1 //===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend emits information about intrinsic functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenIntrinsics.h"
14 #include "CodeGenTarget.h"
15 #include "SequenceToOffsetTable.h"
16 #include "TableGenBackends.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/Support/CommandLine.h"
19 #include "llvm/TableGen/Error.h"
20 #include "llvm/TableGen/Record.h"
21 #include "llvm/TableGen/StringToOffsetTable.h"
22 #include "llvm/TableGen/TableGenBackend.h"
23 #include <algorithm>
24 using namespace llvm;
25 
26 cl::OptionCategory GenIntrinsicCat("Options for -gen-intrinsic-enums");
27 cl::opt<std::string>
28     IntrinsicPrefix("intrinsic-prefix",
29                     cl::desc("Generate intrinsics with this target prefix"),
30                     cl::value_desc("target prefix"), cl::cat(GenIntrinsicCat));
31 
32 namespace {
33 class IntrinsicEmitter {
34   RecordKeeper &Records;
35 
36 public:
37   IntrinsicEmitter(RecordKeeper &R) : Records(R) {}
38 
39   void run(raw_ostream &OS, bool Enums);
40 
41   void EmitEnumInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
42   void EmitTargetInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
43   void EmitIntrinsicToNameTable(const CodeGenIntrinsicTable &Ints,
44                                 raw_ostream &OS);
45   void EmitIntrinsicToOverloadTable(const CodeGenIntrinsicTable &Ints,
46                                     raw_ostream &OS);
47   void EmitGenerator(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
48   void EmitAttributes(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
49   void EmitIntrinsicToBuiltinMap(const CodeGenIntrinsicTable &Ints, bool IsClang,
50                                  raw_ostream &OS);
51 };
52 } // End anonymous namespace
53 
54 //===----------------------------------------------------------------------===//
55 // IntrinsicEmitter Implementation
56 //===----------------------------------------------------------------------===//
57 
58 void IntrinsicEmitter::run(raw_ostream &OS, bool Enums) {
59   emitSourceFileHeader("Intrinsic Function Source Fragment", OS);
60 
61   CodeGenIntrinsicTable Ints(Records);
62 
63   if (Enums) {
64     // Emit the enum information.
65     EmitEnumInfo(Ints, OS);
66   } else {
67     // Emit the target metadata.
68     EmitTargetInfo(Ints, OS);
69 
70     // Emit the intrinsic ID -> name table.
71     EmitIntrinsicToNameTable(Ints, OS);
72 
73     // Emit the intrinsic ID -> overload table.
74     EmitIntrinsicToOverloadTable(Ints, OS);
75 
76     // Emit the intrinsic declaration generator.
77     EmitGenerator(Ints, OS);
78 
79     // Emit the intrinsic parameter attributes.
80     EmitAttributes(Ints, OS);
81 
82     // Emit code to translate GCC builtins into LLVM intrinsics.
83     EmitIntrinsicToBuiltinMap(Ints, true, OS);
84 
85     // Emit code to translate MS builtins into LLVM intrinsics.
86     EmitIntrinsicToBuiltinMap(Ints, false, OS);
87   }
88 }
89 
90 void IntrinsicEmitter::EmitEnumInfo(const CodeGenIntrinsicTable &Ints,
91                                     raw_ostream &OS) {
92   // Find the TargetSet for which to generate enums. There will be an initial
93   // set with an empty target prefix which will include target independent
94   // intrinsics like dbg.value.
95   const CodeGenIntrinsicTable::TargetSet *Set = nullptr;
96   for (const auto &Target : Ints.Targets) {
97     if (Target.Name == IntrinsicPrefix) {
98       Set = &Target;
99       break;
100     }
101   }
102   if (!Set) {
103     std::vector<std::string> KnownTargets;
104     for (const auto &Target : Ints.Targets)
105       if (!Target.Name.empty())
106         KnownTargets.push_back(Target.Name);
107     PrintFatalError("tried to generate intrinsics for unknown target " +
108                     IntrinsicPrefix +
109                     "\nKnown targets are: " + join(KnownTargets, ", ") + "\n");
110   }
111 
112   // Generate a complete header for target specific intrinsics.
113   if (!IntrinsicPrefix.empty()) {
114     std::string UpperPrefix = StringRef(IntrinsicPrefix).upper();
115     OS << "#ifndef LLVM_IR_INTRINSIC_" << UpperPrefix << "_ENUMS_H\n";
116     OS << "#define LLVM_IR_INTRINSIC_" << UpperPrefix << "_ENUMS_H\n\n";
117     OS << "namespace llvm {\n";
118     OS << "namespace Intrinsic {\n";
119     OS << "enum " << UpperPrefix << "Intrinsics : unsigned {\n";
120   }
121 
122   OS << "// Enum values for intrinsics\n";
123   for (unsigned i = Set->Offset, e = Set->Offset + Set->Count; i != e; ++i) {
124     OS << "    " << Ints[i].EnumName;
125 
126     // Assign a value to the first intrinsic in this target set so that all
127     // intrinsic ids are distinct.
128     if (i == Set->Offset)
129       OS << " = " << (Set->Offset + 1);
130 
131     OS << ", ";
132     if (Ints[i].EnumName.size() < 40)
133       OS.indent(40 - Ints[i].EnumName.size());
134     OS << " // " << Ints[i].Name << "\n";
135   }
136 
137   // Emit num_intrinsics into the target neutral enum.
