1 //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines structures to encapsulate the machine model as described in
10 // the target description.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenSchedule.h"
15 #include "CodeGenInstruction.h"
16 #include "CodeGenTarget.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/Support/Casting.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/Regex.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/TableGen/Error.h"
27 #include <algorithm>
28 #include <iterator>
29 #include <utility>
30 
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "subtarget-emitter"
34 
35 #ifndef NDEBUG
36 static void dumpIdxVec(ArrayRef<unsigned> V) {
37   for (unsigned Idx : V)
38     dbgs() << Idx << ", ";
39 }
40 #endif
41 
42 namespace {
43 
44 // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp.
45 struct InstrsOp : public SetTheory::Operator {
46   void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
47              ArrayRef<SMLoc> Loc) override {
48     ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc);
49   }
50 };
51 
52 // (instregex "OpcPat",...) Find all instructions matching an opcode pattern.
53 struct InstRegexOp : public SetTheory::Operator {
54   const CodeGenTarget &Target;
55   InstRegexOp(const CodeGenTarget &t): Target(t) {}
56 
57   /// Remove any text inside of parentheses from S.
58   static std::string removeParens(llvm::StringRef S) {
59     std::string Result;
60     unsigned Paren = 0;
61     // NB: We don't care about escaped parens here.
62     for (char C : S) {
63       switch (C) {
64       case '(':
65         ++Paren;
66         break;
67       case ')':
68         --Paren;
69         break;
70       default:
71         if (Paren == 0)
72           Result += C;
73       }
74     }
75     return Result;
76   }
77 
78   void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
79              ArrayRef<SMLoc> Loc) override {
80     ArrayRef<const CodeGenInstruction *> Instructions =
81         Target.getInstructionsByEnumValue();
82 
83     unsigned NumGeneric = Target.getNumFixedInstructions();
84     unsigned NumPseudos = Target.getNumPseudoInstructions();
85     auto Generics = Instructions.slice(0, NumGeneric);
86     auto Pseudos = Instructions.slice(NumGeneric, NumPseudos);
87     auto NonPseudos = Instructions.slice(NumGeneric + NumPseudos);
88 
89     for (Init *Arg : make_range(Expr->arg_begin(), Expr->arg_end())) {
90       StringInit *SI = dyn_cast<StringInit>(Arg);
91       if (!SI)
92         PrintFatalError(Loc, "instregex requires pattern string: " +
93                                  Expr->getAsString());
94       StringRef Original = SI->getValue();
95 
96       // Extract a prefix that we can binary search on.
97       static const char RegexMetachars[] = "()^$|*+?.[]\\{}";
98       auto FirstMeta = Original.find_first_of(RegexMetachars);
99 
100       // Look for top-level | or ?. We cannot optimize them to binary search.
101       if (removeParens(Original).find_first_of("|?") != std::string::npos)
102         FirstMeta = 0;
103 
104       Optional<Regex> Regexpr = None;
105       StringRef Prefix = Original.substr(0, FirstMeta);
106       StringRef PatStr = Original.substr(FirstMeta);
107       if (!PatStr.empty()) {
108         // For the rest use a python-style prefix match.
109         std::string pat = PatStr;
110         if (pat[0] != '^') {
111           pat.insert(0, "^(");
112           pat.insert(pat.end(), ')');
113         }
114         Regexpr = Regex(pat);
115       }
116 
117       int NumMatches = 0;
118 
119       // The generic opcodes are unsorted, handle them manually.
120       for (auto *Inst : Generics) {
121         StringRef InstName = Inst->TheDef->getName();
122         if (InstName.startswith(Prefix) &&
123             (!Regexpr || Regexpr->match(InstName.substr(Prefix.size())))) {
124           Elts.insert(Inst->TheDef);
125           NumMatches++;
126         }
127       }
128 
129       // Target instructions are split into two ranges: pseudo instructions
130       // first, than non-pseudos. Each range is in lexicographical order
131       // sorted by name. Find the sub-ranges that start with our prefix.
132       struct Comp {
133         bool operator()(const CodeGenInstruction *LHS, StringRef RHS) {
134           return LHS->TheDef->getName() < RHS;
135         }
136         bool operator()(StringRef LHS, const CodeGenInstruction *RHS) {
137           return LHS < RHS->TheDef->getName() &&
138                  !RHS->TheDef->getName().startswith(LHS);
139         }
140       };
141       auto Range1 =
142           std::equal_range(Pseudos.begin(), Pseudos.end(), Prefix, Comp());
143       auto Range2 = std::equal_range(NonPseudos.begin(), NonPseudos.end(),
144                                      Prefix, Comp());
145 
146       // For these ranges we know that instruction names start with the prefix.
147       // Check if there's a regex that needs to be checked.
148       const auto HandleNonGeneric = [&](const CodeGenInstruction *Inst) {
149         StringRef InstName = Inst->TheDef->getName();
150         if (!Regexpr || Regexpr->match(InstName.substr(Prefix.size()))) {
151           Elts.insert(Inst->TheDef);
152           NumMatches++;
153         }
154       };
155       std::for_each(Range1.first, Range1.second, HandleNonGeneric);
156       std::for_each(Range2.first, Range2.second, HandleNonGeneric);
157 
158       if (0 == NumMatches)
159         PrintFatalError(Loc, "instregex has no matches: " + Original);
160     }
161   }
162 };
163 
164 } // end anonymous namespace
165 
166 /// CodeGenModels ctor interprets machine model records and populates maps.
167 CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK,
168                                        const CodeGenTarget &TGT):
169   Records(RK), Target(TGT) {
170 
171   Sets.addFieldExpander("InstRW", "Instrs");
172 
173   // Allow Set evaluation to recognize the dags used in InstRW records:
174   // (instrs Op1, Op1...)
175   Sets.addOperator("instrs", std::make_unique<InstrsOp>());
176   Sets.addOperator("instregex", std::make_unique<InstRegexOp>(Target));
177 
178   // Instantiate a CodeGenProcModel for each SchedMachineModel with the values
179   // that are explicitly referenced in tablegen records. Resources associated
180   // with each processor will be derived later. Populate ProcModelMap with the
181   // CodeGenProcModel instances.
182   collectProcModels();
183 
184   // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly
185   // defined, and populate SchedReads and SchedWrites vectors. Implicit
186   // SchedReadWrites that represent sequences derived from expanded variant will
187   // be inferred later.
188   collectSchedRW();
189 
190   // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly
191   // required by an instruction definition, and populate SchedClassIdxMap. Set
192   // NumItineraryClasses to the number of explicit itinerary classes referenced
193   // by instructions. Set NumInstrSchedClasses to the number of itinerary
194   // classes plus any classes implied by instructions that derive from class
195   // Sched and provide SchedRW list. This does not infer any new classes from
196   // SchedVariant.
197   collectSchedClasses();
198 
199   // Find instruction itineraries for each processor. Sort and populate
200   // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires
201   // all itinerary classes to be discovered.
202   collectProcItins();
203 
204   // Find ItinRW records for each processor and itinerary class.
205   // (For per-operand resources mapped to itinerary classes).
206   collectProcItinRW();
207 
208   // Find UnsupportedFeatures records for each processor.
209   // (For per-operand resources mapped to itinerary classes).
210   collectProcUnsupportedFeatures();
211 
212   // Infer new SchedClasses from SchedVariant.
213   inferSchedClasses();
214 
215   // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and
216   // ProcResourceDefs.
217   LLVM_DEBUG(
218       dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n");
219   collectProcResources();
220 
221   // Collect optional processor description.
222   collectOptionalProcessorInfo();
223 
224   // Check MCInstPredicate definitions.
225   checkMCInstPredicates();
226 
227   // Check STIPredicate definitions.
228   checkSTIPredicates();
229 
230   // Find STIPredicate definitions for each processor model, and construct
231   // STIPredicateFunction objects.
232   collectSTIPredicates();
233 
234   checkCompleteness();
235 }
236 
237 void CodeGenSchedModels::checkSTIPredicates() const {
238   DenseMap<StringRef, const Record *> Declarations;
239 
240   // There cannot be multiple declarations with the same name.
241   const RecVec Decls = Records.getAllDerivedDefinitions("STIPredicateDecl");
242   for (const Record *R : Decls) {
243     StringRef Name = R->getValueAsString("Name");
244     const auto It = Declarations.find(Name);
245     if (It == Declarations.end()) {
246       Declarations[Name] = R;
247       continue;
248     }
249 
250     PrintError(R->getLoc(), "STIPredicate " + Name + " multiply declared.");
251     PrintNote(It->second->getLoc(), "Previous declaration was here.");
252     PrintFatalError(R->getLoc(), "Invalid STIPredicateDecl found.");
253   }
254 
255   // Disallow InstructionEquivalenceClasses with an empty instruction list.
256   const RecVec Defs =
257       Records.getAllDerivedDefinitions("InstructionEquivalenceClass");
258   for (const Record *R : Defs) {
259     RecVec Opcodes = R->getValueAsListOfDefs("Opcodes");
260     if (Opcodes.empty()) {
261       PrintFatalError(R->getLoc(), "Invalid InstructionEquivalenceClass "
262                                    "defined with an empty opcode list.");
263     }
264   }
265 }
266 
267 // Used by function `processSTIPredicate` to construct a mask of machine
268 // instruction operands.
269 static APInt constructOperandMask(ArrayRef<int64_t> Indices) {
270   APInt OperandMask;
271   if (Indices.empty())
272     return OperandMask;
273 
274   int64_t MaxIndex = *std::max_element(Indices.begin(), Indices.end());
275   assert(MaxIndex >= 0 && "Invalid negative indices in input!");
276   OperandMask = OperandMask.zext(MaxIndex + 1);
277   for (const int64_t Index : Indices) {
278     assert(Index >= 0 && "Invalid negative indices!");
279     OperandMask.setBit(Index);
280   }
281 
282   return OperandMask;
283 }
284 
285 static void
286 processSTIPredicate(STIPredicateFunction &Fn,
287                     const DenseMap<Record *, unsigned> &ProcModelMap) {
288   DenseMap<const Record *, unsigned> Opcode2Index;
289   using OpcodeMapPair = std::pair<const Record *, OpcodeInfo>;
290   std::vector<OpcodeMapPair> OpcodeMappings;
291   std::vector<std::pair<APInt, APInt>> OpcodeMasks;
292 
293   DenseMap<const Record *, unsigned> Predicate2Index;
294   unsigned NumUniquePredicates = 0;
295 
296   // Number unique predicates and opcodes used by InstructionEquivalenceClass
297   // definitions. Each unique opcode will be associated with an OpcodeInfo
298   // object.
299   for (const Record *Def : Fn.getDefinitions()) {
300     RecVec Classes = Def->getValueAsListOfDefs("Classes");
301     for (const Record *EC : Classes) {
302       const Record *Pred = EC->getValueAsDef("Predicate");
303       if (Predicate2Index.find(Pred) == Predicate2Index.end())
304         Predicate2Index[Pred] = NumUniquePredicates++;
305 
306       RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
307       for (const Record *Opcode : Opcodes) {
308         if (Opcode2Index.find(Opcode) == Opcode2Index.end()) {
309           Opcode2Index[Opcode] = OpcodeMappings.size();
310           OpcodeMappings.emplace_back(Opcode, OpcodeInfo());
311         }
312       }
313     }
314   }
315 
316   // Initialize vector `OpcodeMasks` with default values.  We want to keep track
317   // of which processors "use" which opcodes.  We also want to be able to
318   // identify predicates that are used by different processors for a same
319   // opcode.
