1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines structures to encapsulate information gleaned from the
10 // target register and register class definitions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenRegisters.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/IntEqClasses.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/TableGen/Error.h"
29 #include "llvm/TableGen/Record.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstdint>
33 #include <iterator>
34 #include <map>
35 #include <queue>
36 #include <set>
37 #include <string>
38 #include <tuple>
39 #include <utility>
40 #include <vector>
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "regalloc-emitter"
45 
46 //===----------------------------------------------------------------------===//
47 //                             CodeGenSubRegIndex
48 //===----------------------------------------------------------------------===//
49 
50 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
51   : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) {
52   Name = std::string(R->getName());
53   if (R->getValue("Namespace"))
54     Namespace = std::string(R->getValueAsString("Namespace"));
55   Size = R->getValueAsInt("Size");
56   Offset = R->getValueAsInt("Offset");
57 }
58 
59 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
60                                        unsigned Enum)
61     : TheDef(nullptr), Name(std::string(N)), Namespace(std::string(Nspace)),
62       Size(-1), Offset(-1), EnumValue(Enum), AllSuperRegsCovered(true),
63       Artificial(true) {}
64 
65 std::string CodeGenSubRegIndex::getQualifiedName() const {
66   std::string N = getNamespace();
67   if (!N.empty())
68     N += "::";
69   N += getName();
70   return N;
71 }
72 
73 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
74   if (!TheDef)
75     return;
76 
77   std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
78   if (!Comps.empty()) {
79     if (Comps.size() != 2)
80       PrintFatalError(TheDef->getLoc(),
81                       "ComposedOf must have exactly two entries");
82     CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
83     CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
84     CodeGenSubRegIndex *X = A->addComposite(B, this);
85     if (X)
86       PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
87   }
88 
89   std::vector<Record*> Parts =
90     TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
91   if (!Parts.empty()) {
92     if (Parts.size() < 2)
93       PrintFatalError(TheDef->getLoc(),
94                       "CoveredBySubRegs must have two or more entries");
95     SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
96     for (Record *Part : Parts)
97       IdxParts.push_back(RegBank.getSubRegIdx(Part));
98     setConcatenationOf(IdxParts);
99   }
100 }
101 
102 LaneBitmask CodeGenSubRegIndex::computeLaneMask() const {
103   // Already computed?
104   if (LaneMask.any())
105     return LaneMask;
106 
107   // Recursion guard, shouldn't be required.
108   LaneMask = LaneBitmask::getAll();
109 
110   // The lane mask is simply the union of all sub-indices.
111   LaneBitmask M;
112   for (const auto &C : Composed)
113     M |= C.second->computeLaneMask();
114   assert(M.any() && "Missing lane mask, sub-register cycle?");
115   LaneMask = M;
116   return LaneMask;
117 }
118 
119 void CodeGenSubRegIndex::setConcatenationOf(
120     ArrayRef<CodeGenSubRegIndex*> Parts) {
121   if (ConcatenationOf.empty())
122     ConcatenationOf.assign(Parts.begin(), Parts.end());
123   else
124     assert(std::equal(Parts.begin(), Parts.end(),
125                       ConcatenationOf.begin()) && "parts consistent");
126 }
127 
128 void CodeGenSubRegIndex::computeConcatTransitiveClosure() {
129   for (SmallVectorImpl<CodeGenSubRegIndex*>::iterator
130        I = ConcatenationOf.begin(); I != ConcatenationOf.end(); /*empty*/) {
131     CodeGenSubRegIndex *SubIdx = *I;
132     SubIdx->computeConcatTransitiveClosure();
133 #ifndef NDEBUG
134     for (CodeGenSubRegIndex *SRI : SubIdx->ConcatenationOf)
135       assert(SRI->ConcatenationOf.empty() && "No transitive closure?");
136 #endif
137 
138     if (SubIdx->ConcatenationOf.empty()) {
139       ++I;
140     } else {
141       I = ConcatenationOf.erase(I);
142       I = ConcatenationOf.insert(I, SubIdx->ConcatenationOf.begin(),
143                                  SubIdx->ConcatenationOf.end());
144       I += SubIdx->ConcatenationOf.size();
145     }
146   }
147 }
148 
149 //===----------------------------------------------------------------------===//
150 //                              CodeGenRegister
151 //===----------------------------------------------------------------------===//
152 
153 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
154     : TheDef(R), EnumValue(Enum),
155       CostPerUse(R->getValueAsListOfInts("CostPerUse")),
156       CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
157       HasDisjunctSubRegs(false), Constant(R->getValueAsBit("isConstant")),
158       SubRegsComplete(false), SuperRegsComplete(false), TopoSig(~0u) {
159   Artificial = R->getValueAsBit("isArtificial");
160 }
161 
162 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
163   std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
164   std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
165 
166   if (SRIs.size() != SRs.size())
167     PrintFatalError(TheDef->getLoc(),
168                     "SubRegs and SubRegIndices must have the same size");
169 
170   for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
171     ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
172     ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
173   }
174 
175   // Also compute leading super-registers. Each register has a list of
176   // covered-by-subregs super-registers where it appears as the first explicit
177   // sub-register.
178   //
179   // This is used by computeSecondarySubRegs() to find candidates.
180   if (CoveredBySubRegs && !ExplicitSubRegs.empty())
181     ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
182 
183   // Add ad hoc alias links. This is a symmetric relationship between two
184   // registers, so build a symmetric graph by adding links in both ends.
185   std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
186   for (Record *Alias : Aliases) {
187     CodeGenRegister *Reg = RegBank.getReg(Alias);
188     ExplicitAliases.push_back(Reg);
189     Reg->ExplicitAliases.push_back(this);
190   }
191 }
192 
193 StringRef CodeGenRegister::getName() const {
194   assert(TheDef && "no def");
195   return TheDef->getName();
196 }
197 
198 namespace {
199 
200 // Iterate over all register units in a set of registers.
201 class RegUnitIterator {
202   CodeGenRegister::Vec::const_iterator RegI, RegE;
203   CodeGenRegister::RegUnitList::iterator UnitI, UnitE;
204   static CodeGenRegister::RegUnitList Sentinel;
205 
206 public:
207   RegUnitIterator(const CodeGenRegister::Vec &Regs):
208     RegI(Regs.begin()), RegE(Regs.end()) {
209 
210     if (RegI == RegE) {
211       UnitI = Sentinel.end();
212       UnitE = Sentinel.end();
213     } else {
214       UnitI = (*RegI)->getRegUnits().begin();
215       UnitE = (*RegI)->getRegUnits().end();
216       advance();
217     }
218   }
219 
220   bool isValid() const { return UnitI != UnitE; }
221 
222   unsigned operator* () const { assert(isValid()); return *UnitI; }
223 
224   const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
225 
226   /// Preincrement.  Move to the next unit.
227   void operator++() {
228     assert(isValid() && "Cannot advance beyond the last operand");
229     ++UnitI;
230     advance();
231   }
232 
233 protected:
234   void advance() {
235     while (UnitI == UnitE) {
236       if (++RegI == RegE)
237         break;
238       UnitI = (*RegI)->getRegUnits().begin();
239       UnitE = (*RegI)->getRegUnits().end();
240     }
241   }
242 };
243 
244 CodeGenRegister::RegUnitList RegUnitIterator::Sentinel;
245 
246 } // end anonymous namespace
247 
248 // Return true of this unit appears in RegUnits.
249 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
250   return RegUnits.test(Unit);
251 }
252 
253 // Inherit register units from subregisters.
254 // Return true if the RegUnits changed.
255 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
256   bool changed = false;
257   for (const auto &SubReg : SubRegs) {
258     CodeGenRegister *SR = SubReg.second;
259     // Merge the subregister's units into this register's RegUnits.
260     changed |= (RegUnits |= SR->RegUnits);
261   }
262 
263   return changed;
264 }
265 
266 const CodeGenRegister::SubRegMap &
267 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
268   // Only compute this map once.
269   if (SubRegsComplete)
270     return SubRegs;
271   SubRegsComplete = true;
272 
273   HasDisjunctSubRegs = ExplicitSubRegs.size() > 1;
274 
275   // First insert the explicit subregs and make sure they are fully indexed.
276   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
277     CodeGenRegister *SR = ExplicitSubRegs[i];
278     CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
279     if (!SR->Artificial)
280       Idx->Artificial = false;
281     if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
282       PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
283                       " appears twice in Register " + getName());
284     // Map explicit sub-registers first, so the names take precedence.
285     // The inherited sub-registers are mapped below.
286     SubReg2Idx.insert(std::make_pair(SR, Idx));
287   }
288 
289   // Keep track of inherited subregs and how they can be reached.
290   SmallPtrSet<CodeGenRegister*, 8> Orphans;
291 
292   // Clone inherited subregs and place duplicate entries in Orphans.
293   // Here the order is important - earlier subregs take precedence.
294   for (CodeGenRegister *ESR : ExplicitSubRegs) {
295     const SubRegMap &Map = ESR->computeSubRegs(RegBank);
296     HasDisjunctSubRegs |= ESR->HasDisjunctSubRegs;
297 
298     for (const auto &SR : Map) {
299       if (!SubRegs.insert(SR).second)
300         Orphans.insert(SR.second);
301     }
302   }
303 
304   // Expand any composed subreg indices.
305   // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
306   // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
307   // expanded subreg indices recursively.
308   SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
309   for (unsigned i = 0; i != Indices.size(); ++i) {
310     CodeGenSubRegIndex *Idx = Indices[i];
311     const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
312     CodeGenRegister *SR = SubRegs[Idx];
313     const SubRegMap &Map = SR->computeSubRegs(RegBank);
314 
315     // Look at the possible compositions of Idx.
316     // They may not all be supported by SR.
317     for (auto Comp : Comps) {
318       SubRegMap::const_iterator SRI = Map.find(Comp.first);
319       if (SRI == Map.end())
320         continue; // Idx + I->first doesn't exist in SR.
321       // Add I->second as a name for the subreg SRI->second, assuming it is
322       // orphaned, and the name isn't already used for something else.
323       if (SubRegs.count(Comp.second) || !Orphans.erase(SRI->second))
324         continue;
325       // We found a new name for the orphaned sub-register.
326       SubRegs.insert(std::make_pair(Comp.second, SRI->second));
327       Indices.push_back(Comp.second);
328     }
329   }
330 
331   // Now Orphans contains the inherited subregisters without a direct index.
332   // Create inferred indexes for all missing entries.
333   // Work backwards in the Indices vector in order to compose subregs bottom-up.
334   // Consider this subreg sequence:
335   //
336   //   qsub_1 -> dsub_0 -> ssub_0
337   //
338   // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
339   // can be reached in two different ways:
340   //
341   //   qsub_1 -> ssub_0
342   //   dsub_2 -> ssub_0
343   //
344   // We pick the latter composition because another register may have [dsub_0,
345   // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg.  The
346   // dsub_2 -> ssub_0 composition can be shared.
347   while (!Indices.empty() && !Orphans.empty()) {
348     CodeGenSubRegIndex *Idx = Indices.pop_back_val();
349     CodeGenRegister *SR = SubRegs[Idx];
350     const SubRegMap &Map = SR->computeSubRegs(RegBank);
351     for (const auto &SubReg : Map)
352       if (Orphans.erase(SubReg.second))
353         SubRegs[RegBank.getCompositeSubRegIndex(Idx, SubReg.first)] = SubReg.second;
354   }
355 
356   // Compute the inverse SubReg -> Idx map.
357   for (const auto &SubReg : SubRegs) {
358     if (SubReg.second == this) {
359       ArrayRef<SMLoc> Loc;
360       if (TheDef)
361         Loc = TheDef->getLoc();
362       PrintFatalError(Loc, "Register " + getName() +
363                       " has itself as a sub-register");
364     }
365 
366     // Compute AllSuperRegsCovered.
367     if (!CoveredBySubRegs)
368       SubReg.first->AllSuperRegsCovered = false;
369 
370     // Ensure that every sub-register has a unique name.
371     DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
372       SubReg2Idx.insert(std::make_pair(SubReg.second, SubReg.first)).first;
373     if (Ins->second == SubReg.first)
374       continue;
375     // Trouble: Two different names for SubReg.second.