138   if (IntrinsicPrefix.empty()) {
139     OS << "    num_intrinsics = " << (Ints.size() + 1) << "\n";
140   } else {
141     OS << "}; // enum\n";
142     OS << "} // namespace Intrinsic\n";
143     OS << "} // namespace llvm\n\n";
144     OS << "#endif\n";
145   }
146 }
147 
148 void IntrinsicEmitter::EmitTargetInfo(const CodeGenIntrinsicTable &Ints,
149                                     raw_ostream &OS) {
150   OS << "// Target mapping\n";
151   OS << "#ifdef GET_INTRINSIC_TARGET_DATA\n";
152   OS << "struct IntrinsicTargetInfo {\n"
153      << "  llvm::StringLiteral Name;\n"
154      << "  size_t Offset;\n"
155      << "  size_t Count;\n"
156      << "};\n";
157   OS << "static constexpr IntrinsicTargetInfo TargetInfos[] = {\n";
158   for (auto Target : Ints.Targets)
159     OS << "  {llvm::StringLiteral(\"" << Target.Name << "\"), " << Target.Offset
160        << ", " << Target.Count << "},\n";
161   OS << "};\n";
162   OS << "#endif\n\n";
163 }
164 
165 void IntrinsicEmitter::EmitIntrinsicToNameTable(
166     const CodeGenIntrinsicTable &Ints, raw_ostream &OS) {
167   OS << "// Intrinsic ID to name table\n";
168   OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n";
169   OS << "  // Note that entry #0 is the invalid intrinsic!\n";
170   for (unsigned i = 0, e = Ints.size(); i != e; ++i)
171     OS << "  \"" << Ints[i].Name << "\",\n";
172   OS << "#endif\n\n";
173 }
174 
175 void IntrinsicEmitter::EmitIntrinsicToOverloadTable(
176     const CodeGenIntrinsicTable &Ints, raw_ostream &OS) {
177   OS << "// Intrinsic ID to overload bitset\n";
178   OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n";
179   OS << "static const uint8_t OTable[] = {\n";
180   OS << "  0";
181   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
182     // Add one to the index so we emit a null bit for the invalid #0 intrinsic.
183     if ((i+1)%8 == 0)
184       OS << ",\n  0";
185     if (Ints[i].isOverloaded)
186       OS << " | (1<<" << (i+1)%8 << ')';
187   }
188   OS << "\n};\n\n";
189   // OTable contains a true bit at the position if the intrinsic is overloaded.
190   OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n";
191   OS << "#endif\n\n";
192 }
193 
194 
195 // NOTE: This must be kept in synch with the copy in lib/IR/Function.cpp!
196 enum IIT_Info {
197   // Common values should be encoded with 0-15.
198   IIT_Done = 0,
199   IIT_I1 = 1,
200   IIT_I8 = 2,
201   IIT_I16 = 3,
202   IIT_I32 = 4,
203   IIT_I64 = 5,
204   IIT_F16 = 6,
205   IIT_F32 = 7,
206   IIT_F64 = 8,
207   IIT_V2 = 9,
208   IIT_V4 = 10,
209   IIT_V8 = 11,
210   IIT_V16 = 12,
211   IIT_V32 = 13,
212   IIT_PTR = 14,
213   IIT_ARG = 15,
214 
215   // Values from 16+ are only encodable with the inefficient encoding.
216   IIT_V64 = 16,
217   IIT_MMX = 17,
218   IIT_TOKEN = 18,
219   IIT_METADATA = 19,
220   IIT_EMPTYSTRUCT = 20,
221   IIT_STRUCT2 = 21,
222   IIT_STRUCT3 = 22,
223   IIT_STRUCT4 = 23,
224   IIT_STRUCT5 = 24,
225   IIT_EXTEND_ARG = 25,
226   IIT_TRUNC_ARG = 26,
227   IIT_ANYPTR = 27,
228   IIT_V1 = 28,
229   IIT_VARARG = 29,
230   IIT_HALF_VEC_ARG = 30,
231   IIT_SAME_VEC_WIDTH_ARG = 31,
232   IIT_PTR_TO_ARG = 32,
233   IIT_PTR_TO_ELT = 33,
234   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
235   IIT_I128 = 35,
236   IIT_V512 = 36,
237   IIT_V1024 = 37,
238   IIT_STRUCT6 = 38,
239   IIT_STRUCT7 = 39,
240   IIT_STRUCT8 = 40,
241   IIT_F128 = 41,
242   IIT_VEC_ELEMENT = 42,
243   IIT_SCALABLE_VEC = 43,
244   IIT_SUBDIVIDE2_ARG = 44,
245   IIT_SUBDIVIDE4_ARG = 45,
246   IIT_VEC_OF_BITCASTS_TO_INT = 46,
247   IIT_V128 = 47,
248   IIT_BF16 = 48,
249   IIT_STRUCT9 = 49,
250   IIT_V256 = 50,
251   IIT_AMX = 51,
252   IIT_PPCF128 = 52,
253   IIT_V3 = 53,
254   IIT_EXTERNREF = 54,
255   IIT_FUNCREF = 55,
256   IIT_ANYPTR_TO_ELT = 56,
257   IIT_I2 = 57,
258   IIT_I4 = 58,
259 };
260 
261 static void EncodeFixedValueType(MVT::SimpleValueType VT,
262                                  std::vector<unsigned char> &Sig) {
263   // clang-format off
264   if (MVT(VT).isInteger()) {
265     unsigned BitWidth = MVT(VT).getFixedSizeInBits();
266     switch (BitWidth) {
267     default: PrintFatalError("unhandled integer type width in intrinsic!");
268     case 1: return Sig.push_back(IIT_I1);
269     case 2: return Sig.push_back(IIT_I2);
270     case 4: return Sig.push_back(IIT_I4);
