P : VVT)
1556       if (P.second == MVT::isVoid)
1557         PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1558   } else if (R->isSubClassOf("SDTCisPtrTy")) {
1559     ConstraintType = SDTCisPtrTy;
1560   } else if (R->isSubClassOf("SDTCisInt")) {
1561     ConstraintType = SDTCisInt;
1562   } else if (R->isSubClassOf("SDTCisFP")) {
1563     ConstraintType = SDTCisFP;
1564   } else if (R->isSubClassOf("SDTCisVec")) {
1565     ConstraintType = SDTCisVec;
1566   } else if (R->isSubClassOf("SDTCisSameAs")) {
1567     ConstraintType = SDTCisSameAs;
1568     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1569   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1570     ConstraintType = SDTCisVTSmallerThanOp;
1571     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1572       R->getValueAsInt("OtherOperandNum");
1573   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1574     ConstraintType = SDTCisOpSmallerThanOp;
1575     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1576       R->getValueAsInt("BigOperandNum");
1577   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1578     ConstraintType = SDTCisEltOfVec;
1579     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1580   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1581     ConstraintType = SDTCisSubVecOfVec;
1582     x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1583       R->getValueAsInt("OtherOpNum");
1584   } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1585     ConstraintType = SDTCVecEltisVT;
1586     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1587     for (const auto &P : VVT) {
1588       MVT T = P.second;
1589       if (T.isVector())
1590         PrintFatalError(R->getLoc(),
1591                         "Cannot use vector type as SDTCVecEltisVT");
1592       if (!T.isInteger() && !T.isFloatingPoint())
1593         PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1594                                      "as SDTCVecEltisVT");
1595     }
1596   } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1597     ConstraintType = SDTCisSameNumEltsAs;
1598     x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1599       R->getValueAsInt("OtherOperandNum");
1600   } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1601     ConstraintType = SDTCisSameSizeAs;
1602     x.SDTCisSameSizeAs_Info.OtherOperandNum =
1603       R->getValueAsInt("OtherOperandNum");
1604   } else {
1605     PrintFatalError(R->getLoc(),
1606                     "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1607   }
1608 }
1609 
1610 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1611 /// N, and the result number in ResNo.
1612 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1613                                       const SDNodeInfo &NodeInfo,
1614                                       unsigned &ResNo) {
1615   unsigned NumResults = NodeInfo.getNumResults();
1616   if (OpNo < NumResults) {
1617     ResNo = OpNo;
1618     return N;
1619   }
1620 
1621   OpNo -= NumResults;
1622 
1623   if (OpNo >= N->getNumChildren()) {
1624     std::string S;
1625     raw_string_ostream OS(S);
1626     OS << "Invalid operand number in type constraint "
1627            << (OpNo+NumResults) << " ";
1628     N->print(OS);
1629     PrintFatalError(S);
1630   }
1631 
1632   return N->getChild(OpNo);
1633 }
1634 
1635 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1636 /// constraint to the nodes operands.  This returns true if it makes a
1637 /// change, false otherwise.  If a type contradiction is found, flag an error.
1638 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1639                                            const SDNodeInfo &NodeInfo,
1640                                            TreePattern &TP) const {
1641   if (TP.hasError())
1642     return false;
1643 
1644   unsigned ResNo = 0; // The result number being referenced.
1645   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1646   TypeInfer &TI = TP.getInfer();
1647 
1648   switch (ConstraintType) {
1649   case SDTCisVT:
1650     // Operand must be a particular type.
1651     return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1652   case SDTCisPtrTy:
1653     // Operand must be same as target pointer type.
1654     return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1655   case SDTCisInt:
1656     // Require it to be one of the legal integer VTs.
1657      return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1658   case SDTCisFP:
1659     // Require it to be one of the legal fp VTs.
1660     return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1661   case SDTCisVec:
1662     // Require it to be one of the legal vector VTs.
1663     return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1664   case SDTCisSameAs: {
1665     unsigned OResNo = 0;
1666     TreePatternNode *OtherNode =
1667       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1668     return (int)NodeToApply->UpdateNodeType(ResNo,
1669                                             OtherNode->getExtType(OResNo), TP) |
1670            (int)OtherNode->UpdateNodeType(OResNo,
1671                                           NodeToApply->getExtType(ResNo), TP);
1672   }
1673   case SDTCisVTSmallerThanOp: {
1674     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1675     // have an integer type that is smaller than the VT.
1676     if (!NodeToApply->isLeaf() ||
1677         !isa<DefInit>(NodeToApply->getLeafValue()) ||
1678         !cast<DefInit>(NodeToApply->getLeafValue())->getDef()
1679                ->isSubClassOf("ValueType")) {
1680       TP.error(N->getOperator()->getName() + " expects a VT operand!");
1681       return false;
1682     }
1683     DefInit *DI = cast<DefInit>(NodeToApply->getLeafValue());
1684     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1685     auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1686     TypeSetByHwMode TypeListTmp(VVT);
1687 
1688     unsigned OResNo = 0;
1689     TreePatternNode *OtherNode =
1690       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1691                     OResNo);
1692 
1693     return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo),
1694                                  /*SmallIsVT*/ true);
1695   }
1696   case SDTCisOpSmallerThanOp: {
1697     unsigned BResNo = 0;
1698     TreePatternNode *BigOperand =
1699       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1700                     BResNo);
1701     return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1702                                  BigOperand->getExtType(BResNo));
1703   }
1704   case SDTCisEltOfVec: {
1705     unsigned VResNo = 0;
1706     TreePatternNode *VecOperand =
1707       getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1708                     VResNo);
1709     // Filter vector types out of VecOperand that don't have the right element
1710     // type.
1711     return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1712                                      NodeToApply->getExtType(ResNo));
1713   }
1714   case SDTCisSubVecOfVec: {
1715     unsigned VResNo = 0;
1716     TreePatternNode *BigVecOperand =
1717       getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1718                     VResNo);
1719 
1720     // Filter vector types out of BigVecOperand that don't have the
1721     // right subvector type.
1722     return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1723                                            NodeToApply->getExtType(ResNo));
1724   }
1725   case SDTCVecEltisVT: {
1726     return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1727   }
1728   case SDTCisSameNumEltsAs: {
1729     unsigned OResNo = 0;
1730     TreePatternNode *OtherNode =
1731       getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1732                     N, NodeInfo, OResNo);
1733     return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1734                                  NodeToApply->getExtType(ResNo));
1735   }
1736   case SDTCisSameSizeAs: {
1737     unsigned OResNo = 0;
1738     TreePatternNode *OtherNode =
1739       getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1740                     N, NodeInfo, OResNo);
1741     return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1742                               NodeToApply->getExtType(ResNo));
1743   }
1744   }
1745   llvm_unreachable("Invalid ConstraintType!");
1746 }
1747 
1748 // Update the node type to match an instruction operand or result as specified
1749 // in the ins or outs lists on the instruction definition. Return true if the
1750 // type was actually changed.
1751 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1752                                              Record *Operand,
1753                                              TreePattern &TP) {
1754   // The 'unknown' operand indicates that types should be inferred from the
1755   // context.
1756   if (Operand->isSubClassOf("unknown_class"))
1757     return false;
1758 
1759   // The Operand class specifies a type directly.
1760   if (Operand->isSubClassOf("Operand")) {
1761     Record *R = Operand->getValueAsDef("Type");
1762     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1763     return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1764   }
1765 
1766   // PointerLikeRegClass has a type that is determined at runtime.
1767   if (Operand->isSubClassOf("PointerLikeRegClass"))
1768     return UpdateNodeType(ResNo, MVT::iPTR, TP);
1769 
1770   // Both RegisterClass and RegisterOperand operands derive their types from a
1771   // register class def.
1772   Record *RC = nullptr;
1773   if (Operand->isSubClassOf("RegisterClass"))
1774     RC = Operand;
1775   else if (Operand->isSubClassOf("RegisterOperand"))
1776     RC = Operand->getValueAsDef("RegClass");
1777 
1778   assert(RC && "Unknown operand type");
1779   CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1780   return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1781 }
1782 
1783 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1784   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1785     if (!TP.getInfer().isConcrete(Types[i], true))
1786       return true;
1787   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1788     if (getChild(i)->ContainsUnresolvedType(TP))
1789       return true;
1790   return false;
1791 }
1792 
1793 bool TreePatternNode::hasProperTypeByHwMode() const {
1794   for (const TypeSetByHwMode &S : Types)
1795     if (!S.isDefaultOnly())
1796       return true;
1797   for (const TreePatternNodePtr &C : Children)
1798     if (C->hasProperTypeByHwMode())
1799       return true;
1800   return false;
1801 }
1802 
1803 bool TreePatternNode::hasPossibleType() const {
1804   for (const TypeSetByHwMode &S : Types)
1805     if (!S.isPossible())
1806       return false;
1807   for (const TreePatternNodePtr &C : Children)
1808     if (!C->hasPossibleType())
1809       return false;
1810   return true;
1811 }
1812 
1813 bool TreePatternNode::setDefaultMode(unsigned Mode) {
1814   for (TypeSetByHwMode &S : Types) {
1815     S.makeSimple(Mode);
1816     // Check if the selected mode had a type conflict.
1817     if (S.get(DefaultMode).empty())
1818       return false;
1819   }
1820   for (const TreePatternNodePtr &C : Children)
1821     if (!C->setDefaultMode(Mode))
1822       return false;
1823   return true;
1824 }
1825 
1826 //===----------------------------------------------------------------------===//
1827 // SDNodeInfo implementation
1828 //
1829 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1830   EnumName    = R->getValueAsString("Opcode");
1831   SDClassName = R->getValueAsString("SDClass");
1832   Record *TypeProfile = R->getValueAsDef("TypeProfile");
1833   NumResults = TypeProfile->getValueAsInt("NumResults");
1834   NumOperands = TypeProfile->getValueAsInt("NumOperands");
1835 
1836   // Parse the properties.
1837   Properties = parseSDPatternOperatorProperties(R);
1838 
1839   // Parse the type constraints.
1840   std::vector<Record*> ConstraintList =
1841     TypeProfile->getValueAsListOfDefs("Constraints");
1842   for (Record *R : ConstraintList)
1843     TypeConstraints.emplace_back(R, CGH);
1844 }
1845 
1846 /// getKnownType - If the type constraints on this node imply a fixed type
1847 /// (e.g. all stores return void, etc), then return it as an
1848 /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1849 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1850   unsigned NumResults = getNumResults();
1851   assert(NumResults <= 1 &&
1852          "We only work with nodes with zero or one result so far!");
1853   assert(ResNo == 0 && "Only handles single result nodes so far");
1854 
1855   for (const SDTypeConstraint &Constraint : TypeConstraints) {
1856     // Make sure that this applies to the correct node result.
1857     if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
1858       continue;
1859 
1860     switch (Constraint.ConstraintType) {
1861     default: break;
1862     case SDTypeConstraint::SDTCisVT:
1863       if (Constraint.VVT.isSimple())
1864         return Constraint.VVT.getSimple().SimpleTy;
1865       break;
1866     case SDTypeConstraint::SDTCisPtrTy:
1867       return MVT::iPTR;
1868     }
1869   }
1870   return MVT::Other;
1871 }
1872 
1873 //===----------------------------------------------------------------------===//
1874 // TreePatternNode implementation
1875 //
1876 
1877 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1878   if (Operator->getName() == "set" ||
1879       Operator->getName() == "implicit")
1880     return 0;  // All return nothing.
1881 
1882   if (Operator->isSubClassOf("Intrinsic"))
1883     return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1884 
1885   if (Operator->isSubClassOf("SDNode"))
1886     return CDP.getSDNodeInfo(Operator).getNumResults();
1887 
1888   if (Operator->isSubClassOf("PatFrags")) {
1889     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1890     // the forward reference case where one pattern fragment references another
1891     // before it is processed.
1892     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1893       // The number of results of a fragment with alternative records is the
1894       // maximum number of results across all alternatives.
1895       unsigned NumResults = 0;
1896       for (const auto &T : PFRec->getTrees())
1897         NumResults = std::max(NumResults, T->getNumTypes());
1898       return NumResults;
1899     }
1900 
1901     ListInit *LI = Operator->getValueAsListInit("Fragments");
1902     assert(LI && "Invalid Fragment");
1903     unsigned NumResults = 0;
1904     for (Init *I : LI->getValues()) {
1905       Record *Op = nullptr;
1906       if (DagInit *Dag = dyn_cast<DagInit>(I))
1907         if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1908           Op = DI->getDef();
1909       assert(Op && "Invalid Fragment");
1910       NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1911     }
1912     return NumResults;
1913   }
1914 
1915   if (Operator->isSubClassOf("Instruction")) {
1916     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1917 
1918     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1919 
1920     // Subtract any defaulted outputs.
1921     for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1922       Record *OperandNode = InstInfo.Operands[i].Rec;
1923 
1924       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1925           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1926         --NumDefsToAdd;
1927     }
1928 
1929     // Add on one implicit def if it has a resolvable type.
1930     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1931       ++NumDefsToAdd;
1932     return NumDefsToAdd;
1933   }
1934 
1935   if (Operator->isSubClassOf("SDNodeXForm"))
1936     return 1;  // FIXME: Generalize SDNodeXForm
1937 
1938   if (Operator->isSubClassOf("ValueType"))
1939     return 1;  // A type-cast of one result.