320   // This information is used later on by this algorithm to sort OpcodeMapping
321   // elements based on their processor and predicate sets.
322   OpcodeMasks.resize(OpcodeMappings.size());
323   APInt DefaultProcMask(ProcModelMap.size(), 0);
324   APInt DefaultPredMask(NumUniquePredicates, 0);
325   for (std::pair<APInt, APInt> &MaskPair : OpcodeMasks)
326     MaskPair = std::make_pair(DefaultProcMask, DefaultPredMask);
327 
328   // Construct a OpcodeInfo object for every unique opcode declared by an
329   // InstructionEquivalenceClass definition.
330   for (const Record *Def : Fn.getDefinitions()) {
331     RecVec Classes = Def->getValueAsListOfDefs("Classes");
332     const Record *SchedModel = Def->getValueAsDef("SchedModel");
333     unsigned ProcIndex = ProcModelMap.find(SchedModel)->second;
334     APInt ProcMask(ProcModelMap.size(), 0);
335     ProcMask.setBit(ProcIndex);
336 
337     for (const Record *EC : Classes) {
338       RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
339 
340       std::vector<int64_t> OpIndices =
341           EC->getValueAsListOfInts("OperandIndices");
342       APInt OperandMask = constructOperandMask(OpIndices);
343 
344       const Record *Pred = EC->getValueAsDef("Predicate");
345       APInt PredMask(NumUniquePredicates, 0);
346       PredMask.setBit(Predicate2Index[Pred]);
347 
348       for (const Record *Opcode : Opcodes) {
349         unsigned OpcodeIdx = Opcode2Index[Opcode];
350         if (OpcodeMasks[OpcodeIdx].first[ProcIndex]) {
351           std::string Message =
352               "Opcode " + Opcode->getName().str() +
353               " used by multiple InstructionEquivalenceClass definitions.";
354           PrintFatalError(EC->getLoc(), Message);
355         }
356         OpcodeMasks[OpcodeIdx].first |= ProcMask;
357         OpcodeMasks[OpcodeIdx].second |= PredMask;
358         OpcodeInfo &OI = OpcodeMappings[OpcodeIdx].second;
359 
360         OI.addPredicateForProcModel(ProcMask, OperandMask, Pred);
361       }
362     }
363   }
364 
365   // Sort OpcodeMappings elements based on their CPU and predicate masks.
366   // As a last resort, order elements by opcode identifier.
367   llvm::sort(OpcodeMappings,
368              [&](const OpcodeMapPair &Lhs, const OpcodeMapPair &Rhs) {
369                unsigned LhsIdx = Opcode2Index[Lhs.first];
370                unsigned RhsIdx = Opcode2Index[Rhs.first];
371                const std::pair<APInt, APInt> &LhsMasks = OpcodeMasks[LhsIdx];
372                const std::pair<APInt, APInt> &RhsMasks = OpcodeMasks[RhsIdx];
373 
374                auto LessThan = [](const APInt &Lhs, const APInt &Rhs) {
375                  unsigned LhsCountPopulation = Lhs.countPopulation();
376                  unsigned RhsCountPopulation = Rhs.countPopulation();
377                  return ((LhsCountPopulation < RhsCountPopulation) ||
378                          ((LhsCountPopulation == RhsCountPopulation) &&
379                           (Lhs.countLeadingZeros() > Rhs.countLeadingZeros())));
380                };
381 
382                if (LhsMasks.first != RhsMasks.first)
383                  return LessThan(LhsMasks.first, RhsMasks.first);
384 
385                if (LhsMasks.second != RhsMasks.second)
386                  return LessThan(LhsMasks.second, RhsMasks.second);
387 
388                return LhsIdx < RhsIdx;
389              });
390 
391   // Now construct opcode groups. Groups are used by the SubtargetEmitter when
392   // expanding the body of a STIPredicate function. In particular, each opcode
393   // group is expanded into a sequence of labels in a switch statement.
394   // It identifies opcodes for which different processors define same predicates
395   // and same opcode masks.
396   for (OpcodeMapPair &Info : OpcodeMappings)
397     Fn.addOpcode(Info.first, std::move(Info.second));
398 }
399 
400 void CodeGenSchedModels::collectSTIPredicates() {
401   // Map STIPredicateDecl records to elements of vector
402   // CodeGenSchedModels::STIPredicates.
403   DenseMap<const Record *, unsigned> Decl2Index;
404 
405   RecVec RV = Records.getAllDerivedDefinitions("STIPredicate");
406   for (const Record *R : RV) {
407     const Record *Decl = R->getValueAsDef("Declaration");
408 
409     const auto It = Decl2Index.find(Decl);
410     if (It == Decl2Index.end()) {
411       Decl2Index[Decl] = STIPredicates.size();
412       STIPredicateFunction Predicate(Decl);
413       Predicate.addDefinition(R);
414       STIPredicates.emplace_back(std::move(Predicate));
415       continue;
416     }
417 
418     STIPredicateFunction &PreviousDef = STIPredicates[It->second];
419     PreviousDef.addDefinition(R);
420   }
421 
422   for (STIPredicateFunction &Fn : STIPredicates)
423     processSTIPredicate(Fn, ProcModelMap);
424 }
425 
426 void OpcodeInfo::addPredicateForProcModel(const llvm::APInt &CpuMask,
427                                           const llvm::APInt &OperandMask,
428                                           const Record *Predicate) {
429   auto It = llvm::find_if(
430       Predicates, [&OperandMask, &Predicate](const PredicateInfo &P) {
431         return P.Predicate == Predicate && P.OperandMask == OperandMask;
432       });
433   if (It == Predicates.end()) {
434     Predicates.emplace_back(CpuMask, OperandMask, Predicate);
435     return;
436   }
437   It->ProcModelMask |= CpuMask;
438 }
439 
440 void CodeGenSchedModels::checkMCInstPredicates() const {
441   RecVec MCPredicates = Records.getAllDerivedDefinitions("TIIPredicate");
442   if (MCPredicates.empty())
443     return;
444 
445   // A target cannot have multiple TIIPredicate definitions with a same name.
446   llvm::StringMap<const Record *> TIIPredicates(MCPredicates.size());
447   for (const Record *TIIPred : MCPredicates) {
448     StringRef Name = TIIPred->getValueAsString("FunctionName");
449     StringMap<const Record *>::const_iterator It = TIIPredicates.find(Name);
450     if (It == TIIPredicates.end()) {
451       TIIPredicates[Name] = TIIPred;
452       continue;
453     }
454 
455     PrintError(TIIPred->getLoc(),
456                "TIIPredicate " + Name + " is multiply defined.");
457     PrintNote(It->second->getLoc(),
458               " Previous definition of " + Name + " was here.");
459     PrintFatalError(TIIPred->getLoc(),
460                     "Found conflicting definitions of TIIPredicate.");
461   }
462 }
463 
464 void CodeGenSchedModels::collectRetireControlUnits() {
465   RecVec Units = Records.getAllDerivedDefinitions("RetireControlUnit");
466 
467   for (Record *RCU : Units) {
468     CodeGenProcModel &PM = getProcModel(RCU->getValueAsDef("SchedModel"));
469     if (PM.RetireControlUnit) {
470       PrintError(RCU->getLoc(),
471                  "Expected a single RetireControlUnit definition");
472       PrintNote(PM.RetireControlUnit->getLoc(),
473                 "Previous definition of RetireControlUnit was here");
474     }
475     PM.RetireControlUnit = RCU;
476   }
477 }
478 
479 void CodeGenSchedModels::collectLoadStoreQueueInfo() {
480   RecVec Queues = Records.getAllDerivedDefinitions("MemoryQueue");
481 
482   for (Record *Queue : Queues) {
483     CodeGenProcModel &PM = getProcModel(Queue->getValueAsDef("SchedModel"));
484     if (Queue->isSubClassOf("LoadQueue")) {
485       if (PM.LoadQueue) {
486         PrintError(Queue->getLoc(),
487                    "Expected a single LoadQueue definition");
488         PrintNote(PM.LoadQueue->getLoc(),
489                   "Previous definition of LoadQueue was here");
490       }
491 
492       PM.LoadQueue = Queue;
493     }
494 
495     if (Queue->isSubClassOf("StoreQueue")) {
496       if (PM.StoreQueue) {
497         PrintError(Queue->getLoc(),
498                    "Expected a single StoreQueue definition");
499         PrintNote(PM.LoadQueue->getLoc(),
500                   "Previous definition of StoreQueue was here");
501       }
502 
503       PM.StoreQueue = Queue;
504     }
505   }
506 }
507 
508 /// Collect optional processor information.
509 void CodeGenSchedModels::collectOptionalProcessorInfo() {
510   // Find register file definitions for each processor.
511   collectRegisterFiles();
512 
513   // Collect processor RetireControlUnit descriptors if available.
514   collectRetireControlUnits();
515 
516   // Collect information about load/store queues.
517   collectLoadStoreQueueInfo();
518 
519   checkCompleteness();
520 }
521 
522 /// Gather all processor models.
523 void CodeGenSchedModels::collectProcModels() {
524   RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor");
525   llvm::sort(ProcRecords, LessRecordFieldName());
526 
527   // Reserve space because we can. Reallocation would be ok.
528   ProcModels.reserve(ProcRecords.size()+1);
529 
530   // Use idx=0 for NoModel/NoItineraries.
531   Record *NoModelDef = Records.getDef("NoSchedModel");
532   Record *NoItinsDef = Records.getDef("NoItineraries");
533   ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef);
534   ProcModelMap[NoModelDef] = 0;
535 
536   // For each processor, find a unique machine model.
537   LLVM_DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n");
538   for (Record *ProcRecord : ProcRecords)
539     addProcModel(ProcRecord);
540 }
541 
542 /// Get a unique processor model based on the defined MachineModel and
543 /// ProcessorItineraries.
544 void CodeGenSchedModels::addProcModel(Record *ProcDef) {
545   Record *ModelKey = getModelOrItinDef(ProcDef);
546   if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second)
547     return;
548 
549   std::string Name = ModelKey->getName();
550   if (ModelKey->isSubClassOf("SchedMachineModel")) {
551     Record *ItinsDef = ModelKey->getValueAsDef("Itineraries");
552     ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef);
553   }
554   else {
555     // An itinerary is defined without a machine model. Infer a new model.
556     if (!ModelKey->getValueAsListOfDefs("IID").empty())
557       Name = Name + "Model";
558     ProcModels.emplace_back(ProcModels.size(), Name,
559                             ProcDef->getValueAsDef("SchedModel"), ModelKey);
560   }
561   LLVM_DEBUG(ProcModels.back().dump());
562 }
563 
564 // Recursively find all reachable SchedReadWrite records.