271     case 8: return Sig.push_back(IIT_I8);
272     case 16: return Sig.push_back(IIT_I16);
273     case 32: return Sig.push_back(IIT_I32);
274     case 64: return Sig.push_back(IIT_I64);
275     case 128: return Sig.push_back(IIT_I128);
276     }
277   }
278 
279   switch (VT) {
280   default: PrintFatalError("unhandled MVT in intrinsic!");
281   case MVT::f16: return Sig.push_back(IIT_F16);
282   case MVT::bf16: return Sig.push_back(IIT_BF16);
283   case MVT::f32: return Sig.push_back(IIT_F32);
284   case MVT::f64: return Sig.push_back(IIT_F64);
285   case MVT::f128: return Sig.push_back(IIT_F128);
286   case MVT::ppcf128: return Sig.push_back(IIT_PPCF128);
287   case MVT::token: return Sig.push_back(IIT_TOKEN);
288   case MVT::Metadata: return Sig.push_back(IIT_METADATA);
289   case MVT::x86mmx: return Sig.push_back(IIT_MMX);
290   case MVT::x86amx: return Sig.push_back(IIT_AMX);
291   // MVT::OtherVT is used to mean the empty struct type here.
292   case MVT::Other: return Sig.push_back(IIT_EMPTYSTRUCT);
293   // MVT::isVoid is used to represent varargs here.
294   case MVT::isVoid: return Sig.push_back(IIT_VARARG);
295   case MVT::externref:
296     return Sig.push_back(IIT_EXTERNREF);
297   case MVT::funcref:
298     return Sig.push_back(IIT_FUNCREF);
299   }
300   // clang-format on
301 }
302 
303 #if defined(_MSC_VER) && !defined(__clang__)
304 #pragma optimize("",off) // MSVC 2015 optimizer can't deal with this function.
305 #endif
306 
307 static void EncodeFixedType(Record *R, std::vector<unsigned char> &ArgCodes,
308                             unsigned &NextArgCode,
309                             std::vector<unsigned char> &Sig,
310                             ArrayRef<unsigned char> Mapping) {
311 
312   if (R->isSubClassOf("LLVMMatchType")) {
313     unsigned Number = Mapping[R->getValueAsInt("Number")];
314     assert(Number < ArgCodes.size() && "Invalid matching number!");
315     if (R->isSubClassOf("LLVMExtendedType"))
316       Sig.push_back(IIT_EXTEND_ARG);
317     else if (R->isSubClassOf("LLVMTruncatedType"))
318       Sig.push_back(IIT_TRUNC_ARG);
319     else if (R->isSubClassOf("LLVMHalfElementsVectorType"))
320       Sig.push_back(IIT_HALF_VEC_ARG);
321     else if (R->isSubClassOf("LLVMScalarOrSameVectorWidth")) {
322       Sig.push_back(IIT_SAME_VEC_WIDTH_ARG);
323       Sig.push_back((Number << 3) | ArgCodes[Number]);
324       MVT::SimpleValueType VT = getValueType(R->getValueAsDef("ElTy"));
325       EncodeFixedValueType(VT, Sig);
326       return;
327     }
328     else if (R->isSubClassOf("LLVMPointerTo"))
329       Sig.push_back(IIT_PTR_TO_ARG);
330     else if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) {
331       Sig.push_back(IIT_VEC_OF_ANYPTRS_TO_ELT);
332       // Encode overloaded ArgNo
333       Sig.push_back(NextArgCode++);
334       // Encode LLVMMatchType<Number> ArgNo
335       Sig.push_back(Number);
336       return;
337     } else if (R->isSubClassOf("LLVMAnyPointerToElt")) {
338       Sig.push_back(IIT_ANYPTR_TO_ELT);
339       // Encode overloaded ArgNo
340       Sig.push_back(NextArgCode++);
341       // Encode LLVMMatchType<Number> ArgNo
342       Sig.push_back(Number);
343       return;
344     } else if (R->isSubClassOf("LLVMPointerToElt"))
345       Sig.push_back(IIT_PTR_TO_ELT);
346     else if (R->isSubClassOf("LLVMVectorElementType"))
347       Sig.push_back(IIT_VEC_ELEMENT);
348     else if (R->isSubClassOf("LLVMSubdivide2VectorType"))
349       Sig.push_back(IIT_SUBDIVIDE2_ARG);
350     else if (R->isSubClassOf("LLVMSubdivide4VectorType"))
351       Sig.push_back(IIT_SUBDIVIDE4_ARG);
352     else if (R->isSubClassOf("LLVMVectorOfBitcastsToInt"))
353       Sig.push_back(IIT_VEC_OF_BITCASTS_TO_INT);
354     else
355       Sig.push_back(IIT_ARG);
356     return Sig.push_back((Number << 3) | 7 /*IITDescriptor::AK_MatchType*/);
357   }
358 
359   MVT::SimpleValueType VT = getValueType(R->getValueAsDef("VT"));
360 
361   unsigned Tmp = 0;
362   switch (VT) {
363   default: break;
364   case MVT::iPTRAny: ++Tmp; LLVM_FALLTHROUGH;
365   case MVT::vAny: ++Tmp;    LLVM_FALLTHROUGH;
366   case MVT::fAny: ++Tmp;    LLVM_FALLTHROUGH;
367   case MVT::iAny: ++Tmp;    LLVM_FALLTHROUGH;
368   case MVT::Any: {
369     // If this is an "any" valuetype, then the type is the type of the next
370     // type in the list specified to getIntrinsic().
