1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "CodeGenDAGPatterns.h"
10 #include "CodeGenInstruction.h"
11 #include "CodeGenRegisters.h"
12 #include "CodeGenTarget.h"
13 #include "DAGISelMatcher.h"
14 #include "InfoByHwMode.h"
15 #include "SDNodeProperties.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/TableGen/Error.h"
19 #include "llvm/TableGen/Record.h"
20 #include <utility>
21 using namespace llvm;
22 
23 
24 /// getRegisterValueType - Look up and return the ValueType of the specified
25 /// register. If the register is a member of multiple register classes, they
26 /// must all have the same type.
27 static MVT::SimpleValueType getRegisterValueType(Record *R,
28                                                  const CodeGenTarget &T) {
29   bool FoundRC = false;
30   MVT::SimpleValueType VT = MVT::Other;
31   const CodeGenRegister *Reg = T.getRegBank().getReg(R);
32 
33   for (const auto &RC : T.getRegBank().getRegClasses()) {
34     if (!RC.contains(Reg))
35       continue;
36 
37     if (!FoundRC) {
38       FoundRC = true;
39       const ValueTypeByHwMode &VVT = RC.getValueTypeNum(0);
40       assert(VVT.isSimple());
41       VT = VVT.getSimple().SimpleTy;
42       continue;
43     }
44 
45 #ifndef NDEBUG
46     // If this occurs in multiple register classes, they all have to agree.
47     const ValueTypeByHwMode &VVT = RC.getValueTypeNum(0);
48     assert(VVT.isSimple() && VVT.getSimple().SimpleTy == VT &&
49            "ValueType mismatch between register classes for this register");
50 #endif
51   }
52   return VT;
53 }
54 
55 
56 namespace {
57   class MatcherGen {
58     const PatternToMatch &Pattern;
59     const CodeGenDAGPatterns &CGP;
60 
61     /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
62     /// out with all of the types removed.  This allows us to insert type checks
63     /// as we scan the tree.
64     TreePatternNodePtr PatWithNoTypes;
65 
66     /// VariableMap - A map from variable names ('$dst') to the recorded operand
67     /// number that they were captured as.  These are biased by 1 to make
68     /// insertion easier.
69     StringMap<unsigned> VariableMap;
70 
71     /// This maintains the recorded operand number that OPC_CheckComplexPattern
72     /// drops each sub-operand into. We don't want to insert these into
73     /// VariableMap because that leads to identity checking if they are
74     /// encountered multiple times. Biased by 1 like VariableMap for
75     /// consistency.
76     StringMap<unsigned> NamedComplexPatternOperands;
77 
78     /// NextRecordedOperandNo - As we emit opcodes to record matched values in
79     /// the RecordedNodes array, this keeps track of which slot will be next to
80     /// record into.
81     unsigned NextRecordedOperandNo;
82 
83     /// MatchedChainNodes - This maintains the position in the recorded nodes
84     /// array of all of the recorded input nodes that have chains.
85     SmallVector<unsigned, 2> MatchedChainNodes;
86 
87     /// MatchedComplexPatterns - This maintains a list of all of the
88     /// ComplexPatterns that we need to check. The second element of each pair
89     /// is the recorded operand number of the input node.
90     SmallVector<std::pair<const TreePatternNode*,
91                           unsigned>, 2> MatchedComplexPatterns;
92 
93     /// PhysRegInputs - List list has an entry for each explicitly specified
94     /// physreg input to the pattern.  The first elt is the Register node, the
95     /// second is the recorded slot number the input pattern match saved it in.
96     SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
97 
98     /// Matcher - This is the top level of the generated matcher, the result.
99     Matcher *TheMatcher;
100 
101     /// CurPredicate - As we emit matcher nodes, this points to the latest check
102     /// which should have future checks stuck into its Next position.
103     Matcher *CurPredicate;
104   public:
105     MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
106 
107     bool EmitMatcherCode(unsigned Variant);
108     void EmitResultCode();
109 
110     Matcher *GetMatcher() const { return TheMatcher; }
111   private:
112     void AddMatcher(Matcher *NewNode);
113     void InferPossibleTypes();
114 
115     // Matcher Generation.
116     void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes);
117     void EmitLeafMatchCode(const TreePatternNode *N);
118     void EmitOperatorMatchCode(const TreePatternNode *N,
119                                TreePatternNode *NodeNoTypes);
120 
121     /// If this is the first time a node with unique identifier Name has been
122     /// seen, record it. Otherwise, emit a check to make sure this is the same
123     /// node. Returns true if this is the first encounter.
124     bool recordUniqueNode(ArrayRef<std::string> Names);
125 
126     // Result Code Generation.
127     unsigned getNamedArgumentSlot(StringRef Name) {
128       unsigned VarMapEntry = VariableMap[Name];
129       assert(VarMapEntry != 0 &&
130              "Variable referenced but not defined and not caught earlier!");
131       return VarMapEntry-1;
132     }
133 
134     void EmitResultOperand(const TreePatternNode *N,
135                            SmallVectorImpl<unsigned> &ResultOps);
136     void EmitResultOfNamedOperand(const TreePatternNode *N,
137                                   SmallVectorImpl<unsigned> &ResultOps);
138     void EmitResultLeafAsOperand(const TreePatternNode *N,
139                                  SmallVectorImpl<unsigned> &ResultOps);
140     void EmitResultInstructionAsOperand(const TreePatternNode *N,
141                                         SmallVectorImpl<unsigned> &ResultOps);
142     void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
143                                         SmallVectorImpl<unsigned> &ResultOps);
144     };
145 
146 } // end anonymous namespace
147 
148 MatcherGen::MatcherGen(const PatternToMatch &pattern,
149                        const CodeGenDAGPatterns &cgp)
150 : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
151   TheMatcher(nullptr), CurPredicate(nullptr) {
152   // We need to produce the matcher tree for the patterns source pattern.  To do
153   // this we need to match the structure as well as the types.  To do the type
154   // matching, we want to figure out the fewest number of type checks we need to
155   // emit.  For example, if there is only one integer type supported by a
156   // target, there should be no type comparisons at all for integer patterns!
