1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CodeGenDAGPatterns class, which is used to read and
10 // represent the patterns present in a .td file for instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenDAGPatterns.h"
15 #include "CodeGenInstruction.h"
16 #include "CodeGenRegisters.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringMap.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/TypeSize.h"
28 #include "llvm/TableGen/Error.h"
29 #include "llvm/TableGen/Record.h"
30 #include <algorithm>
31 #include <cstdio>
32 #include <iterator>
33 #include <set>
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "dag-patterns"
37 
38 static inline bool isIntegerOrPtr(MVT VT) {
39   return VT.isInteger() || VT == MVT::iPTR;
40 }
41 static inline bool isFloatingPoint(MVT VT) {
42   return VT.isFloatingPoint();
43 }
44 static inline bool isVector(MVT VT) {
45   return VT.isVector();
46 }
47 static inline bool isScalar(MVT VT) {
48   return !VT.isVector();
49 }
50 static inline bool isScalarInteger(MVT VT) {
51   return VT.isScalarInteger();
52 }
53 
54 template <typename Predicate>
55 static bool berase_if(MachineValueTypeSet &S, Predicate P) {
56   bool Erased = false;
57   // It is ok to iterate over MachineValueTypeSet and remove elements from it
58   // at the same time.
59   for (MVT T : S) {
60     if (!P(T))
61       continue;
62     Erased = true;
63     S.erase(T);
64   }
65   return Erased;
66 }
67 
68 void MachineValueTypeSet::writeToStream(raw_ostream &OS) const {
69   SmallVector<MVT, 4> Types(begin(), end());
70   array_pod_sort(Types.begin(), Types.end());
71 
72   OS << '[';
73   ListSeparator LS(" ");
74   for (const MVT &T : Types)
75     OS << LS << ValueTypeByHwMode::getMVTName(T);
76   OS << ']';
77 }
78 
79 // --- TypeSetByHwMode
80 
81 // This is a parameterized type-set class. For each mode there is a list
82 // of types that are currently possible for a given tree node. Type
83 // inference will apply to each mode separately.
84 
85 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
86   // Take the address space from the first type in the list.
87   if (!VTList.empty())
88     AddrSpace = VTList[0].PtrAddrSpace;
89 
90   for (const ValueTypeByHwMode &VVT : VTList)
91     insert(VVT);
92 }
93 
94 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
95   for (const auto &I : *this) {
96     if (I.second.size() > 1)
97       return false;
98     if (!AllowEmpty && I.second.empty())
99       return false;
100   }
101   return true;
102 }
103 
104 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
105   assert(isValueTypeByHwMode(true) &&
106          "The type set has multiple types for at least one HW mode");
107   ValueTypeByHwMode VVT;
108   VVT.PtrAddrSpace = AddrSpace;
109 
110   for (const auto &I : *this) {
111     MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
112     VVT.getOrCreateTypeForMode(I.first, T);
113   }
114   return VVT;
115 }
116 
117 bool TypeSetByHwMode::isPossible() const {
118   for (const auto &I : *this)
119     if (!I.second.empty())
120       return true;
121   return false;
122 }
123 
124 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
125   bool Changed = false;
126   bool ContainsDefault = false;
127   MVT DT = MVT::Other;
128 
129   for (const auto &P : VVT) {
130     unsigned M = P.first;
131     // Make sure there exists a set for each specific mode from VVT.
132     Changed |= getOrCreate(M).insert(P.second).second;
133     // Cache VVT's default mode.
134     if (DefaultMode == M) {
135       ContainsDefault = true;
136       DT = P.second;
137     }
138   }
139 
140   // If VVT has a default mode, add the corresponding type to all
141   // modes in "this" that do not exist in VVT.
142   if (ContainsDefault)
143     for (auto &I : *this)
144       if (!VVT.hasMode(I.first))
145         Changed |= I.second.insert(DT).second;
146 
147   return Changed;
148 }
149 
150 // Constrain the type set to be the intersection with VTS.
151 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
152   bool Changed = false;
153   if (hasDefault()) {
154     for (const auto &I : VTS) {
155       unsigned M = I.first;
156       if (M == DefaultMode || hasMode(M))
157         continue;
158       Map.insert({M, Map.at(DefaultMode)});
159       Changed = true;
160     }
161   }
162 
163   for (auto &I : *this) {
164     unsigned M = I.first;
165     SetType &S = I.second;
166     if (VTS.hasMode(M) || VTS.hasDefault()) {
167       Changed |= intersect(I.second, VTS.get(M));
168     } else if (!S.empty()) {
169       S.clear();
170       Changed = true;
171     }
172   }
173   return Changed;
174 }
175 
176 template <typename Predicate>
177 bool TypeSetByHwMode::constrain(Predicate P) {
178   bool Changed = false;
179   for (auto &I : *this)
180     Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
181   return Changed;
182 }
183 
184 template <typename Predicate>
185 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
186   assert(empty());
187   for (const auto &I : VTS) {
188     SetType &S = getOrCreate(I.first);
189     for (auto J : I.second)
190       if (P(J))
191         S.insert(J);
192   }
193   return !empty();
194 }
195 
196 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
197   SmallVector<unsigned, 4> Modes;
198   Modes.reserve(Map.size());
199 
200   for (const auto &I : *this)
201     Modes.push_back(I.first);
202   if (Modes.empty()) {
203     OS << "{}";
204     return;
205   }
206   array_pod_sort(Modes.begin(), Modes.end());
207 
208   OS << '{';
209   for (unsigned M : Modes) {
210     OS << ' ' << getModeName(M) << ':';
211     get(M).writeToStream(OS);
212   }
213   OS << " }";
214 }
215 
216 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
217   // The isSimple call is much quicker than hasDefault - check this first.
218   bool IsSimple = isSimple();
219   bool VTSIsSimple = VTS.isSimple();
220   if (IsSimple && VTSIsSimple)
221     return getSimple() == VTS.getSimple();
222 
223   // Speedup: We have a default if the set is simple.
224   bool HaveDefault = IsSimple || hasDefault();
225   bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
226   if (HaveDefault != VTSHaveDefault)
227     return false;
228 
229   SmallSet<unsigned, 4> Modes;
230   for (auto &I : *this)
231     Modes.insert(I.first);
232   for (const auto &I : VTS)
233     Modes.insert(I.first);
234 
235   if (HaveDefault) {
236     // Both sets have default mode.
237     for (unsigned M : Modes) {
238       if (get(M) != VTS.get(M))
239         return false;
240     }
241   } else {
242     // Neither set has default mode.
243     for (unsigned M : Modes) {
244       // If there is no default mode, an empty set is equivalent to not having
245       // the corresponding mode.
246       bool NoModeThis = !hasMode(M) || get(M).empty();
247       bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
248       if (NoModeThis != NoModeVTS)
249         return false;
250       if (!NoModeThis)
251         if (get(M) != VTS.get(M))
252           return false;
253     }
254   }
255 
256   return true;
257 }
258 
259 namespace llvm {
260   raw_ostream &operator<<(raw_ostream &OS, const MachineValueTypeSet &T) {
261     T.writeToStream(OS);
262     return OS;
263   }
264   raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
265     T.writeToStream(OS);
266     return OS;
267   }
268 }
269 
270 LLVM_DUMP_METHOD
271 void TypeSetByHwMode::dump() const {
272   dbgs() << *this << '\n';
273 }
274 
275 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
276   bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
277   // Complement of In.
278   auto CompIn = [&In](MVT T) -> bool { return !In.count(T); };
279 
280   if (OutP == InP)
281     return berase_if(Out, CompIn);
282 
283   // Compute the intersection of scalars separately to account for only
284   // one set containing iPTR.
285   // The intersection of iPTR with a set of integer scalar types that does not
286   // include iPTR will result in the most specific scalar type:
287   // - iPTR is more specific than any set with two elements or more
288   // - iPTR is less specific than any single integer scalar type.
289   // For example
290   // { iPTR } * { i32 }     -> { i32 }
291   // { iPTR } * { i32 i64 } -> { iPTR }
292   // and
293   // { iPTR i32 } * { i32 }          -> { i32 }
294   // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
295   // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
296 
297   // Let In' = elements only in In, Out' = elements only in Out, and
298   // IO = elements common to both. Normally IO would be returned as the result
299   // of the intersection, but we need to account for iPTR being a "wildcard" of
300   // sorts. Since elements in IO are those that match both sets exactly, they
301   // will all belong to the output. If any of the "leftovers" (i.e. In' or
302   // Out') contain iPTR, it means that the other set doesn't have it, but it
303   // could have (1) a more specific type, or (2) a set of types that is less
304   // specific. The "leftovers" from the other set is what we want to examine
305   // more closely.
306 
307   auto subtract = [](const SetType &A, const SetType &B) {
308     SetType Diff = A;
309     berase_if(Diff, [&B](MVT T) { return B.count(T); });
310     return Diff;
311   };
312 
313   if (InP) {
314     SetType OutOnly = subtract(Out, In);
315     if (OutOnly.empty()) {
316       // This means that Out \subset In, so no change to Out.
317       return false;
318     }
319     unsigned NumI = llvm::count_if(OutOnly, isScalarInteger);
320     if (NumI == 1 && OutOnly.size() == 1) {
321       // There is only one element in Out', and it happens to be a scalar
322       // integer that should be kept as a match for iPTR in In.
323       return false;
324     }
325     berase_if(Out, CompIn);
326     if (NumI == 1) {
327       // Replace the iPTR with the leftover scalar integer.
328       Out.insert(*llvm::find_if(OutOnly, isScalarInteger));
329     } else if (NumI > 1) {
330       Out.insert(MVT::iPTR);
331     }
332     return true;
333   }
334 
335   // OutP == true
336   SetType InOnly = subtract(In, Out);
337   unsigned SizeOut = Out.size();
338   berase_if(Out, CompIn);   // This will remove at least the iPTR.
339   unsigned NumI = llvm::count_if(InOnly, isScalarInteger);
340   if (NumI == 0) {
341     // iPTR deleted from Out.
342     return true;
343   }
344   if (NumI == 1) {
345     // Replace the iPTR with the leftover scalar integer.
346     Out.insert(*llvm::find_if(InOnly, isScalarInteger));
347     return true;
348   }
349 
350   // NumI > 1: Keep the iPTR in Out.
351   Out.insert(MVT::iPTR);
352   // If iPTR was the only element initially removed from Out, then Out
353   // has not changed.
354   return SizeOut != Out.size();
355 }
356 
357 bool TypeSetByHwMode::validate() const {
358   if (empty())
359     return true;
360   bool AllEmpty = true;
361   for (const auto &I : *this)
362     AllEmpty &= I.second.empty();
363   return !AllEmpty;
364 }
365 
366 // --- TypeInfer
367 
368 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
369                                 const TypeSetByHwMode &In) const {
370   ValidateOnExit _1(Out, *this);
371   In.validate();
372   if (In.empty() || Out == In || TP.hasError())
373     return false;
374   if (Out.empty()) {
375     Out = In;
376     return true;
377   }
378 
379   bool Changed = Out.constrain(In);
380   if (Changed && Out.empty())
381     TP.error("Type contradiction");
382 
383   return Changed;
384 }
385 
386 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
387   ValidateOnExit _1(Out, *this);
388   if (TP.hasError())
389     return false;
390   assert(!Out.empty() && "cannot pick from an empty set");
391 
392   bool Changed = false;
393   for (auto &I : Out) {
394     TypeSetByHwMode::SetType &S = I.second;
395     if (S.size() <= 1)
396       continue;
397     MVT T = *S.begin(); // Pick the first element.
398     S.clear();
399     S.insert(T);
400     Changed = true;
401   }
402   return Changed;
403 }
404 
405 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
406   ValidateOnExit _1(Out, *this);
407   if (TP.hasError())
408     return false;
409   if (!Out.empty())
410     return Out.constrain(isIntegerOrPtr);
411 
412   return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
413 }
414 
415 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
416   ValidateOnExit _1(Out, *this);
417   if (TP.hasError())
418     return false;
419   if (!Out.empty())
420     return Out.constrain(isFloatingPoint);
421 
422   return Out.assign_if(getLegalTypes(), isFloatingPoint);
423 }
424 
425 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
426   ValidateOnExit _1(Out, *this);
427   if (TP.hasError())
428     return false;
429   if (!Out.empty())
430     return Out.constrain(isScalar);
431 
432   return Out.assign_if(getLegalTypes(), isScalar);
433 }
434 
435 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
436   ValidateOnExit _1(Out, *this);
437   if (TP.hasError())
438     return false;
439   if (!Out.empty())
440     return Out.constrain(isVector);
441 
442   return Out.assign_if(getLegalTypes(), isVector);
443 }
444 
445 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
446   ValidateOnExit _1(Out, *this);
447   if (TP.hasError() || !Out.empty())
448     return false;
449 
450   Out = getLegalTypes();
451   return true;
452 }
453 
454 template <typename Iter, typename Pred, typename Less>
455 static Iter min_if(Iter B, Iter E, Pred P, Less L) {
456   if (B == E)
457     return E;
458   Iter Min = E;
459   for (Iter I = B; I != E; ++I) {
460     if (!P(*I))
461       continue;
462     if (Min == E || L(*I, *Min))
463       Min = I;
464   }
465   return Min;
466 }
467 
468 template <typename Iter, typename Pred, typename Less>
469 static Iter max_if(Iter B, Iter E, Pred P, Less L) {
470   if (B == E)
471     return E;
472   Iter Max = E;
473   for (Iter I = B; I != E; ++I) {
474     if (!P(*I))
475       continue;
476     if (Max == E || L(*Max, *I))
477       Max = I;
478   }
479   return Max;
480 }
481 
482 /// Make sure that for each type in Small, there exists a larger type in Big.
483 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big,
484                                    bool SmallIsVT) {
485   ValidateOnExit _1(Small, *this), _2(Big, *this);
486   if (TP.hasError())
487     return false;
488   bool Changed = false;
489 
490   assert((!SmallIsVT || !Small.empty()) &&
491          "Small should not be empty for SDTCisVTSmallerThanOp");
492 
493   if (Small.empty())
494     Changed |= EnforceAny(Small);
495   if (Big.empty())
496     Changed |= EnforceAny(Big);
497 
498   assert(Small.hasDefault() && Big.hasDefault());
499 
500   SmallVector<unsigned, 4> Modes;
501   union_modes(Small, Big, Modes);
502 
503   // 1. Only allow integer or floating point types and make sure that
504   //    both sides are both integer or both floating point.
505   // 2. Make sure that either both sides have vector types, or neither
506   //    of them does.
507   for (unsigned M : Modes) {
508     TypeSetByHwMode::SetType &S = Small.get(M);
509     TypeSetByHwMode::SetType &B = Big.get(M);
510 
511     assert((!SmallIsVT || !S.empty()) && "Expected non-empty type");
512 
513     if (any_of(S, isIntegerOrPtr) && any_of(B, isIntegerOrPtr)) {
514       auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
515       Changed |= berase_if(S, NotInt);
516       Changed |= berase_if(B, NotInt);
517     } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
518       auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
519       Changed |= berase_if(S, NotFP);
520       Changed |= berase_if(B, NotFP);
521     } else if (SmallIsVT && B.empty()) {
522       // B is empty and since S is a specific VT, it will never be empty. Don't
523       // report this as a change, just clear S and continue. This prevents an
524       // infinite loop.
525       S.clear();
526     } else if (S.empty() || B.empty()) {
527       Changed = !S.empty() || !B.empty();
528       S.clear();
529       B.clear();
530     } else {
531       TP.error("Incompatible types");
532       return Changed;
533     }
534 
535     if (none_of(S, isVector) || none_of(B, isVector)) {
536       Changed |= berase_if(S, isVector);
537       Changed |= berase_if(B, isVector);
538     }
539   }
540 
541   auto LT = [](MVT A, MVT B) -> bool {
542     // Always treat non-scalable MVTs as smaller than scalable MVTs for the
543     // purposes of ordering.
544     auto ASize = std::make_tuple(A.isScalableVector(), A.getScalarSizeInBits(),
545                                  A.getSizeInBits().getKnownMinValue());
546     auto BSize = std::make_tuple(B.isScalableVector(), B.getScalarSizeInBits(),
547                                  B.getSizeInBits().getKnownMinValue());
548     return ASize < BSize;
549   };
550   auto SameKindLE = [](MVT A, MVT B) -> bool {
551     // This function is used when removing elements: when a vector is compared
552     // to a non-vector or a scalable vector to any non-scalable MVT, it should
553     // return false (to avoid removal).
554     if (std::make_tuple(A.isVector(), A.isScalableVector()) !=
555         std::make_tuple(B.isVector(), B.isScalableVector()))
556       return false;
557 
558     return std::make_tuple(A.getScalarSizeInBits(),
559                            A.getSizeInBits().getKnownMinValue()) <=
560            std::make_tuple(B.getScalarSizeInBits(),
561                            B.getSizeInBits().getKnownMinValue());
562   };
563 
564   for (unsigned M : Modes) {
565     TypeSetByHwMode::SetType &S = Small.get(M);
566     TypeSetByHwMode::SetType &B = Big.get(M);
567     // MinS = min scalar in Small, remove all scalars from Big that are
568     // smaller-or-equal than MinS.
569     auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
570     if (MinS != S.end())
571       Changed |= berase_if(B, std::bind(SameKindLE,
572                                         std::placeholders::_1, *MinS));
573 
574     // MaxS = max scalar in Big, remove all scalars from Small that are
575     // larger than MaxS.
576     auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
577     if (MaxS != B.end())
578       Changed |= berase_if(S, std::bind(SameKindLE,
579                                         *MaxS, std::placeholders::_1));
580 
581     // MinV = min vector in Small, remove all vectors from Big that are
582     // smaller-or-equal than MinV.
583     auto MinV = min_if(S.begin(), S.end(), isVector, LT);
584     if (MinV != S.end())
585       Changed |= berase_if(B, std::bind(SameKindLE,
586                                         std::placeholders::_1, *MinV));
587 
588     // MaxV = max vector in Big, remove all vectors from Small that are
589     // larger than MaxV.
590     auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
591     if (MaxV != B.end())
592       Changed |= berase_if(S, std::bind(SameKindLE,
593                                         *MaxV, std::placeholders::_1));
594   }
595 
596   return Changed;
597 }
598 
599 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
600 ///    for each type U in Elem, U is a scalar type.
601 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
602 ///    type T in Vec, such that U is the element type of T.
603 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
604                                        TypeSetByHwMode &Elem) {
605   ValidateOnExit _1(Vec, *this), _2(Elem, *this);
606   if (TP.hasError())
607     return false;
608   bool Changed = false;
609 
610   if (Vec.empty())
611     Changed |= EnforceVector(Vec);
612   if (Elem.empty())
613     Changed |= EnforceScalar(Elem);
614 
615   SmallVector<unsigned, 4> Modes;
616   union_modes(Vec, Elem, Modes);
617   for (unsigned M : Modes) {
618     TypeSetByHwMode::SetType &V = Vec.get(M);
619     TypeSetByHwMode::SetType &E = Elem.get(M);
620 
621     Changed |= berase_if(V, isScalar);  // Scalar = !vector
622     Changed |= berase_if(E, isVector);  // Vector = !scalar
623     assert(!V.empty() && !E.empty());
624 
625     MachineValueTypeSet VT, ST;
626     // Collect element types from the "vector" set.
627     for (MVT T : V)
628       VT.insert(T.getVectorElementType());
629     // Collect scalar types from the "element" set.
630     for (MVT T : E)
631       ST.insert(T);
632 
633     // Remove from V all (vector) types whose element type is not in S.
634     Changed |= berase_if(V, [&ST](MVT T) -> bool {
635                               return !ST.count(T.getVectorElementType());
636                             });
637     // Remove from E all (scalar) types, for which there is no corresponding
638     // type in V.
639     Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
640   }
641 
642   return Changed;
643 }
644 
645 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
646                                        const ValueTypeByHwMode &VVT) {
647   TypeSetByHwMode Tmp(VVT);
648   ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
649   return EnforceVectorEltTypeIs(Vec, Tmp);
650 }
651 
652 /// Ensure that for each type T in Sub, T is a vector type, and there
653 /// exists a type U in Vec such that U is a vector type with the same
654 /// element type as T and at least as many elements as T.
655 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
656                                              TypeSetByHwMode &Sub) {
657   ValidateOnExit _1(Vec, *this), _2(Sub, *this);
658   if (TP.hasError())
659     return false;
660 
661   /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
662   auto IsSubVec = [](MVT B, MVT P) -> bool {
663     if (!B.isVector() || !P.isVector())
664       return false;
665     // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
666     // but until there are obvious use-cases for this, keep the
667     // types separate.
