1 //===- InstrInfoEmitter.cpp - Generate a Instruction Set Desc. --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend is responsible for emitting a description of the target
10 // instruction set for the code generator.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenDAGPatterns.h"
15 #include "CodeGenInstruction.h"
16 #include "CodeGenSchedule.h"
17 #include "CodeGenTarget.h"
18 #include "PredicateExpander.h"
19 #include "SequenceToOffsetTable.h"
20 #include "SubtargetFeatureInfo.h"
21 #include "TableGenBackends.h"
22 #include "Types.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/TableGen/Error.h"
29 #include "llvm/TableGen/Record.h"
30 #include "llvm/TableGen/TableGenBackend.h"
31 #include <cassert>
32 #include <cstdint>
33 #include <iterator>
34 #include <map>
35 #include <string>
36 #include <utility>
37 #include <vector>
38 
39 using namespace llvm;
40 
41 cl::OptionCategory InstrInfoEmitterCat("Options for -gen-instr-info");
42 static cl::opt<bool> ExpandMIOperandInfo(
43     "instr-info-expand-mi-operand-info",
44     cl::desc("Expand operand's MIOperandInfo DAG into suboperands"),
45     cl::cat(InstrInfoEmitterCat), cl::init(true));
46 
47 namespace {
48 
49 class InstrInfoEmitter {
50   RecordKeeper &Records;
51   CodeGenDAGPatterns CDP;
52   const CodeGenSchedModels &SchedModels;
53 
54 public:
55   InstrInfoEmitter(RecordKeeper &R):
56     Records(R), CDP(R), SchedModels(CDP.getTargetInfo().getSchedModels()) {}
57 
58   // run - Output the instruction set description.
59   void run(raw_ostream &OS);
60 
61 private:
62   void emitEnums(raw_ostream &OS);
63 
64   typedef std::vector<std::string> OperandInfoTy;
65   typedef std::vector<OperandInfoTy> OperandInfoListTy;
66   typedef std::map<OperandInfoTy, unsigned> OperandInfoMapTy;
67 
68   /// The keys of this map are maps which have OpName enum values as their keys
69   /// and instruction operand indices as their values.  The values of this map
70   /// are lists of instruction names.
71   typedef std::map<std::map<unsigned, unsigned>,
72                    std::vector<std::string>> OpNameMapTy;
73   typedef std::map<std::string, unsigned>::iterator StrUintMapIter;
74 
75   /// Generate member functions in the target-specific GenInstrInfo class.
76   ///
77   /// This method is used to custom expand TIIPredicate definitions.
78   /// See file llvm/Target/TargetInstPredicates.td for a description of what is
79   /// a TIIPredicate and how to use it.
80   void emitTIIHelperMethods(raw_ostream &OS, StringRef TargetName,
81                             bool ExpandDefinition = true);
82 
83   /// Expand TIIPredicate definitions to functions that accept a const MCInst
84   /// reference.
85   void emitMCIIHelperMethods(raw_ostream &OS, StringRef TargetName);
86 
87   /// Write verifyInstructionPredicates methods.
88   void emitFeatureVerifier(raw_ostream &OS, const CodeGenTarget &Target);
89   void emitRecord(const CodeGenInstruction &Inst, unsigned Num,
90                   Record *InstrInfo,
91                   std::map<std::vector<Record *>, unsigned> &EL,
92                   const OperandInfoMapTy &OperandInfo, raw_ostream &OS);
93   void emitOperandTypeMappings(
94       raw_ostream &OS, const CodeGenTarget &Target,
95       ArrayRef<const CodeGenInstruction *> NumberedInstructions);
96   void initOperandMapData(
97             ArrayRef<const CodeGenInstruction *> NumberedInstructions,
98             StringRef Namespace,
99             std::map<std::string, unsigned> &Operands,
100             OpNameMapTy &OperandMap);
101   void emitOperandNameMappings(raw_ostream &OS, const CodeGenTarget &Target,
102             ArrayRef<const CodeGenInstruction*> NumberedInstructions);
103 
104   void emitLogicalOperandSizeMappings(
105       raw_ostream &OS, StringRef Namespace,
106       ArrayRef<const CodeGenInstruction *> NumberedInstructions);
107   void emitLogicalOperandTypeMappings(
108       raw_ostream &OS, StringRef Namespace,
109       ArrayRef<const CodeGenInstruction *> NumberedInstructions);
110 
111   // Operand information.
112   unsigned CollectOperandInfo(OperandInfoListTy &OperandInfoList,
113                               OperandInfoMapTy &OperandInfoMap);
114   void EmitOperandInfo(raw_ostream &OS, OperandInfoListTy &OperandInfoList);
115   OperandInfoTy GetOperandInfo(const CodeGenInstruction &Inst);
116 };
117 
118 } // end anonymous namespace
119 
120 //===----------------------------------------------------------------------===//
121 // Operand Info Emission.
122 //===----------------------------------------------------------------------===//
123 
124 InstrInfoEmitter::OperandInfoTy
125 InstrInfoEmitter::GetOperandInfo(const CodeGenInstruction &Inst) {
126   OperandInfoTy Result;
127 
128   for (auto &Op : Inst.Operands) {
129     // Handle aggregate operands and normal operands the same way by expanding
130     // either case into a list of operands for this op.
131     std::vector<CGIOperandList::OperandInfo> OperandList;
132 
133     // This might be a multiple operand thing.  Targets like X86 have
134     // registers in their multi-operand operands.  It may also be an anonymous
135     // operand, which has a single operand, but no declared class for the
136     // operand.
137     DagInit *MIOI = Op.MIOperandInfo;
138 
139     if (!MIOI || MIOI->getNumArgs() == 0) {
140       // Single, anonymous, operand.
141       OperandList.push_back(Op);
142     } else {
143       for (unsigned j = 0, e = Op.MINumOperands; j != e; ++j) {
144         OperandList.push_back(Op);
145 
146         auto *OpR = cast<DefInit>(MIOI->getArg(j))->getDef();
147         OperandList.back().Rec = OpR;
148       }
149     }
150 
151     for (unsigned j = 0, e = OperandList.size(); j != e; ++j) {
152       Record *OpR = OperandList[j].Rec;
153       std::string Res;
154 
155       if (OpR->isSubClassOf("RegisterOperand"))
156         OpR = OpR->getValueAsDef("RegClass");
157       if (OpR->isSubClassOf("RegisterClass"))
158         Res += getQualifiedName(OpR) + "RegClassID, ";
159       else if (OpR->isSubClassOf("PointerLikeRegClass"))
160         Res += utostr(OpR->getValueAsInt("RegClassKind")) + ", ";
161       else
162         // -1 means the operand does not have a fixed register class.
163         Res += "-1, ";
164 
165       // Fill in applicable flags.
166       Res += "0";
167 
168       // Ptr value whose register class is resolved via callback.
169       if (OpR->isSubClassOf("PointerLikeRegClass"))
170         Res += "|(1<<MCOI::LookupPtrRegClass)";
171 
172       // Predicate operands.  Check to see if the original unexpanded operand
173       // was of type PredicateOp.
174       if (Op.Rec->isSubClassOf("PredicateOp"))
175         Res += "|(1<<MCOI::Predicate)";
176 
177       // Optional def operands.  Check to see if the original unexpanded operand
178       // was of type OptionalDefOperand.
179       if (Op.Rec->isSubClassOf("OptionalDefOperand"))
180         Res += "|(1<<MCOI::OptionalDef)";
181 
182       // Branch target operands.  Check to see if the original unexpanded
183       // operand was of type BranchTargetOperand.
184       if (Op.Rec->isSubClassOf("BranchTargetOperand"))
185         Res += "|(1<<MCOI::BranchTarget)";
186 
187       // Fill in operand type.