371     Sig.push_back(IIT_ARG);
372 
373     // Figure out what arg # this is consuming, and remember what kind it was.
374     assert(NextArgCode < ArgCodes.size() && ArgCodes[NextArgCode] == Tmp &&
375            "Invalid or no ArgCode associated with overloaded VT!");
376     unsigned ArgNo = NextArgCode++;
377 
378     // Encode what sort of argument it must be in the low 3 bits of the ArgNo.
379     return Sig.push_back((ArgNo << 3) | Tmp);
380   }
381 
382   case MVT::iPTR: {
383     unsigned AddrSpace = 0;
384     if (R->isSubClassOf("LLVMQualPointerType")) {
385       AddrSpace = R->getValueAsInt("AddrSpace");
386       assert(AddrSpace < 256 && "Address space exceeds 255");
387     }
388     if (AddrSpace) {
389       Sig.push_back(IIT_ANYPTR);
390       Sig.push_back(AddrSpace);
391     } else {
392       Sig.push_back(IIT_PTR);
393     }
394     return EncodeFixedType(R->getValueAsDef("ElTy"), ArgCodes, NextArgCode, Sig,
395                            Mapping);
396   }
397   }
398 
399   if (MVT(VT).isVector()) {
400     MVT VVT = VT;
401     if (VVT.isScalableVector())
402       Sig.push_back(IIT_SCALABLE_VEC);
403     switch (VVT.getVectorMinNumElements()) {
404     default: PrintFatalError("unhandled vector type width in intrinsic!");
405     case 1: Sig.push_back(IIT_V1); break;
406     case 2: Sig.push_back(IIT_V2); break;
407     case 3: Sig.push_back(IIT_V3); break;
408     case 4: Sig.push_back(IIT_V4); break;
409     case 8: Sig.push_back(IIT_V8); break;
410     case 16: Sig.push_back(IIT_V16); break;
411     case 32: Sig.push_back(IIT_V32); break;
412     case 64: Sig.push_back(IIT_V64); break;
413     case 128: Sig.push_back(IIT_V128); break;
414     case 256: Sig.push_back(IIT_V256); break;
415     case 512: Sig.push_back(IIT_V512); break;
416     case 1024: Sig.push_back(IIT_V1024); break;
417     }
418 
419     return EncodeFixedValueType(VVT.getVectorElementType().SimpleTy, Sig);
420   }
421 
422   EncodeFixedValueType(VT, Sig);
423 }
424 
425 static void UpdateArgCodes(Record *R, std::vector<unsigned char> &ArgCodes,
426                            unsigned int &NumInserted,
427                            SmallVectorImpl<unsigned char> &Mapping) {
428   if (R->isSubClassOf("LLVMMatchType")) {
429     if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) {
430       ArgCodes.push_back(3 /*vAny*/);
431       ++NumInserted;
432     } else if (R->isSubClassOf("LLVMAnyPointerToElt")) {
433       ArgCodes.push_back(4 /*iPTRAny*/);
434       ++NumInserted;
435     }
436     return;
437   }
438 
439   unsigned Tmp = 0;
440   switch (getValueType(R->getValueAsDef("VT"))) {
441   default: break;
442   case MVT::iPTR:
443     UpdateArgCodes(R->getValueAsDef("ElTy"), ArgCodes, NumInserted, Mapping);
444     break;
445   case MVT::iPTRAny:
446     ++Tmp;
447     LLVM_FALLTHROUGH;
448   case MVT::vAny:
449     ++Tmp;
450     LLVM_FALLTHROUGH;
451   case MVT::fAny:
452     ++Tmp;
453     LLVM_FALLTHROUGH;
454   case MVT::iAny:
455     ++Tmp;
456     LLVM_FALLTHROUGH;
457   case MVT::Any:
458     unsigned OriginalIdx = ArgCodes.size() - NumInserted;
459     assert(OriginalIdx >= Mapping.size());
460     Mapping.resize(OriginalIdx+1);
461     Mapping[OriginalIdx] = ArgCodes.size();
462     ArgCodes.push_back(Tmp);
463     break;
464   }
465 }
466 
467 #if defined(_MSC_VER) && !defined(__clang__)
468 #pragma optimize("",on)
469 #endif
470 
471 /// ComputeFixedEncoding - If we can encode the type signature for this
472 /// intrinsic into 32 bits, return it.  If not, return ~0U.
473 static void ComputeFixedEncoding(const CodeGenIntrinsic &Int,
474                                  std::vector<unsigned char> &TypeSig) {
475   std::vector<unsigned char> ArgCodes;
476 
477   // Add codes for any overloaded result VTs.
