1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This class wraps target description classes used by the various code
10 // generation TableGen backends.  This makes it easier to access the data and
11 // provides a single place that needs to check it for validity.  All of these
12 // classes abort on error conditions.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "CodeGenTarget.h"
17 #include "CodeGenInstruction.h"
18 #include "CodeGenIntrinsics.h"
19 #include "CodeGenSchedule.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/Support/CommandLine.h"
22 #include "llvm/TableGen/Error.h"
23 #include "llvm/TableGen/Record.h"
24 #include <algorithm>
25 using namespace llvm;
26 
27 cl::OptionCategory AsmParserCat("Options for -gen-asm-parser");
28 cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer");
29 
30 static cl::opt<unsigned>
31     AsmParserNum("asmparsernum", cl::init(0),
32                  cl::desc("Make -gen-asm-parser emit assembly parser #N"),
33                  cl::cat(AsmParserCat));
34 
35 static cl::opt<unsigned>
36     AsmWriterNum("asmwriternum", cl::init(0),
37                  cl::desc("Make -gen-asm-writer emit assembly writer #N"),
38                  cl::cat(AsmWriterCat));
39 
40 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen
41 /// record corresponds to.
42 MVT::SimpleValueType llvm::getValueType(Record *Rec) {
43   return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
44 }
45 
46 StringRef llvm::getName(MVT::SimpleValueType T) {
47   switch (T) {
48   case MVT::Other:   return "UNKNOWN";
49   case MVT::iPTR:    return "TLI.getPointerTy()";
50   case MVT::iPTRAny: return "TLI.getPointerTy()";
51   default: return getEnumName(T);
52   }
53 }
54 
55 StringRef llvm::getEnumName(MVT::SimpleValueType T) {
56   // clang-format off
57   switch (T) {
58   case MVT::Other:    return "MVT::Other";
59   case MVT::i1:       return "MVT::i1";
60   case MVT::i2:       return "MVT::i2";
61   case MVT::i4:       return "MVT::i4";
62   case MVT::i8:       return "MVT::i8";
63   case MVT::i16:      return "MVT::i16";
64   case MVT::i32:      return "MVT::i32";
65   case MVT::i64:      return "MVT::i64";
66   case MVT::i128:     return "MVT::i128";
67   case MVT::Any:      return "MVT::Any";
68   case MVT::iAny:     return "MVT::iAny";
69   case MVT::fAny:     return "MVT::fAny";
70   case MVT::vAny:     return "MVT::vAny";
71   case MVT::f16:      return "MVT::f16";
72   case MVT::bf16:     return "MVT::bf16";
73   case MVT::f32:      return "MVT::f32";
74   case MVT::f64:      return "MVT::f64";
75   case MVT::f80:      return "MVT::f80";
76   case MVT::f128:     return "MVT::f128";
77   case MVT::ppcf128:  return "MVT::ppcf128";
78   case MVT::x86mmx:   return "MVT::x86mmx";
79   case MVT::x86amx:   return "MVT::x86amx";
80   case MVT::i64x8:    return "MVT::i64x8";
81   case MVT::Glue:     return "MVT::Glue";
82   case MVT::isVoid:   return "MVT::isVoid";
83   case MVT::v1i1:     return "MVT::v1i1";
84   case MVT::v2i1:     return "MVT::v2i1";
85   case MVT::v4i1:     return "MVT::v4i1";
86   case MVT::v8i1:     return "MVT::v8i1";
87   case MVT::v16i1:    return "MVT::v16i1";
88   case MVT::v32i1:    return "MVT::v32i1";
89   case MVT::v64i1:    return "MVT::v64i1";
90   case MVT::v128i1:   return "MVT::v128i1";
91   case MVT::v256i1:   return "MVT::v256i1";
92   case MVT::v512i1:   return "MVT::v512i1";
93   case MVT::v1024i1:  return "MVT::v1024i1";
94   case MVT::v128i2:   return "MVT::v128i2";
95   case MVT::v64i4:    return "MVT::v64i4";
96   case MVT::v1i8:     return "MVT::v1i8";
97   case MVT::v2i8:     return "MVT::v2i8";
98   case MVT::v4i8:     return "MVT::v4i8";
99   case MVT::v8i8:     return "MVT::v8i8";
100   case MVT::v16i8:    return "MVT::v16i8";
101   case MVT::v32i8:    return "MVT::v32i8";
102   case MVT::v64i8:    return "MVT::v64i8";
103   case MVT::v128i8:   return "MVT::v128i8";
104   case MVT::v256i8:   return "MVT::v256i8";
105   case MVT::v512i8:   return "MVT::v512i8";
106   case MVT::v1024i8:  return "MVT::v1024i8";
107   case MVT::v1i16:    return "MVT::v1i16";
108   case MVT::v2i16:    return "MVT::v2i16";
109   case MVT::v3i16:    return "MVT::v3i16";