565 static void scanSchedRW(Record *RWDef, RecVec &RWDefs,
566                         SmallPtrSet<Record*, 16> &RWSet) {
567   if (!RWSet.insert(RWDef).second)
568     return;
569   RWDefs.push_back(RWDef);
570   // Reads don't currently have sequence records, but it can be added later.
571   if (RWDef->isSubClassOf("WriteSequence")) {
572     RecVec Seq = RWDef->getValueAsListOfDefs("Writes");
573     for (Record *WSRec : Seq)
574       scanSchedRW(WSRec, RWDefs, RWSet);
575   }
576   else if (RWDef->isSubClassOf("SchedVariant")) {
577     // Visit each variant (guarded by a different predicate).
578     RecVec Vars = RWDef->getValueAsListOfDefs("Variants");
579     for (Record *Variant : Vars) {
580       // Visit each RW in the sequence selected by the current variant.
581       RecVec Selected = Variant->getValueAsListOfDefs("Selected");
582       for (Record *SelDef : Selected)
583         scanSchedRW(SelDef, RWDefs, RWSet);
584     }
585   }
586 }
587 
588 // Collect and sort all SchedReadWrites reachable via tablegen records.
589 // More may be inferred later when inferring new SchedClasses from variants.
590 void CodeGenSchedModels::collectSchedRW() {
591   // Reserve idx=0 for invalid writes/reads.
592   SchedWrites.resize(1);
593   SchedReads.resize(1);
594 
595   SmallPtrSet<Record*, 16> RWSet;
596 
597   // Find all SchedReadWrites referenced by instruction defs.
598   RecVec SWDefs, SRDefs;
599   for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
600     Record *SchedDef = Inst->TheDef;
601     if (SchedDef->isValueUnset("SchedRW"))
602       continue;
603     RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW");
604     for (Record *RW : RWs) {
605       if (RW->isSubClassOf("SchedWrite"))
606         scanSchedRW(RW, SWDefs, RWSet);
607       else {
608         assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
609         scanSchedRW(RW, SRDefs, RWSet);
610       }
611     }
612   }
613   // Find all ReadWrites referenced by InstRW.
614   RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
615   for (Record *InstRWDef : InstRWDefs) {
616     // For all OperandReadWrites.
617     RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites");
618     for (Record *RWDef : RWDefs) {
619       if (RWDef->isSubClassOf("SchedWrite"))
620         scanSchedRW(RWDef, SWDefs, RWSet);
621       else {
622         assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
623         scanSchedRW(RWDef, SRDefs, RWSet);
624       }
625     }
626   }
627   // Find all ReadWrites referenced by ItinRW.
628   RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
629   for (Record *ItinRWDef : ItinRWDefs) {
630     // For all OperandReadWrites.
631     RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites");
632     for (Record *RWDef : RWDefs) {
633       if (RWDef->isSubClassOf("SchedWrite"))
634         scanSchedRW(RWDef, SWDefs, RWSet);
635       else {
636         assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
637         scanSchedRW(RWDef, SRDefs, RWSet);
638       }
639     }
640   }
641   // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted
642   // for the loop below that initializes Alias vectors.
643   RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias");
644   llvm::sort(AliasDefs, LessRecord());
645   for (Record *ADef : AliasDefs) {
646     Record *MatchDef = ADef->getValueAsDef("MatchRW");
647     Record *AliasDef = ADef->getValueAsDef("AliasRW");
648     if (MatchDef->isSubClassOf("SchedWrite")) {
649       if (!AliasDef->isSubClassOf("SchedWrite"))
650         PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite");
651       scanSchedRW(AliasDef, SWDefs, RWSet);
652     }
653     else {
654       assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
655       if (!AliasDef->isSubClassOf("SchedRead"))
656         PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead");
657       scanSchedRW(AliasDef, SRDefs, RWSet);
658     }
659   }
660   // Sort and add the SchedReadWrites directly referenced by instructions or
661   // itinerary resources. Index reads and writes in separate domains.
662   llvm::sort(SWDefs, LessRecord());
663   for (Record *SWDef : SWDefs) {
664     assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite");
665     SchedWrites.emplace_back(SchedWrites.size(), SWDef);
666   }
667   llvm::sort(SRDefs, LessRecord());
668   for (Record *SRDef : SRDefs) {
669     assert(!getSchedRWIdx(SRDef, /*IsRead-*/true) && "duplicate SchedWrite");
670     SchedReads.emplace_back(SchedReads.size(), SRDef);
671   }
672   // Initialize WriteSequence vectors.
673   for (CodeGenSchedRW &CGRW : SchedWrites) {
674     if (!CGRW.IsSequence)
675       continue;
676     findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence,
677             /*IsRead=*/false);
678   }
679   // Initialize Aliases vectors.
680   for (Record *ADef : AliasDefs) {
681     Record *AliasDef = ADef->getValueAsDef("AliasRW");
682     getSchedRW(AliasDef).IsAlias = true;
683     Record *MatchDef = ADef->getValueAsDef("MatchRW");
684     CodeGenSchedRW &RW = getSchedRW(MatchDef);
685     if (RW.IsAlias)
686       PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias");
687     RW.Aliases.push_back(ADef);
688   }
689   LLVM_DEBUG(
690       dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n";
691       for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) {
692         dbgs() << WIdx << ": ";
693         SchedWrites[WIdx].dump();
694         dbgs() << '\n';
695       } for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd;
696              ++RIdx) {
697         dbgs() << RIdx << ": ";
698         SchedReads[RIdx].dump();
699         dbgs() << '\n';
700       } RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite");
701       for (Record *RWDef
702            : RWDefs) {
703         if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) {
704           StringRef Name = RWDef->getName();
705           if (Name != "NoWrite" && Name != "ReadDefault")
706             dbgs() << "Unused SchedReadWrite " << Name << '\n';
707         }
708       });
709 }
710 
711 /// Compute a SchedWrite name from a sequence of writes.
712 std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) {
713   std::string Name("(");
714   for (auto I = Seq.begin(), E = Seq.end(); I != E; ++I) {
715     if (I != Seq.begin())
716       Name += '_';
717     Name += getSchedRW(*I, IsRead).Name;
718   }
719   Name += ')';
720   return Name;
721 }
722 
723 unsigned CodeGenSchedModels::getSchedRWIdx(const Record *Def,
724                                            bool IsRead) const {
725   const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
726   const auto I = find_if(
727       RWVec, [Def](const CodeGenSchedRW &RW) { return RW.TheDef == Def; });
728   return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
729 }
730 
731 bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const {
732   for (const CodeGenSchedRW &Read : SchedReads) {
733     Record *ReadDef = Read.TheDef;
734     if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance"))
735       continue;
736 
737     RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites");
738     if (is_contained(ValidWrites, WriteDef)) {
739       return true;
740     }
741   }
742   return false;
743 }
744 
745 static void splitSchedReadWrites(const RecVec &RWDefs,
746                                  RecVec &WriteDefs, RecVec &ReadDefs) {
747   for (Record *RWDef : RWDefs) {
748     if (RWDef->isSubClassOf("SchedWrite"))
749       WriteDefs.push_back(RWDef);
750     else {
751       assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite");
752       ReadDefs.push_back(RWDef);
753     }
754   }
755 }
756 
757 // Split the SchedReadWrites defs and call findRWs for each list.
758 void CodeGenSchedModels::findRWs(const RecVec &RWDefs,
759                                  IdxVec &Writes, IdxVec &Reads) const {
760   RecVec WriteDefs;
761   RecVec ReadDefs;
762   splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs);
763   findRWs(WriteDefs, Writes, false);
764   findRWs(ReadDefs, Reads, true);
765 }
766 
767 // Call getSchedRWIdx for all elements in a sequence of SchedRW defs.
768 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs,
769                                  bool IsRead) const {
770   for (Record *RWDef : RWDefs) {
771     unsigned Idx = getSchedRWIdx(RWDef, IsRead);
772     assert(Idx && "failed to collect SchedReadWrite");
773     RWs.push_back(Idx);
774   }
775 }
776 
777 void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq,
778                                           bool IsRead) const {
779   const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
780   if (!SchedRW.IsSequence) {
781     RWSeq.push_back(RWIdx);
782     return;
783   }
784   int Repeat =
785     SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1;
786   for (int i = 0; i < Repeat; ++i) {
787     for (unsigned I : SchedRW.Sequence) {
788       expandRWSequence(I, RWSeq, IsRead);
789     }
790   }
791 }
792 
793 // Expand a SchedWrite as a sequence following any aliases that coincide with
794 // the given processor model.
795 void CodeGenSchedModels::expandRWSeqForProc(
796   unsigned RWIdx, IdxVec &RWSeq, bool IsRead,
797   const CodeGenProcModel &ProcModel) const {
798 
799   const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead);
800   Record *AliasDef = nullptr;
801   for (const Record *Rec : SchedWrite.Aliases) {
802     const CodeGenSchedRW &AliasRW = getSchedRW(Rec->getValueAsDef("AliasRW"));
803     if (Rec->getValueInit("SchedModel")->isComplete()) {
804       Record *ModelDef = Rec->getValueAsDef("SchedModel");
805       if (&getProcModel(ModelDef) != &ProcModel)
806         continue;
807     }
808     if (AliasDef)
809       PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
810                       "defined for processor " + ProcModel.ModelName +
811                       " Ensure only one SchedAlias exists per RW.");
812     AliasDef = AliasRW.TheDef;
813   }
814   if (AliasDef) {
815     expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead),
816                        RWSeq, IsRead,ProcModel);
817     return;
818   }
819   if (!SchedWrite.IsSequence) {
820     RWSeq.push_back(RWIdx);
821     return;
822   }
823   int Repeat =
824     SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1;
825   for (int I = 0, E = Repeat; I < E; ++I) {
826     for (unsigned Idx : SchedWrite.Sequence) {
827       expandRWSeqForProc(Idx, RWSeq, IsRead, ProcModel);
828     }
829   }
830 }
831 
832 // Find the existing SchedWrite that models this sequence of writes.
833 unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq,
834                                                bool IsRead) {
835   std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
836 
837   auto I = find_if(RWVec, [Seq](CodeGenSchedRW &RW) {
838     return makeArrayRef(RW.Sequence) == Seq;
839   });
840   // Index zero reserved for invalid RW.
841   return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
842 }
843 
844 /// Add this ReadWrite if it doesn't already exist.
845 unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq,
846                                             bool IsRead) {
847   assert(!Seq.empty() && "cannot insert empty sequence");
848   if (Seq.size() == 1)
849     return Seq.back();
850 
851   unsigned Idx = findRWForSequence(Seq, IsRead);
852   if (Idx)
853     return Idx;
854 
855   std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
856   unsigned RWIdx = RWVec.size();
857   CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead));
858   RWVec.push_back(SchedRW);
859   return RWIdx;
860 }
861 
862 /// Visit all the instruction definitions for this target to gather and
863 /// enumerate the itinerary classes. These are the explicitly specified
864 /// SchedClasses. More SchedClasses may be inferred.