478   unsigned int NumInserted = 0;
479   SmallVector<unsigned char, 8> ArgMapping;
480   for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i)
481     UpdateArgCodes(Int.IS.RetTypeDefs[i], ArgCodes, NumInserted, ArgMapping);
482 
483   // Add codes for any overloaded operand VTs.
484   for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i)
485     UpdateArgCodes(Int.IS.ParamTypeDefs[i], ArgCodes, NumInserted, ArgMapping);
486 
487   unsigned NextArgCode = 0;
488   if (Int.IS.RetVTs.empty())
489     TypeSig.push_back(IIT_Done);
490   else if (Int.IS.RetVTs.size() == 1 &&
491            Int.IS.RetVTs[0] == MVT::isVoid)
492     TypeSig.push_back(IIT_Done);
493   else {
494     switch (Int.IS.RetVTs.size()) {
495       case 1: break;
496       case 2: TypeSig.push_back(IIT_STRUCT2); break;
497       case 3: TypeSig.push_back(IIT_STRUCT3); break;
498       case 4: TypeSig.push_back(IIT_STRUCT4); break;
499       case 5: TypeSig.push_back(IIT_STRUCT5); break;
500       case 6: TypeSig.push_back(IIT_STRUCT6); break;
501       case 7: TypeSig.push_back(IIT_STRUCT7); break;
502       case 8: TypeSig.push_back(IIT_STRUCT8); break;
503       case 9: TypeSig.push_back(IIT_STRUCT9); break;
504       default: llvm_unreachable("Unhandled case in struct");
505     }
506 
507     for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i)
508       EncodeFixedType(Int.IS.RetTypeDefs[i], ArgCodes, NextArgCode, TypeSig,
509                       ArgMapping);
510   }
511 
512   for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i)
513     EncodeFixedType(Int.IS.ParamTypeDefs[i], ArgCodes, NextArgCode, TypeSig,
514                     ArgMapping);
515 }
516 
517 static void printIITEntry(raw_ostream &OS, unsigned char X) {
518   OS << (unsigned)X;
519 }
520 
521 void IntrinsicEmitter::EmitGenerator(const CodeGenIntrinsicTable &Ints,
522                                      raw_ostream &OS) {
523   // If we can compute a 32-bit fixed encoding for this intrinsic, do so and
524   // capture it in this vector, otherwise store a ~0U.
525   std::vector<unsigned> FixedEncodings;
526 
527   SequenceToOffsetTable<std::vector<unsigned char> > LongEncodingTable;
528 
529   std::vector<unsigned char> TypeSig;
530 
531   // Compute the unique argument type info.
532   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
533     // Get the signature for the intrinsic.
534     TypeSig.clear();
535     ComputeFixedEncoding(Ints[i], TypeSig);
536 
537     // Check to see if we can encode it into a 32-bit word.  We can only encode
538     // 8 nibbles into a 32-bit word.
539     if (TypeSig.size() <= 8) {
540       bool Failed = false;
541       unsigned Result = 0;
542       for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) {
543         // If we had an unencodable argument, bail out.
544         if (TypeSig[i] > 15) {
545           Failed = true;
546           break;
547         }
548         Result = (Result << 4) | TypeSig[e-i-1];
549       }
550 
551       // If this could be encoded into a 31-bit word, return it.
552       if (!Failed && (Result >> 31) == 0) {
553         FixedEncodings.push_back(Result);
554         continue;
555       }
556     }
557 
558     // Otherwise, we're going to unique the sequence into the
559     // LongEncodingTable, and use its offset in the 32-bit table instead.
560     LongEncodingTable.add(TypeSig);
561 
562     // This is a placehold that we'll replace after the table is laid out.
563     FixedEncodings.push_back(~0U);
564   }
565 
566   LongEncodingTable.layout();
567 
568   OS << "// Global intrinsic function declaration type table.\n";
569   OS << "#ifdef GET_INTRINSIC_GENERATOR_GLOBAL\n";
570 
571   OS << "static const unsigned IIT_Table[] = {\n  ";
572 
573   for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) {
574     if ((i & 7) == 7)
575       OS << "\n  ";
576 
577     // If the entry fit in the table, just emit it.
578     if (FixedEncodings[i] != ~0U) {
579       OS << "0x" << Twine::utohexstr(FixedEncodings[i]) << ", ";
580       continue;
581     }
582 
583     TypeSig.clear();
584     ComputeFixedEncoding(Ints[i], TypeSig);
585 
586 
587     // Otherwise, emit the offset into the long encoding table.  We emit it this
588     // way so that it is easier to read the offset in the .def file.
589     OS << "(1U<<31) | " << LongEncodingTable.get(TypeSig) << ", ";
590   }
591 
592   OS << "0\n};\n\n";
593 
594   // Emit the shared table of register lists.
595   OS << "static const unsigned char IIT_LongEncodingTable[] = {\n";
596   if (!LongEncodingTable.empty())
597     LongEncodingTable.emit(OS, printIITEntry);
598   OS << "  255\n};\n\n";
599 
600   OS << "#endif\n\n";  // End of GET_INTRINSIC_GENERATOR_GLOBAL
601 }
602 
603 namespace {
604 struct AttributeComparator {
605   bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const {
606     // Sort throwing intrinsics after non-throwing intrinsics.
