1 //===- InstrInfoEmitter.cpp - Generate a Instruction Set Desc. --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend is responsible for emitting a description of the target
10 // instruction set for the code generator.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenDAGPatterns.h"
15 #include "CodeGenInstruction.h"
16 #include "CodeGenSchedule.h"
17 #include "CodeGenTarget.h"
18 #include "PredicateExpander.h"
19 #include "SequenceToOffsetTable.h"
20 #include "SubtargetFeatureInfo.h"
21 #include "TableGenBackends.h"
22 #include "Types.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/Support/Casting.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/TableGen/Error.h"
30 #include "llvm/TableGen/Record.h"
31 #include "llvm/TableGen/TableGenBackend.h"
32 #include <cassert>
33 #include <cstdint>
34 #include <iterator>
35 #include <map>
36 #include <string>
37 #include <utility>
38 #include <vector>
39 
40 using namespace llvm;
41 
42 cl::OptionCategory InstrInfoEmitterCat("Options for -gen-instr-info");
43 static cl::opt<bool> ExpandMIOperandInfo(
44     "instr-info-expand-mi-operand-info",
45     cl::desc("Expand operand's MIOperandInfo DAG into suboperands"),
46     cl::cat(InstrInfoEmitterCat), cl::init(true));
47 
48 namespace {
49 
50 class InstrInfoEmitter {
51   RecordKeeper &Records;
52   CodeGenDAGPatterns CDP;
53   const CodeGenSchedModels &SchedModels;
54 
55 public:
56   InstrInfoEmitter(RecordKeeper &R):
57     Records(R), CDP(R), SchedModels(CDP.getTargetInfo().getSchedModels()) {}
58 
59   // run - Output the instruction set description.
60   void run(raw_ostream &OS);
61 
62 private:
63   void emitEnums(raw_ostream &OS);
64 
65   typedef std::vector<std::string> OperandInfoTy;
66   typedef std::vector<OperandInfoTy> OperandInfoListTy;
67   typedef std::map<OperandInfoTy, unsigned> OperandInfoMapTy;
68 
69   /// The keys of this map are maps which have OpName enum values as their keys
70   /// and instruction operand indices as their values.  The values of this map
71   /// are lists of instruction names.
72   typedef std::map<std::map<unsigned, unsigned>,
73                    std::vector<std::string>> OpNameMapTy;
74   typedef std::map<std::string, unsigned>::iterator StrUintMapIter;
75 
76   /// Generate member functions in the target-specific GenInstrInfo class.
77   ///
78   /// This method is used to custom expand TIIPredicate definitions.
79   /// See file llvm/Target/TargetInstPredicates.td for a description of what is
80   /// a TIIPredicate and how to use it.
81   void emitTIIHelperMethods(raw_ostream &OS, StringRef TargetName,
82                             bool ExpandDefinition = true);
83 
84   /// Expand TIIPredicate definitions to functions that accept a const MCInst
85   /// reference.
86   void emitMCIIHelperMethods(raw_ostream &OS, StringRef TargetName);
87 
88   /// Write verifyInstructionPredicates methods.
89   void emitFeatureVerifier(raw_ostream &OS, const CodeGenTarget &Target);
90   void emitRecord(const CodeGenInstruction &Inst, unsigned Num,
91                   Record *InstrInfo,
92                   std::map<std::vector<Record *>, unsigned> &EL,
93                   const OperandInfoMapTy &OperandInfo, raw_ostream &OS);
94   void emitOperandTypeMappings(
95       raw_ostream &OS, const CodeGenTarget &Target,
96       ArrayRef<const CodeGenInstruction *> NumberedInstructions);
97   void initOperandMapData(
98             ArrayRef<const CodeGenInstruction *> NumberedInstructions,
99             StringRef Namespace,
100             std::map<std::string, unsigned> &Operands,
101             OpNameMapTy &OperandMap);
102   void emitOperandNameMappings(raw_ostream &OS, const CodeGenTarget &Target,
103             ArrayRef<const CodeGenInstruction*> NumberedInstructions);
104 
105   void emitLogicalOperandSizeMappings(
106       raw_ostream &OS, StringRef Namespace,
107       ArrayRef<const CodeGenInstruction *> NumberedInstructions);
108   void emitLogicalOperandTypeMappings(
109       raw_ostream &OS, StringRef Namespace,
110       ArrayRef<const CodeGenInstruction *> NumberedInstructions);
111 
112   // Operand information.
113   unsigned CollectOperandInfo(OperandInfoListTy &OperandInfoList,
114                               OperandInfoMapTy &OperandInfoMap);
115   void EmitOperandInfo(raw_ostream &OS, OperandInfoListTy &OperandInfoList);
116   OperandInfoTy GetOperandInfo(const CodeGenInstruction &Inst);
117 };
118 
119 } // end anonymous namespace
120 
121 //===----------------------------------------------------------------------===//
122 // Operand Info Emission.
123 //===----------------------------------------------------------------------===//
124 
125 InstrInfoEmitter::OperandInfoTy
126 InstrInfoEmitter::GetOperandInfo(const CodeGenInstruction &Inst) {
127   OperandInfoTy Result;
128 
129   for (auto &Op : Inst.Operands) {
130     // Handle aggregate operands and normal operands the same way by expanding
131     // either case into a list of operands for this op.
132     std::vector<CGIOperandList::OperandInfo> OperandList;
133 
134     // This might be a multiple operand thing.  Targets like X86 have
135     // registers in their multi-operand operands.  It may also be an anonymous
136     // operand, which has a single operand, but no declared class for the
137     // operand.
138     DagInit *MIOI = Op.MIOperandInfo;
139 
140     if (!MIOI || MIOI->getNumArgs() == 0) {
141       // Single, anonymous, operand.
142       OperandList.push_back(Op);
143     } else {
144       for (unsigned j = 0, e = Op.MINumOperands; j != e; ++j) {
145         OperandList.push_back(Op);
146 
147         auto *OpR = cast<DefInit>(MIOI->getArg(j))->getDef();
148         OperandList.back().Rec = OpR;
149       }
150     }
151 
152     for (unsigned j = 0, e = OperandList.size(); j != e; ++j) {
153       Record *OpR = OperandList[j].Rec;
154       std::string Res;
155 
156       if (OpR->isSubClassOf("RegisterOperand"))
157         OpR = OpR->getValueAsDef("RegClass");
158       if (OpR->isSubClassOf("RegisterClass"))
159         Res += getQualifiedName(OpR) + "RegClassID, ";
160       else if (OpR->isSubClassOf("PointerLikeRegClass"))
161         Res += utostr(OpR->getValueAsInt("RegClassKind")) + ", ";
162       else
163         // -1 means the operand does not have a fixed register class.
164         Res += "-1, ";
165 
166       // Fill in applicable flags.
167       Res += "0";
168 
169       // Ptr value whose register class is resolved via callback.
170       if (OpR->isSubClassOf("PointerLikeRegClass"))
171         Res += "|(1<<MCOI::LookupPtrRegClass)";
172 
173       // Predicate operands.  Check to see if the original unexpanded operand
174       // was of type PredicateOp.
175       if (Op.Rec->isSubClassOf("PredicateOp"))
176         Res += "|(1<<MCOI::Predicate)";
177 
178       // Optional def operands.  Check to see if the original unexpanded operand
179       // was of type OptionalDefOperand.
180       if (Op.Rec->isSubClassOf("OptionalDefOperand"))
181         Res += "|(1<<MCOI::OptionalDef)";
182 
183       // Branch target operands.  Check to see if the original unexpanded
184       // operand was of type BranchTargetOperand.
185       if (Op.Rec->isSubClassOf("BranchTargetOperand"))
186         Res += "|(1<<MCOI::BranchTarget)";
187 
188       // Fill in operand type.
189       Res += ", ";
190       assert(!Op.OperandType.empty() && "Invalid operand type.");
191       Res += Op.OperandType;
192 
193       // Fill in constraint info.
