1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is part of the X86 Disassembler Emitter.
10 // It contains the implementation of a single recognizable instruction.
11 // Documentation for the disassembler emitter in general can be found in
12 //  X86DisassemblerEmitter.h.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "X86RecognizableInstr.h"
17 #include "X86DisassemblerShared.h"
18 #include "X86DisassemblerTables.h"
19 #include "X86ModRMFilters.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/TableGen/Record.h"
22 #include <string>
23 
24 using namespace llvm;
25 using namespace X86Disassembler;
26 
27 std::string X86Disassembler::getMnemonic(const CodeGenInstruction *I,
28                                          unsigned Variant) {
29   std::string AsmString = I->FlattenAsmStringVariants(I->AsmString, Variant);
30   StringRef Mnemonic(AsmString);
31   // Extract a mnemonic assuming it's separated by \t
32   Mnemonic = Mnemonic.take_until([](char C) { return C == '\t'; });
33 
34   // Special case: CMOVCC, JCC, SETCC have "${cond}" in mnemonic.
35   // Replace it with "CC" in-place.
36   size_t CondPos = Mnemonic.find("${cond}");
37   if (CondPos != StringRef::npos)
38     Mnemonic = AsmString.replace(CondPos, StringRef::npos, "CC");
39   return Mnemonic.upper();
40 }
41 
42 bool X86Disassembler::isRegisterOperand(const Record *Rec) {
43   return Rec->isSubClassOf("RegisterClass") ||
44          Rec->isSubClassOf("RegisterOperand");
45 }
46 
47 bool X86Disassembler::isMemoryOperand(const Record *Rec) {
48   return Rec->isSubClassOf("Operand") &&
49          Rec->getValueAsString("OperandType") == "OPERAND_MEMORY";
50 }
51 
52 bool X86Disassembler::isImmediateOperand(const Record *Rec) {
53   return Rec->isSubClassOf("Operand") &&
54          Rec->getValueAsString("OperandType") == "OPERAND_IMMEDIATE";
55 }
56 
57 unsigned X86Disassembler::getRegOperandSize(const Record *RegRec) {
58   if (RegRec->isSubClassOf("RegisterClass"))
59     return RegRec->getValueAsInt("Alignment");
60   if (RegRec->isSubClassOf("RegisterOperand"))
61     return RegRec->getValueAsDef("RegClass")->getValueAsInt("Alignment");
62 
63   llvm_unreachable("Register operand's size not known!");
64 }
65 
66 unsigned X86Disassembler::getMemOperandSize(const Record *MemRec) {
67   if (MemRec->isSubClassOf("X86MemOperand"))
68     return MemRec->getValueAsInt("Size");
69 
70   llvm_unreachable("Memory operand's size not known!");
71 }
72 
73 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit.
74 ///   Useful for switch statements and the like.
75 ///
76 /// @param init - A reference to the BitsInit to be decoded.
77 /// @return     - The field, with the first bit in the BitsInit as the lowest
78 ///               order bit.
79 static uint8_t byteFromBitsInit(BitsInit &init) {
80   int width = init.getNumBits();
81 
82   assert(width <= 8 && "Field is too large for uint8_t!");
83 
84   int index;
85   uint8_t mask = 0x01;
86 
87   uint8_t ret = 0;
88 
89   for (index = 0; index < width; index++) {
90     if (cast<BitInit>(init.getBit(index))->getValue())
91       ret |= mask;
92 
93     mask <<= 1;
94   }
95 
96   return ret;
97 }
98 
99 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the
100 ///   name of the field.
101 ///
102 /// @param rec  - The record from which to extract the value.
103 /// @param name - The name of the field in the record.
104 /// @return     - The field, as translated by byteFromBitsInit().
105 static uint8_t byteFromRec(const Record *rec, StringRef name) {
106   BitsInit *bits = rec->getValueAsBitsInit(name);
107   return byteFromBitsInit(*bits);
108 }
109 
110 RecognizableInstrBase::RecognizableInstrBase(const CodeGenInstruction &insn) {
111   const Record *Rec = insn.TheDef;
112   assert(Rec->isSubClassOf("X86Inst") && "Not a X86 Instruction");
113   OpPrefix = byteFromRec(Rec, "OpPrefixBits");
114   OpMap = byteFromRec(Rec, "OpMapBits");
115   Opcode = byteFromRec(Rec, "Opcode");
116   Form = byteFromRec(Rec, "FormBits");
117   Encoding = byteFromRec(Rec, "OpEncBits");
118   OpSize = byteFromRec(Rec, "OpSizeBits");
119   AdSize = byteFromRec(Rec, "AdSizeBits");
120   HasREX_W = Rec->getValueAsBit("hasREX_W");
121   HasVEX_4V = Rec->getValueAsBit("hasVEX_4V");
122   IgnoresW = Rec->getValueAsBit("IgnoresW");
123   IgnoresVEX_L = Rec->getValueAsBit("ignoresVEX_L");
124   HasEVEX_L2 = Rec->getValueAsBit("hasEVEX_L2");
125   HasEVEX_K = Rec->getValueAsBit("hasEVEX_K");
126   HasEVEX_KZ = Rec->getValueAsBit("hasEVEX_Z");
127   HasEVEX_B = Rec->getValueAsBit("hasEVEX_B");
128   HasEVEX_NF = Rec->getValueAsBit("hasEVEX_NF");
129   IsCodeGenOnly = Rec->getValueAsBit("isCodeGenOnly");
130   IsAsmParserOnly = Rec->getValueAsBit("isAsmParserOnly");
131   ForceDisassemble = Rec->getValueAsBit("ForceDisassemble");
132   CD8_Scale = byteFromRec(Rec, "CD8_Scale");
133   HasVEX_L = Rec->getValueAsBit("hasVEX_L");
134   ExplicitREX2Prefix =
135       byteFromRec(Rec, "explicitOpPrefixBits") == X86Local::ExplicitREX2;
136 
137   EncodeRC = HasEVEX_B &&
138              (Form == X86Local::MRMDestReg || Form == X86Local::MRMSrcReg);
139 }
140 
141 bool RecognizableInstrBase::shouldBeEmitted() const {
142   return Form != X86Local::Pseudo && (!IsCodeGenOnly || ForceDisassemble) &&
143          !IsAsmParserOnly;
144 }
145 
146 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables,
147                                      const CodeGenInstruction &insn,
148                                      InstrUID uid)
149     : RecognizableInstrBase(insn), Rec(insn.TheDef), Name(Rec->getName().str()),
150       Is32Bit(false), Is64Bit(false), Operands(&insn.Operands.OperandList),
151       UID(uid), Spec(&tables.specForUID(uid)) {
152   // Check for 64-bit inst which does not require REX
153   // FIXME: Is there some better way to check for In64BitMode?