188       Res += ", ";
189       assert(!Op.OperandType.empty() && "Invalid operand type.");
190       Res += Op.OperandType;
191 
192       // Fill in constraint info.
193       Res += ", ";
194 
195       const CGIOperandList::ConstraintInfo &Constraint =
196         Op.Constraints[j];
197       if (Constraint.isNone())
198         Res += "0";
199       else if (Constraint.isEarlyClobber())
200         Res += "MCOI_EARLY_CLOBBER";
201       else {
202         assert(Constraint.isTied());
203         Res += "MCOI_TIED_TO(" + utostr(Constraint.getTiedOperand()) + ")";
204       }
205 
206       Result.push_back(Res);
207     }
208   }
209 
210   return Result;
211 }
212 
213 unsigned
214 InstrInfoEmitter::CollectOperandInfo(OperandInfoListTy &OperandInfoList,
215                                      OperandInfoMapTy &OperandInfoMap) {
216   const CodeGenTarget &Target = CDP.getTargetInfo();
217   unsigned Offset = 0;
218   for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
219     OperandInfoTy OperandInfo = GetOperandInfo(*Inst);
220     if (OperandInfoMap.insert({OperandInfo, Offset}).second) {
221       OperandInfoList.push_back(OperandInfo);
222       Offset += OperandInfo.size();
223     }
224   }
225   return Offset;
226 }
227 
228 void InstrInfoEmitter::EmitOperandInfo(raw_ostream &OS,
229                                        OperandInfoListTy &OperandInfoList) {
230   unsigned Offset = 0;
231   for (auto &OperandInfo : OperandInfoList) {
232     OS << "    /* " << Offset << " */";
233     for (auto &Info : OperandInfo)
234       OS << " { " << Info << " },";
235     OS << '\n';
236     Offset += OperandInfo.size();
237   }
238 }
239 
240 /// Initialize data structures for generating operand name mappings.
241 ///
242 /// \param Operands [out] A map used to generate the OpName enum with operand
243 ///        names as its keys and operand enum values as its values.
244 /// \param OperandMap [out] A map for representing the operand name mappings for
245 ///        each instructions.  This is used to generate the OperandMap table as
246 ///        well as the getNamedOperandIdx() function.
247 void InstrInfoEmitter::initOperandMapData(
248         ArrayRef<const CodeGenInstruction *> NumberedInstructions,
249         StringRef Namespace,
250         std::map<std::string, unsigned> &Operands,
251         OpNameMapTy &OperandMap) {
252   unsigned NumOperands = 0;
253   for (const CodeGenInstruction *Inst : NumberedInstructions) {
254     if (!Inst->TheDef->getValueAsBit("UseNamedOperandTable"))
255       continue;
256     std::map<unsigned, unsigned> OpList;
257     for (const auto &Info : Inst->Operands) {
258       StrUintMapIter I = Operands.find(Info.Name);
259 
260       if (I == Operands.end()) {
261         I = Operands.insert(Operands.begin(),
262                     std::pair<std::string, unsigned>(Info.Name, NumOperands++));
263       }
264       OpList[I->second] = Info.MIOperandNo;
265     }
266     OperandMap[OpList].push_back(Namespace.str() + "::" +
267                                  Inst->TheDef->getName().str());
268   }
269 }
270 
271 /// Generate a table and function for looking up the indices of operands by
272 /// name.
273 ///
274 /// This code generates:
275 /// - An enum in the llvm::TargetNamespace::OpName namespace, with one entry
276 ///   for each operand name.
277 /// - A 2-dimensional table called OperandMap for mapping OpName enum values to
278 ///   operand indices.
279 /// - A function called getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIdx)
280 ///   for looking up the operand index for an instruction, given a value from
281 ///   OpName enum
282 void InstrInfoEmitter::emitOperandNameMappings(raw_ostream &OS,
283            const CodeGenTarget &Target,
284            ArrayRef<const CodeGenInstruction*> NumberedInstructions) {
285   StringRef Namespace = Target.getInstNamespace();
286   std::string OpNameNS = "OpName";
287   // Map of operand names to their enumeration value.  This will be used to
288   // generate the OpName enum.
289   std::map<std::string, unsigned> Operands;
290   OpNameMapTy OperandMap;
291 
292   initOperandMapData(NumberedInstructions, Namespace, Operands, OperandMap);
293 
294   OS << "#ifdef GET_INSTRINFO_OPERAND_ENUM\n";
295   OS << "#undef GET_INSTRINFO_OPERAND_ENUM\n";
296   OS << "namespace llvm {\n";
297   OS << "namespace " << Namespace << " {\n";
298   OS << "namespace " << OpNameNS << " {\n";
299   OS << "enum {\n";
300   for (const auto &Op : Operands)
301     OS << "  " << Op.first << " = " << Op.second << ",\n";
302 
303   OS << "  OPERAND_LAST";
304   OS << "\n};\n";
305   OS << "} // end namespace OpName\n";
306   OS << "} // end namespace " << Namespace << "\n";
307   OS << "} // end namespace llvm\n";
308   OS << "#endif //GET_INSTRINFO_OPERAND_ENUM\n\n";
309 
310   OS << "#ifdef GET_INSTRINFO_NAMED_OPS\n";
311   OS << "#undef GET_INSTRINFO_NAMED_OPS\n";
312   OS << "namespace llvm {\n";
313   OS << "namespace " << Namespace << " {\n";
314   OS << "LLVM_READONLY\n";
315   OS << "int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIdx) {\n";
316   if (!Operands.empty()) {
317     OS << "  static const int16_t OperandMap [][" << Operands.size()
318        << "] = {\n";
319     for (const auto &Entry : OperandMap) {
320       const std::map<unsigned, unsigned> &OpList = Entry.first;
321       OS << "{";
322 
323       // Emit a row of the OperandMap table
324       for (unsigned i = 0, e = Operands.size(); i != e; ++i)
325         OS << (OpList.count(i) == 0 ? -1 : (int)OpList.find(i)->second) << ", ";
326 
327       OS << "},\n";
328     }
329     OS << "};\n";
330 
331     OS << "  switch(Opcode) {\n";
332     unsigned TableIndex = 0;
333     for (const auto &Entry : OperandMap) {
334       for (const std::string &Name : Entry.second)
335         OS << "  case " << Name << ":\n";
336 
337       OS << "    return OperandMap[" << TableIndex++ << "][NamedIdx];\n";
338     }
339     OS << "  default: return -1;\n";
340     OS << "  }\n";
341   } else {
342     // There are no operands, so no need to emit anything
343     OS << "  return -1;\n";
344   }
345   OS << "}\n";
346   OS << "} // end namespace " << Namespace << "\n";
347   OS << "} // end namespace llvm\n";
348   OS << "#endif //GET_INSTRINFO_NAMED_OPS\n\n";
349 }
350 
351 /// Generate an enum for all the operand types for this target, under the
352 /// llvm::TargetNamespace::OpTypes namespace.
353 /// Operand types are all definitions derived of the Operand Target.td class.