668     if (B.isScalableVector() != P.isScalableVector())
669       return false;
670     if (B.getVectorElementType() != P.getVectorElementType())
671       return false;
672     return B.getVectorMinNumElements() < P.getVectorMinNumElements();
673   };
674 
675   /// Return true if S has no element (vector type) that T is a sub-vector of,
676   /// i.e. has the same element type as T and more elements.
677   auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
678     for (auto I : S)
679       if (IsSubVec(T, I))
680         return false;
681     return true;
682   };
683 
684   /// Return true if S has no element (vector type) that T is a super-vector
685   /// of, i.e. has the same element type as T and fewer elements.
686   auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
687     for (auto I : S)
688       if (IsSubVec(I, T))
689         return false;
690     return true;
691   };
692 
693   bool Changed = false;
694 
695   if (Vec.empty())
696     Changed |= EnforceVector(Vec);
697   if (Sub.empty())
698     Changed |= EnforceVector(Sub);
699 
700   SmallVector<unsigned, 4> Modes;
701   union_modes(Vec, Sub, Modes);
702   for (unsigned M : Modes) {
703     TypeSetByHwMode::SetType &S = Sub.get(M);
704     TypeSetByHwMode::SetType &V = Vec.get(M);
705 
706     Changed |= berase_if(S, isScalar);
707 
708     // Erase all types from S that are not sub-vectors of a type in V.
709     Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
710 
711     // Erase all types from V that are not super-vectors of a type in S.
712     Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
713   }
714 
715   return Changed;
716 }
717 
718 /// 1. Ensure that V has a scalar type iff W has a scalar type.
719 /// 2. Ensure that for each vector type T in V, there exists a vector
720 ///    type U in W, such that T and U have the same number of elements.
721 /// 3. Ensure that for each vector type U in W, there exists a vector
722 ///    type T in V, such that T and U have the same number of elements
723 ///    (reverse of 2).
724 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
725   ValidateOnExit _1(V, *this), _2(W, *this);
726   if (TP.hasError())
727     return false;
728 
729   bool Changed = false;
730   if (V.empty())
731     Changed |= EnforceAny(V);
732   if (W.empty())
733     Changed |= EnforceAny(W);
734 
735   // An actual vector type cannot have 0 elements, so we can treat scalars
736   // as zero-length vectors. This way both vectors and scalars can be
737   // processed identically.
738   auto NoLength = [](const SmallDenseSet<ElementCount> &Lengths,
739                      MVT T) -> bool {
740     return !Lengths.count(T.isVector() ? T.getVectorElementCount()
741                                        : ElementCount());
742   };
743 
744   SmallVector<unsigned, 4> Modes;
745   union_modes(V, W, Modes);
746   for (unsigned M : Modes) {
747     TypeSetByHwMode::SetType &VS = V.get(M);
748     TypeSetByHwMode::SetType &WS = W.get(M);
749 
750     SmallDenseSet<ElementCount> VN, WN;
751     for (MVT T : VS)
752       VN.insert(T.isVector() ? T.getVectorElementCount() : ElementCount());
753     for (MVT T : WS)
754       WN.insert(T.isVector() ? T.getVectorElementCount() : ElementCount());
755 
756     Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
757     Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
758   }
759   return Changed;
760 }
761 
762 namespace {
763 struct TypeSizeComparator {
764   bool operator()(const TypeSize &LHS, const TypeSize &RHS) const {
765     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
766            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
767   }
768 };
769 } // end anonymous namespace
770 
771 /// 1. Ensure that for each type T in A, there exists a type U in B,
772 ///    such that T and U have equal size in bits.
773 /// 2. Ensure that for each type U in B, there exists a type T in A
774 ///    such that T and U have equal size in bits (reverse of 1).
775 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
776   ValidateOnExit _1(A, *this), _2(B, *this);
777   if (TP.hasError())
778     return false;
779   bool Changed = false;
780   if (A.empty())
781     Changed |= EnforceAny(A);
782   if (B.empty())
783     Changed |= EnforceAny(B);
784 
785   typedef SmallSet<TypeSize, 2, TypeSizeComparator> TypeSizeSet;
786 
787   auto NoSize = [](const TypeSizeSet &Sizes, MVT T) -> bool {
788     return !Sizes.count(T.getSizeInBits());
789   };
790 
791   SmallVector<unsigned, 4> Modes;
792   union_modes(A, B, Modes);
793   for (unsigned M : Modes) {
794     TypeSetByHwMode::SetType &AS = A.get(M);
795     TypeSetByHwMode::SetType &BS = B.get(M);
796     TypeSizeSet AN, BN;
797 
798     for (MVT T : AS)
799       AN.insert(T.getSizeInBits());
800     for (MVT T : BS)
801       BN.insert(T.getSizeInBits());
802 
803     Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
804     Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
805   }
806 
807   return Changed;
808 }
809 
810 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) const {
811   ValidateOnExit _1(VTS, *this);
812   const TypeSetByHwMode &Legal = getLegalTypes();
813   assert(Legal.isSimple() && "Default-mode only expected");
814   const TypeSetByHwMode::SetType &LegalTypes = Legal.getSimple();
815 
816   for (auto &I : VTS)
817     expandOverloads(I.second, LegalTypes);
818 }
819 
820 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
821                                 const TypeSetByHwMode::SetType &Legal) const {
822   if (Out.count(MVT::iPTRAny)) {
823     Out.erase(MVT::iPTRAny);
824     Out.insert(MVT::iPTR);
825   } else if (Out.count(MVT::iAny)) {
826     Out.erase(MVT::iAny);
827     for (MVT T : MVT::integer_valuetypes())
828       if (Legal.count(T))
829         Out.insert(T);
830     for (MVT T : MVT::integer_fixedlen_vector_valuetypes())
831       if (Legal.count(T))
832         Out.insert(T);
833     for (MVT T : MVT::integer_scalable_vector_valuetypes())
834       if (Legal.count(T))
835         Out.insert(T);
836   } else if (Out.count(MVT::fAny)) {
837     Out.erase(MVT::fAny);
838     for (MVT T : MVT::fp_valuetypes())
839       if (Legal.count(T))
840         Out.insert(T);
841     for (MVT T : MVT::fp_fixedlen_vector_valuetypes())
842       if (Legal.count(T))
843         Out.insert(T);
844     for (MVT T : MVT::fp_scalable_vector_valuetypes())
845       if (Legal.count(T))
846         Out.insert(T);
847   } else if (Out.count(MVT::vAny)) {
848     Out.erase(MVT::vAny);
849     for (MVT T : MVT::vector_valuetypes())
850       if (Legal.count(T))
851         Out.insert(T);
852   } else if (Out.count(MVT::Any)) {
853     Out.erase(MVT::Any);
854     for (MVT T : MVT::all_valuetypes())
855       if (Legal.count(T))
856         Out.insert(T);
857   }
858 }
859 
860 const TypeSetByHwMode &TypeInfer::getLegalTypes() const {
861   if (!LegalTypesCached) {
862     TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
863     // Stuff all types from all modes into the default mode.
864     const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
865     for (const auto &I : LTS)
866       LegalTypes.insert(I.second);
867     LegalTypesCached = true;
868   }
869   assert(LegalCache.isSimple() && "Default-mode only expected");
870   return LegalCache;
871 }
872 
873 TypeInfer::ValidateOnExit::~ValidateOnExit() {
874   if (Infer.Validate && !VTS.validate()) {
875 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
876     errs() << "Type set is empty for each HW mode:\n"
877               "possible type contradiction in the pattern below "
878               "(use -print-records with llvm-tblgen to see all "
879               "expanded records).\n";
880     Infer.TP.dump();
881     errs() << "Generated from record:\n";
882     Infer.TP.getRecord()->dump();
883 #endif
884     PrintFatalError(Infer.TP.getRecord()->getLoc(),
885                     "Type set is empty for each HW mode in '" +
886                         Infer.TP.getRecord()->getName() + "'");
887   }
888 }
889 
890 
891 //===----------------------------------------------------------------------===//
892 // ScopedName Implementation
893 //===----------------------------------------------------------------------===//
894 
895 bool ScopedName::operator==(const ScopedName &o) const {
896   return Scope == o.Scope && Identifier == o.Identifier;
897 }
898 
899 bool ScopedName::operator!=(const ScopedName &o) const {
900   return !(*this == o);
901 }
902 
903 
904 //===----------------------------------------------------------------------===//
905 // TreePredicateFn Implementation
906 //===----------------------------------------------------------------------===//
907 
908 /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
909 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
910   assert(
911       (!hasPredCode() || !hasImmCode()) &&
912       ".td file corrupt: can't have a node predicate *and* an imm predicate");
913 }
914 
915 bool TreePredicateFn::hasPredCode() const {
916   return isLoad() || isStore() || isAtomic() || hasNoUse() ||
917          !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
918 }
919 
920 std::string TreePredicateFn::getPredCode() const {
921   std::string Code;
922 
923   if (!isLoad() && !isStore() && !isAtomic()) {
924     Record *MemoryVT = getMemoryVT();
925 
926     if (MemoryVT)
927       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
928                       "MemoryVT requires IsLoad or IsStore");
929   }
930 
931   if (!isLoad() && !isStore()) {
932     if (isUnindexed())
933       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
934                       "IsUnindexed requires IsLoad or IsStore");
935 
936     Record *ScalarMemoryVT = getScalarMemoryVT();
937 
938     if (ScalarMemoryVT)
939       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
940                       "ScalarMemoryVT requires IsLoad or IsStore");
941   }
942 
943   if (isLoad() + isStore() + isAtomic() > 1)
944     PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
945                     "IsLoad, IsStore, and IsAtomic are mutually exclusive");
946 
947   if (isLoad()) {
948     if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
949         !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
950         getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr &&
951         getMinAlignment() < 1)
952       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
953                       "IsLoad cannot be used by itself");
954   } else {
955     if (isNonExtLoad())
956       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
957                       "IsNonExtLoad requires IsLoad");
958     if (isAnyExtLoad())
959       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
960                       "IsAnyExtLoad requires IsLoad");
961 
962     if (!isAtomic()) {
963       if (isSignExtLoad())
964         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
965                         "IsSignExtLoad requires IsLoad or IsAtomic");
966       if (isZeroExtLoad())
967         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
968                         "IsZeroExtLoad requires IsLoad or IsAtomic");
969     }
970   }
971 
972   if (isStore()) {
973     if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
974         getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr &&
975         getAddressSpaces() == nullptr && getMinAlignment() < 1)
976       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
977                       "IsStore cannot be used by itself");
978   } else {
979     if (isNonTruncStore())
980       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
981                       "IsNonTruncStore requires IsStore");
982     if (isTruncStore())
983       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
984                       "IsTruncStore requires IsStore");
985   }
986 
987   if (isAtomic()) {
988     if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
989         getAddressSpaces() == nullptr &&
990         // FIXME: Should atomic loads be IsLoad, IsAtomic, or both?
991         !isZeroExtLoad() && !isSignExtLoad() && !isAtomicOrderingAcquire() &&
992         !isAtomicOrderingRelease() && !isAtomicOrderingAcquireRelease() &&
993         !isAtomicOrderingSequentiallyConsistent() &&
994         !isAtomicOrderingAcquireOrStronger() &&
995         !isAtomicOrderingReleaseOrStronger() &&
996         !isAtomicOrderingWeakerThanAcquire() &&
997         !isAtomicOrderingWeakerThanRelease())
998       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
999                       "IsAtomic cannot be used by itself");
1000   } else {
1001     if (isAtomicOrderingMonotonic())
1002       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1003                       "IsAtomicOrderingMonotonic requires IsAtomic");
1004     if (isAtomicOrderingAcquire())
1005       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1006                       "IsAtomicOrderingAcquire requires IsAtomic");
1007     if (isAtomicOrderingRelease())
1008       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1009                       "IsAtomicOrderingRelease requires IsAtomic");
1010     if (isAtomicOrderingAcquireRelease())
1011       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1012                       "IsAtomicOrderingAcquireRelease requires IsAtomic");
1013     if (isAtomicOrderingSequentiallyConsistent())
1014       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1015                       "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
1016     if (isAtomicOrderingAcquireOrStronger())
1017       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1018                       "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
1019     if (isAtomicOrderingReleaseOrStronger())
1020       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1021                       "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
1022     if (isAtomicOrderingWeakerThanAcquire())
1023       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1024                       "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
1025   }
1026 
1027   if (isLoad() || isStore() || isAtomic()) {
1028     if (ListInit *AddressSpaces = getAddressSpaces()) {
1029       Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
1030         " if (";
1031 
1032       ListSeparator LS(" && ");
1033       for (Init *Val : AddressSpaces->getValues()) {
1034         Code += LS;
1035 
1036         IntInit *IntVal = dyn_cast<IntInit>(Val);
1037         if (!IntVal) {
1038           PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1039                           "AddressSpaces element must be integer");
1040         }
1041 
1042         Code += "AddrSpace != " + utostr(IntVal->getValue());
1043       }
1044 
1045       Code += ")\nreturn false;\n";
1046     }
1047 
1048     int64_t MinAlign = getMinAlignment();
1049     if (MinAlign > 0) {
1050       Code += "if (cast<MemSDNode>(N)->getAlign() < Align(";
1051       Code += utostr(MinAlign);
1052       Code += "))\nreturn false;\n";
1053     }
1054 
1055     Record *MemoryVT = getMemoryVT();
1056 
1057     if (MemoryVT)
1058       Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
1059                MemoryVT->getName() + ") return false;\n")
1060                   .str();
1061   }
1062 
1063   if (isAtomic() && isAtomicOrderingMonotonic())
1064     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1065             "AtomicOrdering::Monotonic) return false;\n";
1066   if (isAtomic() && isAtomicOrderingAcquire())
1067     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1068             "AtomicOrdering::Acquire) return false;\n";
1069   if (isAtomic() && isAtomicOrderingRelease())
1070     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1071             "AtomicOrdering::Release) return false;\n";
1072   if (isAtomic() && isAtomicOrderingAcquireRelease())
1073     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1074             "AtomicOrdering::AcquireRelease) return false;\n";
1075   if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
1076     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1077             "AtomicOrdering::SequentiallyConsistent) return false;\n";
1078 
1079   if (isAtomic() && isAtomicOrderingAcquireOrStronger())
1080     Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1081             "return false;\n";
1082   if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
1083     Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1084             "return false;\n";
1085 
1086   if (isAtomic() && isAtomicOrderingReleaseOrStronger())
1087     Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1088             "return false;\n";
1089   if (isAtomic() && isAtomicOrderingWeakerThanRelease())
1090     Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1091             "return false;\n";
1092 
1093   // TODO: Handle atomic sextload/zextload normally when ATOMIC_LOAD is removed.
1094   if (isAtomic() && (isZeroExtLoad() || isSignExtLoad()))
1095     Code += "return false;\n";
1096 
1097   if (isLoad() || isStore()) {
1098     StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
1099 
1100     if (isUnindexed())
1101       Code += ("if (cast<" + SDNodeName +
1102                ">(N)->getAddressingMode() != ISD::UNINDEXED) "
1103                "return false;\n")
1104                   .str();
1105 
1106     if (isLoad()) {
1107       if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
1108            isZeroExtLoad()) > 1)
1109         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1110                         "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
1111                         "IsZeroExtLoad are mutually exclusive");
1112       if (isNonExtLoad())
1113         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
1114                 "ISD::NON_EXTLOAD) return false;\n";
1115       if (isAnyExtLoad())
1116         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1117                 "return false;\n";
1118       if (isSignExtLoad())
1119         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1120                 "return false;\n";
1121       if (isZeroExtLoad())
1122         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1123                 "return false;\n";
1124     } else {
1125       if ((isNonTruncStore() + isTruncStore()) > 1)
1126         PrintFatalError(
1127             getOrigPatFragRecord()->getRecord()->getLoc(),
1128             "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1129       if (isNonTruncStore())
1130         Code +=
1131             " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1132       if (isTruncStore())
1133         Code +=
1134             " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1135     }
1136 
1137     Record *ScalarMemoryVT = getScalarMemoryVT();
1138 
1139     if (ScalarMemoryVT)
1140       Code += ("if (cast<" + SDNodeName +
1141                ">(N)->getMemoryVT().getScalarType() != MVT::" +
1142                ScalarMemoryVT->getName() + ") return false;\n")
1143                   .str();
1144   }
1145 
1146   if (hasNoUse())
1147     Code += "if (!SDValue(N, 0).use_empty()) return false;\n";
1148 
1149   std::string PredicateCode =
1150       std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode"));
1151 
1152   Code += PredicateCode;
1153 
1154   if (PredicateCode.empty() && !Code.empty())
1155     Code += "return true;\n";
1156 
1157   return Code;
1158 }
1159 
1160 bool TreePredicateFn::hasImmCode() const {
1161   return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1162 }
1163 
1164 std::string TreePredicateFn::getImmCode() const {
1165   return std::string(
1166       PatFragRec->getRecord()->getValueAsString("ImmediateCode"));
1167 }
1168 
1169 bool TreePredicateFn::immCodeUsesAPInt() const {
1170   return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1171 }
1172 
1173 bool TreePredicateFn::immCodeUsesAPFloat() const {
1174   bool Unset;
1175   // The return value will be false when IsAPFloat is unset.
1176   return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1177                                                                    Unset);
1178 }
1179 
1180 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1181                                                    bool Value) const {
1182   bool Unset;
1183   bool Result =
1184       getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1185   if (Unset)
1186     return false;
1187   return Result == Value;
1188 }
1189 bool TreePredicateFn::usesOperands() const {
1190   return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
1191 }
1192 bool TreePredicateFn::hasNoUse() const {
1193   return isPredefinedPredicateEqualTo("HasNoUse", true);
1194 }
1195 bool TreePredicateFn::isLoad() const {
1196   return isPredefinedPredicateEqualTo("IsLoad", true);
1197 }
1198 bool TreePredicateFn::isStore() const {
1199   return isPredefinedPredicateEqualTo("IsStore", true);
1200 }
1201 bool TreePredicateFn::isAtomic() const {
1202   return isPredefinedPredicateEqualTo("IsAtomic", true);
1203 }
1204 bool TreePredicateFn::isUnindexed() const {
1205   return isPredefinedPredicateEqualTo("IsUnindexed", true);
1206 }
1207 bool TreePredicateFn::isNonExtLoad() const {
1208   return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1209 }
1210 bool TreePredicateFn::isAnyExtLoad() const {
1211   return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1212 }
1213 bool TreePredicateFn::isSignExtLoad() const {
1214   return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1215 }
1216 bool TreePredicateFn::isZeroExtLoad() const {
1217   return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1218 }
1219 bool TreePredicateFn::isNonTruncStore() const {
1220   return isPredefinedPredicateEqualTo("IsTruncStore", false);
1221 }
1222 bool TreePredicateFn::isTruncStore() const {
1223   return isPredefinedPredicateEqualTo("IsTruncStore", true);
1224 }
1225 bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1226   return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1227 }
1228 bool TreePredicateFn::isAtomicOrderingAcquire() const {
1229   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1230 }
1231 bool TreePredicateFn::isAtomicOrderingRelease() const {
1232   return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1233 }
1234 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1235   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1236 }
1237 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1238   return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1239                                       true);
1240 }
1241 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1242   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1243 }
1244 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1245   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1246 }
1247 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1248   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1249 }
1250 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1251   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1252 }
1253 Record *TreePredicateFn::getMemoryVT() const {
1254   Record *R = getOrigPatFragRecord()->getRecord();
1255   if (R->isValueUnset("MemoryVT"))
1256     return nullptr;
1257   return R->getValueAsDef("MemoryVT");
1258 }
1259 
1260 ListInit *TreePredicateFn::getAddressSpaces() const {
1261   Record *R = getOrigPatFragRecord()->getRecord();
1262   if (R->isValueUnset("AddressSpaces"))
1263     return nullptr;
1264   return R->getValueAsListInit("AddressSpaces");
1265 }
1266 
1267 int64_t TreePredicateFn::getMinAlignment() const {
1268   Record *R = getOrigPatFragRecord()->getRecord();
1269   if (R->isValueUnset("MinAlignment"))
1270     return 0;
1271   return R->getValueAsInt("MinAlignment");
1272 }
1273 
1274 Record *TreePredicateFn::getScalarMemoryVT() const {
1275   Record *R = getOrigPatFragRecord()->getRecord();
1276   if (R->isValueUnset("ScalarMemoryVT"))
1277     return nullptr;
1278   return R->getValueAsDef("ScalarMemoryVT");
1279 }
1280 bool TreePredicateFn::hasGISelPredicateCode() const {
1281   return !PatFragRec->getRecord()
1282               ->getValueAsString("GISelPredicateCode")
1283               .empty();
1284 }
1285 std::string TreePredicateFn::getGISelPredicateCode() const {
1286   return std::string(
1287       PatFragRec->getRecord()->getValueAsString("GISelPredicateCode"));
1288 }
1289 
1290 StringRef TreePredicateFn::getImmType() const {
1291   if (immCodeUsesAPInt())
1292     return "const APInt &";
1293   if (immCodeUsesAPFloat())
1294     return "const APFloat &";
1295   return "int64_t";
1296 }
1297 
1298 StringRef TreePredicateFn::getImmTypeIdentifier() const {
1299   if (immCodeUsesAPInt())
1300     return "APInt";
1301   if (immCodeUsesAPFloat())
1302     return "APFloat";
1303   return "I64";
1304 }
1305 
1306 /// isAlwaysTrue - Return true if this is a noop predicate.