376     ArrayRef<SMLoc> Loc;
377     if (TheDef)
378       Loc = TheDef->getLoc();
379     PrintFatalError(Loc, "Sub-register can't have two names: " +
380                   SubReg.second->getName() + " available as " +
381                   SubReg.first->getName() + " and " + Ins->second->getName());
382   }
383 
384   // Derive possible names for sub-register concatenations from any explicit
385   // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
386   // that getConcatSubRegIndex() won't invent any concatenated indices that the
387   // user already specified.
388   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
389     CodeGenRegister *SR = ExplicitSubRegs[i];
390     if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1 ||
391         SR->Artificial)
392       continue;
393 
394     // SR is composed of multiple sub-regs. Find their names in this register.
395     SmallVector<CodeGenSubRegIndex*, 8> Parts;
396     for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) {
397       CodeGenSubRegIndex &I = *SR->ExplicitSubRegIndices[j];
398       if (!I.Artificial)
399         Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
400     }
401 
402     // Offer this as an existing spelling for the concatenation of Parts.
403     CodeGenSubRegIndex &Idx = *ExplicitSubRegIndices[i];
404     Idx.setConcatenationOf(Parts);
405   }
406 
407   // Initialize RegUnitList. Because getSubRegs is called recursively, this
408   // processes the register hierarchy in postorder.
409   //
410   // Inherit all sub-register units. It is good enough to look at the explicit
411   // sub-registers, the other registers won't contribute any more units.
412   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
413     CodeGenRegister *SR = ExplicitSubRegs[i];
414     RegUnits |= SR->RegUnits;
415   }
416 
417   // Absent any ad hoc aliasing, we create one register unit per leaf register.
418   // These units correspond to the maximal cliques in the register overlap
419   // graph which is optimal.
420   //
421   // When there is ad hoc aliasing, we simply create one unit per edge in the
422   // undirected ad hoc aliasing graph. Technically, we could do better by
423   // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
424   // are extremely rare anyway (I've never seen one), so we don't bother with
425   // the added complexity.
426   for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
427     CodeGenRegister *AR = ExplicitAliases[i];
428     // Only visit each edge once.
429     if (AR->SubRegsComplete)
430       continue;
431     // Create a RegUnit representing this alias edge, and add it to both
432     // registers.
433     unsigned Unit = RegBank.newRegUnit(this, AR);
434     RegUnits.set(Unit);
435     AR->RegUnits.set(Unit);
436   }
437 
438   // Finally, create units for leaf registers without ad hoc aliases. Note that
439   // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
440   // necessary. This means the aliasing leaf registers can share a single unit.
441   if (RegUnits.empty())
442     RegUnits.set(RegBank.newRegUnit(this));
443 
444   // We have now computed the native register units. More may be adopted later
445   // for balancing purposes.
446   NativeRegUnits = RegUnits;
447 
448   return SubRegs;
449 }
450 
451 // In a register that is covered by its sub-registers, try to find redundant
452 // sub-registers. For example:
453 //
454 //   QQ0 = {Q0, Q1}
455 //   Q0 = {D0, D1}
456 //   Q1 = {D2, D3}
457 //
458 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
459 // the register definition.
460 //
461 // The explicitly specified registers form a tree. This function discovers
462 // sub-register relationships that would force a DAG.
463 //
464 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
465   SmallVector<SubRegMap::value_type, 8> NewSubRegs;
466 
467   std::queue<std::pair<CodeGenSubRegIndex*,CodeGenRegister*>> SubRegQueue;
468   for (std::pair<CodeGenSubRegIndex*,CodeGenRegister*> P : SubRegs)
469     SubRegQueue.push(P);
470 
471   // Look at the leading super-registers of each sub-register. Those are the
472   // candidates for new sub-registers, assuming they are fully contained in
473   // this register.
474   while (!SubRegQueue.empty()) {
475     CodeGenSubRegIndex *SubRegIdx;
476     const CodeGenRegister *SubReg;
477     std::tie(SubRegIdx, SubReg) = SubRegQueue.front();
478     SubRegQueue.pop();
479 
480     const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
481     for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
482       CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
483       // Already got this sub-register?
484       if (Cand == this || getSubRegIndex(Cand))
485         continue;
486       // Check if each component of Cand is already a sub-register.
487       assert(!Cand->ExplicitSubRegs.empty() &&
488              "Super-register has no sub-registers");
489       if (Cand->ExplicitSubRegs.size() == 1)
490         continue;
491       SmallVector<CodeGenSubRegIndex*, 8> Parts;
492       // We know that the first component is (SubRegIdx,SubReg). However we
493       // may still need to split it into smaller subregister parts.
494       assert(Cand->ExplicitSubRegs[0] == SubReg && "LeadingSuperRegs correct");
495       assert(getSubRegIndex(SubReg) == SubRegIdx && "LeadingSuperRegs correct");
496       for (CodeGenRegister *SubReg : Cand->ExplicitSubRegs) {
497         if (CodeGenSubRegIndex *SubRegIdx = getSubRegIndex(SubReg)) {
498           if (SubRegIdx->ConcatenationOf.empty())
499             Parts.push_back(SubRegIdx);
500           else
501             append_range(Parts, SubRegIdx->ConcatenationOf);
502         } else {
503           // Sub-register doesn't exist.
504           Parts.clear();
505           break;
506         }
507       }
508       // There is nothing to do if some Cand sub-register is not part of this
509       // register.
510       if (Parts.empty())
511         continue;
512 
513       // Each part of Cand is a sub-register of this. Make the full Cand also
514       // a sub-register with a concatenated sub-register index.
515       CodeGenSubRegIndex *Concat = RegBank.getConcatSubRegIndex(Parts);
516       std::pair<CodeGenSubRegIndex*,CodeGenRegister*> NewSubReg =
517           std::make_pair(Concat, Cand);
518 
519       if (!SubRegs.insert(NewSubReg).second)
520         continue;
521 
522       // We inserted a new subregister.
523       NewSubRegs.push_back(NewSubReg);
524       SubRegQueue.push(NewSubReg);
525       SubReg2Idx.insert(std::make_pair(Cand, Concat));
526     }
527   }
528 
529   // Create sub-register index composition maps for the synthesized indices.
530   for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
531     CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
532     CodeGenRegister *NewSubReg = NewSubRegs[i].second;
533     for (auto SubReg : NewSubReg->SubRegs) {
534       CodeGenSubRegIndex *SubIdx = getSubRegIndex(SubReg.second);
535       if (!SubIdx)
536         PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
537                                               SubReg.second->getName() +
538                                               " in " + getName());
539       NewIdx->addComposite(SubReg.first, SubIdx);
540     }
541   }
542 }
543 
544 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
545   // Only visit each register once.
546   if (SuperRegsComplete)
547     return;
548   SuperRegsComplete = true;
549 
550   // Make sure all sub-registers have been visited first, so the super-reg
551   // lists will be topologically ordered.
552   for (auto SubReg : SubRegs)
553     SubReg.second->computeSuperRegs(RegBank);
554 
555   // Now add this as a super-register on all sub-registers.
556   // Also compute the TopoSigId in post-order.
557   TopoSigId Id;
558   for (auto SubReg : SubRegs) {
559     // Topological signature computed from SubIdx, TopoId(SubReg).
560     // Loops and idempotent indices have TopoSig = ~0u.
561     Id.push_back(SubReg.first->EnumValue);
562     Id.push_back(SubReg.second->TopoSig);
563 
564     // Don't add duplicate entries.
565     if (!SubReg.second->SuperRegs.empty() &&
566         SubReg.second->SuperRegs.back() == this)
567       continue;
568     SubReg.second->SuperRegs.push_back(this);
569   }
570   TopoSig = RegBank.getTopoSig(Id);
571 }
572 
573 void
574 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
575                                     CodeGenRegBank &RegBank) const {
576   assert(SubRegsComplete && "Must precompute sub-registers");
577   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
578     CodeGenRegister *SR = ExplicitSubRegs[i];
579     if (OSet.insert(SR))
580       SR->addSubRegsPreOrder(OSet, RegBank);
581   }
582   // Add any secondary sub-registers that weren't part of the explicit tree.
583   for (auto SubReg : SubRegs)
584     OSet.insert(SubReg.second);
585 }
586 
587 // Get the sum of this register's unit weights.
588 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
589   unsigned Weight = 0;
590   for (unsigned RegUnit : RegUnits) {
591     Weight += RegBank.getRegUnit(RegUnit).Weight;
592   }
593   return Weight;
594 }
595 
596 //===----------------------------------------------------------------------===//
597 //                               RegisterTuples
598 //===----------------------------------------------------------------------===//
599 
600 // A RegisterTuples def is used to generate pseudo-registers from lists of
601 // sub-registers. We provide a SetTheory expander class that returns the new
602 // registers.
603 namespace {
604 
605 struct TupleExpander : SetTheory::Expander {
606   // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of
607   // the synthesized definitions for their lifetime.
608   std::vector<std::unique_ptr<Record>> &SynthDefs;
609 
610   TupleExpander(std::vector<std::unique_ptr<Record>> &SynthDefs)
611       : SynthDefs(SynthDefs) {}
612 
613   void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override {
614     std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
615     unsigned Dim = Indices.size();
616     ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
617     if (Dim != SubRegs->size())
618       PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
619     if (Dim < 2)
620       PrintFatalError(Def->getLoc(),
621                       "Tuples must have at least 2 sub-registers");
622 
623     // Evaluate the sub-register lists to be zipped.
624     unsigned Length = ~0u;
625     SmallVector<SetTheory::RecSet, 4> Lists(Dim);
626     for (unsigned i = 0; i != Dim; ++i) {
627       ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
628       Length = std::min(Length, unsigned(Lists[i].size()));
629     }
630 
631     if (Length == 0)
632       return;
633 
634     // Precompute some types.
635     Record *RegisterCl = Def->getRecords().getClass("Register");
636     RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
637     std::vector<StringRef> RegNames =
638       Def->getValueAsListOfStrings("RegAsmNames");
639 
640     // Zip them up.
641     RecordKeeper &RK = Def->getRecords();
642     for (unsigned n = 0; n != Length; ++n) {
643       std::string Name;
644       Record *Proto = Lists[0][n];
645       std::vector<Init*> Tuple;
646       for (unsigned i = 0; i != Dim; ++i) {
647         Record *Reg = Lists[i][n];
648         if (i) Name += '_';
649         Name += Reg->getName();
650         Tuple.push_back(DefInit::get(Reg));
651       }
652 
653       // Take the cost list of the first register in the tuple.
654       ListInit *CostList = Proto->getValueAsListInit("CostPerUse");
655       SmallVector<Init *, 2> CostPerUse;
656       CostPerUse.insert(CostPerUse.end(), CostList->begin(), CostList->end());
657 
658       StringInit *AsmName = StringInit::get(RK, "");
659       if (!RegNames.empty()) {
660         if (RegNames.size() <= n)
661           PrintFatalError(Def->getLoc(),
662                           "Register tuple definition missing name for '" +
663                             Name + "'.");
664         AsmName = StringInit::get(RK, RegNames[n]);
665       }
666 
667       // Create a new Record representing the synthesized register. This record
668       // is only for consumption by CodeGenRegister, it is not added to the
669       // RecordKeeper.
670       SynthDefs.emplace_back(
671           std::make_unique<Record>(Name, Def->getLoc(), Def->getRecords()));
672       Record *NewReg = SynthDefs.back().get();
673       Elts.insert(NewReg);
674 
675       // Copy Proto super-classes.
676       ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses();
677       for (const auto &SuperPair : Supers)
678         NewReg->addSuperClass(SuperPair.first, SuperPair.second);
679 
680       // Copy Proto fields.
681       for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
682         RecordVal RV = Proto->getValues()[i];
683 
684         // Skip existing fields, like NAME.
685         if (NewReg->getValue(RV.getNameInit()))
686           continue;
687 
688         StringRef Field = RV.getName();
689 
690         // Replace the sub-register list with Tuple.
691         if (Field == "SubRegs")
692           RV.setValue(ListInit::get(Tuple, RegisterRecTy));
693 
694         if (Field == "AsmName")
695           RV.setValue(AsmName);
696 
697         // CostPerUse is aggregated from all Tuple members.