154   std::vector<Record *> Predicates = Rec->getValueAsListOfDefs("Predicates");
155   for (unsigned i = 0, e = Predicates.size(); i != e; ++i) {
156     if (Predicates[i]->getName().contains("Not64Bit") ||
157         Predicates[i]->getName().contains("In32Bit")) {
158       Is32Bit = true;
159       break;
160     }
161     if (Predicates[i]->getName().contains("In64Bit")) {
162       Is64Bit = true;
163       break;
164     }
165   }
166 }
167 
168 void RecognizableInstr::processInstr(DisassemblerTables &tables,
169                                      const CodeGenInstruction &insn,
170                                      InstrUID uid) {
171   if (!insn.TheDef->isSubClassOf("X86Inst"))
172     return;
173   RecognizableInstr recogInstr(tables, insn, uid);
174 
175   if (!recogInstr.shouldBeEmitted())
176     return;
177   recogInstr.emitInstructionSpecifier();
178   recogInstr.emitDecodePath(tables);
179 }
180 
181 #define EVEX_KB(n)                                                             \
182   (HasEVEX_KZ && HasEVEX_B                                                     \
183        ? n##_KZ_B                                                              \
184        : (HasEVEX_K && HasEVEX_B                                               \
185               ? n##_K_B                                                        \
186               : (HasEVEX_KZ ? n##_KZ                                           \
187                             : (HasEVEX_K ? n##_K : (HasEVEX_B ? n##_B : n)))))
188 
189 #define EVEX_NF(n) (HasEVEX_NF ? n##_NF : n)
190 #define EVEX_B_NF(n) (HasEVEX_B ? EVEX_NF(n##_B) : EVEX_NF(n))
191 
192 InstructionContext RecognizableInstr::insnContext() const {
193   InstructionContext insnContext;
194 
195   if (Encoding == X86Local::EVEX) {
196     if (HasVEX_L && HasEVEX_L2) {
197       errs() << "Don't support VEX.L if EVEX_L2 is enabled: " << Name << "\n";
198       llvm_unreachable("Don't support VEX.L if EVEX_L2 is enabled");
199     }
200     if (HasEVEX_NF) {
201       if (OpPrefix == X86Local::PD)
202         insnContext = EVEX_B_NF(IC_EVEX_OPSIZE);
203       else if (HasREX_W)
204         insnContext = EVEX_B_NF(IC_EVEX_W);
205       else
206         insnContext = EVEX_B_NF(IC_EVEX);
207     } else if (!EncodeRC && HasVEX_L && HasREX_W) {
208       // VEX_L & VEX_W
209       if (OpPrefix == X86Local::PD)
210         insnContext = EVEX_KB(IC_EVEX_L_W_OPSIZE);
211       else if (OpPrefix == X86Local::XS)
212         insnContext = EVEX_KB(IC_EVEX_L_W_XS);
213       else if (OpPrefix == X86Local::XD)
214         insnContext = EVEX_KB(IC_EVEX_L_W_XD);
215       else if (OpPrefix == X86Local::PS)
216         insnContext = EVEX_KB(IC_EVEX_L_W);
217       else {
218         errs() << "Instruction does not use a prefix: " << Name << "\n";
219         llvm_unreachable("Invalid prefix");
220       }
221     } else if (!EncodeRC && HasVEX_L) {
222       // VEX_L
223       if (OpPrefix == X86Local::PD)
224         insnContext = EVEX_KB(IC_EVEX_L_OPSIZE);
225       else if (OpPrefix == X86Local::XS)
226         insnContext = EVEX_KB(IC_EVEX_L_XS);
227       else if (OpPrefix == X86Local::XD)
228         insnContext = EVEX_KB(IC_EVEX_L_XD);
229       else if (OpPrefix == X86Local::PS)
230         insnContext = EVEX_KB(IC_EVEX_L);
231       else {
232         errs() << "Instruction does not use a prefix: " << Name << "\n";
233         llvm_unreachable("Invalid prefix");
234       }
235     } else if (!EncodeRC && HasEVEX_L2 && HasREX_W) {
236       // EVEX_L2 & VEX_W
237       if (OpPrefix == X86Local::PD)
238         insnContext = EVEX_KB(IC_EVEX_L2_W_OPSIZE);
239       else if (OpPrefix == X86Local::XS)
240         insnContext = EVEX_KB(IC_EVEX_L2_W_XS);
241       else if (OpPrefix == X86Local::XD)
242         insnContext = EVEX_KB(IC_EVEX_L2_W_XD);
243       else if (OpPrefix == X86Local::PS)
244         insnContext = EVEX_KB(IC_EVEX_L2_W);
245       else {
246         errs() << "Instruction does not use a prefix: " << Name << "\n";
247         llvm_unreachable("Invalid prefix");
248       }
249     } else if (!EncodeRC && HasEVEX_L2) {
250       // EVEX_L2
251       if (OpPrefix == X86Local::PD)
252         insnContext = EVEX_KB(IC_EVEX_L2_OPSIZE);
253       else if (OpPrefix == X86Local::XD)
254         insnContext = EVEX_KB(IC_EVEX_L2_XD);
255       else if (OpPrefix == X86Local::XS)
256         insnContext = EVEX_KB(IC_EVEX_L2_XS);
257       else if (OpPrefix == X86Local::PS)
258         insnContext = EVEX_KB(IC_EVEX_L2);
259       else {
260         errs() << "Instruction does not use a prefix: " << Name << "\n";
261         llvm_unreachable("Invalid prefix");
262       }
263     } else if (HasREX_W) {
264       // VEX_W
265       if (OpPrefix == X86Local::PD)
266         insnContext = EVEX_KB(IC_EVEX_W_OPSIZE);
267       else if (OpPrefix == X86Local::XS)
268         insnContext = EVEX_KB(IC_EVEX_W_XS);
269       else if (OpPrefix == X86Local::XD)
270         insnContext = EVEX_KB(IC_EVEX_W_XD);
271       else if (OpPrefix == X86Local::PS)
272         insnContext = EVEX_KB(IC_EVEX_W);
273       else {
274         errs() << "Instruction does not use a prefix: " << Name << "\n";
275         llvm_unreachable("Invalid prefix");
276       }
277     }
278     // No L, no W
279     else if (OpPrefix == X86Local::PD) {
280       if (AdSize == X86Local::AdSize32)
281         insnContext = IC_EVEX_OPSIZE_ADSIZE;
282       else
283         insnContext = EVEX_KB(IC_EVEX_OPSIZE);
284     } else if (OpPrefix == X86Local::XD)
285       insnContext = EVEX_KB(IC_EVEX_XD);
286     else if (OpPrefix == X86Local::XS)
287       insnContext = EVEX_KB(IC_EVEX_XS);
288     else if (OpPrefix == X86Local::PS)
289       insnContext = EVEX_KB(IC_EVEX);
290     else {
291       errs() << "Instruction does not use a prefix: " << Name << "\n";
292       llvm_unreachable("Invalid prefix");
293     }
294     /// eof EVEX
295   } else if (Encoding == X86Local::VEX || Encoding == X86Local::XOP) {
296     if (HasVEX_L && HasREX_W) {
297       if (OpPrefix == X86Local::PD)
298         insnContext = IC_VEX_L_W_OPSIZE;
299       else if (OpPrefix == X86Local::XS)
300         insnContext = IC_VEX_L_W_XS;
301       else if (OpPrefix == X86Local::XD)
302         insnContext = IC_VEX_L_W_XD;
303       else if (OpPrefix == X86Local::PS)
304         insnContext = IC_VEX_L_W;
305       else {