110   case MVT::v4i16:    return "MVT::v4i16";
111   case MVT::v8i16:    return "MVT::v8i16";
112   case MVT::v16i16:   return "MVT::v16i16";
113   case MVT::v32i16:   return "MVT::v32i16";
114   case MVT::v64i16:   return "MVT::v64i16";
115   case MVT::v128i16:  return "MVT::v128i16";
116   case MVT::v256i16:  return "MVT::v256i16";
117   case MVT::v512i16:  return "MVT::v512i16";
118   case MVT::v1i32:    return "MVT::v1i32";
119   case MVT::v2i32:    return "MVT::v2i32";
120   case MVT::v3i32:    return "MVT::v3i32";
121   case MVT::v4i32:    return "MVT::v4i32";
122   case MVT::v5i32:    return "MVT::v5i32";
123   case MVT::v6i32:    return "MVT::v6i32";
124   case MVT::v7i32:    return "MVT::v7i32";
125   case MVT::v8i32:    return "MVT::v8i32";
126   case MVT::v16i32:   return "MVT::v16i32";
127   case MVT::v32i32:   return "MVT::v32i32";
128   case MVT::v64i32:   return "MVT::v64i32";
129   case MVT::v128i32:  return "MVT::v128i32";
130   case MVT::v256i32:  return "MVT::v256i32";
131   case MVT::v512i32:  return "MVT::v512i32";
132   case MVT::v1024i32: return "MVT::v1024i32";
133   case MVT::v2048i32: return "MVT::v2048i32";
134   case MVT::v1i64:    return "MVT::v1i64";
135   case MVT::v2i64:    return "MVT::v2i64";
136   case MVT::v3i64:    return "MVT::v3i64";
137   case MVT::v4i64:    return "MVT::v4i64";
138   case MVT::v8i64:    return "MVT::v8i64";
139   case MVT::v16i64:   return "MVT::v16i64";
140   case MVT::v32i64:   return "MVT::v32i64";
141   case MVT::v64i64:   return "MVT::v64i64";
142   case MVT::v128i64:  return "MVT::v128i64";
143   case MVT::v256i64:  return "MVT::v256i64";
144   case MVT::v1i128:   return "MVT::v1i128";
145   case MVT::v1f16:    return "MVT::v1f16";
146   case MVT::v2f16:    return "MVT::v2f16";
147   case MVT::v3f16:    return "MVT::v3f16";
148   case MVT::v4f16:    return "MVT::v4f16";
149   case MVT::v8f16:    return "MVT::v8f16";
150   case MVT::v16f16:   return "MVT::v16f16";
151   case MVT::v32f16:   return "MVT::v32f16";
152   case MVT::v64f16:   return "MVT::v64f16";
153   case MVT::v128f16:  return "MVT::v128f16";
154   case MVT::v256f16:  return "MVT::v256f16";
155   case MVT::v512f16:  return "MVT::v512f16";
156   case MVT::v2bf16:   return "MVT::v2bf16";
157   case MVT::v3bf16:   return "MVT::v3bf16";
158   case MVT::v4bf16:   return "MVT::v4bf16";
159   case MVT::v8bf16:   return "MVT::v8bf16";
160   case MVT::v16bf16:  return "MVT::v16bf16";
161   case MVT::v32bf16:  return "MVT::v32bf16";
162   case MVT::v64bf16:  return "MVT::v64bf16";
163   case MVT::v128bf16: return "MVT::v128bf16";
164   case MVT::v1f32:    return "MVT::v1f32";
165   case MVT::v2f32:    return "MVT::v2f32";
166   case MVT::v3f32:    return "MVT::v3f32";
167   case MVT::v4f32:    return "MVT::v4f32";
168   case MVT::v5f32:    return "MVT::v5f32";
169   case MVT::v6f32:    return "MVT::v6f32";
170   case MVT::v7f32:    return "MVT::v7f32";
171   case MVT::v8f32:    return "MVT::v8f32";
172   case MVT::v16f32:   return "MVT::v16f32";
173   case MVT::v32f32:   return "MVT::v32f32";
174   case MVT::v64f32:   return "MVT::v64f32";
175   case MVT::v128f32:  return "MVT::v128f32";
176   case MVT::v256f32:  return "MVT::v256f32";
177   case MVT::v512f32:  return "MVT::v512f32";
178   case MVT::v1024f32: return "MVT::v1024f32";
179   case MVT::v2048f32: return "MVT::v2048f32";
180   case MVT::v1f64:    return "MVT::v1f64";
181   case MVT::v2f64:    return "MVT::v2f64";
182   case MVT::v3f64:    return "MVT::v3f64";
183   case MVT::v4f64:    return "MVT::v4f64";
184   case MVT::v8f64:    return "MVT::v8f64";
185   case MVT::v16f64:   return "MVT::v16f64";
186   case MVT::v32f64:   return "MVT::v32f64";
187   case MVT::v64f64:   return "MVT::v64f64";
188   case MVT::v128f64:  return "MVT::v128f64";
189   case MVT::v256f64:  return "MVT::v256f64";
190   case MVT::nxv1i1:   return "MVT::nxv1i1";
191   case MVT::nxv2i1:   return "MVT::nxv2i1";
192   case MVT::nxv4i1:   return "MVT::nxv4i1";
193   case MVT::nxv8i1:   return "MVT::nxv8i1";
194   case MVT::nxv16i1:  return "MVT::nxv16i1";
195   case MVT::nxv32i1:  return "MVT::nxv32i1";
196   case MVT::nxv64i1:  return "MVT::nxv64i1";