157   //
158   // To figure out the fewest number of type checks needed, clone the pattern,
159   // remove the types, then perform type inference on the pattern as a whole.
160   // If there are unresolved types, emit an explicit check for those types,
161   // apply the type to the tree, then rerun type inference.  Iterate until all
162   // types are resolved.
163   //
164   PatWithNoTypes = Pattern.getSrcPattern()->clone();
165   PatWithNoTypes->RemoveAllTypes();
166 
167   // If there are types that are manifestly known, infer them.
168   InferPossibleTypes();
169 }
170 
171 /// InferPossibleTypes - As we emit the pattern, we end up generating type
172 /// checks and applying them to the 'PatWithNoTypes' tree.  As we do this, we
173 /// want to propagate implied types as far throughout the tree as possible so
174 /// that we avoid doing redundant type checks.  This does the type propagation.
175 void MatcherGen::InferPossibleTypes() {
176   // TP - Get *SOME* tree pattern, we don't care which.  It is only used for
177   // diagnostics, which we know are impossible at this point.
178   TreePattern &TP = *CGP.pf_begin()->second;
179 
180   bool MadeChange = true;
181   while (MadeChange)
182     MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
183                                               true/*Ignore reg constraints*/);
184 }
185 
186 
187 /// AddMatcher - Add a matcher node to the current graph we're building.
188 void MatcherGen::AddMatcher(Matcher *NewNode) {
189   if (CurPredicate)
190     CurPredicate->setNext(NewNode);
191   else
192     TheMatcher = NewNode;
193   CurPredicate = NewNode;
194 }
195 
196 
197 //===----------------------------------------------------------------------===//
198 // Pattern Match Generation
199 //===----------------------------------------------------------------------===//
200 
201 /// EmitLeafMatchCode - Generate matching code for leaf nodes.
202 void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
203   assert(N->isLeaf() && "Not a leaf?");
204 
205   // Direct match against an integer constant.
206   if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
207     // If this is the root of the dag we're matching, we emit a redundant opcode
208     // check to ensure that this gets folded into the normal top-level
209     // OpcodeSwitch.
210     if (N == Pattern.getSrcPattern()) {
211       const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
212       AddMatcher(new CheckOpcodeMatcher(NI));
213     }
214 
215     return AddMatcher(new CheckIntegerMatcher(II->getValue()));
216   }
217 
218   // An UnsetInit represents a named node without any constraints.
219   if (isa<UnsetInit>(N->getLeafValue())) {
220     assert(N->hasName() && "Unnamed ? leaf");
221     return;
222   }
223 
224   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
225   if (!DI) {
226     errs() << "Unknown leaf kind: " << *N << "\n";
227     abort();
228   }
229 
230   Record *LeafRec = DI->getDef();
231 
232   // A ValueType leaf node can represent a register when named, or itself when
233   // unnamed.
234   if (LeafRec->isSubClassOf("ValueType")) {
235     // A named ValueType leaf always matches: (add i32:$a, i32:$b).
236     if (N->hasName())
237       return;
238     // An unnamed ValueType as in (sext_inreg GPR:$foo, i8).
239     return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
240   }
241 
242   if (// Handle register references.  Nothing to do here, they always match.
243       LeafRec->isSubClassOf("RegisterClass") ||
244       LeafRec->isSubClassOf("RegisterOperand") ||
245       LeafRec->isSubClassOf("PointerLikeRegClass") ||
246       LeafRec->isSubClassOf("SubRegIndex") ||
247       // Place holder for SRCVALUE nodes. Nothing to do here.
248       LeafRec->getName() == "srcvalue")
249     return;
250 
251   // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
252   // record the register
253   if (LeafRec->isSubClassOf("Register")) {
254     AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName().str(),
255                                  NextRecordedOperandNo));
256     PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
257     return;
258   }
259 
260   if (LeafRec->isSubClassOf("CondCode"))
261     return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
262 
263   if (LeafRec->isSubClassOf("ComplexPattern")) {
264     // We can't model ComplexPattern uses that don't have their name taken yet.
265     // The OPC_CheckComplexPattern operation implicitly records the results.
266     if (N->getName().empty()) {
267       std::string S;
268       raw_string_ostream OS(S);
269       OS << "We expect complex pattern uses to have names: " << *N;
270       PrintFatalError(S);
271     }
272 
273     // Remember this ComplexPattern so that we can emit it after all the other
274     // structural matches are done.
275     unsigned InputOperand = VariableMap[N->getName()] - 1;
276     MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand));
277     return;
278   }
279 
280   if (LeafRec->getName() == "immAllOnesV" ||
281       LeafRec->getName() == "immAllZerosV") {
282     // If this is the root of the dag we're matching, we emit a redundant opcode
283     // check to ensure that this gets folded into the normal top-level
284     // OpcodeSwitch.