607     if (L->canThrow != R->canThrow)
608       return R->canThrow;
609 
610     if (L->isNoDuplicate != R->isNoDuplicate)
611       return R->isNoDuplicate;
612 
613     if (L->isNoMerge != R->isNoMerge)
614       return R->isNoMerge;
615 
616     if (L->isNoReturn != R->isNoReturn)
617       return R->isNoReturn;
618 
619     if (L->isNoCallback != R->isNoCallback)
620       return R->isNoCallback;
621 
622     if (L->isNoSync != R->isNoSync)
623       return R->isNoSync;
624 
625     if (L->isNoFree != R->isNoFree)
626       return R->isNoFree;
627 
628     if (L->isWillReturn != R->isWillReturn)
629       return R->isWillReturn;
630 
631     if (L->isCold != R->isCold)
632       return R->isCold;
633 
634     if (L->isConvergent != R->isConvergent)
635       return R->isConvergent;
636 
637     if (L->isSpeculatable != R->isSpeculatable)
638       return R->isSpeculatable;
639 
640     if (L->hasSideEffects != R->hasSideEffects)
641       return R->hasSideEffects;
642 
643     // Try to order by readonly/readnone attribute.
644     CodeGenIntrinsic::ModRefBehavior LK = L->ModRef;
645     CodeGenIntrinsic::ModRefBehavior RK = R->ModRef;
646     if (LK != RK) return (LK > RK);
647     // Order by argument attributes.
648     // This is reliable because each side is already sorted internally.
649     return (L->ArgumentAttributes < R->ArgumentAttributes);
650   }
651 };
652 } // End anonymous namespace
653 
654 /// EmitAttributes - This emits the Intrinsic::getAttributes method.
655 void IntrinsicEmitter::EmitAttributes(const CodeGenIntrinsicTable &Ints,
656                                       raw_ostream &OS) {
657   OS << "// Add parameter attributes that are not common to all intrinsics.\n";
658   OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n";
659   OS << "AttributeList Intrinsic::getAttributes(LLVMContext &C, ID id) {\n";
660 
661   // Compute the maximum number of attribute arguments and the map
662   typedef std::map<const CodeGenIntrinsic*, unsigned,
663                    AttributeComparator> UniqAttrMapTy;
664   UniqAttrMapTy UniqAttributes;
665   unsigned maxArgAttrs = 0;
666   unsigned AttrNum = 0;
667   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
668     const CodeGenIntrinsic &intrinsic = Ints[i];
669     maxArgAttrs =
670       std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size()));
671     unsigned &N = UniqAttributes[&intrinsic];
672     if (N) continue;
673     N = ++AttrNum;
674     assert(N < 65536 && "Too many unique attributes for table!");
675   }
676 
677   // Emit an array of AttributeList.  Most intrinsics will have at least one
678   // entry, for the function itself (index ~1), which is usually nounwind.
679   OS << "  static const uint16_t IntrinsicsToAttributesMap[] = {\n";
680 
681   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
682     const CodeGenIntrinsic &intrinsic = Ints[i];
683 
684     OS << "    " << UniqAttributes[&intrinsic] << ", // "
685        << intrinsic.Name << "\n";
686   }
687   OS << "  };\n\n";
688 
689   OS << "  AttributeList AS[" << maxArgAttrs + 1 << "];\n";
690   OS << "  unsigned NumAttrs = 0;\n";
691   OS << "  if (id != 0) {\n";
692   OS << "    switch(IntrinsicsToAttributesMap[id - 1]) {\n";
693   OS << "    default: llvm_unreachable(\"Invalid attribute number\");\n";
694   for (auto UniqAttribute : UniqAttributes) {
695     OS << "    case " << UniqAttribute.second << ": {\n";
696 
697     const CodeGenIntrinsic &Intrinsic = *(UniqAttribute.first);
698 
699     // Keep track of the number of attributes we're writing out.
700     unsigned numAttrs = 0;
701 
702     // The argument attributes are alreadys sorted by argument index.
703     unsigned Ai = 0, Ae = Intrinsic.ArgumentAttributes.size();
704     if (Ae) {
705       while (Ai != Ae) {
706         unsigned AttrIdx = Intrinsic.ArgumentAttributes[Ai].Index;
707 
708         OS << "      const Attribute::AttrKind AttrParam" << AttrIdx << "[]= {";
709         ListSeparator LS(",");
710 
711         bool AllValuesAreZero = true;
712         SmallVector<uint64_t, 8> Values;
713         do {
714           switch (Intrinsic.ArgumentAttributes[Ai].Kind) {
715           case CodeGenIntrinsic::NoCapture:
716             OS << LS << "Attribute::NoCapture";
717             break;
718           case CodeGenIntrinsic::NoAlias:
719             OS << LS << "Attribute::NoAlias";
720             break;
721           case CodeGenIntrinsic::NoUndef:
722             OS << LS << "Attribute::NoUndef";
723             break;
724           case CodeGenIntrinsic::Returned:
725             OS << LS << "Attribute::Returned";
726             break;
727           case CodeGenIntrinsic::ReadOnly:
728             OS << LS << "Attribute::ReadOnly";
729             break;
730           case CodeGenIntrinsic::WriteOnly:
731             OS << LS << "Attribute::WriteOnly";
732             break;
733           case CodeGenIntrinsic::ReadNone:
734             OS << LS << "Attribute::ReadNone";
735             break;
736           case CodeGenIntrinsic::ImmArg:
737             OS << LS << "Attribute::ImmArg";
738             break;
739           case CodeGenIntrinsic::Alignment:
740             OS << LS << "Attribute::Alignment";
741             break;
742           }
743           uint64_t V = Intrinsic.ArgumentAttributes[Ai].Value;
744           Values.push_back(V);
745           AllValuesAreZero &= (V == 0);
746 
747           ++Ai;
748         } while (Ai != Ae && Intrinsic.ArgumentAttributes[Ai].Index == AttrIdx);
749         OS << "};\n";
750 
751         // Generate attribute value array if not all attribute values are zero.