1940 
1941   if (Operator->isSubClassOf("ComplexPattern"))
1942     return 1;
1943 
1944   errs() << *Operator;
1945   PrintFatalError("Unhandled node in GetNumNodeResults");
1946 }
1947 
1948 void TreePatternNode::print(raw_ostream &OS) const {
1949   if (isLeaf())
1950     OS << *getLeafValue();
1951   else
1952     OS << '(' << getOperator()->getName();
1953 
1954   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1955     OS << ':';
1956     getExtType(i).writeToStream(OS);
1957   }
1958 
1959   if (!isLeaf()) {
1960     if (getNumChildren() != 0) {
1961       OS << " ";
1962       ListSeparator LS;
1963       for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1964         OS << LS;
1965         getChild(i)->print(OS);
1966       }
1967     }
1968     OS << ")";
1969   }
1970 
1971   for (const TreePredicateCall &Pred : PredicateCalls) {
1972     OS << "<<P:";
1973     if (Pred.Scope)
1974       OS << Pred.Scope << ":";
1975     OS << Pred.Fn.getFnName() << ">>";
1976   }
1977   if (TransformFn)
1978     OS << "<<X:" << TransformFn->getName() << ">>";
1979   if (!getName().empty())
1980     OS << ":$" << getName();
1981 
1982   for (const ScopedName &Name : NamesAsPredicateArg)
1983     OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
1984 }
1985 void TreePatternNode::dump() const {
1986   print(errs());
1987 }
1988 
1989 /// isIsomorphicTo - Return true if this node is recursively
1990 /// isomorphic to the specified node.  For this comparison, the node's
1991 /// entire state is considered. The assigned name is ignored, since
1992 /// nodes with differing names are considered isomorphic. However, if
1993 /// the assigned name is present in the dependent variable set, then
1994 /// the assigned name is considered significant and the node is
1995 /// isomorphic if the names match.
1996 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1997                                      const MultipleUseVarSet &DepVars) const {
1998   if (N == this) return true;
1999   if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
2000       getPredicateCalls() != N->getPredicateCalls() ||
2001       getTransformFn() != N->getTransformFn())
2002     return false;
2003 
2004   if (isLeaf()) {
2005     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2006       if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
2007         return ((DI->getDef() == NDI->getDef())
2008                 && (DepVars.find(getName()) == DepVars.end()
2009                     || getName() == N->getName()));
2010       }
2011     }
2012     return getLeafValue() == N->getLeafValue();
2013   }
2014 
2015   if (N->getOperator() != getOperator() ||
2016       N->getNumChildren() != getNumChildren()) return false;
2017   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2018     if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
2019       return false;
2020   return true;
2021 }
2022 
2023 /// clone - Make a copy of this tree and all of its children.
2024 ///
2025 TreePatternNodePtr TreePatternNode::clone() const {
2026   TreePatternNodePtr New;
2027   if (isLeaf()) {
2028     New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
2029   } else {
2030     std::vector<TreePatternNodePtr> CChildren;
2031     CChildren.reserve(Children.size());
2032     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2033       CChildren.push_back(getChild(i)->clone());
2034     New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
2035                                             getNumTypes());
2036   }
2037   New->setName(getName());
2038   New->setNamesAsPredicateArg(getNamesAsPredicateArg());
2039   New->Types = Types;
2040   New->setPredicateCalls(getPredicateCalls());
2041   New->setTransformFn(getTransformFn());
2042   return New;
2043 }
2044 
2045 /// RemoveAllTypes - Recursively strip all the types of this tree.
2046 void TreePatternNode::RemoveAllTypes() {
2047   // Reset to unknown type.
2048   std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
2049   if (isLeaf()) return;
2050   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2051     getChild(i)->RemoveAllTypes();
2052 }
2053 
2054 
2055 /// SubstituteFormalArguments - Replace the formal arguments in this tree
2056 /// with actual values specified by ArgMap.
2057 void TreePatternNode::SubstituteFormalArguments(
2058     std::map<std::string, TreePatternNodePtr> &ArgMap) {
2059   if (isLeaf()) return;
2060 
2061   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
2062     TreePatternNode *Child = getChild(i);
2063     if (Child->isLeaf()) {
2064       Init *Val = Child->getLeafValue();
2065       // Note that, when substituting into an output pattern, Val might be an
2066       // UnsetInit.
2067       if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
2068           cast<DefInit>(Val)->getDef()->getName() == "node")) {
2069         // We found a use of a formal argument, replace it with its value.
2070         TreePatternNodePtr NewChild = ArgMap[Child->getName()];
2071         assert(NewChild && "Couldn't find formal argument!");
2072         assert((Child->getPredicateCalls().empty() ||
2073                 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
2074                "Non-empty child predicate clobbered!");
2075         setChild(i, std::move(NewChild));
2076       }
2077     } else {
2078       getChild(i)->SubstituteFormalArguments(ArgMap);
2079     }
2080   }
2081 }
2082 
2083 
2084 /// InlinePatternFragments - If this pattern refers to any pattern
2085 /// fragments, return the set of inlined versions (this can be more than
2086 /// one if a PatFrags record has multiple alternatives).
2087 void TreePatternNode::InlinePatternFragments(
2088   TreePatternNodePtr T, TreePattern &TP,
2089   std::vector<TreePatternNodePtr> &OutAlternatives) {
2090 
2091   if (TP.hasError())
2092     return;
2093 
2094   if (isLeaf()) {
2095     OutAlternatives.push_back(T);  // nothing to do.
2096     return;
2097   }
2098 
2099   Record *Op = getOperator();
2100 
2101   if (!Op->isSubClassOf("PatFrags")) {
2102     if (getNumChildren() == 0) {
2103       OutAlternatives.push_back(T);
2104       return;
2105     }
2106 
2107     // Recursively inline children nodes.
2108     std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
2109     ChildAlternatives.resize(getNumChildren());
2110     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
2111       TreePatternNodePtr Child = getChildShared(i);
2112       Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
2113       // If there are no alternatives for any child, there are no
2114       // alternatives for this expression as whole.
2115       if (ChildAlternatives[i].empty())
2116         return;
2117 
2118       assert((Child->getPredicateCalls().empty() ||
2119               llvm::all_of(ChildAlternatives[i],
2120                            [&](const TreePatternNodePtr &NewChild) {
2121                              return NewChild->getPredicateCalls() ==
2122                                     Child->getPredicateCalls();
2123                            })) &&
2124              "Non-empty child predicate clobbered!");
2125     }
2126 
2127     // The end result is an all-pairs construction of the resultant pattern.
2128     std::vector<unsigned> Idxs;
2129     Idxs.resize(ChildAlternatives.size());
2130     bool NotDone;
2131     do {
2132       // Create the variant and add it to the output list.
2133       std::vector<TreePatternNodePtr> NewChildren;
2134       for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
2135         NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
2136       TreePatternNodePtr R = std::make_shared<TreePatternNode>(
2137           getOperator(), std::move(NewChildren), getNumTypes());
2138 
2139       // Copy over properties.
2140       R->setName(getName());
2141       R->setNamesAsPredicateArg(getNamesAsPredicateArg());
2142       R->setPredicateCalls(getPredicateCalls());
2143       R->setTransformFn(getTransformFn());
2144       for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
2145         R->setType(i, getExtType(i));
2146       for (unsigned i = 0, e = getNumResults(); i != e; ++i)
2147         R->setResultIndex(i, getResultIndex(i));
2148 
2149       // Register alternative.
2150       OutAlternatives.push_back(R);
2151 
2152       // Increment indices to the next permutation by incrementing the
2153       // indices from last index backward, e.g., generate the sequence
2154       // [0, 0], [0, 1], [1, 0], [1, 1].
2155       int IdxsIdx;
2156       for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
2157         if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
2158           Idxs[IdxsIdx] = 0;
2159         else
2160           break;
2161       }
2162       NotDone = (IdxsIdx >= 0);
2163     } while (NotDone);
2164 
2165     return;
2166   }
2167 
2168   // Otherwise, we found a reference to a fragment.  First, look up its
2169   // TreePattern record.
2170   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
2171 
2172   // Verify that we are passing the right number of operands.
2173   if (Frag->getNumArgs() != Children.size()) {
2174     TP.error("'" + Op->getName() + "' fragment requires " +
2175              Twine(Frag->getNumArgs()) + " operands!");
2176     return;
2177   }
2178 
2179   TreePredicateFn PredFn(Frag);
2180   unsigned Scope = 0;
2181   if (TreePredicateFn(Frag).usesOperands())
2182     Scope = TP.getDAGPatterns().allocateScope();
2183 
2184   // Compute the map of formal to actual arguments.
2185   std::map<std::string, TreePatternNodePtr> ArgMap;
2186   for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
2187     TreePatternNodePtr Child = getChildShared(i);
2188     if (Scope != 0) {
2189       Child = Child->clone();
2190       Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
2191     }
2192     ArgMap[Frag->getArgName(i)] = Child;
2193   }
2194 
2195   // Loop over all fragment alternatives.
2196   for (const auto &Alternative : Frag->getTrees()) {
2197     TreePatternNodePtr FragTree = Alternative->clone();
2198 
2199     if (!PredFn.isAlwaysTrue())
2200       FragTree->addPredicateCall(PredFn, Scope);
2201 
2202     // Resolve formal arguments to their actual value.
2203     if (Frag->getNumArgs())
2204       FragTree->SubstituteFormalArguments(ArgMap);
2205 
2206     // Transfer types.  Note that the resolved alternative may have fewer
2207     // (but not more) results than the PatFrags node.
2208     FragTree->setName(getName());
2209     for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
2210       FragTree->UpdateNodeType(i, getExtType(i), TP);
2211 
2212     // Transfer in the old predicates.
2213     for (const TreePredicateCall &Pred : getPredicateCalls())
2214       FragTree->addPredicateCall(Pred);
2215 
2216     // The fragment we inlined could have recursive inlining that is needed.  See
2217     // if there are any pattern fragments in it and inline them as needed.
2218     FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
2219   }
2220 }
2221 
2222 /// getImplicitType - Check to see if the specified record has an implicit
2223 /// type which should be applied to it.  This will infer the type of register
2224 /// references from the register file information, for example.
2225 ///
2226 /// When Unnamed is set, return the type of a DAG operand with no name, such as
2227 /// the F8RC register class argument in:
2228 ///
2229 ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
2230 ///
2231 /// When Unnamed is false, return the type of a named DAG operand such as the
2232 /// GPR:$src operand above.
2233 ///
2234 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
2235                                        bool NotRegisters,
2236                                        bool Unnamed,
2237                                        TreePattern &TP) {
2238   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2239 
2240   // Check to see if this is a register operand.
2241   if (R->isSubClassOf("RegisterOperand")) {
2242     assert(ResNo == 0 && "Regoperand ref only has one result!");
2243     if (NotRegisters)
2244       return TypeSetByHwMode(); // Unknown.
2245     Record *RegClass = R->getValueAsDef("RegClass");
2246     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2247     return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2248   }
2249 
2250   // Check to see if this is a register or a register class.
2251   if (R->isSubClassOf("RegisterClass")) {
2252     assert(ResNo == 0 && "Regclass ref only has one result!");
2253     // An unnamed register class represents itself as an i32 immediate, for
2254     // example on a COPY_TO_REGCLASS instruction.
2255     if (Unnamed)
2256       return TypeSetByHwMode(MVT::i32);
2257 
2258     // In a named operand, the register class provides the possible set of
2259     // types.
2260     if (NotRegisters)
2261       return TypeSetByHwMode(); // Unknown.
2262     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2263     return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2264   }
2265 
2266   if (R->isSubClassOf("PatFrags")) {
2267     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
2268     // Pattern fragment types will be resolved when they are inlined.
2269     return TypeSetByHwMode(); // Unknown.
2270   }
2271 
2272   if (R->isSubClassOf("Register")) {
2273     assert(ResNo == 0 && "Registers only produce one result!");
2274     if (NotRegisters)
2275       return TypeSetByHwMode(); // Unknown.
2276     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2277     return TypeSetByHwMode(T.getRegisterVTs(R));
2278   }
2279 
2280   if (R->isSubClassOf("SubRegIndex")) {
2281     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
2282     return TypeSetByHwMode(MVT::i32);
2283   }
2284 
2285   if (R->isSubClassOf("ValueType")) {
2286     assert(ResNo == 0 && "This node only has one result!");
2287     // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2288     //
2289     //   (sext_inreg GPR:$src, i16)
2290     //                         ~~~
2291     if (Unnamed)
2292       return TypeSetByHwMode(MVT::Other);
2293     // With a name, the ValueType simply provides the type of the named
2294     // variable.
2295     //
2296     //   (sext_inreg i32:$src, i16)
2297     //               ~~~~~~~~
2298     if (NotRegisters)
2299       return TypeSetByHwMode(); // Unknown.
2300     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2301     return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2302   }
2303 
2304   if (R->isSubClassOf("CondCode")) {
2305     assert(ResNo == 0 && "This node only has one result!");
2306     // Using a CondCodeSDNode.
2307     return TypeSetByHwMode(MVT::Other);
2308   }
2309 
2310   if (R->isSubClassOf("ComplexPattern")) {
2311     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2312     if (NotRegisters)
2313       return TypeSetByHwMode(); // Unknown.
2314     Record *T = CDP.getComplexPattern(R).getValueType();
2315     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2316     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2317   }
2318   if (R->isSubClassOf("PointerLikeRegClass")) {
2319     assert(ResNo == 0 && "Regclass can only have one result!");
2320     TypeSetByHwMode VTS(MVT::iPTR);
2321     TP.getInfer().expandOverloads(VTS);
2322     return VTS;
2323   }
2324 
2325   if (R->getName() == "node" || R->getName() == "srcvalue" ||
2326       R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
2327       R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
2328     // Placeholder.
2329     return TypeSetByHwMode(); // Unknown.
2330   }
2331 
2332   if (R->isSubClassOf("Operand")) {
2333     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2334     Record *T = R->getValueAsDef("Type");
2335     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2336   }
2337 
2338   TP.error("Unknown node flavor used in pattern: " + R->getName());
2339   return TypeSetByHwMode(MVT::Other);
2340 }
2341 
2342 
2343 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2344 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
2345 const CodeGenIntrinsic *TreePatternNode::
2346 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2347   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2348       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2349       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2350     return nullptr;
2351 
2352   unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2353   return &CDP.getIntrinsicInfo(IID);
2354 }
2355 
2356 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2357 /// return the ComplexPattern information, otherwise return null.