306         errs() << "Instruction does not use a prefix: " << Name << "\n";
307         llvm_unreachable("Invalid prefix");
308       }
309     } else if (OpPrefix == X86Local::PD && HasVEX_L)
310       insnContext = IC_VEX_L_OPSIZE;
311     else if (OpPrefix == X86Local::PD && HasREX_W)
312       insnContext = IC_VEX_W_OPSIZE;
313     else if (OpPrefix == X86Local::PD)
314       insnContext = IC_VEX_OPSIZE;
315     else if (HasVEX_L && OpPrefix == X86Local::XS)
316       insnContext = IC_VEX_L_XS;
317     else if (HasVEX_L && OpPrefix == X86Local::XD)
318       insnContext = IC_VEX_L_XD;
319     else if (HasREX_W && OpPrefix == X86Local::XS)
320       insnContext = IC_VEX_W_XS;
321     else if (HasREX_W && OpPrefix == X86Local::XD)
322       insnContext = IC_VEX_W_XD;
323     else if (HasREX_W && OpPrefix == X86Local::PS)
324       insnContext = IC_VEX_W;
325     else if (HasVEX_L && OpPrefix == X86Local::PS)
326       insnContext = IC_VEX_L;
327     else if (OpPrefix == X86Local::XD)
328       insnContext = IC_VEX_XD;
329     else if (OpPrefix == X86Local::XS)
330       insnContext = IC_VEX_XS;
331     else if (OpPrefix == X86Local::PS)
332       insnContext = IC_VEX;
333     else {
334       errs() << "Instruction does not use a prefix: " << Name << "\n";
335       llvm_unreachable("Invalid prefix");
336     }
337   } else if (Is64Bit || HasREX_W || AdSize == X86Local::AdSize64) {
338     if (HasREX_W && (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD))
339       insnContext = IC_64BIT_REXW_OPSIZE;
340     else if (HasREX_W && AdSize == X86Local::AdSize32)
341       insnContext = IC_64BIT_REXW_ADSIZE;
342     else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
343       insnContext = IC_64BIT_XD_OPSIZE;
344     else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
345       insnContext = IC_64BIT_XS_OPSIZE;
346     else if (AdSize == X86Local::AdSize32 && OpPrefix == X86Local::PD)
347       insnContext = IC_64BIT_OPSIZE_ADSIZE;
348     else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize32)
349       insnContext = IC_64BIT_OPSIZE_ADSIZE;
350     else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
351       insnContext = IC_64BIT_OPSIZE;
352     else if (AdSize == X86Local::AdSize32)
353       insnContext = IC_64BIT_ADSIZE;
354     else if (HasREX_W && OpPrefix == X86Local::XS)
355       insnContext = IC_64BIT_REXW_XS;
356     else if (HasREX_W && OpPrefix == X86Local::XD)
357       insnContext = IC_64BIT_REXW_XD;
358     else if (OpPrefix == X86Local::XD)
359       insnContext = IC_64BIT_XD;
360     else if (OpPrefix == X86Local::XS)
361       insnContext = IC_64BIT_XS;
362     else if (ExplicitREX2Prefix)
363       insnContext = IC_64BIT_REX2;
364     else if (HasREX_W)
365       insnContext = IC_64BIT_REXW;
366     else
367       insnContext = IC_64BIT;
368   } else {
369     if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
370       insnContext = IC_XD_OPSIZE;
371     else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
372       insnContext = IC_XS_OPSIZE;
373     else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::XD)
374       insnContext = IC_XD_ADSIZE;
375     else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::XS)
376       insnContext = IC_XS_ADSIZE;
377     else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::PD)
378       insnContext = IC_OPSIZE_ADSIZE;
379     else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize16)
380       insnContext = IC_OPSIZE_ADSIZE;
381     else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
382       insnContext = IC_OPSIZE;
383     else if (AdSize == X86Local::AdSize16)
384       insnContext = IC_ADSIZE;
385     else if (OpPrefix == X86Local::XD)
386       insnContext = IC_XD;
387     else if (OpPrefix == X86Local::XS)
388       insnContext = IC_XS;
389     else
390       insnContext = IC;
391   }
392 
393   return insnContext;
394 }
395 
396 void RecognizableInstr::adjustOperandEncoding(OperandEncoding &encoding) {
397   // The scaling factor for AVX512 compressed displacement encoding is an
398   // instruction attribute.  Adjust the ModRM encoding type to include the
399   // scale for compressed displacement.
400   if ((encoding != ENCODING_RM && encoding != ENCODING_VSIB &&
401        encoding != ENCODING_SIB) ||
402       CD8_Scale == 0)
403     return;
404   encoding = (OperandEncoding)(encoding + Log2_32(CD8_Scale));
405   assert(((encoding >= ENCODING_RM && encoding <= ENCODING_RM_CD64) ||
406           (encoding == ENCODING_SIB) ||
407           (encoding >= ENCODING_VSIB && encoding <= ENCODING_VSIB_CD64)) &&
408          "Invalid CDisp scaling");
409 }
410 
411 void RecognizableInstr::handleOperand(
412     bool optional, unsigned &operandIndex, unsigned &physicalOperandIndex,
413     unsigned numPhysicalOperands, const unsigned *operandMapping,
414     OperandEncoding (*encodingFromString)(const std::string &,
415                                           uint8_t OpSize)) {
416   if (optional) {
417     if (physicalOperandIndex >= numPhysicalOperands)
418       return;
419   } else {
420     assert(physicalOperandIndex < numPhysicalOperands);
421   }
422 
423   while (operandMapping[operandIndex] != operandIndex) {
424     Spec->operands[operandIndex].encoding = ENCODING_DUP;
425     Spec->operands[operandIndex].type =
426         (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]);
427     ++operandIndex;
428   }
429 
430   StringRef typeName = (*Operands)[operandIndex].Rec->getName();
431 
432   OperandEncoding encoding = encodingFromString(std::string(typeName), OpSize);
433   // Adjust the encoding type for an operand based on the instruction.
434   adjustOperandEncoding(encoding);
435   Spec->operands[operandIndex].encoding = encoding;
436   Spec->operands[operandIndex].type =
437       typeFromString(std::string(typeName), HasREX_W, OpSize);
438 
439   ++operandIndex;
440   ++physicalOperandIndex;
441 }
442 
443 void RecognizableInstr::emitInstructionSpecifier() {
444   Spec->name = Name;
445 
446   Spec->insnContext = insnContext();
447 
448   const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
449 
450   unsigned numOperands = OperandList.size();
451   unsigned numPhysicalOperands = 0;
452 
453   // operandMapping maps from operands in OperandList to their originals.
454   // If operandMapping[i] != i, then the entry is a duplicate.