698         if (Field == "CostPerUse")
699           RV.setValue(ListInit::get(CostPerUse, CostList->getElementType()));
700 
701         // Composite registers are always covered by sub-registers.
702         if (Field == "CoveredBySubRegs")
703           RV.setValue(BitInit::get(RK, true));
704 
705         // Copy fields from the RegisterTuples def.
706         if (Field == "SubRegIndices" ||
707             Field == "CompositeIndices") {
708           NewReg->addValue(*Def->getValue(Field));
709           continue;
710         }
711 
712         // Some fields get their default uninitialized value.
713         if (Field == "DwarfNumbers" ||
714             Field == "DwarfAlias" ||
715             Field == "Aliases") {
716           if (const RecordVal *DefRV = RegisterCl->getValue(Field))
717             NewReg->addValue(*DefRV);
718           continue;
719         }
720 
721         // Everything else is copied from Proto.
722         NewReg->addValue(RV);
723       }
724     }
725   }
726 };
727 
728 } // end anonymous namespace
729 
730 //===----------------------------------------------------------------------===//
731 //                            CodeGenRegisterClass
732 //===----------------------------------------------------------------------===//
733 
734 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) {
735   llvm::sort(M, deref<std::less<>>());
736   M.erase(std::unique(M.begin(), M.end(), deref<std::equal_to<>>()), M.end());
737 }
738 
739 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
740     : TheDef(R), Name(std::string(R->getName())),
741       TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), TSFlags(0) {
742   GeneratePressureSet = R->getValueAsBit("GeneratePressureSet");
743   std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
744   if (TypeList.empty())
745     PrintFatalError(R->getLoc(), "RegTypes list must not be empty!");
746   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
747     Record *Type = TypeList[i];
748     if (!Type->isSubClassOf("ValueType"))
749       PrintFatalError(R->getLoc(),
750                       "RegTypes list member '" + Type->getName() +
751                           "' does not derive from the ValueType class!");
752     VTs.push_back(getValueTypeByHwMode(Type, RegBank.getHwModes()));
753   }
754 
755   // Allocation order 0 is the full set. AltOrders provides others.
756   const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
757   ListInit *AltOrders = R->getValueAsListInit("AltOrders");
758   Orders.resize(1 + AltOrders->size());
759 
760   // Default allocation order always contains all registers.
761   Artificial = true;
762   for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
763     Orders[0].push_back((*Elements)[i]);
764     const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
765     Members.push_back(Reg);
766     Artificial &= Reg->Artificial;
767     TopoSigs.set(Reg->getTopoSig());
768   }
769   sortAndUniqueRegisters(Members);
770 
771   // Alternative allocation orders may be subsets.
772   SetTheory::RecSet Order;
773   for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
774     RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
775     Orders[1 + i].append(Order.begin(), Order.end());
776     // Verify that all altorder members are regclass members.
777     while (!Order.empty()) {
778       CodeGenRegister *Reg = RegBank.getReg(Order.back());
779       Order.pop_back();
780       if (!contains(Reg))
781         PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
782                       " is not a class member");
783     }
784   }
785 
786   Namespace = R->getValueAsString("Namespace");
787 
788   if (const RecordVal *RV = R->getValue("RegInfos"))
789     if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue()))
790       RSI = RegSizeInfoByHwMode(DI->getDef(), RegBank.getHwModes());
791   unsigned Size = R->getValueAsInt("Size");
792   assert((RSI.hasDefault() || Size != 0 || VTs[0].isSimple()) &&
793          "Impossible to determine register size");
794   if (!RSI.hasDefault()) {
795     RegSizeInfo RI;
796     RI.RegSize = RI.SpillSize = Size ? Size
797                                      : VTs[0].getSimple().getSizeInBits();
798     RI.SpillAlignment = R->getValueAsInt("Alignment");
799     RSI.insertRegSizeForMode(DefaultMode, RI);
800   }
801 
802   CopyCost = R->getValueAsInt("CopyCost");
803   Allocatable = R->getValueAsBit("isAllocatable");
804   AltOrderSelect = R->getValueAsString("AltOrderSelect");
805   int AllocationPriority = R->getValueAsInt("AllocationPriority");
806   if (!isUInt<5>(AllocationPriority))
807     PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,31]");
808   this->AllocationPriority = AllocationPriority;
809 
810   GlobalPriority = R->getValueAsBit("GlobalPriority");
811 
812   BitsInit *TSF = R->getValueAsBitsInit("TSFlags");
813   for (unsigned I = 0, E = TSF->getNumBits(); I != E; ++I) {
814     BitInit *Bit = cast<BitInit>(TSF->getBit(I));
815     TSFlags |= uint8_t(Bit->getValue()) << I;
816   }
817 }
818 
819 // Create an inferred register class that was missing from the .td files.
820 // Most properties will be inherited from the closest super-class after the
821 // class structure has been computed.
822 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
823                                            StringRef Name, Key Props)
824     : Members(*Props.Members), TheDef(nullptr), Name(std::string(Name)),
825       TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), RSI(Props.RSI),
826       CopyCost(0), Allocatable(true), AllocationPriority(0),
827       GlobalPriority(false), TSFlags(0) {
828   Artificial = true;
829   GeneratePressureSet = false;
830   for (const auto R : Members) {
831     TopoSigs.set(R->getTopoSig());
832     Artificial &= R->Artificial;
833   }
834 }
835 
836 // Compute inherited propertied for a synthesized register class.
837 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
838   assert(!getDef() && "Only synthesized classes can inherit properties");
839   assert(!SuperClasses.empty() && "Synthesized class without super class");
840 
841   // The last super-class is the smallest one.
842   CodeGenRegisterClass &Super = *SuperClasses.back();
843 
844   // Most properties are copied directly.
845   // Exceptions are members, size, and alignment
846   Namespace = Super.Namespace;
847   VTs = Super.VTs;
848   CopyCost = Super.CopyCost;
849   // Check for allocatable superclasses.
850   Allocatable = any_of(SuperClasses, [&](const CodeGenRegisterClass *S) {
851     return S->Allocatable;
852   });
853   AltOrderSelect = Super.AltOrderSelect;
854   AllocationPriority = Super.AllocationPriority;
855   GlobalPriority = Super.GlobalPriority;
856   TSFlags = Super.TSFlags;
857   GeneratePressureSet |= Super.GeneratePressureSet;
858 
859   // Copy all allocation orders, filter out foreign registers from the larger
860   // super-class.
861   Orders.resize(Super.Orders.size());
862   for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
863     for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
864       if (contains(RegBank.getReg(Super.Orders[i][j])))
865         Orders[i].push_back(Super.Orders[i][j]);
866 }
867 
868 bool CodeGenRegisterClass::hasType(const ValueTypeByHwMode &VT) const {
869   if (llvm::is_contained(VTs, VT))
870     return true;
871 
872   // If VT is not identical to any of this class's types, but is a simple
873   // type, check if any of the types for this class contain it under some
874   // mode.
875   // The motivating example came from RISC-V, where (likely because of being
876   // guarded by "64-bit" predicate), the type of X5 was {*:[i64]}, but the
877   // type in GRC was {*:[i32], m1:[i64]}.
878   if (VT.isSimple()) {
879     MVT T = VT.getSimple();
880     for (const ValueTypeByHwMode &OurVT : VTs) {
881       if (llvm::count_if(OurVT, [T](auto &&P) { return P.second == T; }))
882         return true;
883     }
884   }
885   return false;
886 }
887 
888 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
889   return std::binary_search(Members.begin(), Members.end(), Reg,
890                             deref<std::less<>>());
891 }
892 
893 unsigned CodeGenRegisterClass::getWeight(const CodeGenRegBank& RegBank) const {
894   if (TheDef && !TheDef->isValueUnset("Weight"))
895     return TheDef->getValueAsInt("Weight");
896 
897   if (Members.empty() || Artificial)
898     return 0;
899 
900   return (*Members.begin())->getWeight(RegBank);
901 }
902 
903 namespace llvm {
904 
905   raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
906     OS << "{ " << K.RSI;
907     for (const auto R : *K.Members)
908       OS << ", " << R->getName();
909     return OS << " }";
910   }
911 
912 } // end namespace llvm
913 
914 // This is a simple lexicographical order that can be used to search for sets.
915 // It is not the same as the topological order provided by TopoOrderRC.
916 bool CodeGenRegisterClass::Key::
917 operator<(const CodeGenRegisterClass::Key &B) const {
918   assert(Members && B.Members);
919   return std::tie(*Members, RSI) < std::tie(*B.Members, B.RSI);
920 }
921 
922 // Returns true if RC is a strict subclass.
923 // RC is a sub-class of this class if it is a valid replacement for any
924 // instruction operand where a register of this classis required. It must
925 // satisfy these conditions:
926 //
927 // 1. All RC registers are also in this.
928 // 2. The RC spill size must not be smaller than our spill size.
929 // 3. RC spill alignment must be compatible with ours.
930 //
931 static bool testSubClass(const CodeGenRegisterClass *A,
932                          const CodeGenRegisterClass *B) {
933   return A->RSI.isSubClassOf(B->RSI) &&
934          std::includes(A->getMembers().begin(), A->getMembers().end(),
935                        B->getMembers().begin(), B->getMembers().end(),
936                        deref<std::less<>>());
937 }
938 
939 /// Sorting predicate for register classes.  This provides a topological
940 /// ordering that arranges all register classes before their sub-classes.
941 ///
942 /// Register classes with the same registers, spill size, and alignment form a
943 /// clique.  They will be ordered alphabetically.
944 ///
945 static bool TopoOrderRC(const CodeGenRegisterClass &PA,
946                         const CodeGenRegisterClass &PB) {
947   auto *A = &PA;
948   auto *B = &PB;
949   if (A == B)
950     return false;
951 
952   if (A->RSI < B->RSI)
953     return true;
954   if (A->RSI != B->RSI)
955     return false;
956 
957   // Order by descending set size.  Note that the classes' allocation order may
958   // not have been computed yet.  The Members set is always vaild.
959   if (A->getMembers().size() > B->getMembers().size())
960     return true;
961   if (A->getMembers().size() < B->getMembers().size())
962     return false;
963 
964   // Finally order by name as a tie breaker.
965   return StringRef(A->getName()) < B->getName();
966 }
967 
968 std::string CodeGenRegisterClass::getNamespaceQualification() const {
969   return Namespace.empty() ? "" : (Namespace + "::").str();
970 }
971 
972 std::string CodeGenRegisterClass::getQualifiedName() const {
973   return getNamespaceQualification() + getName();
974 }
975 
976 std::string CodeGenRegisterClass::getIdName() const {
977   return getName() + "RegClassID";
978 }
979 
980 std::string CodeGenRegisterClass::getQualifiedIdName() const {
981   return getNamespaceQualification() + getIdName();
982 }
983 
984 // Compute sub-classes of all register classes.
985 // Assume the classes are ordered topologically.
986 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
987   auto &RegClasses = RegBank.getRegClasses();
988 
989   // Visit backwards so sub-classes are seen first.
990   for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) {
991     CodeGenRegisterClass &RC = *I;
992     RC.SubClasses.resize(RegClasses.size());
993     RC.SubClasses.set(RC.EnumValue);
994     if (RC.Artificial)
995       continue;
996 
997     // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
998     for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) {
999       CodeGenRegisterClass &SubRC = *I2;
1000       if (RC.SubClasses.test(SubRC.EnumValue))
1001         continue;
1002       if (!testSubClass(&RC, &SubRC))
1003         continue;
1004       // SubRC is a sub-class. Grap all its sub-classes so we won't have to
1005       // check them again.
1006       RC.SubClasses |= SubRC.SubClasses;
1007     }
1008 
1009     // Sweep up missed clique members.  They will be immediately preceding RC.
1010     for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2)
1011       RC.SubClasses.set(I2->EnumValue);
1012   }
1013 
1014   // Compute the SuperClasses lists from the SubClasses vectors.