285     if (N == Pattern.getSrcPattern()) {
286       MVT VT = N->getSimpleType(0);
287       StringRef Name = VT.isScalableVector() ? "splat_vector" : "build_vector";
288       const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed(Name));
289       AddMatcher(new CheckOpcodeMatcher(NI));
290     }
291     if (LeafRec->getName() == "immAllOnesV")
292       AddMatcher(new CheckImmAllOnesVMatcher());
293     else
294       AddMatcher(new CheckImmAllZerosVMatcher());
295     return;
296   }
297 
298   errs() << "Unknown leaf kind: " << *N << "\n";
299   abort();
300 }
301 
302 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
303                                        TreePatternNode *NodeNoTypes) {
304   assert(!N->isLeaf() && "Not an operator?");
305 
306   if (N->getOperator()->isSubClassOf("ComplexPattern")) {
307     // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
308     // "MY_PAT:op1:op2". We should already have validated that the uses are
309     // consistent.
310     std::string PatternName = std::string(N->getOperator()->getName());
311     for (unsigned i = 0; i < N->getNumChildren(); ++i) {
312       PatternName += ":";
313       PatternName += N->getChild(i)->getName();
314     }
315 
316     if (recordUniqueNode(PatternName)) {
317       auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1);
318       MatchedComplexPatterns.push_back(NodeAndOpNum);
319     }
320 
321     return;
322   }
323 
324   const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
325 
326   // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
327   // a constant without a predicate fn that has more than one bit set, handle
328   // this as a special case.  This is usually for targets that have special
329   // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
330   // handling stuff).  Using these instructions is often far more efficient
331   // than materializing the constant.  Unfortunately, both the instcombiner
332   // and the dag combiner can often infer that bits are dead, and thus drop
333   // them from the mask in the dag.  For example, it might turn 'AND X, 255'
334   // into 'AND X, 254' if it knows the low bit is set.  Emit code that checks
335   // to handle this.
336   if ((N->getOperator()->getName() == "and" ||
337        N->getOperator()->getName() == "or") &&
338       N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateCalls().empty() &&
339       N->getPredicateCalls().empty()) {
340     if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) {
341       if (!llvm::has_single_bit<uint32_t>(
342               II->getValue())) { // Don't bother with single bits.
343         // If this is at the root of the pattern, we emit a redundant
344         // CheckOpcode so that the following checks get factored properly under
345         // a single opcode check.
346         if (N == Pattern.getSrcPattern())
347           AddMatcher(new CheckOpcodeMatcher(CInfo));
348 
349         // Emit the CheckAndImm/CheckOrImm node.
350         if (N->getOperator()->getName() == "and")
351           AddMatcher(new CheckAndImmMatcher(II->getValue()));
352         else
353           AddMatcher(new CheckOrImmMatcher(II->getValue()));
354 
355         // Match the LHS of the AND as appropriate.
356         AddMatcher(new MoveChildMatcher(0));
357         EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0));
358         AddMatcher(new MoveParentMatcher());
359         return;
360       }
361     }
362   }
363 
364   // Check that the current opcode lines up.
365   AddMatcher(new CheckOpcodeMatcher(CInfo));
366 
367   // If this node has memory references (i.e. is a load or store), tell the
368   // interpreter to capture them in the memref array.
369   if (N->NodeHasProperty(SDNPMemOperand, CGP))
370     AddMatcher(new RecordMemRefMatcher());
371 
372   // If this node has a chain, then the chain is operand #0 is the SDNode, and
373   // the child numbers of the node are all offset by one.
374   unsigned OpNo = 0;
375   if (N->NodeHasProperty(SDNPHasChain, CGP)) {
376     // Record the node and remember it in our chained nodes list.
377     AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() +
378                                          "' chained node",
379                                  NextRecordedOperandNo));
380     // Remember all of the input chains our pattern will match.
381     MatchedChainNodes.push_back(NextRecordedOperandNo++);
382 
383     // Don't look at the input chain when matching the tree pattern to the
384     // SDNode.
385     OpNo = 1;
386 
387     // If this node is not the root and the subtree underneath it produces a
388     // chain, then the result of matching the node is also produce a chain.
389     // Beyond that, this means that we're also folding (at least) the root node
390     // into the node that produce the chain (for example, matching
391     // "(add reg, (load ptr))" as a add_with_memory on X86).  This is
392     // problematic, if the 'reg' node also uses the load (say, its chain).
393     // Graphically:
394     //
395     //         [LD]
396     //         ^  ^
397     //         |  \                              DAG's like cheese.
398     //        /    |
399     //       /    [YY]
400     //       |     ^
401     //      [XX]--/
402     //
403     // It would be invalid to fold XX and LD.  In this case, folding the two
404     // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
405     // To prevent this, we emit a dynamic check for legality before allowing
406     // this to be folded.
407     //
408     const TreePatternNode *Root = Pattern.getSrcPattern();
409     if (N != Root) {                             // Not the root of the pattern.
410       // If there is a node between the root and this node, then we definitely
411       // need to emit the check.
412       bool NeedCheck = !Root->hasChild(N);
413 
414       // If it *is* an immediate child of the root, we can still need a check if
415       // the root SDNode has multiple inputs.  For us, this means that it is an
416       // intrinsic, has multiple operands, or has other inputs like chain or
417       // glue).