197   case MVT::nxv1i8:   return "MVT::nxv1i8";
198   case MVT::nxv2i8:   return "MVT::nxv2i8";
199   case MVT::nxv4i8:   return "MVT::nxv4i8";
200   case MVT::nxv8i8:   return "MVT::nxv8i8";
201   case MVT::nxv16i8:  return "MVT::nxv16i8";
202   case MVT::nxv32i8:  return "MVT::nxv32i8";
203   case MVT::nxv64i8:  return "MVT::nxv64i8";
204   case MVT::nxv1i16:  return "MVT::nxv1i16";
205   case MVT::nxv2i16:  return "MVT::nxv2i16";
206   case MVT::nxv4i16:  return "MVT::nxv4i16";
207   case MVT::nxv8i16:  return "MVT::nxv8i16";
208   case MVT::nxv16i16: return "MVT::nxv16i16";
209   case MVT::nxv32i16: return "MVT::nxv32i16";
210   case MVT::nxv1i32:  return "MVT::nxv1i32";
211   case MVT::nxv2i32:  return "MVT::nxv2i32";
212   case MVT::nxv4i32:  return "MVT::nxv4i32";
213   case MVT::nxv8i32:  return "MVT::nxv8i32";
214   case MVT::nxv16i32: return "MVT::nxv16i32";
215   case MVT::nxv32i32: return "MVT::nxv32i32";
216   case MVT::nxv1i64:  return "MVT::nxv1i64";
217   case MVT::nxv2i64:  return "MVT::nxv2i64";
218   case MVT::nxv4i64:  return "MVT::nxv4i64";
219   case MVT::nxv8i64:  return "MVT::nxv8i64";
220   case MVT::nxv16i64: return "MVT::nxv16i64";
221   case MVT::nxv32i64: return "MVT::nxv32i64";
222   case MVT::nxv1f16:  return "MVT::nxv1f16";
223   case MVT::nxv2f16:  return "MVT::nxv2f16";
224   case MVT::nxv4f16:  return "MVT::nxv4f16";
225   case MVT::nxv8f16:  return "MVT::nxv8f16";
226   case MVT::nxv16f16: return "MVT::nxv16f16";
227   case MVT::nxv32f16: return "MVT::nxv32f16";
228   case MVT::nxv1bf16:  return "MVT::nxv1bf16";
229   case MVT::nxv2bf16:  return "MVT::nxv2bf16";
230   case MVT::nxv4bf16:  return "MVT::nxv4bf16";
231   case MVT::nxv8bf16:  return "MVT::nxv8bf16";
232   case MVT::nxv16bf16: return "MVT::nxv16bf16";
233   case MVT::nxv32bf16: return "MVT::nxv32bf16";
234   case MVT::nxv1f32:   return "MVT::nxv1f32";
235   case MVT::nxv2f32:   return "MVT::nxv2f32";
236   case MVT::nxv4f32:   return "MVT::nxv4f32";
237   case MVT::nxv8f32:   return "MVT::nxv8f32";
238   case MVT::nxv16f32:  return "MVT::nxv16f32";
239   case MVT::nxv1f64:   return "MVT::nxv1f64";
240   case MVT::nxv2f64:   return "MVT::nxv2f64";
241   case MVT::nxv4f64:   return "MVT::nxv4f64";
242   case MVT::nxv8f64:   return "MVT::nxv8f64";
243   case MVT::token:     return "MVT::token";
244   case MVT::Metadata:  return "MVT::Metadata";
245   case MVT::iPTR:      return "MVT::iPTR";
246   case MVT::iPTRAny:   return "MVT::iPTRAny";
247   case MVT::Untyped:   return "MVT::Untyped";
248   case MVT::funcref:   return "MVT::funcref";
249   case MVT::externref: return "MVT::externref";
250   default: llvm_unreachable("ILLEGAL VALUE TYPE!");
251   }
252   // clang-format on
253 }
254 
255 /// getQualifiedName - Return the name of the specified record, with a
256 /// namespace qualifier if the record contains one.
257 ///
258 std::string llvm::getQualifiedName(const Record *R) {
259   std::string Namespace;
260   if (R->getValue("Namespace"))
261     Namespace = std::string(R->getValueAsString("Namespace"));
262   if (Namespace.empty())
263     return std::string(R->getName());
264   return Namespace + "::" + R->getName().str();
265 }
266 
267 
268 /// getTarget - Return the current instance of the Target class.
269 ///
270 CodeGenTarget::CodeGenTarget(RecordKeeper &records)
271   : Records(records), CGH(records) {
272   std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
273   if (Targets.size() == 0)
274     PrintFatalError("No 'Target' subclasses defined!");
275   if (Targets.size() != 1)
276     PrintFatalError("Multiple subclasses of Target defined!");
277   TargetRec = Targets[0];
278 }
279 
280 CodeGenTarget::~CodeGenTarget() {
281 }
282 
283 StringRef CodeGenTarget::getName() const { return TargetRec->getName(); }
284 
285 /// getInstNamespace - Find and return the target machine's instruction
286 /// namespace. The namespace is cached because it is requested multiple times.
287 StringRef CodeGenTarget::getInstNamespace() const {
288   if (InstNamespace.empty()) {
289     for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) {
290       // We are not interested in the "TargetOpcode" namespace.