2358 const ComplexPattern *
2359 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2360   Record *Rec;
2361   if (isLeaf()) {
2362     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2363     if (!DI)
2364       return nullptr;
2365     Rec = DI->getDef();
2366   } else
2367     Rec = getOperator();
2368 
2369   if (!Rec->isSubClassOf("ComplexPattern"))
2370     return nullptr;
2371   return &CGP.getComplexPattern(Rec);
2372 }
2373 
2374 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2375   // A ComplexPattern specifically declares how many results it fills in.
2376   if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2377     return CP->getNumOperands();
2378 
2379   // If MIOperandInfo is specified, that gives the count.
2380   if (isLeaf()) {
2381     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2382     if (DI && DI->getDef()->isSubClassOf("Operand")) {
2383       DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2384       if (MIOps->getNumArgs())
2385         return MIOps->getNumArgs();
2386     }
2387   }
2388 
2389   // Otherwise there is just one result.
2390   return 1;
2391 }
2392 
2393 /// NodeHasProperty - Return true if this node has the specified property.
2394 bool TreePatternNode::NodeHasProperty(SDNP Property,
2395                                       const CodeGenDAGPatterns &CGP) const {
2396   if (isLeaf()) {
2397     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2398       return CP->hasProperty(Property);
2399 
2400     return false;
2401   }
2402 
2403   if (Property != SDNPHasChain) {
2404     // The chain proprety is already present on the different intrinsic node
2405     // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2406     // on the intrinsic. Anything else is specific to the individual intrinsic.
2407     if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2408       return Int->hasProperty(Property);
2409   }
2410 
2411   if (!Operator->isSubClassOf("SDPatternOperator"))
2412     return false;
2413 
2414   return CGP.getSDNodeInfo(Operator).hasProperty(Property);
2415 }
2416 
2417 
2418 
2419 
2420 /// TreeHasProperty - Return true if any node in this tree has the specified
2421 /// property.
2422 bool TreePatternNode::TreeHasProperty(SDNP Property,
2423                                       const CodeGenDAGPatterns &CGP) const {
2424   if (NodeHasProperty(Property, CGP))
2425     return true;
2426   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2427     if (getChild(i)->TreeHasProperty(Property, CGP))
2428       return true;
2429   return false;
2430 }
2431 
2432 /// isCommutativeIntrinsic - Return true if the node corresponds to a
2433 /// commutative intrinsic.
2434 bool
2435 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2436   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2437     return Int->isCommutative;
2438   return false;
2439 }
2440 
2441 static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2442   if (!N->isLeaf())
2443     return N->getOperator()->isSubClassOf(Class);
2444 
2445   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2446   if (DI && DI->getDef()->isSubClassOf(Class))
2447     return true;
2448 
2449   return false;
2450 }
2451 
2452 static void emitTooManyOperandsError(TreePattern &TP,
2453                                      StringRef InstName,
2454                                      unsigned Expected,
2455                                      unsigned Actual) {
2456   TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2457            " operands but expected only " + Twine(Expected) + "!");
2458 }
2459 
2460 static void emitTooFewOperandsError(TreePattern &TP,
2461                                     StringRef InstName,
2462                                     unsigned Actual) {
2463   TP.error("Instruction '" + InstName +
2464            "' expects more than the provided " + Twine(Actual) + " operands!");
2465 }
2466 
2467 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
2468 /// this node and its children in the tree.  This returns true if it makes a
2469 /// change, false otherwise.  If a type contradiction is found, flag an error.
2470 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2471   if (TP.hasError())
2472     return false;
2473 
2474   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2475   if (isLeaf()) {
2476     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2477       // If it's a regclass or something else known, include the type.
2478       bool MadeChange = false;
2479       for (unsigned i = 0, e = Types.size(); i != e; ++i)
2480         MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2481                                                         NotRegisters,
2482                                                         !hasName(), TP), TP);
2483       return MadeChange;
2484     }
2485 
2486     if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2487       assert(Types.size() == 1 && "Invalid IntInit");
2488 
2489       // Int inits are always integers. :)
2490       bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2491 
2492       if (!TP.getInfer().isConcrete(Types[0], false))
2493         return MadeChange;
2494 
2495       ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2496       for (auto &P : VVT) {
2497         MVT::SimpleValueType VT = P.second.SimpleTy;
2498         if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2499           continue;
2500         unsigned Size = MVT(VT).getFixedSizeInBits();
2501         // Make sure that the value is representable for this type.
2502         if (Size >= 32)
2503           continue;
2504         // Check that the value doesn't use more bits than we have. It must
2505         // either be a sign- or zero-extended equivalent of the original.
2506         int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2507         if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2508             SignBitAndAbove == 1)
2509           continue;
2510 
2511         TP.error("Integer value '" + Twine(II->getValue()) +
2512                  "' is out of range for type '" + getEnumName(VT) + "'!");
2513         break;
2514       }
2515       return MadeChange;
2516     }
2517 
2518     return false;
2519   }
2520 
2521   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2522     bool MadeChange = false;
2523 
2524     // Apply the result type to the node.
2525     unsigned NumRetVTs = Int->IS.RetVTs.size();
2526     unsigned NumParamVTs = Int->IS.ParamVTs.size();
2527 
2528     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2529       MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
2530 
2531     if (getNumChildren() != NumParamVTs + 1) {
2532       TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2533                " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2534       return false;
2535     }
2536 
2537     // Apply type info to the intrinsic ID.
2538     MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2539 
2540     for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2541       MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2542 
2543       MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
2544       assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
2545       MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
2546     }
2547     return MadeChange;
2548   }
2549 
2550   if (getOperator()->isSubClassOf("SDNode")) {
2551     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2552 
2553     // Check that the number of operands is sane.  Negative operands -> varargs.
2554     if (NI.getNumOperands() >= 0 &&
2555         getNumChildren() != (unsigned)NI.getNumOperands()) {
2556       TP.error(getOperator()->getName() + " node requires exactly " +
2557                Twine(NI.getNumOperands()) + " operands!");
2558       return false;
2559     }
2560 
2561     bool MadeChange = false;
2562     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2563       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2564     MadeChange |= NI.ApplyTypeConstraints(this, TP);
2565     return MadeChange;
2566   }
2567 
2568   if (getOperator()->isSubClassOf("Instruction")) {
2569     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2570     CodeGenInstruction &InstInfo =
2571       CDP.getTargetInfo().getInstruction(getOperator());
2572 
2573     bool MadeChange = false;
2574 
2575     // Apply the result types to the node, these come from the things in the
2576     // (outs) list of the instruction.
2577     unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2578                                         Inst.getNumResults());
2579     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2580       MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2581 
2582     // If the instruction has implicit defs, we apply the first one as a result.
2583     // FIXME: This sucks, it should apply all implicit defs.
2584     if (!InstInfo.ImplicitDefs.empty()) {
2585       unsigned ResNo = NumResultsToAdd;
2586 
2587       // FIXME: Generalize to multiple possible types and multiple possible
2588       // ImplicitDefs.
2589       MVT::SimpleValueType VT =
2590         InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2591 
2592       if (VT != MVT::Other)
2593         MadeChange |= UpdateNodeType(ResNo, VT, TP);
2594     }
2595 
2596     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2597     // be the same.
2598     if (getOperator()->getName() == "INSERT_SUBREG") {
2599       assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
2600       MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2601       MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2602     } else if (getOperator()->getName() == "REG_SEQUENCE") {
2603       // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2604       // variadic.
2605 
2606       unsigned NChild = getNumChildren();
2607       if (NChild < 3) {
2608         TP.error("REG_SEQUENCE requires at least 3 operands!");
2609         return false;
2610       }
2611 
2612       if (NChild % 2 == 0) {
2613         TP.error("REG_SEQUENCE requires an odd number of operands!");
2614         return false;
2615       }
2616 
2617       if (!isOperandClass(getChild(0), "RegisterClass")) {
2618         TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2619         return false;
2620       }
2621 
2622       for (unsigned I = 1; I < NChild; I += 2) {
2623         TreePatternNode *SubIdxChild = getChild(I + 1);
2624         if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2625           TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2626                    Twine(I + 1) + "!");
2627           return false;
2628         }
2629       }
2630     }
2631 
2632     unsigned NumResults = Inst.getNumResults();
2633     unsigned NumFixedOperands = InstInfo.Operands.size();
2634 
2635     // If one or more operands with a default value appear at the end of the
2636     // formal operand list for an instruction, we allow them to be overridden
2637     // by optional operands provided in the pattern.
2638     //
2639     // But if an operand B without a default appears at any point after an
2640     // operand A with a default, then we don't allow A to be overridden,
2641     // because there would be no way to specify whether the next operand in
2642     // the pattern was intended to override A or skip it.
2643     unsigned NonOverridableOperands = NumFixedOperands;
2644     while (NonOverridableOperands > NumResults &&
2645            CDP.operandHasDefault(InstInfo.Operands[NonOverridableOperands-1].Rec))
2646       --NonOverridableOperands;
2647 
2648     unsigned ChildNo = 0;
2649     assert(NumResults <= NumFixedOperands);
2650     for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) {
2651       Record *OperandNode = InstInfo.Operands[i].Rec;
2652 
2653       // If the operand has a default value, do we use it? We must use the
2654       // default if we've run out of children of the pattern DAG to consume,
2655       // or if the operand is followed by a non-defaulted one.
2656       if (CDP.operandHasDefault(OperandNode) &&
2657           (i < NonOverridableOperands || ChildNo >= getNumChildren()))
2658         continue;
2659 
2660       // If we have run out of child nodes and there _isn't_ a default
2661       // value we can use for the next operand, give an error.
2662       if (ChildNo >= getNumChildren()) {
2663         emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2664         return false;
2665       }
2666 
2667       TreePatternNode *Child = getChild(ChildNo++);
2668       unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
2669 
2670       // If the operand has sub-operands, they may be provided by distinct
2671       // child patterns, so attempt to match each sub-operand separately.
2672       if (OperandNode->isSubClassOf("Operand")) {
2673         DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2674         if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2675           // But don't do that if the whole operand is being provided by
2676           // a single ComplexPattern-related Operand.
2677 
2678           if (Child->getNumMIResults(CDP) < NumArgs) {
2679             // Match first sub-operand against the child we already have.
2680             Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2681             MadeChange |=
2682               Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2683 
2684             // And the remaining sub-operands against subsequent children.
2685             for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2686               if (ChildNo >= getNumChildren()) {
2687                 emitTooFewOperandsError(TP, getOperator()->getName(),
2688                                         getNumChildren());
2689                 return false;
2690               }
2691               Child = getChild(ChildNo++);
2692 
2693               SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2694               MadeChange |=
2695                 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2696             }
2697             continue;
2698           }
2699         }
2700       }
2701 
2702       // If we didn't match by pieces above, attempt to match the whole
2703       // operand now.
2704       MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2705     }
2706 
2707     if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2708       emitTooManyOperandsError(TP, getOperator()->getName(),
2709                                ChildNo, getNumChildren());
2710       return false;
2711     }
2712 
2713     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2714       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2715     return MadeChange;
2716   }
2717 
2718   if (getOperator()->isSubClassOf("ComplexPattern")) {
2719     bool MadeChange = false;
2720 
2721     if (!NotRegisters) {
2722       assert(Types.size() == 1 && "ComplexPatterns only produce one result!");
2723       Record *T = CDP.getComplexPattern(getOperator()).getValueType();
2724       const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2725       const ValueTypeByHwMode VVT = getValueTypeByHwMode(T, CGH);
2726       // TODO: AArch64 and AMDGPU use ComplexPattern<untyped, ...> and then
2727       // exclusively use those as non-leaf nodes with explicit type casts, so
2728       // for backwards compatibility we do no inference in that case. This is
2729       // not supported when the ComplexPattern is used as a leaf value,
2730       // however; this inconsistency should be resolved, either by adding this
2731       // case there or by altering the backends to not do this (e.g. using Any
2732       // instead may work).
2733       if (!VVT.isSimple() || VVT.getSimple() != MVT::Untyped)
2734         MadeChange |= UpdateNodeType(0, VVT, TP);
2735     }
2736 
2737     for (unsigned i = 0; i < getNumChildren(); ++i)
2738       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2739 
2740     return MadeChange;
2741   }
2742 
2743   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2744 
2745   // Node transforms always take one operand.
2746   if (getNumChildren() != 1) {
2747     TP.error("Node transform '" + getOperator()->getName() +
2748              "' requires one operand!");
2749     return false;
2750   }
2751 
2752   bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2753   return MadeChange;
2754 }
2755 
2756 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2757 /// RHS of a commutative operation, not the on LHS.
2758 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2759   if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2760     return true;
2761   if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2762     return true;
2763   if (isImmAllOnesAllZerosMatch(N))
2764     return true;
2765   return false;
2766 }
2767 
2768 
2769 /// canPatternMatch - If it is impossible for this pattern to match on this
2770 /// target, fill in Reason and return false.  Otherwise, return true.  This is
2771 /// used as a sanity check for .td files (to prevent people from writing stuff
2772 /// that can never possibly work), and to prevent the pattern permuter from
2773 /// generating stuff that is useless.
2774 bool TreePatternNode::canPatternMatch(std::string &Reason,
2775                                       const CodeGenDAGPatterns &CDP) {
2776   if (isLeaf()) return true;
2777 
2778   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2779     if (!getChild(i)->canPatternMatch(Reason, CDP))
2780       return false;
2781 
2782   // If this is an intrinsic, handle cases that would make it not match.  For
2783   // example, if an operand is required to be an immediate.
2784   if (getOperator()->isSubClassOf("Intrinsic")) {
2785     // TODO:
2786     return true;
2787   }
2788 
2789   if (getOperator()->isSubClassOf("ComplexPattern"))
2790     return true;
2791 
2792   // If this node is a commutative operator, check that the LHS isn't an
2793   // immediate.
2794   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2795   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2796   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2797     // Scan all of the operands of the node and make sure that only the last one
2798     // is a constant node, unless the RHS also is.