752         if (!AllValuesAreZero) {
753           OS << "      const uint64_t AttrValParam" << AttrIdx << "[]= {";
754           ListSeparator LSV(",");
755           for (const auto V : Values)
756             OS << LSV << V;
757           OS << "};\n";
758         }
759 
760         OS << "      AS[" << numAttrs++ << "] = AttributeList::get(C, "
761            << AttrIdx << ", AttrParam" << AttrIdx;
762         if (!AllValuesAreZero)
763           OS << ", AttrValParam" << AttrIdx;
764         OS << ");\n";
765       }
766     }
767 
768     if (!Intrinsic.canThrow ||
769         (Intrinsic.ModRef != CodeGenIntrinsic::ReadWriteMem &&
770          !Intrinsic.hasSideEffects) ||
771         Intrinsic.isNoReturn || Intrinsic.isNoCallback || Intrinsic.isNoSync ||
772         Intrinsic.isNoFree || Intrinsic.isWillReturn || Intrinsic.isCold ||
773         Intrinsic.isNoDuplicate || Intrinsic.isNoMerge ||
774         Intrinsic.isConvergent || Intrinsic.isSpeculatable) {
775       OS << "      const Attribute::AttrKind Atts[] = {";
776       ListSeparator LS(",");
777       if (!Intrinsic.canThrow)
778         OS << LS << "Attribute::NoUnwind";
779       if (Intrinsic.isNoReturn)
780         OS << LS << "Attribute::NoReturn";
781       if (Intrinsic.isNoCallback)
782         OS << LS << "Attribute::NoCallback";
783       if (Intrinsic.isNoSync)
784         OS << LS << "Attribute::NoSync";
785       if (Intrinsic.isNoFree)
786         OS << LS << "Attribute::NoFree";
787       if (Intrinsic.isWillReturn)
788         OS << LS << "Attribute::WillReturn";
789       if (Intrinsic.isCold)
790         OS << LS << "Attribute::Cold";
791       if (Intrinsic.isNoDuplicate)
792         OS << LS << "Attribute::NoDuplicate";
793       if (Intrinsic.isNoMerge)
794         OS << LS << "Attribute::NoMerge";
795       if (Intrinsic.isConvergent)
796         OS << LS << "Attribute::Convergent";
797       if (Intrinsic.isSpeculatable)
798         OS << LS << "Attribute::Speculatable";
799 
800       switch (Intrinsic.ModRef) {
801       case CodeGenIntrinsic::NoMem:
802         if (Intrinsic.hasSideEffects)
803           break;
804         OS << LS;
805         OS << "Attribute::ReadNone";
806         break;
807       case CodeGenIntrinsic::ReadArgMem:
808         OS << LS;
809         OS << "Attribute::ReadOnly,";
810         OS << "Attribute::ArgMemOnly";
811         break;
812       case CodeGenIntrinsic::ReadMem:
813         OS << LS;
814         OS << "Attribute::ReadOnly";
815         break;
816       case CodeGenIntrinsic::ReadInaccessibleMem:
817         OS << LS;
818         OS << "Attribute::ReadOnly,";
819         OS << "Attribute::InaccessibleMemOnly";
820         break;
821       case CodeGenIntrinsic::ReadInaccessibleMemOrArgMem:
822         OS << LS;
823         OS << "Attribute::ReadOnly,";
824         OS << "Attribute::InaccessibleMemOrArgMemOnly";
825         break;
826       case CodeGenIntrinsic::WriteArgMem:
827         OS << LS;
828         OS << "Attribute::WriteOnly,";
829         OS << "Attribute::ArgMemOnly";
830         break;
831       case CodeGenIntrinsic::WriteMem:
832         OS << LS;
833         OS << "Attribute::WriteOnly";
834         break;
835       case CodeGenIntrinsic::WriteInaccessibleMem:
836         OS << LS;
837         OS << "Attribute::WriteOnly,";
838         OS << "Attribute::InaccessibleMemOnly";
839         break;
840       case CodeGenIntrinsic::WriteInaccessibleMemOrArgMem:
841         OS << LS;
842         OS << "Attribute::WriteOnly,";
843         OS << "Attribute::InaccessibleMemOrArgMemOnly";
844         break;
845       case CodeGenIntrinsic::ReadWriteArgMem:
846         OS << LS;
847         OS << "Attribute::ArgMemOnly";
848         break;
849       case CodeGenIntrinsic::ReadWriteInaccessibleMem:
850         OS << LS;
851         OS << "Attribute::InaccessibleMemOnly";
852         break;
853       case CodeGenIntrinsic::ReadWriteInaccessibleMemOrArgMem:
854         OS << LS;
855         OS << "Attribute::InaccessibleMemOrArgMemOnly";
856         break;
857       case CodeGenIntrinsic::ReadWriteMem:
858         break;
859       }
860       OS << "};\n";
861       OS << "      AS[" << numAttrs++ << "] = AttributeList::get(C, "
862          << "AttributeList::FunctionIndex, Atts);\n";
863     }
864 
865     if (numAttrs) {
866       OS << "      NumAttrs = " << numAttrs << ";\n";
867       OS << "      break;\n";
868       OS << "      }\n";
869     } else {
870       OS << "      return AttributeList();\n";
871       OS << "      }\n";
872     }
873   }
874 
875   OS << "    }\n";
876   OS << "  }\n";
877   OS << "  return AttributeList::get(C, makeArrayRef(AS, NumAttrs));\n";
878   OS << "}\n";
879   OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n";
880 }
881 
882 void IntrinsicEmitter::EmitIntrinsicToBuiltinMap(
883     const CodeGenIntrinsicTable &Ints, bool IsClang, raw_ostream &OS) {
884   StringRef CompilerName = (IsClang ? "Clang" : "MS");
885   StringRef UpperCompilerName = (IsClang ? "CLANG" : "MS");
886   typedef std::map<std::string, std::map<std::string, std::string>> BIMTy;
887   BIMTy BuiltinMap;
888   StringToOffsetTable Table;
889   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
890     const std::string &BuiltinName =
891         IsClang ? Ints[i].ClangBuiltinName : Ints[i].MSBuiltinName;
892     if (!BuiltinName.empty()) {
893       // Get the map for this target prefix.