455   unsigned operandMapping[X86_MAX_OPERANDS];
456   assert(numOperands <= X86_MAX_OPERANDS &&
457          "X86_MAX_OPERANDS is not large enough");
458 
459   for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
460     if (!OperandList[operandIndex].Constraints.empty()) {
461       const CGIOperandList::ConstraintInfo &Constraint =
462           OperandList[operandIndex].Constraints[0];
463       if (Constraint.isTied()) {
464         operandMapping[operandIndex] = operandIndex;
465         operandMapping[Constraint.getTiedOperand()] = operandIndex;
466       } else {
467         ++numPhysicalOperands;
468         operandMapping[operandIndex] = operandIndex;
469       }
470     } else {
471       ++numPhysicalOperands;
472       operandMapping[operandIndex] = operandIndex;
473     }
474   }
475 
476 #define HANDLE_OPERAND(class)                                                  \
477   handleOperand(false, operandIndex, physicalOperandIndex,                     \
478                 numPhysicalOperands, operandMapping,                           \
479                 class##EncodingFromString);
480 
481 #define HANDLE_OPTIONAL(class)                                                 \
482   handleOperand(true, operandIndex, physicalOperandIndex, numPhysicalOperands, \
483                 operandMapping, class##EncodingFromString);
484 
485   // operandIndex should always be < numOperands
486   unsigned operandIndex = 0;
487   // physicalOperandIndex should always be < numPhysicalOperands
488   unsigned physicalOperandIndex = 0;
489 
490 #ifndef NDEBUG
491   // Given the set of prefix bits, how many additional operands does the
492   // instruction have?
493   unsigned additionalOperands = 0;
494   if (HasVEX_4V)
495     ++additionalOperands;
496   if (HasEVEX_K)
497     ++additionalOperands;
498 #endif
499 
500   bool IsND = OpMap == X86Local::T_MAP4 && HasEVEX_B && HasVEX_4V;
501   switch (Form) {
502   default:
503     llvm_unreachable("Unhandled form");
504   case X86Local::PrefixByte:
505     return;
506   case X86Local::RawFrmSrc:
507     HANDLE_OPERAND(relocation);
508     return;
509   case X86Local::RawFrmDst:
510     HANDLE_OPERAND(relocation);
511     return;
512   case X86Local::RawFrmDstSrc:
513     HANDLE_OPERAND(relocation);
514     HANDLE_OPERAND(relocation);
515     return;
516   case X86Local::RawFrm:
517     // Operand 1 (optional) is an address or immediate.
518     assert(numPhysicalOperands <= 1 &&
519            "Unexpected number of operands for RawFrm");
520     HANDLE_OPTIONAL(relocation)
521     break;
522   case X86Local::RawFrmMemOffs:
523     // Operand 1 is an address.
524     HANDLE_OPERAND(relocation);
525     break;
526   case X86Local::AddRegFrm:
527     // Operand 1 is added to the opcode.
528     // Operand 2 (optional) is an address.
529     assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
530            "Unexpected number of operands for AddRegFrm");
531     HANDLE_OPERAND(opcodeModifier)
532     HANDLE_OPTIONAL(relocation)
533     break;
534   case X86Local::AddCCFrm:
535     // Operand 1 (optional) is an address or immediate.
536     assert(numPhysicalOperands == 2 &&
537            "Unexpected number of operands for AddCCFrm");
538     HANDLE_OPERAND(relocation)
539     HANDLE_OPERAND(opcodeModifier)
540     break;
541   case X86Local::MRMDestReg:
542     // Operand 1 is a register operand in the R/M field.
543     // - In AVX512 there may be a mask operand here -
544     // Operand 2 is a register operand in the Reg/Opcode field.
545     // - In AVX, there is a register operand in the VEX.vvvv field here -
546     // Operand 3 (optional) is an immediate.
547     assert(numPhysicalOperands >= 2 + additionalOperands &&
548            numPhysicalOperands <= 3 + additionalOperands &&
549            "Unexpected number of operands for MRMDestReg");
550 
551     if (IsND)
552       HANDLE_OPERAND(vvvvRegister)
553 
554     HANDLE_OPERAND(rmRegister)
555     if (HasEVEX_K)
556       HANDLE_OPERAND(writemaskRegister)
557 
558     if (!IsND && HasVEX_4V)
559       // FIXME: In AVX, the register below becomes the one encoded
560       // in ModRMVEX and the one above the one in the VEX.VVVV field
561       HANDLE_OPERAND(vvvvRegister)
562 
563     HANDLE_OPERAND(roRegister)
564     HANDLE_OPTIONAL(immediate)
565     break;
566   case X86Local::MRMDestMem4VOp3CC:
567     // Operand 1 is a register operand in the Reg/Opcode field.
568     // Operand 2 is a register operand in the R/M field.
569     // Operand 3 is VEX.vvvv
570     // Operand 4 is condition code.
571     assert(numPhysicalOperands == 4 &&
572            "Unexpected number of operands for MRMDestMem4VOp3CC");
573     HANDLE_OPERAND(roRegister)
574     HANDLE_OPERAND(memory)
575     HANDLE_OPERAND(vvvvRegister)
576     HANDLE_OPERAND(opcodeModifier)
577     break;
578   case X86Local::MRMDestMem:
579   case X86Local::MRMDestMemFSIB:
580     // Operand 1 is a memory operand (possibly SIB-extended)
581     // Operand 2 is a register operand in the Reg/Opcode field.
582     // - In AVX, there is a register operand in the VEX.vvvv field here -
583     // Operand 3 (optional) is an immediate.
584     assert(numPhysicalOperands >= 2 + additionalOperands &&
585            numPhysicalOperands <= 3 + additionalOperands &&
586            "Unexpected number of operands for MRMDestMemFrm with VEX_4V");
587 
588     if (IsND)
589       HANDLE_OPERAND(vvvvRegister)
590 
591     HANDLE_OPERAND(memory)
592 
593     if (HasEVEX_K)
594       HANDLE_OPERAND(writemaskRegister)
595 
596     if (!IsND && HasVEX_4V)
597       // FIXME: In AVX, the register below becomes the one encoded
598       // in ModRMVEX and the one above the one in the VEX.VVVV field
599       HANDLE_OPERAND(vvvvRegister)
600 
601     HANDLE_OPERAND(roRegister)
602     HANDLE_OPTIONAL(immediate)
603     break;
604   case X86Local::MRMSrcReg:
605     // Operand 1 is a register operand in the Reg/Opcode field.
606     // Operand 2 is a register operand in the R/M field.
607     // - In AVX, there is a register operand in the VEX.vvvv field here -
608     // Operand 3 (optional) is an immediate.
609     // Operand 4 (optional) is an immediate.
610 
611     assert(numPhysicalOperands >= 2 + additionalOperands &&
612            numPhysicalOperands <= 4 + additionalOperands &&
613            "Unexpected number of operands for MRMSrcRegFrm");
614 
615     if (IsND)
616       HANDLE_OPERAND(vvvvRegister)
617 
618     HANDLE_OPERAND(roRegister)
619 
620     if (HasEVEX_K)
621       HANDLE_OPERAND(writemaskRegister)
622 
623     if (!IsND && HasVEX_4V)
624       // FIXME: In AVX, the register below becomes the one encoded
625       // in ModRMVEX and the one above the one in the VEX.VVVV field
626       HANDLE_OPERAND(vvvvRegister)
627 
628     HANDLE_OPERAND(rmRegister)
629     HANDLE_OPTIONAL(immediate)
630     HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
631     break;
632   case X86Local::MRMSrcReg4VOp3:
633     assert(numPhysicalOperands == 3 &&
634            "Unexpected number of operands for MRMSrcReg4VOp3Frm");
635     HANDLE_OPERAND(roRegister)
636     HANDLE_OPERAND(rmRegister)
637     HANDLE_OPERAND(vvvvRegister)
638     break;
639   case X86Local::MRMSrcRegOp4:
640     assert(numPhysicalOperands >= 4 && numPhysicalOperands <= 5 &&
641            "Unexpected number of operands for MRMSrcRegOp4Frm");
642     HANDLE_OPERAND(roRegister)
643     HANDLE_OPERAND(vvvvRegister)
644     HANDLE_OPERAND(immediate) // Register in imm[7:4]
645     HANDLE_OPERAND(rmRegister)
646     HANDLE_OPTIONAL(immediate)
647     break;
648   case X86Local::MRMSrcRegCC:
649     assert(numPhysicalOperands == 3 &&
650            "Unexpected number of operands for MRMSrcRegCC");
651     HANDLE_OPERAND(roRegister)
652     HANDLE_OPERAND(rmRegister)
653     HANDLE_OPERAND(opcodeModifier)
654     break;
655   case X86Local::MRMSrcMem:
656   case X86Local::MRMSrcMemFSIB:
657     // Operand 1 is a register operand in the Reg/Opcode field.