418       if (!NeedCheck) {
419         const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
420         NeedCheck =
421           Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
422           Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
423           Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
424           PInfo.getNumOperands() > 1 ||
425           PInfo.hasProperty(SDNPHasChain) ||
426           PInfo.hasProperty(SDNPInGlue) ||
427           PInfo.hasProperty(SDNPOptInGlue);
428       }
429 
430       if (NeedCheck)
431         AddMatcher(new CheckFoldableChainNodeMatcher());
432     }
433   }
434 
435   // If this node has an output glue and isn't the root, remember it.
436   if (N->NodeHasProperty(SDNPOutGlue, CGP) &&
437       N != Pattern.getSrcPattern()) {
438     // TODO: This redundantly records nodes with both glues and chains.
439 
440     // Record the node and remember it in our chained nodes list.
441     AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() +
442                                          "' glue output node",
443                                  NextRecordedOperandNo));
444   }
445 
446   // If this node is known to have an input glue or if it *might* have an input
447   // glue, capture it as the glue input of the pattern.
448   if (N->NodeHasProperty(SDNPOptInGlue, CGP) ||
449       N->NodeHasProperty(SDNPInGlue, CGP))
450     AddMatcher(new CaptureGlueInputMatcher());
451 
452   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
453     // Get the code suitable for matching this child.  Move to the child, check
454     // it then move back to the parent.
455     AddMatcher(new MoveChildMatcher(OpNo));
456     EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i));
457     AddMatcher(new MoveParentMatcher());
458   }
459 }
460 
461 bool MatcherGen::recordUniqueNode(ArrayRef<std::string> Names) {
462   unsigned Entry = 0;
463   for (const std::string &Name : Names) {
464     unsigned &VarMapEntry = VariableMap[Name];
465     if (!Entry)
466       Entry = VarMapEntry;
467     assert(Entry == VarMapEntry);
468   }
469 
470   bool NewRecord = false;
471   if (Entry == 0) {
472     // If it is a named node, we must emit a 'Record' opcode.
473     std::string WhatFor;
474     for (const std::string &Name : Names) {
475       if (!WhatFor.empty())
476         WhatFor += ',';
477       WhatFor += "$" + Name;
478     }
479     AddMatcher(new RecordMatcher(WhatFor, NextRecordedOperandNo));
480     Entry = ++NextRecordedOperandNo;
481     NewRecord = true;
482   } else {
483     // If we get here, this is a second reference to a specific name.  Since
484     // we already have checked that the first reference is valid, we don't
485     // have to recursively match it, just check that it's the same as the
486     // previously named thing.
487     AddMatcher(new CheckSameMatcher(Entry-1));
488   }
489 
490   for (const std::string &Name : Names)
491     VariableMap[Name] = Entry;
492 
493   return NewRecord;
494 }
495 
496 void MatcherGen::EmitMatchCode(const TreePatternNode *N,
497                                TreePatternNode *NodeNoTypes) {
498   // If N and NodeNoTypes don't agree on a type, then this is a case where we
499   // need to do a type check.  Emit the check, apply the type to NodeNoTypes and
500   // reinfer any correlated types.
501   SmallVector<unsigned, 2> ResultsToTypeCheck;
502 
503   for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
504     if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
505     NodeNoTypes->setType(i, N->getExtType(i));
506     InferPossibleTypes();
507     ResultsToTypeCheck.push_back(i);
508   }
509 
510   // If this node has a name associated with it, capture it in VariableMap. If
511   // we already saw this in the pattern, emit code to verify dagness.
512   SmallVector<std::string, 4> Names;
513   if (!N->getName().empty())
514     Names.push_back(N->getName());
515 
516   for (const ScopedName &Name : N->getNamesAsPredicateArg()) {
517     Names.push_back(("pred:" + Twine(Name.getScope()) + ":" + Name.getIdentifier()).str());
518   }
519 
520   if (!Names.empty()) {
521     if (!recordUniqueNode(Names))
522       return;
523   }
524 
525   if (N->isLeaf())
526     EmitLeafMatchCode(N);
527   else
528     EmitOperatorMatchCode(N, NodeNoTypes);
529 
530   // If there are node predicates for this node, generate their checks.
531   for (unsigned i = 0, e = N->getPredicateCalls().size(); i != e; ++i) {
532     const TreePredicateCall &Pred = N->getPredicateCalls()[i];
533     SmallVector<unsigned, 4> Operands;
534     if (Pred.Fn.usesOperands()) {
535       TreePattern *TP = Pred.Fn.getOrigPatFragRecord();
536       for (unsigned i = 0; i < TP->getNumArgs(); ++i) {
537         std::string Name =
538             ("pred:" + Twine(Pred.Scope) + ":" + TP->getArgName(i)).str();
539         Operands.push_back(getNamedArgumentSlot(Name));
540       }
541     }
542     AddMatcher(new CheckPredicateMatcher(Pred.Fn, Operands));
543   }
544 
545   for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
546     AddMatcher(new CheckTypeMatcher(N->getSimpleType(ResultsToTypeCheck[i]),
547                                     ResultsToTypeCheck[i]));
548 }
549 
550 /// EmitMatcherCode - Generate the code that matches the predicate of this
551 /// pattern for the specified Variant.  If the variant is invalid this returns
552 /// true and does not generate code, if it is valid, it returns false.