1307 bool TreePredicateFn::isAlwaysTrue() const {
1308   return !hasPredCode() && !hasImmCode();
1309 }
1310 
1311 /// Return the name to use in the generated code to reference this, this is
1312 /// "Predicate_foo" if from a pattern fragment "foo".
1313 std::string TreePredicateFn::getFnName() const {
1314   return "Predicate_" + PatFragRec->getRecord()->getName().str();
1315 }
1316 
1317 /// getCodeToRunOnSDNode - Return the code for the function body that
1318 /// evaluates this predicate.  The argument is expected to be in "Node",
1319 /// not N.  This handles casting and conversion to a concrete node type as
1320 /// appropriate.
1321 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1322   // Handle immediate predicates first.
1323   std::string ImmCode = getImmCode();
1324   if (!ImmCode.empty()) {
1325     if (isLoad())
1326       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1327                       "IsLoad cannot be used with ImmLeaf or its subclasses");
1328     if (isStore())
1329       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1330                       "IsStore cannot be used with ImmLeaf or its subclasses");
1331     if (isUnindexed())
1332       PrintFatalError(
1333           getOrigPatFragRecord()->getRecord()->getLoc(),
1334           "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1335     if (isNonExtLoad())
1336       PrintFatalError(
1337           getOrigPatFragRecord()->getRecord()->getLoc(),
1338           "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1339     if (isAnyExtLoad())
1340       PrintFatalError(
1341           getOrigPatFragRecord()->getRecord()->getLoc(),
1342           "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1343     if (isSignExtLoad())
1344       PrintFatalError(
1345           getOrigPatFragRecord()->getRecord()->getLoc(),
1346           "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1347     if (isZeroExtLoad())
1348       PrintFatalError(
1349           getOrigPatFragRecord()->getRecord()->getLoc(),
1350           "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1351     if (isNonTruncStore())
1352       PrintFatalError(
1353           getOrigPatFragRecord()->getRecord()->getLoc(),
1354           "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1355     if (isTruncStore())
1356       PrintFatalError(
1357           getOrigPatFragRecord()->getRecord()->getLoc(),
1358           "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1359     if (getMemoryVT())
1360       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1361                       "MemoryVT cannot be used with ImmLeaf or its subclasses");
1362     if (getScalarMemoryVT())
1363       PrintFatalError(
1364           getOrigPatFragRecord()->getRecord()->getLoc(),
1365           "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1366 
1367     std::string Result = ("    " + getImmType() + " Imm = ").str();
1368     if (immCodeUsesAPFloat())
1369       Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1370     else if (immCodeUsesAPInt())
1371       Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1372     else
1373       Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1374     return Result + ImmCode;
1375   }
1376 
1377   // Handle arbitrary node predicates.
1378   assert(hasPredCode() && "Don't have any predicate code!");
1379 
1380   // If this is using PatFrags, there are multiple trees to search. They should
1381   // all have the same class.  FIXME: Is there a way to find a common
1382   // superclass?
1383   StringRef ClassName;
1384   for (const auto &Tree : PatFragRec->getTrees()) {
1385     StringRef TreeClassName;
1386     if (Tree->isLeaf())
1387       TreeClassName = "SDNode";
1388     else {
1389       Record *Op = Tree->getOperator();
1390       const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op);
1391       TreeClassName = Info.getSDClassName();
1392     }
1393 
1394     if (ClassName.empty())
1395       ClassName = TreeClassName;
1396     else if (ClassName != TreeClassName) {
1397       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1398                       "PatFrags trees do not have consistent class");
1399     }
1400   }
1401 
1402   std::string Result;
1403   if (ClassName == "SDNode")
1404     Result = "    SDNode *N = Node;\n";
1405   else
1406     Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";
1407 
1408   return (Twine(Result) + "    (void)N;\n" + getPredCode()).str();
1409 }
1410 
1411 //===----------------------------------------------------------------------===//
1412 // PatternToMatch implementation
1413 //
1414 
1415 static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) {
1416   if (!P->isLeaf())
1417     return false;
1418   DefInit *DI = dyn_cast<DefInit>(P->getLeafValue());
1419   if (!DI)
1420     return false;
1421 
1422   Record *R = DI->getDef();
1423   return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
1424 }
1425 
1426 /// getPatternSize - Return the 'size' of this pattern.  We want to match large
1427 /// patterns before small ones.  This is used to determine the size of a
1428 /// pattern.
1429 static unsigned getPatternSize(const TreePatternNode *P,
1430                                const CodeGenDAGPatterns &CGP) {
1431   unsigned Size = 3;  // The node itself.
1432   // If the root node is a ConstantSDNode, increases its size.
1433   // e.g. (set R32:$dst, 0).
1434   if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1435     Size += 2;
1436 
1437   if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1438     Size += AM->getComplexity();
1439     // We don't want to count any children twice, so return early.
1440     return Size;
1441   }
1442 
1443   // If this node has some predicate function that must match, it adds to the
1444   // complexity of this node.
1445   if (!P->getPredicateCalls().empty())
1446     ++Size;
1447 
1448   // Count children in the count if they are also nodes.
1449   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1450     const TreePatternNode *Child = P->getChild(i);
1451     if (!Child->isLeaf() && Child->getNumTypes()) {
1452       const TypeSetByHwMode &T0 = Child->getExtType(0);
1453       // At this point, all variable type sets should be simple, i.e. only
1454       // have a default mode.
1455       if (T0.getMachineValueType() != MVT::Other) {
1456         Size += getPatternSize(Child, CGP);
1457         continue;
1458       }
1459     }
1460     if (Child->isLeaf()) {
1461       if (isa<IntInit>(Child->getLeafValue()))
1462         Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
1463       else if (Child->getComplexPatternInfo(CGP))
1464         Size += getPatternSize(Child, CGP);
1465       else if (isImmAllOnesAllZerosMatch(Child))
1466         Size += 4; // Matches a build_vector(+3) and a predicate (+1).
1467       else if (!Child->getPredicateCalls().empty())
1468         ++Size;
1469     }
1470   }
1471 
1472   return Size;
1473 }
1474 
1475 /// Compute the complexity metric for the input pattern.  This roughly
1476 /// corresponds to the number of nodes that are covered.
1477 int PatternToMatch::
1478 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1479   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1480 }
1481 
1482 void PatternToMatch::getPredicateRecords(
1483     SmallVectorImpl<Record *> &PredicateRecs) const {
1484   for (Init *I : Predicates->getValues()) {
1485     if (DefInit *Pred = dyn_cast<DefInit>(I)) {
1486       Record *Def = Pred->getDef();
1487       if (!Def->isSubClassOf("Predicate")) {
1488 #ifndef NDEBUG
1489         Def->dump();
1490 #endif
1491         llvm_unreachable("Unknown predicate type!");
1492       }
1493       PredicateRecs.push_back(Def);
1494     }
1495   }
1496   // Sort so that different orders get canonicalized to the same string.
1497   llvm::sort(PredicateRecs, LessRecord());
1498   // Remove duplicate predicates.
1499   PredicateRecs.erase(std::unique(PredicateRecs.begin(), PredicateRecs.end()),
1500                       PredicateRecs.end());
1501 }
1502 
1503 /// getPredicateCheck - Return a single string containing all of this
1504 /// pattern's predicates concatenated with "&&" operators.
1505 ///
1506 std::string PatternToMatch::getPredicateCheck() const {
1507   SmallVector<Record *, 4> PredicateRecs;
1508   getPredicateRecords(PredicateRecs);
1509 
1510   SmallString<128> PredicateCheck;
1511   raw_svector_ostream OS(PredicateCheck);
1512   ListSeparator LS(" && ");
1513   for (Record *Pred : PredicateRecs) {
1514     StringRef CondString = Pred->getValueAsString("CondString");
1515     if (CondString.empty())
1516       continue;
1517     OS << LS << '(' << CondString << ')';
1518   }
1519 
1520   if (!HwModeFeatures.empty())
1521     OS << LS << HwModeFeatures;
1522 
1523   return std::string(PredicateCheck);
1524 }
1525 
1526 //===----------------------------------------------------------------------===//
1527 // SDTypeConstraint implementation
1528 //
1529 
1530 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1531   OperandNo = R->getValueAsInt("OperandNum");
1532 
1533   if (R->isSubClassOf("SDTCisVT")) {
1534     ConstraintType = SDTCisVT;
1535     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1536     for (const auto &P : VVT)
1537       if (P.second == MVT::isVoid)
1538         PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1539   } else if (R->isSubClassOf("SDTCisPtrTy")) {
1540     ConstraintType = SDTCisPtrTy;
1541   } else if (R->isSubClassOf("SDTCisInt")) {
1542     ConstraintType = SDTCisInt;
1543   } else if (R->isSubClassOf("SDTCisFP")) {
1544     ConstraintType = SDTCisFP;
1545   } else if (R->isSubClassOf("SDTCisVec")) {
1546     ConstraintType = SDTCisVec;
1547   } else if (R->isSubClassOf("SDTCisSameAs")) {
1548     ConstraintType = SDTCisSameAs;
1549     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1550   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1551     ConstraintType = SDTCisVTSmallerThanOp;
1552     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1553       R->getValueAsInt("OtherOperandNum");
1554   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1555     ConstraintType = SDTCisOpSmallerThanOp;
1556     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1557       R->getValueAsInt("BigOperandNum");
1558   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1559     ConstraintType = SDTCisEltOfVec;
1560     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1561   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1562     ConstraintType = SDTCisSubVecOfVec;
1563     x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1564       R->getValueAsInt("OtherOpNum");
1565   } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1566     ConstraintType = SDTCVecEltisVT;
1567     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1568     for (const auto &P : VVT) {
1569       MVT T = P.second;
1570       if (T.isVector())
1571         PrintFatalError(R->getLoc(),
1572                         "Cannot use vector type as SDTCVecEltisVT");
1573       if (!T.isInteger() && !T.isFloatingPoint())
1574         PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1575                                      "as SDTCVecEltisVT");
1576     }
1577   } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1578     ConstraintType = SDTCisSameNumEltsAs;
1579     x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1580       R->getValueAsInt("OtherOperandNum");
1581   } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1582     ConstraintType = SDTCisSameSizeAs;
1583     x.SDTCisSameSizeAs_Info.OtherOperandNum =
1584       R->getValueAsInt("OtherOperandNum");
1585   } else {
1586     PrintFatalError(R->getLoc(),
1587                     "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1588   }
1589 }
1590 
1591 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1592 /// N, and the result number in ResNo.
1593 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1594                                       const SDNodeInfo &NodeInfo,
1595                                       unsigned &ResNo) {
1596   unsigned NumResults = NodeInfo.getNumResults();
1597   if (OpNo < NumResults) {
1598     ResNo = OpNo;
1599     return N;
1600   }
1601 
1602   OpNo -= NumResults;
1603 
1604   if (OpNo >= N->getNumChildren()) {
1605     std::string S;
1606     raw_string_ostream OS(S);
1607     OS << "Invalid operand number in type constraint "
1608            << (OpNo+NumResults) << " ";
1609     N->print(OS);
1610     PrintFatalError(S);
1611   }
1612 
1613   return N->getChild(OpNo);
1614 }
1615 
1616 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1617 /// constraint to the nodes operands.  This returns true if it makes a
1618 /// change, false otherwise.  If a type contradiction is found, flag an error.
1619 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1620                                            const SDNodeInfo &NodeInfo,
1621                                            TreePattern &TP) const {
1622   if (TP.hasError())
1623     return false;
1624 
1625   unsigned ResNo = 0; // The result number being referenced.
1626   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1627   TypeInfer &TI = TP.getInfer();
1628 
1629   switch (ConstraintType) {
1630   case SDTCisVT:
1631     // Operand must be a particular type.
1632     return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1633   case SDTCisPtrTy:
1634     // Operand must be same as target pointer type.
1635     return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1636   case SDTCisInt:
1637     // Require it to be one of the legal integer VTs.
1638      return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1639   case SDTCisFP:
1640     // Require it to be one of the legal fp VTs.
1641     return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1642   case SDTCisVec:
1643     // Require it to be one of the legal vector VTs.
1644     return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1645   case SDTCisSameAs: {
1646     unsigned OResNo = 0;
1647     TreePatternNode *OtherNode =
1648       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1649     return (int)NodeToApply->UpdateNodeType(ResNo,
1650                                             OtherNode->getExtType(OResNo), TP) |
1651            (int)OtherNode->UpdateNodeType(OResNo,
1652                                           NodeToApply->getExtType(ResNo), TP);
1653   }
1654   case SDTCisVTSmallerThanOp: {
1655     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1656     // have an integer type that is smaller than the VT.
1657     if (!NodeToApply->isLeaf() ||
1658         !isa<DefInit>(NodeToApply->getLeafValue()) ||
1659         !cast<DefInit>(NodeToApply->getLeafValue())->getDef()
1660                ->isSubClassOf("ValueType")) {
1661       TP.error(N->getOperator()->getName() + " expects a VT operand!");
1662       return false;
1663     }
1664     DefInit *DI = cast<DefInit>(NodeToApply->getLeafValue());
1665     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1666     auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1667     TypeSetByHwMode TypeListTmp(VVT);
1668 
1669     unsigned OResNo = 0;
1670     TreePatternNode *OtherNode =
1671       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1672                     OResNo);
1673 
1674     return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo),
1675                                  /*SmallIsVT*/ true);
1676   }
1677   case SDTCisOpSmallerThanOp: {
1678     unsigned BResNo = 0;
1679     TreePatternNode *BigOperand =
1680       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1681                     BResNo);
1682     return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1683                                  BigOperand->getExtType(BResNo));
1684   }
1685   case SDTCisEltOfVec: {
1686     unsigned VResNo = 0;
1687     TreePatternNode *VecOperand =
1688       getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1689                     VResNo);
1690     // Filter vector types out of VecOperand that don't have the right element
1691     // type.
1692     return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1693                                      NodeToApply->getExtType(ResNo));
1694   }
1695   case SDTCisSubVecOfVec: {
1696     unsigned VResNo = 0;
1697     TreePatternNode *BigVecOperand =
1698       getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1699                     VResNo);
1700 
1701     // Filter vector types out of BigVecOperand that don't have the
1702     // right subvector type.
1703     return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1704                                            NodeToApply->getExtType(ResNo));
1705   }
1706   case SDTCVecEltisVT: {
1707     return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1708   }
1709   case SDTCisSameNumEltsAs: {
1710     unsigned OResNo = 0;
1711     TreePatternNode *OtherNode =
1712       getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1713                     N, NodeInfo, OResNo);
1714     return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1715                                  NodeToApply->getExtType(ResNo));
1716   }
1717   case SDTCisSameSizeAs: {
1718     unsigned OResNo = 0;
1719     TreePatternNode *OtherNode =
1720       getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1721                     N, NodeInfo, OResNo);
1722     return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1723                               NodeToApply->getExtType(ResNo));
1724   }
1725   }
1726   llvm_unreachable("Invalid ConstraintType!");
1727 }
1728 
1729 // Update the node type to match an instruction operand or result as specified
1730 // in the ins or outs lists on the instruction definition. Return true if the
1731 // type was actually changed.
1732 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1733                                              Record *Operand,
1734                                              TreePattern &TP) {
1735   // The 'unknown' operand indicates that types should be inferred from the
1736   // context.
1737   if (Operand->isSubClassOf("unknown_class"))
1738     return false;
1739 
1740   // The Operand class specifies a type directly.
1741   if (Operand->isSubClassOf("Operand")) {
1742     Record *R = Operand->getValueAsDef("Type");
1743     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1744     return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1745   }
1746 
1747   // PointerLikeRegClass has a type that is determined at runtime.
1748   if (Operand->isSubClassOf("PointerLikeRegClass"))
1749     return UpdateNodeType(ResNo, MVT::iPTR, TP);
1750 
1751   // Both RegisterClass and RegisterOperand operands derive their types from a
1752   // register class def.
1753   Record *RC = nullptr;
1754   if (Operand->isSubClassOf("RegisterClass"))
1755     RC = Operand;
1756   else if (Operand->isSubClassOf("RegisterOperand"))
1757     RC = Operand->getValueAsDef("RegClass");
1758 
1759   assert(RC && "Unknown operand type");
1760   CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1761   return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1762 }
1763 
1764 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1765   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1766     if (!TP.getInfer().isConcrete(Types[i], true))
1767       return true;
1768   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1769     if (getChild(i)->ContainsUnresolvedType(TP))
1770       return true;
1771   return false;
1772 }
1773 
1774 bool TreePatternNode::hasProperTypeByHwMode() const {
1775   for (const TypeSetByHwMode &S : Types)
1776     if (!S.isSimple())
1777       return true;
1778   for (const TreePatternNodePtr &C : Children)
1779     if (C->hasProperTypeByHwMode())
1780       return true;
1781   return false;
1782 }
1783 
1784 bool TreePatternNode::hasPossibleType() const {
1785   for (const TypeSetByHwMode &S : Types)
1786     if (!S.isPossible())
1787       return false;
1788   for (const TreePatternNodePtr &C : Children)
1789     if (!C->hasPossibleType())
1790       return false;
1791   return true;
1792 }
1793 
1794 bool TreePatternNode::setDefaultMode(unsigned Mode) {
1795   for (TypeSetByHwMode &S : Types) {
1796     S.makeSimple(Mode);
1797     // Check if the selected mode had a type conflict.
1798     if (S.get(DefaultMode).empty())
1799       return false;
1800   }
1801   for (const TreePatternNodePtr &C : Children)
1802     if (!C->setDefaultMode(Mode))
1803       return false;
1804   return true;
1805 }
1806 
1807 //===----------------------------------------------------------------------===//
1808 // SDNodeInfo implementation
1809 //
1810 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1811   EnumName    = R->getValueAsString("Opcode");
1812   SDClassName = R->getValueAsString("SDClass");
1813   Record *TypeProfile = R->getValueAsDef("TypeProfile");
1814   NumResults = TypeProfile->getValueAsInt("NumResults");
1815   NumOperands = TypeProfile->getValueAsInt("NumOperands");
1816 
1817   // Parse the properties.
1818   Properties = parseSDPatternOperatorProperties(R);
1819 
1820   // Parse the type constraints.
1821   std::vector<Record*> ConstraintList =
1822     TypeProfile->getValueAsListOfDefs("Constraints");
1823   for (Record *R : ConstraintList)
1824     TypeConstraints.emplace_back(R, CGH);
1825 }
1826 
1827 /// getKnownType - If the type constraints on this node imply a fixed type
1828 /// (e.g. all stores return void, etc), then return it as an
1829 /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1830 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1831   unsigned NumResults = getNumResults();
1832   assert(NumResults <= 1 &&
1833          "We only work with nodes with zero or one result so far!");
1834   assert(ResNo == 0 && "Only handles single result nodes so far");
1835 
1836   for (const SDTypeConstraint &Constraint : TypeConstraints) {
1837     // Make sure that this applies to the correct node result.
1838     if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
1839       continue;
1840 
1841     switch (Constraint.ConstraintType) {
1842     default: break;
1843     case SDTypeConstraint::SDTCisVT:
1844       if (Constraint.VVT.isSimple())
1845         return Constraint.VVT.getSimple().SimpleTy;
1846       break;
1847     case SDTypeConstraint::SDTCisPtrTy:
1848       return MVT::iPTR;
1849     }
1850   }
1851   return MVT::Other;
1852 }
1853 
1854 //===----------------------------------------------------------------------===//
1855 // TreePatternNode implementation
1856 //
1857 
1858 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1859   if (Operator->getName() == "set" ||
1860       Operator->getName() == "implicit")
1861     return 0;  // All return nothing.