194       Res += ", ";
195 
196       const CGIOperandList::ConstraintInfo &Constraint =
197         Op.Constraints[j];
198       if (Constraint.isNone())
199         Res += "0";
200       else if (Constraint.isEarlyClobber())
201         Res += "MCOI_EARLY_CLOBBER";
202       else {
203         assert(Constraint.isTied());
204         Res += "MCOI_TIED_TO(" + utostr(Constraint.getTiedOperand()) + ")";
205       }
206 
207       Result.push_back(Res);
208     }
209   }
210 
211   return Result;
212 }
213 
214 unsigned
215 InstrInfoEmitter::CollectOperandInfo(OperandInfoListTy &OperandInfoList,
216                                      OperandInfoMapTy &OperandInfoMap) {
217   const CodeGenTarget &Target = CDP.getTargetInfo();
218   unsigned Offset = 0;
219   for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
220     OperandInfoTy OperandInfo = GetOperandInfo(*Inst);
221     if (OperandInfoMap.insert({OperandInfo, Offset}).second) {
222       OperandInfoList.push_back(OperandInfo);
223       Offset += OperandInfo.size();
224     }
225   }
226   return Offset;
227 }
228 
229 void InstrInfoEmitter::EmitOperandInfo(raw_ostream &OS,
230                                        OperandInfoListTy &OperandInfoList) {
231   unsigned Offset = 0;
232   for (auto &OperandInfo : OperandInfoList) {
233     OS << "    /* " << Offset << " */";
234     for (auto &Info : OperandInfo)
235       OS << " { " << Info << " },";
236     OS << '\n';
237     Offset += OperandInfo.size();
238   }
239 }
240 
241 /// Initialize data structures for generating operand name mappings.
242 ///
243 /// \param Operands [out] A map used to generate the OpName enum with operand
244 ///        names as its keys and operand enum values as its values.
245 /// \param OperandMap [out] A map for representing the operand name mappings for
246 ///        each instructions.  This is used to generate the OperandMap table as
247 ///        well as the getNamedOperandIdx() function.
248 void InstrInfoEmitter::initOperandMapData(
249         ArrayRef<const CodeGenInstruction *> NumberedInstructions,
250         StringRef Namespace,
251         std::map<std::string, unsigned> &Operands,
252         OpNameMapTy &OperandMap) {
253   unsigned NumOperands = 0;
254   for (const CodeGenInstruction *Inst : NumberedInstructions) {
255     if (!Inst->TheDef->getValueAsBit("UseNamedOperandTable"))
256       continue;
257     std::map<unsigned, unsigned> OpList;
258     for (const auto &Info : Inst->Operands) {
259       StrUintMapIter I = Operands.find(Info.Name);
260 
261       if (I == Operands.end()) {
262         I = Operands.insert(Operands.begin(),
263                     std::pair<std::string, unsigned>(Info.Name, NumOperands++));
264       }
265       OpList[I->second] = Info.MIOperandNo;
266     }
267     OperandMap[OpList].push_back(Namespace.str() + "::" +
268                                  Inst->TheDef->getName().str());
269   }
270 }
271 
272 /// Generate a table and function for looking up the indices of operands by
273 /// name.
274 ///
275 /// This code generates:
276 /// - An enum in the llvm::TargetNamespace::OpName namespace, with one entry
277 ///   for each operand name.
278 /// - A 2-dimensional table called OperandMap for mapping OpName enum values to
279 ///   operand indices.
280 /// - A function called getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIdx)
281 ///   for looking up the operand index for an instruction, given a value from
282 ///   OpName enum
283 void InstrInfoEmitter::emitOperandNameMappings(raw_ostream &OS,
284            const CodeGenTarget &Target,
285            ArrayRef<const CodeGenInstruction*> NumberedInstructions) {
286   StringRef Namespace = Target.getInstNamespace();
287   std::string OpNameNS = "OpName";
288   // Map of operand names to their enumeration value.  This will be used to
289   // generate the OpName enum.
290   std::map<std::string, unsigned> Operands;
291   OpNameMapTy OperandMap;
292 
293   initOperandMapData(NumberedInstructions, Namespace, Operands, OperandMap);
294 
295   OS << "#ifdef GET_INSTRINFO_OPERAND_ENUM\n";
296   OS << "#undef GET_INSTRINFO_OPERAND_ENUM\n";
297   OS << "namespace llvm {\n";
298   OS << "namespace " << Namespace << " {\n";
299   OS << "namespace " << OpNameNS << " {\n";
300   OS << "enum {\n";
301   for (const auto &Op : Operands)
302     OS << "  " << Op.first << " = " << Op.second << ",\n";
303 
304   OS << "  OPERAND_LAST";
305   OS << "\n};\n";
306   OS << "} // end namespace OpName\n";
307   OS << "} // end namespace " << Namespace << "\n";
308   OS << "} // end namespace llvm\n";
309   OS << "#endif //GET_INSTRINFO_OPERAND_ENUM\n\n";
310 
311   OS << "#ifdef GET_INSTRINFO_NAMED_OPS\n";
312   OS << "#undef GET_INSTRINFO_NAMED_OPS\n";
313   OS << "namespace llvm {\n";
314   OS << "namespace " << Namespace << " {\n";
315   OS << "LLVM_READONLY\n";
316   OS << "int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIdx) {\n";
317   if (!Operands.empty()) {
318     OS << "  static const int16_t OperandMap [][" << Operands.size()
319        << "] = {\n";
320     for (const auto &Entry : OperandMap) {
321       const std::map<unsigned, unsigned> &OpList = Entry.first;
322       OS << "{";
323 
324       // Emit a row of the OperandMap table
325       for (unsigned i = 0, e = Operands.size(); i != e; ++i)
326         OS << (OpList.count(i) == 0 ? -1 : (int)OpList.find(i)->second) << ", ";
327 
328       OS << "},\n";
329     }
330     OS << "};\n";
331 
332     OS << "  switch(Opcode) {\n";
333     unsigned TableIndex = 0;
334     for (const auto &Entry : OperandMap) {
335       for (const std::string &Name : Entry.second)
336         OS << "  case " << Name << ":\n";
337 
338       OS << "    return OperandMap[" << TableIndex++ << "][NamedIdx];\n";
339     }
340     OS << "  default: return -1;\n";
341     OS << "  }\n";
342   } else {
343     // There are no operands, so no need to emit anything
344     OS << "  return -1;\n";
345   }
346   OS << "}\n";
347   OS << "} // end namespace " << Namespace << "\n";
348   OS << "} // end namespace llvm\n";
349   OS << "#endif //GET_INSTRINFO_NAMED_OPS\n\n";
350 }
351 
352 /// Generate an enum for all the operand types for this target, under the
353 /// llvm::TargetNamespace::OpTypes namespace.
354 /// Operand types are all definitions derived of the Operand Target.td class.