354 void InstrInfoEmitter::emitOperandTypeMappings(
355     raw_ostream &OS, const CodeGenTarget &Target,
356     ArrayRef<const CodeGenInstruction *> NumberedInstructions) {
357 
358   StringRef Namespace = Target.getInstNamespace();
359   std::vector<Record *> Operands = Records.getAllDerivedDefinitions("Operand");
360   std::vector<Record *> RegisterOperands =
361       Records.getAllDerivedDefinitions("RegisterOperand");
362   std::vector<Record *> RegisterClasses =
363       Records.getAllDerivedDefinitions("RegisterClass");
364 
365   OS << "#ifdef GET_INSTRINFO_OPERAND_TYPES_ENUM\n";
366   OS << "#undef GET_INSTRINFO_OPERAND_TYPES_ENUM\n";
367   OS << "namespace llvm {\n";
368   OS << "namespace " << Namespace << " {\n";
369   OS << "namespace OpTypes {\n";
370   OS << "enum OperandType {\n";
371 
372   unsigned EnumVal = 0;
373   for (const std::vector<Record *> *RecordsToAdd :
374        {&Operands, &RegisterOperands, &RegisterClasses}) {
375     for (const Record *Op : *RecordsToAdd) {
376       if (!Op->isAnonymous())
377         OS << "  " << Op->getName() << " = " << EnumVal << ",\n";
378       ++EnumVal;
379     }
380   }
381 
382   OS << "  OPERAND_TYPE_LIST_END" << "\n};\n";
383   OS << "} // end namespace OpTypes\n";
384   OS << "} // end namespace " << Namespace << "\n";
385   OS << "} // end namespace llvm\n";
386   OS << "#endif // GET_INSTRINFO_OPERAND_TYPES_ENUM\n\n";
387 
388   OS << "#ifdef GET_INSTRINFO_OPERAND_TYPE\n";
389   OS << "#undef GET_INSTRINFO_OPERAND_TYPE\n";
390   OS << "namespace llvm {\n";
391   OS << "namespace " << Namespace << " {\n";
392   OS << "LLVM_READONLY\n";
393   OS << "static int getOperandType(uint16_t Opcode, uint16_t OpIdx) {\n";
394   auto getInstrName = [&](int I) -> StringRef {
395     return NumberedInstructions[I]->TheDef->getName();
396   };
397   // TODO: Factor out duplicate operand lists to compress the tables.
398   if (!NumberedInstructions.empty()) {
399     std::vector<int> OperandOffsets;
400     std::vector<Record *> OperandRecords;
401     int CurrentOffset = 0;
402     for (const CodeGenInstruction *Inst : NumberedInstructions) {
403       OperandOffsets.push_back(CurrentOffset);
404       for (const auto &Op : Inst->Operands) {
405         const DagInit *MIOI = Op.MIOperandInfo;
406         if (!ExpandMIOperandInfo || !MIOI || MIOI->getNumArgs() == 0) {
407           // Single, anonymous, operand.
408           OperandRecords.push_back(Op.Rec);
409           ++CurrentOffset;
410         } else {
411           for (Init *Arg : MIOI->getArgs()) {
412             OperandRecords.push_back(cast<DefInit>(Arg)->getDef());
413             ++CurrentOffset;
414           }
415         }
416       }
417     }
418 
419     // Emit the table of offsets (indexes) into the operand type table.
420     // Size the unsigned integer offset to save space.
421     assert(OperandRecords.size() <= UINT32_MAX &&
422            "Too many operands for offset table");
423     OS << "  static const " << getMinimalTypeForRange(OperandRecords.size());
424     OS << " Offsets[] = {\n";
425     for (int I = 0, E = OperandOffsets.size(); I != E; ++I) {
426       OS << "    /* " << getInstrName(I) << " */\n";
427       OS << "    " << OperandOffsets[I] << ",\n";
428     }
429     OS << "  };\n";
430 
431     // Add an entry for the end so that we don't need to special case it below.
432     OperandOffsets.push_back(OperandRecords.size());
433 
434     // Emit the actual operand types in a flat table.
435     // Size the signed integer operand type to save space.
436     assert(EnumVal <= INT16_MAX &&
437            "Too many operand types for operand types table");
438     OS << "\n  using namespace OpTypes;\n";
439     OS << "  static";
440     OS << ((EnumVal <= INT8_MAX) ? " const int8_t" : " const int16_t");
441     OS << " OpcodeOperandTypes[] = {\n    ";
442     for (int I = 0, E = OperandRecords.size(), CurOffset = 0; I != E; ++I) {
443       // We print each Opcode's operands in its own row.
444       if (I == OperandOffsets[CurOffset]) {
445         OS << "\n    /* " << getInstrName(CurOffset) << " */\n    ";
446         while (OperandOffsets[++CurOffset] == I)
447           OS << "/* " << getInstrName(CurOffset) << " */\n    ";
448       }
449       Record *OpR = OperandRecords[I];
450       if ((OpR->isSubClassOf("Operand") ||
451            OpR->isSubClassOf("RegisterOperand") ||
452            OpR->isSubClassOf("RegisterClass")) &&
453           !OpR->isAnonymous())
454         OS << OpR->getName();
455       else
456         OS << -1;
457       OS << ", ";
458     }
459     OS << "\n  };\n";
460 
461     OS << "  return OpcodeOperandTypes[Offsets[Opcode] + OpIdx];\n";
462   } else {
463     OS << "  llvm_unreachable(\"No instructions defined\");\n";
464   }
465   OS << "}\n";
466   OS << "} // end namespace " << Namespace << "\n";
467   OS << "} // end namespace llvm\n";
468   OS << "#endif // GET_INSTRINFO_OPERAND_TYPE\n\n";
469 
470   OS << "#ifdef GET_INSTRINFO_MEM_OPERAND_SIZE\n";
471   OS << "#undef GET_INSTRINFO_MEM_OPERAND_SIZE\n";
472   OS << "namespace llvm {\n";
473   OS << "namespace " << Namespace << " {\n";
474   OS << "LLVM_READONLY\n";
475   OS << "static int getMemOperandSize(int OpType) {\n";
476   OS << "  switch (OpType) {\n";
477   std::map<int, std::vector<StringRef>> SizeToOperandName;
478   for (const Record *Op : Operands) {
479     if (!Op->isSubClassOf("X86MemOperand"))
480       continue;
481     if (int Size = Op->getValueAsInt("Size"))
482       SizeToOperandName[Size].push_back(Op->getName());
483   }
484   OS << "  default: return 0;\n";
485   for (auto KV : SizeToOperandName) {
486     for (const StringRef &OperandName : KV.second)
487       OS << "  case OpTypes::" << OperandName << ":\n";
488     OS << "    return " << KV.first << ";\n\n";
489   }
490   OS << "  }\n}\n";
491   OS << "} // end namespace " << Namespace << "\n";
492   OS << "} // end namespace llvm\n";
493   OS << "#endif // GET_INSTRINFO_MEM_OPERAND_SIZE\n\n";
494 }
495 
496 void InstrInfoEmitter::emitLogicalOperandSizeMappings(
497     raw_ostream &OS, StringRef Namespace,
498     ArrayRef<const CodeGenInstruction *> NumberedInstructions) {
499   std::map<std::vector<unsigned>, unsigned> LogicalOpSizeMap;
500 
501   std::map<unsigned, std::vector<std::string>> InstMap;
502 
503   size_t LogicalOpListSize = 0U;
504   std::vector<unsigned> LogicalOpList;
505   for (const auto *Inst : NumberedInstructions) {
506     if (!Inst->TheDef->getValueAsBit("UseLogicalOperandMappings"))
507       continue;
508 
509     LogicalOpList.clear();
510     llvm::transform(Inst->Operands, std::back_inserter(LogicalOpList),
511                     [](const CGIOperandList::OperandInfo &Op) -> unsigned {
512                       auto *MIOI = Op.MIOperandInfo;
513                       if (!MIOI || MIOI->getNumArgs() == 0)
514                         return 1;
515                       return MIOI->getNumArgs();
516                     });
517     LogicalOpListSize = std::max(LogicalOpList.size(), LogicalOpListSize);
518 
519     auto I =
520         LogicalOpSizeMap.insert({LogicalOpList, LogicalOpSizeMap.size()}).first;
521     InstMap[I->second].push_back(
522         (Namespace + "::" + Inst->TheDef->getName()).str());
523   }
524 
525   OS << "#ifdef GET_INSTRINFO_LOGICAL_OPERAND_SIZE_MAP\n";
526   OS << "#undef GET_INSTRINFO_LOGICAL_OPERAND_SIZE_MAP\n";
527   OS << "namespace llvm {\n";
528   OS << "namespace " << Namespace << " {\n";
529   OS << "LLVM_READONLY static unsigned\n";
530   OS << "getLogicalOperandSize(uint16_t Opcode, uint16_t LogicalOpIdx) {\n";
531   if (!InstMap.empty()) {