1862 
1863   if (Operator->isSubClassOf("Intrinsic"))
1864     return CDP.getIntrinsic(Operator).IS.RetTys.size();
1865 
1866   if (Operator->isSubClassOf("SDNode"))
1867     return CDP.getSDNodeInfo(Operator).getNumResults();
1868 
1869   if (Operator->isSubClassOf("PatFrags")) {
1870     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1871     // the forward reference case where one pattern fragment references another
1872     // before it is processed.
1873     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1874       // The number of results of a fragment with alternative records is the
1875       // maximum number of results across all alternatives.
1876       unsigned NumResults = 0;
1877       for (const auto &T : PFRec->getTrees())
1878         NumResults = std::max(NumResults, T->getNumTypes());
1879       return NumResults;
1880     }
1881 
1882     ListInit *LI = Operator->getValueAsListInit("Fragments");
1883     assert(LI && "Invalid Fragment");
1884     unsigned NumResults = 0;
1885     for (Init *I : LI->getValues()) {
1886       Record *Op = nullptr;
1887       if (DagInit *Dag = dyn_cast<DagInit>(I))
1888         if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1889           Op = DI->getDef();
1890       assert(Op && "Invalid Fragment");
1891       NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1892     }
1893     return NumResults;
1894   }
1895 
1896   if (Operator->isSubClassOf("Instruction")) {
1897     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1898 
1899     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1900 
1901     // Subtract any defaulted outputs.
1902     for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1903       Record *OperandNode = InstInfo.Operands[i].Rec;
1904 
1905       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1906           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1907         --NumDefsToAdd;
1908     }
1909 
1910     // Add on one implicit def if it has a resolvable type.
1911     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1912       ++NumDefsToAdd;
1913     return NumDefsToAdd;
1914   }
1915 
1916   if (Operator->isSubClassOf("SDNodeXForm"))
1917     return 1;  // FIXME: Generalize SDNodeXForm
1918 
1919   if (Operator->isSubClassOf("ValueType"))
1920     return 1;  // A type-cast of one result.
1921 
1922   if (Operator->isSubClassOf("ComplexPattern"))
1923     return 1;
1924 
1925   errs() << *Operator;
1926   PrintFatalError("Unhandled node in GetNumNodeResults");
1927 }
1928 
1929 void TreePatternNode::print(raw_ostream &OS) const {
1930   if (isLeaf())
1931     OS << *getLeafValue();
1932   else
1933     OS << '(' << getOperator()->getName();
1934 
1935   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1936     OS << ':';
1937     getExtType(i).writeToStream(OS);
1938   }
1939 
1940   if (!isLeaf()) {
1941     if (getNumChildren() != 0) {
1942       OS << " ";
1943       ListSeparator LS;
1944       for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1945         OS << LS;
1946         getChild(i)->print(OS);
1947       }
1948     }
1949     OS << ")";
1950   }
1951 
1952   for (const TreePredicateCall &Pred : PredicateCalls) {
1953     OS << "<<P:";
1954     if (Pred.Scope)
1955       OS << Pred.Scope << ":";
1956     OS << Pred.Fn.getFnName() << ">>";
1957   }
1958   if (TransformFn)
1959     OS << "<<X:" << TransformFn->getName() << ">>";
1960   if (!getName().empty())
1961     OS << ":$" << getName();
1962 
1963   for (const ScopedName &Name : NamesAsPredicateArg)
1964     OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
1965 }
1966 void TreePatternNode::dump() const {
1967   print(errs());
1968 }
1969 
1970 /// isIsomorphicTo - Return true if this node is recursively
1971 /// isomorphic to the specified node.  For this comparison, the node's
1972 /// entire state is considered. The assigned name is ignored, since
1973 /// nodes with differing names are considered isomorphic. However, if
1974 /// the assigned name is present in the dependent variable set, then
1975 /// the assigned name is considered significant and the node is
1976 /// isomorphic if the names match.
1977 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1978                                      const MultipleUseVarSet &DepVars) const {
1979   if (N == this) return true;
1980   if (N->isLeaf() != isLeaf())
1981     return false;
1982 
1983   // Check operator of non-leaves early since it can be cheaper than checking
1984   // types.
1985   if (!isLeaf())
1986     if (N->getOperator() != getOperator() ||
1987         N->getNumChildren() != getNumChildren())
1988       return false;
1989 
1990   if (getExtTypes() != N->getExtTypes() ||
1991       getPredicateCalls() != N->getPredicateCalls() ||
1992       getTransformFn() != N->getTransformFn())
1993     return false;
1994 
1995   if (isLeaf()) {
1996     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1997       if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1998         return ((DI->getDef() == NDI->getDef()) &&
1999                 (!DepVars.contains(getName()) || getName() == N->getName()));
2000       }
2001     }
2002     return getLeafValue() == N->getLeafValue();
2003   }
2004 
2005   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2006     if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
2007       return false;
2008   return true;
2009 }
2010 
2011 /// clone - Make a copy of this tree and all of its children.
2012 ///
2013 TreePatternNodePtr TreePatternNode::clone() const {
2014   TreePatternNodePtr New;
2015   if (isLeaf()) {
2016     New = makeIntrusiveRefCnt<TreePatternNode>(getLeafValue(), getNumTypes());
2017   } else {
2018     std::vector<TreePatternNodePtr> CChildren;
2019     CChildren.reserve(Children.size());
2020     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2021       CChildren.push_back(getChild(i)->clone());
2022     New = makeIntrusiveRefCnt<TreePatternNode>(
2023         getOperator(), std::move(CChildren), getNumTypes());
2024   }
2025   New->setName(getName());
2026   New->setNamesAsPredicateArg(getNamesAsPredicateArg());
2027   New->Types = Types;
2028   New->setPredicateCalls(getPredicateCalls());
2029   New->setGISelFlagsRecord(getGISelFlagsRecord());
2030   New->setTransformFn(getTransformFn());
2031   return New;
2032 }
2033 
2034 /// RemoveAllTypes - Recursively strip all the types of this tree.
2035 void TreePatternNode::RemoveAllTypes() {
2036   // Reset to unknown type.
2037   std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
2038   if (isLeaf()) return;
2039   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2040     getChild(i)->RemoveAllTypes();
2041 }
2042 
2043 
2044 /// SubstituteFormalArguments - Replace the formal arguments in this tree
2045 /// with actual values specified by ArgMap.
2046 void TreePatternNode::SubstituteFormalArguments(
2047     std::map<std::string, TreePatternNodePtr> &ArgMap) {
2048   if (isLeaf()) return;
2049 
2050   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
2051     TreePatternNode *Child = getChild(i);
2052     if (Child->isLeaf()) {
2053       Init *Val = Child->getLeafValue();
2054       // Note that, when substituting into an output pattern, Val might be an
2055       // UnsetInit.
2056       if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
2057           cast<DefInit>(Val)->getDef()->getName() == "node")) {
2058         // We found a use of a formal argument, replace it with its value.
2059         TreePatternNodePtr NewChild = ArgMap[Child->getName()];
2060         assert(NewChild && "Couldn't find formal argument!");
2061         assert((Child->getPredicateCalls().empty() ||
2062                 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
2063                "Non-empty child predicate clobbered!");
2064         setChild(i, std::move(NewChild));
2065       }
2066     } else {
2067       getChild(i)->SubstituteFormalArguments(ArgMap);
2068     }
2069   }
2070 }
2071 
2072 
2073 /// InlinePatternFragments - If this pattern refers to any pattern
2074 /// fragments, return the set of inlined versions (this can be more than
2075 /// one if a PatFrags record has multiple alternatives).
2076 void TreePatternNode::InlinePatternFragments(
2077     TreePattern &TP, std::vector<TreePatternNodePtr> &OutAlternatives) {
2078 
2079   if (TP.hasError())
2080     return;
2081 
2082   if (isLeaf()) {
2083     OutAlternatives.push_back(this); // nothing to do.
2084     return;
2085   }
2086 
2087   Record *Op = getOperator();
2088 
2089   if (!Op->isSubClassOf("PatFrags")) {
2090     if (getNumChildren() == 0) {
2091       OutAlternatives.push_back(this);
2092       return;
2093     }
2094 
2095     // Recursively inline children nodes.
2096     std::vector<std::vector<TreePatternNodePtr>> ChildAlternatives(
2097         getNumChildren());
2098     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
2099       TreePatternNodePtr Child = getChildShared(i);
2100       Child->InlinePatternFragments(TP, ChildAlternatives[i]);
2101       // If there are no alternatives for any child, there are no
2102       // alternatives for this expression as whole.
2103       if (ChildAlternatives[i].empty())
2104         return;
2105 
2106       assert((Child->getPredicateCalls().empty() ||
2107               llvm::all_of(ChildAlternatives[i],
2108                            [&](const TreePatternNodePtr &NewChild) {
2109                              return NewChild->getPredicateCalls() ==
2110                                     Child->getPredicateCalls();
2111                            })) &&
2112              "Non-empty child predicate clobbered!");
2113     }
2114 
2115     // The end result is an all-pairs construction of the resultant pattern.
2116     std::vector<unsigned> Idxs(ChildAlternatives.size());
2117     bool NotDone;
2118     do {
2119       // Create the variant and add it to the output list.
2120       std::vector<TreePatternNodePtr> NewChildren;
2121       NewChildren.reserve(ChildAlternatives.size());
2122       for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
2123         NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
2124       TreePatternNodePtr R = makeIntrusiveRefCnt<TreePatternNode>(
2125           getOperator(), std::move(NewChildren), getNumTypes());
2126 
2127       // Copy over properties.
2128       R->setName(getName());
2129       R->setNamesAsPredicateArg(getNamesAsPredicateArg());
2130       R->setPredicateCalls(getPredicateCalls());
2131       R->setGISelFlagsRecord(getGISelFlagsRecord());
2132       R->setTransformFn(getTransformFn());
2133       for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
2134         R->setType(i, getExtType(i));
2135       for (unsigned i = 0, e = getNumResults(); i != e; ++i)
2136         R->setResultIndex(i, getResultIndex(i));
2137 
2138       // Register alternative.
2139       OutAlternatives.push_back(R);
2140 
2141       // Increment indices to the next permutation by incrementing the
2142       // indices from last index backward, e.g., generate the sequence
2143       // [0, 0], [0, 1], [1, 0], [1, 1].
2144       int IdxsIdx;
2145       for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
2146         if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
2147           Idxs[IdxsIdx] = 0;
2148         else
2149           break;
2150       }
2151       NotDone = (IdxsIdx >= 0);
2152     } while (NotDone);
2153 
2154     return;
2155   }
2156 
2157   // Otherwise, we found a reference to a fragment.  First, look up its
2158   // TreePattern record.
2159   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
2160 
2161   // Verify that we are passing the right number of operands.
2162   if (Frag->getNumArgs() != getNumChildren()) {
2163     TP.error("'" + Op->getName() + "' fragment requires " +
2164              Twine(Frag->getNumArgs()) + " operands!");
2165     return;
2166   }
2167 
2168   TreePredicateFn PredFn(Frag);
2169   unsigned Scope = 0;
2170   if (TreePredicateFn(Frag).usesOperands())
2171     Scope = TP.getDAGPatterns().allocateScope();
2172 
2173   // Compute the map of formal to actual arguments.
2174   std::map<std::string, TreePatternNodePtr> ArgMap;
2175   for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
2176     TreePatternNodePtr Child = getChildShared(i);
2177     if (Scope != 0) {
2178       Child = Child->clone();
2179       Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
2180     }
2181     ArgMap[Frag->getArgName(i)] = Child;
2182   }
2183 
2184   // Loop over all fragment alternatives.
2185   for (const auto &Alternative : Frag->getTrees()) {
2186     TreePatternNodePtr FragTree = Alternative->clone();
2187 
2188     if (!PredFn.isAlwaysTrue())
2189       FragTree->addPredicateCall(PredFn, Scope);
2190 
2191     // Resolve formal arguments to their actual value.
2192     if (Frag->getNumArgs())
2193       FragTree->SubstituteFormalArguments(ArgMap);
2194 
2195     // Transfer types.  Note that the resolved alternative may have fewer
2196     // (but not more) results than the PatFrags node.
2197     FragTree->setName(getName());
2198     for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
2199       FragTree->UpdateNodeType(i, getExtType(i), TP);
2200 
2201     if (Op->isSubClassOf("GISelFlags"))
2202       FragTree->setGISelFlagsRecord(Op);
2203 
2204     // Transfer in the old predicates.
2205     for (const TreePredicateCall &Pred : getPredicateCalls())
2206       FragTree->addPredicateCall(Pred);
2207 
2208     // The fragment we inlined could have recursive inlining that is needed.  See
2209     // if there are any pattern fragments in it and inline them as needed.
2210     FragTree->InlinePatternFragments(TP, OutAlternatives);
2211   }
2212 }
2213 
2214 /// getImplicitType - Check to see if the specified record has an implicit
2215 /// type which should be applied to it.  This will infer the type of register
2216 /// references from the register file information, for example.
2217 ///
2218 /// When Unnamed is set, return the type of a DAG operand with no name, such as
2219 /// the F8RC register class argument in:
2220 ///
2221 ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
2222 ///
2223 /// When Unnamed is false, return the type of a named DAG operand such as the
2224 /// GPR:$src operand above.
2225 ///
2226 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
2227                                        bool NotRegisters,
2228                                        bool Unnamed,
2229                                        TreePattern &TP) {
2230   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2231 
2232   // Check to see if this is a register operand.
2233   if (R->isSubClassOf("RegisterOperand")) {
2234     assert(ResNo == 0 && "Regoperand ref only has one result!");
2235     if (NotRegisters)
2236       return TypeSetByHwMode(); // Unknown.
2237     Record *RegClass = R->getValueAsDef("RegClass");
2238     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2239     return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2240   }
2241 
2242   // Check to see if this is a register or a register class.
2243   if (R->isSubClassOf("RegisterClass")) {
2244     assert(ResNo == 0 && "Regclass ref only has one result!");
2245     // An unnamed register class represents itself as an i32 immediate, for
2246     // example on a COPY_TO_REGCLASS instruction.
2247     if (Unnamed)
2248       return TypeSetByHwMode(MVT::i32);
2249 
2250     // In a named operand, the register class provides the possible set of
2251     // types.
2252     if (NotRegisters)
2253       return TypeSetByHwMode(); // Unknown.
2254     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2255     return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2256   }
2257 
2258   if (R->isSubClassOf("PatFrags")) {
2259     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
2260     // Pattern fragment types will be resolved when they are inlined.
2261     return TypeSetByHwMode(); // Unknown.
2262   }
2263 
2264   if (R->isSubClassOf("Register")) {
2265     assert(ResNo == 0 && "Registers only produce one result!");
2266     if (NotRegisters)
2267       return TypeSetByHwMode(); // Unknown.
2268     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2269     return TypeSetByHwMode(T.getRegisterVTs(R));
2270   }
2271 
2272   if (R->isSubClassOf("SubRegIndex")) {
2273     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
2274     return TypeSetByHwMode(MVT::i32);
2275   }
2276 
2277   if (R->isSubClassOf("ValueType")) {
2278     assert(ResNo == 0 && "This node only has one result!");
2279     // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2280     //
2281     //   (sext_inreg GPR:$src, i16)
2282     //                         ~~~
2283     if (Unnamed)
2284       return TypeSetByHwMode(MVT::Other);
2285     // With a name, the ValueType simply provides the type of the named
2286     // variable.
2287     //
2288     //   (sext_inreg i32:$src, i16)
2289     //               ~~~~~~~~
2290     if (NotRegisters)
2291       return TypeSetByHwMode(); // Unknown.
2292     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2293     return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2294   }
2295 
2296   if (R->isSubClassOf("CondCode")) {
2297     assert(ResNo == 0 && "This node only has one result!");
2298     // Using a CondCodeSDNode.
2299     return TypeSetByHwMode(MVT::Other);
2300   }
2301 
2302   if (R->isSubClassOf("ComplexPattern")) {
2303     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2304     if (NotRegisters)
2305       return TypeSetByHwMode(); // Unknown.
2306     Record *T = CDP.getComplexPattern(R).getValueType();
2307     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2308     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2309   }
2310   if (R->isSubClassOf("PointerLikeRegClass")) {
2311     assert(ResNo == 0 && "Regclass can only have one result!");
2312     TypeSetByHwMode VTS(MVT::iPTR);
2313     TP.getInfer().expandOverloads(VTS);
2314     return VTS;
2315   }
2316 
2317   if (R->getName() == "node" || R->getName() == "srcvalue" ||
2318       R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
2319       R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
2320     // Placeholder.
2321     return TypeSetByHwMode(); // Unknown.
2322   }
2323 
2324   if (R->isSubClassOf("Operand")) {
2325     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2326     Record *T = R->getValueAsDef("Type");
2327     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2328   }
2329 
2330   TP.error("Unknown node flavor used in pattern: " + R->getName());
2331   return TypeSetByHwMode(MVT::Other);
2332 }
2333 
2334 
2335 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2336 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
2337 const CodeGenIntrinsic *TreePatternNode::
2338 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2339   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2340       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2341       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2342     return nullptr;
2343 
2344   unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2345   return &CDP.getIntrinsicInfo(IID);
2346 }
2347 
2348 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2349 /// return the ComplexPattern information, otherwise return null.
2350 const ComplexPattern *
2351 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2352   Record *Rec;
2353   if (isLeaf()) {
2354     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2355     if (!DI)
2356       return nullptr;
2357     Rec = DI->getDef();
2358   } else
2359     Rec = getOperator();
2360 
2361   if (!Rec->isSubClassOf("ComplexPattern"))
2362     return nullptr;
2363   return &CGP.getComplexPattern(Rec);
2364 }
2365 
2366 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2367   // A ComplexPattern specifically declares how many results it fills in.
2368   if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2369     return CP->getNumOperands();
2370 
2371   // If MIOperandInfo is specified, that gives the count.
2372   if (isLeaf()) {
2373     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2374     if (DI && DI->getDef()->isSubClassOf("Operand")) {
2375       DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2376       if (MIOps->getNumArgs())
2377         return MIOps->getNumArgs();
2378     }
2379   }
2380 
2381   // Otherwise there is just one result.
2382   return 1;
2383 }
2384 
2385 /// NodeHasProperty - Return true if this node has the specified property.
2386 bool TreePatternNode::NodeHasProperty(SDNP Property,
2387                                       const CodeGenDAGPatterns &CGP) const {
2388   if (isLeaf()) {
2389     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2390       return CP->hasProperty(Property);
2391 
2392     return false;
2393   }
2394 
2395   if (Property != SDNPHasChain) {
2396     // The chain proprety is already present on the different intrinsic node
2397     // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2398     // on the intrinsic. Anything else is specific to the individual intrinsic.
2399     if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2400       return Int->hasProperty(Property);
2401   }
2402 
2403   if (!getOperator()->isSubClassOf("SDPatternOperator"))
2404     return false;
2405 
2406   return CGP.getSDNodeInfo(getOperator()).hasProperty(Property);
2407 }
2408 
2409 
2410 
2411 
2412 /// TreeHasProperty - Return true if any node in this tree has the specified
2413 /// property.
2414 bool TreePatternNode::TreeHasProperty(SDNP Property,
2415                                       const CodeGenDAGPatterns &CGP) const {
2416   if (NodeHasProperty(Property, CGP))
2417     return true;
2418   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2419     if (getChild(i)->TreeHasProperty(Property, CGP))
2420       return true;
2421   return false;
2422 }
2423 
2424 /// isCommutativeIntrinsic - Return true if the node corresponds to a
2425 /// commutative intrinsic.
2426 bool
2427 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2428   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2429     return Int->isCommutative;
2430   return false;
2431 }
2432 
2433 static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2434   if (!N->isLeaf())
2435     return N->getOperator()->isSubClassOf(Class);
2436 
2437   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2438   if (DI && DI->getDef()->isSubClassOf(Class))
2439     return true;
2440 
2441   return false;
2442 }
2443 
2444 static void emitTooManyOperandsError(TreePattern &TP,
2445                                      StringRef InstName,
2446                                      unsigned Expected,
2447                                      unsigned Actual) {
2448   TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2449            " operands but expected only " + Twine(Expected) + "!");
2450 }
2451 
2452 static void emitTooFewOperandsError(TreePattern &TP,
2453                                     StringRef InstName,
2454                                     unsigned Actual) {
2455   TP.error("Instruction '" + InstName +
2456            "' expects more than the provided " + Twine(Actual) + " operands!");
2457 }
2458 
2459 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
2460 /// this node and its children in the tree.  This returns true if it makes a
2461 /// change, false otherwise.  If a type contradiction is found, flag an error.