355 void InstrInfoEmitter::emitOperandTypeMappings(
356     raw_ostream &OS, const CodeGenTarget &Target,
357     ArrayRef<const CodeGenInstruction *> NumberedInstructions) {
358 
359   StringRef Namespace = Target.getInstNamespace();
360   std::vector<Record *> Operands = Records.getAllDerivedDefinitions("Operand");
361   std::vector<Record *> RegisterOperands =
362       Records.getAllDerivedDefinitions("RegisterOperand");
363   std::vector<Record *> RegisterClasses =
364       Records.getAllDerivedDefinitions("RegisterClass");
365 
366   OS << "#ifdef GET_INSTRINFO_OPERAND_TYPES_ENUM\n";
367   OS << "#undef GET_INSTRINFO_OPERAND_TYPES_ENUM\n";
368   OS << "namespace llvm {\n";
369   OS << "namespace " << Namespace << " {\n";
370   OS << "namespace OpTypes {\n";
371   OS << "enum OperandType {\n";
372 
373   unsigned EnumVal = 0;
374   for (const std::vector<Record *> *RecordsToAdd :
375        {&Operands, &RegisterOperands, &RegisterClasses}) {
376     for (const Record *Op : *RecordsToAdd) {
377       if (!Op->isAnonymous())
378         OS << "  " << Op->getName() << " = " << EnumVal << ",\n";
379       ++EnumVal;
380     }
381   }
382 
383   OS << "  OPERAND_TYPE_LIST_END" << "\n};\n";
384   OS << "} // end namespace OpTypes\n";
385   OS << "} // end namespace " << Namespace << "\n";
386   OS << "} // end namespace llvm\n";
387   OS << "#endif // GET_INSTRINFO_OPERAND_TYPES_ENUM\n\n";
388 
389   OS << "#ifdef GET_INSTRINFO_OPERAND_TYPE\n";
390   OS << "#undef GET_INSTRINFO_OPERAND_TYPE\n";
391   OS << "namespace llvm {\n";
392   OS << "namespace " << Namespace << " {\n";
393   OS << "LLVM_READONLY\n";
394   OS << "static int getOperandType(uint16_t Opcode, uint16_t OpIdx) {\n";
395   auto getInstrName = [&](int I) -> StringRef {
396     return NumberedInstructions[I]->TheDef->getName();
397   };
398   // TODO: Factor out duplicate operand lists to compress the tables.
399   if (!NumberedInstructions.empty()) {
400     std::vector<int> OperandOffsets;
401     std::vector<Record *> OperandRecords;
402     int CurrentOffset = 0;
403     for (const CodeGenInstruction *Inst : NumberedInstructions) {
404       OperandOffsets.push_back(CurrentOffset);
405       for (const auto &Op : Inst->Operands) {
406         const DagInit *MIOI = Op.MIOperandInfo;
407         if (!ExpandMIOperandInfo || !MIOI || MIOI->getNumArgs() == 0) {
408           // Single, anonymous, operand.
409           OperandRecords.push_back(Op.Rec);
410           ++CurrentOffset;
411         } else {
412           for (Init *Arg : MIOI->getArgs()) {
413             OperandRecords.push_back(cast<DefInit>(Arg)->getDef());
414             ++CurrentOffset;
415           }
416         }
417       }
418     }
419 
420     // Emit the table of offsets (indexes) into the operand type table.
421     // Size the unsigned integer offset to save space.
422     assert(OperandRecords.size() <= UINT32_MAX &&
423            "Too many operands for offset table");
424     OS << "  static const " << getMinimalTypeForRange(OperandRecords.size());
425     OS << " Offsets[] = {\n";
426     for (int I = 0, E = OperandOffsets.size(); I != E; ++I) {
427       OS << "    /* " << getInstrName(I) << " */\n";
428       OS << "    " << OperandOffsets[I] << ",\n";
429     }
430     OS << "  };\n";
431 
432     // Add an entry for the end so that we don't need to special case it below.
433     OperandOffsets.push_back(OperandRecords.size());
434 
435     // Emit the actual operand types in a flat table.
436     // Size the signed integer operand type to save space.
437     assert(EnumVal <= INT16_MAX &&
438            "Too many operand types for operand types table");
439     OS << "\n  using namespace OpTypes;\n";
440     OS << "  static";
441     OS << ((EnumVal <= INT8_MAX) ? " const int8_t" : " const int16_t");
442     OS << " OpcodeOperandTypes[] = {\n    ";
443     for (int I = 0, E = OperandRecords.size(), CurOffset = 0; I != E; ++I) {
444       // We print each Opcode's operands in its own row.
445       if (I == OperandOffsets[CurOffset]) {
446         OS << "\n    /* " << getInstrName(CurOffset) << " */\n    ";
447         while (OperandOffsets[++CurOffset] == I)
448           OS << "/* " << getInstrName(CurOffset) << " */\n    ";
449       }
450       Record *OpR = OperandRecords[I];
451       if ((OpR->isSubClassOf("Operand") ||
452            OpR->isSubClassOf("RegisterOperand") ||
453            OpR->isSubClassOf("RegisterClass")) &&
454           !OpR->isAnonymous())
455         OS << OpR->getName();
456       else
457         OS << -1;
458       OS << ", ";
459     }
460     OS << "\n  };\n";
461 
462     OS << "  return OpcodeOperandTypes[Offsets[Opcode] + OpIdx];\n";
463   } else {
464     OS << "  llvm_unreachable(\"No instructions defined\");\n";
465   }
466   OS << "}\n";
467   OS << "} // end namespace " << Namespace << "\n";
468   OS << "} // end namespace llvm\n";
469   OS << "#endif // GET_INSTRINFO_OPERAND_TYPE\n\n";
470 
471   OS << "#ifdef GET_INSTRINFO_MEM_OPERAND_SIZE\n";
472   OS << "#undef GET_INSTRINFO_MEM_OPERAND_SIZE\n";
473   OS << "namespace llvm {\n";
474   OS << "namespace " << Namespace << " {\n";
475   OS << "LLVM_READONLY\n";
476   OS << "static int getMemOperandSize(int OpType) {\n";
477   OS << "  switch (OpType) {\n";
478   std::map<int, SmallVector<StringRef, 0>> SizeToOperandName;
479   for (const Record *Op : Operands) {
480     if (!Op->isSubClassOf("X86MemOperand"))
481       continue;
482     if (int Size = Op->getValueAsInt("Size"))
483       SizeToOperandName[Size].push_back(Op->getName());
484   }
485   OS << "  default: return 0;\n";
486   for (const auto &KV : SizeToOperandName) {
487     for (const StringRef &OperandName : KV.second)
488       OS << "  case OpTypes::" << OperandName << ":\n";
489     OS << "    return " << KV.first << ";\n\n";
490   }
491   OS << "  }\n}\n";
492   OS << "} // end namespace " << Namespace << "\n";
493   OS << "} // end namespace llvm\n";
494   OS << "#endif // GET_INSTRINFO_MEM_OPERAND_SIZE\n\n";
495 }
496 
497 void InstrInfoEmitter::emitLogicalOperandSizeMappings(
498     raw_ostream &OS, StringRef Namespace,
499     ArrayRef<const CodeGenInstruction *> NumberedInstructions) {
500   std::map<std::vector<unsigned>, unsigned> LogicalOpSizeMap;
501 
502   std::map<unsigned, std::vector<std::string>> InstMap;
503 
504   size_t LogicalOpListSize = 0U;
505   std::vector<unsigned> LogicalOpList;
506   for (const auto *Inst : NumberedInstructions) {
507     if (!Inst->TheDef->getValueAsBit("UseLogicalOperandMappings"))
508       continue;
509 
510     LogicalOpList.clear();
511     llvm::transform(Inst->Operands, std::back_inserter(LogicalOpList),
512                     [](const CGIOperandList::OperandInfo &Op) -> unsigned {
513                       auto *MIOI = Op.MIOperandInfo;
514                       if (!MIOI || MIOI->getNumArgs() == 0)
515                         return 1;
516                       return MIOI->getNumArgs();
517                     });
518     LogicalOpListSize = std::max(LogicalOpList.size(), LogicalOpListSize);
519 
520     auto I =
521         LogicalOpSizeMap.insert({LogicalOpList, LogicalOpSizeMap.size()}).first;
522     InstMap[I->second].push_back(
523         (Namespace + "::" + Inst->TheDef->getName()).str());
524   }
525 
526   OS << "#ifdef GET_INSTRINFO_LOGICAL_OPERAND_SIZE_MAP\n";
527   OS << "#undef GET_INSTRINFO_LOGICAL_OPERAND_SIZE_MAP\n";
528   OS << "namespace llvm {\n";
529   OS << "namespace " << Namespace << " {\n";
530   OS << "LLVM_READONLY static unsigned\n";
531   OS << "getLogicalOperandSize(uint16_t Opcode, uint16_t LogicalOpIdx) {\n";
532   if (!InstMap.empty()) {
533     std::vector<const std::vector<unsigned> *> LogicalOpSizeList(