291       if (Inst->Namespace != "TargetOpcode") {
292         InstNamespace = Inst->Namespace;
293         break;
294       }
295     }
296   }
297 
298   return InstNamespace;
299 }
300 
301 StringRef CodeGenTarget::getRegNamespace() const {
302   auto &RegClasses = RegBank->getRegClasses();
303   return RegClasses.size() > 0 ? RegClasses.front().Namespace : "";
304 }
305 
306 Record *CodeGenTarget::getInstructionSet() const {
307   return TargetRec->getValueAsDef("InstructionSet");
308 }
309 
310 bool CodeGenTarget::getAllowRegisterRenaming() const {
311   return TargetRec->getValueAsInt("AllowRegisterRenaming");
312 }
313 
314 /// getAsmParser - Return the AssemblyParser definition for this target.
315 ///
316 Record *CodeGenTarget::getAsmParser() const {
317   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
318   if (AsmParserNum >= LI.size())
319     PrintFatalError("Target does not have an AsmParser #" +
320                     Twine(AsmParserNum) + "!");
321   return LI[AsmParserNum];
322 }
323 
324 /// getAsmParserVariant - Return the AssemblyParserVariant definition for
325 /// this target.
326 ///
327 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
328   std::vector<Record*> LI =
329     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
330   if (i >= LI.size())
331     PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) +
332                     "!");
333   return LI[i];
334 }
335 
336 /// getAsmParserVariantCount - Return the AssemblyParserVariant definition
337 /// available for this target.
338 ///
339 unsigned CodeGenTarget::getAsmParserVariantCount() const {
340   std::vector<Record*> LI =
341     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
342   return LI.size();
343 }
344 
345 /// getAsmWriter - Return the AssemblyWriter definition for this target.
346 ///
347 Record *CodeGenTarget::getAsmWriter() const {
348   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
349   if (AsmWriterNum >= LI.size())
350     PrintFatalError("Target does not have an AsmWriter #" +
351                     Twine(AsmWriterNum) + "!");
352   return LI[AsmWriterNum];
353 }
354 
355 CodeGenRegBank &CodeGenTarget::getRegBank() const {
356   if (!RegBank)
357     RegBank = std::make_unique<CodeGenRegBank>(Records, getHwModes());
358   return *RegBank;
359 }
360 
361 Optional<CodeGenRegisterClass *>
362 CodeGenTarget::getSuperRegForSubReg(const ValueTypeByHwMode &ValueTy,
363                                     CodeGenRegBank &RegBank,
364                                     const CodeGenSubRegIndex *SubIdx,
365                                     bool MustBeAllocatable) const {
366   std::vector<CodeGenRegisterClass *> Candidates;
367   auto &RegClasses = RegBank.getRegClasses();
368 
369   // Try to find a register class which supports ValueTy, and also contains
370   // SubIdx.
371   for (CodeGenRegisterClass &RC : RegClasses) {
372     // Is there a subclass of this class which contains this subregister index?
373     CodeGenRegisterClass *SubClassWithSubReg = RC.getSubClassWithSubReg(SubIdx);
374     if (!SubClassWithSubReg)
375       continue;
376 
377     // We have a class. Check if it supports this value type.
378     if (!llvm::is_contained(SubClassWithSubReg->VTs, ValueTy))
379       continue;
380 
381     // If necessary, check that it is allocatable.
382     if (MustBeAllocatable && !SubClassWithSubReg->Allocatable)
383       continue;
384 
385     // We have a register class which supports both the value type and
386     // subregister index. Remember it.
387     Candidates.push_back(SubClassWithSubReg);
388   }
389 
390   // If we didn't find anything, we're done.
391   if (Candidates.empty())
392     return None;
393 
394   // Find and return the largest of our candidate classes.
395   llvm::stable_sort(Candidates, [&](const CodeGenRegisterClass *A,
396                                     const CodeGenRegisterClass *B) {
397     if (A->getMembers().size() > B->getMembers().size())
398       return true;
399 
400     if (A->getMembers().size() < B->getMembers().size())
401       return false;
402 
403     // Order by name as a tie-breaker.
404     return StringRef(A->getName()) < B->getName();
405   });
406 
407   return Candidates[0];
408 }
409 
410 void CodeGenTarget::ReadRegAltNameIndices() const {
411   RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
412   llvm::sort(RegAltNameIndices, LessRecord());
413 }
414 
415 /// getRegisterByName - If there is a register with the specific AsmName,
416 /// return it.
417 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
418   return getRegBank().getRegistersByName().lookup(Name);
419 }
420 
421 std::vector<ValueTypeByHwMode> CodeGenTarget::getRegisterVTs(Record *R)
422       const {
423   const CodeGenRegister *Reg = getRegBank().getReg(R);
424   std::vector<ValueTypeByHwMode> Result;
425   for (const auto &RC : getRegBank().getRegClasses()) {
426     if (RC.contains(Reg)) {
427       ArrayRef<ValueTypeByHwMode> InVTs = RC.getValueTypes();
428       llvm::append_range(Result, InVTs);
429     }
430   }
431 
432   // Remove duplicates.
433   llvm::sort(Result);
434   Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
435   return Result;
436 }
437 
438 
439 void CodeGenTarget::ReadLegalValueTypes() const {
440   for (const auto &RC : getRegBank().getRegClasses())
441     llvm::append_range(LegalValueTypes, RC.VTs);
442 
443   // Remove duplicates.