2462 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2463   if (TP.hasError())
2464     return false;
2465 
2466   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2467   if (isLeaf()) {
2468     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2469       // If it's a regclass or something else known, include the type.
2470       bool MadeChange = false;
2471       for (unsigned i = 0, e = Types.size(); i != e; ++i)
2472         MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2473                                                         NotRegisters,
2474                                                         !hasName(), TP), TP);
2475       return MadeChange;
2476     }
2477 
2478     if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2479       assert(Types.size() == 1 && "Invalid IntInit");
2480 
2481       // Int inits are always integers. :)
2482       bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2483 
2484       if (!TP.getInfer().isConcrete(Types[0], false))
2485         return MadeChange;
2486 
2487       ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2488       for (auto &P : VVT) {
2489         MVT::SimpleValueType VT = P.second.SimpleTy;
2490         if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2491           continue;
2492         unsigned Size = MVT(VT).getFixedSizeInBits();
2493         // Make sure that the value is representable for this type.
2494         if (Size >= 32)
2495           continue;
2496         // Check that the value doesn't use more bits than we have. It must
2497         // either be a sign- or zero-extended equivalent of the original.
2498         int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2499         if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2500             SignBitAndAbove == 1)
2501           continue;
2502 
2503         TP.error("Integer value '" + Twine(II->getValue()) +
2504                  "' is out of range for type '" + getEnumName(VT) + "'!");
2505         break;
2506       }
2507       return MadeChange;
2508     }
2509 
2510     return false;
2511   }
2512 
2513   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2514     bool MadeChange = false;
2515 
2516     // Apply the result type to the node.
2517     unsigned NumRetVTs = Int->IS.RetTys.size();
2518     unsigned NumParamVTs = Int->IS.ParamTys.size();
2519 
2520     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2521       MadeChange |= UpdateNodeType(
2522           i, getValueType(Int->IS.RetTys[i]->getValueAsDef("VT")), TP);
2523 
2524     if (getNumChildren() != NumParamVTs + 1) {
2525       TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2526                " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2527       return false;
2528     }
2529 
2530     // Apply type info to the intrinsic ID.
2531     MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2532 
2533     for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2534       MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2535 
2536       MVT::SimpleValueType OpVT =
2537           getValueType(Int->IS.ParamTys[i]->getValueAsDef("VT"));
2538       assert(getChild(i + 1)->getNumTypes() == 1 && "Unhandled case");
2539       MadeChange |= getChild(i + 1)->UpdateNodeType(0, OpVT, TP);
2540     }
2541     return MadeChange;
2542   }
2543 
2544   if (getOperator()->isSubClassOf("SDNode")) {
2545     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2546 
2547     // Check that the number of operands is sane.  Negative operands -> varargs.
2548     if (NI.getNumOperands() >= 0 &&
2549         getNumChildren() != (unsigned)NI.getNumOperands()) {
2550       TP.error(getOperator()->getName() + " node requires exactly " +
2551                Twine(NI.getNumOperands()) + " operands!");
2552       return false;
2553     }
2554 
2555     bool MadeChange = false;
2556     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2557       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2558     MadeChange |= NI.ApplyTypeConstraints(this, TP);
2559     return MadeChange;
2560   }
2561 
2562   if (getOperator()->isSubClassOf("Instruction")) {
2563     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2564     CodeGenInstruction &InstInfo =
2565       CDP.getTargetInfo().getInstruction(getOperator());
2566 
2567     bool MadeChange = false;
2568 
2569     // Apply the result types to the node, these come from the things in the
2570     // (outs) list of the instruction.
2571     unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2572                                         Inst.getNumResults());
2573     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2574       MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2575 
2576     // If the instruction has implicit defs, we apply the first one as a result.
2577     // FIXME: This sucks, it should apply all implicit defs.
2578     if (!InstInfo.ImplicitDefs.empty()) {
2579       unsigned ResNo = NumResultsToAdd;
2580 
2581       // FIXME: Generalize to multiple possible types and multiple possible
2582       // ImplicitDefs.
2583       MVT::SimpleValueType VT =
2584         InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2585 
2586       if (VT != MVT::Other)
2587         MadeChange |= UpdateNodeType(ResNo, VT, TP);
2588     }
2589 
2590     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2591     // be the same.
2592     if (getOperator()->getName() == "INSERT_SUBREG") {
2593       assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
2594       MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2595       MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2596     } else if (getOperator()->getName() == "REG_SEQUENCE") {
2597       // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2598       // variadic.
2599 
2600       unsigned NChild = getNumChildren();
2601       if (NChild < 3) {
2602         TP.error("REG_SEQUENCE requires at least 3 operands!");
2603         return false;
2604       }
2605 
2606       if (NChild % 2 == 0) {
2607         TP.error("REG_SEQUENCE requires an odd number of operands!");
2608         return false;
2609       }
2610 
2611       if (!isOperandClass(getChild(0), "RegisterClass")) {
2612         TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2613         return false;
2614       }
2615 
2616       for (unsigned I = 1; I < NChild; I += 2) {
2617         TreePatternNode *SubIdxChild = getChild(I + 1);
2618         if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2619           TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2620                    Twine(I + 1) + "!");
2621           return false;
2622         }
2623       }
2624     }
2625 
2626     unsigned NumResults = Inst.getNumResults();
2627     unsigned NumFixedOperands = InstInfo.Operands.size();
2628 
2629     // If one or more operands with a default value appear at the end of the
2630     // formal operand list for an instruction, we allow them to be overridden
2631     // by optional operands provided in the pattern.
2632     //
2633     // But if an operand B without a default appears at any point after an
2634     // operand A with a default, then we don't allow A to be overridden,
2635     // because there would be no way to specify whether the next operand in
2636     // the pattern was intended to override A or skip it.
2637     unsigned NonOverridableOperands = NumFixedOperands;
2638     while (NonOverridableOperands > NumResults &&
2639            CDP.operandHasDefault(InstInfo.Operands[NonOverridableOperands-1].Rec))
2640       --NonOverridableOperands;
2641 
2642     unsigned ChildNo = 0;
2643     assert(NumResults <= NumFixedOperands);
2644     for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) {
2645       Record *OperandNode = InstInfo.Operands[i].Rec;
2646 
2647       // If the operand has a default value, do we use it? We must use the
2648       // default if we've run out of children of the pattern DAG to consume,
2649       // or if the operand is followed by a non-defaulted one.
2650       if (CDP.operandHasDefault(OperandNode) &&
2651           (i < NonOverridableOperands || ChildNo >= getNumChildren()))
2652         continue;
2653 
2654       // If we have run out of child nodes and there _isn't_ a default
2655       // value we can use for the next operand, give an error.
2656       if (ChildNo >= getNumChildren()) {
2657         emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2658         return false;
2659       }
2660 
2661       TreePatternNode *Child = getChild(ChildNo++);
2662       unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
2663 
2664       // If the operand has sub-operands, they may be provided by distinct
2665       // child patterns, so attempt to match each sub-operand separately.
2666       if (OperandNode->isSubClassOf("Operand")) {
2667         DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2668         if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2669           // But don't do that if the whole operand is being provided by
2670           // a single ComplexPattern-related Operand.
2671 
2672           if (Child->getNumMIResults(CDP) < NumArgs) {
2673             // Match first sub-operand against the child we already have.
2674             Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2675             MadeChange |=
2676               Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2677 
2678             // And the remaining sub-operands against subsequent children.
2679             for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2680               if (ChildNo >= getNumChildren()) {
2681                 emitTooFewOperandsError(TP, getOperator()->getName(),
2682                                         getNumChildren());
2683                 return false;
2684               }
2685               Child = getChild(ChildNo++);
2686 
2687               SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2688               MadeChange |=
2689                 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2690             }
2691             continue;
2692           }
2693         }
2694       }
2695 
2696       // If we didn't match by pieces above, attempt to match the whole
2697       // operand now.
2698       MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2699     }
2700 
2701     if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2702       emitTooManyOperandsError(TP, getOperator()->getName(),
2703                                ChildNo, getNumChildren());
2704       return false;
2705     }
2706 
2707     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2708       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2709     return MadeChange;
2710   }
2711 
2712   if (getOperator()->isSubClassOf("ComplexPattern")) {
2713     bool MadeChange = false;
2714 
2715     if (!NotRegisters) {
2716       assert(Types.size() == 1 && "ComplexPatterns only produce one result!");
2717       Record *T = CDP.getComplexPattern(getOperator()).getValueType();
2718       const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2719       const ValueTypeByHwMode VVT = getValueTypeByHwMode(T, CGH);
2720       // TODO: AArch64 and AMDGPU use ComplexPattern<untyped, ...> and then
2721       // exclusively use those as non-leaf nodes with explicit type casts, so
2722       // for backwards compatibility we do no inference in that case. This is
2723       // not supported when the ComplexPattern is used as a leaf value,
2724       // however; this inconsistency should be resolved, either by adding this
2725       // case there or by altering the backends to not do this (e.g. using Any
2726       // instead may work).
2727       if (!VVT.isSimple() || VVT.getSimple() != MVT::Untyped)
2728         MadeChange |= UpdateNodeType(0, VVT, TP);
2729     }
2730 
2731     for (unsigned i = 0; i < getNumChildren(); ++i)
2732       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2733 
2734     return MadeChange;
2735   }
2736 
2737   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2738 
2739   // Node transforms always take one operand.
2740   if (getNumChildren() != 1) {
2741     TP.error("Node transform '" + getOperator()->getName() +
2742              "' requires one operand!");
2743     return false;
2744   }
2745 
2746   bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2747   return MadeChange;
2748 }
2749 
2750 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2751 /// RHS of a commutative operation, not the on LHS.
2752 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2753   if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2754     return true;
2755   if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2756     return true;
2757   if (isImmAllOnesAllZerosMatch(N))
2758     return true;
2759   return false;
2760 }
2761 
2762 
2763 /// canPatternMatch - If it is impossible for this pattern to match on this
2764 /// target, fill in Reason and return false.  Otherwise, return true.  This is
2765 /// used as a sanity check for .td files (to prevent people from writing stuff
2766 /// that can never possibly work), and to prevent the pattern permuter from
2767 /// generating stuff that is useless.
2768 bool TreePatternNode::canPatternMatch(std::string &Reason,
2769                                       const CodeGenDAGPatterns &CDP) {
2770   if (isLeaf()) return true;
2771 
2772   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2773     if (!getChild(i)->canPatternMatch(Reason, CDP))
2774       return false;
2775 
2776   // If this is an intrinsic, handle cases that would make it not match.  For
2777   // example, if an operand is required to be an immediate.
2778   if (getOperator()->isSubClassOf("Intrinsic")) {
2779     // TODO:
2780     return true;
2781   }
2782 
2783   if (getOperator()->isSubClassOf("ComplexPattern"))
2784     return true;
2785 
2786   // If this node is a commutative operator, check that the LHS isn't an
2787   // immediate.
2788   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2789   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2790   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2791     // Scan all of the operands of the node and make sure that only the last one
2792     // is a constant node, unless the RHS also is.
2793     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2794       unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2795       for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2796         if (OnlyOnRHSOfCommutative(getChild(i))) {
2797           Reason="Immediate value must be on the RHS of commutative operators!";
2798           return false;
2799         }
2800     }
2801   }
2802 
2803   return true;
2804 }
2805 
2806 //===----------------------------------------------------------------------===//
2807 // TreePattern implementation
2808 //
2809 
2810 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2811                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2812                          isInputPattern(isInput), HasError(false),
2813                          Infer(*this) {
2814   for (Init *I : RawPat->getValues())
2815     Trees.push_back(ParseTreePattern(I, ""));
2816 }
2817 
2818 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2819                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2820                          isInputPattern(isInput), HasError(false),
2821                          Infer(*this) {
2822   Trees.push_back(ParseTreePattern(Pat, ""));
2823 }
2824 
2825 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
2826                          CodeGenDAGPatterns &cdp)
2827     : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2828       Infer(*this) {
2829   Trees.push_back(Pat);
2830 }
2831 
2832 void TreePattern::error(const Twine &Msg) {
2833   if (HasError)
2834     return;
2835   dump();
2836   PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2837   HasError = true;
2838 }
2839 
2840 void TreePattern::ComputeNamedNodes() {
2841   for (TreePatternNodePtr &Tree : Trees)
2842     ComputeNamedNodes(Tree.get());
2843 }
2844 
2845 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2846   if (!N->getName().empty())
2847     NamedNodes[N->getName()].push_back(N);
2848 
2849   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2850     ComputeNamedNodes(N->getChild(i));
2851 }
2852 
2853 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2854                                                  StringRef OpName) {
2855   RecordKeeper &RK = TheInit->getRecordKeeper();
2856   if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2857     Record *R = DI->getDef();
2858 
2859     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2860     // TreePatternNode of its own.  For example:
2861     ///   (foo GPR, imm) -> (foo GPR, (imm))
2862     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2863       return ParseTreePattern(
2864         DagInit::get(DI, nullptr,
2865                      std::vector<std::pair<Init*, StringInit*> >()),
2866         OpName);
2867 
2868     // Input argument?
2869     TreePatternNodePtr Res = makeIntrusiveRefCnt<TreePatternNode>(DI, 1);
2870     if (R->getName() == "node" && !OpName.empty()) {
2871       if (OpName.empty())
2872         error("'node' argument requires a name to match with operand list");
2873       Args.push_back(std::string(OpName));
2874     }
2875 
2876     Res->setName(OpName);
2877     return Res;
2878   }
2879 
2880   // ?:$name or just $name.
2881   if (isa<UnsetInit>(TheInit)) {
2882     if (OpName.empty())
2883       error("'?' argument requires a name to match with operand list");
2884     TreePatternNodePtr Res = makeIntrusiveRefCnt<TreePatternNode>(TheInit, 1);
2885     Args.push_back(std::string(OpName));
2886     Res->setName(OpName);
2887     return Res;
2888   }
2889 
2890   if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
2891     if (!OpName.empty())
2892       error("Constant int or bit argument should not have a name!");
2893     if (isa<BitInit>(TheInit))
2894       TheInit = TheInit->convertInitializerTo(IntRecTy::get(RK));
2895     return makeIntrusiveRefCnt<TreePatternNode>(TheInit, 1);
2896   }
2897 
2898   if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2899     // Turn this into an IntInit.
2900     Init *II = BI->convertInitializerTo(IntRecTy::get(RK));
2901     if (!II || !isa<IntInit>(II))
2902       error("Bits value must be constants!");
2903     return II ? ParseTreePattern(II, OpName) : nullptr;
2904   }
2905 
2906   DagInit *Dag = dyn_cast<DagInit>(TheInit);
2907   if (!Dag) {
2908     TheInit->print(errs());
2909     error("Pattern has unexpected init kind!");
2910     return nullptr;
2911   }
2912   DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2913   if (!OpDef) {
2914     error("Pattern has unexpected operator type!");
2915     return nullptr;
2916   }
2917   Record *Operator = OpDef->getDef();
2918 
2919   if (Operator->isSubClassOf("ValueType")) {
2920     // If the operator is a ValueType, then this must be "type cast" of a leaf
2921     // node.
2922     if (Dag->getNumArgs() != 1)
2923       error("Type cast only takes one operand!");
2924 
2925     TreePatternNodePtr New =
2926         ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2927 
2928     // Apply the type cast.
2929     if (New->getNumTypes() != 1)
2930       error("Type cast can only have one type!");
2931     const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2932     New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2933 
2934     if (!OpName.empty())
2935       error("ValueType cast should not have a name!");
2936     return New;
2937   }
2938 
2939   // Verify that this is something that makes sense for an operator.
2940   if (!Operator->isSubClassOf("PatFrags") &&
2941       !Operator->isSubClassOf("SDNode") &&
2942       !Operator->isSubClassOf("Instruction") &&
2943       !Operator->isSubClassOf("SDNodeXForm") &&
2944       !Operator->isSubClassOf("Intrinsic") &&
2945       !Operator->isSubClassOf("ComplexPattern") &&
2946       Operator->getName() != "set" &&
2947       Operator->getName() != "implicit")
2948     error("Unrecognized node '" + Operator->getName() + "'!");
2949 
2950   //  Check to see if this is something that is illegal in an input pattern.
2951   if (isInputPattern) {
2952     if (Operator->isSubClassOf("Instruction") ||
2953         Operator->isSubClassOf("SDNodeXForm"))
2954       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2955   } else {
2956     if (Operator->isSubClassOf("Intrinsic"))
2957       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2958 
2959     if (Operator->isSubClassOf("SDNode") &&
2960         Operator->getName() != "imm" &&
2961         Operator->getName() != "timm" &&
2962         Operator->getName() != "fpimm" &&
2963         Operator->getName() != "tglobaltlsaddr" &&
2964         Operator->getName() != "tconstpool" &&
2965         Operator->getName() != "tjumptable" &&
2966         Operator->getName() != "tframeindex" &&
2967         Operator->getName() != "texternalsym" &&
2968         Operator->getName() != "tblockaddress" &&
2969         Operator->getName() != "tglobaladdr" &&
2970         Operator->getName() != "bb" &&
2971         Operator->getName() != "vt" &&
2972         Operator->getName() != "mcsym")
2973       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2974   }
2975 
2976   std::vector<TreePatternNodePtr> Children;
2977 
2978   // Parse all the operands.
2979   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2980     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2981 
2982   // Get the actual number of results before Operator is converted to an intrinsic
2983   // node (which is hard-coded to have either zero or one result).
2984   unsigned NumResults = GetNumNodeResults(Operator, CDP);
2985 
2986   // If the operator is an intrinsic, then this is just syntactic sugar for
2987   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2988   // convert the intrinsic name to a number.
2989   if (Operator->isSubClassOf("Intrinsic")) {
2990     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2991     unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2992 
2993     // If this intrinsic returns void, it must have side-effects and thus a
2994     // chain.
2995     if (Int.IS.RetTys.empty())
2996       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2997     else if (!Int.ME.doesNotAccessMemory() || Int.hasSideEffects)
2998       // Has side-effects, requires chain.
2999       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
3000     else // Otherwise, no chain.
3001       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
3002 
3003     Children.insert(Children.begin(), makeIntrusiveRefCnt<TreePatternNode>(
3004                                           IntInit::get(RK, IID), 1));
3005   }
3006 
3007   if (Operator->isSubClassOf("ComplexPattern")) {
3008     for (unsigned i = 0; i < Children.size(); ++i) {
3009       TreePatternNodePtr Child = Children[i];
3010 
3011       if (Child->getName().empty())
3012         error("All arguments to a ComplexPattern must be named");
3013 
3014       // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
3015       // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
3016       // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
3017       auto OperandId = std::make_pair(Operator, i);
3018       auto PrevOp = ComplexPatternOperands.find(Child->getName());
3019       if (PrevOp != ComplexPatternOperands.end()) {
3020         if (PrevOp->getValue() != OperandId)
3021           error("All ComplexPattern operands must appear consistently: "
3022                 "in the same order in just one ComplexPattern instance.");
3023       } else
3024         ComplexPatternOperands[Child->getName()] = OperandId;
3025     }
3026   }
3027 
3028   TreePatternNodePtr Result = makeIntrusiveRefCnt<TreePatternNode>(
3029       Operator, std::move(Children), NumResults);
3030   Result->setName(OpName);
3031 
3032   if (Dag->getName()) {
3033     assert(Result->getName().empty());
3034     Result->setName(Dag->getNameStr());
3035   }
3036   return Result;
3037 }
3038 
3039 /// SimplifyTree - See if we can simplify this tree to eliminate something that
3040 /// will never match in favor of something obvious that will.  This is here
3041 /// strictly as a convenience to target authors because it allows them to write
3042 /// more type generic things and have useless type casts fold away.
3043 ///
3044 /// This returns true if any change is made.
3045 static bool SimplifyTree(TreePatternNodePtr &N) {
3046   if (N->isLeaf())
3047     return false;
3048 
3049   // If we have a bitconvert with a resolved type and if the source and
3050   // destination types are the same, then the bitconvert is useless, remove it.