2799     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2800       unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2801       for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2802         if (OnlyOnRHSOfCommutative(getChild(i))) {
2803           Reason="Immediate value must be on the RHS of commutative operators!";
2804           return false;
2805         }
2806     }
2807   }
2808 
2809   return true;
2810 }
2811 
2812 //===----------------------------------------------------------------------===//
2813 // TreePattern implementation
2814 //
2815 
2816 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2817                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2818                          isInputPattern(isInput), HasError(false),
2819                          Infer(*this) {
2820   for (Init *I : RawPat->getValues())
2821     Trees.push_back(ParseTreePattern(I, ""));
2822 }
2823 
2824 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2825                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2826                          isInputPattern(isInput), HasError(false),
2827                          Infer(*this) {
2828   Trees.push_back(ParseTreePattern(Pat, ""));
2829 }
2830 
2831 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
2832                          CodeGenDAGPatterns &cdp)
2833     : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2834       Infer(*this) {
2835   Trees.push_back(Pat);
2836 }
2837 
2838 void TreePattern::error(const Twine &Msg) {
2839   if (HasError)
2840     return;
2841   dump();
2842   PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2843   HasError = true;
2844 }
2845 
2846 void TreePattern::ComputeNamedNodes() {
2847   for (TreePatternNodePtr &Tree : Trees)
2848     ComputeNamedNodes(Tree.get());
2849 }
2850 
2851 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2852   if (!N->getName().empty())
2853     NamedNodes[N->getName()].push_back(N);
2854 
2855   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2856     ComputeNamedNodes(N->getChild(i));
2857 }
2858 
2859 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2860                                                  StringRef OpName) {
2861   RecordKeeper &RK = TheInit->getRecordKeeper();
2862   if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2863     Record *R = DI->getDef();
2864 
2865     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2866     // TreePatternNode of its own.  For example:
2867     ///   (foo GPR, imm) -> (foo GPR, (imm))
2868     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2869       return ParseTreePattern(
2870         DagInit::get(DI, nullptr,
2871                      std::vector<std::pair<Init*, StringInit*> >()),
2872         OpName);
2873 
2874     // Input argument?
2875     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
2876     if (R->getName() == "node" && !OpName.empty()) {
2877       if (OpName.empty())
2878         error("'node' argument requires a name to match with operand list");
2879       Args.push_back(std::string(OpName));
2880     }
2881 
2882     Res->setName(OpName);
2883     return Res;
2884   }
2885 
2886   // ?:$name or just $name.
2887   if (isa<UnsetInit>(TheInit)) {
2888     if (OpName.empty())
2889       error("'?' argument requires a name to match with operand list");
2890     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
2891     Args.push_back(std::string(OpName));
2892     Res->setName(OpName);
2893     return Res;
2894   }
2895 
2896   if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
2897     if (!OpName.empty())
2898       error("Constant int or bit argument should not have a name!");
2899     if (isa<BitInit>(TheInit))
2900       TheInit = TheInit->convertInitializerTo(IntRecTy::get(RK));
2901     return std::make_shared<TreePatternNode>(TheInit, 1);
2902   }
2903 
2904   if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2905     // Turn this into an IntInit.
2906     Init *II = BI->convertInitializerTo(IntRecTy::get(RK));
2907     if (!II || !isa<IntInit>(II))
2908       error("Bits value must be constants!");
2909     return ParseTreePattern(II, OpName);
2910   }
2911 
2912   DagInit *Dag = dyn_cast<DagInit>(TheInit);
2913   if (!Dag) {
2914     TheInit->print(errs());
2915     error("Pattern has unexpected init kind!");
2916   }
2917   DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2918   if (!OpDef) error("Pattern has unexpected operator type!");
2919   Record *Operator = OpDef->getDef();
2920 
2921   if (Operator->isSubClassOf("ValueType")) {
2922     // If the operator is a ValueType, then this must be "type cast" of a leaf
2923     // node.
2924     if (Dag->getNumArgs() != 1)
2925       error("Type cast only takes one operand!");
2926 
2927     TreePatternNodePtr New =
2928         ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2929 
2930     // Apply the type cast.
2931     if (New->getNumTypes() != 1)
2932       error("Type cast can only have one type!");
2933     const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2934     New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2935 
2936     if (!OpName.empty())
2937       error("ValueType cast should not have a name!");
2938     return New;
2939   }
2940 
2941   // Verify that this is something that makes sense for an operator.
2942   if (!Operator->isSubClassOf("PatFrags") &&
2943       !Operator->isSubClassOf("SDNode") &&
2944       !Operator->isSubClassOf("Instruction") &&
2945       !Operator->isSubClassOf("SDNodeXForm") &&
2946       !Operator->isSubClassOf("Intrinsic") &&
2947       !Operator->isSubClassOf("ComplexPattern") &&
2948       Operator->getName() != "set" &&
2949       Operator->getName() != "implicit")
2950     error("Unrecognized node '" + Operator->getName() + "'!");
2951 
2952   //  Check to see if this is something that is illegal in an input pattern.
2953   if (isInputPattern) {
2954     if (Operator->isSubClassOf("Instruction") ||
2955         Operator->isSubClassOf("SDNodeXForm"))
2956       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2957   } else {
2958     if (Operator->isSubClassOf("Intrinsic"))
2959       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2960 
2961     if (Operator->isSubClassOf("SDNode") &&
2962         Operator->getName() != "imm" &&
2963         Operator->getName() != "timm" &&
2964         Operator->getName() != "fpimm" &&
2965         Operator->getName() != "tglobaltlsaddr" &&
2966         Operator->getName() != "tconstpool" &&
2967         Operator->getName() != "tjumptable" &&
2968         Operator->getName() != "tframeindex" &&
2969         Operator->getName() != "texternalsym" &&
2970         Operator->getName() != "tblockaddress" &&
2971         Operator->getName() != "tglobaladdr" &&
2972         Operator->getName() != "bb" &&
2973         Operator->getName() != "vt" &&
2974         Operator->getName() != "mcsym")
2975       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2976   }
2977 
2978   std::vector<TreePatternNodePtr> Children;
2979 
2980   // Parse all the operands.
2981   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2982     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2983 
2984   // Get the actual number of results before Operator is converted to an intrinsic
2985   // node (which is hard-coded to have either zero or one result).
2986   unsigned NumResults = GetNumNodeResults(Operator, CDP);
2987 
2988   // If the operator is an intrinsic, then this is just syntactic sugar for
2989   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2990   // convert the intrinsic name to a number.
2991   if (Operator->isSubClassOf("Intrinsic")) {
2992     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2993     unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2994 
2995     // If this intrinsic returns void, it must have side-effects and thus a
2996     // chain.
2997     if (Int.IS.RetVTs.empty())
2998       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2999     else if (!Int.ME.doesNotAccessMemory() || Int.hasSideEffects)
3000       // Has side-effects, requires chain.
3001       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
3002     else // Otherwise, no chain.
3003       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
3004 
3005     Children.insert(Children.begin(), std::make_shared<TreePatternNode>(
3006                                           IntInit::get(RK, IID), 1));
3007   }
3008 
3009   if (Operator->isSubClassOf("ComplexPattern")) {
3010     for (unsigned i = 0; i < Children.size(); ++i) {
3011       TreePatternNodePtr Child = Children[i];
3012 
3013       if (Child->getName().empty())
3014         error("All arguments to a ComplexPattern must be named");
3015 
3016       // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
3017       // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
3018       // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
3019       auto OperandId = std::make_pair(Operator, i);
3020       auto PrevOp = ComplexPatternOperands.find(Child->getName());
3021       if (PrevOp != ComplexPatternOperands.end()) {
3022         if (PrevOp->getValue() != OperandId)
3023           error("All ComplexPattern operands must appear consistently: "
3024                 "in the same order in just one ComplexPattern instance.");
3025       } else
3026         ComplexPatternOperands[Child->getName()] = OperandId;
3027     }
3028   }
3029 
3030   TreePatternNodePtr Result =
3031       std::make_shared<TreePatternNode>(Operator, std::move(Children),
3032                                         NumResults);
3033   Result->setName(OpName);
3034 
3035   if (Dag->getName()) {
3036     assert(Result->getName().empty());
3037     Result->setName(Dag->getNameStr());
3038   }
3039   return Result;
3040 }
3041 
3042 /// SimplifyTree - See if we can simplify this tree to eliminate something that
3043 /// will never match in favor of something obvious that will.  This is here
3044 /// strictly as a convenience to target authors because it allows them to write
3045 /// more type generic things and have useless type casts fold away.
3046 ///
3047 /// This returns true if any change is made.
3048 static bool SimplifyTree(TreePatternNodePtr &N) {
3049   if (N->isLeaf())
3050     return false;
3051 
3052   // If we have a bitconvert with a resolved type and if the source and
3053   // destination types are the same, then the bitconvert is useless, remove it.
3054   //
3055   // We make an exception if the types are completely empty. This can come up
3056   // when the pattern being simplified is in the Fragments list of a PatFrags,
3057   // so that the operand is just an untyped "node". In that situation we leave
3058   // bitconverts unsimplified, and simplify them later once the fragment is
3059   // expanded into its true context.
3060   if (N->getOperator()->getName() == "bitconvert" &&
3061       N->getExtType(0).isValueTypeByHwMode(false) &&
3062       !N->getExtType(0).empty() &&
3063       N->getExtType(0) == N->getChild(0)->getExtType(0) &&
3064       N->getName().empty()) {
3065     N = N->getChildShared(0);
3066     SimplifyTree(N);
3067     return true;
3068   }
3069 
3070   // Walk all children.
3071   bool MadeChange = false;
3072   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
3073     TreePatternNodePtr Child = N->getChildShared(i);
3074     MadeChange |= SimplifyTree(Child);
3075     N->setChild(i, std::move(Child));
3076   }
3077   return MadeChange;
3078 }
3079 
3080 
3081 
3082 /// InferAllTypes - Infer/propagate as many types throughout the expression
3083 /// patterns as possible.  Return true if all types are inferred, false
3084 /// otherwise.  Flags an error if a type contradiction is found.
3085 bool TreePattern::
3086 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
3087   if (NamedNodes.empty())
3088     ComputeNamedNodes();
3089 
3090   bool MadeChange = true;
3091   while (MadeChange) {
3092     MadeChange = false;
3093     for (TreePatternNodePtr &Tree : Trees) {
3094       MadeChange |= Tree->ApplyTypeConstraints(*this, false);
3095       MadeChange |= SimplifyTree(Tree);
3096     }
3097 
3098     // If there are constraints on our named nodes, apply them.
3099     for (auto &Entry : NamedNodes) {
3100       SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
3101 
3102       // If we have input named node types, propagate their types to the named
3103       // values here.
3104       if (InNamedTypes) {
3105         if (!InNamedTypes->count(Entry.getKey())) {
3106           error("Node '" + std::string(Entry.getKey()) +
3107                 "' in output pattern but not input pattern");
3108           return true;
3109         }
3110 
3111         const SmallVectorImpl<TreePatternNode*> &InNodes =
3112           InNamedTypes->find(Entry.getKey())->second;
3113 
3114         // The input types should be fully resolved by now.
3115         for (TreePatternNode *Node : Nodes) {
3116           // If this node is a register class, and it is the root of the pattern
3117           // then we're mapping something onto an input register.  We allow
3118           // changing the type of the input register in this case.  This allows
3119           // us to match things like:
3120           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
3121           if (Node == Trees[0].get() && Node->isLeaf()) {
3122             DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
3123             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3124                        DI->getDef()->isSubClassOf("RegisterOperand")))
3125               continue;
3126           }
3127 
3128           assert(Node->getNumTypes() == 1 &&
3129                  InNodes[0]->getNumTypes() == 1 &&
3130                  "FIXME: cannot name multiple result nodes yet");
3131           MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
3132                                              *this);
3133         }
3134       }
3135 
3136       // If there are multiple nodes with the same name, they must all have the
3137       // same type.
3138       if (Entry.second.size() > 1) {
3139         for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
3140           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
3141           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
3142                  "FIXME: cannot name multiple result nodes yet");
3143 
3144           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
3145           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
3146         }
3147       }
3148     }
3149   }
3150 
3151   bool HasUnresolvedTypes = false;
3152   for (const TreePatternNodePtr &Tree : Trees)
3153     HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
3154   return !HasUnresolvedTypes;
3155 }
3156 
3157 void TreePattern::print(raw_ostream &OS) const {
3158   OS << getRecord()->getName();
3159   if (!Args.empty()) {
3160     OS << "(";
3161     ListSeparator LS;
3162     for (const std::string &Arg : Args)
3163       OS << LS << Arg;
3164     OS << ")";
3165   }
3166   OS << ": ";
3167 
3168   if (Trees.size() > 1)
3169     OS << "[\n";
3170   for (const TreePatternNodePtr &Tree : Trees) {
3171     OS << "\t";
3172     Tree->print(OS);
3173     OS << "\n";
3174   }
3175 
3176   if (Trees.size() > 1)
3177     OS << "]\n";
3178 }
3179 
3180 void TreePattern::dump() const { print(errs()); }
3181 
3182 //===----------------------------------------------------------------------===//
3183 // CodeGenDAGPatterns implementation
3184 //
3185 
3186 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
3187                                        PatternRewriterFn PatternRewriter)
3188     : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
3189       PatternRewriter(PatternRewriter) {
3190 
3191   Intrinsics = CodeGenIntrinsicTable(Records);
3192   ParseNodeInfo();
3193   ParseNodeTransforms();
3194   ParseComplexPatterns();
3195   ParsePatternFragments();
3196   ParseDefaultOperands();
3197   ParseInstructions();
3198   ParsePatternFragments(/*OutFrags*/true);
3199   ParsePatterns();
3200 
3201   // Generate variants.  For example, commutative patterns can match
3202   // multiple ways.  Add them to PatternsToMatch as well.
3203   GenerateVariants();
3204 
3205   // Break patterns with parameterized types into a series of patterns,
3206   // where each one has a fixed type and is predicated on the conditions
3207   // of the associated HW mode.
3208   ExpandHwModeBasedTypes();
3209 
3210   // Infer instruction flags.  For example, we can detect loads,
3211   // stores, and side effects in many cases by examining an
3212   // instruction's pattern.