1015   for (auto &RC : RegClasses) {
1016     const BitVector &SC = RC.getSubClasses();
1017     auto I = RegClasses.begin();
1018     for (int s = 0, next_s = SC.find_first(); next_s != -1;
1019          next_s = SC.find_next(s)) {
1020       std::advance(I, next_s - s);
1021       s = next_s;
1022       if (&*I == &RC)
1023         continue;
1024       I->SuperClasses.push_back(&RC);
1025     }
1026   }
1027 
1028   // With the class hierarchy in place, let synthesized register classes inherit
1029   // properties from their closest super-class. The iteration order here can
1030   // propagate properties down multiple levels.
1031   for (auto &RC : RegClasses)
1032     if (!RC.getDef())
1033       RC.inheritProperties(RegBank);
1034 }
1035 
1036 std::optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>>
1037 CodeGenRegisterClass::getMatchingSubClassWithSubRegs(
1038     CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const {
1039   auto WeakSizeOrder = [this](const CodeGenRegisterClass *A,
1040                               const CodeGenRegisterClass *B) {
1041     // If there are multiple, identical register classes, prefer the original
1042     // register class.
1043     if (A == B)
1044       return false;
1045     if (A->getMembers().size() == B->getMembers().size())
1046       return A == this;
1047     return A->getMembers().size() > B->getMembers().size();
1048   };
1049 
1050   auto &RegClasses = RegBank.getRegClasses();
1051 
1052   // Find all the subclasses of this one that fully support the sub-register
1053   // index and order them by size. BiggestSuperRC should always be first.
1054   CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx);
1055   if (!BiggestSuperRegRC)
1056     return std::nullopt;
1057   BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses();
1058   std::vector<CodeGenRegisterClass *> SuperRegRCs;
1059   for (auto &RC : RegClasses)
1060     if (SuperRegRCsBV[RC.EnumValue])
1061       SuperRegRCs.emplace_back(&RC);
1062   llvm::stable_sort(SuperRegRCs, WeakSizeOrder);
1063 
1064   assert(SuperRegRCs.front() == BiggestSuperRegRC &&
1065          "Biggest class wasn't first");
1066 
1067   // Find all the subreg classes and order them by size too.
1068   std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses;
1069   for (auto &RC: RegClasses) {
1070     BitVector SuperRegClassesBV(RegClasses.size());
1071     RC.getSuperRegClasses(SubIdx, SuperRegClassesBV);
1072     if (SuperRegClassesBV.any())
1073       SuperRegClasses.push_back(std::make_pair(&RC, SuperRegClassesBV));
1074   }
1075   llvm::stable_sort(SuperRegClasses,
1076                     [&](const std::pair<CodeGenRegisterClass *, BitVector> &A,
1077                         const std::pair<CodeGenRegisterClass *, BitVector> &B) {
1078                       return WeakSizeOrder(A.first, B.first);
1079                     });
1080 
1081   // Find the biggest subclass and subreg class such that R:subidx is in the
1082   // subreg class for all R in subclass.
1083   //
1084   // For example:
1085   // All registers in X86's GR64 have a sub_32bit subregister but no class
1086   // exists that contains all the 32-bit subregisters because GR64 contains RIP
1087   // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to
1088   // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then,
1089   // having excluded RIP, we are able to find a SubRegRC (GR32).
1090   CodeGenRegisterClass *ChosenSuperRegClass = nullptr;
1091   CodeGenRegisterClass *SubRegRC = nullptr;
1092   for (auto *SuperRegRC : SuperRegRCs) {
1093     for (const auto &SuperRegClassPair : SuperRegClasses) {
1094       const BitVector &SuperRegClassBV = SuperRegClassPair.second;
1095       if (SuperRegClassBV[SuperRegRC->EnumValue]) {
1096         SubRegRC = SuperRegClassPair.first;
1097         ChosenSuperRegClass = SuperRegRC;
1098 
1099         // If SubRegRC is bigger than SuperRegRC then there are members of
1100         // SubRegRC that don't have super registers via SubIdx. Keep looking to
1101         // find a better fit and fall back on this one if there isn't one.
1102         //
1103         // This is intended to prevent X86 from making odd choices such as
1104         // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above.
1105         // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that
1106         // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1
1107         // mapping.
1108         if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size())
1109           return std::make_pair(ChosenSuperRegClass, SubRegRC);
1110       }
1111     }
1112 
1113     // If we found a fit but it wasn't quite ideal because SubRegRC had excess
1114     // registers, then we're done.
1115     if (ChosenSuperRegClass)
1116       return std::make_pair(ChosenSuperRegClass, SubRegRC);
1117   }
1118 
1119   return std::nullopt;
1120 }
1121 
1122 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
1123                                               BitVector &Out) const {
1124   auto FindI = SuperRegClasses.find(SubIdx);
1125   if (FindI == SuperRegClasses.end())
1126     return;
1127   for (CodeGenRegisterClass *RC : FindI->second)
1128     Out.set(RC->EnumValue);
1129 }
1130 
1131 // Populate a unique sorted list of units from a register set.
1132 void CodeGenRegisterClass::buildRegUnitSet(const CodeGenRegBank &RegBank,
1133   std::vector<unsigned> &RegUnits) const {
1134   std::vector<unsigned> TmpUnits;
1135   for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) {
1136     const RegUnit &RU = RegBank.getRegUnit(*UnitI);
1137     if (!RU.Artificial)
1138       TmpUnits.push_back(*UnitI);
1139   }
1140   llvm::sort(TmpUnits);
1141   std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
1142                    std::back_inserter(RegUnits));
1143 }
1144 
1145 //===----------------------------------------------------------------------===//
1146 //                           CodeGenRegisterCategory
1147 //===----------------------------------------------------------------------===//
1148 
1149 CodeGenRegisterCategory::CodeGenRegisterCategory(CodeGenRegBank &RegBank,
1150                                                  Record *R)
1151     : TheDef(R), Name(std::string(R->getName())) {
1152   for (Record *RegClass : R->getValueAsListOfDefs("Classes"))
1153     Classes.push_back(RegBank.getRegClass(RegClass));
1154 }
1155 
1156 //===----------------------------------------------------------------------===//
1157 //                               CodeGenRegBank
1158 //===----------------------------------------------------------------------===//
1159 
1160 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records,
1161                                const CodeGenHwModes &Modes) : CGH(Modes) {
1162   // Configure register Sets to understand register classes and tuples.
1163   Sets.addFieldExpander("RegisterClass", "MemberList");
1164   Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
1165   Sets.addExpander("RegisterTuples",
1166                    std::make_unique<TupleExpander>(SynthDefs));
1167 
1168   // Read in the user-defined (named) sub-register indices.
1169   // More indices will be synthesized later.
1170   std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
1171   llvm::sort(SRIs, LessRecord());
1172   for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
1173     getSubRegIdx(SRIs[i]);
1174   // Build composite maps from ComposedOf fields.
1175   for (auto &Idx : SubRegIndices)
1176     Idx.updateComponents(*this);
1177 
1178   // Read in the register and register tuple definitions.
1179   std::vector<Record *> Regs = Records.getAllDerivedDefinitions("Register");
1180   if (!Regs.empty() && Regs[0]->isSubClassOf("X86Reg")) {
1181     // For X86, we need to sort Registers and RegisterTuples together to list
1182     // new registers and register tuples at a later position. So that we can
1183     // reduce unnecessary iterations on unsupported registers in LiveVariables.
1184     // TODO: Remove this logic when migrate from LiveVariables to LiveIntervals
1185     // completely.
1186     std::vector<Record *> Tups =
1187         Records.getAllDerivedDefinitions("RegisterTuples");
1188     for (Record *R : Tups) {
1189       // Expand tuples and merge the vectors
1190       std::vector<Record *> TupRegs = *Sets.expand(R);
1191       Regs.insert(Regs.end(), TupRegs.begin(), TupRegs.end());
1192     }
1193 
1194     llvm::sort(Regs, LessRecordRegister());
1195     // Assign the enumeration values.
1196     for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1197       getReg(Regs[i]);
1198   } else {
1199     llvm::sort(Regs, LessRecordRegister());
1200     // Assign the enumeration values.
1201     for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1202       getReg(Regs[i]);
1203 
1204     // Expand tuples and number the new registers.
1205     std::vector<Record *> Tups =
1206         Records.getAllDerivedDefinitions("RegisterTuples");
1207 
1208     for (Record *R : Tups) {
1209       std::vector<Record *> TupRegs = *Sets.expand(R);
1210       llvm::sort(TupRegs, LessRecordRegister());
1211       for (Record *RC : TupRegs)
1212         getReg(RC);
1213     }
1214   }
1215 
1216   // Now all the registers are known. Build the object graph of explicit
1217   // register-register references.
1218   for (auto &Reg : Registers)
1219     Reg.buildObjectGraph(*this);
1220 
1221   // Compute register name map.
1222   for (auto &Reg : Registers)
1223     // FIXME: This could just be RegistersByName[name] = register, except that
1224     // causes some failures in MIPS - perhaps they have duplicate register name
1225     // entries? (or maybe there's a reason for it - I don't know much about this
1226     // code, just drive-by refactoring)
1227     RegistersByName.insert(
1228         std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg));
1229 
1230   // Precompute all sub-register maps.
1231   // This will create Composite entries for all inferred sub-register indices.
1232   for (auto &Reg : Registers)
1233     Reg.computeSubRegs(*this);
1234 
1235   // Compute transitive closure of subregister index ConcatenationOf vectors
1236   // and initialize ConcatIdx map.
1237   for (CodeGenSubRegIndex &SRI : SubRegIndices) {
1238     SRI.computeConcatTransitiveClosure();
1239     if (!SRI.ConcatenationOf.empty())
1240       ConcatIdx.insert(std::make_pair(
1241           SmallVector<CodeGenSubRegIndex*,8>(SRI.ConcatenationOf.begin(),
1242                                              SRI.ConcatenationOf.end()), &SRI));
1243   }
1244 
1245   // Infer even more sub-registers by combining leading super-registers.
1246   for (auto &Reg : Registers)
1247     if (Reg.CoveredBySubRegs)
1248       Reg.computeSecondarySubRegs(*this);
1249 
1250   // After the sub-register graph is complete, compute the topologically
1251   // ordered SuperRegs list.
1252   for (auto &Reg : Registers)
1253     Reg.computeSuperRegs(*this);
1254 
1255   // For each pair of Reg:SR, if both are non-artificial, mark the
1256   // corresponding sub-register index as non-artificial.
1257   for (auto &Reg : Registers) {
1258     if (Reg.Artificial)
1259       continue;
1260     for (auto P : Reg.getSubRegs()) {
1261       const CodeGenRegister *SR = P.second;
1262       if (!SR->Artificial)
1263         P.first->Artificial = false;
1264     }
1265   }
1266 
1267   // Native register units are associated with a leaf register. They've all been
1268   // discovered now.
1269   NumNativeRegUnits = RegUnits.size();
1270 
1271   // Read in register class definitions.
1272   std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
1273   if (RCs.empty())
1274     PrintFatalError("No 'RegisterClass' subclasses defined!");
1275 
1276   // Allocate user-defined register classes.
1277   for (auto *R : RCs) {
1278     RegClasses.emplace_back(*this, R);
1279     CodeGenRegisterClass &RC = RegClasses.back();
1280     if (!RC.Artificial)
1281       addToMaps(&RC);
1282   }
1283 
1284   // Infer missing classes to create a full algebra.
1285   computeInferredRegisterClasses();
1286 
1287   // Order register classes topologically and assign enum values.
1288   RegClasses.sort(TopoOrderRC);
1289   unsigned i = 0;
1290   for (auto &RC : RegClasses)
1291     RC.EnumValue = i++;
1292   CodeGenRegisterClass::computeSubClasses(*this);
1293 
1294   // Read in the register category definitions.