894       std::map<std::string, std::string> &BIM =
895           BuiltinMap[Ints[i].TargetPrefix];
896 
897       if (!BIM.insert(std::make_pair(BuiltinName, Ints[i].EnumName)).second)
898         PrintFatalError(Ints[i].TheDef->getLoc(),
899                         "Intrinsic '" + Ints[i].TheDef->getName() +
900                             "': duplicate " + CompilerName + " builtin name!");
901       Table.GetOrAddStringOffset(BuiltinName);
902     }
903   }
904 
905   OS << "// Get the LLVM intrinsic that corresponds to a builtin.\n";
906   OS << "// This is used by the C front-end.  The builtin name is passed\n";
907   OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n";
908   OS << "// in as TargetPrefix.  The result is assigned to 'IntrinsicID'.\n";
909   OS << "#ifdef GET_LLVM_INTRINSIC_FOR_" << UpperCompilerName << "_BUILTIN\n";
910 
911   OS << "Intrinsic::ID Intrinsic::getIntrinsicFor" << CompilerName
912      << "Builtin(const char "
913      << "*TargetPrefixStr, StringRef BuiltinNameStr) {\n";
914 
915   if (Table.Empty()) {
916     OS << "  return Intrinsic::not_intrinsic;\n";
917     OS << "}\n";
918     OS << "#endif\n\n";
919     return;
920   }
921 
922   OS << "  static const char BuiltinNames[] = {\n";
923   Table.EmitCharArray(OS);
924   OS << "  };\n\n";
925 
926   OS << "  struct BuiltinEntry {\n";
927   OS << "    Intrinsic::ID IntrinID;\n";
928   OS << "    unsigned StrTabOffset;\n";
929   OS << "    const char *getName() const {\n";
930   OS << "      return &BuiltinNames[StrTabOffset];\n";
931   OS << "    }\n";
932   OS << "    bool operator<(StringRef RHS) const {\n";
933   OS << "      return strncmp(getName(), RHS.data(), RHS.size()) < 0;\n";
934   OS << "    }\n";
935   OS << "  };\n";
936 
937   OS << "  StringRef TargetPrefix(TargetPrefixStr);\n\n";
938 
939   // Note: this could emit significantly better code if we cared.
940   for (auto &I : BuiltinMap) {
941     OS << "  ";
942     if (!I.first.empty())
943       OS << "if (TargetPrefix == \"" << I.first << "\") ";
944     else
945       OS << "/* Target Independent Builtins */ ";
946     OS << "{\n";
947 
948     // Emit the comparisons for this target prefix.
949     OS << "    static const BuiltinEntry " << I.first << "Names[] = {\n";
950     for (const auto &P : I.second) {
951       OS << "      {Intrinsic::" << P.second << ", "
952          << Table.GetOrAddStringOffset(P.first) << "}, // " << P.first << "\n";
953     }
954     OS << "    };\n";
955     OS << "    auto I = std::lower_bound(std::begin(" << I.first << "Names),\n";
956     OS << "                              std::end(" << I.first << "Names),\n";
957     OS << "                              BuiltinNameStr);\n";
958     OS << "    if (I != std::end(" << I.first << "Names) &&\n";
959     OS << "        I->getName() == BuiltinNameStr)\n";
960     OS << "      return I->IntrinID;\n";
961     OS << "  }\n";
962   }
963   OS << "  return ";
964   OS << "Intrinsic::not_intrinsic;\n";
965   OS << "}\n";
966   OS << "#endif\n\n";
967 }
968 
969 void llvm::EmitIntrinsicEnums(RecordKeeper &RK, raw_ostream &OS) {
970   IntrinsicEmitter(RK).run(OS, /*Enums=*/true);
971 }
972 
973 void llvm::EmitIntrinsicImpl(RecordKeeper &RK, raw_ostream &OS) {
974   IntrinsicEmitter(RK).run(OS, /*Enums=*/false);
975 }
976