534         LogicalOpSizeMap.size());
535     for (auto &P : LogicalOpSizeMap) {
536       LogicalOpSizeList[P.second] = &P.first;
537     }
538     OS << "  static const unsigned SizeMap[][" << LogicalOpListSize
539        << "] = {\n";
540     for (auto &R : LogicalOpSizeList) {
541       const auto &Row = *R;
542       OS << "   {";
543       int i;
544       for (i = 0; i < static_cast<int>(Row.size()); ++i) {
545         OS << Row[i] << ", ";
546       }
547       for (; i < static_cast<int>(LogicalOpListSize); ++i) {
548         OS << "0, ";
549       }
550       OS << "}, ";
551       OS << "\n";
552     }
553     OS << "  };\n";
554 
555     OS << "  switch (Opcode) {\n";
556     OS << "  default: return LogicalOpIdx;\n";
557     for (auto &P : InstMap) {
558       auto OpMapIdx = P.first;
559       const auto &Insts = P.second;
560       for (const auto &Inst : Insts) {
561         OS << "  case " << Inst << ":\n";
562       }
563       OS << "    return SizeMap[" << OpMapIdx << "][LogicalOpIdx];\n";
564     }
565     OS << "  }\n";
566   } else {
567     OS << "  return LogicalOpIdx;\n";
568   }
569   OS << "}\n";
570 
571   OS << "LLVM_READONLY static inline unsigned\n";
572   OS << "getLogicalOperandIdx(uint16_t Opcode, uint16_t LogicalOpIdx) {\n";
573   OS << "  auto S = 0U;\n";
574   OS << "  for (auto i = 0U; i < LogicalOpIdx; ++i)\n";
575   OS << "    S += getLogicalOperandSize(Opcode, i);\n";
576   OS << "  return S;\n";
577   OS << "}\n";
578 
579   OS << "} // end namespace " << Namespace << "\n";
580   OS << "} // end namespace llvm\n";
581   OS << "#endif // GET_INSTRINFO_LOGICAL_OPERAND_SIZE_MAP\n\n";
582 }
583 
584 void InstrInfoEmitter::emitLogicalOperandTypeMappings(
585     raw_ostream &OS, StringRef Namespace,
586     ArrayRef<const CodeGenInstruction *> NumberedInstructions) {
587   std::map<std::vector<std::string>, unsigned> LogicalOpTypeMap;
588 
589   std::map<unsigned, std::vector<std::string>> InstMap;
590 
591   size_t OpTypeListSize = 0U;
592   std::vector<std::string> LogicalOpTypeList;
593   for (const auto *Inst : NumberedInstructions) {
594     if (!Inst->TheDef->getValueAsBit("UseLogicalOperandMappings"))
595       continue;
596 
597     LogicalOpTypeList.clear();
598     for (const auto &Op : Inst->Operands) {
599       auto *OpR = Op.Rec;
600       if ((OpR->isSubClassOf("Operand") ||
601            OpR->isSubClassOf("RegisterOperand") ||
602            OpR->isSubClassOf("RegisterClass")) &&
603           !OpR->isAnonymous()) {
604         LogicalOpTypeList.push_back(
605             (Namespace + "::OpTypes::" + Op.Rec->getName()).str());
606       } else {
607         LogicalOpTypeList.push_back("-1");
608       }
609     }
610     OpTypeListSize = std::max(LogicalOpTypeList.size(), OpTypeListSize);
611 
612     auto I =
613         LogicalOpTypeMap.insert({LogicalOpTypeList, LogicalOpTypeMap.size()})
614             .first;
615     InstMap[I->second].push_back(
616         (Namespace + "::" + Inst->TheDef->getName()).str());
617   }
618 
619   OS << "#ifdef GET_INSTRINFO_LOGICAL_OPERAND_TYPE_MAP\n";
620   OS << "#undef GET_INSTRINFO_LOGICAL_OPERAND_TYPE_MAP\n";
621   OS << "namespace llvm {\n";
622   OS << "namespace " << Namespace << " {\n";
623   OS << "LLVM_READONLY static int\n";
624   OS << "getLogicalOperandType(uint16_t Opcode, uint16_t LogicalOpIdx) {\n";
625   if (!InstMap.empty()) {
626     std::vector<const std::vector<std::string> *> LogicalOpTypeList(
627         LogicalOpTypeMap.size());
628     for (auto &P : LogicalOpTypeMap) {
629       LogicalOpTypeList[P.second] = &P.first;
630     }
631     OS << "  static const int TypeMap[][" << OpTypeListSize << "] = {\n";
632     for (int r = 0, rs = LogicalOpTypeList.size(); r < rs; ++r) {
633       const auto &Row = *LogicalOpTypeList[r];
634       OS << "   {";
635       int i, s = Row.size();
636       for (i = 0; i < s; ++i) {
637         if (i > 0)
638           OS << ", ";
639         OS << Row[i];
640       }
641       for (; i < static_cast<int>(OpTypeListSize); ++i) {
642         if (i > 0)
643           OS << ", ";
644         OS << "-1";
645       }
646       OS << "}";
647       if (r != rs - 1)
648         OS << ",";
649       OS << "\n";
650     }
651     OS << "  };\n";
652 
653     OS << "  switch (Opcode) {\n";
654     OS << "  default: return -1;\n";
655     for (auto &P : InstMap) {
656       auto OpMapIdx = P.first;
657       const auto &Insts = P.second;
658       for (const auto &Inst : Insts) {
659         OS << "  case " << Inst << ":\n";
660       }
661       OS << "    return TypeMap[" << OpMapIdx << "][LogicalOpIdx];\n";
662     }
663     OS << "  }\n";
664   } else {
665     OS << "  return -1;\n";
666   }
667   OS << "}\n";
668   OS << "} // end namespace " << Namespace << "\n";
669   OS << "} // end namespace llvm\n";
670   OS << "#endif // GET_INSTRINFO_LOGICAL_OPERAND_TYPE_MAP\n\n";
671 }
672 
673 void InstrInfoEmitter::emitMCIIHelperMethods(raw_ostream &OS,
674                                              StringRef TargetName) {
675   RecVec TIIPredicates = Records.getAllDerivedDefinitions("TIIPredicate");
676 
677   OS << "#ifdef GET_INSTRINFO_MC_HELPER_DECLS\n";
678   OS << "#undef GET_INSTRINFO_MC_HELPER_DECLS\n\n";
679 
680   OS << "namespace llvm {\n";
681   OS << "class MCInst;\n";
682   OS << "class FeatureBitset;\n\n";
683 
684   OS << "namespace " << TargetName << "_MC {\n\n";
685 
686   for (const Record *Rec : TIIPredicates) {
687     OS << "bool " << Rec->getValueAsString("FunctionName")
688         << "(const MCInst &MI);\n";
689   }
690 
691   OS << "void verifyInstructionPredicates(unsigned Opcode, const FeatureBitset "
692         "&Features);\n";
693 
694   OS << "\n} // end namespace " << TargetName << "_MC\n";
695   OS << "} // end namespace llvm\n\n";
696 
697   OS << "#endif // GET_INSTRINFO_MC_HELPER_DECLS\n\n";
698 
699   OS << "#ifdef GET_INSTRINFO_MC_HELPERS\n";
700   OS << "#undef GET_INSTRINFO_MC_HELPERS\n\n";
701 
702   OS << "namespace llvm {\n";
703   OS << "namespace " << TargetName << "_MC {\n\n";
704 
705   PredicateExpander PE(TargetName);
706   PE.setExpandForMC(true);
707 
708   for (const Record *Rec : TIIPredicates) {
709     OS << "bool " << Rec->getValueAsString("FunctionName");
710     OS << "(const MCInst &MI) {\n";
711 
712     OS.indent(PE.getIndentLevel() * 2);
713     PE.expandStatement(OS, Rec->getValueAsDef("Body"));
714     OS << "\n}\n\n";
715   }
716 
717   OS << "} // end namespace " << TargetName << "_MC\n";
718   OS << "} // end namespace llvm\n\n";
719 
720   OS << "#endif // GET_GENISTRINFO_MC_HELPERS\n\n";
721 }
722 
723 static std::string
724 getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) {
725   std::string Name = "CEFBS";
726   for (const auto &Feature : FeatureBitset)
727     Name += ("_" + Feature->getName()).str();
728   return Name;
729 }
730 
731 void InstrInfoEmitter::emitFeatureVerifier(raw_ostream &OS,
732                                            const CodeGenTarget &Target) {
733   const auto &All = SubtargetFeatureInfo::getAll(Records);
734   std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures;
735   SubtargetFeatures.insert(All.begin(), All.end());
736 
737   OS << "#if (defined(ENABLE_INSTR_PREDICATE_VERIFIER) && !defined(NDEBUG)) "
738      << "||\\\n"
739      << "    defined(GET_AVAILABLE_OPCODE_CHECKER)\n"
740      << "#define GET_COMPUTE_FEATURES\n"
741      << "#endif\n";
742   OS << "#ifdef GET_COMPUTE_FEATURES\n"
743      << "#undef GET_COMPUTE_FEATURES\n"
744      << "namespace llvm {\n"
745      << "namespace " << Target.getName() << "_MC {\n\n";
746 
747   // Emit the subtarget feature enumeration.