1295   std::vector<Record *> RCats =
1296       Records.getAllDerivedDefinitions("RegisterCategory");
1297   for (auto *R : RCats)
1298     RegCategories.emplace_back(*this, R);
1299 }
1300 
1301 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1302 CodeGenSubRegIndex*
1303 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
1304   SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1);
1305   return &SubRegIndices.back();
1306 }
1307 
1308 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1309   CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1310   if (Idx)
1311     return Idx;
1312   SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1);
1313   Idx = &SubRegIndices.back();
1314   return Idx;
1315 }
1316 
1317 const CodeGenSubRegIndex *
1318 CodeGenRegBank::findSubRegIdx(const Record* Def) const {
1319   return Def2SubRegIdx.lookup(Def);
1320 }
1321 
1322 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1323   CodeGenRegister *&Reg = Def2Reg[Def];
1324   if (Reg)
1325     return Reg;
1326   Registers.emplace_back(Def, Registers.size() + 1);
1327   Reg = &Registers.back();
1328   return Reg;
1329 }
1330 
1331 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1332   if (Record *Def = RC->getDef())
1333     Def2RC.insert(std::make_pair(Def, RC));
1334 
1335   // Duplicate classes are rejected by insert().
1336   // That's OK, we only care about the properties handled by CGRC::Key.
1337   CodeGenRegisterClass::Key K(*RC);
1338   Key2RC.insert(std::make_pair(K, RC));
1339 }
1340 
1341 // Create a synthetic sub-class if it is missing.
1342 CodeGenRegisterClass*
1343 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1344                                     const CodeGenRegister::Vec *Members,
1345                                     StringRef Name) {
1346   // Synthetic sub-class has the same size and alignment as RC.
1347   CodeGenRegisterClass::Key K(Members, RC->RSI);
1348   RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1349   if (FoundI != Key2RC.end())
1350     return FoundI->second;
1351 
1352   // Sub-class doesn't exist, create a new one.
1353   RegClasses.emplace_back(*this, Name, K);
1354   addToMaps(&RegClasses.back());
1355   return &RegClasses.back();
1356 }
1357 
1358 CodeGenRegisterClass *CodeGenRegBank::getRegClass(const Record *Def) const {
1359   if (CodeGenRegisterClass *RC = Def2RC.lookup(Def))
1360     return RC;
1361 
1362   PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
1363 }
1364 
1365 CodeGenSubRegIndex*
1366 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1367                                         CodeGenSubRegIndex *B) {
1368   // Look for an existing entry.
1369   CodeGenSubRegIndex *Comp = A->compose(B);
1370   if (Comp)
1371     return Comp;
1372 
1373   // None exists, synthesize one.
1374   std::string Name = A->getName() + "_then_" + B->getName();
1375   Comp = createSubRegIndex(Name, A->getNamespace());
1376   A->addComposite(B, Comp);
1377   return Comp;
1378 }
1379 
1380 CodeGenSubRegIndex *CodeGenRegBank::
1381 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
1382   assert(Parts.size() > 1 && "Need two parts to concatenate");
1383 #ifndef NDEBUG
1384   for (CodeGenSubRegIndex *Idx : Parts) {
1385     assert(Idx->ConcatenationOf.empty() && "No transitive closure?");
1386   }
1387 #endif
1388 
1389   // Look for an existing entry.
1390   CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1391   if (Idx)
1392     return Idx;
1393 
1394   // None exists, synthesize one.
1395   std::string Name = Parts.front()->getName();
1396   // Determine whether all parts are contiguous.
1397   bool isContinuous = true;
1398   unsigned Size = Parts.front()->Size;
1399   unsigned LastOffset = Parts.front()->Offset;
1400   unsigned LastSize = Parts.front()->Size;
1401   unsigned UnknownSize = (uint16_t)-1;
1402   for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1403     Name += '_';
1404     Name += Parts[i]->getName();
1405     if (Size == UnknownSize || Parts[i]->Size == UnknownSize)
1406       Size = UnknownSize;
1407     else
1408       Size += Parts[i]->Size;
1409     if (LastSize == UnknownSize || Parts[i]->Offset != (LastOffset + LastSize))
1410       isContinuous = false;
1411     LastOffset = Parts[i]->Offset;
1412     LastSize = Parts[i]->Size;
1413   }
1414   Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1415   Idx->Size = Size;
1416   Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
1417   Idx->ConcatenationOf.assign(Parts.begin(), Parts.end());
1418   return Idx;
1419 }
1420 
1421 void CodeGenRegBank::computeComposites() {
1422   using RegMap = std::map<const CodeGenRegister*, const CodeGenRegister*>;
1423 
1424   // Subreg -> { Reg->Reg }, where the right-hand side is the mapping from
1425   // register to (sub)register associated with the action of the left-hand
1426   // side subregister.
1427   std::map<const CodeGenSubRegIndex*, RegMap> SubRegAction;
1428   for (const CodeGenRegister &R : Registers) {
1429     const CodeGenRegister::SubRegMap &SM = R.getSubRegs();
1430     for (std::pair<const CodeGenSubRegIndex*, const CodeGenRegister*> P : SM)
1431       SubRegAction[P.first].insert({&R, P.second});
1432   }
1433 
1434   // Calculate the composition of two subregisters as compositions of their
1435   // associated actions.
1436   auto compose = [&SubRegAction] (const CodeGenSubRegIndex *Sub1,
1437                                   const CodeGenSubRegIndex *Sub2) {
1438     RegMap C;
1439     const RegMap &Img1 = SubRegAction.at(Sub1);
1440     const RegMap &Img2 = SubRegAction.at(Sub2);
1441     for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Img1) {
1442       auto F = Img2.find(P.second);
1443       if (F != Img2.end())
1444         C.insert({P.first, F->second});
1445     }
1446     return C;
1447   };
1448 
1449   // Check if the two maps agree on the intersection of their domains.
1450   auto agree = [] (const RegMap &Map1, const RegMap &Map2) {
1451     // Technically speaking, an empty map agrees with any other map, but
1452     // this could flag false positives. We're interested in non-vacuous
1453     // agreements.
1454     if (Map1.empty() || Map2.empty())
1455       return false;
1456     for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Map1) {
1457       auto F = Map2.find(P.first);
1458       if (F == Map2.end() || P.second != F->second)
1459         return false;
1460     }
1461     return true;
1462   };
1463 
1464   using CompositePair = std::pair<const CodeGenSubRegIndex*,
1465                                   const CodeGenSubRegIndex*>;
1466   SmallSet<CompositePair,4> UserDefined;
1467   for (const CodeGenSubRegIndex &Idx : SubRegIndices)
1468     for (auto P : Idx.getComposites())
1469       UserDefined.insert(std::make_pair(&Idx, P.first));
1470 
1471   // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1472   // and many registers will share TopoSigs on regular architectures.
1473   BitVector TopoSigs(getNumTopoSigs());
1474 
1475   for (const auto &Reg1 : Registers) {
1476     // Skip identical subreg structures already processed.
1477     if (TopoSigs.test(Reg1.getTopoSig()))
1478       continue;
1479     TopoSigs.set(Reg1.getTopoSig());
1480 
1481     const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs();
1482     for (auto I1 : SRM1) {
1483       CodeGenSubRegIndex *Idx1 = I1.first;
1484       CodeGenRegister *Reg2 = I1.second;
1485       // Ignore identity compositions.
1486       if (&Reg1 == Reg2)
1487         continue;
1488       const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1489       // Try composing Idx1 with another SubRegIndex.
1490       for (auto I2 : SRM2) {
1491         CodeGenSubRegIndex *Idx2 = I2.first;
1492         CodeGenRegister *Reg3 = I2.second;
1493         // Ignore identity compositions.
1494         if (Reg2 == Reg3)
1495           continue;
1496         // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1497         CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3);
1498         assert(Idx3 && "Sub-register doesn't have an index");
1499 
1500         // Conflicting composition? Emit a warning but allow it.
1501         if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) {
1502           // If the composition was not user-defined, always emit a warning.
1503           if (!UserDefined.count({Idx1, Idx2}) ||
1504               agree(compose(Idx1, Idx2), SubRegAction.at(Idx3)))
1505             PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1506                          " and " + Idx2->getQualifiedName() +
1507                          " compose ambiguously as " + Prev->getQualifiedName() +
1508                          " or " + Idx3->getQualifiedName());
1509         }
1510       }
1511     }
1512   }
1513 }
1514 
1515 // Compute lane masks. This is similar to register units, but at the
1516 // sub-register index level. Each bit in the lane mask is like a register unit
1517 // class, and two lane masks will have a bit in common if two sub-register
1518 // indices overlap in some register.
1519 //
1520 // Conservatively share a lane mask bit if two sub-register indices overlap in
1521 // some registers, but not in others. That shouldn't happen a lot.
1522 void CodeGenRegBank::computeSubRegLaneMasks() {
1523   // First assign individual bits to all the leaf indices.
1524   unsigned Bit = 0;
1525   // Determine mask of lanes that cover their registers.
1526   CoveringLanes = LaneBitmask::getAll();
1527   for (auto &Idx : SubRegIndices) {
1528     if (Idx.getComposites().empty()) {
1529       if (Bit > LaneBitmask::BitWidth) {
1530         PrintFatalError(
1531           Twine("Ran out of lanemask bits to represent subregister ")
1532           + Idx.getName());
1533       }
1534       Idx.LaneMask = LaneBitmask::getLane(Bit);
1535       ++Bit;
1536     } else {
1537       Idx.LaneMask = LaneBitmask::getNone();
1538     }
1539   }
1540 
1541   // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
1542   // here is that for each possible target subregister we look at the leafs
1543   // in the subregister graph that compose for this target and create
1544   // transformation sequences for the lanemasks. Each step in the sequence
1545   // consists of a bitmask and a bitrotate operation. As the rotation amounts
1546   // are usually the same for many subregisters we can easily combine the steps
1547   // by combining the masks.
1548   for (const auto &Idx : SubRegIndices) {
1549     const auto &Composites = Idx.getComposites();
1550     auto &LaneTransforms = Idx.CompositionLaneMaskTransform;
1551 
1552     if (Composites.empty()) {
1553       // Moving from a class with no subregisters we just had a single lane:
1554       // The subregister must be a leaf subregister and only occupies 1 bit.
1555       // Move the bit from the class without subregisters into that position.
1556       unsigned DstBit = Idx.LaneMask.getHighestLane();
1557       assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) &&
1558              "Must be a leaf subregister");
1559       MaskRolPair MaskRol = { LaneBitmask::getLane(0), (uint8_t)DstBit };
1560       LaneTransforms.push_back(MaskRol);
1561     } else {
1562       // Go through all leaf subregisters and find the ones that compose with
1563       // Idx. These make out all possible valid bits in the lane mask we want to
1564       // transform. Looking only at the leafs ensure that only a single bit in
1565       // the mask is set.
1566       unsigned NextBit = 0;
1567       for (auto &Idx2 : SubRegIndices) {
1568         // Skip non-leaf subregisters.
1569         if (!Idx2.getComposites().empty())
1570           continue;
1571         // Replicate the behaviour from the lane mask generation loop above.
1572         unsigned SrcBit = NextBit;
1573         LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit);
1574         if (NextBit < LaneBitmask::BitWidth-1)
1575           ++NextBit;
1576         assert(Idx2.LaneMask == SrcMask);
1577 
1578         // Get the composed subregister if there is any.
1579         auto C = Composites.find(&Idx2);
1580         if (C == Composites.end())
1581           continue;
1582         const CodeGenSubRegIndex *Composite = C->second;
1583         // The Composed subreg should be a leaf subreg too
1584         assert(Composite->getComposites().empty());
1585 
1586         // Create Mask+Rotate operation and merge with existing ops if possible.
1587         unsigned DstBit = Composite->LaneMask.getHighestLane();
1588         int Shift = DstBit - SrcBit;
1589         uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift
1590                                         : LaneBitmask::BitWidth + Shift;
1591         for (auto &I : LaneTransforms) {
1592           if (I.RotateLeft == RotateLeft) {
1593             I.Mask |= SrcMask;
1594             SrcMask = LaneBitmask::getNone();
1595           }
1596         }
1597         if (SrcMask.any()) {
1598           MaskRolPair MaskRol = { SrcMask, RotateLeft };
1599           LaneTransforms.push_back(MaskRol);
1600         }
1601       }
1602     }
1603 
1604     // Optimize if the transformation consists of one step only: Set mask to
1605     // 0xffffffff (including some irrelevant invalid bits) so that it should
1606     // merge with more entries later while compressing the table.