658     // Operand 2 is a memory operand (possibly SIB-extended)
659     // - In AVX, there is a register operand in the VEX.vvvv field here -
660     // Operand 3 (optional) is an immediate.
661 
662     assert(numPhysicalOperands >= 2 + additionalOperands &&
663            numPhysicalOperands <= 4 + additionalOperands &&
664            "Unexpected number of operands for MRMSrcMemFrm");
665     if (IsND)
666       HANDLE_OPERAND(vvvvRegister)
667 
668     HANDLE_OPERAND(roRegister)
669 
670     if (HasEVEX_K)
671       HANDLE_OPERAND(writemaskRegister)
672 
673     if (!IsND && HasVEX_4V)
674       // FIXME: In AVX, the register below becomes the one encoded
675       // in ModRMVEX and the one above the one in the VEX.VVVV field
676       HANDLE_OPERAND(vvvvRegister)
677 
678     HANDLE_OPERAND(memory)
679     HANDLE_OPTIONAL(immediate)
680     HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
681     break;
682   case X86Local::MRMSrcMem4VOp3:
683     assert(numPhysicalOperands == 3 &&
684            "Unexpected number of operands for MRMSrcMem4VOp3Frm");
685     HANDLE_OPERAND(roRegister)
686     HANDLE_OPERAND(memory)
687     HANDLE_OPERAND(vvvvRegister)
688     break;
689   case X86Local::MRMSrcMemOp4:
690     assert(numPhysicalOperands >= 4 && numPhysicalOperands <= 5 &&
691            "Unexpected number of operands for MRMSrcMemOp4Frm");
692     HANDLE_OPERAND(roRegister)
693     HANDLE_OPERAND(vvvvRegister)
694     HANDLE_OPERAND(immediate) // Register in imm[7:4]
695     HANDLE_OPERAND(memory)
696     HANDLE_OPTIONAL(immediate)
697     break;
698   case X86Local::MRMSrcMemCC:
699     assert(numPhysicalOperands == 3 &&
700            "Unexpected number of operands for MRMSrcMemCC");
701     HANDLE_OPERAND(roRegister)
702     HANDLE_OPERAND(memory)
703     HANDLE_OPERAND(opcodeModifier)
704     break;
705   case X86Local::MRMXrCC:
706     assert(numPhysicalOperands == 2 &&
707            "Unexpected number of operands for MRMXrCC");
708     HANDLE_OPERAND(rmRegister)
709     HANDLE_OPERAND(opcodeModifier)
710     break;
711   case X86Local::MRMr0:
712     // Operand 1 is a register operand in the R/M field.
713     HANDLE_OPERAND(roRegister)
714     break;
715   case X86Local::MRMXr:
716   case X86Local::MRM0r:
717   case X86Local::MRM1r:
718   case X86Local::MRM2r:
719   case X86Local::MRM3r:
720   case X86Local::MRM4r:
721   case X86Local::MRM5r:
722   case X86Local::MRM6r:
723   case X86Local::MRM7r:
724     // Operand 1 is a register operand in the R/M field.
725     // Operand 2 (optional) is an immediate or relocation.
726     // Operand 3 (optional) is an immediate.
727     assert(numPhysicalOperands >= 0 + additionalOperands &&
728            numPhysicalOperands <= 3 + additionalOperands &&
729            "Unexpected number of operands for MRMnr");
730 
731     if (HasVEX_4V)
732       HANDLE_OPERAND(vvvvRegister)
733 
734     if (HasEVEX_K)
735       HANDLE_OPERAND(writemaskRegister)
736     HANDLE_OPTIONAL(rmRegister)
737     HANDLE_OPTIONAL(relocation)
738     HANDLE_OPTIONAL(immediate)
739     break;
740   case X86Local::MRMXmCC:
741     assert(numPhysicalOperands == 2 &&
742            "Unexpected number of operands for MRMXm");
743     HANDLE_OPERAND(memory)
744     HANDLE_OPERAND(opcodeModifier)
745     break;
746   case X86Local::MRMXm:
747   case X86Local::MRM0m:
748   case X86Local::MRM1m:
749   case X86Local::MRM2m:
750   case X86Local::MRM3m:
751   case X86Local::MRM4m:
752   case X86Local::MRM5m:
753   case X86Local::MRM6m:
754   case X86Local::MRM7m:
755     // Operand 1 is a memory operand (possibly SIB-extended)
756     // Operand 2 (optional) is an immediate or relocation.