444   llvm::sort(LegalValueTypes);
445   LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
446                                     LegalValueTypes.end()),
447                         LegalValueTypes.end());
448 }
449 
450 CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
451   if (!SchedModels)
452     SchedModels = std::make_unique<CodeGenSchedModels>(Records, *this);
453   return *SchedModels;
454 }
455 
456 void CodeGenTarget::ReadInstructions() const {
457   std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
458   if (Insts.size() <= 2)
459     PrintFatalError("No 'Instruction' subclasses defined!");
460 
461   // Parse the instructions defined in the .td file.
462   for (unsigned i = 0, e = Insts.size(); i != e; ++i)
463     Instructions[Insts[i]] = std::make_unique<CodeGenInstruction>(Insts[i]);
464 }
465 
466 static const CodeGenInstruction *
467 GetInstByName(const char *Name,
468               const DenseMap<const Record*,
469                              std::unique_ptr<CodeGenInstruction>> &Insts,
470               RecordKeeper &Records) {
471   const Record *Rec = Records.getDef(Name);
472 
473   const auto I = Insts.find(Rec);
474   if (!Rec || I == Insts.end())
475     PrintFatalError(Twine("Could not find '") + Name + "' instruction!");
476   return I->second.get();
477 }
478 
479 static const char *FixedInstrs[] = {
480 #define HANDLE_TARGET_OPCODE(OPC) #OPC,
481 #include "llvm/Support/TargetOpcodes.def"
482     nullptr};
483 
484 unsigned CodeGenTarget::getNumFixedInstructions() {
485   return array_lengthof(FixedInstrs) - 1;
486 }
487 
488 /// Return all of the instructions defined by the target, ordered by
489 /// their enum value.
490 void CodeGenTarget::ComputeInstrsByEnum() const {
491   const auto &Insts = getInstructions();
492   for (const char *const *p = FixedInstrs; *p; ++p) {
493     const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
494     assert(Instr && "Missing target independent instruction");
495     assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
496     InstrsByEnum.push_back(Instr);
497   }
498   unsigned EndOfPredefines = InstrsByEnum.size();
499   assert(EndOfPredefines == getNumFixedInstructions() &&
500          "Missing generic opcode");
501 
502   for (const auto &I : Insts) {
503     const CodeGenInstruction *CGI = I.second.get();
504     if (CGI->Namespace != "TargetOpcode") {
505       InstrsByEnum.push_back(CGI);
506       if (CGI->TheDef->getValueAsBit("isPseudo"))
507         ++NumPseudoInstructions;
508     }
509   }
510 
511   assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
512 
513   // All of the instructions are now in random order based on the map iteration.
514   llvm::sort(
515       InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(),
516       [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) {
517         const auto &D1 = *Rec1->TheDef;
518         const auto &D2 = *Rec2->TheDef;
519         return std::make_tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) <
520                std::make_tuple(!D2.getValueAsBit("isPseudo"), D2.getName());
521       });
522 }
523 
524 
525 /// isLittleEndianEncoding - Return whether this target encodes its instruction
526 /// in little-endian format, i.e. bits laid out in the order [0..n]
527 ///
528 bool CodeGenTarget::isLittleEndianEncoding() const {
529   return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
530 }
531 
532 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
533 /// encodings, reverse the bit order of all instructions.
534 void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
535   if (!isLittleEndianEncoding())
536     return;
537 
538   std::vector<Record *> Insts =
539       Records.getAllDerivedDefinitions("InstructionEncoding");
540   for (Record *R : Insts) {
541     if (R->getValueAsString("Namespace") == "TargetOpcode" ||
542         R->getValueAsBit("isPseudo"))
543       continue;
544 
545     BitsInit *BI = R->getValueAsBitsInit("Inst");
546 
547     unsigned numBits = BI->getNumBits();
548 
549     SmallVector<Init *, 16> NewBits(numBits);
550 
551     for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) {
552       unsigned bitSwapIdx = numBits - bit - 1;
553       Init *OrigBit = BI->getBit(bit);
554       Init *BitSwap = BI->getBit(bitSwapIdx);
555       NewBits[bit]        = BitSwap;
556       NewBits[bitSwapIdx] = OrigBit;
557     }
558     if (numBits % 2) {
559       unsigned middle = (numBits + 1) / 2;
560       NewBits[middle] = BI->getBit(middle);
561     }
562 
563     BitsInit *NewBI = BitsInit::get(Records, NewBits);
564 
565     // Update the bits in reversed order so that emitInstrOpBits will get the
566     // correct endianness.
567     R->getValue("Inst")->setValue(NewBI);
568   }
569 }
570 
571 /// guessInstructionProperties - Return true if it's OK to guess instruction
572 /// properties instead of raising an error.
573 ///
574 /// This is configurable as a temporary migration aid. It will eventually be
575 /// permanently false.
576 bool CodeGenTarget::guessInstructionProperties() const {
577   return getInstructionSet()->getValueAsBit("guessInstructionProperties");
578 }
579 
580 //===----------------------------------------------------------------------===//
581 // ComplexPattern implementation
582 //
583 ComplexPattern::ComplexPattern(Record *R) {
584   Ty          = R->getValueAsDef("Ty");
585   NumOperands = R->getValueAsInt("NumOperands");
586   SelectFunc = std::string(R->getValueAsString("SelectFunc"));
587   RootNodes   = R->getValueAsListOfDefs("RootNodes");
588 
589   // FIXME: This is a hack to statically increase the priority of patterns which
590   // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best
591   // possible pattern match we'll need to dynamically calculate the complexity
592   // of all patterns a dag can potentially map to.