3213   InferInstructionFlags();
3214 
3215   // Verify that instruction flags match the patterns.
3216   VerifyInstructionFlags();
3217 }
3218 
3219 Record *CodeGenDAGPatterns::getSDNodeNamed(StringRef Name) const {
3220   Record *N = Records.getDef(Name);
3221   if (!N || !N->isSubClassOf("SDNode"))
3222     PrintFatalError("Error getting SDNode '" + Name + "'!");
3223 
3224   return N;
3225 }
3226 
3227 // Parse all of the SDNode definitions for the target, populating SDNodes.
3228 void CodeGenDAGPatterns::ParseNodeInfo() {
3229   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
3230   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
3231 
3232   while (!Nodes.empty()) {
3233     Record *R = Nodes.back();
3234     SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
3235     Nodes.pop_back();
3236   }
3237 
3238   // Get the builtin intrinsic nodes.
3239   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
3240   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
3241   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
3242 }
3243 
3244 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
3245 /// map, and emit them to the file as functions.
3246 void CodeGenDAGPatterns::ParseNodeTransforms() {
3247   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
3248   while (!Xforms.empty()) {
3249     Record *XFormNode = Xforms.back();
3250     Record *SDNode = XFormNode->getValueAsDef("Opcode");
3251     StringRef Code = XFormNode->getValueAsString("XFormFunction");
3252     SDNodeXForms.insert(
3253         std::make_pair(XFormNode, NodeXForm(SDNode, std::string(Code))));
3254 
3255     Xforms.pop_back();
3256   }
3257 }
3258 
3259 void CodeGenDAGPatterns::ParseComplexPatterns() {
3260   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
3261   while (!AMs.empty()) {
3262     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
3263     AMs.pop_back();
3264   }
3265 }
3266 
3267 
3268 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
3269 /// file, building up the PatternFragments map.  After we've collected them all,
3270 /// inline fragments together as necessary, so that there are no references left
3271 /// inside a pattern fragment to a pattern fragment.
3272 ///
3273 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
3274   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
3275 
3276   // First step, parse all of the fragments.
3277   for (Record *Frag : Fragments) {
3278     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3279       continue;
3280 
3281     ListInit *LI = Frag->getValueAsListInit("Fragments");
3282     TreePattern *P =
3283         (PatternFragments[Frag] = std::make_unique<TreePattern>(
3284              Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
3285              *this)).get();
3286 
3287     // Validate the argument list, converting it to set, to discard duplicates.
3288     std::vector<std::string> &Args = P->getArgList();
3289     // Copy the args so we can take StringRefs to them.
3290     auto ArgsCopy = Args;
3291     SmallDenseSet<StringRef, 4> OperandsSet;
3292     OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3293 
3294     if (OperandsSet.count(""))
3295       P->error("Cannot have unnamed 'node' values in pattern fragment!");
3296 
3297     // Parse the operands list.
3298     DagInit *OpsList = Frag->getValueAsDag("Operands");
3299     DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3300     // Special cases: ops == outs == ins. Different names are used to
3301     // improve readability.
3302     if (!OpsOp ||
3303         (OpsOp->getDef()->getName() != "ops" &&
3304          OpsOp->getDef()->getName() != "outs" &&
3305          OpsOp->getDef()->getName() != "ins"))
3306       P->error("Operands list should start with '(ops ... '!");
3307 
3308     // Copy over the arguments.
3309     Args.clear();
3310     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3311       if (!isa<DefInit>(OpsList->getArg(j)) ||
3312           cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3313         P->error("Operands list should all be 'node' values.");
3314       if (!OpsList->getArgName(j))
3315         P->error("Operands list should have names for each operand!");
3316       StringRef ArgNameStr = OpsList->getArgNameStr(j);
3317       if (!OperandsSet.count(ArgNameStr))
3318         P->error("'" + ArgNameStr +
3319                  "' does not occur in pattern or was multiply specified!");
3320       OperandsSet.erase(ArgNameStr);
3321       Args.push_back(std::string(ArgNameStr));
3322     }
3323 
3324     if (!OperandsSet.empty())
3325       P->error("Operands list does not contain an entry for operand '" +
3326                *OperandsSet.begin() + "'!");
3327 
3328     // If there is a node transformation corresponding to this, keep track of
3329     // it.
3330     Record *Transform = Frag->getValueAsDef("OperandTransform");
3331     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
3332       for (const auto &T : P->getTrees())
3333         T->setTransformFn(Transform);
3334   }
3335 
3336   // Now that we've parsed all of the tree fragments, do a closure on them so
3337   // that there are not references to PatFrags left inside of them.
3338   for (Record *Frag : Fragments) {
3339     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3340       continue;
3341 
3342     TreePattern &ThePat = *PatternFragments[Frag];
3343     ThePat.InlinePatternFragments();
3344 
3345     // Infer as many types as possible.  Don't worry about it if we don't infer
3346     // all of them, some may depend on the inputs of the pattern.  Also, don't
3347     // validate type sets; validation may cause spurious failures e.g. if a
3348     // fragment needs floating-point types but the current target does not have
3349     // any (this is only an error if that fragment is ever used!).
3350     {
3351       TypeInfer::SuppressValidation SV(ThePat.getInfer());
3352       ThePat.InferAllTypes();
3353       ThePat.resetError();
3354     }
3355 
3356     // If debugging, print out the pattern fragment result.
3357     LLVM_DEBUG(ThePat.dump());
3358   }
3359 }
3360 
3361 void CodeGenDAGPatterns::ParseDefaultOperands() {
3362   std::vector<Record*> DefaultOps;
3363   DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3364 
3365   // Find some SDNode.
3366   assert(!SDNodes.empty() && "No SDNodes parsed?");
3367   Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3368 
3369   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3370     DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3371 
3372     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3373     // SomeSDnode so that we can parse this.
3374     std::vector<std::pair<Init*, StringInit*> > Ops;
3375     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3376       Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3377                                    DefaultInfo->getArgName(op)));
3378     DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3379 
3380     // Create a TreePattern to parse this.
3381     TreePattern P(DefaultOps[i], DI, false, *this);
3382     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3383 
3384     // Copy the operands over into a DAGDefaultOperand.
3385     DAGDefaultOperand DefaultOpInfo;
3386 
3387     const TreePatternNodePtr &T = P.getTree(0);
3388     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3389       TreePatternNodePtr TPN = T->getChildShared(op);
3390       while (TPN->ApplyTypeConstraints(P, false))
3391         /* Resolve all types */;
3392 
3393       if (TPN->ContainsUnresolvedType(P)) {
3394         PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3395                         DefaultOps[i]->getName() +
3396                         "' doesn't have a concrete type!");
3397       }
3398       DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3399     }
3400 
3401     // Insert it into the DefaultOperands map so we can find it later.
3402     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3403   }
3404 }
3405 
3406 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3407 /// instruction input.  Return true if this is a real use.
3408 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3409                       std::map<std::string, TreePatternNodePtr> &InstInputs) {
3410   // No name -> not interesting.
3411   if (Pat->getName().empty()) {
3412     if (Pat->isLeaf()) {
3413       DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3414       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3415                  DI->getDef()->isSubClassOf("RegisterOperand")))
3416         I.error("Input " + DI->getDef()->getName() + " must be named!");
3417     }
3418     return false;
3419   }
3420 
3421   Record *Rec;
3422   if (Pat->isLeaf()) {
3423     DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3424     if (!DI)
3425       I.error("Input $" + Pat->getName() + " must be an identifier!");
3426     Rec = DI->getDef();
3427   } else {
3428     Rec = Pat->getOperator();
3429   }
3430 
3431   // SRCVALUE nodes are ignored.
3432   if (Rec->getName() == "srcvalue")
3433     return false;
3434 
3435   TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3436   if (!Slot) {
3437     Slot = Pat;
3438     return true;
3439   }
3440   Record *SlotRec;
3441   if (Slot->isLeaf()) {
3442     SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3443   } else {
3444     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3445     SlotRec = Slot->getOperator();
3446   }
3447 
3448   // Ensure that the inputs agree if we've already seen this input.
3449   if (Rec != SlotRec)
3450     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3451   // Ensure that the types can agree as well.
3452   Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3453   Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3454   if (Slot->getExtTypes() != Pat->getExtTypes())
3455     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3456   return true;
3457 }
3458 
3459 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3460 /// part of "I", the instruction), computing the set of inputs and outputs of
3461 /// the pattern.  Report errors if we see anything naughty.
3462 void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3463     TreePattern &I, TreePatternNodePtr Pat,
3464     std::map<std::string, TreePatternNodePtr> &InstInputs,
3465     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3466         &InstResults,
3467     std::vector<Record *> &InstImpResults) {
3468 
3469   // The instruction pattern still has unresolved fragments.  For *named*
3470   // nodes we must resolve those here.  This may not result in multiple
3471   // alternatives.
3472   if (!Pat->getName().empty()) {
3473     TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3474     SrcPattern.InlinePatternFragments();
3475     SrcPattern.InferAllTypes();
3476     Pat = SrcPattern.getOnlyTree();
3477   }
3478 
3479   if (Pat->isLeaf()) {
3480     bool isUse = HandleUse(I, Pat, InstInputs);
3481     if (!isUse && Pat->getTransformFn())
3482       I.error("Cannot specify a transform function for a non-input value!");
3483     return;
3484   }
3485 
3486   if (Pat->getOperator()->getName() == "implicit") {
3487     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3488       TreePatternNode *Dest = Pat->getChild(i);
3489       if (!Dest->isLeaf())
3490         I.error("implicitly defined value should be a register!");
3491 
3492       DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3493       if (!Val || !Val->getDef()->isSubClassOf("Register"))
3494         I.error("implicitly defined value should be a register!");
3495       InstImpResults.push_back(Val->getDef());
3496     }
3497     return;
3498   }
3499 
3500   if (Pat->getOperator()->getName() != "set") {
3501     // If this is not a set, verify that the children nodes are not void typed,
3502     // and recurse.
3503     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3504       if (Pat->getChild(i)->getNumTypes() == 0)
3505         I.error("Cannot have void nodes inside of patterns!");
3506       FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3507                                   InstResults, InstImpResults);
3508     }
3509 
3510     // If this is a non-leaf node with no children, treat it basically as if
3511     // it were a leaf.  This handles nodes like (imm).
3512     bool isUse = HandleUse(I, Pat, InstInputs);
3513 
3514     if (!isUse && Pat->getTransformFn())
3515       I.error("Cannot specify a transform function for a non-input value!");
3516     return;
3517   }
3518 
3519   // Otherwise, this is a set, validate and collect instruction results.
3520   if (Pat->getNumChildren() == 0)
3521     I.error("set requires operands!");
3522 
3523   if (Pat->getTransformFn())
3524     I.error("Cannot specify a transform function on a set node!");
3525 
3526   // Check the set destinations.
3527   unsigned NumDests = Pat->getNumChildren()-1;
3528   for (unsigned i = 0; i != NumDests; ++i) {
3529     TreePatternNodePtr Dest = Pat->getChildShared(i);
3530     // For set destinations we also must resolve fragments here.
3531     TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3532     DestPattern.InlinePatternFragments();
3533     DestPattern.InferAllTypes();
3534     Dest = DestPattern.getOnlyTree();
3535 
3536     if (!Dest->isLeaf())
3537       I.error("set destination should be a register!");
3538 
3539     DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3540     if (!Val) {
3541       I.error("set destination should be a register!");
3542       continue;
3543     }
3544 
3545     if (Val->getDef()->isSubClassOf("RegisterClass") ||
3546         Val->getDef()->isSubClassOf("ValueType") ||
3547         Val->getDef()->isSubClassOf("RegisterOperand") ||
3548         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3549       if (Dest->getName().empty())
3550         I.error("set destination must have a name!");
3551       if (InstResults.count(Dest->getName()))
3552         I.error("cannot set '" + Dest->getName() + "' multiple times");
3553       InstResults[Dest->getName()] = Dest;
3554     } else if (Val->getDef()->isSubClassOf("Register")) {
3555       InstImpResults.push_back(Val->getDef());
3556     } else {
3557       I.error("set destination should be a register!");
3558     }
3559   }
3560 
3561   // Verify and collect info from the computation.
3562   FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3563                               InstResults, InstImpResults);
3564 }
3565 
3566 //===----------------------------------------------------------------------===//
3567 // Instruction Analysis
3568 //===----------------------------------------------------------------------===//
3569 
3570 class InstAnalyzer {
3571   const CodeGenDAGPatterns &CDP;
3572 public:
3573   bool hasSideEffects;
3574   bool mayStore;
3575   bool mayLoad;
3576   bool isBitcast;
3577   bool isVariadic;
3578   bool hasChain;
3579 
3580   InstAnalyzer(const CodeGenDAGPatterns &cdp)
3581     : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3582       isBitcast(false), isVariadic(false), hasChain(false) {}
3583 
3584   void Analyze(const PatternToMatch &Pat) {
3585     const TreePatternNode *N = Pat.getSrcPattern();
3586     AnalyzeNode(N);
3587     // These properties are detected only on the root node.
3588     isBitcast = IsNodeBitcast(N);
3589   }
3590 
3591 private:
3592   bool IsNodeBitcast(const TreePatternNode *N) const {
3593     if (hasSideEffects || mayLoad || mayStore || isVariadic)
3594       return false;
3595 
3596     if (N->isLeaf())
3597       return false;
3598     if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
3599       return false;
3600 
3601     if (N->getOperator()->isSubClassOf("ComplexPattern"))
3602       return false;
3603 
3604     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
3605     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3606       return false;
3607     return OpInfo.getEnumName() == "ISD::BITCAST";
3608   }
3609 
3610 public:
3611   void AnalyzeNode(const TreePatternNode *N) {
3612     if (N->isLeaf()) {
3613       if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3614         Record *LeafRec = DI->getDef();
3615         // Handle ComplexPattern leaves.
3616         if (LeafRec->isSubClassOf("ComplexPattern")) {
3617           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3618           if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3619           if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3620           if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3621         }
3622       }
3623       return;
3624     }
3625 
3626     // Analyze children.