532     std::vector<const std::vector<unsigned> *> LogicalOpSizeList(
533         LogicalOpSizeMap.size());
534     for (auto &P : LogicalOpSizeMap) {
535       LogicalOpSizeList[P.second] = &P.first;
536     }
537     OS << "  static const unsigned SizeMap[][" << LogicalOpListSize
538        << "] = {\n";
539     for (auto &R : LogicalOpSizeList) {
540       const auto &Row = *R;
541       OS << "   {";
542       int i;
543       for (i = 0; i < static_cast<int>(Row.size()); ++i) {
544         OS << Row[i] << ", ";
545       }
546       for (; i < static_cast<int>(LogicalOpListSize); ++i) {
547         OS << "0, ";
548       }
549       OS << "}, ";
550       OS << "\n";
551     }
552     OS << "  };\n";
553 
554     OS << "  switch (Opcode) {\n";
555     OS << "  default: return LogicalOpIdx;\n";
556     for (auto &P : InstMap) {
557       auto OpMapIdx = P.first;
558       const auto &Insts = P.second;
559       for (const auto &Inst : Insts) {
560         OS << "  case " << Inst << ":\n";
561       }
562       OS << "    return SizeMap[" << OpMapIdx << "][LogicalOpIdx];\n";
563     }
564     OS << "  }\n";
565   } else {
566     OS << "  return LogicalOpIdx;\n";
567   }
568   OS << "}\n";
569 
570   OS << "LLVM_READONLY static inline unsigned\n";
571   OS << "getLogicalOperandIdx(uint16_t Opcode, uint16_t LogicalOpIdx) {\n";
572   OS << "  auto S = 0U;\n";
573   OS << "  for (auto i = 0U; i < LogicalOpIdx; ++i)\n";
574   OS << "    S += getLogicalOperandSize(Opcode, i);\n";
575   OS << "  return S;\n";
576   OS << "}\n";
577 
578   OS << "} // end namespace " << Namespace << "\n";
579   OS << "} // end namespace llvm\n";
580   OS << "#endif // GET_INSTRINFO_LOGICAL_OPERAND_SIZE_MAP\n\n";
581 }
582 
583 void InstrInfoEmitter::emitLogicalOperandTypeMappings(
584     raw_ostream &OS, StringRef Namespace,
585     ArrayRef<const CodeGenInstruction *> NumberedInstructions) {
586   std::map<std::vector<std::string>, unsigned> LogicalOpTypeMap;
587 
588   std::map<unsigned, std::vector<std::string>> InstMap;
589 
590   size_t OpTypeListSize = 0U;
591   std::vector<std::string> LogicalOpTypeList;
592   for (const auto *Inst : NumberedInstructions) {
593     if (!Inst->TheDef->getValueAsBit("UseLogicalOperandMappings"))
594       continue;
595 
596     LogicalOpTypeList.clear();
597     for (const auto &Op : Inst->Operands) {
598       auto *OpR = Op.Rec;
599       if ((OpR->isSubClassOf("Operand") ||
600            OpR->isSubClassOf("RegisterOperand") ||
601            OpR->isSubClassOf("RegisterClass")) &&
602           !OpR->isAnonymous()) {
603         LogicalOpTypeList.push_back(
604             (Namespace + "::OpTypes::" + Op.Rec->getName()).str());
605       } else {
606         LogicalOpTypeList.push_back("-1");
607       }
608     }
609     OpTypeListSize = std::max(LogicalOpTypeList.size(), OpTypeListSize);
610 
611     auto I =
612         LogicalOpTypeMap.insert({LogicalOpTypeList, LogicalOpTypeMap.size()})
613             .first;
614     InstMap[I->second].push_back(
615         (Namespace + "::" + Inst->TheDef->getName()).str());
616   }
617 
618   OS << "#ifdef GET_INSTRINFO_LOGICAL_OPERAND_TYPE_MAP\n";
619   OS << "#undef GET_INSTRINFO_LOGICAL_OPERAND_TYPE_MAP\n";
620   OS << "namespace llvm {\n";
621   OS << "namespace " << Namespace << " {\n";
622   OS << "LLVM_READONLY static int\n";
623   OS << "getLogicalOperandType(uint16_t Opcode, uint16_t LogicalOpIdx) {\n";
624   if (!InstMap.empty()) {
625     std::vector<const std::vector<std::string> *> LogicalOpTypeList(
626         LogicalOpTypeMap.size());
627     for (auto &P : LogicalOpTypeMap) {
628       LogicalOpTypeList[P.second] = &P.first;
629     }
630     OS << "  static const int TypeMap[][" << OpTypeListSize << "] = {\n";
631     for (int r = 0, rs = LogicalOpTypeList.size(); r < rs; ++r) {
632       const auto &Row = *LogicalOpTypeList[r];
633       OS << "   {";
634       int i, s = Row.size();
635       for (i = 0; i < s; ++i) {
636         if (i > 0)
637           OS << ", ";
638         OS << Row[i];
639       }
640       for (; i < static_cast<int>(OpTypeListSize); ++i) {
641         if (i > 0)
642           OS << ", ";
643         OS << "-1";
644       }
645       OS << "}";
646       if (r != rs - 1)
647         OS << ",";
648       OS << "\n";
649     }
650     OS << "  };\n";
651 
652     OS << "  switch (Opcode) {\n";
653     OS << "  default: return -1;\n";
654     for (auto &P : InstMap) {
655       auto OpMapIdx = P.first;
656       const auto &Insts = P.second;
657       for (const auto &Inst : Insts) {
658         OS << "  case " << Inst << ":\n";
659       }
660       OS << "    return TypeMap[" << OpMapIdx << "][LogicalOpIdx];\n";
661     }
662     OS << "  }\n";
663   } else {
664     OS << "  return -1;\n";
665   }
666   OS << "}\n";
667   OS << "} // end namespace " << Namespace << "\n";
668   OS << "} // end namespace llvm\n";
669   OS << "#endif // GET_INSTRINFO_LOGICAL_OPERAND_TYPE_MAP\n\n";
670 }
671 
672 void InstrInfoEmitter::emitMCIIHelperMethods(raw_ostream &OS,
673                                              StringRef TargetName) {
674   RecVec TIIPredicates = Records.getAllDerivedDefinitions("TIIPredicate");
675 
676   OS << "#ifdef GET_INSTRINFO_MC_HELPER_DECLS\n";
677   OS << "#undef GET_INSTRINFO_MC_HELPER_DECLS\n\n";
678 
679   OS << "namespace llvm {\n";
680   OS << "class MCInst;\n";
681   OS << "class FeatureBitset;\n\n";
682 
683   OS << "namespace " << TargetName << "_MC {\n\n";
684 
685   for (const Record *Rec : TIIPredicates) {
686     OS << "bool " << Rec->getValueAsString("FunctionName")
687         << "(const MCInst &MI);\n";
688   }
689 
690   OS << "void verifyInstructionPredicates(unsigned Opcode, const FeatureBitset "
691         "&Features);\n";
692 
693   OS << "\n} // end namespace " << TargetName << "_MC\n";
694   OS << "} // end namespace llvm\n\n";
695 
696   OS << "#endif // GET_INSTRINFO_MC_HELPER_DECLS\n\n";
697 
698   OS << "#ifdef GET_INSTRINFO_MC_HELPERS\n";
699   OS << "#undef GET_INSTRINFO_MC_HELPERS\n\n";
700 
701   OS << "namespace llvm {\n";
702   OS << "namespace " << TargetName << "_MC {\n\n";
703 
704   PredicateExpander PE(TargetName);
705   PE.setExpandForMC(true);
706 
707   for (const Record *Rec : TIIPredicates) {
708     OS << "bool " << Rec->getValueAsString("FunctionName");
709     OS << "(const MCInst &MI) {\n";
710 
711     OS.indent(PE.getIndentLevel() * 2);
712     PE.expandStatement(OS, Rec->getValueAsDef("Body"));
713     OS << "\n}\n\n";
714   }
715 
716   OS << "} // end namespace " << TargetName << "_MC\n";
717   OS << "} // end namespace llvm\n\n";
718 
719   OS << "#endif // GET_GENISTRINFO_MC_HELPERS\n\n";
720 }
721 
722 static std::string
723 getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) {
724   std::string Name = "CEFBS";
725   for (const auto &Feature : FeatureBitset)
726     Name += ("_" + Feature->getName()).str();
727   return Name;
728 }
729 
730 void InstrInfoEmitter::emitFeatureVerifier(raw_ostream &OS,
731                                            const CodeGenTarget &Target) {
732   const auto &All = SubtargetFeatureInfo::getAll(Records);
733   std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures;
734   SubtargetFeatures.insert(All.begin(), All.end());
735 
736   OS << "#if defined(ENABLE_INSTR_PREDICATE_VERIFIER) && !defined(NDEBUG)\n"
737      << "#define GET_COMPUTE_FEATURES\n"
738      << "#endif\n";
739   OS << "#ifdef GET_COMPUTE_FEATURES\n"
740      << "#undef GET_COMPUTE_FEATURES\n"
741      << "namespace llvm {\n"
742      << "namespace " << Target.getName() << "_MC {\n\n";
743 
744   // Emit the subtarget feature enumeration.