865 void CodeGenSchedModels::collectSchedClasses() {
866 
867   // NoItinerary is always the first class at Idx=0
868   assert(SchedClasses.empty() && "Expected empty sched class");
869   SchedClasses.emplace_back(0, "NoInstrModel",
870                             Records.getDef("NoItinerary"));
871   SchedClasses.back().ProcIndices.push_back(0);
872 
873   // Create a SchedClass for each unique combination of itinerary class and
874   // SchedRW list.
875   for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
876     Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary");
877     IdxVec Writes, Reads;
878     if (!Inst->TheDef->isValueUnset("SchedRW"))
879       findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads);
880 
881     // ProcIdx == 0 indicates the class applies to all processors.
882     unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, /*ProcIndices*/{0});
883     InstrClassMap[Inst->TheDef] = SCIdx;
884   }
885   // Create classes for InstRW defs.
886   RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
887   llvm::sort(InstRWDefs, LessRecord());
888   LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n");
889   for (Record *RWDef : InstRWDefs)
890     createInstRWClass(RWDef);
891 
892   NumInstrSchedClasses = SchedClasses.size();
893 
894   bool EnableDump = false;
895   LLVM_DEBUG(EnableDump = true);
896   if (!EnableDump)
897     return;
898 
899   LLVM_DEBUG(
900       dbgs()
901       << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n");
902   for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
903     StringRef InstName = Inst->TheDef->getName();
904     unsigned SCIdx = getSchedClassIdx(*Inst);
905     if (!SCIdx) {
906       LLVM_DEBUG({
907         if (!Inst->hasNoSchedulingInfo)
908           dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n';
909       });
910       continue;
911     }
912     CodeGenSchedClass &SC = getSchedClass(SCIdx);
913     if (SC.ProcIndices[0] != 0)
914       PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class "
915                       "must not be subtarget specific.");
916 
917     IdxVec ProcIndices;
918     if (SC.ItinClassDef->getName() != "NoItinerary") {
919       ProcIndices.push_back(0);
920       dbgs() << "Itinerary for " << InstName << ": "
921              << SC.ItinClassDef->getName() << '\n';
922     }
923     if (!SC.Writes.empty()) {
924       ProcIndices.push_back(0);
925       LLVM_DEBUG({
926         dbgs() << "SchedRW machine model for " << InstName;
927         for (IdxIter WI = SC.Writes.begin(), WE = SC.Writes.end(); WI != WE;
928              ++WI)
929           dbgs() << " " << SchedWrites[*WI].Name;
930         for (IdxIter RI = SC.Reads.begin(), RE = SC.Reads.end(); RI != RE; ++RI)
931           dbgs() << " " << SchedReads[*RI].Name;
932         dbgs() << '\n';
933       });
934     }
935     const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs;
936     for (Record *RWDef : RWDefs) {
937       const CodeGenProcModel &ProcModel =
938           getProcModel(RWDef->getValueAsDef("SchedModel"));
939       ProcIndices.push_back(ProcModel.Index);
940       LLVM_DEBUG(dbgs() << "InstRW on " << ProcModel.ModelName << " for "
941                         << InstName);
942       IdxVec Writes;
943       IdxVec Reads;
944       findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
945               Writes, Reads);
946       LLVM_DEBUG({
947         for (unsigned WIdx : Writes)
948           dbgs() << " " << SchedWrites[WIdx].Name;
949         for (unsigned RIdx : Reads)
950           dbgs() << " " << SchedReads[RIdx].Name;
951         dbgs() << '\n';
952       });
953     }
954     // If ProcIndices contains zero, the class applies to all processors.
955     LLVM_DEBUG({
956       if (!std::count(ProcIndices.begin(), ProcIndices.end(), 0)) {
957         for (const CodeGenProcModel &PM : ProcModels) {
958           if (!std::count(ProcIndices.begin(), ProcIndices.end(), PM.Index))
959             dbgs() << "No machine model for " << Inst->TheDef->getName()
960                    << " on processor " << PM.ModelName << '\n';
961         }
962       }
963     });
964   }
965 }
966 
967 // Get the SchedClass index for an instruction.
968 unsigned
969 CodeGenSchedModels::getSchedClassIdx(const CodeGenInstruction &Inst) const {
970   return InstrClassMap.lookup(Inst.TheDef);
971 }
972 
973 std::string
974 CodeGenSchedModels::createSchedClassName(Record *ItinClassDef,
975                                          ArrayRef<unsigned> OperWrites,
976                                          ArrayRef<unsigned> OperReads) {
977 
978   std::string Name;
979   if (ItinClassDef && ItinClassDef->getName() != "NoItinerary")
980     Name = ItinClassDef->getName();
981   for (unsigned Idx : OperWrites) {
982     if (!Name.empty())
983       Name += '_';
984     Name += SchedWrites[Idx].Name;
985   }
986   for (unsigned Idx : OperReads) {
987     Name += '_';
988     Name += SchedReads[Idx].Name;
989   }
990   return Name;
991 }
992 
993 std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) {
994 
995   std::string Name;
996   for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) {
997     if (I != InstDefs.begin())
998       Name += '_';
999     Name += (*I)->getName();
1000   }
1001   return Name;
1002 }
1003 
1004 /// Add an inferred sched class from an itinerary class and per-operand list of
1005 /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of
1006 /// processors that may utilize this class.
1007 unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef,
1008                                            ArrayRef<unsigned> OperWrites,
1009                                            ArrayRef<unsigned> OperReads,
1010                                            ArrayRef<unsigned> ProcIndices) {
1011   assert(!ProcIndices.empty() && "expect at least one ProcIdx");
1012 
1013   auto IsKeyEqual = [=](const CodeGenSchedClass &SC) {
1014                      return SC.isKeyEqual(ItinClassDef, OperWrites, OperReads);
1015                    };
1016 
1017   auto I = find_if(make_range(schedClassBegin(), schedClassEnd()), IsKeyEqual);
1018   unsigned Idx = I == schedClassEnd() ? 0 : std::distance(schedClassBegin(), I);
1019   if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) {
1020     IdxVec PI;
1021     std::set_union(SchedClasses[Idx].ProcIndices.begin(),
1022                    SchedClasses[Idx].ProcIndices.end(),
1023                    ProcIndices.begin(), ProcIndices.end(),
1024                    std::back_inserter(PI));
1025     SchedClasses[Idx].ProcIndices = std::move(PI);
1026     return Idx;
1027   }
1028   Idx = SchedClasses.size();
1029   SchedClasses.emplace_back(Idx,
1030                             createSchedClassName(ItinClassDef, OperWrites,
1031                                                  OperReads),
1032                             ItinClassDef);
1033   CodeGenSchedClass &SC = SchedClasses.back();
1034   SC.Writes = OperWrites;
1035   SC.Reads = OperReads;
1036   SC.ProcIndices = ProcIndices;
1037 
1038   return Idx;
1039 }
1040 
1041 // Create classes for each set of opcodes that are in the same InstReadWrite
1042 // definition across all processors.
1043 void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) {
1044   // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that
1045   // intersects with an existing class via a previous InstRWDef. Instrs that do
1046   // not intersect with an existing class refer back to their former class as
1047   // determined from ItinDef or SchedRW.
1048   SmallMapVector<unsigned, SmallVector<Record *, 8>, 4> ClassInstrs;
1049   // Sort Instrs into sets.
1050   const RecVec *InstDefs = Sets.expand(InstRWDef);
1051   if (InstDefs->empty())
1052     PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes");
1053 
1054   for (Record *InstDef : *InstDefs) {
1055     InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef);
1056     if (Pos == InstrClassMap.end())
1057       PrintFatalError(InstDef->getLoc(), "No sched class for instruction.");
1058     unsigned SCIdx = Pos->second;
1059     ClassInstrs[SCIdx].push_back(InstDef);
1060   }
1061   // For each set of Instrs, create a new class if necessary, and map or remap
1062   // the Instrs to it.
1063   for (auto &Entry : ClassInstrs) {
1064     unsigned OldSCIdx = Entry.first;
1065     ArrayRef<Record*> InstDefs = Entry.second;
1066     // If the all instrs in the current class are accounted for, then leave
1067     // them mapped to their old class.
1068     if (OldSCIdx) {
1069       const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs;
1070       if (!RWDefs.empty()) {
1071         const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]);
1072         unsigned OrigNumInstrs =
1073           count_if(*OrigInstDefs, [&](Record *OIDef) {
1074                      return InstrClassMap[OIDef] == OldSCIdx;
1075                    });
1076         if (OrigNumInstrs == InstDefs.size()) {
1077           assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 &&
1078                  "expected a generic SchedClass");
1079           Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
1080           // Make sure we didn't already have a InstRW containing this
1081           // instruction on this model.
1082           for (Record *RWD : RWDefs) {
1083             if (RWD->getValueAsDef("SchedModel") == RWModelDef &&
1084                 RWModelDef->getValueAsBit("FullInstRWOverlapCheck")) {
1085               for (Record *Inst : InstDefs) {
1086                 PrintFatalError
1087                     (InstRWDef->getLoc(),
1088                      "Overlapping InstRW definition for \"" +
1089                      Inst->getName() +
1090                      "\" also matches previous \"" +
1091                      RWD->getValue("Instrs")->getValue()->getAsString() +
1092                      "\".");
1093               }
1094             }
1095           }
1096           LLVM_DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":"
1097                             << SchedClasses[OldSCIdx].Name << " on "
1098                             << RWModelDef->getName() << "\n");
1099           SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef);
1100           continue;
1101         }
1102       }
1103     }
1104     unsigned SCIdx = SchedClasses.size();
1105     SchedClasses.emplace_back(SCIdx, createSchedClassName(InstDefs), nullptr);
1106     CodeGenSchedClass &SC = SchedClasses.back();
1107     LLVM_DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on "
1108                       << InstRWDef->getValueAsDef("SchedModel")->getName()
1109                       << "\n");
1110 
1111     // Preserve ItinDef and Writes/Reads for processors without an InstRW entry.
1112     SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef;
1113     SC.Writes = SchedClasses[OldSCIdx].Writes;
1114     SC.Reads = SchedClasses[OldSCIdx].Reads;
1115     SC.ProcIndices.push_back(0);
1116     // If we had an old class, copy it's InstRWs to this new class.
1117     if (OldSCIdx) {
1118       Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
1119       for (Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) {
1120         if (OldRWDef->getValueAsDef("SchedModel") == RWModelDef) {
1121           for (Record *InstDef : InstDefs) {
1122             PrintFatalError
1123                 (InstRWDef->getLoc(),
1124                  "Overlapping InstRW definition for \"" +
1125                  InstDef->getName() +
1126                  "\" also matches previous \"" +
1127                  OldRWDef->getValue("Instrs")->getValue()->getAsString() +
1128                  "\".");
1129           }
1130         }
1131         assert(OldRWDef != InstRWDef &&
1132                "SchedClass has duplicate InstRW def");
1133         SC.InstRWs.push_back(OldRWDef);
1134       }
1135     }
1136     // Map each Instr to this new class.
1137     for (Record *InstDef : InstDefs)
1138       InstrClassMap[InstDef] = SCIdx;
1139     SC.InstRWs.push_back(InstRWDef);
1140   }
1141 }
1142 
1143 // True if collectProcItins found anything.