553 bool MatcherGen::EmitMatcherCode(unsigned Variant) {
554   // If the root of the pattern is a ComplexPattern and if it is specified to
555   // match some number of root opcodes, these are considered to be our variants.
556   // Depending on which variant we're generating code for, emit the root opcode
557   // check.
558   if (const ComplexPattern *CP =
559                    Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
560     const std::vector<Record*> &OpNodes = CP->getRootNodes();
561     assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
562     if (Variant >= OpNodes.size()) return true;
563 
564     AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
565   } else {
566     if (Variant != 0) return true;
567   }
568 
569   // Emit the matcher for the pattern structure and types.
570   EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes.get());
571 
572   // If the pattern has a predicate on it (e.g. only enabled when a subtarget
573   // feature is around, do the check).
574   std::string PredicateCheck = Pattern.getPredicateCheck();
575   if (!PredicateCheck.empty())
576     AddMatcher(new CheckPatternPredicateMatcher(PredicateCheck));
577 
578   // Now that we've completed the structural type match, emit any ComplexPattern
579   // checks (e.g. addrmode matches).  We emit this after the structural match
580   // because they are generally more expensive to evaluate and more difficult to
581   // factor.
582   for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
583     auto N = MatchedComplexPatterns[i].first;
584 
585     // Remember where the results of this match get stuck.
586     if (N->isLeaf()) {
587       NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1;
588     } else {
589       unsigned CurOp = NextRecordedOperandNo;
590       for (unsigned i = 0; i < N->getNumChildren(); ++i) {
591         NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1;
592         CurOp += N->getChild(i)->getNumMIResults(CGP);
593       }
594     }
595 
596     // Get the slot we recorded the value in from the name on the node.
597     unsigned RecNodeEntry = MatchedComplexPatterns[i].second;
598 
599     const ComplexPattern *CP = N->getComplexPatternInfo(CGP);
600     assert(CP && "Not a valid ComplexPattern!");
601 
602     // Emit a CheckComplexPat operation, which does the match (aborting if it
603     // fails) and pushes the matched operands onto the recorded nodes list.
604     AddMatcher(new CheckComplexPatMatcher(*CP, RecNodeEntry, N->getName(),
605                                           NextRecordedOperandNo));
606 
607     // Record the right number of operands.
608     NextRecordedOperandNo += CP->getNumOperands();
609     if (CP->hasProperty(SDNPHasChain)) {
610       // If the complex pattern has a chain, then we need to keep track of the
611       // fact that we just recorded a chain input.  The chain input will be
612       // matched as the last operand of the predicate if it was successful.
613       ++NextRecordedOperandNo; // Chained node operand.
614 
615       // It is the last operand recorded.
616       assert(NextRecordedOperandNo > 1 &&
617              "Should have recorded input/result chains at least!");
618       MatchedChainNodes.push_back(NextRecordedOperandNo-1);
619     }
620 
621     // TODO: Complex patterns can't have output glues, if they did, we'd want
622     // to record them.
623   }
624 
625   return false;
626 }
627 
628 
629 //===----------------------------------------------------------------------===//
630 // Node Result Generation
631 //===----------------------------------------------------------------------===//
632 
633 void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
634                                           SmallVectorImpl<unsigned> &ResultOps){
635   assert(!N->getName().empty() && "Operand not named!");
636 
637   if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) {
638     // Complex operands have already been completely selected, just find the
639     // right slot ant add the arguments directly.
640     for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
641       ResultOps.push_back(SlotNo - 1 + i);
642 
643     return;
644   }
645 
646   unsigned SlotNo = getNamedArgumentSlot(N->getName());
647 
648   // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
649   // version of the immediate so that it doesn't get selected due to some other
650   // node use.
651   if (!N->isLeaf()) {
652     StringRef OperatorName = N->getOperator()->getName();
653     if (OperatorName == "imm" || OperatorName == "fpimm") {
654       AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
655       ResultOps.push_back(NextRecordedOperandNo++);
656       return;
657     }
658   }
659 
660   for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
661     ResultOps.push_back(SlotNo + i);
662 }
663 
664 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
665                                          SmallVectorImpl<unsigned> &ResultOps) {
666   assert(N->isLeaf() && "Must be a leaf");
667 
668   if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
669     AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getSimpleType(0)));
670     ResultOps.push_back(NextRecordedOperandNo++);
671     return;
672   }
673 
674   // If this is an explicit register reference, handle it.
675   if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
676     Record *Def = DI->getDef();
677     if (Def->isSubClassOf("Register")) {
678       const CodeGenRegister *Reg =
679         CGP.getTargetInfo().getRegBank().getReg(Def);
680       AddMatcher(new EmitRegisterMatcher(Reg, N->getSimpleType(0)));
681       ResultOps.push_back(NextRecordedOperandNo++);
682       return;
683     }
684 
685     if (Def->getName() == "zero_reg") {
686       AddMatcher(new EmitRegisterMatcher(nullptr, N->getSimpleType(0)));
687       ResultOps.push_back(NextRecordedOperandNo++);
688       return;
689     }
690 
691     if (Def->getName() == "undef_tied_input") {
692       MVT::SimpleValueType ResultVT = N->getSimpleType(0);
693       auto IDOperandNo = NextRecordedOperandNo++;
694       Record *ImpDef = Def->getRecords().getDef("IMPLICIT_DEF");
695       CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(ImpDef);
696       AddMatcher(new EmitNodeMatcher(II, ResultVT, std::nullopt, false, false,
697                                      false, false, -1, IDOperandNo));
698       ResultOps.push_back(IDOperandNo);
699       return;
700     }
701 
702     // Handle a reference to a register class. This is used
703     // in COPY_TO_SUBREG instructions.