745   SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures,
746                                                            OS);
747   // Emit the available features compute function.
748   OS << "inline ";
749   SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures(
750       Target.getName(), "", "computeAvailableFeatures", SubtargetFeatures, OS);
751 
752   std::vector<std::vector<Record *>> FeatureBitsets;
753   for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
754     FeatureBitsets.emplace_back();
755     for (Record *Predicate : Inst->TheDef->getValueAsListOfDefs("Predicates")) {
756       const auto &I = SubtargetFeatures.find(Predicate);
757       if (I != SubtargetFeatures.end())
758         FeatureBitsets.back().push_back(I->second.TheDef);
759     }
760   }
761 
762   llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A,
763                                  const std::vector<Record *> &B) {
764     if (A.size() < B.size())
765       return true;
766     if (A.size() > B.size())
767       return false;
768     for (auto Pair : zip(A, B)) {
769       if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName())
770         return true;
771       if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName())
772         return false;
773     }
774     return false;
775   });
776   FeatureBitsets.erase(
777       std::unique(FeatureBitsets.begin(), FeatureBitsets.end()),
778       FeatureBitsets.end());
779   OS << "inline FeatureBitset computeRequiredFeatures(unsigned Opcode) {\n"
780      << "  enum : " << getMinimalTypeForRange(FeatureBitsets.size()) << " {\n"
781      << "    CEFBS_None,\n";
782   for (const auto &FeatureBitset : FeatureBitsets) {
783     if (FeatureBitset.empty())
784       continue;
785     OS << "    " << getNameForFeatureBitset(FeatureBitset) << ",\n";
786   }
787   OS << "  };\n\n"
788      << "  static constexpr FeatureBitset FeatureBitsets[] = {\n"
789      << "    {}, // CEFBS_None\n";
790   for (const auto &FeatureBitset : FeatureBitsets) {
791     if (FeatureBitset.empty())
792       continue;
793     OS << "    {";
794     for (const auto &Feature : FeatureBitset) {
795       const auto &I = SubtargetFeatures.find(Feature);
796       assert(I != SubtargetFeatures.end() && "Didn't import predicate?");
797       OS << I->second.getEnumBitName() << ", ";
798     }
799     OS << "},\n";
800   }
801   OS << "  };\n"
802      << "  static " << getMinimalTypeForRange(FeatureBitsets.size())
803      << " RequiredFeaturesRefs[] = {\n";
804   unsigned InstIdx = 0;
805   for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
806     OS << "    CEFBS";
807     unsigned NumPredicates = 0;
808     for (Record *Predicate : Inst->TheDef->getValueAsListOfDefs("Predicates")) {
809       const auto &I = SubtargetFeatures.find(Predicate);
810       if (I != SubtargetFeatures.end()) {
811         OS << '_' << I->second.TheDef->getName();
812         NumPredicates++;
813       }
814     }
815     if (!NumPredicates)
816       OS << "_None";
817     OS << ", // " << Inst->TheDef->getName() << " = " << InstIdx << "\n";
818     InstIdx++;
819   }
820   OS << "  };\n\n"
821      << "  assert(Opcode < " << InstIdx << ");\n"
822      << "  return FeatureBitsets[RequiredFeaturesRefs[Opcode]];\n"
823      << "}\n\n";
824 
825   OS << "} // end namespace " << Target.getName() << "_MC\n"
826      << "} // end namespace llvm\n"
827      << "#endif // GET_COMPUTE_FEATURES\n\n";
828 
829   OS << "#ifdef ENABLE_INSTR_PREDICATE_VERIFIER\n"
830      << "#undef ENABLE_INSTR_PREDICATE_VERIFIER\n"
831      << "#include <sstream>\n\n";
832 
833   OS << "namespace llvm {\n";
834   OS << "namespace " << Target.getName() << "_MC {\n\n";
835 
836   // Emit the name table for error messages.
837   OS << "#ifndef NDEBUG\n";
838   SubtargetFeatureInfo::emitNameTable(SubtargetFeatures, OS);
839   OS << "#endif // NDEBUG\n\n";
840 
841   // Emit the predicate verifier.
842   OS << "void verifyInstructionPredicates(\n"
843      << "    unsigned Opcode, const FeatureBitset &Features) {\n"
844      << "#ifndef NDEBUG\n";
845   OS << "  FeatureBitset AvailableFeatures = "
846         "computeAvailableFeatures(Features);\n";
847   OS << "  FeatureBitset RequiredFeatures = "
848      << "computeRequiredFeatures(Opcode);\n";
849   OS << "  FeatureBitset MissingFeatures =\n"
850      << "      (AvailableFeatures & RequiredFeatures) ^\n"
851      << "      RequiredFeatures;\n"
852      << "  if (MissingFeatures.any()) {\n"
853      << "    std::ostringstream Msg;\n"
854      << "    Msg << \"Attempting to emit \" << &" << Target.getName()
855      << "InstrNameData[" << Target.getName() << "InstrNameIndices[Opcode]]\n"
856      << "        << \" instruction but the \";\n"
857      << "    for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i)\n"
858      << "      if (MissingFeatures.test(i))\n"
859      << "        Msg << SubtargetFeatureNames[i] << \" \";\n"
860      << "    Msg << \"predicate(s) are not met\";\n"
861      << "    report_fatal_error(Msg.str().c_str());\n"
862      << "  }\n"
863      << "#endif // NDEBUG\n";
864   OS << "}\n";
865   OS << "} // end namespace " << Target.getName() << "_MC\n";
866   OS << "} // end namespace llvm\n";
867   OS << "#endif // ENABLE_INSTR_PREDICATE_VERIFIER\n\n";
868 }
869 
870 void InstrInfoEmitter::emitTIIHelperMethods(raw_ostream &OS,
871                                             StringRef TargetName,
872                                             bool ExpandDefinition) {
873   RecVec TIIPredicates = Records.getAllDerivedDefinitions("TIIPredicate");
874   if (TIIPredicates.empty())
875     return;
876 
877   PredicateExpander PE(TargetName);
878   PE.setExpandForMC(false);
879 
880   for (const Record *Rec : TIIPredicates) {
881     OS << (ExpandDefinition ? "" : "static ") << "bool ";
882     if (ExpandDefinition)
883       OS << TargetName << "InstrInfo::";
884     OS << Rec->getValueAsString("FunctionName");
885     OS << "(const MachineInstr &MI)";
886     if (!ExpandDefinition) {
887       OS << ";\n";
888       continue;
889     }
890 
891     OS << " {\n";
892     OS.indent(PE.getIndentLevel() * 2);
893     PE.expandStatement(OS, Rec->getValueAsDef("Body"));
894     OS << "\n}\n\n";
895   }
896 }
897 
898 //===----------------------------------------------------------------------===//
899 // Main Output.