593   int64_t RawComplexity = R->getValueAsInt("Complexity");
594   if (RawComplexity == -1)
595     Complexity = NumOperands * 3;
596   else
597     Complexity = RawComplexity;
598 
599   // FIXME: Why is this different from parseSDPatternOperatorProperties?
600   // Parse the properties.
601   Properties = 0;
602   std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
603   for (unsigned i = 0, e = PropList.size(); i != e; ++i)
604     if (PropList[i]->getName() == "SDNPHasChain") {
605       Properties |= 1 << SDNPHasChain;
606     } else if (PropList[i]->getName() == "SDNPOptInGlue") {
607       Properties |= 1 << SDNPOptInGlue;
608     } else if (PropList[i]->getName() == "SDNPMayStore") {
609       Properties |= 1 << SDNPMayStore;
610     } else if (PropList[i]->getName() == "SDNPMayLoad") {
611       Properties |= 1 << SDNPMayLoad;
612     } else if (PropList[i]->getName() == "SDNPSideEffect") {
613       Properties |= 1 << SDNPSideEffect;
614     } else if (PropList[i]->getName() == "SDNPMemOperand") {
615       Properties |= 1 << SDNPMemOperand;
616     } else if (PropList[i]->getName() == "SDNPVariadic") {
617       Properties |= 1 << SDNPVariadic;
618     } else if (PropList[i]->getName() == "SDNPWantRoot") {
619       Properties |= 1 << SDNPWantRoot;
620     } else if (PropList[i]->getName() == "SDNPWantParent") {
621       Properties |= 1 << SDNPWantParent;
622     } else {
623       PrintFatalError(R->getLoc(), "Unsupported SD Node property '" +
624                                        PropList[i]->getName() +
625                                        "' on ComplexPattern '" + R->getName() +
626                                        "'!");
627     }
628 }
629 
630 //===----------------------------------------------------------------------===//
631 // CodeGenIntrinsic Implementation
632 //===----------------------------------------------------------------------===//
633 
634 CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC) {
635   std::vector<Record *> IntrProperties =
636       RC.getAllDerivedDefinitions("IntrinsicProperty");
637 
638   std::vector<Record *> DefaultProperties;
639   for (Record *Rec : IntrProperties)
640     if (Rec->getValueAsBit("IsDefault"))
641       DefaultProperties.push_back(Rec);
642 
643   std::vector<Record *> Defs = RC.getAllDerivedDefinitions("Intrinsic");
644   Intrinsics.reserve(Defs.size());
645 
646   for (unsigned I = 0, e = Defs.size(); I != e; ++I)
647     Intrinsics.push_back(CodeGenIntrinsic(Defs[I], DefaultProperties));
648 
649   llvm::sort(Intrinsics,
650              [](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) {
651                return std::tie(LHS.TargetPrefix, LHS.Name) <
652                       std::tie(RHS.TargetPrefix, RHS.Name);
653              });
654   Targets.push_back({"", 0, 0});
655   for (size_t I = 0, E = Intrinsics.size(); I < E; ++I)
656     if (Intrinsics[I].TargetPrefix != Targets.back().Name) {
657       Targets.back().Count = I - Targets.back().Offset;
658       Targets.push_back({Intrinsics[I].TargetPrefix, I, 0});
659     }
660   Targets.back().Count = Intrinsics.size() - Targets.back().Offset;
661 }
662 
663 CodeGenIntrinsic::CodeGenIntrinsic(Record *R,
664                                    std::vector<Record *> DefaultProperties) {
665   TheDef = R;
666   std::string DefName = std::string(R->getName());
667   ArrayRef<SMLoc> DefLoc = R->getLoc();
668   ModRef = ReadWriteMem;
669   Properties = 0;
670   isOverloaded = false;
671   isCommutative = false;
672   canThrow = false;
673   isNoReturn = false;
674   isNoCallback = false;
675   isNoSync = false;
676   isNoFree = false;
677   isWillReturn = false;
678   isCold = false;
679   isNoDuplicate = false;
680   isNoMerge = false;
681   isConvergent = false;
682   isSpeculatable = false;
683   hasSideEffects = false;
684 
685   if (DefName.size() <= 4 || DefName.substr(0, 4) != "int_")
686     PrintFatalError(DefLoc,
687                     "Intrinsic '" + DefName + "' does not start with 'int_'!");
688 
689   EnumName = DefName.substr(4);
690 
691   if (R->getValue("ClangBuiltinName"))  // Ignore a missing ClangBuiltinName field.
692     ClangBuiltinName = std::string(R->getValueAsString("ClangBuiltinName"));
693   if (R->getValue("MSBuiltinName"))   // Ignore a missing MSBuiltinName field.
694     MSBuiltinName = std::string(R->getValueAsString("MSBuiltinName"));
695 
696   TargetPrefix = std::string(R->getValueAsString("TargetPrefix"));
697   Name = std::string(R->getValueAsString("LLVMName"));
698 
699   if (Name == "") {
700     // If an explicit name isn't specified, derive one from the DefName.
701     Name = "llvm.";
702 
703     for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
704       Name += (EnumName[i] == '_') ? '.' : EnumName[i];
705   } else {
706     // Verify it starts with "llvm.".