1144 bool CodeGenSchedModels::hasItineraries() const {
1145   for (const CodeGenProcModel &PM : make_range(procModelBegin(),procModelEnd()))
1146     if (PM.hasItineraries())
1147       return true;
1148   return false;
1149 }
1150 
1151 // Gather the processor itineraries.
1152 void CodeGenSchedModels::collectProcItins() {
1153   LLVM_DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n");
1154   for (CodeGenProcModel &ProcModel : ProcModels) {
1155     if (!ProcModel.hasItineraries())
1156       continue;
1157 
1158     RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID");
1159     assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect");
1160 
1161     // Populate ItinDefList with Itinerary records.
1162     ProcModel.ItinDefList.resize(NumInstrSchedClasses);
1163 
1164     // Insert each itinerary data record in the correct position within
1165     // the processor model's ItinDefList.
1166     for (Record *ItinData : ItinRecords) {
1167       const Record *ItinDef = ItinData->getValueAsDef("TheClass");
1168       bool FoundClass = false;
1169 
1170       for (const CodeGenSchedClass &SC :
1171            make_range(schedClassBegin(), schedClassEnd())) {
1172         // Multiple SchedClasses may share an itinerary. Update all of them.
1173         if (SC.ItinClassDef == ItinDef) {
1174           ProcModel.ItinDefList[SC.Index] = ItinData;
1175           FoundClass = true;
1176         }
1177       }
1178       if (!FoundClass) {
1179         LLVM_DEBUG(dbgs() << ProcModel.ItinsDef->getName()
1180                           << " missing class for itinerary "
1181                           << ItinDef->getName() << '\n');
1182       }
1183     }
1184     // Check for missing itinerary entries.
1185     assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec");
1186     LLVM_DEBUG(
1187         for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) {
1188           if (!ProcModel.ItinDefList[i])
1189             dbgs() << ProcModel.ItinsDef->getName()
1190                    << " missing itinerary for class " << SchedClasses[i].Name
1191                    << '\n';
1192         });
1193   }
1194 }
1195 
1196 // Gather the read/write types for each itinerary class.
1197 void CodeGenSchedModels::collectProcItinRW() {
1198   RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
1199   llvm::sort(ItinRWDefs, LessRecord());
1200   for (Record *RWDef  : ItinRWDefs) {
1201     if (!RWDef->getValueInit("SchedModel")->isComplete())
1202       PrintFatalError(RWDef->getLoc(), "SchedModel is undefined");
1203     Record *ModelDef = RWDef->getValueAsDef("SchedModel");
1204     ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef);
1205     if (I == ProcModelMap.end()) {
1206       PrintFatalError(RWDef->getLoc(), "Undefined SchedMachineModel "
1207                     + ModelDef->getName());
1208     }
1209     ProcModels[I->second].ItinRWDefs.push_back(RWDef);
1210   }
1211 }
1212 
1213 // Gather the unsupported features for processor models.
1214 void CodeGenSchedModels::collectProcUnsupportedFeatures() {
1215   for (CodeGenProcModel &ProcModel : ProcModels) {
1216     for (Record *Pred : ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures")) {
1217        ProcModel.UnsupportedFeaturesDefs.push_back(Pred);
1218     }
1219   }
1220 }
1221 
1222 /// Infer new classes from existing classes. In the process, this may create new
1223 /// SchedWrites from sequences of existing SchedWrites.
1224 void CodeGenSchedModels::inferSchedClasses() {
1225   LLVM_DEBUG(
1226       dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n");
1227   LLVM_DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n");
1228 
1229   // Visit all existing classes and newly created classes.
1230   for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) {
1231     assert(SchedClasses[Idx].Index == Idx && "bad SCIdx");
1232 
1233     if (SchedClasses[Idx].ItinClassDef)
1234       inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx);
1235     if (!SchedClasses[Idx].InstRWs.empty())
1236       inferFromInstRWs(Idx);
1237     if (!SchedClasses[Idx].Writes.empty()) {
1238       inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads,
1239                   Idx, SchedClasses[Idx].ProcIndices);
1240     }
1241     assert(SchedClasses.size() < (NumInstrSchedClasses*6) &&
1242            "too many SchedVariants");
1243   }
1244 }
1245 
1246 /// Infer classes from per-processor itinerary resources.
1247 void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef,
1248                                             unsigned FromClassIdx) {
1249   for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
1250     const CodeGenProcModel &PM = ProcModels[PIdx];
1251     // For all ItinRW entries.
1252     bool HasMatch = false;
1253     for (const Record *Rec : PM.ItinRWDefs) {
1254       RecVec Matched = Rec->getValueAsListOfDefs("MatchedItinClasses");
1255       if (!std::count(Matched.begin(), Matched.end(), ItinClassDef))
1256         continue;
1257       if (HasMatch)
1258         PrintFatalError(Rec->getLoc(), "Duplicate itinerary class "
1259                       + ItinClassDef->getName()
1260                       + " in ItinResources for " + PM.ModelName);
1261       HasMatch = true;
1262       IdxVec Writes, Reads;
1263       findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1264       inferFromRW(Writes, Reads, FromClassIdx, PIdx);
1265     }
1266   }
1267 }
1268 
1269 /// Infer classes from per-processor InstReadWrite definitions.
1270 void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) {
1271   for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) {
1272     assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!");
1273     Record *Rec = SchedClasses[SCIdx].InstRWs[I];
1274     const RecVec *InstDefs = Sets.expand(Rec);
1275     RecIter II = InstDefs->begin(), IE = InstDefs->end();
1276     for (; II != IE; ++II) {
1277       if (InstrClassMap[*II] == SCIdx)
1278         break;
1279     }
1280     // If this class no longer has any instructions mapped to it, it has become
1281     // irrelevant.
1282     if (II == IE)
1283       continue;
1284     IdxVec Writes, Reads;
1285     findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1286     unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index;
1287     inferFromRW(Writes, Reads, SCIdx, PIdx); // May mutate SchedClasses.
1288   }
1289 }
1290 
1291 namespace {
1292 
1293 // Helper for substituteVariantOperand.
1294 struct TransVariant {
1295   Record *VarOrSeqDef;  // Variant or sequence.
1296   unsigned RWIdx;       // Index of this variant or sequence's matched type.
1297   unsigned ProcIdx;     // Processor model index or zero for any.
1298   unsigned TransVecIdx; // Index into PredTransitions::TransVec.
1299 
1300   TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti):
1301     VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {}
1302 };
1303 
1304 // Associate a predicate with the SchedReadWrite that it guards.
1305 // RWIdx is the index of the read/write variant.
1306 struct PredCheck {
1307   bool IsRead;
1308   unsigned RWIdx;
1309   Record *Predicate;
1310 
1311   PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {}
1312 };
1313 
1314 // A Predicate transition is a list of RW sequences guarded by a PredTerm.
1315 struct PredTransition {
1316   // A predicate term is a conjunction of PredChecks.
1317   SmallVector<PredCheck, 4> PredTerm;
1318   SmallVector<SmallVector<unsigned,4>, 16> WriteSequences;
1319   SmallVector<SmallVector<unsigned,4>, 16> ReadSequences;
1320   SmallVector<unsigned, 4> ProcIndices;
1321 };
1322 
1323 // Encapsulate a set of partially constructed transitions.
1324 // The results are built by repeated calls to substituteVariants.
1325 class PredTransitions {
1326   CodeGenSchedModels &SchedModels;
1327 
1328 public:
1329   std::vector<PredTransition> TransVec;
1330 
1331   PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {}
1332 
1333   void substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq,
1334                                 bool IsRead, unsigned StartIdx);
1335 
1336   void substituteVariants(const PredTransition &Trans);
1337 
1338 #ifndef NDEBUG
1339   void dump() const;
1340 #endif
1341 
1342 private:
1343   bool mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term);
1344   void getIntersectingVariants(
1345     const CodeGenSchedRW &SchedRW, unsigned TransIdx,
1346     std::vector<TransVariant> &IntersectingVariants);
1347   void pushVariant(const TransVariant &VInfo, bool IsRead);
1348 };
1349 
1350 } // end anonymous namespace
1351 
1352 // Return true if this predicate is mutually exclusive with a PredTerm. This
1353 // degenerates into checking if the predicate is mutually exclusive with any
1354 // predicate in the Term's conjunction.
1355 //
1356 // All predicates associated with a given SchedRW are considered mutually
1357 // exclusive. This should work even if the conditions expressed by the
1358 // predicates are not exclusive because the predicates for a given SchedWrite
1359 // are always checked in the order they are defined in the .td file. Later
1360 // conditions implicitly negate any prior condition.
1361 bool PredTransitions::mutuallyExclusive(Record *PredDef,
1362                                         ArrayRef<PredCheck> Term) {
1363   for (const PredCheck &PC: Term) {
1364     if (PC.Predicate == PredDef)
1365       return false;
1366 
1367     const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead);
1368     assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant");
1369     RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants");
1370     if (any_of(Variants, [PredDef](const Record *R) {
1371           return R->getValueAsDef("Predicate") == PredDef;
1372         }))
1373       return true;
1374   }
1375   return false;
1376 }
1377 
1378 static bool hasAliasedVariants(const CodeGenSchedRW &RW,
1379                                CodeGenSchedModels &SchedModels) {
1380   if (RW.HasVariants)
1381     return true;
1382 
1383   for (Record *Alias : RW.Aliases) {
1384     const CodeGenSchedRW &AliasRW =
1385       SchedModels.getSchedRW(Alias->getValueAsDef("AliasRW"));
1386     if (AliasRW.HasVariants)
1387       return true;
1388     if (AliasRW.IsSequence) {
1389       IdxVec ExpandedRWs;
1390       SchedModels.expandRWSequence(AliasRW.Index, ExpandedRWs, AliasRW.IsRead);
1391       for (unsigned SI : ExpandedRWs) {
1392         if (hasAliasedVariants(SchedModels.getSchedRW(SI, AliasRW.IsRead),
1393                                SchedModels))
1394           return true;
1395       }
1396     }
1397   }
1398   return false;
1399 }
1400 
1401 static bool hasVariant(ArrayRef<PredTransition> Transitions,
1402                        CodeGenSchedModels &SchedModels) {
1403   for (const PredTransition &PTI : Transitions) {
1404     for (const SmallVectorImpl<unsigned> &WSI : PTI.WriteSequences)
1405       for (unsigned WI : WSI)
1406         if (hasAliasedVariants(SchedModels.getSchedWrite(WI), SchedModels))
1407           return true;
1408 
1409     for (const SmallVectorImpl<unsigned> &RSI : PTI.ReadSequences)
1410       for (unsigned RI : RSI)
1411         if (hasAliasedVariants(SchedModels.getSchedRead(RI), SchedModels))
1412           return true;
1413   }
1414   return false;
1415 }
1416 
1417 // Populate IntersectingVariants with any variants or aliased sequences of the
1418 // given SchedRW whose processor indices and predicates are not mutually
1419 // exclusive with the given transition.