900 //===----------------------------------------------------------------------===//
901 
902 // run - Emit the main instruction description records for the target...
903 void InstrInfoEmitter::run(raw_ostream &OS) {
904   emitSourceFileHeader("Target Instruction Enum Values and Descriptors", OS);
905   emitEnums(OS);
906 
907   CodeGenTarget &Target = CDP.getTargetInfo();
908   const std::string &TargetName = std::string(Target.getName());
909   Record *InstrInfo = Target.getInstructionSet();
910 
911   // Collect all of the operand info records.
912   Records.startTimer("Collect operand info");
913   OperandInfoListTy OperandInfoList;
914   OperandInfoMapTy OperandInfoMap;
915   unsigned OperandInfoSize =
916       CollectOperandInfo(OperandInfoList, OperandInfoMap);
917 
918   // Collect all of the instruction's implicit uses and defs.
919   Records.startTimer("Collect uses/defs");
920   std::map<std::vector<Record*>, unsigned> EmittedLists;
921   std::vector<std::vector<Record *>> ImplicitLists;
922   unsigned ImplicitListSize = 0;
923   for (const CodeGenInstruction *II : Target.getInstructionsByEnumValue()) {
924     std::vector<Record *> ImplicitOps = II->ImplicitUses;
925     llvm::append_range(ImplicitOps, II->ImplicitDefs);
926     if (EmittedLists.insert({ImplicitOps, ImplicitListSize}).second) {
927       ImplicitLists.push_back(ImplicitOps);
928       ImplicitListSize += ImplicitOps.size();
929     }
930   }
931 
932   ArrayRef<const CodeGenInstruction *> NumberedInstructions =
933       Target.getInstructionsByEnumValue();
934   OS << "#if defined(GET_INSTRINFO_MC_DESC) || "
935         "defined(GET_INSTRINFO_CTOR_DTOR)\n";
936   OS << "namespace llvm {\n\n";
937 
938   OS << "struct " << TargetName << "InstrTable {\n";
939   OS << "  MCInstrDesc Insts[" << NumberedInstructions.size() << "];\n";
940   OS << "  static_assert(alignof(MCInstrDesc) >= alignof(MCOperandInfo), "
941         "\"Unwanted padding between Insts and OperandInfo\");\n";
942   OS << "  MCOperandInfo OperandInfo[" << OperandInfoSize << "];\n";
943   OS << "  static_assert(alignof(MCOperandInfo) >= alignof(MCPhysReg), "
944         "\"Unwanted padding between OperandInfo and ImplicitOps\");\n";
945   OS << "  MCPhysReg ImplicitOps[" << std::max(ImplicitListSize, 1U) << "];\n";
946   OS << "};\n\n";
947 
948   OS << "} // end namespace llvm\n";
949   OS << "#endif // defined(GET_INSTRINFO_MC_DESC) || "
950         "defined(GET_INSTRINFO_CTOR_DTOR)\n\n";
951 
952   OS << "#ifdef GET_INSTRINFO_MC_DESC\n";
953   OS << "#undef GET_INSTRINFO_MC_DESC\n";
954   OS << "namespace llvm {\n\n";
955 
956   // Emit all of the MCInstrDesc records in reverse ENUM ordering.
957   Records.startTimer("Emit InstrDesc records");
958   OS << "static_assert(sizeof(MCOperandInfo) % sizeof(MCPhysReg) == 0);\n";
959   OS << "static constexpr unsigned " << TargetName << "ImpOpBase = sizeof "
960      << TargetName << "InstrTable::OperandInfo / (sizeof(MCPhysReg));\n\n";
961 
962   OS << "extern const " << TargetName << "InstrTable " << TargetName
963      << "Descs = {\n  {\n";
964   SequenceToOffsetTable<std::string> InstrNames;
965   unsigned Num = NumberedInstructions.size();
966   for (const CodeGenInstruction *Inst : reverse(NumberedInstructions)) {
967     // Keep a list of the instruction names.
968     InstrNames.add(std::string(Inst->TheDef->getName()));
969     // Emit the record into the table.
970     emitRecord(*Inst, --Num, InstrInfo, EmittedLists, OperandInfoMap, OS);
971   }
972 
973   OS << "  }, {\n";
974 
975   // Emit all of the operand info records.
976   Records.startTimer("Emit operand info");
977   EmitOperandInfo(OS, OperandInfoList);
978 
979   OS << "  }, {\n";
980 
981   // Emit all of the instruction's implicit uses and defs.
982   Records.startTimer("Emit uses/defs");
983   for (auto &List : ImplicitLists) {
984     OS << "    /* " << EmittedLists[List] << " */";
985     for (auto &Reg : List)
986       OS << ' ' << getQualifiedName(Reg) << ',';
987     OS << '\n';
988   }
989 
990   OS << "  }\n};\n\n";
991 
992   // Emit the array of instruction names.
993   Records.startTimer("Emit instruction names");
994   InstrNames.layout();
995   InstrNames.emitStringLiteralDef(OS, Twine("extern const char ") + TargetName +
996                                           "InstrNameData[]");
997 
998   OS << "extern const unsigned " << TargetName <<"InstrNameIndices[] = {";
999   Num = 0;
1000   for (const CodeGenInstruction *Inst : NumberedInstructions) {
1001     // Newline every eight entries.
1002     if (Num % 8 == 0)
1003       OS << "\n    ";
1004     OS << InstrNames.get(std::string(Inst->TheDef->getName())) << "U, ";
1005     ++Num;
1006   }
1007   OS << "\n};\n\n";
1008 
1009   bool HasDeprecationFeatures =
1010       llvm::any_of(NumberedInstructions, [](const CodeGenInstruction *Inst) {
1011         return !Inst->HasComplexDeprecationPredicate &&
1012                !Inst->DeprecatedReason.empty();
1013       });
1014   if (HasDeprecationFeatures) {
1015     OS << "extern const uint8_t " << TargetName
1016        << "InstrDeprecationFeatures[] = {";
1017     Num = 0;
1018     for (const CodeGenInstruction *Inst : NumberedInstructions) {
1019       if (Num % 8 == 0)
1020         OS << "\n    ";
1021       if (!Inst->HasComplexDeprecationPredicate &&
1022           !Inst->DeprecatedReason.empty())
1023         OS << Target.getInstNamespace() << "::" << Inst->DeprecatedReason
1024            << ", ";
1025       else
1026         OS << "uint8_t(-1), ";
1027       ++Num;
1028     }
1029     OS << "\n};\n\n";
1030   }
1031 
1032   bool HasComplexDeprecationInfos =
1033       llvm::any_of(NumberedInstructions, [](const CodeGenInstruction *Inst) {
1034         return Inst->HasComplexDeprecationPredicate;
1035       });
1036   if (HasComplexDeprecationInfos) {
1037     OS << "extern const MCInstrInfo::ComplexDeprecationPredicate " << TargetName
1038        << "InstrComplexDeprecationInfos[] = {";
1039     Num = 0;
1040     for (const CodeGenInstruction *Inst : NumberedInstructions) {
1041       if (Num % 8 == 0)
1042         OS << "\n    ";
1043       if (Inst->HasComplexDeprecationPredicate)
1044         // Emit a function pointer to the complex predicate method.