757     assert(numPhysicalOperands >= 1 + additionalOperands &&
758            numPhysicalOperands <= 2 + additionalOperands &&
759            "Unexpected number of operands for MRMnm");
760 
761     if (HasVEX_4V)
762       HANDLE_OPERAND(vvvvRegister)
763     if (HasEVEX_K)
764       HANDLE_OPERAND(writemaskRegister)
765     HANDLE_OPERAND(memory)
766     HANDLE_OPTIONAL(relocation)
767     break;
768   case X86Local::RawFrmImm8:
769     // operand 1 is a 16-bit immediate
770     // operand 2 is an 8-bit immediate
771     assert(numPhysicalOperands == 2 &&
772            "Unexpected number of operands for X86Local::RawFrmImm8");
773     HANDLE_OPERAND(immediate)
774     HANDLE_OPERAND(immediate)
775     break;
776   case X86Local::RawFrmImm16:
777     // operand 1 is a 16-bit immediate
778     // operand 2 is a 16-bit immediate
779     HANDLE_OPERAND(immediate)
780     HANDLE_OPERAND(immediate)
781     break;
782   case X86Local::MRM0X:
783   case X86Local::MRM1X:
784   case X86Local::MRM2X:
785   case X86Local::MRM3X:
786   case X86Local::MRM4X:
787   case X86Local::MRM5X:
788   case X86Local::MRM6X:
789   case X86Local::MRM7X:
790 #define MAP(from, to) case X86Local::MRM_##from:
791     X86_INSTR_MRM_MAPPING
792 #undef MAP
793     HANDLE_OPTIONAL(relocation)
794     break;
795   }
796 
797 #undef HANDLE_OPERAND
798 #undef HANDLE_OPTIONAL
799 }
800 
801 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const {
802   // Special cases where the LLVM tables are not complete
803 
804 #define MAP(from, to) case X86Local::MRM_##from:
805 
806   std::optional<OpcodeType> opcodeType;
807   switch (OpMap) {
808   default:
809     llvm_unreachable("Invalid map!");
810   case X86Local::OB:
811     opcodeType = ONEBYTE;
812     break;
813   case X86Local::TB:
814     opcodeType = TWOBYTE;
815     break;
816   case X86Local::T8:
817     opcodeType = THREEBYTE_38;
818     break;
819   case X86Local::TA:
820     opcodeType = THREEBYTE_3A;
821     break;
822   case X86Local::XOP8:
823     opcodeType = XOP8_MAP;
824     break;
825   case X86Local::XOP9:
826     opcodeType = XOP9_MAP;
827     break;
828   case X86Local::XOPA:
829     opcodeType = XOPA_MAP;
830     break;
831   case X86Local::ThreeDNow:
832     opcodeType = THREEDNOW_MAP;
833     break;
834   case X86Local::T_MAP4:
835     opcodeType = MAP4;
836     break;
837   case X86Local::T_MAP5:
838     opcodeType = MAP5;
839     break;
840   case X86Local::T_MAP6:
841     opcodeType = MAP6;
842     break;
843   case X86Local::T_MAP7:
844     opcodeType = MAP7;
845     break;
846   }
847 
848   std::unique_ptr<ModRMFilter> filter;
849   switch (Form) {
850   default:
851     llvm_unreachable("Invalid form!");
852   case X86Local::Pseudo:
853     llvm_unreachable("Pseudo should not be emitted!");
854   case X86Local::RawFrm:
855   case X86Local::AddRegFrm:
856   case X86Local::RawFrmMemOffs:
857   case X86Local::RawFrmSrc:
858   case X86Local::RawFrmDst:
859   case X86Local::RawFrmDstSrc:
860   case X86Local::RawFrmImm8:
861   case X86Local::RawFrmImm16:
862   case X86Local::AddCCFrm:
863   case X86Local::PrefixByte:
864     filter = std::make_unique<DumbFilter>();
865     break;
866   case X86Local::MRMDestReg:
867   case X86Local::MRMSrcReg:
868   case X86Local::MRMSrcReg4VOp3:
869   case X86Local::MRMSrcRegOp4:
870   case X86Local::MRMSrcRegCC:
871   case X86Local::MRMXrCC:
872   case X86Local::MRMXr:
873     filter = std::make_unique<ModFilter>(true);
874     break;
875   case X86Local::MRMDestMem:
876   case X86Local::MRMDestMem4VOp3CC:
877   case X86Local::MRMDestMemFSIB:
878   case X86Local::MRMSrcMem:
879   case X86Local::MRMSrcMemFSIB:
880   case X86Local::MRMSrcMem4VOp3:
881   case X86Local::MRMSrcMemOp4:
882   case X86Local::MRMSrcMemCC:
883   case X86Local::MRMXmCC:
884   case X86Local::MRMXm:
885     filter = std::make_unique<ModFilter>(false);
886     break;
887   case X86Local::MRM0r:
888   case X86Local::MRM1r:
889   case X86Local::MRM2r:
890   case X86Local::MRM3r:
891   case X86Local::MRM4r:
892   case X86Local::MRM5r:
893   case X86Local::MRM6r:
894   case X86Local::MRM7r:
895     filter = std::make_unique<ExtendedFilter>(true, Form - X86Local::MRM0r);
896     break;
897   case X86Local::MRM0X:
898   case X86Local::MRM1X:
899   case X86Local::MRM2X:
900   case X86Local::MRM3X:
901   case X86Local::MRM4X:
902   case X86Local::MRM5X:
903   case X86Local::MRM6X:
904   case X86Local::MRM7X:
905     filter = std::make_unique<ExtendedFilter>(true, Form - X86Local::MRM0X);
906     break;
907   case X86Local::MRMr0:
908     filter = std::make_unique<ExtendedRMFilter>(true, Form - X86Local::MRMr0);
909     break;
910   case X86Local::MRM0m:
911   case X86Local::MRM1m:
912   case X86Local::MRM2m:
913   case X86Local::MRM3m:
914   case X86Local::MRM4m:
915   case X86Local::MRM5m:
916   case X86Local::MRM6m:
917   case X86Local::MRM7m:
918     filter = std::make_unique<ExtendedFilter>(false, Form - X86Local::MRM0m);
919     break;
920     X86_INSTR_MRM_MAPPING
921     filter = std::make_unique<ExactFilter>(0xC0 + Form - X86Local::MRM_C0);
922     break;
923   } // switch (Form)
924 
925   uint8_t opcodeToSet = Opcode;
926 
927   unsigned AddressSize = 0;
928   switch (AdSize) {
929   case X86Local::AdSize16:
930     AddressSize = 16;
931     break;
932   case X86Local::AdSize32:
933     AddressSize = 32;
934     break;
935   case X86Local::AdSize64:
936     AddressSize = 64;
937     break;
938   }
939 
940   assert(opcodeType && "Opcode type not set");
941   assert(filter && "Filter not set");
942 
943   if (Form == X86Local::AddRegFrm || Form == X86Local::MRMSrcRegCC ||
944       Form == X86Local::MRMSrcMemCC || Form == X86Local::MRMXrCC ||
945       Form == X86Local::MRMXmCC || Form == X86Local::AddCCFrm ||
946       Form == X86Local::MRMDestMem4VOp3CC) {
947     uint8_t Count = Form == X86Local::AddRegFrm ? 8 : 16;
948     assert(((opcodeToSet % Count) == 0) && "ADDREG_FRM opcode not aligned");
949 
950     uint8_t currentOpcode;
951 
952     for (currentOpcode = opcodeToSet;
953          currentOpcode < (uint8_t)(opcodeToSet + Count); ++currentOpcode)
954       tables.setTableFields(*opcodeType, insnContext(), currentOpcode, *filter,
955                             UID, Is32Bit, OpPrefix == 0,
956                             IgnoresVEX_L || EncodeRC, IgnoresW, AddressSize);
957   } else {
958     tables.setTableFields(*opcodeType, insnContext(), opcodeToSet, *filter, UID,
959                           Is32Bit, OpPrefix == 0, IgnoresVEX_L || EncodeRC,
960                           IgnoresW, AddressSize);
961   }
962 
963 #undef MAP
964 }
965 
966 #define TYPE(str, type)                                                        \
967   if (s == str)                                                                \
968     return type;
969 OperandType RecognizableInstr::typeFromString(const std::string &s,
970                                               bool hasREX_W, uint8_t OpSize) {
971   if (hasREX_W) {
972     // For instructions with a REX_W prefix, a declared 32-bit register encoding
973     // is special.
974     TYPE("GR32", TYPE_R32)
975   }
976   if (OpSize == X86Local::OpSize16) {
977     // For OpSize16 instructions, a declared 16-bit register or
978     // immediate encoding is special.
979     TYPE("GR16", TYPE_Rv)
980   } else if (OpSize == X86Local::OpSize32) {
981     // For OpSize32 instructions, a declared 32-bit register or
982     // immediate encoding is special.