3051   //
3052   // We make an exception if the types are completely empty. This can come up
3053   // when the pattern being simplified is in the Fragments list of a PatFrags,
3054   // so that the operand is just an untyped "node". In that situation we leave
3055   // bitconverts unsimplified, and simplify them later once the fragment is
3056   // expanded into its true context.
3057   if (N->getOperator()->getName() == "bitconvert" &&
3058       N->getExtType(0).isValueTypeByHwMode(false) &&
3059       !N->getExtType(0).empty() &&
3060       N->getExtType(0) == N->getChild(0)->getExtType(0) &&
3061       N->getName().empty()) {
3062     N = N->getChildShared(0);
3063     SimplifyTree(N);
3064     return true;
3065   }
3066 
3067   // Walk all children.
3068   bool MadeChange = false;
3069   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3070     MadeChange |= SimplifyTree(N->getChildSharedPtr(i));
3071 
3072   return MadeChange;
3073 }
3074 
3075 
3076 
3077 /// InferAllTypes - Infer/propagate as many types throughout the expression
3078 /// patterns as possible.  Return true if all types are inferred, false
3079 /// otherwise.  Flags an error if a type contradiction is found.
3080 bool TreePattern::
3081 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
3082   if (NamedNodes.empty())
3083     ComputeNamedNodes();
3084 
3085   bool MadeChange = true;
3086   while (MadeChange) {
3087     MadeChange = false;
3088     for (TreePatternNodePtr &Tree : Trees) {
3089       MadeChange |= Tree->ApplyTypeConstraints(*this, false);
3090       MadeChange |= SimplifyTree(Tree);
3091     }
3092 
3093     // If there are constraints on our named nodes, apply them.
3094     for (auto &Entry : NamedNodes) {
3095       SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
3096 
3097       // If we have input named node types, propagate their types to the named
3098       // values here.
3099       if (InNamedTypes) {
3100         if (!InNamedTypes->count(Entry.getKey())) {
3101           error("Node '" + std::string(Entry.getKey()) +
3102                 "' in output pattern but not input pattern");
3103           return true;
3104         }
3105 
3106         const SmallVectorImpl<TreePatternNode*> &InNodes =
3107           InNamedTypes->find(Entry.getKey())->second;
3108 
3109         // The input types should be fully resolved by now.
3110         for (TreePatternNode *Node : Nodes) {
3111           // If this node is a register class, and it is the root of the pattern
3112           // then we're mapping something onto an input register.  We allow
3113           // changing the type of the input register in this case.  This allows
3114           // us to match things like:
3115           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
3116           if (Node == Trees[0].get() && Node->isLeaf()) {
3117             DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
3118             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3119                        DI->getDef()->isSubClassOf("RegisterOperand")))
3120               continue;
3121           }
3122 
3123           assert(Node->getNumTypes() == 1 &&
3124                  InNodes[0]->getNumTypes() == 1 &&
3125                  "FIXME: cannot name multiple result nodes yet");
3126           MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
3127                                              *this);
3128         }
3129       }
3130 
3131       // If there are multiple nodes with the same name, they must all have the
3132       // same type.
3133       if (Entry.second.size() > 1) {
3134         for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
3135           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
3136           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
3137                  "FIXME: cannot name multiple result nodes yet");
3138 
3139           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
3140           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
3141         }
3142       }
3143     }
3144   }
3145 
3146   bool HasUnresolvedTypes = false;
3147   for (const TreePatternNodePtr &Tree : Trees)
3148     HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
3149   return !HasUnresolvedTypes;
3150 }
3151 
3152 void TreePattern::print(raw_ostream &OS) const {
3153   OS << getRecord()->getName();
3154   if (!Args.empty()) {
3155     OS << "(";
3156     ListSeparator LS;
3157     for (const std::string &Arg : Args)
3158       OS << LS << Arg;
3159     OS << ")";
3160   }
3161   OS << ": ";
3162 
3163   if (Trees.size() > 1)
3164     OS << "[\n";
3165   for (const TreePatternNodePtr &Tree : Trees) {
3166     OS << "\t";
3167     Tree->print(OS);
3168     OS << "\n";
3169   }
3170 
3171   if (Trees.size() > 1)
3172     OS << "]\n";
3173 }
3174 
3175 void TreePattern::dump() const { print(errs()); }
3176 
3177 //===----------------------------------------------------------------------===//
3178 // CodeGenDAGPatterns implementation
3179 //
3180 
3181 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
3182                                        PatternRewriterFn PatternRewriter)
3183     : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
3184       PatternRewriter(PatternRewriter) {
3185 
3186   Intrinsics = CodeGenIntrinsicTable(Records);
3187   ParseNodeInfo();
3188   ParseNodeTransforms();
3189   ParseComplexPatterns();
3190   ParsePatternFragments();
3191   ParseDefaultOperands();
3192   ParseInstructions();
3193   ParsePatternFragments(/*OutFrags*/true);
3194   ParsePatterns();
3195 
3196   // Generate variants.  For example, commutative patterns can match
3197   // multiple ways.  Add them to PatternsToMatch as well.
3198   GenerateVariants();
3199 
3200   // Break patterns with parameterized types into a series of patterns,
3201   // where each one has a fixed type and is predicated on the conditions
3202   // of the associated HW mode.
3203   ExpandHwModeBasedTypes();
3204 
3205   // Infer instruction flags.  For example, we can detect loads,
3206   // stores, and side effects in many cases by examining an
3207   // instruction's pattern.
3208   InferInstructionFlags();
3209 
3210   // Verify that instruction flags match the patterns.
3211   VerifyInstructionFlags();
3212 }
3213 
3214 Record *CodeGenDAGPatterns::getSDNodeNamed(StringRef Name) const {
3215   Record *N = Records.getDef(Name);
3216   if (!N || !N->isSubClassOf("SDNode"))
3217     PrintFatalError("Error getting SDNode '" + Name + "'!");
3218 
3219   return N;
3220 }
3221 
3222 // Parse all of the SDNode definitions for the target, populating SDNodes.
3223 void CodeGenDAGPatterns::ParseNodeInfo() {
3224   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
3225   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
3226 
3227   while (!Nodes.empty()) {
3228     Record *R = Nodes.back();
3229     SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
3230     Nodes.pop_back();
3231   }
3232 
3233   // Get the builtin intrinsic nodes.
3234   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
3235   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
3236   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
3237 }
3238 
3239 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
3240 /// map, and emit them to the file as functions.
3241 void CodeGenDAGPatterns::ParseNodeTransforms() {
3242   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
3243   while (!Xforms.empty()) {
3244     Record *XFormNode = Xforms.back();
3245     Record *SDNode = XFormNode->getValueAsDef("Opcode");
3246     StringRef Code = XFormNode->getValueAsString("XFormFunction");
3247     SDNodeXForms.insert(
3248         std::make_pair(XFormNode, NodeXForm(SDNode, std::string(Code))));
3249 
3250     Xforms.pop_back();
3251   }
3252 }
3253 
3254 void CodeGenDAGPatterns::ParseComplexPatterns() {
3255   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
3256   while (!AMs.empty()) {
3257     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
3258     AMs.pop_back();
3259   }
3260 }
3261 
3262 
3263 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
3264 /// file, building up the PatternFragments map.  After we've collected them all,
3265 /// inline fragments together as necessary, so that there are no references left
3266 /// inside a pattern fragment to a pattern fragment.
3267 ///
3268 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
3269   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
3270 
3271   // First step, parse all of the fragments.
3272   for (Record *Frag : Fragments) {
3273     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3274       continue;
3275 
3276     ListInit *LI = Frag->getValueAsListInit("Fragments");
3277     TreePattern *P =
3278         (PatternFragments[Frag] = std::make_unique<TreePattern>(
3279              Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
3280              *this)).get();
3281 
3282     // Validate the argument list, converting it to set, to discard duplicates.
3283     std::vector<std::string> &Args = P->getArgList();
3284     // Copy the args so we can take StringRefs to them.
3285     auto ArgsCopy = Args;
3286     SmallDenseSet<StringRef, 4> OperandsSet;
3287     OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3288 
3289     if (OperandsSet.count(""))
3290       P->error("Cannot have unnamed 'node' values in pattern fragment!");
3291 
3292     // Parse the operands list.
3293     DagInit *OpsList = Frag->getValueAsDag("Operands");
3294     DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3295     // Special cases: ops == outs == ins. Different names are used to
3296     // improve readability.
3297     if (!OpsOp ||
3298         (OpsOp->getDef()->getName() != "ops" &&
3299          OpsOp->getDef()->getName() != "outs" &&
3300          OpsOp->getDef()->getName() != "ins"))
3301       P->error("Operands list should start with '(ops ... '!");
3302 
3303     // Copy over the arguments.
3304     Args.clear();
3305     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3306       if (!isa<DefInit>(OpsList->getArg(j)) ||
3307           cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3308         P->error("Operands list should all be 'node' values.");
3309       if (!OpsList->getArgName(j))
3310         P->error("Operands list should have names for each operand!");
3311       StringRef ArgNameStr = OpsList->getArgNameStr(j);
3312       if (!OperandsSet.count(ArgNameStr))
3313         P->error("'" + ArgNameStr +
3314                  "' does not occur in pattern or was multiply specified!");
3315       OperandsSet.erase(ArgNameStr);
3316       Args.push_back(std::string(ArgNameStr));
3317     }
3318 
3319     if (!OperandsSet.empty())
3320       P->error("Operands list does not contain an entry for operand '" +
3321                *OperandsSet.begin() + "'!");
3322 
3323     // If there is a node transformation corresponding to this, keep track of
3324     // it.
3325     Record *Transform = Frag->getValueAsDef("OperandTransform");
3326     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
3327       for (const auto &T : P->getTrees())
3328         T->setTransformFn(Transform);
3329   }
3330 
3331   // Now that we've parsed all of the tree fragments, do a closure on them so
3332   // that there are not references to PatFrags left inside of them.
3333   for (Record *Frag : Fragments) {
3334     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3335       continue;
3336 
3337     TreePattern &ThePat = *PatternFragments[Frag];
3338     ThePat.InlinePatternFragments();
3339 
3340     // Infer as many types as possible.  Don't worry about it if we don't infer
3341     // all of them, some may depend on the inputs of the pattern.  Also, don't
3342     // validate type sets; validation may cause spurious failures e.g. if a
3343     // fragment needs floating-point types but the current target does not have
3344     // any (this is only an error if that fragment is ever used!).
3345     {
3346       TypeInfer::SuppressValidation SV(ThePat.getInfer());
3347       ThePat.InferAllTypes();
3348       ThePat.resetError();
3349     }
3350 
3351     // If debugging, print out the pattern fragment result.
3352     LLVM_DEBUG(ThePat.dump());
3353   }
3354 }
3355 
3356 void CodeGenDAGPatterns::ParseDefaultOperands() {
3357   std::vector<Record*> DefaultOps;
3358   DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3359 
3360   // Find some SDNode.
3361   assert(!SDNodes.empty() && "No SDNodes parsed?");
3362   Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3363 
3364   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3365     DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3366 
3367     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3368     // SomeSDnode so that we can parse this.
3369     std::vector<std::pair<Init*, StringInit*> > Ops;
3370     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3371       Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3372                                    DefaultInfo->getArgName(op)));
3373     DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3374 
3375     // Create a TreePattern to parse this.
3376     TreePattern P(DefaultOps[i], DI, false, *this);
3377     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3378 
3379     // Copy the operands over into a DAGDefaultOperand.
3380     DAGDefaultOperand DefaultOpInfo;
3381 
3382     const TreePatternNodePtr &T = P.getTree(0);
3383     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3384       TreePatternNodePtr TPN = T->getChildShared(op);
3385       while (TPN->ApplyTypeConstraints(P, false))
3386         /* Resolve all types */;
3387 
3388       if (TPN->ContainsUnresolvedType(P)) {
3389         PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3390                         DefaultOps[i]->getName() +
3391                         "' doesn't have a concrete type!");
3392       }
3393       DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3394     }
3395 
3396     // Insert it into the DefaultOperands map so we can find it later.
3397     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3398   }
3399 }
3400 
3401 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3402 /// instruction input.  Return true if this is a real use.
3403 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3404                       std::map<std::string, TreePatternNodePtr> &InstInputs) {
3405   // No name -> not interesting.
3406   if (Pat->getName().empty()) {
3407     if (Pat->isLeaf()) {
3408       DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3409       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3410                  DI->getDef()->isSubClassOf("RegisterOperand")))
3411         I.error("Input " + DI->getDef()->getName() + " must be named!");
3412     }
3413     return false;
3414   }
3415 
3416   Record *Rec;
3417   if (Pat->isLeaf()) {
3418     DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3419     if (!DI)
3420       I.error("Input $" + Pat->getName() + " must be an identifier!");
3421     Rec = DI->getDef();
3422   } else {
3423     Rec = Pat->getOperator();
3424   }
3425 
3426   // SRCVALUE nodes are ignored.
3427   if (Rec->getName() == "srcvalue")
3428     return false;
3429 
3430   TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3431   if (!Slot) {
3432     Slot = Pat;
3433     return true;
3434   }
3435   Record *SlotRec;
3436   if (Slot->isLeaf()) {
3437     SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3438   } else {
3439     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3440     SlotRec = Slot->getOperator();
3441   }
3442 
3443   // Ensure that the inputs agree if we've already seen this input.
3444   if (Rec != SlotRec)
3445     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3446   // Ensure that the types can agree as well.
3447   Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3448   Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3449   if (Slot->getExtTypes() != Pat->getExtTypes())
3450     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3451   return true;
3452 }
3453 
3454 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3455 /// part of "I", the instruction), computing the set of inputs and outputs of
3456 /// the pattern.  Report errors if we see anything naughty.
3457 void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3458     TreePattern &I, TreePatternNodePtr Pat,
3459     std::map<std::string, TreePatternNodePtr> &InstInputs,
3460     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3461         &InstResults,
3462     std::vector<Record *> &InstImpResults) {
3463 
3464   // The instruction pattern still has unresolved fragments.  For *named*
3465   // nodes we must resolve those here.  This may not result in multiple
3466   // alternatives.
3467   if (!Pat->getName().empty()) {
3468     TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3469     SrcPattern.InlinePatternFragments();
3470     SrcPattern.InferAllTypes();
3471     Pat = SrcPattern.getOnlyTree();
3472   }
3473 
3474   if (Pat->isLeaf()) {
3475     bool isUse = HandleUse(I, Pat, InstInputs);
3476     if (!isUse && Pat->getTransformFn())
3477       I.error("Cannot specify a transform function for a non-input value!");
3478     return;
3479   }
3480 
3481   if (Pat->getOperator()->getName() == "implicit") {
3482     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3483       TreePatternNode *Dest = Pat->getChild(i);
3484       if (!Dest->isLeaf())
3485         I.error("implicitly defined value should be a register!");
3486 
3487       DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3488       if (!Val || !Val->getDef()->isSubClassOf("Register"))
3489         I.error("implicitly defined value should be a register!");
3490       if (Val)
3491         InstImpResults.push_back(Val->getDef());
3492     }
3493     return;
3494   }
3495 
3496   if (Pat->getOperator()->getName() != "set") {
3497     // If this is not a set, verify that the children nodes are not void typed,
3498     // and recurse.
3499     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3500       if (Pat->getChild(i)->getNumTypes() == 0)
3501         I.error("Cannot have void nodes inside of patterns!");
3502       FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3503                                   InstResults, InstImpResults);
3504     }
3505 
3506     // If this is a non-leaf node with no children, treat it basically as if
3507     // it were a leaf.  This handles nodes like (imm).
3508     bool isUse = HandleUse(I, Pat, InstInputs);
3509 
3510     if (!isUse && Pat->getTransformFn())
3511       I.error("Cannot specify a transform function for a non-input value!");
3512     return;
3513   }
3514 
3515   // Otherwise, this is a set, validate and collect instruction results.
3516   if (Pat->getNumChildren() == 0)
3517     I.error("set requires operands!");
3518 
3519   if (Pat->getTransformFn())
3520     I.error("Cannot specify a transform function on a set node!");
3521 
3522   // Check the set destinations.
3523   unsigned NumDests = Pat->getNumChildren()-1;
3524   for (unsigned i = 0; i != NumDests; ++i) {
3525     TreePatternNodePtr Dest = Pat->getChildShared(i);
3526     // For set destinations we also must resolve fragments here.
3527     TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3528     DestPattern.InlinePatternFragments();
3529     DestPattern.InferAllTypes();
3530     Dest = DestPattern.getOnlyTree();
3531 
3532     if (!Dest->isLeaf())
3533       I.error("set destination should be a register!");
3534 
3535     DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3536     if (!Val) {
3537       I.error("set destination should be a register!");
3538       continue;
3539     }
3540 
3541     if (Val->getDef()->isSubClassOf("RegisterClass") ||
3542         Val->getDef()->isSubClassOf("ValueType") ||
3543         Val->getDef()->isSubClassOf("RegisterOperand") ||
3544         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3545       if (Dest->getName().empty())
3546         I.error("set destination must have a name!");
3547       if (InstResults.count(Dest->getName()))
3548         I.error("cannot set '" + Dest->getName() + "' multiple times");
3549       InstResults[Dest->getName()] = Dest;
3550     } else if (Val->getDef()->isSubClassOf("Register")) {
3551       InstImpResults.push_back(Val->getDef());
3552     } else {
3553       I.error("set destination should be a register!");
3554     }
3555   }
3556 
3557   // Verify and collect info from the computation.
3558   FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3559                               InstResults, InstImpResults);
3560 }
3561 
3562 //===----------------------------------------------------------------------===//
3563 // Instruction Analysis
3564 //===----------------------------------------------------------------------===//
3565 
3566 class InstAnalyzer {
3567   const CodeGenDAGPatterns &CDP;
3568 public:
3569   bool hasSideEffects;
3570   bool mayStore;
3571   bool mayLoad;
3572   bool isBitcast;
3573   bool isVariadic;
3574   bool hasChain;
3575 
3576   InstAnalyzer(const CodeGenDAGPatterns &cdp)
3577     : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3578       isBitcast(false), isVariadic(false), hasChain(false) {}
3579 
3580   void Analyze(const PatternToMatch &Pat) {
3581     const TreePatternNode *N = Pat.getSrcPattern();
3582     AnalyzeNode(N);
3583     // These properties are detected only on the root node.
3584     isBitcast = IsNodeBitcast(N);
3585   }
3586 
3587 private:
3588   bool IsNodeBitcast(const TreePatternNode *N) const {
3589     if (hasSideEffects || mayLoad || mayStore || isVariadic)
3590       return false;
3591 
3592     if (N->isLeaf())
3593       return false;
3594     if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
3595       return false;
3596 
3597     if (N->getOperator()->isSubClassOf("ComplexPattern"))
3598       return false;
3599 
3600     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
3601     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3602       return false;
3603     return OpInfo.getEnumName() == "ISD::BITCAST";
3604   }
3605 
3606 public:
3607   void AnalyzeNode(const TreePatternNode *N) {
3608     if (N->isLeaf()) {
3609       if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3610         Record *LeafRec = DI->getDef();
3611         // Handle ComplexPattern leaves.
3612         if (LeafRec->isSubClassOf("ComplexPattern")) {
3613           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3614           if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3615           if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3616           if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3617         }
3618       }
3619       return;
3620     }
3621 
3622     // Analyze children.
3623     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3624       AnalyzeNode(N->getChild(i));
3625 
3626     // Notice properties of the node.
3627     if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3628     if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3629     if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3630     if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3631     if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
3632 
3633     if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3634       ModRefInfo MR = IntInfo->ME.getModRef();
3635       // If this is an intrinsic, analyze it.
3636       if (isRefSet(MR))
3637         mayLoad = true; // These may load memory.
3638 
3639       if (isModSet(MR))
3640         mayStore = true; // Intrinsics that can write to memory are 'mayStore'.
3641 
3642       // Consider intrinsics that don't specify any restrictions on memory
3643       // effects as having a side-effect.
3644       if (IntInfo->ME == MemoryEffects::unknown() || IntInfo->hasSideEffects)
3645         hasSideEffects = true;
3646     }
3647   }
3648 
3649 };
3650 
3651 static bool InferFromPattern(CodeGenInstruction &InstInfo,
3652                              const InstAnalyzer &PatInfo,
3653                              Record *PatDef) {
3654   bool Error = false;
3655 
3656   // Remember where InstInfo got its flags.