1607     if (LaneTransforms.size() == 1)
1608       LaneTransforms[0].Mask = LaneBitmask::getAll();
1609 
1610     // Further compression optimization: For invalid compositions resulting
1611     // in a sequence with 0 entries we can just pick any other. Choose
1612     // Mask 0xffffffff with Rotation 0.
1613     if (LaneTransforms.size() == 0) {
1614       MaskRolPair P = { LaneBitmask::getAll(), 0 };
1615       LaneTransforms.push_back(P);
1616     }
1617   }
1618 
1619   // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1620   // by the sub-register graph? This doesn't occur in any known targets.
1621 
1622   // Inherit lanes from composites.
1623   for (const auto &Idx : SubRegIndices) {
1624     LaneBitmask Mask = Idx.computeLaneMask();
1625     // If some super-registers without CoveredBySubRegs use this index, we can
1626     // no longer assume that the lanes are covering their registers.
1627     if (!Idx.AllSuperRegsCovered)
1628       CoveringLanes &= ~Mask;
1629   }
1630 
1631   // Compute lane mask combinations for register classes.
1632   for (auto &RegClass : RegClasses) {
1633     LaneBitmask LaneMask;
1634     for (const auto &SubRegIndex : SubRegIndices) {
1635       if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr)
1636         continue;
1637       LaneMask |= SubRegIndex.LaneMask;
1638     }
1639 
1640     // For classes without any subregisters set LaneMask to 1 instead of 0.
1641     // This makes it easier for client code to handle classes uniformly.
1642     if (LaneMask.none())
1643       LaneMask = LaneBitmask::getLane(0);
1644 
1645     RegClass.LaneMask = LaneMask;
1646   }
1647 }
1648 
1649 namespace {
1650 
1651 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1652 // the transitive closure of the union of overlapping register
1653 // classes. Together, the UberRegSets form a partition of the registers. If we
1654 // consider overlapping register classes to be connected, then each UberRegSet
1655 // is a set of connected components.
1656 //
1657 // An UberRegSet will likely be a horizontal slice of register names of
1658 // the same width. Nontrivial subregisters should then be in a separate
1659 // UberRegSet. But this property isn't required for valid computation of
1660 // register unit weights.
1661 //
1662 // A Weight field caches the max per-register unit weight in each UberRegSet.
1663 //
1664 // A set of SingularDeterminants flags single units of some register in this set
1665 // for which the unit weight equals the set weight. These units should not have
1666 // their weight increased.
1667 struct UberRegSet {
1668   CodeGenRegister::Vec Regs;
1669   unsigned Weight = 0;
1670   CodeGenRegister::RegUnitList SingularDeterminants;
1671 
1672   UberRegSet() = default;
1673 };
1674 
1675 } // end anonymous namespace
1676 
1677 // Partition registers into UberRegSets, where each set is the transitive
1678 // closure of the union of overlapping register classes.
1679 //
1680 // UberRegSets[0] is a special non-allocatable set.
1681 static void computeUberSets(std::vector<UberRegSet> &UberSets,
1682                             std::vector<UberRegSet*> &RegSets,
1683                             CodeGenRegBank &RegBank) {
1684   const auto &Registers = RegBank.getRegisters();
1685 
1686   // The Register EnumValue is one greater than its index into Registers.
1687   assert(Registers.size() == Registers.back().EnumValue &&
1688          "register enum value mismatch");
1689 
1690   // For simplicitly make the SetID the same as EnumValue.
1691   IntEqClasses UberSetIDs(Registers.size() + 1);
1692   BitVector AllocatableRegs(Registers.size() + 1);
1693   for (auto &RegClass : RegBank.getRegClasses()) {
1694     if (!RegClass.Allocatable)
1695       continue;
1696 
1697     const CodeGenRegister::Vec &Regs = RegClass.getMembers();
1698     if (Regs.empty())
1699       continue;
1700 
1701     unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1702     assert(USetID && "register number 0 is invalid");
1703 
1704     AllocatableRegs.set((*Regs.begin())->EnumValue);
1705     for (const CodeGenRegister *CGR : llvm::drop_begin(Regs)) {
1706       AllocatableRegs.set(CGR->EnumValue);
1707       UberSetIDs.join(USetID, CGR->EnumValue);
1708     }
1709   }
1710   // Combine non-allocatable regs.
1711   for (const auto &Reg : Registers) {
1712     unsigned RegNum = Reg.EnumValue;
1713     if (AllocatableRegs.test(RegNum))
1714       continue;
1715 
1716     UberSetIDs.join(0, RegNum);
1717   }
1718   UberSetIDs.compress();
1719 
1720   // Make the first UberSet a special unallocatable set.
1721   unsigned ZeroID = UberSetIDs[0];
1722 
1723   // Insert Registers into the UberSets formed by union-find.
1724   // Do not resize after this.
1725   UberSets.resize(UberSetIDs.getNumClasses());
1726   unsigned i = 0;
1727   for (const CodeGenRegister &Reg : Registers) {
1728     unsigned USetID = UberSetIDs[Reg.EnumValue];
1729     if (!USetID)
1730       USetID = ZeroID;
1731     else if (USetID == ZeroID)
1732       USetID = 0;
1733 
1734     UberRegSet *USet = &UberSets[USetID];
1735     USet->Regs.push_back(&Reg);
1736     RegSets[i++] = USet;
1737   }
1738 }
1739 
1740 // Recompute each UberSet weight after changing unit weights.
1741 static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1742                                CodeGenRegBank &RegBank) {
1743   // Skip the first unallocatable set.
1744   for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()),
1745          E = UberSets.end(); I != E; ++I) {
1746 
1747     // Initialize all unit weights in this set, and remember the max units/reg.
1748     const CodeGenRegister *Reg = nullptr;
1749     unsigned MaxWeight = 0, Weight = 0;
1750     for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1751       if (Reg != UnitI.getReg()) {
1752         if (Weight > MaxWeight)
1753           MaxWeight = Weight;
1754         Reg = UnitI.getReg();
1755         Weight = 0;
1756       }
1757       if (!RegBank.getRegUnit(*UnitI).Artificial) {
1758         unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1759         if (!UWeight) {
1760           UWeight = 1;
1761           RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1762         }
1763         Weight += UWeight;
1764       }
1765     }
1766     if (Weight > MaxWeight)
1767       MaxWeight = Weight;
1768     if (I->Weight != MaxWeight) {
1769       LLVM_DEBUG(dbgs() << "UberSet " << I - UberSets.begin() << " Weight "
1770                         << MaxWeight;
1771                  for (auto &Unit
1772                       : I->Regs) dbgs()
1773                  << " " << Unit->getName();
1774                  dbgs() << "\n");
1775       // Update the set weight.
1776       I->Weight = MaxWeight;
1777     }
1778 
1779     // Find singular determinants.
1780     for (const auto R : I->Regs) {
1781       if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) {
1782         I->SingularDeterminants |= R->getRegUnits();
1783       }
1784     }
1785   }
1786 }
1787 
1788 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1789 // a register and its subregisters so that they have the same weight as their
1790 // UberSet. Self-recursion processes the subregister tree in postorder so
1791 // subregisters are normalized first.
1792 //
1793 // Side effects:
1794 // - creates new adopted register units
1795 // - causes superregisters to inherit adopted units
1796 // - increases the weight of "singular" units
1797 // - induces recomputation of UberWeights.
1798 static bool normalizeWeight(CodeGenRegister *Reg,
1799                             std::vector<UberRegSet> &UberSets,
1800                             std::vector<UberRegSet*> &RegSets,
1801                             BitVector &NormalRegs,
1802                             CodeGenRegister::RegUnitList &NormalUnits,
1803                             CodeGenRegBank &RegBank) {
1804   NormalRegs.resize(std::max(Reg->EnumValue + 1, NormalRegs.size()));
1805   if (NormalRegs.test(Reg->EnumValue))
1806     return false;
1807   NormalRegs.set(Reg->EnumValue);
1808 
1809   bool Changed = false;
1810   const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1811   for (auto SRI : SRM) {
1812     if (SRI.second == Reg)
1813       continue; // self-cycles happen
1814 
1815     Changed |= normalizeWeight(SRI.second, UberSets, RegSets, NormalRegs,
1816                                NormalUnits, RegBank);
1817   }
1818   // Postorder register normalization.
1819 
1820   // Inherit register units newly adopted by subregisters.
1821   if (Reg->inheritRegUnits(RegBank))
1822     computeUberWeights(UberSets, RegBank);
1823 
1824   // Check if this register is too skinny for its UberRegSet.
1825   UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1826 
1827   unsigned RegWeight = Reg->getWeight(RegBank);
1828   if (UberSet->Weight > RegWeight) {
1829     // A register unit's weight can be adjusted only if it is the singular unit
1830     // for this register, has not been used to normalize a subregister's set,
1831     // and has not already been used to singularly determine this UberRegSet.
1832     unsigned AdjustUnit = *Reg->getRegUnits().begin();
1833     if (Reg->getRegUnits().count() != 1
1834         || hasRegUnit(NormalUnits, AdjustUnit)
1835         || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1836       // We don't have an adjustable unit, so adopt a new one.
1837       AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1838       Reg->adoptRegUnit(AdjustUnit);
1839       // Adopting a unit does not immediately require recomputing set weights.
1840     }
1841     else {
1842       // Adjust the existing single unit.
1843       if (!RegBank.getRegUnit(AdjustUnit).Artificial)
1844         RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1845       // The unit may be shared among sets and registers within this set.
1846       computeUberWeights(UberSets, RegBank);
1847     }
1848     Changed = true;
1849   }
1850 
1851   // Mark these units normalized so superregisters can't change their weights.
1852   NormalUnits |= Reg->getRegUnits();
1853 
1854   return Changed;
1855 }
1856 
1857 // Compute a weight for each register unit created during getSubRegs.
1858 //
1859 // The goal is that two registers in the same class will have the same weight,
1860 // where each register's weight is defined as sum of its units' weights.
1861 void CodeGenRegBank::computeRegUnitWeights() {
1862   std::vector<UberRegSet> UberSets;
1863   std::vector<UberRegSet*> RegSets(Registers.size());
1864   computeUberSets(UberSets, RegSets, *this);
1865   // UberSets and RegSets are now immutable.
1866 
1867   computeUberWeights(UberSets, *this);
1868 
1869   // Iterate over each Register, normalizing the unit weights until reaching
1870   // a fix point.
1871   unsigned NumIters = 0;
1872   for (bool Changed = true; Changed; ++NumIters) {
1873     assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1874     (void) NumIters;
1875     Changed = false;
1876     for (auto &Reg : Registers) {
1877       CodeGenRegister::RegUnitList NormalUnits;
1878       BitVector NormalRegs;
1879       Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs,
1880                                  NormalUnits, *this);
1881     }
1882   }
1883 }
1884 
1885 // Find a set in UniqueSets with the same elements as Set.
1886 // Return an iterator into UniqueSets.
1887 static std::vector<RegUnitSet>::const_iterator
1888 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1889                const RegUnitSet &Set) {
1890   std::vector<RegUnitSet>::const_iterator
1891     I = UniqueSets.begin(), E = UniqueSets.end();
1892   for(;I != E; ++I) {
1893     if (I->Units == Set.Units)
1894       break;
1895   }
1896   return I;
1897 }
1898 
1899 // Return true if the RUSubSet is a subset of RUSuperSet.
1900 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1901                             const std::vector<unsigned> &RUSuperSet) {
1902   return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1903                        RUSubSet.begin(), RUSubSet.end());
1904 }
1905 
1906 /// Iteratively prune unit sets. Prune subsets that are close to the superset,
1907 /// but with one or two registers removed. We occasionally have registers like
1908 /// APSR and PC thrown in with the general registers. We also see many
1909 /// special-purpose register subsets, such as tail-call and Thumb
1910 /// encodings. Generating all possible overlapping sets is combinatorial and
1911 /// overkill for modeling pressure. Ideally we could fix this statically in
1912 /// tablegen by (1) having the target define register classes that only include
1913 /// the allocatable registers and marking other classes as non-allocatable and
1914 /// (2) having a way to mark special purpose classes as "don't-care" classes for
1915 /// the purpose of pressure.  However, we make an attempt to handle targets that
1916 /// are not nicely defined by merging nearly identical register unit sets
1917 /// statically. This generates smaller tables. Then, dynamically, we adjust the
1918 /// set limit by filtering the reserved registers.