983     TYPE("GR32", TYPE_Rv)
984   }
985   TYPE("i16mem", TYPE_M)
986   TYPE("i16imm", TYPE_IMM)
987   TYPE("i16i8imm", TYPE_IMM)
988   TYPE("GR16", TYPE_R16)
989   TYPE("GR16orGR32orGR64", TYPE_R16)
990   TYPE("i32mem", TYPE_M)
991   TYPE("i32imm", TYPE_IMM)
992   TYPE("i32i8imm", TYPE_IMM)
993   TYPE("GR32", TYPE_R32)
994   TYPE("GR32orGR64", TYPE_R32)
995   TYPE("i64mem", TYPE_M)
996   TYPE("i64i32imm", TYPE_IMM)
997   TYPE("i64i8imm", TYPE_IMM)
998   TYPE("GR64", TYPE_R64)
999   TYPE("i8mem", TYPE_M)
1000   TYPE("i8imm", TYPE_IMM)
1001   TYPE("u4imm", TYPE_UIMM8)
1002   TYPE("u8imm", TYPE_UIMM8)
1003   TYPE("i16u8imm", TYPE_UIMM8)
1004   TYPE("i32u8imm", TYPE_UIMM8)
1005   TYPE("i64u8imm", TYPE_UIMM8)
1006   TYPE("GR8", TYPE_R8)
1007   TYPE("VR128", TYPE_XMM)
1008   TYPE("VR128X", TYPE_XMM)
1009   TYPE("f128mem", TYPE_M)
1010   TYPE("f256mem", TYPE_M)
1011   TYPE("f512mem", TYPE_M)
1012   TYPE("FR128", TYPE_XMM)
1013   TYPE("FR64", TYPE_XMM)
1014   TYPE("FR64X", TYPE_XMM)
1015   TYPE("f64mem", TYPE_M)
1016   TYPE("sdmem", TYPE_M)
1017   TYPE("FR16X", TYPE_XMM)
1018   TYPE("FR32", TYPE_XMM)
1019   TYPE("FR32X", TYPE_XMM)
1020   TYPE("f32mem", TYPE_M)
1021   TYPE("f16mem", TYPE_M)
1022   TYPE("ssmem", TYPE_M)
1023   TYPE("shmem", TYPE_M)
1024   TYPE("RST", TYPE_ST)
1025   TYPE("RSTi", TYPE_ST)
1026   TYPE("i128mem", TYPE_M)
1027   TYPE("i256mem", TYPE_M)
1028   TYPE("i512mem", TYPE_M)
1029   TYPE("i512mem_GR16", TYPE_M)
1030   TYPE("i512mem_GR32", TYPE_M)
1031   TYPE("i512mem_GR64", TYPE_M)
1032   TYPE("i64i32imm_brtarget", TYPE_REL)
1033   TYPE("i16imm_brtarget", TYPE_REL)
1034   TYPE("i32imm_brtarget", TYPE_REL)
1035   TYPE("ccode", TYPE_IMM)
1036   TYPE("AVX512RC", TYPE_IMM)
1037   TYPE("brtarget32", TYPE_REL)
1038   TYPE("brtarget16", TYPE_REL)
1039   TYPE("brtarget8", TYPE_REL)
1040   TYPE("f80mem", TYPE_M)
1041   TYPE("lea64_32mem", TYPE_M)
1042   TYPE("lea64mem", TYPE_M)
1043   TYPE("VR64", TYPE_MM64)
1044   TYPE("i64imm", TYPE_IMM)
1045   TYPE("anymem", TYPE_M)
1046   TYPE("opaquemem", TYPE_M)
1047   TYPE("sibmem", TYPE_MSIB)
1048   TYPE("SEGMENT_REG", TYPE_SEGMENTREG)
1049   TYPE("DEBUG_REG", TYPE_DEBUGREG)
1050   TYPE("CONTROL_REG", TYPE_CONTROLREG)
1051   TYPE("srcidx8", TYPE_SRCIDX)
1052   TYPE("srcidx16", TYPE_SRCIDX)
1053   TYPE("srcidx32", TYPE_SRCIDX)
1054   TYPE("srcidx64", TYPE_SRCIDX)
1055   TYPE("dstidx8", TYPE_DSTIDX)
1056   TYPE("dstidx16", TYPE_DSTIDX)
1057   TYPE("dstidx32", TYPE_DSTIDX)
1058   TYPE("dstidx64", TYPE_DSTIDX)
1059   TYPE("offset16_8", TYPE_MOFFS)
1060   TYPE("offset16_16", TYPE_MOFFS)
1061   TYPE("offset16_32", TYPE_MOFFS)
1062   TYPE("offset32_8", TYPE_MOFFS)
1063   TYPE("offset32_16", TYPE_MOFFS)
1064   TYPE("offset32_32", TYPE_MOFFS)
1065   TYPE("offset32_64", TYPE_MOFFS)
1066   TYPE("offset64_8", TYPE_MOFFS)
1067   TYPE("offset64_16", TYPE_MOFFS)
1068   TYPE("offset64_32", TYPE_MOFFS)
1069   TYPE("offset64_64", TYPE_MOFFS)
1070   TYPE("VR256", TYPE_YMM)
1071   TYPE("VR256X", TYPE_YMM)
1072   TYPE("VR512", TYPE_ZMM)
1073   TYPE("VK1", TYPE_VK)
1074   TYPE("VK1WM", TYPE_VK)
1075   TYPE("VK2", TYPE_VK)
1076   TYPE("VK2WM", TYPE_VK)
1077   TYPE("VK4", TYPE_VK)
1078   TYPE("VK4WM", TYPE_VK)
1079   TYPE("VK8", TYPE_VK)
1080   TYPE("VK8WM", TYPE_VK)
1081   TYPE("VK16", TYPE_VK)
1082   TYPE("VK16WM", TYPE_VK)
1083   TYPE("VK32", TYPE_VK)
1084   TYPE("VK32WM", TYPE_VK)
1085   TYPE("VK64", TYPE_VK)
1086   TYPE("VK64WM", TYPE_VK)
1087   TYPE("VK1Pair", TYPE_VK_PAIR)
1088   TYPE("VK2Pair", TYPE_VK_PAIR)
1089   TYPE("VK4Pair", TYPE_VK_PAIR)
1090   TYPE("VK8Pair", TYPE_VK_PAIR)
1091   TYPE("VK16Pair", TYPE_VK_PAIR)
1092   TYPE("vx64mem", TYPE_MVSIBX)
1093   TYPE("vx128mem", TYPE_MVSIBX)
1094   TYPE("vx256mem", TYPE_MVSIBX)
1095   TYPE("vy128mem", TYPE_MVSIBY)
1096   TYPE("vy256mem", TYPE_MVSIBY)
1097   TYPE("vx64xmem", TYPE_MVSIBX)
1098   TYPE("vx128xmem", TYPE_MVSIBX)
1099   TYPE("vx256xmem", TYPE_MVSIBX)
1100   TYPE("vy128xmem", TYPE_MVSIBY)
1101   TYPE("vy256xmem", TYPE_MVSIBY)
1102   TYPE("vy512xmem", TYPE_MVSIBY)
1103   TYPE("vz256mem", TYPE_MVSIBZ)
1104   TYPE("vz512mem", TYPE_MVSIBZ)
1105   TYPE("BNDR", TYPE_BNDR)
1106   TYPE("TILE", TYPE_TMM)
1107   errs() << "Unhandled type string " << s << "\n";
1108   llvm_unreachable("Unhandled type string");
1109 }
1110 #undef TYPE
1111 
1112 #define ENCODING(str, encoding)                                                \
1113   if (s == str)                                                                \
1114     return encoding;
1115 OperandEncoding
1116 RecognizableInstr::immediateEncodingFromString(const std::string &s,
1117                                                uint8_t OpSize) {
1118   if (OpSize != X86Local::OpSize16) {
1119     // For instructions without an OpSize prefix, a declared 16-bit register or
1120     // immediate encoding is special.