1420 void PredTransitions::getIntersectingVariants(
1421   const CodeGenSchedRW &SchedRW, unsigned TransIdx,
1422   std::vector<TransVariant> &IntersectingVariants) {
1423 
1424   bool GenericRW = false;
1425 
1426   std::vector<TransVariant> Variants;
1427   if (SchedRW.HasVariants) {
1428     unsigned VarProcIdx = 0;
1429     if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) {
1430       Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel");
1431       VarProcIdx = SchedModels.getProcModel(ModelDef).Index;
1432     }
1433     // Push each variant. Assign TransVecIdx later.
1434     const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants");
1435     for (Record *VarDef : VarDefs)
1436       Variants.emplace_back(VarDef, SchedRW.Index, VarProcIdx, 0);
1437     if (VarProcIdx == 0)
1438       GenericRW = true;
1439   }
1440   for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
1441        AI != AE; ++AI) {
1442     // If either the SchedAlias itself or the SchedReadWrite that it aliases
1443     // to is defined within a processor model, constrain all variants to
1444     // that processor.
1445     unsigned AliasProcIdx = 0;
1446     if ((*AI)->getValueInit("SchedModel")->isComplete()) {
1447       Record *ModelDef = (*AI)->getValueAsDef("SchedModel");
1448       AliasProcIdx = SchedModels.getProcModel(ModelDef).Index;
1449     }
1450     const CodeGenSchedRW &AliasRW =
1451       SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
1452 
1453     if (AliasRW.HasVariants) {
1454       const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants");
1455       for (Record *VD : VarDefs)
1456         Variants.emplace_back(VD, AliasRW.Index, AliasProcIdx, 0);
1457     }
1458     if (AliasRW.IsSequence)
1459       Variants.emplace_back(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0);
1460     if (AliasProcIdx == 0)
1461       GenericRW = true;
1462   }
1463   for (TransVariant &Variant : Variants) {
1464     // Don't expand variants if the processor models don't intersect.
1465     // A zero processor index means any processor.
1466     SmallVectorImpl<unsigned> &ProcIndices = TransVec[TransIdx].ProcIndices;
1467     if (ProcIndices[0] && Variant.ProcIdx) {
1468       unsigned Cnt = std::count(ProcIndices.begin(), ProcIndices.end(),
1469                                 Variant.ProcIdx);
1470       if (!Cnt)
1471         continue;
1472       if (Cnt > 1) {
1473         const CodeGenProcModel &PM =
1474           *(SchedModels.procModelBegin() + Variant.ProcIdx);
1475         PrintFatalError(Variant.VarOrSeqDef->getLoc(),
1476                         "Multiple variants defined for processor " +
1477                         PM.ModelName +
1478                         " Ensure only one SchedAlias exists per RW.");
1479       }
1480     }
1481     if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) {
1482       Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate");
1483       if (mutuallyExclusive(PredDef, TransVec[TransIdx].PredTerm))
1484         continue;
1485     }
1486     if (IntersectingVariants.empty()) {
1487       // The first variant builds on the existing transition.
1488       Variant.TransVecIdx = TransIdx;
1489       IntersectingVariants.push_back(Variant);
1490     }
1491     else {
1492       // Push another copy of the current transition for more variants.
1493       Variant.TransVecIdx = TransVec.size();
1494       IntersectingVariants.push_back(Variant);
1495       TransVec.push_back(TransVec[TransIdx]);
1496     }
1497   }
1498   if (GenericRW && IntersectingVariants.empty()) {
1499     PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has "
1500                     "a matching predicate on any processor");
1501   }
1502 }
1503 
1504 // Push the Reads/Writes selected by this variant onto the PredTransition
1505 // specified by VInfo.
1506 void PredTransitions::
1507 pushVariant(const TransVariant &VInfo, bool IsRead) {
1508   PredTransition &Trans = TransVec[VInfo.TransVecIdx];
1509 
1510   // If this operand transition is reached through a processor-specific alias,
1511   // then the whole transition is specific to this processor.
1512   if (VInfo.ProcIdx != 0)
1513     Trans.ProcIndices.assign(1, VInfo.ProcIdx);
1514 
1515   IdxVec SelectedRWs;
1516   if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) {
1517     Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate");
1518     Trans.PredTerm.emplace_back(IsRead, VInfo.RWIdx,PredDef);
1519     RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected");
1520     SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead);
1521   }
1522   else {
1523     assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") &&
1524            "variant must be a SchedVariant or aliased WriteSequence");
1525     SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead));
1526   }
1527 
1528   const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead);
1529 
1530   SmallVectorImpl<SmallVector<unsigned,4>> &RWSequences = IsRead
1531     ? Trans.ReadSequences : Trans.WriteSequences;
1532   if (SchedRW.IsVariadic) {
1533     unsigned OperIdx = RWSequences.size()-1;
1534     // Make N-1 copies of this transition's last sequence.
1535     RWSequences.insert(RWSequences.end(), SelectedRWs.size() - 1,
1536                        RWSequences[OperIdx]);
1537     // Push each of the N elements of the SelectedRWs onto a copy of the last
1538     // sequence (split the current operand into N operands).
1539     // Note that write sequences should be expanded within this loop--the entire
1540     // sequence belongs to a single operand.
1541     for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
1542          RWI != RWE; ++RWI, ++OperIdx) {
1543       IdxVec ExpandedRWs;
1544       if (IsRead)
1545         ExpandedRWs.push_back(*RWI);
1546       else
1547         SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
1548       RWSequences[OperIdx].insert(RWSequences[OperIdx].end(),
1549                                   ExpandedRWs.begin(), ExpandedRWs.end());
1550     }
1551     assert(OperIdx == RWSequences.size() && "missed a sequence");
1552   }
1553   else {
1554     // Push this transition's expanded sequence onto this transition's last
1555     // sequence (add to the current operand's sequence).
1556     SmallVectorImpl<unsigned> &Seq = RWSequences.back();
1557     IdxVec ExpandedRWs;
1558     for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
1559          RWI != RWE; ++RWI) {
1560       if (IsRead)
1561         ExpandedRWs.push_back(*RWI);
1562       else
1563         SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
1564     }
1565     Seq.insert(Seq.end(), ExpandedRWs.begin(), ExpandedRWs.end());
1566   }
1567 }
1568 
1569 // RWSeq is a sequence of all Reads or all Writes for the next read or write
1570 // operand. StartIdx is an index into TransVec where partial results
1571 // starts. RWSeq must be applied to all transitions between StartIdx and the end
1572 // of TransVec.
1573 void PredTransitions::substituteVariantOperand(
1574   const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) {
1575 
1576   // Visit each original RW within the current sequence.
1577   for (SmallVectorImpl<unsigned>::const_iterator
1578          RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) {
1579     const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead);
1580     // Push this RW on all partial PredTransitions or distribute variants.
1581     // New PredTransitions may be pushed within this loop which should not be
1582     // revisited (TransEnd must be loop invariant).
1583     for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size();
1584          TransIdx != TransEnd; ++TransIdx) {
1585       // In the common case, push RW onto the current operand's sequence.
1586       if (!hasAliasedVariants(SchedRW, SchedModels)) {
1587         if (IsRead)
1588           TransVec[TransIdx].ReadSequences.back().push_back(*RWI);
1589         else
1590           TransVec[TransIdx].WriteSequences.back().push_back(*RWI);
1591         continue;
1592       }
1593       // Distribute this partial PredTransition across intersecting variants.
1594       // This will push a copies of TransVec[TransIdx] on the back of TransVec.
1595       std::vector<TransVariant> IntersectingVariants;
1596       getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants);
1597       // Now expand each variant on top of its copy of the transition.
1598       for (std::vector<TransVariant>::const_iterator
1599              IVI = IntersectingVariants.begin(),
1600              IVE = IntersectingVariants.end();
1601            IVI != IVE; ++IVI) {
1602         pushVariant(*IVI, IsRead);
1603       }
1604     }
1605   }
1606 }
1607 
1608 // For each variant of a Read/Write in Trans, substitute the sequence of
1609 // Read/Writes guarded by the variant. This is exponential in the number of
1610 // variant Read/Writes, but in practice detection of mutually exclusive
1611 // predicates should result in linear growth in the total number variants.
1612 //
1613 // This is one step in a breadth-first search of nested variants.
1614 void PredTransitions::substituteVariants(const PredTransition &Trans) {
1615   // Build up a set of partial results starting at the back of
1616   // PredTransitions. Remember the first new transition.
1617   unsigned StartIdx = TransVec.size();
1618   TransVec.emplace_back();
1619   TransVec.back().PredTerm = Trans.PredTerm;
1620   TransVec.back().ProcIndices = Trans.ProcIndices;
1621 
1622   // Visit each original write sequence.
1623   for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
1624          WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end();
1625        WSI != WSE; ++WSI) {
1626     // Push a new (empty) write sequence onto all partial Transitions.
1627     for (std::vector<PredTransition>::iterator I =
1628            TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
1629       I->WriteSequences.emplace_back();
1630     }
1631     substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx);
1632   }
1633   // Visit each original read sequence.
1634   for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
1635          RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end();
1636        RSI != RSE; ++RSI) {
1637     // Push a new (empty) read sequence onto all partial Transitions.
1638     for (std::vector<PredTransition>::iterator I =
1639            TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
1640       I->ReadSequences.emplace_back();
1641     }
1642     substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx);
1643   }
1644 }
1645 
1646 // Create a new SchedClass for each variant found by inferFromRW. Pass
1647 static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions,
1648                                  unsigned FromClassIdx,
1649                                  CodeGenSchedModels &SchedModels) {
1650   // For each PredTransition, create a new CodeGenSchedTransition, which usually
1651   // requires creating a new SchedClass.
1652   for (ArrayRef<PredTransition>::iterator
1653          I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) {
1654     IdxVec OperWritesVariant;
1655     transform(I->WriteSequences, std::back_inserter(OperWritesVariant),
1656               [&SchedModels](ArrayRef<unsigned> WS) {
1657                 return SchedModels.findOrInsertRW(WS, /*IsRead=*/false);
1658               });
1659     IdxVec OperReadsVariant;
1660     transform(I->ReadSequences, std::back_inserter(OperReadsVariant),
1661               [&SchedModels](ArrayRef<unsigned> RS) {
1662                 return SchedModels.findOrInsertRW(RS, /*IsRead=*/true);
1663               });
1664     CodeGenSchedTransition SCTrans;
1665     SCTrans.ToClassIdx =
1666       SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant,
1667                                 OperReadsVariant, I->ProcIndices);
1668     SCTrans.ProcIndices.assign(I->ProcIndices.begin(), I->ProcIndices.end());
1669     // The final PredTerm is unique set of predicates guarding the transition.
1670     RecVec Preds;
1671     transform(I->PredTerm, std::back_inserter(Preds),
1672               [](const PredCheck &P) {
1673                 return P.Predicate;
1674               });
1675     Preds.erase(std::unique(Preds.begin(), Preds.end()), Preds.end());
1676     SCTrans.PredTerm = std::move(Preds);
1677     SchedModels.getSchedClass(FromClassIdx)
1678         .Transitions.push_back(std::move(SCTrans));
1679   }
1680 }
1681 
1682 // Create new SchedClasses for the given ReadWrite list. If any of the
1683 // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant
1684 // of the ReadWrite list, following Aliases if necessary.