704     if (Def->isSubClassOf("RegisterOperand"))
705       Def = Def->getValueAsDef("RegClass");
706     if (Def->isSubClassOf("RegisterClass")) {
707       // If the register class has an enum integer value greater than 127, the
708       // encoding overflows the limit of 7 bits, which precludes the use of
709       // StringIntegerMatcher. In this case, fallback to using IntegerMatcher.
710       const CodeGenRegisterClass &RC =
711           CGP.getTargetInfo().getRegisterClass(Def);
712       if (RC.EnumValue <= 127) {
713         std::string Value = getQualifiedName(Def) + "RegClassID";
714         AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
715         ResultOps.push_back(NextRecordedOperandNo++);
716       } else {
717         AddMatcher(new EmitIntegerMatcher(RC.EnumValue, MVT::i32));
718         ResultOps.push_back(NextRecordedOperandNo++);
719       }
720       return;
721     }
722 
723     // Handle a subregister index. This is used for INSERT_SUBREG etc.
724     if (Def->isSubClassOf("SubRegIndex")) {
725       const CodeGenRegBank &RB = CGP.getTargetInfo().getRegBank();
726       // If we have more than 127 subreg indices the encoding can overflow
727       // 7 bit and we cannot use StringInteger.
728       if (RB.getSubRegIndices().size() > 127) {
729         const CodeGenSubRegIndex *I = RB.findSubRegIdx(Def);
730         assert(I && "Cannot find subreg index by name!");
731         if (I->EnumValue > 127) {
732           AddMatcher(new EmitIntegerMatcher(I->EnumValue, MVT::i32));
733           ResultOps.push_back(NextRecordedOperandNo++);
734           return;
735         }
736       }
737       std::string Value = getQualifiedName(Def);
738       AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
739       ResultOps.push_back(NextRecordedOperandNo++);
740       return;
741     }
742   }
743 
744   errs() << "unhandled leaf node:\n";
745   N->dump();
746 }
747 
748 static bool
749 mayInstNodeLoadOrStore(const TreePatternNode *N,
750                        const CodeGenDAGPatterns &CGP) {
751   Record *Op = N->getOperator();
752   const CodeGenTarget &CGT = CGP.getTargetInfo();
753   CodeGenInstruction &II = CGT.getInstruction(Op);
754   return II.mayLoad || II.mayStore;
755 }
756 
757 static unsigned
758 numNodesThatMayLoadOrStore(const TreePatternNode *N,
759                            const CodeGenDAGPatterns &CGP) {
760   if (N->isLeaf())
761     return 0;
762 
763   Record *OpRec = N->getOperator();
764   if (!OpRec->isSubClassOf("Instruction"))
765     return 0;
766 
767   unsigned Count = 0;
768   if (mayInstNodeLoadOrStore(N, CGP))
769     ++Count;
770 
771   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
772     Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP);
773 
774   return Count;
775 }
776 
777 void MatcherGen::
778 EmitResultInstructionAsOperand(const TreePatternNode *N,
779                                SmallVectorImpl<unsigned> &OutputOps) {
780   Record *Op = N->getOperator();
781   const CodeGenTarget &CGT = CGP.getTargetInfo();
782   CodeGenInstruction &II = CGT.getInstruction(Op);
783   const DAGInstruction &Inst = CGP.getInstruction(Op);
784 
785   bool isRoot = N == Pattern.getDstPattern();
786 
787   // TreeHasOutGlue - True if this tree has glue.
788   bool TreeHasInGlue = false, TreeHasOutGlue = false;
789   if (isRoot) {
790     const TreePatternNode *SrcPat = Pattern.getSrcPattern();
791     TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) ||
792                     SrcPat->TreeHasProperty(SDNPInGlue, CGP);
793 
794     // FIXME2: this is checking the entire pattern, not just the node in
795     // question, doing this just for the root seems like a total hack.
796     TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP);
797   }
798 
799   // NumResults - This is the number of results produced by the instruction in
800   // the "outs" list.
801   unsigned NumResults = Inst.getNumResults();
802 
803   // Number of operands we know the output instruction must have. If it is
804   // variadic, we could have more operands.
805   unsigned NumFixedOperands = II.Operands.size();
806 
807   SmallVector<unsigned, 8> InstOps;
808 
809   // Loop over all of the fixed operands of the instruction pattern, emitting
810   // code to fill them all in. The node 'N' usually has number children equal to
811   // the number of input operands of the instruction.  However, in cases where
812   // there are predicate operands for an instruction, we need to fill in the
813   // 'execute always' values. Match up the node operands to the instruction
814   // operands to do this.
815   unsigned ChildNo = 0;
816 
817   // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the
818   // number of operands at the end of the list which have default values.
819   // Those can come from the pattern if it provides enough arguments, or be
820   // filled in with the default if the pattern hasn't provided them. But any
821   // operand with a default value _before_ the last mandatory one will be
822   // filled in with their defaults unconditionally.