1045         OS << "&get" << Inst->DeprecatedReason << "DeprecationInfo, ";
1046       else
1047         OS << "nullptr, ";
1048       ++Num;
1049     }
1050     OS << "\n};\n\n";
1051   }
1052 
1053   // MCInstrInfo initialization routine.
1054   Records.startTimer("Emit initialization routine");
1055   OS << "static inline void Init" << TargetName
1056      << "MCInstrInfo(MCInstrInfo *II) {\n";
1057   OS << "  II->InitMCInstrInfo(" << TargetName << "Descs.Insts, " << TargetName
1058      << "InstrNameIndices, " << TargetName << "InstrNameData, ";
1059   if (HasDeprecationFeatures)
1060     OS << TargetName << "InstrDeprecationFeatures, ";
1061   else
1062     OS << "nullptr, ";
1063   if (HasComplexDeprecationInfos)
1064     OS << TargetName << "InstrComplexDeprecationInfos, ";
1065   else
1066     OS << "nullptr, ";
1067   OS << NumberedInstructions.size() << ");\n}\n\n";
1068 
1069   OS << "} // end namespace llvm\n";
1070 
1071   OS << "#endif // GET_INSTRINFO_MC_DESC\n\n";
1072 
1073   // Create a TargetInstrInfo subclass to hide the MC layer initialization.
1074   OS << "#ifdef GET_INSTRINFO_HEADER\n";
1075   OS << "#undef GET_INSTRINFO_HEADER\n";
1076 
1077   std::string ClassName = TargetName + "GenInstrInfo";
1078   OS << "namespace llvm {\n";
1079   OS << "struct " << ClassName << " : public TargetInstrInfo {\n"
1080      << "  explicit " << ClassName
1081      << "(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u, "
1082         "unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u);\n"
1083      << "  ~" << ClassName << "() override = default;\n";
1084 
1085 
1086   OS << "\n};\n} // end namespace llvm\n";
1087 
1088   OS << "#endif // GET_INSTRINFO_HEADER\n\n";
1089 
1090   OS << "#ifdef GET_INSTRINFO_HELPER_DECLS\n";
1091   OS << "#undef GET_INSTRINFO_HELPER_DECLS\n\n";
1092   emitTIIHelperMethods(OS, TargetName, /* ExpandDefinition = */ false);
1093   OS << "\n";
1094   OS << "#endif // GET_INSTRINFO_HELPER_DECLS\n\n";
1095 
1096   OS << "#ifdef GET_INSTRINFO_HELPERS\n";
1097   OS << "#undef GET_INSTRINFO_HELPERS\n\n";
1098   emitTIIHelperMethods(OS, TargetName, /* ExpandDefinition = */ true);
1099   OS << "#endif // GET_INSTRINFO_HELPERS\n\n";
1100 
1101   OS << "#ifdef GET_INSTRINFO_CTOR_DTOR\n";
1102   OS << "#undef GET_INSTRINFO_CTOR_DTOR\n";
1103 
1104   OS << "namespace llvm {\n";
1105   OS << "extern const " << TargetName << "InstrTable " << TargetName
1106      << "Descs;\n";
1107   OS << "extern const unsigned " << TargetName << "InstrNameIndices[];\n";
1108   OS << "extern const char " << TargetName << "InstrNameData[];\n";
1109   if (HasDeprecationFeatures)
1110     OS << "extern const uint8_t " << TargetName
1111        << "InstrDeprecationFeatures[];\n";
1112   if (HasComplexDeprecationInfos)
1113     OS << "extern const MCInstrInfo::ComplexDeprecationPredicate " << TargetName
1114        << "InstrComplexDeprecationInfos[];\n";
1115   OS << ClassName << "::" << ClassName
1116      << "(unsigned CFSetupOpcode, unsigned CFDestroyOpcode, unsigned "
1117         "CatchRetOpcode, unsigned ReturnOpcode)\n"
1118      << "  : TargetInstrInfo(CFSetupOpcode, CFDestroyOpcode, CatchRetOpcode, "
1119         "ReturnOpcode) {\n"
1120      << "  InitMCInstrInfo(" << TargetName << "Descs.Insts, " << TargetName
1121      << "InstrNameIndices, " << TargetName << "InstrNameData, ";
1122   if (HasDeprecationFeatures)
1123     OS << TargetName << "InstrDeprecationFeatures, ";
1124   else
1125     OS << "nullptr, ";
1126   if (HasComplexDeprecationInfos)
1127     OS << TargetName << "InstrComplexDeprecationInfos, ";
1128   else
1129     OS << "nullptr, ";
1130   OS << NumberedInstructions.size() << ");\n}\n";
1131   OS << "} // end namespace llvm\n";
1132 
1133   OS << "#endif // GET_INSTRINFO_CTOR_DTOR\n\n";
1134 
1135   Records.startTimer("Emit operand name mappings");
1136   emitOperandNameMappings(OS, Target, NumberedInstructions);
1137 
1138   Records.startTimer("Emit operand type mappings");
1139   emitOperandTypeMappings(OS, Target, NumberedInstructions);
1140 
1141   Records.startTimer("Emit logical operand size mappings");
1142   emitLogicalOperandSizeMappings(OS, TargetName, NumberedInstructions);
1143 
1144   Records.startTimer("Emit logical operand type mappings");
1145   emitLogicalOperandTypeMappings(OS, TargetName, NumberedInstructions);
1146 
1147   Records.startTimer("Emit helper methods");
1148   emitMCIIHelperMethods(OS, TargetName);
1149 
1150   Records.startTimer("Emit verifier methods");
1151   emitFeatureVerifier(OS, Target);
1152 }
1153 
1154 void InstrInfoEmitter::emitRecord(
1155     const CodeGenInstruction &Inst, unsigned Num, Record *InstrInfo,
1156     std::map<std::vector<Record *>, unsigned> &EmittedLists,
1157     const OperandInfoMapTy &OperandInfoMap, raw_ostream &OS) {
1158   int MinOperands = 0;
1159   if (!Inst.Operands.empty())
1160     // Each logical operand can be multiple MI operands.
1161     MinOperands = Inst.Operands.back().MIOperandNo +
1162                   Inst.Operands.back().MINumOperands;
1163 
1164   OS << "    { ";
1165   OS << Num << ",\t" << MinOperands << ",\t" << Inst.Operands.NumDefs << ",\t"
1166      << Inst.TheDef->getValueAsInt("Size") << ",\t"
1167      << SchedModels.getSchedClassIdx(Inst) << ",\t";
1168 
1169   CodeGenTarget &Target = CDP.getTargetInfo();
1170 
1171   // Emit the implicit use/def list...
1172   OS << Inst.ImplicitUses.size() << ",\t" << Inst.ImplicitDefs.size() << ",\t";
1173   std::vector<Record *> ImplicitOps = Inst.ImplicitUses;
1174   llvm::append_range(ImplicitOps, Inst.ImplicitDefs);
1175   OS << Target.getName() << "ImpOpBase + " << EmittedLists[ImplicitOps]
1176      << ",\t";
1177 
1178   // Emit the operand info offset.
1179   OperandInfoTy OperandInfo = GetOperandInfo(Inst);
1180   OS << OperandInfoMap.find(OperandInfo)->second << ",\t0";
1181 
1182   // Emit all of the target independent flags...