748   SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures,
749                                                            OS);
750   // Emit the available features compute function.
751   OS << "inline ";
752   SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures(
753       Target.getName(), "", "computeAvailableFeatures", SubtargetFeatures, OS);
754 
755   std::vector<std::vector<Record *>> FeatureBitsets;
756   for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
757     FeatureBitsets.emplace_back();
758     for (Record *Predicate : Inst->TheDef->getValueAsListOfDefs("Predicates")) {
759       const auto &I = SubtargetFeatures.find(Predicate);
760       if (I != SubtargetFeatures.end())
761         FeatureBitsets.back().push_back(I->second.TheDef);
762     }
763   }
764 
765   llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A,
766                                  const std::vector<Record *> &B) {
767     if (A.size() < B.size())
768       return true;
769     if (A.size() > B.size())
770       return false;
771     for (auto Pair : zip(A, B)) {
772       if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName())
773         return true;
774       if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName())
775         return false;
776     }
777     return false;
778   });
779   FeatureBitsets.erase(
780       std::unique(FeatureBitsets.begin(), FeatureBitsets.end()),
781       FeatureBitsets.end());
782   OS << "inline FeatureBitset computeRequiredFeatures(unsigned Opcode) {\n"
783      << "  enum : " << getMinimalTypeForRange(FeatureBitsets.size()) << " {\n"
784      << "    CEFBS_None,\n";
785   for (const auto &FeatureBitset : FeatureBitsets) {
786     if (FeatureBitset.empty())
787       continue;
788     OS << "    " << getNameForFeatureBitset(FeatureBitset) << ",\n";
789   }
790   OS << "  };\n\n"
791      << "  static constexpr FeatureBitset FeatureBitsets[] = {\n"
792      << "    {}, // CEFBS_None\n";
793   for (const auto &FeatureBitset : FeatureBitsets) {
794     if (FeatureBitset.empty())
795       continue;
796     OS << "    {";
797     for (const auto &Feature : FeatureBitset) {
798       const auto &I = SubtargetFeatures.find(Feature);
799       assert(I != SubtargetFeatures.end() && "Didn't import predicate?");
800       OS << I->second.getEnumBitName() << ", ";
801     }
802     OS << "},\n";
803   }
804   OS << "  };\n"
805      << "  static constexpr " << getMinimalTypeForRange(FeatureBitsets.size())
806      << " RequiredFeaturesRefs[] = {\n";
807   unsigned InstIdx = 0;
808   for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
809     OS << "    CEFBS";
810     unsigned NumPredicates = 0;
811     for (Record *Predicate : Inst->TheDef->getValueAsListOfDefs("Predicates")) {
812       const auto &I = SubtargetFeatures.find(Predicate);
813       if (I != SubtargetFeatures.end()) {
814         OS << '_' << I->second.TheDef->getName();
815         NumPredicates++;
816       }
817     }
818     if (!NumPredicates)
819       OS << "_None";
820     OS << ", // " << Inst->TheDef->getName() << " = " << InstIdx << "\n";
821     InstIdx++;
822   }
823   OS << "  };\n\n"
824      << "  assert(Opcode < " << InstIdx << ");\n"
825      << "  return FeatureBitsets[RequiredFeaturesRefs[Opcode]];\n"
826      << "}\n\n";
827 
828   OS << "} // end namespace " << Target.getName() << "_MC\n"
829      << "} // end namespace llvm\n"
830      << "#endif // GET_COMPUTE_FEATURES\n\n";
831 
832   OS << "#ifdef GET_AVAILABLE_OPCODE_CHECKER\n"
833      << "#undef GET_AVAILABLE_OPCODE_CHECKER\n"
834      << "namespace llvm {\n"
835      << "namespace " << Target.getName() << "_MC {\n";
836   OS << "bool isOpcodeAvailable("
837      << "unsigned Opcode, const FeatureBitset &Features) {\n"
838      << "  FeatureBitset AvailableFeatures = "
839      << "computeAvailableFeatures(Features);\n"
840      << "  FeatureBitset RequiredFeatures = "
841      << "computeRequiredFeatures(Opcode);\n"
842      << "  FeatureBitset MissingFeatures =\n"
843      << "      (AvailableFeatures & RequiredFeatures) ^\n"
844      << "      RequiredFeatures;\n"
845      << "  return !MissingFeatures.any();\n"
846      << "}\n";
847   OS << "} // end namespace " << Target.getName() << "_MC\n"
848      << "} // end namespace llvm\n"
849      << "#endif // GET_AVAILABLE_OPCODE_CHECKER\n\n";
850 
851   OS << "#ifdef ENABLE_INSTR_PREDICATE_VERIFIER\n"
852      << "#undef ENABLE_INSTR_PREDICATE_VERIFIER\n"
853      << "#include <sstream>\n\n";
854 
855   OS << "namespace llvm {\n";
856   OS << "namespace " << Target.getName() << "_MC {\n\n";
857 
858   // Emit the name table for error messages.
859   OS << "#ifndef NDEBUG\n";
860   SubtargetFeatureInfo::emitNameTable(SubtargetFeatures, OS);
861   OS << "#endif // NDEBUG\n\n";
862 
863   // Emit the predicate verifier.
864   OS << "void verifyInstructionPredicates(\n"
865      << "    unsigned Opcode, const FeatureBitset &Features) {\n"
866      << "#ifndef NDEBUG\n";
867   OS << "  FeatureBitset AvailableFeatures = "
868         "computeAvailableFeatures(Features);\n";
869   OS << "  FeatureBitset RequiredFeatures = "
870      << "computeRequiredFeatures(Opcode);\n";
871   OS << "  FeatureBitset MissingFeatures =\n"
872      << "      (AvailableFeatures & RequiredFeatures) ^\n"
873      << "      RequiredFeatures;\n"
874      << "  if (MissingFeatures.any()) {\n"
875      << "    std::ostringstream Msg;\n"
876      << "    Msg << \"Attempting to emit \" << &" << Target.getName()
877      << "InstrNameData[" << Target.getName() << "InstrNameIndices[Opcode]]\n"
878      << "        << \" instruction but the \";\n"
879      << "    for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i)\n"
880      << "      if (MissingFeatures.test(i))\n"
881      << "        Msg << SubtargetFeatureNames[i] << \" \";\n"
882      << "    Msg << \"predicate(s) are not met\";\n"
883      << "    report_fatal_error(Msg.str().c_str());\n"
884      << "  }\n"
885      << "#endif // NDEBUG\n";
886   OS << "}\n";
887   OS << "} // end namespace " << Target.getName() << "_MC\n";
888   OS << "} // end namespace llvm\n";
889   OS << "#endif // ENABLE_INSTR_PREDICATE_VERIFIER\n\n";
890 }
891 
892 void InstrInfoEmitter::emitTIIHelperMethods(raw_ostream &OS,
893                                             StringRef TargetName,
894                                             bool ExpandDefinition) {
895   RecVec TIIPredicates = Records.getAllDerivedDefinitions("TIIPredicate");
896   if (TIIPredicates.empty())
897     return;
898 
899   PredicateExpander PE(TargetName);
900   PE.setExpandForMC(false);
901 
902   for (const Record *Rec : TIIPredicates) {
903     OS << (ExpandDefinition ? "" : "static ") << "bool ";
904     if (ExpandDefinition)
905       OS << TargetName << "InstrInfo::";
906     OS << Rec->getValueAsString("FunctionName");
907     OS << "(const MachineInstr &MI)";
908     if (!ExpandDefinition) {
909       OS << ";\n";
910       continue;
911     }
912 
913     OS << " {\n";
914     OS.indent(PE.getIndentLevel() * 2);
915     PE.expandStatement(OS, Rec->getValueAsDef("Body"));
916     OS << "\n}\n\n";
917   }
918 }
919 
920 //===----------------------------------------------------------------------===//
921 // Main Output.