1685 void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites,
1686                                      ArrayRef<unsigned> OperReads,
1687                                      unsigned FromClassIdx,
1688                                      ArrayRef<unsigned> ProcIndices) {
1689   LLVM_DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices);
1690              dbgs() << ") ");
1691 
1692   // Create a seed transition with an empty PredTerm and the expanded sequences
1693   // of SchedWrites for the current SchedClass.
1694   std::vector<PredTransition> LastTransitions;
1695   LastTransitions.emplace_back();
1696   LastTransitions.back().ProcIndices.append(ProcIndices.begin(),
1697                                             ProcIndices.end());
1698 
1699   for (unsigned WriteIdx : OperWrites) {
1700     IdxVec WriteSeq;
1701     expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false);
1702     LastTransitions[0].WriteSequences.emplace_back();
1703     SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences.back();
1704     Seq.append(WriteSeq.begin(), WriteSeq.end());
1705     LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
1706   }
1707   LLVM_DEBUG(dbgs() << " Reads: ");
1708   for (unsigned ReadIdx : OperReads) {
1709     IdxVec ReadSeq;
1710     expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true);
1711     LastTransitions[0].ReadSequences.emplace_back();
1712     SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences.back();
1713     Seq.append(ReadSeq.begin(), ReadSeq.end());
1714     LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
1715   }
1716   LLVM_DEBUG(dbgs() << '\n');
1717 
1718   // Collect all PredTransitions for individual operands.
1719   // Iterate until no variant writes remain.
1720   while (hasVariant(LastTransitions, *this)) {
1721     PredTransitions Transitions(*this);
1722     for (const PredTransition &Trans : LastTransitions)
1723       Transitions.substituteVariants(Trans);
1724     LLVM_DEBUG(Transitions.dump());
1725     LastTransitions.swap(Transitions.TransVec);
1726   }
1727   // If the first transition has no variants, nothing to do.
1728   if (LastTransitions[0].PredTerm.empty())
1729     return;
1730 
1731   // WARNING: We are about to mutate the SchedClasses vector. Do not refer to
1732   // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions.
1733   inferFromTransitions(LastTransitions, FromClassIdx, *this);
1734 }
1735 
1736 // Check if any processor resource group contains all resource records in
1737 // SubUnits.
1738 bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) {
1739   for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
1740     if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
1741       continue;
1742     RecVec SuperUnits =
1743       PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
1744     RecIter RI = SubUnits.begin(), RE = SubUnits.end();
1745     for ( ; RI != RE; ++RI) {
1746       if (!is_contained(SuperUnits, *RI)) {
1747         break;
1748       }
1749     }
1750     if (RI == RE)
1751       return true;
1752   }
1753   return false;
1754 }
1755 
1756 // Verify that overlapping groups have a common supergroup.
1757 void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) {
1758   for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
1759     if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
1760       continue;
1761     RecVec CheckUnits =
1762       PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
1763     for (unsigned j = i+1; j < e; ++j) {
1764       if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup"))
1765         continue;
1766       RecVec OtherUnits =
1767         PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources");
1768       if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(),
1769                              OtherUnits.begin(), OtherUnits.end())
1770           != CheckUnits.end()) {
1771         // CheckUnits and OtherUnits overlap
1772         OtherUnits.insert(OtherUnits.end(), CheckUnits.begin(),
1773                           CheckUnits.end());
1774         if (!hasSuperGroup(OtherUnits, PM)) {
1775           PrintFatalError((PM.ProcResourceDefs[i])->getLoc(),
1776                           "proc resource group overlaps with "
1777                           + PM.ProcResourceDefs[j]->getName()
1778                           + " but no supergroup contains both.");
1779         }
1780       }
1781     }
1782   }
1783 }
1784 
1785 // Collect all the RegisterFile definitions available in this target.
1786 void CodeGenSchedModels::collectRegisterFiles() {
1787   RecVec RegisterFileDefs = Records.getAllDerivedDefinitions("RegisterFile");
1788 
1789   // RegisterFiles is the vector of CodeGenRegisterFile.
1790   for (Record *RF : RegisterFileDefs) {
1791     // For each register file definition, construct a CodeGenRegisterFile object
1792     // and add it to the appropriate scheduling model.
1793     CodeGenProcModel &PM = getProcModel(RF->getValueAsDef("SchedModel"));
1794     PM.RegisterFiles.emplace_back(CodeGenRegisterFile(RF->getName(),RF));
1795     CodeGenRegisterFile &CGRF = PM.RegisterFiles.back();
1796     CGRF.MaxMovesEliminatedPerCycle =
1797         RF->getValueAsInt("MaxMovesEliminatedPerCycle");
1798     CGRF.AllowZeroMoveEliminationOnly =
1799         RF->getValueAsBit("AllowZeroMoveEliminationOnly");
1800 
1801     // Now set the number of physical registers as well as the cost of registers
1802     // in each register class.
1803     CGRF.NumPhysRegs = RF->getValueAsInt("NumPhysRegs");
1804     if (!CGRF.NumPhysRegs) {
1805       PrintFatalError(RF->getLoc(),
1806                       "Invalid RegisterFile with zero physical registers");
1807     }
1808 
1809     RecVec RegisterClasses = RF->getValueAsListOfDefs("RegClasses");
1810     std::vector<int64_t> RegisterCosts = RF->getValueAsListOfInts("RegCosts");
1811     ListInit *MoveElimInfo = RF->getValueAsListInit("AllowMoveElimination");
1812     for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) {
1813       int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1;
1814 
1815       bool AllowMoveElim = false;
1816       if (MoveElimInfo->size() > I) {
1817         BitInit *Val = cast<BitInit>(MoveElimInfo->getElement(I));
1818         AllowMoveElim = Val->getValue();
1819       }
1820 
1821       CGRF.Costs.emplace_back(RegisterClasses[I], Cost, AllowMoveElim);
1822     }
1823   }
1824 }
1825 
1826 // Collect and sort WriteRes, ReadAdvance, and ProcResources.
1827 void CodeGenSchedModels::collectProcResources() {
1828   ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits");
1829   ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
1830 
1831   // Add any subtarget-specific SchedReadWrites that are directly associated
1832   // with processor resources. Refer to the parent SchedClass's ProcIndices to
1833   // determine which processors they apply to.
1834   for (const CodeGenSchedClass &SC :
1835        make_range(schedClassBegin(), schedClassEnd())) {
1836     if (SC.ItinClassDef) {
1837       collectItinProcResources(SC.ItinClassDef);
1838       continue;
1839     }
1840 
1841     // This class may have a default ReadWrite list which can be overriden by
1842     // InstRW definitions.
1843     for (Record *RW : SC.InstRWs) {
1844       Record *RWModelDef = RW->getValueAsDef("SchedModel");
1845       unsigned PIdx = getProcModel(RWModelDef).Index;
1846       IdxVec Writes, Reads;
1847       findRWs(RW->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1848       collectRWResources(Writes, Reads, PIdx);
1849     }
1850 
1851     collectRWResources(SC.Writes, SC.Reads, SC.ProcIndices);
1852   }
1853   // Add resources separately defined by each subtarget.
1854   RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes");
1855   for (Record *WR : WRDefs) {
1856     Record *ModelDef = WR->getValueAsDef("SchedModel");
1857     addWriteRes(WR, getProcModel(ModelDef).Index);
1858   }
1859   RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes");
1860   for (Record *SWR : SWRDefs) {
1861     Record *ModelDef = SWR->getValueAsDef("SchedModel");
1862     addWriteRes(SWR, getProcModel(ModelDef).Index);
1863   }
1864   RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance");
1865   for (Record *RA : RADefs) {
1866     Record *ModelDef = RA->getValueAsDef("SchedModel");
1867     addReadAdvance(RA, getProcModel(ModelDef).Index);
1868   }
1869   RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance");
1870   for (Record *SRA : SRADefs) {
1871     if (SRA->getValueInit("SchedModel")->isComplete()) {
1872       Record *ModelDef = SRA->getValueAsDef("SchedModel");
1873       addReadAdvance(SRA, getProcModel(ModelDef).Index);
1874     }
1875   }
1876   // Add ProcResGroups that are defined within this processor model, which may
1877   // not be directly referenced but may directly specify a buffer size.
1878   RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
1879   for (Record *PRG : ProcResGroups) {
1880     if (!PRG->getValueInit("SchedModel")->isComplete())
1881       continue;
1882     CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel"));
1883     if (!is_contained(PM.ProcResourceDefs, PRG))
1884       PM.ProcResourceDefs.push_back(PRG);
1885   }
1886   // Add ProcResourceUnits unconditionally.
1887   for (Record *PRU : Records.getAllDerivedDefinitions("ProcResourceUnits")) {
1888     if (!PRU->getValueInit("SchedModel")->isComplete())
1889       continue;
1890     CodeGenProcModel &PM = getProcModel(PRU->getValueAsDef("SchedModel"));
1891     if (!is_contained(PM.ProcResourceDefs, PRU))
1892       PM.ProcResourceDefs.push_back(PRU);
1893   }
1894   // Finalize each ProcModel by sorting the record arrays.