3657   if (InstInfo.hasUndefFlags())
3658       InstInfo.InferredFrom = PatDef;
3659 
3660   // Check explicitly set flags for consistency.
3661   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3662       !InstInfo.hasSideEffects_Unset) {
3663     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3664     // the pattern has no side effects. That could be useful for div/rem
3665     // instructions that may trap.
3666     if (!InstInfo.hasSideEffects) {
3667       Error = true;
3668       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3669                  Twine(InstInfo.hasSideEffects));
3670     }
3671   }
3672 
3673   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3674     Error = true;
3675     PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3676                Twine(InstInfo.mayStore));
3677   }
3678 
3679   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3680     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3681     // Some targets translate immediates to loads.
3682     if (!InstInfo.mayLoad) {
3683       Error = true;
3684       PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3685                  Twine(InstInfo.mayLoad));
3686     }
3687   }
3688 
3689   // Transfer inferred flags.
3690   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3691   InstInfo.mayStore |= PatInfo.mayStore;
3692   InstInfo.mayLoad |= PatInfo.mayLoad;
3693 
3694   // These flags are silently added without any verification.
3695   // FIXME: To match historical behavior of TableGen, for now add those flags
3696   // only when we're inferring from the primary instruction pattern.
3697   if (PatDef->isSubClassOf("Instruction")) {
3698     InstInfo.isBitcast |= PatInfo.isBitcast;
3699     InstInfo.hasChain |= PatInfo.hasChain;
3700     InstInfo.hasChain_Inferred = true;
3701   }
3702 
3703   // Don't infer isVariadic. This flag means something different on SDNodes and
3704   // instructions. For example, a CALL SDNode is variadic because it has the
3705   // call arguments as operands, but a CALL instruction is not variadic - it
3706   // has argument registers as implicit, not explicit uses.
3707 
3708   return Error;
3709 }
3710 
3711 /// hasNullFragReference - Return true if the DAG has any reference to the
3712 /// null_frag operator.
3713 static bool hasNullFragReference(DagInit *DI) {
3714   DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3715   if (!OpDef) return false;
3716   Record *Operator = OpDef->getDef();
3717 
3718   // If this is the null fragment, return true.
3719   if (Operator->getName() == "null_frag") return true;
3720   // If any of the arguments reference the null fragment, return true.
3721   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3722     if (auto Arg = dyn_cast<DefInit>(DI->getArg(i)))
3723       if (Arg->getDef()->getName() == "null_frag")
3724         return true;
3725     DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3726     if (Arg && hasNullFragReference(Arg))
3727       return true;
3728   }
3729 
3730   return false;
3731 }
3732 
3733 /// hasNullFragReference - Return true if any DAG in the list references
3734 /// the null_frag operator.
3735 static bool hasNullFragReference(ListInit *LI) {
3736   for (Init *I : LI->getValues()) {
3737     DagInit *DI = dyn_cast<DagInit>(I);
3738     assert(DI && "non-dag in an instruction Pattern list?!");
3739     if (hasNullFragReference(DI))
3740       return true;
3741   }
3742   return false;
3743 }
3744 
3745 /// Get all the instructions in a tree.
3746 static void
3747 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3748   if (Tree->isLeaf())
3749     return;
3750   if (Tree->getOperator()->isSubClassOf("Instruction"))
3751     Instrs.push_back(Tree->getOperator());
3752   for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3753     getInstructionsInTree(Tree->getChild(i), Instrs);
3754 }
3755 
3756 /// Check the class of a pattern leaf node against the instruction operand it
3757 /// represents.
3758 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3759                               Record *Leaf) {
3760   if (OI.Rec == Leaf)
3761     return true;
3762 
3763   // Allow direct value types to be used in instruction set patterns.
3764   // The type will be checked later.
3765   if (Leaf->isSubClassOf("ValueType"))
3766     return true;
3767 
3768   // Patterns can also be ComplexPattern instances.
3769   if (Leaf->isSubClassOf("ComplexPattern"))
3770     return true;
3771 
3772   return false;
3773 }
3774 
3775 void CodeGenDAGPatterns::parseInstructionPattern(
3776     CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3777 
3778   assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3779 
3780   // Parse the instruction.
3781   TreePattern I(CGI.TheDef, Pat, true, *this);
3782 
3783   // InstInputs - Keep track of all of the inputs of the instruction, along
3784   // with the record they are declared as.
3785   std::map<std::string, TreePatternNodePtr> InstInputs;
3786 
3787   // InstResults - Keep track of all the virtual registers that are 'set'
3788   // in the instruction, including what reg class they are.
3789   MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3790       InstResults;
3791 
3792   std::vector<Record*> InstImpResults;
3793 
3794   // Verify that the top-level forms in the instruction are of void type, and
3795   // fill in the InstResults map.
3796   SmallString<32> TypesString;
3797   for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3798     TypesString.clear();
3799     TreePatternNodePtr Pat = I.getTree(j);
3800     if (Pat->getNumTypes() != 0) {
3801       raw_svector_ostream OS(TypesString);
3802       ListSeparator LS;
3803       for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3804         OS << LS;
3805         Pat->getExtType(k).writeToStream(OS);
3806       }
3807       I.error("Top-level forms in instruction pattern should have"
3808                " void types, has types " +
3809                OS.str());
3810     }
3811 
3812     // Find inputs and outputs, and verify the structure of the uses/defs.
3813     FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3814                                 InstImpResults);
3815   }
3816 
3817   // Now that we have inputs and outputs of the pattern, inspect the operands
3818   // list for the instruction.  This determines the order that operands are
3819   // added to the machine instruction the node corresponds to.
3820   unsigned NumResults = InstResults.size();
3821 
3822   // Parse the operands list from the (ops) list, validating it.
3823   assert(I.getArgList().empty() && "Args list should still be empty here!");
3824 
3825   // Check that all of the results occur first in the list.
3826   std::vector<Record*> Results;
3827   std::vector<unsigned> ResultIndices;
3828   SmallVector<TreePatternNodePtr, 2> ResNodes;
3829   for (unsigned i = 0; i != NumResults; ++i) {
3830     if (i == CGI.Operands.size()) {
3831       const std::string &OpName =
3832           llvm::find_if(
3833               InstResults,
3834               [](const std::pair<std::string, TreePatternNodePtr> &P) {
3835                 return P.second;
3836               })
3837               ->first;
3838 
3839       I.error("'" + OpName + "' set but does not appear in operand list!");
3840     }
3841 
3842     const std::string &OpName = CGI.Operands[i].Name;
3843 
3844     // Check that it exists in InstResults.
3845     auto InstResultIter = InstResults.find(OpName);
3846     if (InstResultIter == InstResults.end() || !InstResultIter->second)
3847       I.error("Operand $" + OpName + " does not exist in operand list!");
3848 
3849     TreePatternNodePtr RNode = InstResultIter->second;
3850     Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3851     ResNodes.push_back(std::move(RNode));
3852     if (!R)
3853       I.error("Operand $" + OpName + " should be a set destination: all "
3854                "outputs must occur before inputs in operand list!");
3855 
3856     if (!checkOperandClass(CGI.Operands[i], R))
3857       I.error("Operand $" + OpName + " class mismatch!");
3858 
3859     // Remember the return type.
3860     Results.push_back(CGI.Operands[i].Rec);
3861 
3862     // Remember the result index.
3863     ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
3864 
3865     // Okay, this one checks out.
3866     InstResultIter->second = nullptr;
3867   }
3868 
3869   // Loop over the inputs next.
3870   std::vector<TreePatternNodePtr> ResultNodeOperands;
3871   std::vector<Record*> Operands;
3872   for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3873     CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3874     const std::string &OpName = Op.Name;
3875     if (OpName.empty())
3876       I.error("Operand #" + Twine(i) + " in operands list has no name!");
3877 
3878     if (!InstInputs.count(OpName)) {
3879       // If this is an operand with a DefaultOps set filled in, we can ignore
3880       // this.  When we codegen it, we will do so as always executed.
3881       if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3882         // Does it have a non-empty DefaultOps field?  If so, ignore this
3883         // operand.
3884         if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3885           continue;
3886       }
3887       I.error("Operand $" + OpName +
3888                " does not appear in the instruction pattern");
3889     }
3890     TreePatternNodePtr InVal = InstInputs[OpName];
3891     InstInputs.erase(OpName);   // It occurred, remove from map.
3892 
3893     if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3894       Record *InRec = cast<DefInit>(InVal->getLeafValue())->getDef();
3895       if (!checkOperandClass(Op, InRec))
3896         I.error("Operand $" + OpName + "'s register class disagrees"
3897                  " between the operand and pattern");
3898     }
3899     Operands.push_back(Op.Rec);
3900 
3901     // Construct the result for the dest-pattern operand list.
3902     TreePatternNodePtr OpNode = InVal->clone();
3903 
3904     // No predicate is useful on the result.
3905     OpNode->clearPredicateCalls();
3906 
3907     // Promote the xform function to be an explicit node if set.
3908     if (Record *Xform = OpNode->getTransformFn()) {
3909       OpNode->setTransformFn(nullptr);
3910       std::vector<TreePatternNodePtr> Children;
3911       Children.push_back(OpNode);
3912       OpNode = makeIntrusiveRefCnt<TreePatternNode>(Xform, std::move(Children),
3913                                                  OpNode->getNumTypes());
3914     }
3915 
3916     ResultNodeOperands.push_back(std::move(OpNode));
3917   }
3918 
3919   if (!InstInputs.empty())
3920     I.error("Input operand $" + InstInputs.begin()->first +
3921             " occurs in pattern but not in operands list!");
3922 
3923   TreePatternNodePtr ResultPattern = makeIntrusiveRefCnt<TreePatternNode>(
3924       I.getRecord(), std::move(ResultNodeOperands),
3925       GetNumNodeResults(I.getRecord(), *this));
3926   // Copy fully inferred output node types to instruction result pattern.
3927   for (unsigned i = 0; i != NumResults; ++i) {
3928     assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3929     ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3930     ResultPattern->setResultIndex(i, ResultIndices[i]);
3931   }
3932 
3933   // FIXME: Assume only the first tree is the pattern. The others are clobber
3934   // nodes.
3935   TreePatternNodePtr Pattern = I.getTree(0);
3936   TreePatternNodePtr SrcPattern;
3937   if (Pattern->getOperator()->getName() == "set") {
3938     SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3939   } else{
3940     // Not a set (store or something?)
3941     SrcPattern = Pattern;
3942   }
3943 
3944   // Create and insert the instruction.
3945   // FIXME: InstImpResults should not be part of DAGInstruction.
3946   Record *R = I.getRecord();
3947   DAGInsts.try_emplace(R, std::move(Results), std::move(Operands),
3948                        std::move(InstImpResults), SrcPattern, ResultPattern);
3949 
3950   LLVM_DEBUG(I.dump());
3951 }
3952 
3953 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3954 /// any fragments involved.  This populates the Instructions list with fully
3955 /// resolved instructions.
3956 void CodeGenDAGPatterns::ParseInstructions() {
3957   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3958 
3959   for (Record *Instr : Instrs) {
3960     ListInit *LI = nullptr;
3961 
3962     if (isa<ListInit>(Instr->getValueInit("Pattern")))
3963       LI = Instr->getValueAsListInit("Pattern");
3964 
3965     // If there is no pattern, only collect minimal information about the
3966     // instruction for its operand list.  We have to assume that there is one
3967     // result, as we have no detailed info. A pattern which references the
3968     // null_frag operator is as-if no pattern were specified. Normally this
3969     // is from a multiclass expansion w/ a SDPatternOperator passed in as
3970     // null_frag.
3971     if (!LI || LI->empty() || hasNullFragReference(LI)) {
3972       std::vector<Record*> Results;
3973       std::vector<Record*> Operands;
3974 
3975       CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3976 
3977       if (InstInfo.Operands.size() != 0) {
3978         for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3979           Results.push_back(InstInfo.Operands[j].Rec);
3980 
3981         // The rest are inputs.
3982         for (unsigned j = InstInfo.Operands.NumDefs,
3983                e = InstInfo.Operands.size(); j < e; ++j)
3984           Operands.push_back(InstInfo.Operands[j].Rec);
3985       }
3986 
3987       // Create and insert the instruction.
3988       Instructions.try_emplace(Instr, std::move(Results), std::move(Operands),
3989                                std::vector<Record *>());
3990       continue;  // no pattern.
3991     }
3992 
3993     CodeGenInstruction &CGI = Target.getInstruction(Instr);
3994     parseInstructionPattern(CGI, LI, Instructions);
3995   }
3996 
3997   // If we can, convert the instructions to be patterns that are matched!
3998   for (auto &Entry : Instructions) {
3999     Record *Instr = Entry.first;
4000     DAGInstruction &TheInst = Entry.second;
4001     TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
4002     TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
4003 
4004     if (SrcPattern && ResultPattern) {
4005       TreePattern Pattern(Instr, SrcPattern, true, *this);
4006       TreePattern Result(Instr, ResultPattern, false, *this);
4007       ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
4008     }
4009   }
4010 }
4011 
4012 typedef std::pair<TreePatternNode *, unsigned> NameRecord;
4013 
4014 static void FindNames(TreePatternNode *P,
4015                       std::map<std::string, NameRecord> &Names,
4016                       TreePattern *PatternTop) {
4017   if (!P->getName().empty()) {
4018     NameRecord &Rec = Names[P->getName()];
4019     // If this is the first instance of the name, remember the node.
4020     if (Rec.second++ == 0)
4021       Rec.first = P;
4022     else if (Rec.first->getExtTypes() != P->getExtTypes())
4023       PatternTop->error("repetition of value: $" + P->getName() +
4024                         " where different uses have different types!");
4025   }
4026 
4027   if (!P->isLeaf()) {
4028     for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
4029       FindNames(P->getChild(i), Names, PatternTop);
4030   }
4031 }
4032 
4033 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
4034                                            PatternToMatch &&PTM) {
4035   // Do some sanity checking on the pattern we're about to match.
4036   std::string Reason;
4037   if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
4038     PrintWarning(Pattern->getRecord()->getLoc(),
4039       Twine("Pattern can never match: ") + Reason);
4040     return;
4041   }
4042 
4043   // If the source pattern's root is a complex pattern, that complex pattern
4044   // must specify the nodes it can potentially match.
4045   if (const ComplexPattern *CP =
4046         PTM.getSrcPattern()->getComplexPatternInfo(*this))
4047     if (CP->getRootNodes().empty())
4048       Pattern->error("ComplexPattern at root must specify list of opcodes it"
4049                      " could match");
4050 
4051 
4052   // Find all of the named values in the input and output, ensure they have the
4053   // same type.
4054   std::map<std::string, NameRecord> SrcNames, DstNames;
4055   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
4056   FindNames(PTM.getDstPattern(), DstNames, Pattern);
4057 
4058   // Scan all of the named values in the destination pattern, rejecting them if
4059   // they don't exist in the input pattern.
4060   for (const auto &Entry : DstNames) {
4061     if (SrcNames[Entry.first].first == nullptr)
4062       Pattern->error("Pattern has input without matching name in output: $" +
4063                      Entry.first);
4064   }
4065 
4066   // Scan all of the named values in the source pattern, rejecting them if the
4067   // name isn't used in the dest, and isn't used to tie two values together.
4068   for (const auto &Entry : SrcNames)
4069     if (DstNames[Entry.first].first == nullptr &&
4070         SrcNames[Entry.first].second == 1)
4071       Pattern->error("Pattern has dead named input: $" + Entry.first);
4072 
4073   PatternsToMatch.push_back(std::move(PTM));
4074 }
4075 
4076 void CodeGenDAGPatterns::InferInstructionFlags() {
4077   ArrayRef<const CodeGenInstruction*> Instructions =
4078     Target.getInstructionsByEnumValue();
4079 
4080   unsigned Errors = 0;
4081 
4082   // Try to infer flags from all patterns in PatternToMatch.  These include
4083   // both the primary instruction patterns (which always come first) and
4084   // patterns defined outside the instruction.
4085   for (const PatternToMatch &PTM : ptms()) {
4086     // We can only infer from single-instruction patterns, otherwise we won't
4087     // know which instruction should get the flags.
4088     SmallVector<Record*, 8> PatInstrs;
4089     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
4090     if (PatInstrs.size() != 1)
4091       continue;
4092 
4093     // Get the single instruction.
4094     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
4095 
4096     // Only infer properties from the first pattern. We'll verify the others.
4097     if (InstInfo.InferredFrom)
4098       continue;
4099 
4100     InstAnalyzer PatInfo(*this);
4101     PatInfo.Analyze(PTM);
4102     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
4103   }
4104 
4105   if (Errors)
4106     PrintFatalError("pattern conflicts");
4107 
4108   // If requested by the target, guess any undefined properties.
4109   if (Target.guessInstructionProperties()) {
4110     for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
4111       CodeGenInstruction *InstInfo =
4112         const_cast<CodeGenInstruction *>(Instructions[i]);
4113       if (InstInfo->InferredFrom)
4114         continue;
4115       // The mayLoad and mayStore flags default to false.
4116       // Conservatively assume hasSideEffects if it wasn't explicit.
4117       if (InstInfo->hasSideEffects_Unset)
4118         InstInfo->hasSideEffects = true;
4119     }
4120     return;
4121   }
4122 
4123   // Complain about any flags that are still undefined.
4124   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
4125     CodeGenInstruction *InstInfo =
4126       const_cast<CodeGenInstruction *>(Instructions[i]);
4127     if (InstInfo->InferredFrom)
4128       continue;
4129     if (InstInfo->hasSideEffects_Unset)
4130       PrintError(InstInfo->TheDef->getLoc(),
4131                  "Can't infer hasSideEffects from patterns");
4132     if (InstInfo->mayStore_Unset)
4133       PrintError(InstInfo->TheDef->getLoc(),
4134                  "Can't infer mayStore from patterns");
4135     if (InstInfo->mayLoad_Unset)
4136       PrintError(InstInfo->TheDef->getLoc(),
4137                  "Can't infer mayLoad from patterns");
4138   }
4139 }
4140 
4141 
4142 /// Verify instruction flags against pattern node properties.
4143 void CodeGenDAGPatterns::VerifyInstructionFlags() {
4144   unsigned Errors = 0;
4145   for (const PatternToMatch &PTM : ptms()) {
4146     SmallVector<Record*, 8> Instrs;
4147     getInstructionsInTree(PTM.getDstPattern(), Instrs);
4148     if (Instrs.empty())
4149       continue;
4150 
4151     // Count the number of instructions with each flag set.
4152     unsigned NumSideEffects = 0;
4153     unsigned NumStores = 0;
4154     unsigned NumLoads = 0;
4155     for (const Record *Instr : Instrs) {
4156       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4157       NumSideEffects += InstInfo.hasSideEffects;
4158       NumStores += InstInfo.mayStore;
4159       NumLoads += InstInfo.mayLoad;
4160     }
4161 
4162     // Analyze the source pattern.
4163     InstAnalyzer PatInfo(*this);
4164     PatInfo.Analyze(PTM);
4165 
4166     // Collect error messages.
4167     SmallVector<std::string, 4> Msgs;
4168 
4169     // Check for missing flags in the output.
4170     // Permit extra flags for now at least.
4171     if (PatInfo.hasSideEffects && !NumSideEffects)
4172       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
4173 
4174     // Don't verify store flags on instructions with side effects. At least for
4175     // intrinsics, side effects implies mayStore.
4176     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
4177       Msgs.push_back("pattern may store, but mayStore isn't set");
4178 
4179     // Similarly, mayStore implies mayLoad on intrinsics.
4180     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
4181       Msgs.push_back("pattern may load, but mayLoad isn't set");
4182 
4183     // Print error messages.
4184     if (Msgs.empty())
4185       continue;
4186     ++Errors;
4187 
4188     for (const std::string &Msg : Msgs)
4189       PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
4190                  (Instrs.size() == 1 ?
4191                   "instruction" : "output instructions"));
4192     // Provide the location of the relevant instruction definitions.
4193     for (const Record *Instr : Instrs) {
4194       if (Instr != PTM.getSrcRecord())
4195         PrintError(Instr->getLoc(), "defined here");
4196       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4197       if (InstInfo.InferredFrom &&
4198           InstInfo.InferredFrom != InstInfo.TheDef &&
4199           InstInfo.InferredFrom != PTM.getSrcRecord())
4200         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
4201     }
4202   }
4203   if (Errors)
4204     PrintFatalError("Errors in DAG patterns");
4205 }
4206 
4207 /// Given a pattern result with an unresolved type, see if we can find one
4208 /// instruction with an unresolved result type.  Force this result type to an
4209 /// arbitrary element if it's possible types to converge results.