1919 ///
1920 /// Merge sets only if the units have the same weight. For example, on ARM,
1921 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We
1922 /// should not expand the S set to include D regs.
1923 void CodeGenRegBank::pruneUnitSets() {
1924   assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1925 
1926   // Form an equivalence class of UnitSets with no significant difference.
1927   std::vector<unsigned> SuperSetIDs;
1928   for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1929        SubIdx != EndIdx; ++SubIdx) {
1930     const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1931     unsigned SuperIdx = 0;
1932     for (; SuperIdx != EndIdx; ++SuperIdx) {
1933       if (SuperIdx == SubIdx)
1934         continue;
1935 
1936       unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
1937       const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1938       if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1939           && (SubSet.Units.size() + 3 > SuperSet.Units.size())
1940           && UnitWeight == RegUnits[SuperSet.Units[0]].Weight
1941           && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
1942         LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
1943                           << "\n");
1944         // We can pick any of the set names for the merged set. Go for the
1945         // shortest one to avoid picking the name of one of the classes that are
1946         // artificially created by tablegen. So "FPR128_lo" instead of
1947         // "QQQQ_with_qsub3_in_FPR128_lo".
1948         if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size())
1949           RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name;
1950         break;
1951       }
1952     }
1953     if (SuperIdx == EndIdx)
1954       SuperSetIDs.push_back(SubIdx);
1955   }
1956   // Populate PrunedUnitSets with each equivalence class's superset.
1957   std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1958   for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1959     unsigned SuperIdx = SuperSetIDs[i];
1960     PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1961     PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1962   }
1963   RegUnitSets.swap(PrunedUnitSets);
1964 }
1965 
1966 // Create a RegUnitSet for each RegClass that contains all units in the class
1967 // including adopted units that are necessary to model register pressure. Then
1968 // iteratively compute RegUnitSets such that the union of any two overlapping
1969 // RegUnitSets is repreresented.
1970 //
1971 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1972 // RegUnitSet that is a superset of that RegUnitClass.
1973 void CodeGenRegBank::computeRegUnitSets() {
1974   assert(RegUnitSets.empty() && "dirty RegUnitSets");
1975 
1976   // Compute a unique RegUnitSet for each RegClass.
1977   auto &RegClasses = getRegClasses();
1978   for (auto &RC : RegClasses) {
1979     if (!RC.Allocatable || RC.Artificial || !RC.GeneratePressureSet)
1980       continue;
1981 
1982     // Speculatively grow the RegUnitSets to hold the new set.
1983     RegUnitSets.resize(RegUnitSets.size() + 1);
1984     RegUnitSets.back().Name = RC.getName();
1985 
1986     // Compute a sorted list of units in this class.
1987     RC.buildRegUnitSet(*this, RegUnitSets.back().Units);
1988 
1989     // Find an existing RegUnitSet.
1990     std::vector<RegUnitSet>::const_iterator SetI =
1991       findRegUnitSet(RegUnitSets, RegUnitSets.back());
1992     if (SetI != std::prev(RegUnitSets.end()))
1993       RegUnitSets.pop_back();
1994   }
1995 
1996   if (RegUnitSets.empty())
1997     PrintFatalError("RegUnitSets cannot be empty!");
1998 
1999   LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx = 0,
2000                                                    USEnd = RegUnitSets.size();
2001                                                    USIdx < USEnd; ++USIdx) {
2002     dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
2003     for (auto &U : RegUnitSets[USIdx].Units)
2004       printRegUnitName(U);
2005     dbgs() << "\n";
2006   });
2007 
2008   // Iteratively prune unit sets.
2009   pruneUnitSets();
2010 
2011   LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx = 0,
2012                                                  USEnd = RegUnitSets.size();
2013                                                  USIdx < USEnd; ++USIdx) {
2014     dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
2015     for (auto &U : RegUnitSets[USIdx].Units)
2016       printRegUnitName(U);
2017     dbgs() << "\n";
2018   } dbgs() << "\nUnion sets:\n");
2019 
2020   // Iterate over all unit sets, including new ones added by this loop.
2021   unsigned NumRegUnitSubSets = RegUnitSets.size();
2022   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
2023     // In theory, this is combinatorial. In practice, it needs to be bounded
2024     // by a small number of sets for regpressure to be efficient.
2025     // If the assert is hit, we need to implement pruning.
2026     assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
2027 
2028     // Compare new sets with all original classes.
2029     for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
2030          SearchIdx != EndIdx; ++SearchIdx) {
2031       std::set<unsigned> Intersection;
2032       std::set_intersection(RegUnitSets[Idx].Units.begin(),
2033                             RegUnitSets[Idx].Units.end(),
2034                             RegUnitSets[SearchIdx].Units.begin(),
2035                             RegUnitSets[SearchIdx].Units.end(),
2036                             std::inserter(Intersection, Intersection.begin()));
2037       if (Intersection.empty())
2038         continue;
2039 
2040       // Speculatively grow the RegUnitSets to hold the new set.
2041       RegUnitSets.resize(RegUnitSets.size() + 1);
2042       RegUnitSets.back().Name =
2043         RegUnitSets[Idx].Name + "_with_" + RegUnitSets[SearchIdx].Name;
2044 
2045       std::set_union(RegUnitSets[Idx].Units.begin(),
2046                      RegUnitSets[Idx].Units.end(),
2047                      RegUnitSets[SearchIdx].Units.begin(),
2048                      RegUnitSets[SearchIdx].Units.end(),
2049                      std::inserter(RegUnitSets.back().Units,
2050                                    RegUnitSets.back().Units.begin()));
2051 
2052       // Find an existing RegUnitSet, or add the union to the unique sets.
2053       std::vector<RegUnitSet>::const_iterator SetI =
2054         findRegUnitSet(RegUnitSets, RegUnitSets.back());
2055       if (SetI != std::prev(RegUnitSets.end()))
2056         RegUnitSets.pop_back();
2057       else {
2058         LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets.size() - 1 << " "
2059                           << RegUnitSets.back().Name << ":";
2060                    for (auto &U
2061                         : RegUnitSets.back().Units) printRegUnitName(U);
2062                    dbgs() << "\n";);
2063       }
2064     }
2065   }
2066 
2067   // Iteratively prune unit sets after inferring supersets.
2068   pruneUnitSets();
2069 
2070   LLVM_DEBUG(
2071       dbgs() << "\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
2072                            USIdx < USEnd; ++USIdx) {
2073         dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
2074         for (auto &U : RegUnitSets[USIdx].Units)
2075           printRegUnitName(U);
2076         dbgs() << "\n";
2077       });
2078 
2079   // For each register class, list the UnitSets that are supersets.
2080   RegClassUnitSets.resize(RegClasses.size());
2081   int RCIdx = -1;
2082   for (auto &RC : RegClasses) {
2083     ++RCIdx;
2084     if (!RC.Allocatable)
2085       continue;
2086 
2087     // Recompute the sorted list of units in this class.
2088     std::vector<unsigned> RCRegUnits;
2089     RC.buildRegUnitSet(*this, RCRegUnits);
2090 
2091     // Don't increase pressure for unallocatable regclasses.
2092     if (RCRegUnits.empty())
2093       continue;
2094 
2095     LLVM_DEBUG(dbgs() << "RC " << RC.getName() << " Units:\n";
2096                for (auto U
2097                     : RCRegUnits) printRegUnitName(U);
2098                dbgs() << "\n  UnitSetIDs:");
2099 
2100     // Find all supersets.
2101     for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
2102          USIdx != USEnd; ++USIdx) {
2103       if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
2104         LLVM_DEBUG(dbgs() << " " << USIdx);
2105         RegClassUnitSets[RCIdx].push_back(USIdx);
2106       }
2107     }
2108     LLVM_DEBUG(dbgs() << "\n");
2109     assert((!RegClassUnitSets[RCIdx].empty() || !RC.GeneratePressureSet) &&
2110            "missing unit set for regclass");
2111   }
2112 
2113   // For each register unit, ensure that we have the list of UnitSets that
2114   // contain the unit. Normally, this matches an existing list of UnitSets for a
2115   // register class. If not, we create a new entry in RegClassUnitSets as a
2116   // "fake" register class.
2117   for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
2118        UnitIdx < UnitEnd; ++UnitIdx) {
2119     std::vector<unsigned> RUSets;
2120     for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
2121       RegUnitSet &RUSet = RegUnitSets[i];
2122       if (!is_contained(RUSet.Units, UnitIdx))
2123         continue;
2124       RUSets.push_back(i);
2125     }
2126     unsigned RCUnitSetsIdx = 0;
2127     for (unsigned e = RegClassUnitSets.size();
2128          RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
2129       if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
2130         break;
2131       }
2132     }
2133     RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
2134     if (RCUnitSetsIdx == RegClassUnitSets.size()) {
2135       // Create a new list of UnitSets as a "fake" register class.
2136       RegClassUnitSets.resize(RCUnitSetsIdx + 1);
2137       RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
2138     }
2139   }
2140 }
2141 
2142 void CodeGenRegBank::computeRegUnitLaneMasks() {
2143   for (auto &Register : Registers) {
2144     // Create an initial lane mask for all register units.
2145     const auto &RegUnits = Register.getRegUnits();
2146     CodeGenRegister::RegUnitLaneMaskList RegUnitLaneMasks(
2147         RegUnits.count(), LaneBitmask::getAll());
2148     // Iterate through SubRegisters.
2149     typedef CodeGenRegister::SubRegMap SubRegMap;
2150     const SubRegMap &SubRegs = Register.getSubRegs();
2151     for (auto S : SubRegs) {
2152       CodeGenRegister *SubReg = S.second;
2153       // Ignore non-leaf subregisters, their lane masks are fully covered by
2154       // the leaf subregisters anyway.
2155       if (!SubReg->getSubRegs().empty())
2156         continue;
2157       CodeGenSubRegIndex *SubRegIndex = S.first;
2158       const CodeGenRegister *SubRegister = S.second;
2159       LaneBitmask LaneMask = SubRegIndex->LaneMask;
2160       // Distribute LaneMask to Register Units touched.
2161       for (unsigned SUI : SubRegister->getRegUnits()) {
2162         bool Found = false;
2163         unsigned u = 0;
2164         for (unsigned RU : RegUnits) {
2165           if (SUI == RU) {
2166             RegUnitLaneMasks[u] &= LaneMask;
2167             assert(!Found);
2168             Found = true;
2169           }
2170           ++u;
2171         }
2172         (void)Found;
2173         assert(Found);
2174       }
2175     }
2176     Register.setRegUnitLaneMasks(RegUnitLaneMasks);
2177   }
2178 }
2179 
2180 void CodeGenRegBank::computeDerivedInfo() {
2181   computeComposites();
2182   computeSubRegLaneMasks();
2183 
2184   // Compute a weight for each register unit created during getSubRegs.
2185   // This may create adopted register units (with unit # >= NumNativeRegUnits).
2186   computeRegUnitWeights();
2187 
2188   // Compute a unique set of RegUnitSets. One for each RegClass and inferred
2189   // supersets for the union of overlapping sets.
2190   computeRegUnitSets();
2191 
2192   computeRegUnitLaneMasks();
2193 
2194   // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag.
2195   for (CodeGenRegisterClass &RC : RegClasses) {
2196     RC.HasDisjunctSubRegs = false;
2197     RC.CoveredBySubRegs = true;
2198     for (const CodeGenRegister *Reg : RC.getMembers()) {
2199       RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs;
2200       RC.CoveredBySubRegs &= Reg->CoveredBySubRegs;
2201     }
2202   }
2203 
2204   // Get the weight of each set.
2205   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2206     RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
2207 
2208   // Find the order of each set.
2209   RegUnitSetOrder.reserve(RegUnitSets.size());
2210   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2211     RegUnitSetOrder.push_back(Idx);
2212 
2213   llvm::stable_sort(RegUnitSetOrder, [this](unsigned ID1, unsigned ID2) {
2214     return getRegPressureSet(ID1).Units.size() <
2215            getRegPressureSet(ID2).Units.size();
2216   });
2217   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
2218     RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
2219   }
2220 }
2221 
2222 //
2223 // Synthesize missing register class intersections.