1895   for (CodeGenProcModel &PM : ProcModels) {
1896     llvm::sort(PM.WriteResDefs, LessRecord());
1897     llvm::sort(PM.ReadAdvanceDefs, LessRecord());
1898     llvm::sort(PM.ProcResourceDefs, LessRecord());
1899     LLVM_DEBUG(
1900         PM.dump();
1901         dbgs() << "WriteResDefs: "; for (RecIter RI = PM.WriteResDefs.begin(),
1902                                          RE = PM.WriteResDefs.end();
1903                                          RI != RE; ++RI) {
1904           if ((*RI)->isSubClassOf("WriteRes"))
1905             dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " ";
1906           else
1907             dbgs() << (*RI)->getName() << " ";
1908         } dbgs() << "\nReadAdvanceDefs: ";
1909         for (RecIter RI = PM.ReadAdvanceDefs.begin(),
1910              RE = PM.ReadAdvanceDefs.end();
1911              RI != RE; ++RI) {
1912           if ((*RI)->isSubClassOf("ReadAdvance"))
1913             dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " ";
1914           else
1915             dbgs() << (*RI)->getName() << " ";
1916         } dbgs()
1917         << "\nProcResourceDefs: ";
1918         for (RecIter RI = PM.ProcResourceDefs.begin(),
1919              RE = PM.ProcResourceDefs.end();
1920              RI != RE; ++RI) { dbgs() << (*RI)->getName() << " "; } dbgs()
1921         << '\n');
1922     verifyProcResourceGroups(PM);
1923   }
1924 
1925   ProcResourceDefs.clear();
1926   ProcResGroups.clear();
1927 }
1928 
1929 void CodeGenSchedModels::checkCompleteness() {
1930   bool Complete = true;
1931   bool HadCompleteModel = false;
1932   for (const CodeGenProcModel &ProcModel : procModels()) {
1933     const bool HasItineraries = ProcModel.hasItineraries();
1934     if (!ProcModel.ModelDef->getValueAsBit("CompleteModel"))
1935       continue;
1936     for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
1937       if (Inst->hasNoSchedulingInfo)
1938         continue;
1939       if (ProcModel.isUnsupported(*Inst))
1940         continue;
1941       unsigned SCIdx = getSchedClassIdx(*Inst);
1942       if (!SCIdx) {
1943         if (Inst->TheDef->isValueUnset("SchedRW") && !HadCompleteModel) {
1944           PrintError(Inst->TheDef->getLoc(),
1945                      "No schedule information for instruction '" +
1946                          Inst->TheDef->getName() + "' in SchedMachineModel '" +
1947                      ProcModel.ModelDef->getName() + "'");
1948           Complete = false;
1949         }
1950         continue;
1951       }
1952 
1953       const CodeGenSchedClass &SC = getSchedClass(SCIdx);
1954       if (!SC.Writes.empty())
1955         continue;
1956       if (HasItineraries && SC.ItinClassDef != nullptr &&
1957           SC.ItinClassDef->getName() != "NoItinerary")
1958         continue;
1959 
1960       const RecVec &InstRWs = SC.InstRWs;
1961       auto I = find_if(InstRWs, [&ProcModel](const Record *R) {
1962         return R->getValueAsDef("SchedModel") == ProcModel.ModelDef;
1963       });
1964       if (I == InstRWs.end()) {
1965         PrintError(Inst->TheDef->getLoc(), "'" + ProcModel.ModelName +
1966                                                "' lacks information for '" +
1967                                                Inst->TheDef->getName() + "'");
1968         Complete = false;
1969       }
1970     }
1971     HadCompleteModel = true;
1972   }
1973   if (!Complete) {
1974     errs() << "\n\nIncomplete schedule models found.\n"
1975       << "- Consider setting 'CompleteModel = 0' while developing new models.\n"
1976       << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n"
1977       << "- Instructions should usually have Sched<[...]> as a superclass, "
1978          "you may temporarily use an empty list.\n"
1979       << "- Instructions related to unsupported features can be excluded with "
1980          "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the "
1981          "processor model.\n\n";
1982     PrintFatalError("Incomplete schedule model");
1983   }
1984 }
1985 
1986 // Collect itinerary class resources for each processor.
1987 void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) {
1988   for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
1989     const CodeGenProcModel &PM = ProcModels[PIdx];
1990     // For all ItinRW entries.
1991     bool HasMatch = false;
1992     for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end();
1993          II != IE; ++II) {
1994       RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses");
1995       if (!std::count(Matched.begin(), Matched.end(), ItinClassDef))
1996         continue;
1997       if (HasMatch)
1998         PrintFatalError((*II)->getLoc(), "Duplicate itinerary class "
1999                         + ItinClassDef->getName()
2000                         + " in ItinResources for " + PM.ModelName);
2001       HasMatch = true;
2002       IdxVec Writes, Reads;
2003       findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
2004       collectRWResources(Writes, Reads, PIdx);
2005     }
2006   }
2007 }
2008 
2009 void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead,
2010                                             ArrayRef<unsigned> ProcIndices) {
2011   const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
2012   if (SchedRW.TheDef) {
2013     if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) {
2014       for (unsigned Idx : ProcIndices)
2015         addWriteRes(SchedRW.TheDef, Idx);
2016     }
2017     else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) {
2018       for (unsigned Idx : ProcIndices)
2019         addReadAdvance(SchedRW.TheDef, Idx);
2020     }
2021   }
2022   for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
2023        AI != AE; ++AI) {
2024     IdxVec AliasProcIndices;
2025     if ((*AI)->getValueInit("SchedModel")->isComplete()) {
2026       AliasProcIndices.push_back(
2027         getProcModel((*AI)->getValueAsDef("SchedModel")).Index);
2028     }
2029     else
2030       AliasProcIndices = ProcIndices;
2031     const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW"));
2032     assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes");
2033 
2034     IdxVec ExpandedRWs;
2035     expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead);
2036     for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end();
2037          SI != SE; ++SI) {
2038       collectRWResources(*SI, IsRead, AliasProcIndices);
2039     }
2040   }
2041 }
2042 
2043 // Collect resources for a set of read/write types and processor indices.
2044 void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes,
2045                                             ArrayRef<unsigned> Reads,
2046                                             ArrayRef<unsigned> ProcIndices) {
2047   for (unsigned Idx : Writes)
2048     collectRWResources(Idx, /*IsRead=*/false, ProcIndices);
2049 
2050   for (unsigned Idx : Reads)
2051     collectRWResources(Idx, /*IsRead=*/true, ProcIndices);
2052 }
2053 
2054 // Find the processor's resource units for this kind of resource.
2055 Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind,
2056                                              const CodeGenProcModel &PM,
2057                                              ArrayRef<SMLoc> Loc) const {
2058   if (ProcResKind->isSubClassOf("ProcResourceUnits"))
2059     return ProcResKind;
2060 
2061   Record *ProcUnitDef = nullptr;
2062   assert(!ProcResourceDefs.empty());
2063   assert(!ProcResGroups.empty());
2064 
2065   for (Record *ProcResDef : ProcResourceDefs) {
2066     if (ProcResDef->getValueAsDef("Kind") == ProcResKind
2067         && ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) {
2068       if (ProcUnitDef) {
2069         PrintFatalError(Loc,
2070                         "Multiple ProcessorResourceUnits associated with "
2071                         + ProcResKind->getName());
2072       }
2073       ProcUnitDef = ProcResDef;
2074     }
2075   }
2076   for (Record *ProcResGroup : ProcResGroups) {
2077     if (ProcResGroup == ProcResKind
2078         && ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) {
2079       if (ProcUnitDef) {
2080         PrintFatalError(Loc,
2081                         "Multiple ProcessorResourceUnits associated with "
2082                         + ProcResKind->getName());
2083       }
2084       ProcUnitDef = ProcResGroup;
2085     }
2086   }
2087   if (!ProcUnitDef) {
2088     PrintFatalError(Loc,
2089                     "No ProcessorResources associated with "
2090                     + ProcResKind->getName());
2091   }
2092   return ProcUnitDef;
2093 }
2094 
2095 // Iteratively add a resource and its super resources.
2096 void CodeGenSchedModels::addProcResource(Record *ProcResKind,
2097                                          CodeGenProcModel &PM,
2098                                          ArrayRef<SMLoc> Loc) {
2099   while (true) {
2100     Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc);
2101 
2102     // See if this ProcResource is already associated with this processor.
2103     if (is_contained(PM.ProcResourceDefs, ProcResUnits))
2104       return;
2105 
2106     PM.ProcResourceDefs.push_back(ProcResUnits);
2107     if (ProcResUnits->isSubClassOf("ProcResGroup"))
2108       return;
2109 
2110     if (!ProcResUnits->getValueInit("Super")->isComplete())
2111       return;
2112 
2113     ProcResKind = ProcResUnits->getValueAsDef("Super");
2114   }
2115 }
2116 
2117 // Add resources for a SchedWrite to this processor if they don't exist.
2118 void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) {
2119   assert(PIdx && "don't add resources to an invalid Processor model");
2120 
2121   RecVec &WRDefs = ProcModels[PIdx].WriteResDefs;
2122   if (is_contained(WRDefs, ProcWriteResDef))
2123     return;
2124   WRDefs.push_back(ProcWriteResDef);
2125 
2126   // Visit ProcResourceKinds referenced by the newly discovered WriteRes.
2127   RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources");
2128   for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end();
2129        WritePRI != WritePRE; ++WritePRI) {
2130     addProcResource(*WritePRI, ProcModels[PIdx], ProcWriteResDef->getLoc());
2131   }
2132 }
2133 
2134 // Add resources for a ReadAdvance to this processor if they don't exist.
2135 void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef,
2136                                         unsigned PIdx) {
2137   RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs;
2138   if (is_contained(RADefs, ProcReadAdvanceDef))
2139     return;
2140   RADefs.push_back(ProcReadAdvanceDef);
2141 }
2142 
2143 unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const {
2144   RecIter PRPos = find(ProcResourceDefs, PRDef);
2145   if (PRPos == ProcResourceDefs.end())
2146     PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in "
2147                     "the ProcResources list for " + ModelName);
2148   // Idx=0 is reserved for invalid.
2149   return 1 + (PRPos - ProcResourceDefs.begin());
2150 }
2151 
2152 bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const {
2153   for (const Record *TheDef : UnsupportedFeaturesDefs) {
2154     for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) {
2155       if (TheDef->getName() == PredDef->getName())
2156         return true;
2157     }
2158   }
2159   return false;
2160 }
2161 
2162 #ifndef NDEBUG
2163 void CodeGenProcModel::dump() const {
2164   dbgs() << Index << ": " << ModelName << " "
2165          << (ModelDef ? ModelDef->getName() : "inferred") << " "
2166          << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n';
2167 }
2168 
2169 void CodeGenSchedRW::dump() const {
2170   dbgs() << Name << (IsVariadic ? " (V) " : " ");
2171   if (IsSequence) {
2172     dbgs() << "(";
2173     dumpIdxVec(Sequence);
2174     dbgs() << ")";
2175   }
2176 }
2177 
2178 void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const {
2179   dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n'
2180          << "  Writes: ";
2181   for (unsigned i = 0, N = Writes.size(); i < N; ++i) {
2182     SchedModels->getSchedWrite(Writes[i]).dump();
2183     if (i < N-1) {
2184       dbgs() << '\n';
2185       dbgs().indent(10);
2186     }
2187   }
2188   dbgs() << "\n  Reads: ";
2189   for (unsigned i = 0, N = Reads.size(); i < N; ++i) {
2190     SchedModels->getSchedRead(Reads[i]).dump();
2191     if (i < N-1) {
2192       dbgs() << '\n';
2193       dbgs().indent(10);
2194     }
2195   }
2196   dbgs() << "\n  ProcIdx: "; dumpIdxVec(ProcIndices); dbgs() << '\n';
2197   if (!Transitions.empty()) {
2198     dbgs() << "\n Transitions for Proc ";
2199     for (const CodeGenSchedTransition &Transition : Transitions) {
2200       dumpIdxVec(Transition.ProcIndices);
2201     }
2202   }
2203 }
2204 
2205 void PredTransitions::dump() const {
2206   dbgs() << "Expanded Variants:\n";
2207   for (std::vector<PredTransition>::const_iterator
2208          TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) {
2209     dbgs() << "{";
2210     for (SmallVectorImpl<PredCheck>::const_iterator
2211            PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end();
2212          PCI != PCE; ++PCI) {
2213       if (PCI != TI->PredTerm.begin())
2214         dbgs() << ", ";
2215       dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name
2216              << ":" << PCI->Predicate->getName();
2217     }
2218     dbgs() << "},\n  => {";
2219     for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
2220            WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end();
2221          WSI != WSE; ++WSI) {
2222       dbgs() << "(";
2223       for (SmallVectorImpl<unsigned>::const_iterator
2224              WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) {
2225         if (WI != WSI->begin())
2226           dbgs() << ", ";
2227         dbgs() << SchedModels.getSchedWrite(*WI).Name;
2228       }
2229       dbgs() << "),";
2230     }
2231     dbgs() << "}\n";
2232   }
2233 }
2234 #endif // NDEBUG
2235