823   unsigned NonOverridableOperands = NumFixedOperands;
824   while (NonOverridableOperands > NumResults &&
825          CGP.operandHasDefault(II.Operands[NonOverridableOperands-1].Rec))
826     --NonOverridableOperands;
827 
828   for (unsigned InstOpNo = NumResults, e = NumFixedOperands;
829        InstOpNo != e; ++InstOpNo) {
830     // Determine what to emit for this operand.
831     Record *OperandNode = II.Operands[InstOpNo].Rec;
832     if (CGP.operandHasDefault(OperandNode) &&
833         (InstOpNo < NonOverridableOperands || ChildNo >= N->getNumChildren())) {
834       // This is a predicate or optional def operand which the pattern has not
835       // overridden, or which we aren't letting it override; emit the 'default
836       // ops' operands.
837       const DAGDefaultOperand &DefaultOp
838         = CGP.getDefaultOperand(OperandNode);
839       for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
840         EmitResultOperand(DefaultOp.DefaultOps[i].get(), InstOps);
841       continue;
842     }
843 
844     // Otherwise this is a normal operand or a predicate operand without
845     // 'execute always'; emit it.
846 
847     // For operands with multiple sub-operands we may need to emit
848     // multiple child patterns to cover them all.  However, ComplexPattern
849     // children may themselves emit multiple MI operands.
850     unsigned NumSubOps = 1;
851     if (OperandNode->isSubClassOf("Operand")) {
852       DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
853       if (unsigned NumArgs = MIOpInfo->getNumArgs())
854         NumSubOps = NumArgs;
855     }
856 
857     unsigned FinalNumOps = InstOps.size() + NumSubOps;
858     while (InstOps.size() < FinalNumOps) {
859       const TreePatternNode *Child = N->getChild(ChildNo);
860       unsigned BeforeAddingNumOps = InstOps.size();
861       EmitResultOperand(Child, InstOps);
862       assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
863 
864       // If the operand is an instruction and it produced multiple results, just
865       // take the first one.
866       if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))
867         InstOps.resize(BeforeAddingNumOps+1);
868 
869       ++ChildNo;
870     }
871   }
872 
873   // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't
874   // expand suboperands, use default operands, or other features determined from
875   // the CodeGenInstruction after the fixed operands, which were handled
876   // above. Emit the remaining instructions implicitly added by the use for
877   // variable_ops.
878   if (II.Operands.isVariadic) {
879     for (unsigned I = ChildNo, E = N->getNumChildren(); I < E; ++I)
880       EmitResultOperand(N->getChild(I), InstOps);
881   }
882 
883   // If this node has input glue or explicitly specified input physregs, we
884   // need to add chained and glued copyfromreg nodes and materialize the glue
885   // input.
886   if (isRoot && !PhysRegInputs.empty()) {
887     // Emit all of the CopyToReg nodes for the input physical registers.  These
888     // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
889     for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i) {
890       const CodeGenRegister *Reg =
891         CGP.getTargetInfo().getRegBank().getReg(PhysRegInputs[i].first);
892       AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
893                                           Reg));
894     }
895 
896     // Even if the node has no other glue inputs, the resultant node must be
897     // glued to the CopyFromReg nodes we just generated.
898     TreeHasInGlue = true;
899   }
900 
901   // Result order: node results, chain, glue
902 
903   // Determine the result types.
904   SmallVector<MVT::SimpleValueType, 4> ResultVTs;
905   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)
906     ResultVTs.push_back(N->getSimpleType(i));
907 
908   // If this is the root instruction of a pattern that has physical registers in
909   // its result pattern, add output VTs for them.  For example, X86 has:
910   //   (set AL, (mul ...))
911   // This also handles implicit results like:
912   //   (implicit EFLAGS)
913   if (isRoot && !Pattern.getDstRegs().empty()) {
914     // If the root came from an implicit def in the instruction handling stuff,
915     // don't re-add it.
916     Record *HandledReg = nullptr;
917     if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
918       HandledReg = II.ImplicitDefs[0];
919 
920     for (Record *Reg : Pattern.getDstRegs()) {
921       if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
922       ResultVTs.push_back(getRegisterValueType(Reg, CGT));
923     }
924   }
925 
926   // If this is the root of the pattern and the pattern we're matching includes
927   // a node that is variadic, mark the generated node as variadic so that it
928   // gets the excess operands from the input DAG.
929   int NumFixedArityOperands = -1;
930   if (isRoot &&
931       Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP))
932     NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
933 
934   // If this is the root node and multiple matched nodes in the input pattern
935   // have MemRefs in them, have the interpreter collect them and plop them onto
936   // this node. If there is just one node with MemRefs, leave them on that node
937   // even if it is not the root.
938   //
939   // FIXME3: This is actively incorrect for result patterns with multiple
940   // memory-referencing instructions.
941   bool PatternHasMemOperands =
942     Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
943 
944   bool NodeHasMemRefs = false;
945   if (PatternHasMemOperands) {
946     unsigned NumNodesThatLoadOrStore =
947       numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP);
948     bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) &&
949                                    NumNodesThatLoadOrStore == 1;
950     NodeHasMemRefs =
951       NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) ||
952                                              NumNodesThatLoadOrStore != 1));
953   }
954 
955   // Determine whether we need to attach a chain to this node.
956   bool NodeHasChain = false;
957   if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP)) {
958     // For some instructions, we were able to infer from the pattern whether
959     // they should have a chain.  Otherwise, attach the chain to the root.
960     //
961     // FIXME2: This is extremely dubious for several reasons, not the least of
962     // which it gives special status to instructions with patterns that Pat<>
963     // nodes can't duplicate.