922 //===----------------------------------------------------------------------===//
923 
924 // run - Emit the main instruction description records for the target...
925 void InstrInfoEmitter::run(raw_ostream &OS) {
926   emitSourceFileHeader("Target Instruction Enum Values and Descriptors", OS);
927   emitEnums(OS);
928 
929   CodeGenTarget &Target = CDP.getTargetInfo();
930   const std::string &TargetName = std::string(Target.getName());
931   Record *InstrInfo = Target.getInstructionSet();
932 
933   // Collect all of the operand info records.
934   Records.startTimer("Collect operand info");
935   OperandInfoListTy OperandInfoList;
936   OperandInfoMapTy OperandInfoMap;
937   unsigned OperandInfoSize =
938       CollectOperandInfo(OperandInfoList, OperandInfoMap);
939 
940   // Collect all of the instruction's implicit uses and defs.
941   Records.startTimer("Collect uses/defs");
942   std::map<std::vector<Record*>, unsigned> EmittedLists;
943   std::vector<std::vector<Record *>> ImplicitLists;
944   unsigned ImplicitListSize = 0;
945   for (const CodeGenInstruction *II : Target.getInstructionsByEnumValue()) {
946     std::vector<Record *> ImplicitOps = II->ImplicitUses;
947     llvm::append_range(ImplicitOps, II->ImplicitDefs);
948     if (EmittedLists.insert({ImplicitOps, ImplicitListSize}).second) {
949       ImplicitLists.push_back(ImplicitOps);
950       ImplicitListSize += ImplicitOps.size();
951     }
952   }
953 
954   ArrayRef<const CodeGenInstruction *> NumberedInstructions =
955       Target.getInstructionsByEnumValue();
956   OS << "#if defined(GET_INSTRINFO_MC_DESC) || "
957         "defined(GET_INSTRINFO_CTOR_DTOR)\n";
958   OS << "namespace llvm {\n\n";
959 
960   OS << "struct " << TargetName << "InstrTable {\n";
961   OS << "  MCInstrDesc Insts[" << NumberedInstructions.size() << "];\n";
962   OS << "  static_assert(alignof(MCInstrDesc) >= alignof(MCOperandInfo), "
963         "\"Unwanted padding between Insts and OperandInfo\");\n";
964   OS << "  MCOperandInfo OperandInfo[" << OperandInfoSize << "];\n";
965   OS << "  static_assert(alignof(MCOperandInfo) >= alignof(MCPhysReg), "
966         "\"Unwanted padding between OperandInfo and ImplicitOps\");\n";
967   OS << "  MCPhysReg ImplicitOps[" << std::max(ImplicitListSize, 1U) << "];\n";
968   OS << "};\n\n";
969 
970   OS << "} // end namespace llvm\n";
971   OS << "#endif // defined(GET_INSTRINFO_MC_DESC) || "
972         "defined(GET_INSTRINFO_CTOR_DTOR)\n\n";
973 
974   OS << "#ifdef GET_INSTRINFO_MC_DESC\n";
975   OS << "#undef GET_INSTRINFO_MC_DESC\n";
976   OS << "namespace llvm {\n\n";
977 
978   // Emit all of the MCInstrDesc records in reverse ENUM ordering.
979   Records.startTimer("Emit InstrDesc records");
980   OS << "static_assert(sizeof(MCOperandInfo) % sizeof(MCPhysReg) == 0);\n";
981   OS << "static constexpr unsigned " << TargetName << "ImpOpBase = sizeof "
982      << TargetName << "InstrTable::OperandInfo / (sizeof(MCPhysReg));\n\n";
983 
984   OS << "extern const " << TargetName << "InstrTable " << TargetName
985      << "Descs = {\n  {\n";
986   SequenceToOffsetTable<std::string> InstrNames;
987   unsigned Num = NumberedInstructions.size();
988   for (const CodeGenInstruction *Inst : reverse(NumberedInstructions)) {
989     // Keep a list of the instruction names.
990     InstrNames.add(std::string(Inst->TheDef->getName()));
991     // Emit the record into the table.
992     emitRecord(*Inst, --Num, InstrInfo, EmittedLists, OperandInfoMap, OS);
993   }
994 
995   OS << "  }, {\n";
996 
997   // Emit all of the operand info records.
998   Records.startTimer("Emit operand info");
999   EmitOperandInfo(OS, OperandInfoList);
1000 
1001   OS << "  }, {\n";
1002 
1003   // Emit all of the instruction's implicit uses and defs.
1004   Records.startTimer("Emit uses/defs");
1005   for (auto &List : ImplicitLists) {
1006     OS << "    /* " << EmittedLists[List] << " */";
1007     for (auto &Reg : List)
1008       OS << ' ' << getQualifiedName(Reg) << ',';
1009     OS << '\n';
1010   }
1011 
1012   OS << "  }\n};\n\n";
1013 
1014   // Emit the array of instruction names.
1015   Records.startTimer("Emit instruction names");
1016   InstrNames.layout();
1017   InstrNames.emitStringLiteralDef(OS, Twine("extern const char ") + TargetName +
1018                                           "InstrNameData[]");
1019 
1020   OS << "extern const unsigned " << TargetName <<"InstrNameIndices[] = {";
1021   Num = 0;
1022   for (const CodeGenInstruction *Inst : NumberedInstructions) {
1023     // Newline every eight entries.
1024     if (Num % 8 == 0)
1025       OS << "\n    ";
1026     OS << InstrNames.get(std::string(Inst->TheDef->getName())) << "U, ";
1027     ++Num;
1028   }
1029   OS << "\n};\n\n";
1030 
1031   bool HasDeprecationFeatures =
1032       llvm::any_of(NumberedInstructions, [](const CodeGenInstruction *Inst) {
1033         return !Inst->HasComplexDeprecationPredicate &&
1034                !Inst->DeprecatedReason.empty();
1035       });
1036   if (HasDeprecationFeatures) {
1037     OS << "extern const uint8_t " << TargetName
1038        << "InstrDeprecationFeatures[] = {";
1039     Num = 0;
1040     for (const CodeGenInstruction *Inst : NumberedInstructions) {
1041       if (Num % 8 == 0)
1042         OS << "\n    ";
1043       if (!Inst->HasComplexDeprecationPredicate &&
1044           !Inst->DeprecatedReason.empty())
1045         OS << Target.getInstNamespace() << "::" << Inst->DeprecatedReason
1046            << ", ";
1047       else
1048         OS << "uint8_t(-1), ";
1049       ++Num;
1050     }
1051     OS << "\n};\n\n";
1052   }
1053 
1054   bool HasComplexDeprecationInfos =
1055       llvm::any_of(NumberedInstructions, [](const CodeGenInstruction *Inst) {
1056         return Inst->HasComplexDeprecationPredicate;
1057       });
1058   if (HasComplexDeprecationInfos) {
1059     OS << "extern const MCInstrInfo::ComplexDeprecationPredicate " << TargetName
1060        << "InstrComplexDeprecationInfos[] = {";
1061     Num = 0;
1062     for (const CodeGenInstruction *Inst : NumberedInstructions) {
1063       if (Num % 8 == 0)
1064         OS << "\n    ";
1065       if (Inst->HasComplexDeprecationPredicate)
1066         // Emit a function pointer to the complex predicate method.