3627     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3628       AnalyzeNode(N->getChild(i));
3629 
3630     // Notice properties of the node.
3631     if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3632     if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3633     if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3634     if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3635     if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
3636 
3637     if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3638       ModRefInfo MR = IntInfo->ME.getModRef();
3639       // If this is an intrinsic, analyze it.
3640       if (isRefSet(MR))
3641         mayLoad = true; // These may load memory.
3642 
3643       if (isModSet(MR))
3644         mayStore = true; // Intrinsics that can write to memory are 'mayStore'.
3645 
3646       // Consider intrinsics that don't specify any restrictions on memory
3647       // effects as having a side-effect.
3648       if (IntInfo->ME == MemoryEffects::unknown() || IntInfo->hasSideEffects)
3649         hasSideEffects = true;
3650     }
3651   }
3652 
3653 };
3654 
3655 static bool InferFromPattern(CodeGenInstruction &InstInfo,
3656                              const InstAnalyzer &PatInfo,
3657                              Record *PatDef) {
3658   bool Error = false;
3659 
3660   // Remember where InstInfo got its flags.
3661   if (InstInfo.hasUndefFlags())
3662       InstInfo.InferredFrom = PatDef;
3663 
3664   // Check explicitly set flags for consistency.
3665   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3666       !InstInfo.hasSideEffects_Unset) {
3667     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3668     // the pattern has no side effects. That could be useful for div/rem
3669     // instructions that may trap.
3670     if (!InstInfo.hasSideEffects) {
3671       Error = true;
3672       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3673                  Twine(InstInfo.hasSideEffects));
3674     }
3675   }
3676 
3677   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3678     Error = true;
3679     PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3680                Twine(InstInfo.mayStore));
3681   }
3682 
3683   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3684     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3685     // Some targets translate immediates to loads.
3686     if (!InstInfo.mayLoad) {
3687       Error = true;
3688       PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3689                  Twine(InstInfo.mayLoad));
3690     }
3691   }
3692 
3693   // Transfer inferred flags.
3694   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3695   InstInfo.mayStore |= PatInfo.mayStore;
3696   InstInfo.mayLoad |= PatInfo.mayLoad;
3697 
3698   // These flags are silently added without any verification.
3699   // FIXME: To match historical behavior of TableGen, for now add those flags
3700   // only when we're inferring from the primary instruction pattern.
3701   if (PatDef->isSubClassOf("Instruction")) {
3702     InstInfo.isBitcast |= PatInfo.isBitcast;
3703     InstInfo.hasChain |= PatInfo.hasChain;
3704     InstInfo.hasChain_Inferred = true;
3705   }
3706 
3707   // Don't infer isVariadic. This flag means something different on SDNodes and
3708   // instructions. For example, a CALL SDNode is variadic because it has the
3709   // call arguments as operands, but a CALL instruction is not variadic - it
3710   // has argument registers as implicit, not explicit uses.
3711 
3712   return Error;
3713 }
3714 
3715 /// hasNullFragReference - Return true if the DAG has any reference to the
3716 /// null_frag operator.
3717 static bool hasNullFragReference(DagInit *DI) {
3718   DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3719   if (!OpDef) return false;
3720   Record *Operator = OpDef->getDef();
3721 
3722   // If this is the null fragment, return true.
3723   if (Operator->getName() == "null_frag") return true;
3724   // If any of the arguments reference the null fragment, return true.
3725   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3726     if (auto Arg = dyn_cast<DefInit>(DI->getArg(i)))
3727       if (Arg->getDef()->getName() == "null_frag")
3728         return true;
3729     DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3730     if (Arg && hasNullFragReference(Arg))
3731       return true;
3732   }
3733 
3734   return false;
3735 }
3736 
3737 /// hasNullFragReference - Return true if any DAG in the list references
3738 /// the null_frag operator.
3739 static bool hasNullFragReference(ListInit *LI) {
3740   for (Init *I : LI->getValues()) {
3741     DagInit *DI = dyn_cast<DagInit>(I);
3742     assert(DI && "non-dag in an instruction Pattern list?!");
3743     if (hasNullFragReference(DI))
3744       return true;
3745   }
3746   return false;
3747 }
3748 
3749 /// Get all the instructions in a tree.
3750 static void
3751 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3752   if (Tree->isLeaf())
3753     return;
3754   if (Tree->getOperator()->isSubClassOf("Instruction"))
3755     Instrs.push_back(Tree->getOperator());
3756   for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3757     getInstructionsInTree(Tree->getChild(i), Instrs);
3758 }
3759 
3760 /// Check the class of a pattern leaf node against the instruction operand it
3761 /// represents.
3762 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3763                               Record *Leaf) {
3764   if (OI.Rec == Leaf)
3765     return true;
3766 
3767   // Allow direct value types to be used in instruction set patterns.
3768   // The type will be checked later.
3769   if (Leaf->isSubClassOf("ValueType"))
3770     return true;
3771 
3772   // Patterns can also be ComplexPattern instances.
3773   if (Leaf->isSubClassOf("ComplexPattern"))
3774     return true;
3775 
3776   return false;
3777 }
3778 
3779 void CodeGenDAGPatterns::parseInstructionPattern(
3780     CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3781 
3782   assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3783 
3784   // Parse the instruction.
3785   TreePattern I(CGI.TheDef, Pat, true, *this);
3786 
3787   // InstInputs - Keep track of all of the inputs of the instruction, along
3788   // with the record they are declared as.
3789   std::map<std::string, TreePatternNodePtr> InstInputs;
3790 
3791   // InstResults - Keep track of all the virtual registers that are 'set'
3792   // in the instruction, including what reg class they are.
3793   MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3794       InstResults;
3795 
3796   std::vector<Record*> InstImpResults;
3797 
3798   // Verify that the top-level forms in the instruction are of void type, and
3799   // fill in the InstResults map.
3800   SmallString<32> TypesString;
3801   for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3802     TypesString.clear();
3803     TreePatternNodePtr Pat = I.getTree(j);
3804     if (Pat->getNumTypes() != 0) {
3805       raw_svector_ostream OS(TypesString);
3806       ListSeparator LS;
3807       for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3808         OS << LS;
3809         Pat->getExtType(k).writeToStream(OS);
3810       }
3811       I.error("Top-level forms in instruction pattern should have"
3812                " void types, has types " +
3813                OS.str());
3814     }
3815 
3816     // Find inputs and outputs, and verify the structure of the uses/defs.
3817     FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3818                                 InstImpResults);
3819   }
3820 
3821   // Now that we have inputs and outputs of the pattern, inspect the operands
3822   // list for the instruction.  This determines the order that operands are
3823   // added to the machine instruction the node corresponds to.
3824   unsigned NumResults = InstResults.size();
3825 
3826   // Parse the operands list from the (ops) list, validating it.
3827   assert(I.getArgList().empty() && "Args list should still be empty here!");
3828 
3829   // Check that all of the results occur first in the list.
3830   std::vector<Record*> Results;
3831   std::vector<unsigned> ResultIndices;
3832   SmallVector<TreePatternNodePtr, 2> ResNodes;
3833   for (unsigned i = 0; i != NumResults; ++i) {
3834     if (i == CGI.Operands.size()) {
3835       const std::string &OpName =
3836           llvm::find_if(
3837               InstResults,
3838               [](const std::pair<std::string, TreePatternNodePtr> &P) {
3839                 return P.second;
3840               })
3841               ->first;
3842 
3843       I.error("'" + OpName + "' set but does not appear in operand list!");
3844     }
3845 
3846     const std::string &OpName = CGI.Operands[i].Name;
3847 
3848     // Check that it exists in InstResults.
3849     auto InstResultIter = InstResults.find(OpName);
3850     if (InstResultIter == InstResults.end() || !InstResultIter->second)
3851       I.error("Operand $" + OpName + " does not exist in operand list!");
3852 
3853     TreePatternNodePtr RNode = InstResultIter->second;
3854     Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3855     ResNodes.push_back(std::move(RNode));
3856     if (!R)
3857       I.error("Operand $" + OpName + " should be a set destination: all "
3858                "outputs must occur before inputs in operand list!");
3859 
3860     if (!checkOperandClass(CGI.Operands[i], R))
3861       I.error("Operand $" + OpName + " class mismatch!");
3862 
3863     // Remember the return type.
3864     Results.push_back(CGI.Operands[i].Rec);
3865 
3866     // Remember the result index.
3867     ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
3868 
3869     // Okay, this one checks out.
3870     InstResultIter->second = nullptr;
3871   }
3872 
3873   // Loop over the inputs next.
3874   std::vector<TreePatternNodePtr> ResultNodeOperands;
3875   std::vector<Record*> Operands;
3876   for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3877     CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3878     const std::string &OpName = Op.Name;
3879     if (OpName.empty())
3880       I.error("Operand #" + Twine(i) + " in operands list has no name!");
3881 
3882     if (!InstInputs.count(OpName)) {
3883       // If this is an operand with a DefaultOps set filled in, we can ignore
3884       // this.  When we codegen it, we will do so as always executed.
3885       if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3886         // Does it have a non-empty DefaultOps field?  If so, ignore this
3887         // operand.
3888         if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3889           continue;
3890       }
3891       I.error("Operand $" + OpName +
3892                " does not appear in the instruction pattern");
3893     }
3894     TreePatternNodePtr InVal = InstInputs[OpName];
3895     InstInputs.erase(OpName);   // It occurred, remove from map.
3896 
3897     if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3898       Record *InRec = cast<DefInit>(InVal->getLeafValue())->getDef();
3899       if (!checkOperandClass(Op, InRec))
3900         I.error("Operand $" + OpName + "'s register class disagrees"
3901                  " between the operand and pattern");
3902     }
3903     Operands.push_back(Op.Rec);
3904 
3905     // Construct the result for the dest-pattern operand list.
3906     TreePatternNodePtr OpNode = InVal->clone();
3907 
3908     // No predicate is useful on the result.
3909     OpNode->clearPredicateCalls();
3910 
3911     // Promote the xform function to be an explicit node if set.
3912     if (Record *Xform = OpNode->getTransformFn()) {
3913       OpNode->setTransformFn(nullptr);
3914       std::vector<TreePatternNodePtr> Children;
3915       Children.push_back(OpNode);
3916       OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
3917                                                  OpNode->getNumTypes());
3918     }
3919 
3920     ResultNodeOperands.push_back(std::move(OpNode));
3921   }
3922 
3923   if (!InstInputs.empty())
3924     I.error("Input operand $" + InstInputs.begin()->first +
3925             " occurs in pattern but not in operands list!");
3926 
3927   TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
3928       I.getRecord(), std::move(ResultNodeOperands),
3929       GetNumNodeResults(I.getRecord(), *this));
3930   // Copy fully inferred output node types to instruction result pattern.
3931   for (unsigned i = 0; i != NumResults; ++i) {
3932     assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3933     ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3934     ResultPattern->setResultIndex(i, ResultIndices[i]);
3935   }
3936 
3937   // FIXME: Assume only the first tree is the pattern. The others are clobber
3938   // nodes.
3939   TreePatternNodePtr Pattern = I.getTree(0);
3940   TreePatternNodePtr SrcPattern;
3941   if (Pattern->getOperator()->getName() == "set") {
3942     SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3943   } else{
3944     // Not a set (store or something?)
3945     SrcPattern = Pattern;
3946   }
3947 
3948   // Create and insert the instruction.
3949   // FIXME: InstImpResults should not be part of DAGInstruction.
3950   Record *R = I.getRecord();
3951   DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
3952                    std::forward_as_tuple(Results, Operands, InstImpResults,
3953                                          SrcPattern, ResultPattern));
3954 
3955   LLVM_DEBUG(I.dump());
3956 }
3957 
3958 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3959 /// any fragments involved.  This populates the Instructions list with fully
3960 /// resolved instructions.
3961 void CodeGenDAGPatterns::ParseInstructions() {
3962   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3963 
3964   for (Record *Instr : Instrs) {
3965     ListInit *LI = nullptr;
3966 
3967     if (isa<ListInit>(Instr->getValueInit("Pattern")))
3968       LI = Instr->getValueAsListInit("Pattern");
3969 
3970     // If there is no pattern, only collect minimal information about the
3971     // instruction for its operand list.  We have to assume that there is one
3972     // result, as we have no detailed info. A pattern which references the
3973     // null_frag operator is as-if no pattern were specified. Normally this
3974     // is from a multiclass expansion w/ a SDPatternOperator passed in as
3975     // null_frag.
3976     if (!LI || LI->empty() || hasNullFragReference(LI)) {
3977       std::vector<Record*> Results;
3978       std::vector<Record*> Operands;
3979 
3980       CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3981 
3982       if (InstInfo.Operands.size() != 0) {
3983         for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3984           Results.push_back(InstInfo.Operands[j].Rec);
3985 
3986         // The rest are inputs.
3987         for (unsigned j = InstInfo.Operands.NumDefs,
3988                e = InstInfo.Operands.size(); j < e; ++j)
3989           Operands.push_back(InstInfo.Operands[j].Rec);
3990       }
3991 
3992       // Create and insert the instruction.
3993       std::vector<Record*> ImpResults;
3994       Instructions.insert(std::make_pair(Instr,
3995                             DAGInstruction(Results, Operands, ImpResults)));
3996       continue;  // no pattern.
3997     }
3998 
3999     CodeGenInstruction &CGI = Target.getInstruction(Instr);
4000     parseInstructionPattern(CGI, LI, Instructions);
4001   }
4002 
4003   // If we can, convert the instructions to be patterns that are matched!
4004   for (auto &Entry : Instructions) {
4005     Record *Instr = Entry.first;
4006     DAGInstruction &TheInst = Entry.second;
4007     TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
4008     TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
4009 
4010     if (SrcPattern && ResultPattern) {
4011       TreePattern Pattern(Instr, SrcPattern, true, *this);
4012       TreePattern Result(Instr, ResultPattern, false, *this);
4013       ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
4014     }
4015   }
4016 }
4017 
4018 typedef std::pair<TreePatternNode *, unsigned> NameRecord;
4019 
4020 static void FindNames(TreePatternNode *P,
4021                       std::map<std::string, NameRecord> &Names,
4022                       TreePattern *PatternTop) {
4023   if (!P->getName().empty()) {
4024     NameRecord &Rec = Names[P->getName()];
4025     // If this is the first instance of the name, remember the node.