2224 //
2225 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
2226 // returns a maximal register class for all X.
2227 //
2228 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
2229   assert(!RegClasses.empty());
2230   // Stash the iterator to the last element so that this loop doesn't visit
2231   // elements added by the getOrCreateSubClass call within it.
2232   for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end());
2233        I != std::next(E); ++I) {
2234     CodeGenRegisterClass *RC1 = RC;
2235     CodeGenRegisterClass *RC2 = &*I;
2236     if (RC1 == RC2)
2237       continue;
2238 
2239     // Compute the set intersection of RC1 and RC2.
2240     const CodeGenRegister::Vec &Memb1 = RC1->getMembers();
2241     const CodeGenRegister::Vec &Memb2 = RC2->getMembers();
2242     CodeGenRegister::Vec Intersection;
2243     std::set_intersection(Memb1.begin(), Memb1.end(), Memb2.begin(),
2244                           Memb2.end(),
2245                           std::inserter(Intersection, Intersection.begin()),
2246                           deref<std::less<>>());
2247 
2248     // Skip disjoint class pairs.
2249     if (Intersection.empty())
2250       continue;
2251 
2252     // If RC1 and RC2 have different spill sizes or alignments, use the
2253     // stricter one for sub-classing.  If they are equal, prefer RC1.
2254     if (RC2->RSI.hasStricterSpillThan(RC1->RSI))
2255       std::swap(RC1, RC2);
2256 
2257     getOrCreateSubClass(RC1, &Intersection,
2258                         RC1->getName() + "_and_" + RC2->getName());
2259   }
2260 }
2261 
2262 //
2263 // Synthesize missing sub-classes for getSubClassWithSubReg().
2264 //
2265 // Make sure that the set of registers in RC with a given SubIdx sub-register
2266 // form a register class.  Update RC->SubClassWithSubReg.
2267 //
2268 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
2269   // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
2270   typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec,
2271                    deref<std::less<>>>
2272       SubReg2SetMap;
2273 
2274   // Compute the set of registers supporting each SubRegIndex.
2275   SubReg2SetMap SRSets;
2276   for (const auto R : RC->getMembers()) {
2277     if (R->Artificial)
2278       continue;
2279     const CodeGenRegister::SubRegMap &SRM = R->getSubRegs();
2280     for (auto I : SRM) {
2281       if (!I.first->Artificial)
2282         SRSets[I.first].push_back(R);
2283     }
2284   }
2285 
2286   for (auto I : SRSets)
2287     sortAndUniqueRegisters(I.second);
2288 
2289   // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
2290   // numerical order to visit synthetic indices last.
2291   for (const auto &SubIdx : SubRegIndices) {
2292     if (SubIdx.Artificial)
2293       continue;
2294     SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx);
2295     // Unsupported SubRegIndex. Skip it.
2296     if (I == SRSets.end())
2297       continue;
2298     // In most cases, all RC registers support the SubRegIndex.
2299     if (I->second.size() == RC->getMembers().size()) {
2300       RC->setSubClassWithSubReg(&SubIdx, RC);
2301       continue;
2302     }
2303     // This is a real subset.  See if we have a matching class.
2304     CodeGenRegisterClass *SubRC =
2305       getOrCreateSubClass(RC, &I->second,
2306                           RC->getName() + "_with_" + I->first->getName());
2307     RC->setSubClassWithSubReg(&SubIdx, SubRC);
2308   }
2309 }
2310 
2311 //
2312 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
2313 //
2314 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
2315 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
2316 //
2317 
2318 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
2319                                                 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) {
2320   DenseMap<const CodeGenRegister *, std::vector<const CodeGenRegister *>>
2321       SubToSuperRegs;
2322   BitVector TopoSigs(getNumTopoSigs());
2323 
2324   // Iterate in SubRegIndex numerical order to visit synthetic indices last.
2325   for (auto &SubIdx : SubRegIndices) {
2326     // Skip indexes that aren't fully supported by RC's registers. This was
2327     // computed by inferSubClassWithSubReg() above which should have been
2328     // called first.
2329     if (RC->getSubClassWithSubReg(&SubIdx) != RC)
2330       continue;
2331 
2332     // Build list of (Super, Sub) pairs for this SubIdx.
2333     SubToSuperRegs.clear();
2334     TopoSigs.reset();
2335     for (const auto Super : RC->getMembers()) {
2336       const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second;
2337       assert(Sub && "Missing sub-register");
2338       SubToSuperRegs[Sub].push_back(Super);
2339       TopoSigs.set(Sub->getTopoSig());
2340     }
2341 
2342     // Iterate over sub-register class candidates.  Ignore classes created by
2343     // this loop. They will never be useful.
2344     // Store an iterator to the last element (not end) so that this loop doesn't
2345     // visit newly inserted elements.
2346     assert(!RegClasses.empty());
2347     for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end());
2348          I != std::next(E); ++I) {
2349       CodeGenRegisterClass &SubRC = *I;
2350       if (SubRC.Artificial)
2351         continue;
2352       // Topological shortcut: SubRC members have the wrong shape.
2353       if (!TopoSigs.anyCommon(SubRC.getTopoSigs()))
2354         continue;
2355       // Compute the subset of RC that maps into SubRC.
2356       CodeGenRegister::Vec SubSetVec;
2357       for (const CodeGenRegister *R : SubRC.getMembers()) {
2358         auto It = SubToSuperRegs.find(R);
2359         if (It != SubToSuperRegs.end()) {
2360           const std::vector<const CodeGenRegister *> &SuperRegs = It->second;
2361           SubSetVec.insert(SubSetVec.end(), SuperRegs.begin(), SuperRegs.end());
2362         }
2363       }
2364 
2365       if (SubSetVec.empty())
2366         continue;
2367 
2368       // RC injects completely into SubRC.
2369       sortAndUniqueRegisters(SubSetVec);
2370       if (SubSetVec.size() == RC->getMembers().size()) {
2371         SubRC.addSuperRegClass(&SubIdx, RC);
2372         continue;
2373       }
2374 
2375       // Only a subset of RC maps into SubRC. Make sure it is represented by a
2376       // class.
2377       getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" +
2378                                           SubIdx.getName() + "_in_" +
2379                                           SubRC.getName());
2380     }
2381   }
2382 }
2383 
2384 //
2385 // Infer missing register classes.
2386 //
2387 void CodeGenRegBank::computeInferredRegisterClasses() {
2388   assert(!RegClasses.empty());
2389   // When this function is called, the register classes have not been sorted
2390   // and assigned EnumValues yet.  That means getSubClasses(),
2391   // getSuperClasses(), and hasSubClass() functions are defunct.
2392 
2393   // Use one-before-the-end so it doesn't move forward when new elements are
2394   // added.
2395   auto FirstNewRC = std::prev(RegClasses.end());
2396 
2397   // Visit all register classes, including the ones being added by the loop.
2398   // Watch out for iterator invalidation here.
2399   for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) {
2400     CodeGenRegisterClass *RC = &*I;
2401     if (RC->Artificial)
2402       continue;
2403 
2404     // Synthesize answers for getSubClassWithSubReg().
2405     inferSubClassWithSubReg(RC);
2406 
2407     // Synthesize answers for getCommonSubClass().
2408     inferCommonSubClass(RC);
2409 
2410     // Synthesize answers for getMatchingSuperRegClass().
2411     inferMatchingSuperRegClass(RC);
2412 
2413     // New register classes are created while this loop is running, and we need
2414     // to visit all of them.  I  particular, inferMatchingSuperRegClass needs
2415     // to match old super-register classes with sub-register classes created
2416     // after inferMatchingSuperRegClass was called.  At this point,
2417     // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
2418     // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
2419     if (I == FirstNewRC) {
2420       auto NextNewRC = std::prev(RegClasses.end());
2421       for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2;
2422            ++I2)
2423         inferMatchingSuperRegClass(&*I2, E2);
2424       FirstNewRC = NextNewRC;
2425     }
2426   }
2427 }
2428 
2429 /// getRegisterClassForRegister - Find the register class that contains the
2430 /// specified physical register.  If the register is not in a register class,
2431 /// return null. If the register is in multiple classes, and the classes have a
2432 /// superset-subset relationship and the same set of types, return the
2433 /// superclass.  Otherwise return null.
2434 const CodeGenRegisterClass*
2435 CodeGenRegBank::getRegClassForRegister(Record *R) {
2436   const CodeGenRegister *Reg = getReg(R);
2437   const CodeGenRegisterClass *FoundRC = nullptr;
2438   for (const auto &RC : getRegClasses()) {
2439     if (!RC.contains(Reg))
2440       continue;
2441 
2442     // If this is the first class that contains the register,
2443     // make a note of it and go on to the next class.
2444     if (!FoundRC) {
2445       FoundRC = &RC;
2446       continue;
2447     }
2448 
2449     // If a register's classes have different types, return null.
2450     if (RC.getValueTypes() != FoundRC->getValueTypes())
2451       return nullptr;
2452 
2453     // Check to see if the previously found class that contains
2454     // the register is a subclass of the current class. If so,
2455     // prefer the superclass.
2456     if (RC.hasSubClass(FoundRC)) {
2457       FoundRC = &RC;
2458       continue;
2459     }
2460 
2461     // Check to see if the previously found class that contains
2462     // the register is a superclass of the current class. If so,
2463     // prefer the superclass.
2464     if (FoundRC->hasSubClass(&RC))
2465       continue;
2466 
2467     // Multiple classes, and neither is a superclass of the other.
2468     // Return null.
2469     return nullptr;
2470   }
2471   return FoundRC;
2472 }
2473 
2474 const CodeGenRegisterClass *
2475 CodeGenRegBank::getMinimalPhysRegClass(Record *RegRecord,
2476                                        ValueTypeByHwMode *VT) {
2477   const CodeGenRegister *Reg = getReg(RegRecord);
2478   const CodeGenRegisterClass *BestRC = nullptr;
2479   for (const auto &RC : getRegClasses()) {
2480     if ((!VT || RC.hasType(*VT)) &&
2481         RC.contains(Reg) && (!BestRC || BestRC->hasSubClass(&RC)))
2482       BestRC = &RC;
2483   }
2484 
2485   assert(BestRC && "Couldn't find the register class");
2486   return BestRC;
2487 }
2488 
2489 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
2490   SetVector<const CodeGenRegister*> Set;
2491 
2492   // First add Regs with all sub-registers.
2493   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
2494     CodeGenRegister *Reg = getReg(Regs[i]);
2495     if (Set.insert(Reg))
2496       // Reg is new, add all sub-registers.
2497       // The pre-ordering is not important here.
2498       Reg->addSubRegsPreOrder(Set, *this);
2499   }
2500 
2501   // Second, find all super-registers that are completely covered by the set.
2502   for (unsigned i = 0; i != Set.size(); ++i) {
2503     const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
2504     for (unsigned j = 0, e = SR.size(); j != e; ++j) {
2505       const CodeGenRegister *Super = SR[j];
2506       if (!Super->CoveredBySubRegs || Set.count(Super))
2507         continue;
2508       // This new super-register is covered by its sub-registers.
2509       bool AllSubsInSet = true;
2510       const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
2511       for (auto I : SRM)
2512         if (!Set.count(I.second)) {
2513           AllSubsInSet = false;
2514           break;
2515         }
2516       // All sub-registers in Set, add Super as well.
2517       // We will visit Super later to recheck its super-registers.
2518       if (AllSubsInSet)
2519         Set.insert(Super);
2520     }
2521   }
2522 
2523   // Convert to BitVector.
2524   BitVector BV(Registers.size() + 1);
2525   for (unsigned i = 0, e = Set.size(); i != e; ++i)
2526     BV.set(Set[i]->EnumValue);
2527   return BV;
2528 }
2529 
2530 void CodeGenRegBank::printRegUnitName(unsigned Unit) const {
2531   if (Unit < NumNativeRegUnits)
2532     dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName();
2533   else
2534     dbgs() << " #" << Unit;
2535 }
2536