964     if (II.hasChain_Inferred)
965       NodeHasChain = II.hasChain;
966     else
967       NodeHasChain = isRoot;
968     // Instructions which load and store from memory should have a chain,
969     // regardless of whether they happen to have a pattern saying so.
970     if (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad ||
971         II.hasSideEffects)
972       NodeHasChain = true;
973   }
974 
975   assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) &&
976          "Node has no result");
977 
978   AddMatcher(new EmitNodeMatcher(II, ResultVTs, InstOps, NodeHasChain,
979                                  TreeHasInGlue, TreeHasOutGlue, NodeHasMemRefs,
980                                  NumFixedArityOperands, NextRecordedOperandNo));
981 
982   // The non-chain and non-glue results of the newly emitted node get recorded.
983   for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
984     if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break;
985     OutputOps.push_back(NextRecordedOperandNo++);
986   }
987 }
988 
989 void MatcherGen::
990 EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
991                                SmallVectorImpl<unsigned> &ResultOps) {
992   assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
993 
994   // Emit the operand.
995   SmallVector<unsigned, 8> InputOps;
996 
997   // FIXME2: Could easily generalize this to support multiple inputs and outputs
998   // to the SDNodeXForm.  For now we just support one input and one output like
999   // the old instruction selector.
1000   assert(N->getNumChildren() == 1);
1001   EmitResultOperand(N->getChild(0), InputOps);
1002 
1003   // The input currently must have produced exactly one result.
1004   assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
1005 
1006   AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
1007   ResultOps.push_back(NextRecordedOperandNo++);
1008 }
1009 
1010 void MatcherGen::EmitResultOperand(const TreePatternNode *N,
1011                                    SmallVectorImpl<unsigned> &ResultOps) {
1012   // This is something selected from the pattern we matched.
1013   if (!N->getName().empty())
1014     return EmitResultOfNamedOperand(N, ResultOps);
1015 
1016   if (N->isLeaf())
1017     return EmitResultLeafAsOperand(N, ResultOps);
1018 
1019   Record *OpRec = N->getOperator();
1020   if (OpRec->isSubClassOf("Instruction"))
1021     return EmitResultInstructionAsOperand(N, ResultOps);
1022   if (OpRec->isSubClassOf("SDNodeXForm"))
1023     return EmitResultSDNodeXFormAsOperand(N, ResultOps);
1024   errs() << "Unknown result node to emit code for: " << *N << '\n';
1025   PrintFatalError("Unknown node in result pattern!");
1026 }
1027 
1028 void MatcherGen::EmitResultCode() {
1029   // Patterns that match nodes with (potentially multiple) chain inputs have to
1030   // merge them together into a token factor.  This informs the generated code
1031   // what all the chained nodes are.
1032   if (!MatchedChainNodes.empty())
1033     AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes));
1034 
1035   // Codegen the root of the result pattern, capturing the resulting values.
1036   SmallVector<unsigned, 8> Ops;
1037   EmitResultOperand(Pattern.getDstPattern(), Ops);
1038 
1039   // At this point, we have however many values the result pattern produces.
1040   // However, the input pattern might not need all of these.  If there are
1041   // excess values at the end (such as implicit defs of condition codes etc)
1042   // just lop them off.  This doesn't need to worry about glue or chains, just
1043   // explicit results.
1044   //
1045   unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();
1046 
1047   // If the pattern also has (implicit) results, count them as well.
1048   if (!Pattern.getDstRegs().empty()) {
1049     // If the root came from an implicit def in the instruction handling stuff,
1050     // don't re-add it.
1051     Record *HandledReg = nullptr;
1052     const TreePatternNode *DstPat = Pattern.getDstPattern();
1053     if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
1054       const CodeGenTarget &CGT = CGP.getTargetInfo();
1055       CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());
1056 
1057       if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
1058         HandledReg = II.ImplicitDefs[0];
1059     }
1060 
1061     for (Record *Reg : Pattern.getDstRegs()) {
1062       if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
1063       ++NumSrcResults;
1064     }
1065   }
1066 
1067   SmallVector<unsigned, 8> Results(Ops);
1068 
1069   // Apply result permutation.
1070   for (unsigned ResNo = 0; ResNo < Pattern.getDstPattern()->getNumResults();
1071        ++ResNo) {
1072     Results[ResNo] = Ops[Pattern.getDstPattern()->getResultIndex(ResNo)];
1073   }
1074 
1075   Results.resize(NumSrcResults);
1076   AddMatcher(new CompleteMatchMatcher(Results, Pattern));
1077 }
1078 
1079 
1080 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with
1081 /// the specified variant.  If the variant number is invalid, this returns null.
1082 Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
1083                                        unsigned Variant,
1084                                        const CodeGenDAGPatterns &CGP) {
1085   MatcherGen Gen(Pattern, CGP);
1086 
1087   // Generate the code for the matcher.
1088   if (Gen.EmitMatcherCode(Variant))
1089     return nullptr;
1090 
1091   // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
1092   // FIXME2: Split result code out to another table, and make the matcher end
1093   // with an "Emit <index>" command.  This allows result generation stuff to be
1094   // shared and factored?
1095 
1096   // If the match succeeds, then we generate Pattern.
1097   Gen.EmitResultCode();
1098 
1099   // Unconditional match.
1100   return Gen.GetMatcher();
1101 }
1102