707     if (Name.size() <= 5 || Name.substr(0, 5) != "llvm.")
708       PrintFatalError(DefLoc, "Intrinsic '" + DefName +
709                                   "'s name does not start with 'llvm.'!");
710   }
711 
712   // If TargetPrefix is specified, make sure that Name starts with
713   // "llvm.<targetprefix>.".
714   if (!TargetPrefix.empty()) {
715     if (Name.size() < 6+TargetPrefix.size() ||
716         Name.substr(5, 1 + TargetPrefix.size()) != (TargetPrefix + "."))
717       PrintFatalError(DefLoc, "Intrinsic '" + DefName +
718                                   "' does not start with 'llvm." +
719                                   TargetPrefix + ".'!");
720   }
721 
722   ListInit *RetTypes = R->getValueAsListInit("RetTypes");
723   ListInit *ParamTypes = R->getValueAsListInit("ParamTypes");
724 
725   // First collate a list of overloaded types.
726   std::vector<MVT::SimpleValueType> OverloadedVTs;
727   for (ListInit *TypeList : {RetTypes, ParamTypes}) {
728     for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
729       Record *TyEl = TypeList->getElementAsRecord(i);
730       assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
731 
732       if (TyEl->isSubClassOf("LLVMMatchType"))
733         continue;
734 
735       MVT::SimpleValueType VT = getValueType(TyEl->getValueAsDef("VT"));
736       if (MVT(VT).isOverloaded()) {
737         OverloadedVTs.push_back(VT);
738         isOverloaded = true;
739       }
740     }
741   }
742 
743   // Parse the list of return types.
744   ListInit *TypeList = RetTypes;
745   for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
746     Record *TyEl = TypeList->getElementAsRecord(i);
747     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
748     MVT::SimpleValueType VT;
749     if (TyEl->isSubClassOf("LLVMMatchType")) {
750       unsigned MatchTy = TyEl->getValueAsInt("Number");
751       assert(MatchTy < OverloadedVTs.size() &&
752              "Invalid matching number!");
753       VT = OverloadedVTs[MatchTy];
754       // It only makes sense to use the extended and truncated vector element
755       // variants with iAny types; otherwise, if the intrinsic is not
756       // overloaded, all the types can be specified directly.
757       assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
758                !TyEl->isSubClassOf("LLVMTruncatedType")) ||
759               VT == MVT::iAny || VT == MVT::vAny) &&
760              "Expected iAny or vAny type");
761     } else {
762       VT = getValueType(TyEl->getValueAsDef("VT"));
763     }
764 
765     // Reject invalid types.
766     if (VT == MVT::isVoid)
767       PrintFatalError(DefLoc, "Intrinsic '" + DefName +
768                                   " has void in result type list!");
769 
770     IS.RetVTs.push_back(VT);
771     IS.RetTypeDefs.push_back(TyEl);
772   }
773 
774   // Parse the list of parameter types.
775   TypeList = ParamTypes;
776   for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
777     Record *TyEl = TypeList->getElementAsRecord(i);
778     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
779     MVT::SimpleValueType VT;
780     if (TyEl->isSubClassOf("LLVMMatchType")) {
781       unsigned MatchTy = TyEl->getValueAsInt("Number");
782       if (MatchTy >= OverloadedVTs.size()) {
783         PrintError(R->getLoc(),
784                    "Parameter #" + Twine(i) + " has out of bounds matching "
785                    "number " + Twine(MatchTy));
786         PrintFatalError(DefLoc,
787                         Twine("ParamTypes is ") + TypeList->getAsString());
788       }
789       VT = OverloadedVTs[MatchTy];
790       // It only makes sense to use the extended and truncated vector element
791       // variants with iAny types; otherwise, if the intrinsic is not
792       // overloaded, all the types can be specified directly.
793       assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
794                !TyEl->isSubClassOf("LLVMTruncatedType")) ||
795               VT == MVT::iAny || VT == MVT::vAny) &&
796              "Expected iAny or vAny type");
797     } else
798       VT = getValueType(TyEl->getValueAsDef("VT"));
799 
800     // Reject invalid types.
801     if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
802       PrintFatalError(DefLoc, "Intrinsic '" + DefName +
803                                   " has void in result type list!");
804 
805     IS.ParamVTs.push_back(VT);
806     IS.ParamTypeDefs.push_back(TyEl);
807   }
808 
809   // Parse the intrinsic properties.
810   ListInit *PropList = R->getValueAsListInit("IntrProperties");
811   for (unsigned i = 0, e = PropList->size(); i != e; ++i) {
812     Record *Property = PropList->getElementAsRecord(i);
813     assert(Property->isSubClassOf("IntrinsicProperty") &&
814            "Expected a property!");
815 
816     setProperty(Property);
817   }
818 
819   // Set default properties to true.
820   setDefaultProperties(R, DefaultProperties);
821 
822   // Also record the SDPatternOperator Properties.
823   Properties = parseSDPatternOperatorProperties(R);
824 
825   // Sort the argument attributes for later benefit.
826   llvm::sort(ArgumentAttributes);
827 }
828 
829 void CodeGenIntrinsic::setDefaultProperties(
830     Record *R, std::vector<Record *> DefaultProperties) {
831   // opt-out of using default attributes.