4026     if (Rec.second++ == 0)
4027       Rec.first = P;
4028     else if (Rec.first->getExtTypes() != P->getExtTypes())
4029       PatternTop->error("repetition of value: $" + P->getName() +
4030                         " where different uses have different types!");
4031   }
4032 
4033   if (!P->isLeaf()) {
4034     for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
4035       FindNames(P->getChild(i), Names, PatternTop);
4036   }
4037 }
4038 
4039 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
4040                                            PatternToMatch &&PTM) {
4041   // Do some sanity checking on the pattern we're about to match.
4042   std::string Reason;
4043   if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
4044     PrintWarning(Pattern->getRecord()->getLoc(),
4045       Twine("Pattern can never match: ") + Reason);
4046     return;
4047   }
4048 
4049   // If the source pattern's root is a complex pattern, that complex pattern
4050   // must specify the nodes it can potentially match.
4051   if (const ComplexPattern *CP =
4052         PTM.getSrcPattern()->getComplexPatternInfo(*this))
4053     if (CP->getRootNodes().empty())
4054       Pattern->error("ComplexPattern at root must specify list of opcodes it"
4055                      " could match");
4056 
4057 
4058   // Find all of the named values in the input and output, ensure they have the
4059   // same type.
4060   std::map<std::string, NameRecord> SrcNames, DstNames;
4061   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
4062   FindNames(PTM.getDstPattern(), DstNames, Pattern);
4063 
4064   // Scan all of the named values in the destination pattern, rejecting them if
4065   // they don't exist in the input pattern.
4066   for (const auto &Entry : DstNames) {
4067     if (SrcNames[Entry.first].first == nullptr)
4068       Pattern->error("Pattern has input without matching name in output: $" +
4069                      Entry.first);
4070   }
4071 
4072   // Scan all of the named values in the source pattern, rejecting them if the
4073   // name isn't used in the dest, and isn't used to tie two values together.
4074   for (const auto &Entry : SrcNames)
4075     if (DstNames[Entry.first].first == nullptr &&
4076         SrcNames[Entry.first].second == 1)
4077       Pattern->error("Pattern has dead named input: $" + Entry.first);
4078 
4079   PatternsToMatch.push_back(std::move(PTM));
4080 }
4081 
4082 void CodeGenDAGPatterns::InferInstructionFlags() {
4083   ArrayRef<const CodeGenInstruction*> Instructions =
4084     Target.getInstructionsByEnumValue();
4085 
4086   unsigned Errors = 0;
4087 
4088   // Try to infer flags from all patterns in PatternToMatch.  These include
4089   // both the primary instruction patterns (which always come first) and
4090   // patterns defined outside the instruction.
4091   for (const PatternToMatch &PTM : ptms()) {
4092     // We can only infer from single-instruction patterns, otherwise we won't
4093     // know which instruction should get the flags.
4094     SmallVector<Record*, 8> PatInstrs;
4095     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
4096     if (PatInstrs.size() != 1)
4097       continue;
4098 
4099     // Get the single instruction.
4100     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
4101 
4102     // Only infer properties from the first pattern. We'll verify the others.
4103     if (InstInfo.InferredFrom)
4104       continue;
4105 
4106     InstAnalyzer PatInfo(*this);
4107     PatInfo.Analyze(PTM);
4108     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
4109   }
4110 
4111   if (Errors)
4112     PrintFatalError("pattern conflicts");
4113 
4114   // If requested by the target, guess any undefined properties.
4115   if (Target.guessInstructionProperties()) {
4116     for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
4117       CodeGenInstruction *InstInfo =
4118         const_cast<CodeGenInstruction *>(Instructions[i]);
4119       if (InstInfo->InferredFrom)
4120         continue;
4121       // The mayLoad and mayStore flags default to false.
4122       // Conservatively assume hasSideEffects if it wasn't explicit.
4123       if (InstInfo->hasSideEffects_Unset)
4124         InstInfo->hasSideEffects = true;
4125     }
4126     return;
4127   }
4128 
4129   // Complain about any flags that are still undefined.
4130   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
4131     CodeGenInstruction *InstInfo =
4132       const_cast<CodeGenInstruction *>(Instructions[i]);
4133     if (InstInfo->InferredFrom)
4134       continue;
4135     if (InstInfo->hasSideEffects_Unset)
4136       PrintError(InstInfo->TheDef->getLoc(),
4137                  "Can't infer hasSideEffects from patterns");
4138     if (InstInfo->mayStore_Unset)
4139       PrintError(InstInfo->TheDef->getLoc(),
4140                  "Can't infer mayStore from patterns");
4141     if (InstInfo->mayLoad_Unset)
4142       PrintError(InstInfo->TheDef->getLoc(),
4143                  "Can't infer mayLoad from patterns");
4144   }
4145 }
4146 
4147 
4148 /// Verify instruction flags against pattern node properties.
4149 void CodeGenDAGPatterns::VerifyInstructionFlags() {
4150   unsigned Errors = 0;
4151   for (const PatternToMatch &PTM : ptms()) {
4152     SmallVector<Record*, 8> Instrs;
4153     getInstructionsInTree(PTM.getDstPattern(), Instrs);
4154     if (Instrs.empty())
4155       continue;
4156 
4157     // Count the number of instructions with each flag set.
4158     unsigned NumSideEffects = 0;
4159     unsigned NumStores = 0;
4160     unsigned NumLoads = 0;
4161     for (const Record *Instr : Instrs) {
4162       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4163       NumSideEffects += InstInfo.hasSideEffects;
4164       NumStores += InstInfo.mayStore;
4165       NumLoads += InstInfo.mayLoad;
4166     }
4167 
4168     // Analyze the source pattern.
4169     InstAnalyzer PatInfo(*this);
4170     PatInfo.Analyze(PTM);
4171 
4172     // Collect error messages.
4173     SmallVector<std::string, 4> Msgs;
4174 
4175     // Check for missing flags in the output.
4176     // Permit extra flags for now at least.
4177     if (PatInfo.hasSideEffects && !NumSideEffects)
4178       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
4179 
4180     // Don't verify store flags on instructions with side effects. At least for
4181     // intrinsics, side effects implies mayStore.
4182     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
4183       Msgs.push_back("pattern may store, but mayStore isn't set");
4184 
4185     // Similarly, mayStore implies mayLoad on intrinsics.
4186     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
4187       Msgs.push_back("pattern may load, but mayLoad isn't set");
4188 
4189     // Print error messages.
4190     if (Msgs.empty())
4191       continue;
4192     ++Errors;
4193 
4194     for (const std::string &Msg : Msgs)
4195       PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
4196                  (Instrs.size() == 1 ?
4197                   "instruction" : "output instructions"));
4198     // Provide the location of the relevant instruction definitions.
4199     for (const Record *Instr : Instrs) {
4200       if (Instr != PTM.getSrcRecord())
4201         PrintError(Instr->getLoc(), "defined here");
4202       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4203       if (InstInfo.InferredFrom &&
4204           InstInfo.InferredFrom != InstInfo.TheDef &&
4205           InstInfo.InferredFrom != PTM.getSrcRecord())
4206         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
4207     }
4208   }
4209   if (Errors)
4210     PrintFatalError("Errors in DAG patterns");
4211 }
4212 
4213 /// Given a pattern result with an unresolved type, see if we can find one
4214 /// instruction with an unresolved result type.  Force this result type to an
4215 /// arbitrary element if it's possible types to converge results.
4216 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
4217   if (N->isLeaf())
4218     return false;
4219 
4220   // Analyze children.
4221   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4222     if (ForceArbitraryInstResultType(N->getChild(i), TP))
4223       return true;
4224 
4225   if (!N->getOperator()->isSubClassOf("Instruction"))
4226     return false;
4227 
4228   // If this type is already concrete or completely unknown we can't do
4229   // anything.
4230   TypeInfer &TI = TP.getInfer();
4231   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
4232     if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
4233       continue;
4234 
4235     // Otherwise, force its type to an arbitrary choice.
4236     if (TI.forceArbitrary(N->getExtType(i)))
4237       return true;
4238   }
4239 
4240   return false;
4241 }
4242 
4243 // Promote xform function to be an explicit node wherever set.
4244 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
4245   if (Record *Xform = N->getTransformFn()) {
4246       N->setTransformFn(nullptr);
4247       std::vector<TreePatternNodePtr> Children;
4248       Children.push_back(PromoteXForms(N));
4249       return std::make_shared<TreePatternNode>(Xform, std::move(Children),
4250                                                N->getNumTypes());
4251   }
4252 
4253   if (!N->isLeaf())
4254     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4255       TreePatternNodePtr Child = N->getChildShared(i);
4256       N->setChild(i, PromoteXForms(Child));
4257     }
4258   return N;
4259 }
4260 
4261 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
4262        TreePattern &Pattern, TreePattern &Result,
4263        const std::vector<Record *> &InstImpResults) {
4264 
4265   // Inline pattern fragments and expand multiple alternatives.
4266   Pattern.InlinePatternFragments();
4267   Result.InlinePatternFragments();
4268 
4269   if (Result.getNumTrees() != 1)
4270     Result.error("Cannot use multi-alternative fragments in result pattern!");
4271 
4272   // Infer types.
4273   bool IterateInference;
4274   bool InferredAllPatternTypes, InferredAllResultTypes;
4275   do {
4276     // Infer as many types as possible.  If we cannot infer all of them, we
4277     // can never do anything with this pattern: report it to the user.
4278     InferredAllPatternTypes =
4279         Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
4280 
4281     // Infer as many types as possible.  If we cannot infer all of them, we
4282     // can never do anything with this pattern: report it to the user.
4283     InferredAllResultTypes =
4284         Result.InferAllTypes(&Pattern.getNamedNodesMap());
4285 
4286     IterateInference = false;
4287 
4288     // Apply the type of the result to the source pattern.  This helps us
4289     // resolve cases where the input type is known to be a pointer type (which
4290     // is considered resolved), but the result knows it needs to be 32- or
4291     // 64-bits.  Infer the other way for good measure.
4292     for (const auto &T : Pattern.getTrees())
4293       for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4294                                         T->getNumTypes());
4295          i != e; ++i) {
4296         IterateInference |= T->UpdateNodeType(
4297             i, Result.getOnlyTree()->getExtType(i), Result);
4298         IterateInference |= Result.getOnlyTree()->UpdateNodeType(
4299             i, T->getExtType(i), Result);
4300       }
4301 
4302     // If our iteration has converged and the input pattern's types are fully
4303     // resolved but the result pattern is not fully resolved, we may have a
4304     // situation where we have two instructions in the result pattern and
4305     // the instructions require a common register class, but don't care about
4306     // what actual MVT is used.  This is actually a bug in our modelling:
4307     // output patterns should have register classes, not MVTs.
4308     //
4309     // In any case, to handle this, we just go through and disambiguate some
4310     // arbitrary types to the result pattern's nodes.
4311     if (!IterateInference && InferredAllPatternTypes &&
4312         !InferredAllResultTypes)
4313       IterateInference =
4314           ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
4315   } while (IterateInference);
4316 
4317   // Verify that we inferred enough types that we can do something with the
4318   // pattern and result.  If these fire the user has to add type casts.
4319   if (!InferredAllPatternTypes)
4320     Pattern.error("Could not infer all types in pattern!");
4321   if (!InferredAllResultTypes) {
4322     Pattern.dump();
4323     Result.error("Could not infer all types in pattern result!");
4324   }
4325 
4326   // Promote xform function to be an explicit node wherever set.
4327   TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4328 
4329   TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4330   Temp.InferAllTypes();
4331 
4332   ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4333   int Complexity = TheDef->getValueAsInt("AddedComplexity");
4334 
4335   if (PatternRewriter)
4336     PatternRewriter(&Pattern);
4337 
4338   // A pattern may end up with an "impossible" type, i.e. a situation
4339   // where all types have been eliminated for some node in this pattern.
4340   // This could occur for intrinsics that only make sense for a specific
4341   // value type, and use a specific register class. If, for some mode,
4342   // that register class does not accept that type, the type inference
4343   // will lead to a contradiction, which is not an error however, but
4344   // a sign that this pattern will simply never match.
4345   if (Temp.getOnlyTree()->hasPossibleType())
4346     for (const auto &T : Pattern.getTrees())
4347       if (T->hasPossibleType())
4348         AddPatternToMatch(&Pattern,
4349                           PatternToMatch(TheDef, Preds, T, Temp.getOnlyTree(),
4350                                          InstImpResults, Complexity,
4351                                          TheDef->getID()));
4352 }
4353 
4354 void CodeGenDAGPatterns::ParsePatterns() {
4355   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
4356 
4357   for (Record *CurPattern : Patterns) {
4358     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4359 
4360     // If the pattern references the null_frag, there's nothing to do.
4361     if (hasNullFragReference(Tree))
4362       continue;
4363 
4364     TreePattern Pattern(CurPattern, Tree, true, *this);
4365 
4366     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4367     if (LI->empty()) continue;  // no pattern.
4368 
4369     // Parse the instruction.
4370     TreePattern Result(CurPattern, LI, false, *this);
4371 
4372     if (Result.getNumTrees() != 1)
4373       Result.error("Cannot handle instructions producing instructions "
4374                    "with temporaries yet!");
4375 
4376     // Validate that the input pattern is correct.