1067         OS << "&get" << Inst->DeprecatedReason << "DeprecationInfo, ";
1068       else
1069         OS << "nullptr, ";
1070       ++Num;
1071     }
1072     OS << "\n};\n\n";
1073   }
1074 
1075   // MCInstrInfo initialization routine.
1076   Records.startTimer("Emit initialization routine");
1077   OS << "static inline void Init" << TargetName
1078      << "MCInstrInfo(MCInstrInfo *II) {\n";
1079   OS << "  II->InitMCInstrInfo(" << TargetName << "Descs.Insts, " << TargetName
1080      << "InstrNameIndices, " << TargetName << "InstrNameData, ";
1081   if (HasDeprecationFeatures)
1082     OS << TargetName << "InstrDeprecationFeatures, ";
1083   else
1084     OS << "nullptr, ";
1085   if (HasComplexDeprecationInfos)
1086     OS << TargetName << "InstrComplexDeprecationInfos, ";
1087   else
1088     OS << "nullptr, ";
1089   OS << NumberedInstructions.size() << ");\n}\n\n";
1090 
1091   OS << "} // end namespace llvm\n";
1092 
1093   OS << "#endif // GET_INSTRINFO_MC_DESC\n\n";
1094 
1095   // Create a TargetInstrInfo subclass to hide the MC layer initialization.
1096   OS << "#ifdef GET_INSTRINFO_HEADER\n";
1097   OS << "#undef GET_INSTRINFO_HEADER\n";
1098 
1099   std::string ClassName = TargetName + "GenInstrInfo";
1100   OS << "namespace llvm {\n";
1101   OS << "struct " << ClassName << " : public TargetInstrInfo {\n"
1102      << "  explicit " << ClassName
1103      << "(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u, "
1104         "unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u);\n"
1105      << "  ~" << ClassName << "() override = default;\n";
1106 
1107 
1108   OS << "\n};\n} // end namespace llvm\n";
1109 
1110   OS << "#endif // GET_INSTRINFO_HEADER\n\n";
1111 
1112   OS << "#ifdef GET_INSTRINFO_HELPER_DECLS\n";
1113   OS << "#undef GET_INSTRINFO_HELPER_DECLS\n\n";
1114   emitTIIHelperMethods(OS, TargetName, /* ExpandDefinition = */ false);
1115   OS << "\n";
1116   OS << "#endif // GET_INSTRINFO_HELPER_DECLS\n\n";
1117 
1118   OS << "#ifdef GET_INSTRINFO_HELPERS\n";
1119   OS << "#undef GET_INSTRINFO_HELPERS\n\n";
1120   emitTIIHelperMethods(OS, TargetName, /* ExpandDefinition = */ true);
1121   OS << "#endif // GET_INSTRINFO_HELPERS\n\n";
1122 
1123   OS << "#ifdef GET_INSTRINFO_CTOR_DTOR\n";
1124   OS << "#undef GET_INSTRINFO_CTOR_DTOR\n";
1125 
1126   OS << "namespace llvm {\n";
1127   OS << "extern const " << TargetName << "InstrTable " << TargetName
1128      << "Descs;\n";
1129   OS << "extern const unsigned " << TargetName << "InstrNameIndices[];\n";
1130   OS << "extern const char " << TargetName << "InstrNameData[];\n";
1131   if (HasDeprecationFeatures)
1132     OS << "extern const uint8_t " << TargetName
1133        << "InstrDeprecationFeatures[];\n";
1134   if (HasComplexDeprecationInfos)
1135     OS << "extern const MCInstrInfo::ComplexDeprecationPredicate " << TargetName
1136        << "InstrComplexDeprecationInfos[];\n";
1137   OS << ClassName << "::" << ClassName
1138      << "(unsigned CFSetupOpcode, unsigned CFDestroyOpcode, unsigned "
1139         "CatchRetOpcode, unsigned ReturnOpcode)\n"
1140      << "  : TargetInstrInfo(CFSetupOpcode, CFDestroyOpcode, CatchRetOpcode, "
1141         "ReturnOpcode) {\n"
1142      << "  InitMCInstrInfo(" << TargetName << "Descs.Insts, " << TargetName
1143      << "InstrNameIndices, " << TargetName << "InstrNameData, ";
1144   if (HasDeprecationFeatures)
1145     OS << TargetName << "InstrDeprecationFeatures, ";
1146   else
1147     OS << "nullptr, ";
1148   if (HasComplexDeprecationInfos)
1149     OS << TargetName << "InstrComplexDeprecationInfos, ";
1150   else
1151     OS << "nullptr, ";
1152   OS << NumberedInstructions.size() << ");\n}\n";
1153   OS << "} // end namespace llvm\n";
1154 
1155   OS << "#endif // GET_INSTRINFO_CTOR_DTOR\n\n";
1156 
1157   Records.startTimer("Emit operand name mappings");
1158   emitOperandNameMappings(OS, Target, NumberedInstructions);
1159 
1160   Records.startTimer("Emit operand type mappings");
1161   emitOperandTypeMappings(OS, Target, NumberedInstructions);
1162 
1163   Records.startTimer("Emit logical operand size mappings");
1164   emitLogicalOperandSizeMappings(OS, TargetName, NumberedInstructions);
1165 
1166   Records.startTimer("Emit logical operand type mappings");
1167   emitLogicalOperandTypeMappings(OS, TargetName, NumberedInstructions);
1168 
1169   Records.startTimer("Emit helper methods");
1170   emitMCIIHelperMethods(OS, TargetName);
1171 
1172   Records.startTimer("Emit verifier methods");
1173   emitFeatureVerifier(OS, Target);
1174 }
1175 
1176 void InstrInfoEmitter::emitRecord(
1177     const CodeGenInstruction &Inst, unsigned Num, Record *InstrInfo,
1178     std::map<std::vector<Record *>, unsigned> &EmittedLists,
1179     const OperandInfoMapTy &OperandInfoMap, raw_ostream &OS) {
1180   int MinOperands = 0;
1181   if (!Inst.Operands.empty())
1182     // Each logical operand can be multiple MI operands.
1183     MinOperands = Inst.Operands.back().MIOperandNo +
1184                   Inst.Operands.back().MINumOperands;
1185 
1186   OS << "    { ";
1187   OS << Num << ",\t" << MinOperands << ",\t" << Inst.Operands.NumDefs << ",\t"
1188      << Inst.TheDef->getValueAsInt("Size") << ",\t"
1189      << SchedModels.getSchedClassIdx(Inst) << ",\t";
1190 
1191   CodeGenTarget &Target = CDP.getTargetInfo();
1192 
1193   // Emit the implicit use/def list...
1194   OS << Inst.ImplicitUses.size() << ",\t" << Inst.ImplicitDefs.size() << ",\t";
1195   std::vector<Record *> ImplicitOps = Inst.ImplicitUses;
1196   llvm::append_range(ImplicitOps, Inst.ImplicitDefs);
1197   OS << Target.getName() << "ImpOpBase + " << EmittedLists[ImplicitOps]
1198      << ",\t";
1199 
1200   // Emit the operand info offset.
1201   OperandInfoTy OperandInfo = GetOperandInfo(Inst);
1202   OS << OperandInfoMap.find(OperandInfo)->second << ",\t0";
1203 
1204   // Emit all of the target independent flags...