4210 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
4211   if (N->isLeaf())
4212     return false;
4213 
4214   // Analyze children.
4215   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4216     if (ForceArbitraryInstResultType(N->getChild(i), TP))
4217       return true;
4218 
4219   if (!N->getOperator()->isSubClassOf("Instruction"))
4220     return false;
4221 
4222   // If this type is already concrete or completely unknown we can't do
4223   // anything.
4224   TypeInfer &TI = TP.getInfer();
4225   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
4226     if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
4227       continue;
4228 
4229     // Otherwise, force its type to an arbitrary choice.
4230     if (TI.forceArbitrary(N->getExtType(i)))
4231       return true;
4232   }
4233 
4234   return false;
4235 }
4236 
4237 // Promote xform function to be an explicit node wherever set.
4238 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
4239   if (Record *Xform = N->getTransformFn()) {
4240       N->setTransformFn(nullptr);
4241       std::vector<TreePatternNodePtr> Children;
4242       Children.push_back(PromoteXForms(N));
4243       return makeIntrusiveRefCnt<TreePatternNode>(Xform, std::move(Children),
4244                                                N->getNumTypes());
4245   }
4246 
4247   if (!N->isLeaf())
4248     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4249       TreePatternNodePtr Child = N->getChildShared(i);
4250       N->setChild(i, PromoteXForms(Child));
4251     }
4252   return N;
4253 }
4254 
4255 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
4256        TreePattern &Pattern, TreePattern &Result,
4257        const std::vector<Record *> &InstImpResults) {
4258 
4259   // Inline pattern fragments and expand multiple alternatives.
4260   Pattern.InlinePatternFragments();
4261   Result.InlinePatternFragments();
4262 
4263   if (Result.getNumTrees() != 1)
4264     Result.error("Cannot use multi-alternative fragments in result pattern!");
4265 
4266   // Infer types.
4267   bool IterateInference;
4268   bool InferredAllPatternTypes, InferredAllResultTypes;
4269   do {
4270     // Infer as many types as possible.  If we cannot infer all of them, we
4271     // can never do anything with this pattern: report it to the user.
4272     InferredAllPatternTypes =
4273         Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
4274 
4275     // Infer as many types as possible.  If we cannot infer all of them, we
4276     // can never do anything with this pattern: report it to the user.
4277     InferredAllResultTypes =
4278         Result.InferAllTypes(&Pattern.getNamedNodesMap());
4279 
4280     IterateInference = false;
4281 
4282     // Apply the type of the result to the source pattern.  This helps us
4283     // resolve cases where the input type is known to be a pointer type (which
4284     // is considered resolved), but the result knows it needs to be 32- or
4285     // 64-bits.  Infer the other way for good measure.
4286     for (const auto &T : Pattern.getTrees())
4287       for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4288                                         T->getNumTypes());
4289          i != e; ++i) {
4290         IterateInference |= T->UpdateNodeType(
4291             i, Result.getOnlyTree()->getExtType(i), Result);
4292         IterateInference |= Result.getOnlyTree()->UpdateNodeType(
4293             i, T->getExtType(i), Result);
4294       }
4295 
4296     // If our iteration has converged and the input pattern's types are fully
4297     // resolved but the result pattern is not fully resolved, we may have a
4298     // situation where we have two instructions in the result pattern and
4299     // the instructions require a common register class, but don't care about
4300     // what actual MVT is used.  This is actually a bug in our modelling:
4301     // output patterns should have register classes, not MVTs.
4302     //
4303     // In any case, to handle this, we just go through and disambiguate some
4304     // arbitrary types to the result pattern's nodes.
4305     if (!IterateInference && InferredAllPatternTypes &&
4306         !InferredAllResultTypes)
4307       IterateInference =
4308           ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
4309   } while (IterateInference);
4310 
4311   // Verify that we inferred enough types that we can do something with the
4312   // pattern and result.  If these fire the user has to add type casts.
4313   if (!InferredAllPatternTypes)
4314     Pattern.error("Could not infer all types in pattern!");
4315   if (!InferredAllResultTypes) {
4316     Pattern.dump();
4317     Result.error("Could not infer all types in pattern result!");
4318   }
4319 
4320   // Promote xform function to be an explicit node wherever set.
4321   TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4322 
4323   TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4324   Temp.InferAllTypes();
4325 
4326   ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4327   int Complexity = TheDef->getValueAsInt("AddedComplexity");
4328 
4329   if (PatternRewriter)
4330     PatternRewriter(&Pattern);
4331 
4332   // A pattern may end up with an "impossible" type, i.e. a situation
4333   // where all types have been eliminated for some node in this pattern.
4334   // This could occur for intrinsics that only make sense for a specific
4335   // value type, and use a specific register class. If, for some mode,
4336   // that register class does not accept that type, the type inference
4337   // will lead to a contradiction, which is not an error however, but
4338   // a sign that this pattern will simply never match.
4339   if (Temp.getOnlyTree()->hasPossibleType()) {
4340     for (const auto &T : Pattern.getTrees()) {
4341       if (T->hasPossibleType())
4342         AddPatternToMatch(&Pattern,
4343                           PatternToMatch(TheDef, Preds, T, Temp.getOnlyTree(),
4344                                          InstImpResults, Complexity,
4345                                          TheDef->getID()));
4346     }
4347   } else {
4348     // Show a message about a dropped pattern with some info to make it
4349     // easier to identify it in the .td files.
4350     LLVM_DEBUG({
4351       dbgs() << "Dropping: ";
4352       Pattern.dump();
4353       Temp.getOnlyTree()->dump();
4354       dbgs() << "\n";
4355     });
4356   }
4357 }
4358 
4359 void CodeGenDAGPatterns::ParsePatterns() {
4360   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
4361 
4362   for (Record *CurPattern : Patterns) {
4363     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4364 
4365     // If the pattern references the null_frag, there's nothing to do.
4366     if (hasNullFragReference(Tree))
4367       continue;
4368 
4369     TreePattern Pattern(CurPattern, Tree, true, *this);
4370 
4371     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4372     if (LI->empty()) continue;  // no pattern.
4373 
4374     // Parse the instruction.
4375     TreePattern Result(CurPattern, LI, false, *this);
4376 
4377     if (Result.getNumTrees() != 1)
4378       Result.error("Cannot handle instructions producing instructions "
4379                    "with temporaries yet!");
4380 
4381     // Validate that the input pattern is correct.
4382     std::map<std::string, TreePatternNodePtr> InstInputs;
4383     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
4384         InstResults;
4385     std::vector<Record*> InstImpResults;
4386     for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4387       FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4388                                   InstResults, InstImpResults);
4389 
4390     ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
4391   }
4392 }
4393 
4394 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4395   for (const TypeSetByHwMode &VTS : N->getExtTypes())
4396     for (const auto &I : VTS)
4397       Modes.insert(I.first);
4398 
4399   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4400     collectModes(Modes, N->getChild(i));
4401 }
4402 
4403 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4404   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4405   if (CGH.getNumModeIds() == 1)
4406     return;
4407 
4408   std::vector<PatternToMatch> Copy;
4409   PatternsToMatch.swap(Copy);
4410 
4411   auto AppendPattern = [this](PatternToMatch &P, unsigned Mode,
4412                               StringRef Check) {
4413     TreePatternNodePtr NewSrc = P.getSrcPattern()->clone();
4414     TreePatternNodePtr NewDst = P.getDstPattern()->clone();
4415     if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4416       return;
4417     }
4418 
4419     PatternsToMatch.emplace_back(P.getSrcRecord(), P.getPredicates(),
4420                                  std::move(NewSrc), std::move(NewDst),
4421                                  P.getDstRegs(), P.getAddedComplexity(),
4422                                  Record::getNewUID(Records), Check);
4423   };
4424 
4425   for (PatternToMatch &P : Copy) {
4426     const TreePatternNode *SrcP = nullptr, *DstP = nullptr;
4427     if (P.getSrcPattern()->hasProperTypeByHwMode())
4428       SrcP = P.getSrcPattern();
4429     if (P.getDstPattern()->hasProperTypeByHwMode())
4430       DstP = P.getDstPattern();
4431     if (!SrcP && !DstP) {
4432       PatternsToMatch.push_back(P);
4433       continue;
4434     }
4435 
4436     std::set<unsigned> Modes;
4437     if (SrcP)
4438       collectModes(Modes, SrcP);
4439     if (DstP)
4440       collectModes(Modes, DstP);
4441 
4442     // The predicate for the default mode needs to be constructed for each
4443     // pattern separately.
4444     // Since not all modes must be present in each pattern, if a mode m is
4445     // absent, then there is no point in constructing a check for m. If such
4446     // a check was created, it would be equivalent to checking the default
4447     // mode, except not all modes' predicates would be a part of the checking
4448     // code. The subsequently generated check for the default mode would then
4449     // have the exact same patterns, but a different predicate code. To avoid
4450     // duplicated patterns with different predicate checks, construct the
4451     // default check as a negation of all predicates that are actually present
4452     // in the source/destination patterns.
4453     SmallString<128> DefaultCheck;
4454 
4455     for (unsigned M : Modes) {
4456       if (M == DefaultMode)
4457         continue;
4458 
4459       // Fill the map entry for this mode.
4460       const HwMode &HM = CGH.getMode(M);
4461       AppendPattern(P, M, HM.Predicates);
4462 
4463       // Add negations of the HM's predicates to the default predicate.
4464       if (!DefaultCheck.empty())
4465         DefaultCheck += " && ";
4466       DefaultCheck += "!(";
4467       DefaultCheck += HM.Predicates;
4468       DefaultCheck += ")";
4469     }
4470 
4471     bool HasDefault = Modes.count(DefaultMode);
4472     if (HasDefault)
4473       AppendPattern(P, DefaultMode, DefaultCheck);
4474   }
4475 }
4476 
4477 /// Dependent variable map for CodeGenDAGPattern variant generation
4478 typedef StringMap<int> DepVarMap;
4479 
4480 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4481   if (N->isLeaf()) {
4482     if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4483       DepMap[N->getName()]++;
4484   } else {
4485     for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4486       FindDepVarsOf(N->getChild(i), DepMap);
4487   }
4488 }
4489 
4490 /// Find dependent variables within child patterns
4491 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4492   DepVarMap depcounts;
4493   FindDepVarsOf(N, depcounts);
4494   for (const auto &Pair : depcounts) {
4495     if (Pair.getValue() > 1)
4496       DepVars.insert(Pair.getKey());
4497   }
4498 }
4499 
4500 #ifndef NDEBUG
4501 /// Dump the dependent variable set:
4502 static void DumpDepVars(MultipleUseVarSet &DepVars) {
4503   if (DepVars.empty()) {
4504     LLVM_DEBUG(errs() << "<empty set>");
4505   } else {
4506     LLVM_DEBUG(errs() << "[ ");
4507     for (const auto &DepVar : DepVars) {
4508       LLVM_DEBUG(errs() << DepVar.getKey() << " ");
4509     }
4510     LLVM_DEBUG(errs() << "]");
4511   }
4512 }
4513 #endif
4514 
4515 
4516 /// CombineChildVariants - Given a bunch of permutations of each child of the
4517 /// 'operator' node, put them together in all possible ways.
4518 static void CombineChildVariants(
4519     TreePatternNodePtr Orig,
4520     const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4521     std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4522     const MultipleUseVarSet &DepVars) {
4523   // Make sure that each operand has at least one variant to choose from.
4524   for (const auto &Variants : ChildVariants)
4525     if (Variants.empty())
4526       return;
4527 
4528   // The end result is an all-pairs construction of the resultant pattern.
4529   std::vector<unsigned> Idxs(ChildVariants.size());
4530   bool NotDone;
4531   do {
4532 #ifndef NDEBUG
4533     LLVM_DEBUG(if (!Idxs.empty()) {
4534       errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4535       for (unsigned Idx : Idxs) {
4536         errs() << Idx << " ";
4537       }
4538       errs() << "]\n";
4539     });
4540 #endif
4541     // Create the variant and add it to the output list.
4542     std::vector<TreePatternNodePtr> NewChildren;
4543     NewChildren.reserve(ChildVariants.size());
4544     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4545       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4546     TreePatternNodePtr R = makeIntrusiveRefCnt<TreePatternNode>(
4547         Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4548 
4549     // Copy over properties.
4550     R->setName(Orig->getName());
4551     R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
4552     R->setPredicateCalls(Orig->getPredicateCalls());
4553     R->setGISelFlagsRecord(Orig->getGISelFlagsRecord());
4554     R->setTransformFn(Orig->getTransformFn());
4555     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4556       R->setType(i, Orig->getExtType(i));
4557 
4558     // If this pattern cannot match, do not include it as a variant.
4559     std::string ErrString;
4560     // Scan to see if this pattern has already been emitted.  We can get
4561     // duplication due to things like commuting:
4562     //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4563     // which are the same pattern.  Ignore the dups.
4564     if (R->canPatternMatch(ErrString, CDP) &&
4565         none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4566           return R->isIsomorphicTo(Variant.get(), DepVars);
4567         }))
4568       OutVariants.push_back(R);
4569 
4570     // Increment indices to the next permutation by incrementing the
4571     // indices from last index backward, e.g., generate the sequence
4572     // [0, 0], [0, 1], [1, 0], [1, 1].
4573     int IdxsIdx;
4574     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4575       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4576         Idxs[IdxsIdx] = 0;
4577       else
4578         break;
4579     }
4580     NotDone = (IdxsIdx >= 0);
4581   } while (NotDone);
4582 }
4583 
4584 /// CombineChildVariants - A helper function for binary operators.
4585 ///
4586 static void CombineChildVariants(TreePatternNodePtr Orig,
4587                                  const std::vector<TreePatternNodePtr> &LHS,
4588                                  const std::vector<TreePatternNodePtr> &RHS,
4589                                  std::vector<TreePatternNodePtr> &OutVariants,
4590                                  CodeGenDAGPatterns &CDP,
4591                                  const MultipleUseVarSet &DepVars) {
4592   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4593   ChildVariants.push_back(LHS);
4594   ChildVariants.push_back(RHS);
4595   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4596 }
4597 
4598 static void
4599 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4600                                   std::vector<TreePatternNodePtr> &Children) {
4601   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
4602   Record *Operator = N->getOperator();
4603 
4604   // Only permit raw nodes.
4605   if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
4606       N->getTransformFn()) {
4607     Children.push_back(N);
4608     return;
4609   }
4610 
4611   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4612     Children.push_back(N->getChildShared(0));
4613   else
4614     GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4615 
4616   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4617     Children.push_back(N->getChildShared(1));
4618   else
4619     GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4620 }
4621 
4622 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4623 /// the (potentially recursive) pattern by using algebraic laws.
4624 ///
4625 static void GenerateVariantsOf(TreePatternNodePtr N,
4626                                std::vector<TreePatternNodePtr> &OutVariants,
4627                                CodeGenDAGPatterns &CDP,
4628                                const MultipleUseVarSet &DepVars) {
4629   // We cannot permute leaves or ComplexPattern uses.
4630   if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4631     OutVariants.push_back(N);
4632     return;
4633   }
4634 
4635   // Look up interesting info about the node.
4636   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4637 
4638   // If this node is associative, re-associate.
4639   if (NodeInfo.hasProperty(SDNPAssociative)) {
4640     // Re-associate by pulling together all of the linked operators
4641     std::vector<TreePatternNodePtr> MaximalChildren;
4642     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4643 
4644     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
4645     // permutations.
4646     if (MaximalChildren.size() == 3) {
4647       // Find the variants of all of our maximal children.
4648       std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4649       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4650       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4651       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4652 
4653       // There are only two ways we can permute the tree:
4654       //   (A op B) op C    and    A op (B op C)
4655       // Within these forms, we can also permute A/B/C.
4656 
4657       // Generate legal pair permutations of A/B/C.
4658       std::vector<TreePatternNodePtr> ABVariants;
4659       std::vector<TreePatternNodePtr> BAVariants;
4660       std::vector<TreePatternNodePtr> ACVariants;
4661       std::vector<TreePatternNodePtr> CAVariants;
4662       std::vector<TreePatternNodePtr> BCVariants;
4663       std::vector<TreePatternNodePtr> CBVariants;
4664       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4665       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4666       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4667       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4668       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4669       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4670 
4671       // Combine those into the result: (x op x) op x
4672       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4673       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4674       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4675       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4676       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4677       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4678 
4679       // Combine those into the result: x op (x op x)
4680       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4681       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4682       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4683       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4684       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4685       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4686       return;
4687     }
4688   }
4689 
4690   // Compute permutations of all children.
4691   std::vector<std::vector<TreePatternNodePtr>> ChildVariants(
4692       N->getNumChildren());
4693   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4694     GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4695 
4696   // Build all permutations based on how the children were formed.
4697   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4698 
4699   // If this node is commutative, consider the commuted order.
4700   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4701   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4702     unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
4703     assert(N->getNumChildren() >= (2 + Skip) &&
4704            "Commutative but doesn't have 2 children!");
4705     // Don't allow commuting children which are actually register references.
4706     bool NoRegisters = true;
4707     unsigned i = 0 + Skip;
4708     unsigned e = 2 + Skip;
4709     for (; i != e; ++i) {
4710       TreePatternNode *Child = N->getChild(i);
4711       if (Child->isLeaf())
4712         if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4713           Record *RR = DI->getDef();
4714           if (RR->isSubClassOf("Register"))
4715             NoRegisters = false;
4716         }
4717     }
4718     // Consider the commuted order.
4719     if (NoRegisters) {
4720       // Swap the first two operands after the intrinsic id, if present.
4721       unsigned i = isCommIntrinsic ? 1 : 0;
4722       std::swap(ChildVariants[i], ChildVariants[i + 1]);
4723       CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4724     }
4725   }
4726 }
4727 
4728 
4729 // GenerateVariants - Generate variants.  For example, commutative patterns can
4730 // match multiple ways.  Add them to PatternsToMatch as well.
4731 void CodeGenDAGPatterns::GenerateVariants() {
4732   LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4733 
4734   // Loop over all of the patterns we've collected, checking to see if we can
4735   // generate variants of the instruction, through the exploitation of
4736   // identities.  This permits the target to provide aggressive matching without
4737   // the .td file having to contain tons of variants of instructions.
4738   //
4739   // Note that this loop adds new patterns to the PatternsToMatch list, but we
4740   // intentionally do not reconsider these.  Any variants of added patterns have
4741   // already been added.
4742   //
4743   for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
4744     MultipleUseVarSet DepVars;
4745     std::vector<TreePatternNodePtr> Variants;
4746     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4747     LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4748     LLVM_DEBUG(DumpDepVars(DepVars));
4749     LLVM_DEBUG(errs() << "\n");
4750     GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4751                        *this, DepVars);
4752 
4753     assert(PatternsToMatch[i].getHwModeFeatures().empty() &&
4754            "HwModes should not have been expanded yet!");
4755 
4756     assert(!Variants.empty() && "Must create at least original variant!");
4757     if (Variants.size() == 1) // No additional variants for this pattern.
4758       continue;
4759 
4760     LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4761                PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n");
4762 
4763     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4764       TreePatternNodePtr Variant = Variants[v];
4765 
4766       LLVM_DEBUG(errs() << "  VAR#" << v << ": "; Variant->dump();
4767                  errs() << "\n");
4768 
4769       // Scan to see if an instruction or explicit pattern already matches this.
4770       bool AlreadyExists = false;
4771       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4772         // Skip if the top level predicates do not match.
4773         if ((i != p) && (PatternsToMatch[i].getPredicates() !=
4774                          PatternsToMatch[p].getPredicates()))
4775           continue;
4776         // Check to see if this variant already exists.
4777         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4778                                     DepVars)) {
4779           LLVM_DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
4780           AlreadyExists = true;
4781           break;
4782         }
4783       }
4784       // If we already have it, ignore the variant.
4785       if (AlreadyExists) continue;
4786 
4787       // Otherwise, add it to the list of patterns we have.
4788       PatternsToMatch.emplace_back(
4789           PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4790           Variant, PatternsToMatch[i].getDstPatternShared(),
4791           PatternsToMatch[i].getDstRegs(),
4792           PatternsToMatch[i].getAddedComplexity(), Record::getNewUID(Records),
4793           PatternsToMatch[i].getHwModeFeatures());
4794     }
4795 
4796     LLVM_DEBUG(errs() << "\n");
4797   }
4798 }
4799