832   if (R->getValueAsBit("DisableDefaultAttributes"))
833     return;
834 
835   for (Record *Rec : DefaultProperties)
836     setProperty(Rec);
837 }
838 
839 void CodeGenIntrinsic::setProperty(Record *R) {
840   if (R->getName() == "IntrNoMem")
841     ModRef = NoMem;
842   else if (R->getName() == "IntrReadMem") {
843     if (!(ModRef & MR_Ref))
844       PrintFatalError(TheDef->getLoc(),
845                       Twine("IntrReadMem cannot be used after IntrNoMem or "
846                             "IntrWriteMem. Default is ReadWrite"));
847     ModRef = ModRefBehavior(ModRef & ~MR_Mod);
848   } else if (R->getName() == "IntrWriteMem") {
849     if (!(ModRef & MR_Mod))
850       PrintFatalError(TheDef->getLoc(),
851                       Twine("IntrWriteMem cannot be used after IntrNoMem or "
852                             "IntrReadMem. Default is ReadWrite"));
853     ModRef = ModRefBehavior(ModRef & ~MR_Ref);
854   } else if (R->getName() == "IntrArgMemOnly")
855     ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem);
856   else if (R->getName() == "IntrInaccessibleMemOnly")
857     ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_InaccessibleMem);
858   else if (R->getName() == "IntrInaccessibleMemOrArgMemOnly")
859     ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem |
860                             MR_InaccessibleMem);
861   else if (R->getName() == "Commutative")
862     isCommutative = true;
863   else if (R->getName() == "Throws")
864     canThrow = true;
865   else if (R->getName() == "IntrNoDuplicate")
866     isNoDuplicate = true;
867   else if (R->getName() == "IntrNoMerge")
868     isNoMerge = true;
869   else if (R->getName() == "IntrConvergent")
870     isConvergent = true;
871   else if (R->getName() == "IntrNoReturn")
872     isNoReturn = true;
873   else if (R->getName() == "IntrNoCallback")
874     isNoCallback = true;
875   else if (R->getName() == "IntrNoSync")
876     isNoSync = true;
877   else if (R->getName() == "IntrNoFree")
878     isNoFree = true;
879   else if (R->getName() == "IntrWillReturn")
880     isWillReturn = !isNoReturn;
881   else if (R->getName() == "IntrCold")
882     isCold = true;
883   else if (R->getName() == "IntrSpeculatable")
884     isSpeculatable = true;
885   else if (R->getName() == "IntrHasSideEffects")
886     hasSideEffects = true;
887   else if (R->isSubClassOf("NoCapture")) {
888     unsigned ArgNo = R->getValueAsInt("ArgNo");
889     ArgumentAttributes.emplace_back(ArgNo, NoCapture, 0);
890   } else if (R->isSubClassOf("NoAlias")) {
891     unsigned ArgNo = R->getValueAsInt("ArgNo");
892     ArgumentAttributes.emplace_back(ArgNo, NoAlias, 0);
893   } else if (R->isSubClassOf("NoUndef")) {
894     unsigned ArgNo = R->getValueAsInt("ArgNo");
895     ArgumentAttributes.emplace_back(ArgNo, NoUndef, 0);
896   } else if (R->isSubClassOf("Returned")) {
897     unsigned ArgNo = R->getValueAsInt("ArgNo");
898     ArgumentAttributes.emplace_back(ArgNo, Returned, 0);
899   } else if (R->isSubClassOf("ReadOnly")) {
900     unsigned ArgNo = R->getValueAsInt("ArgNo");
901     ArgumentAttributes.emplace_back(ArgNo, ReadOnly, 0);
902   } else if (R->isSubClassOf("WriteOnly")) {
903     unsigned ArgNo = R->getValueAsInt("ArgNo");
904     ArgumentAttributes.emplace_back(ArgNo, WriteOnly, 0);
905   } else if (R->isSubClassOf("ReadNone")) {
906     unsigned ArgNo = R->getValueAsInt("ArgNo");
907     ArgumentAttributes.emplace_back(ArgNo, ReadNone, 0);
908   } else if (R->isSubClassOf("ImmArg")) {
909     unsigned ArgNo = R->getValueAsInt("ArgNo");
910     ArgumentAttributes.emplace_back(ArgNo, ImmArg, 0);
911   } else if (R->isSubClassOf("Align")) {
912     unsigned ArgNo = R->getValueAsInt("ArgNo");
913     uint64_t Align = R->getValueAsInt("Align");
914     ArgumentAttributes.emplace_back(ArgNo, Alignment, Align);
915   } else
916     llvm_unreachable("Unknown property!");
917 }
918 
919 bool CodeGenIntrinsic::isParamAPointer(unsigned ParamIdx) const {
920   if (ParamIdx >= IS.ParamVTs.size())
921     return false;
922   MVT ParamType = MVT(IS.ParamVTs[ParamIdx]);
923   return ParamType == MVT::iPTR || ParamType == MVT::iPTRAny;
924 }
925 
926 bool CodeGenIntrinsic::isParamImmArg(unsigned ParamIdx) const {
927   // Convert argument index to attribute index starting from `FirstArgIndex`.
928   ArgAttribute Val{ParamIdx + 1, ImmArg, 0};
929   return std::binary_search(ArgumentAttributes.begin(),
930                             ArgumentAttributes.end(), Val);
931 }
932