1205   if (Inst.isPreISelOpcode)    OS << "|(1ULL<<MCID::PreISelOpcode)";
1206   if (Inst.isPseudo)           OS << "|(1ULL<<MCID::Pseudo)";
1207   if (Inst.isMeta)             OS << "|(1ULL<<MCID::Meta)";
1208   if (Inst.isReturn)           OS << "|(1ULL<<MCID::Return)";
1209   if (Inst.isEHScopeReturn)    OS << "|(1ULL<<MCID::EHScopeReturn)";
1210   if (Inst.isBranch)           OS << "|(1ULL<<MCID::Branch)";
1211   if (Inst.isIndirectBranch)   OS << "|(1ULL<<MCID::IndirectBranch)";
1212   if (Inst.isCompare)          OS << "|(1ULL<<MCID::Compare)";
1213   if (Inst.isMoveImm)          OS << "|(1ULL<<MCID::MoveImm)";
1214   if (Inst.isMoveReg)          OS << "|(1ULL<<MCID::MoveReg)";
1215   if (Inst.isBitcast)          OS << "|(1ULL<<MCID::Bitcast)";
1216   if (Inst.isAdd)              OS << "|(1ULL<<MCID::Add)";
1217   if (Inst.isTrap)             OS << "|(1ULL<<MCID::Trap)";
1218   if (Inst.isSelect)           OS << "|(1ULL<<MCID::Select)";
1219   if (Inst.isBarrier)          OS << "|(1ULL<<MCID::Barrier)";
1220   if (Inst.hasDelaySlot)       OS << "|(1ULL<<MCID::DelaySlot)";
1221   if (Inst.isCall)             OS << "|(1ULL<<MCID::Call)";
1222   if (Inst.canFoldAsLoad)      OS << "|(1ULL<<MCID::FoldableAsLoad)";
1223   if (Inst.mayLoad)            OS << "|(1ULL<<MCID::MayLoad)";
1224   if (Inst.mayStore)           OS << "|(1ULL<<MCID::MayStore)";
1225   if (Inst.mayRaiseFPException) OS << "|(1ULL<<MCID::MayRaiseFPException)";
1226   if (Inst.isPredicable)       OS << "|(1ULL<<MCID::Predicable)";
1227   if (Inst.isConvertibleToThreeAddress) OS << "|(1ULL<<MCID::ConvertibleTo3Addr)";
1228   if (Inst.isCommutable)       OS << "|(1ULL<<MCID::Commutable)";
1229   if (Inst.isTerminator)       OS << "|(1ULL<<MCID::Terminator)";
1230   if (Inst.isReMaterializable) OS << "|(1ULL<<MCID::Rematerializable)";
1231   if (Inst.isNotDuplicable)    OS << "|(1ULL<<MCID::NotDuplicable)";
1232   if (Inst.Operands.hasOptionalDef) OS << "|(1ULL<<MCID::HasOptionalDef)";
1233   if (Inst.usesCustomInserter) OS << "|(1ULL<<MCID::UsesCustomInserter)";
1234   if (Inst.hasPostISelHook)    OS << "|(1ULL<<MCID::HasPostISelHook)";
1235   if (Inst.Operands.isVariadic)OS << "|(1ULL<<MCID::Variadic)";
1236   if (Inst.hasSideEffects)     OS << "|(1ULL<<MCID::UnmodeledSideEffects)";
1237   if (Inst.isAsCheapAsAMove)   OS << "|(1ULL<<MCID::CheapAsAMove)";
1238   if (!Target.getAllowRegisterRenaming() || Inst.hasExtraSrcRegAllocReq)
1239     OS << "|(1ULL<<MCID::ExtraSrcRegAllocReq)";
1240   if (!Target.getAllowRegisterRenaming() || Inst.hasExtraDefRegAllocReq)
1241     OS << "|(1ULL<<MCID::ExtraDefRegAllocReq)";
1242   if (Inst.isRegSequence) OS << "|(1ULL<<MCID::RegSequence)";
1243   if (Inst.isExtractSubreg) OS << "|(1ULL<<MCID::ExtractSubreg)";
1244   if (Inst.isInsertSubreg) OS << "|(1ULL<<MCID::InsertSubreg)";
1245   if (Inst.isConvergent) OS << "|(1ULL<<MCID::Convergent)";
1246   if (Inst.variadicOpsAreDefs) OS << "|(1ULL<<MCID::VariadicOpsAreDefs)";
1247   if (Inst.isAuthenticated) OS << "|(1ULL<<MCID::Authenticated)";
1248 
1249   // Emit all of the target-specific flags...
1250   BitsInit *TSF = Inst.TheDef->getValueAsBitsInit("TSFlags");
1251   if (!TSF)
1252     PrintFatalError(Inst.TheDef->getLoc(), "no TSFlags?");
1253   uint64_t Value = 0;
1254   for (unsigned i = 0, e = TSF->getNumBits(); i != e; ++i) {
1255     if (const auto *Bit = dyn_cast<BitInit>(TSF->getBit(i)))
1256       Value |= uint64_t(Bit->getValue()) << i;
1257     else
1258       PrintFatalError(Inst.TheDef->getLoc(),
1259                       "Invalid TSFlags bit in " + Inst.TheDef->getName());
1260   }
1261   OS << ", 0x";
1262   OS.write_hex(Value);
1263   OS << "ULL";
1264 
1265   OS << " },  // Inst #" << Num << " = " << Inst.TheDef->getName() << "\n";
1266 }
1267 
1268 // emitEnums - Print out enum values for all of the instructions.
1269 void InstrInfoEmitter::emitEnums(raw_ostream &OS) {
1270   OS << "#ifdef GET_INSTRINFO_ENUM\n";
1271   OS << "#undef GET_INSTRINFO_ENUM\n";
1272 
1273   OS << "namespace llvm {\n\n";
1274 
1275   const CodeGenTarget &Target = CDP.getTargetInfo();
1276 
1277   // We must emit the PHI opcode first...
1278   StringRef Namespace = Target.getInstNamespace();
1279 
1280   if (Namespace.empty())
1281     PrintFatalError("No instructions defined!");
1282 
1283   OS << "namespace " << Namespace << " {\n";
1284   OS << "  enum {\n";
1285   unsigned Num = 0;
1286   for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue())
1287     OS << "    " << Inst->TheDef->getName() << "\t= " << Num++ << ",\n";
1288   OS << "    INSTRUCTION_LIST_END = " << Num << "\n";
1289   OS << "  };\n\n";
1290   OS << "} // end namespace " << Namespace << "\n";
1291   OS << "} // end namespace llvm\n";
1292   OS << "#endif // GET_INSTRINFO_ENUM\n\n";
1293 
1294   OS << "#ifdef GET_INSTRINFO_SCHED_ENUM\n";
1295   OS << "#undef GET_INSTRINFO_SCHED_ENUM\n";
1296   OS << "namespace llvm {\n\n";
1297   OS << "namespace " << Namespace << " {\n";
1298   OS << "namespace Sched {\n";
1299   OS << "  enum {\n";
1300   Num = 0;
1301   for (const auto &Class : SchedModels.explicit_classes())
1302     OS << "    " << Class.Name << "\t= " << Num++ << ",\n";
1303   OS << "    SCHED_LIST_END = " << Num << "\n";
1304   OS << "  };\n";
1305   OS << "} // end namespace Sched\n";
1306   OS << "} // end namespace " << Namespace << "\n";
1307   OS << "} // end namespace llvm\n";
1308 
1309   OS << "#endif // GET_INSTRINFO_SCHED_ENUM\n\n";
1310 }
1311 
1312 static void EmitInstrInfo(RecordKeeper &RK, raw_ostream &OS) {
1313   RK.startTimer("Analyze DAG patterns");
1314   InstrInfoEmitter(RK).run(OS);
1315   RK.startTimer("Emit map table");
1316   EmitMapTable(RK, OS);
1317 }
1318 
1319 static TableGen::Emitter::Opt X("gen-instr-info", EmitInstrInfo,
1320                                 "Generate instruction descriptions");
1321