4377     std::map<std::string, TreePatternNodePtr> InstInputs;
4378     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
4379         InstResults;
4380     std::vector<Record*> InstImpResults;
4381     for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4382       FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4383                                   InstResults, InstImpResults);
4384 
4385     ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
4386   }
4387 }
4388 
4389 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4390   for (const TypeSetByHwMode &VTS : N->getExtTypes())
4391     for (const auto &I : VTS)
4392       Modes.insert(I.first);
4393 
4394   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4395     collectModes(Modes, N->getChild(i));
4396 }
4397 
4398 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4399   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4400   std::vector<PatternToMatch> Copy;
4401   PatternsToMatch.swap(Copy);
4402 
4403   auto AppendPattern = [this](PatternToMatch &P, unsigned Mode,
4404                               StringRef Check) {
4405     TreePatternNodePtr NewSrc = P.getSrcPattern()->clone();
4406     TreePatternNodePtr NewDst = P.getDstPattern()->clone();
4407     if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4408       return;
4409     }
4410 
4411     PatternsToMatch.emplace_back(P.getSrcRecord(), P.getPredicates(),
4412                                  std::move(NewSrc), std::move(NewDst),
4413                                  P.getDstRegs(), P.getAddedComplexity(),
4414                                  Record::getNewUID(Records), Mode, Check);
4415   };
4416 
4417   for (PatternToMatch &P : Copy) {
4418     TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
4419     if (P.getSrcPattern()->hasProperTypeByHwMode())
4420       SrcP = P.getSrcPatternShared();
4421     if (P.getDstPattern()->hasProperTypeByHwMode())
4422       DstP = P.getDstPatternShared();
4423     if (!SrcP && !DstP) {
4424       PatternsToMatch.push_back(P);
4425       continue;
4426     }
4427 
4428     std::set<unsigned> Modes;
4429     if (SrcP)
4430       collectModes(Modes, SrcP.get());
4431     if (DstP)
4432       collectModes(Modes, DstP.get());
4433 
4434     // The predicate for the default mode needs to be constructed for each
4435     // pattern separately.
4436     // Since not all modes must be present in each pattern, if a mode m is
4437     // absent, then there is no point in constructing a check for m. If such
4438     // a check was created, it would be equivalent to checking the default
4439     // mode, except not all modes' predicates would be a part of the checking
4440     // code. The subsequently generated check for the default mode would then
4441     // have the exact same patterns, but a different predicate code. To avoid
4442     // duplicated patterns with different predicate checks, construct the
4443     // default check as a negation of all predicates that are actually present
4444     // in the source/destination patterns.
4445     SmallString<128> DefaultCheck;
4446 
4447     for (unsigned M : Modes) {
4448       if (M == DefaultMode)
4449         continue;
4450 
4451       // Fill the map entry for this mode.
4452       const HwMode &HM = CGH.getMode(M);
4453       AppendPattern(P, M, "(MF->getSubtarget().checkFeatures(\"" + HM.Features + "\"))");
4454 
4455       // Add negations of the HM's predicates to the default predicate.
4456       if (!DefaultCheck.empty())
4457         DefaultCheck += " && ";
4458       DefaultCheck += "(!(MF->getSubtarget().checkFeatures(\"";
4459       DefaultCheck += HM.Features;
4460       DefaultCheck += "\")))";
4461     }
4462 
4463     bool HasDefault = Modes.count(DefaultMode);
4464     if (HasDefault)
4465       AppendPattern(P, DefaultMode, DefaultCheck);
4466   }
4467 }
4468 
4469 /// Dependent variable map for CodeGenDAGPattern variant generation
4470 typedef StringMap<int> DepVarMap;
4471 
4472 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4473   if (N->isLeaf()) {
4474     if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4475       DepMap[N->getName()]++;
4476   } else {
4477     for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4478       FindDepVarsOf(N->getChild(i), DepMap);
4479   }
4480 }
4481 
4482 /// Find dependent variables within child patterns
4483 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4484   DepVarMap depcounts;
4485   FindDepVarsOf(N, depcounts);
4486   for (const auto &Pair : depcounts) {
4487     if (Pair.getValue() > 1)
4488       DepVars.insert(Pair.getKey());
4489   }
4490 }
4491 
4492 #ifndef NDEBUG
4493 /// Dump the dependent variable set:
4494 static void DumpDepVars(MultipleUseVarSet &DepVars) {
4495   if (DepVars.empty()) {
4496     LLVM_DEBUG(errs() << "<empty set>");
4497   } else {
4498     LLVM_DEBUG(errs() << "[ ");
4499     for (const auto &DepVar : DepVars) {
4500       LLVM_DEBUG(errs() << DepVar.getKey() << " ");
4501     }
4502     LLVM_DEBUG(errs() << "]");
4503   }
4504 }
4505 #endif
4506 
4507 
4508 /// CombineChildVariants - Given a bunch of permutations of each child of the
4509 /// 'operator' node, put them together in all possible ways.
4510 static void CombineChildVariants(
4511     TreePatternNodePtr Orig,
4512     const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4513     std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4514     const MultipleUseVarSet &DepVars) {
4515   // Make sure that each operand has at least one variant to choose from.
4516   for (const auto &Variants : ChildVariants)
4517     if (Variants.empty())
4518       return;
4519 
4520   // The end result is an all-pairs construction of the resultant pattern.
4521   std::vector<unsigned> Idxs;
4522   Idxs.resize(ChildVariants.size());
4523   bool NotDone;
4524   do {
4525 #ifndef NDEBUG
4526     LLVM_DEBUG(if (!Idxs.empty()) {
4527       errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4528       for (unsigned Idx : Idxs) {
4529         errs() << Idx << " ";
4530       }
4531       errs() << "]\n";
4532     });
4533 #endif
4534     // Create the variant and add it to the output list.
4535     std::vector<TreePatternNodePtr> NewChildren;
4536     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4537       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4538     TreePatternNodePtr R = std::make_shared<TreePatternNode>(
4539         Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4540 
4541     // Copy over properties.
4542     R->setName(Orig->getName());
4543     R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
4544     R->setPredicateCalls(Orig->getPredicateCalls());
4545     R->setTransformFn(Orig->getTransformFn());
4546     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4547       R->setType(i, Orig->getExtType(i));
4548 
4549     // If this pattern cannot match, do not include it as a variant.
4550     std::string ErrString;
4551     // Scan to see if this pattern has already been emitted.  We can get
4552     // duplication due to things like commuting:
4553     //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4554     // which are the same pattern.  Ignore the dups.
4555     if (R->canPatternMatch(ErrString, CDP) &&
4556         none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4557           return R->isIsomorphicTo(Variant.get(), DepVars);
4558         }))
4559       OutVariants.push_back(R);
4560 
4561     // Increment indices to the next permutation by incrementing the
4562     // indices from last index backward, e.g., generate the sequence
4563     // [0, 0], [0, 1], [1, 0], [1, 1].
4564     int IdxsIdx;
4565     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4566       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4567         Idxs[IdxsIdx] = 0;
4568       else
4569         break;
4570     }
4571     NotDone = (IdxsIdx >= 0);
4572   } while (NotDone);
4573 }
4574 
4575 /// CombineChildVariants - A helper function for binary operators.
4576 ///
4577 static void CombineChildVariants(TreePatternNodePtr Orig,
4578                                  const std::vector<TreePatternNodePtr> &LHS,
4579                                  const std::vector<TreePatternNodePtr> &RHS,
4580                                  std::vector<TreePatternNodePtr> &OutVariants,
4581                                  CodeGenDAGPatterns &CDP,
4582                                  const MultipleUseVarSet &DepVars) {
4583   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4584   ChildVariants.push_back(LHS);
4585   ChildVariants.push_back(RHS);
4586   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4587 }
4588 
4589 static void
4590 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4591                                   std::vector<TreePatternNodePtr> &Children) {
4592   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
4593   Record *Operator = N->getOperator();
4594 
4595   // Only permit raw nodes.
4596   if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
4597       N->getTransformFn()) {
4598     Children.push_back(N);
4599     return;
4600   }
4601 
4602   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4603     Children.push_back(N->getChildShared(0));
4604   else
4605     GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4606 
4607   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4608     Children.push_back(N->getChildShared(1));
4609   else
4610     GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4611 }
4612 
4613 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4614 /// the (potentially recursive) pattern by using algebraic laws.
4615 ///
4616 static void GenerateVariantsOf(TreePatternNodePtr N,
4617                                std::vector<TreePatternNodePtr> &OutVariants,
4618                                CodeGenDAGPatterns &CDP,
4619                                const MultipleUseVarSet &DepVars) {
4620   // We cannot permute leaves or ComplexPattern uses.
4621   if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4622     OutVariants.push_back(N);
4623     return;
4624   }
4625 
4626   // Look up interesting info about the node.
4627   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4628 
4629   // If this node is associative, re-associate.
4630   if (NodeInfo.hasProperty(SDNPAssociative)) {
4631     // Re-associate by pulling together all of the linked operators
4632     std::vector<TreePatternNodePtr> MaximalChildren;
4633     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4634 
4635     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
4636     // permutations.
4637     if (MaximalChildren.size() == 3) {
4638       // Find the variants of all of our maximal children.
4639       std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4640       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4641       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4642       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4643 
4644       // There are only two ways we can permute the tree:
4645       //   (A op B) op C    and    A op (B op C)
4646       // Within these forms, we can also permute A/B/C.
4647 
4648       // Generate legal pair permutations of A/B/C.
4649       std::vector<TreePatternNodePtr> ABVariants;
4650       std::vector<TreePatternNodePtr> BAVariants;
4651       std::vector<TreePatternNodePtr> ACVariants;
4652       std::vector<TreePatternNodePtr> CAVariants;
4653       std::vector<TreePatternNodePtr> BCVariants;
4654       std::vector<TreePatternNodePtr> CBVariants;
4655       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4656       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4657       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4658       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4659       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4660       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4661 
4662       // Combine those into the result: (x op x) op x
4663       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4664       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4665       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4666       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4667       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4668       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4669 
4670       // Combine those into the result: x op (x op x)
4671       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4672       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4673       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4674       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4675       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4676       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4677       return;
4678     }
4679   }
4680 
4681   // Compute permutations of all children.
4682   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4683   ChildVariants.resize(N->getNumChildren());
4684   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4685     GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4686 
4687   // Build all permutations based on how the children were formed.
4688   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4689 
4690   // If this node is commutative, consider the commuted order.
4691   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4692   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4693     unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
4694     assert(N->getNumChildren() >= (2 + Skip) &&
4695            "Commutative but doesn't have 2 children!");
4696     // Don't allow commuting children which are actually register references.
4697     bool NoRegisters = true;
4698     unsigned i = 0 + Skip;
4699     unsigned e = 2 + Skip;
4700     for (; i != e; ++i) {
4701       TreePatternNode *Child = N->getChild(i);
4702       if (Child->isLeaf())
4703         if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4704           Record *RR = DI->getDef();
4705           if (RR->isSubClassOf("Register"))
4706             NoRegisters = false;
4707         }
4708     }
4709     // Consider the commuted order.
4710     if (NoRegisters) {
4711       std::vector<std::vector<TreePatternNodePtr>> Variants;
4712       unsigned i = 0;
4713       if (isCommIntrinsic)
4714         Variants.push_back(std::move(ChildVariants[i++])); // Intrinsic id.
4715       Variants.push_back(std::move(ChildVariants[i + 1]));
4716       Variants.push_back(std::move(ChildVariants[i]));
4717       i += 2;
4718       // Remaining operands are not commuted.
4719       for (; i != N->getNumChildren(); ++i)
4720         Variants.push_back(std::move(ChildVariants[i]));
4721       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4722     }
4723   }
4724 }
4725 
4726 
4727 // GenerateVariants - Generate variants.  For example, commutative patterns can
4728 // match multiple ways.  Add them to PatternsToMatch as well.
4729 void CodeGenDAGPatterns::GenerateVariants() {
4730   LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4731 
4732   // Loop over all of the patterns we've collected, checking to see if we can
4733   // generate variants of the instruction, through the exploitation of
4734   // identities.  This permits the target to provide aggressive matching without
4735   // the .td file having to contain tons of variants of instructions.
4736   //
4737   // Note that this loop adds new patterns to the PatternsToMatch list, but we
4738   // intentionally do not reconsider these.  Any variants of added patterns have
4739   // already been added.
4740   //
4741   for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
4742     MultipleUseVarSet DepVars;
4743     std::vector<TreePatternNodePtr> Variants;
4744     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4745     LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4746     LLVM_DEBUG(DumpDepVars(DepVars));
4747     LLVM_DEBUG(errs() << "\n");
4748     GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4749                        *this, DepVars);
4750 
4751     assert(PatternsToMatch[i].getHwModeFeatures().empty() &&
4752            "HwModes should not have been expanded yet!");
4753 
4754     assert(!Variants.empty() && "Must create at least original variant!");
4755     if (Variants.size() == 1) // No additional variants for this pattern.
4756       continue;
4757 
4758     LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4759                PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n");
4760 
4761     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4762       TreePatternNodePtr Variant = Variants[v];
4763 
4764       LLVM_DEBUG(errs() << "  VAR#" << v << ": "; Variant->dump();
4765                  errs() << "\n");
4766 
4767       // Scan to see if an instruction or explicit pattern already matches this.
4768       bool AlreadyExists = false;
4769       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4770         // Skip if the top level predicates do not match.
4771         if ((i != p) && (PatternsToMatch[i].getPredicates() !=
4772                          PatternsToMatch[p].getPredicates()))
4773           continue;
4774         // Check to see if this variant already exists.
4775         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4776                                     DepVars)) {
4777           LLVM_DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
4778           AlreadyExists = true;
4779           break;
4780         }
4781       }
4782       // If we already have it, ignore the variant.
4783       if (AlreadyExists) continue;
4784 
4785       // Otherwise, add it to the list of patterns we have.
4786       PatternsToMatch.emplace_back(
4787           PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4788           Variant, PatternsToMatch[i].getDstPatternShared(),
4789           PatternsToMatch[i].getDstRegs(),
4790           PatternsToMatch[i].getAddedComplexity(), Record::getNewUID(Records),
4791           PatternsToMatch[i].getForceMode(),
4792           PatternsToMatch[i].getHwModeFeatures());
4793     }
4794 
4795     LLVM_DEBUG(errs() << "\n");
4796   }
4797 }
4798