1183   if (Inst.isPreISelOpcode)    OS << "|(1ULL<<MCID::PreISelOpcode)";
1184   if (Inst.isPseudo)           OS << "|(1ULL<<MCID::Pseudo)";
1185   if (Inst.isMeta)             OS << "|(1ULL<<MCID::Meta)";
1186   if (Inst.isReturn)           OS << "|(1ULL<<MCID::Return)";
1187   if (Inst.isEHScopeReturn)    OS << "|(1ULL<<MCID::EHScopeReturn)";
1188   if (Inst.isBranch)           OS << "|(1ULL<<MCID::Branch)";
1189   if (Inst.isIndirectBranch)   OS << "|(1ULL<<MCID::IndirectBranch)";
1190   if (Inst.isCompare)          OS << "|(1ULL<<MCID::Compare)";
1191   if (Inst.isMoveImm)          OS << "|(1ULL<<MCID::MoveImm)";
1192   if (Inst.isMoveReg)          OS << "|(1ULL<<MCID::MoveReg)";
1193   if (Inst.isBitcast)          OS << "|(1ULL<<MCID::Bitcast)";
1194   if (Inst.isAdd)              OS << "|(1ULL<<MCID::Add)";
1195   if (Inst.isTrap)             OS << "|(1ULL<<MCID::Trap)";
1196   if (Inst.isSelect)           OS << "|(1ULL<<MCID::Select)";
1197   if (Inst.isBarrier)          OS << "|(1ULL<<MCID::Barrier)";
1198   if (Inst.hasDelaySlot)       OS << "|(1ULL<<MCID::DelaySlot)";
1199   if (Inst.isCall)             OS << "|(1ULL<<MCID::Call)";
1200   if (Inst.canFoldAsLoad)      OS << "|(1ULL<<MCID::FoldableAsLoad)";
1201   if (Inst.mayLoad)            OS << "|(1ULL<<MCID::MayLoad)";
1202   if (Inst.mayStore)           OS << "|(1ULL<<MCID::MayStore)";
1203   if (Inst.mayRaiseFPException) OS << "|(1ULL<<MCID::MayRaiseFPException)";
1204   if (Inst.isPredicable)       OS << "|(1ULL<<MCID::Predicable)";
1205   if (Inst.isConvertibleToThreeAddress) OS << "|(1ULL<<MCID::ConvertibleTo3Addr)";
1206   if (Inst.isCommutable)       OS << "|(1ULL<<MCID::Commutable)";
1207   if (Inst.isTerminator)       OS << "|(1ULL<<MCID::Terminator)";
1208   if (Inst.isReMaterializable) OS << "|(1ULL<<MCID::Rematerializable)";
1209   if (Inst.isNotDuplicable)    OS << "|(1ULL<<MCID::NotDuplicable)";
1210   if (Inst.Operands.hasOptionalDef) OS << "|(1ULL<<MCID::HasOptionalDef)";
1211   if (Inst.usesCustomInserter) OS << "|(1ULL<<MCID::UsesCustomInserter)";
1212   if (Inst.hasPostISelHook)    OS << "|(1ULL<<MCID::HasPostISelHook)";
1213   if (Inst.Operands.isVariadic)OS << "|(1ULL<<MCID::Variadic)";
1214   if (Inst.hasSideEffects)     OS << "|(1ULL<<MCID::UnmodeledSideEffects)";
1215   if (Inst.isAsCheapAsAMove)   OS << "|(1ULL<<MCID::CheapAsAMove)";
1216   if (!Target.getAllowRegisterRenaming() || Inst.hasExtraSrcRegAllocReq)
1217     OS << "|(1ULL<<MCID::ExtraSrcRegAllocReq)";
1218   if (!Target.getAllowRegisterRenaming() || Inst.hasExtraDefRegAllocReq)
1219     OS << "|(1ULL<<MCID::ExtraDefRegAllocReq)";
1220   if (Inst.isRegSequence) OS << "|(1ULL<<MCID::RegSequence)";
1221   if (Inst.isExtractSubreg) OS << "|(1ULL<<MCID::ExtractSubreg)";
1222   if (Inst.isInsertSubreg) OS << "|(1ULL<<MCID::InsertSubreg)";
1223   if (Inst.isConvergent) OS << "|(1ULL<<MCID::Convergent)";
1224   if (Inst.variadicOpsAreDefs) OS << "|(1ULL<<MCID::VariadicOpsAreDefs)";
1225   if (Inst.isAuthenticated) OS << "|(1ULL<<MCID::Authenticated)";
1226 
1227   // Emit all of the target-specific flags...
1228   BitsInit *TSF = Inst.TheDef->getValueAsBitsInit("TSFlags");
1229   if (!TSF)
1230     PrintFatalError(Inst.TheDef->getLoc(), "no TSFlags?");
1231   uint64_t Value = 0;
1232   for (unsigned i = 0, e = TSF->getNumBits(); i != e; ++i) {
1233     if (const auto *Bit = dyn_cast<BitInit>(TSF->getBit(i)))
1234       Value |= uint64_t(Bit->getValue()) << i;
1235     else
1236       PrintFatalError(Inst.TheDef->getLoc(),
1237                       "Invalid TSFlags bit in " + Inst.TheDef->getName());
1238   }
1239   OS << ", 0x";
1240   OS.write_hex(Value);
1241   OS << "ULL";
1242 
1243   OS << " },  // Inst #" << Num << " = " << Inst.TheDef->getName() << "\n";
1244 }
1245 
1246 // emitEnums - Print out enum values for all of the instructions.
1247 void InstrInfoEmitter::emitEnums(raw_ostream &OS) {
1248   OS << "#ifdef GET_INSTRINFO_ENUM\n";
1249   OS << "#undef GET_INSTRINFO_ENUM\n";
1250 
1251   OS << "namespace llvm {\n\n";
1252 
1253   const CodeGenTarget &Target = CDP.getTargetInfo();
1254 
1255   // We must emit the PHI opcode first...
1256   StringRef Namespace = Target.getInstNamespace();
1257 
1258   if (Namespace.empty())
1259     PrintFatalError("No instructions defined!");
1260 
1261   OS << "namespace " << Namespace << " {\n";
1262   OS << "  enum {\n";
1263   unsigned Num = 0;
1264   for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue())
1265     OS << "    " << Inst->TheDef->getName() << "\t= " << Num++ << ",\n";
1266   OS << "    INSTRUCTION_LIST_END = " << Num << "\n";
1267   OS << "  };\n\n";
1268   OS << "} // end namespace " << Namespace << "\n";
1269   OS << "} // end namespace llvm\n";
1270   OS << "#endif // GET_INSTRINFO_ENUM\n\n";
1271 
1272   OS << "#ifdef GET_INSTRINFO_SCHED_ENUM\n";
1273   OS << "#undef GET_INSTRINFO_SCHED_ENUM\n";
1274   OS << "namespace llvm {\n\n";
1275   OS << "namespace " << Namespace << " {\n";
1276   OS << "namespace Sched {\n";
1277   OS << "  enum {\n";
1278   Num = 0;
1279   for (const auto &Class : SchedModels.explicit_classes())
1280     OS << "    " << Class.Name << "\t= " << Num++ << ",\n";
1281   OS << "    SCHED_LIST_END = " << Num << "\n";
1282   OS << "  };\n";
1283   OS << "} // end namespace Sched\n";
1284   OS << "} // end namespace " << Namespace << "\n";
1285   OS << "} // end namespace llvm\n";
1286 
1287   OS << "#endif // GET_INSTRINFO_SCHED_ENUM\n\n";
1288 }
1289 
1290 static void EmitInstrInfo(RecordKeeper &RK, raw_ostream &OS) {
1291   RK.startTimer("Analyze DAG patterns");
1292   InstrInfoEmitter(RK).run(OS);
1293   RK.startTimer("Emit map table");
1294   EmitMapTable(RK, OS);
1295 }
1296 
1297 static TableGen::Emitter::Opt X("gen-instr-info", EmitInstrInfo,
1298                                 "Generate instruction descriptions");
1299