1121     ENCODING("i16imm", ENCODING_IW)
1122   }
1123   ENCODING("i32i8imm", ENCODING_IB)
1124   ENCODING("AVX512RC", ENCODING_IRC)
1125   ENCODING("i16imm", ENCODING_Iv)
1126   ENCODING("i16i8imm", ENCODING_IB)
1127   ENCODING("i32imm", ENCODING_Iv)
1128   ENCODING("i64i32imm", ENCODING_ID)
1129   ENCODING("i64i8imm", ENCODING_IB)
1130   ENCODING("i8imm", ENCODING_IB)
1131   ENCODING("u4imm", ENCODING_IB)
1132   ENCODING("u8imm", ENCODING_IB)
1133   ENCODING("i16u8imm", ENCODING_IB)
1134   ENCODING("i32u8imm", ENCODING_IB)
1135   ENCODING("i64u8imm", ENCODING_IB)
1136   // This is not a typo.  Instructions like BLENDVPD put
1137   // register IDs in 8-bit immediates nowadays.
1138   ENCODING("FR32", ENCODING_IB)
1139   ENCODING("FR64", ENCODING_IB)
1140   ENCODING("FR128", ENCODING_IB)
1141   ENCODING("VR128", ENCODING_IB)
1142   ENCODING("VR256", ENCODING_IB)
1143   ENCODING("FR16X", ENCODING_IB)
1144   ENCODING("FR32X", ENCODING_IB)
1145   ENCODING("FR64X", ENCODING_IB)
1146   ENCODING("VR128X", ENCODING_IB)
1147   ENCODING("VR256X", ENCODING_IB)
1148   ENCODING("VR512", ENCODING_IB)
1149   ENCODING("TILE", ENCODING_IB)
1150   errs() << "Unhandled immediate encoding " << s << "\n";
1151   llvm_unreachable("Unhandled immediate encoding");
1152 }
1153 
1154 OperandEncoding
1155 RecognizableInstr::rmRegisterEncodingFromString(const std::string &s,
1156                                                 uint8_t OpSize) {
1157   ENCODING("RST", ENCODING_FP)
1158   ENCODING("RSTi", ENCODING_FP)
1159   ENCODING("GR16", ENCODING_RM)
1160   ENCODING("GR16orGR32orGR64", ENCODING_RM)
1161   ENCODING("GR32", ENCODING_RM)
1162   ENCODING("GR32orGR64", ENCODING_RM)
1163   ENCODING("GR64", ENCODING_RM)
1164   ENCODING("GR8", ENCODING_RM)
1165   ENCODING("VR128", ENCODING_RM)
1166   ENCODING("VR128X", ENCODING_RM)
1167   ENCODING("FR128", ENCODING_RM)
1168   ENCODING("FR64", ENCODING_RM)
1169   ENCODING("FR32", ENCODING_RM)
1170   ENCODING("FR64X", ENCODING_RM)
1171   ENCODING("FR32X", ENCODING_RM)
1172   ENCODING("FR16X", ENCODING_RM)
1173   ENCODING("VR64", ENCODING_RM)
1174   ENCODING("VR256", ENCODING_RM)
1175   ENCODING("VR256X", ENCODING_RM)
1176   ENCODING("VR512", ENCODING_RM)
1177   ENCODING("VK1", ENCODING_RM)
1178   ENCODING("VK2", ENCODING_RM)
1179   ENCODING("VK4", ENCODING_RM)
1180   ENCODING("VK8", ENCODING_RM)
1181   ENCODING("VK16", ENCODING_RM)
1182   ENCODING("VK32", ENCODING_RM)
1183   ENCODING("VK64", ENCODING_RM)
1184   ENCODING("BNDR", ENCODING_RM)
1185   ENCODING("TILE", ENCODING_RM)
1186   errs() << "Unhandled R/M register encoding " << s << "\n";
1187   llvm_unreachable("Unhandled R/M register encoding");
1188 }
1189 
1190 OperandEncoding
1191 RecognizableInstr::roRegisterEncodingFromString(const std::string &s,
1192                                                 uint8_t OpSize) {
1193   ENCODING("GR16", ENCODING_REG)
1194   ENCODING("GR16orGR32orGR64", ENCODING_REG)
1195   ENCODING("GR32", ENCODING_REG)
1196   ENCODING("GR32orGR64", ENCODING_REG)
1197   ENCODING("GR64", ENCODING_REG)
1198   ENCODING("GR8", ENCODING_REG)
1199   ENCODING("VR128", ENCODING_REG)
1200   ENCODING("FR128", ENCODING_REG)
1201   ENCODING("FR64", ENCODING_REG)
1202   ENCODING("FR32", ENCODING_REG)
1203   ENCODING("VR64", ENCODING_REG)
1204   ENCODING("SEGMENT_REG", ENCODING_REG)
1205   ENCODING("DEBUG_REG", ENCODING_REG)
1206   ENCODING("CONTROL_REG", ENCODING_REG)
1207   ENCODING("VR256", ENCODING_REG)
1208   ENCODING("VR256X", ENCODING_REG)
1209   ENCODING("VR128X", ENCODING_REG)
1210   ENCODING("FR64X", ENCODING_REG)
1211   ENCODING("FR32X", ENCODING_REG)
1212   ENCODING("FR16X", ENCODING_REG)
1213   ENCODING("VR512", ENCODING_REG)
1214   ENCODING("VK1", ENCODING_REG)
1215   ENCODING("VK2", ENCODING_REG)
1216   ENCODING("VK4", ENCODING_REG)
1217   ENCODING("VK8", ENCODING_REG)
1218   ENCODING("VK16", ENCODING_REG)
1219   ENCODING("VK32", ENCODING_REG)
1220   ENCODING("VK64", ENCODING_REG)
1221   ENCODING("VK1Pair", ENCODING_REG)
1222   ENCODING("VK2Pair", ENCODING_REG)
1223   ENCODING("VK4Pair", ENCODING_REG)
1224   ENCODING("VK8Pair", ENCODING_REG)
1225   ENCODING("VK16Pair", ENCODING_REG)
1226   ENCODING("VK1WM", ENCODING_REG)
1227   ENCODING("VK2WM", ENCODING_REG)
1228   ENCODING("VK4WM", ENCODING_REG)
1229   ENCODING("VK8WM", ENCODING_REG)
1230   ENCODING("VK16WM", ENCODING_REG)
1231   ENCODING("VK32WM", ENCODING_REG)
1232   ENCODING("VK64WM", ENCODING_REG)
1233   ENCODING("BNDR", ENCODING_REG)
1234   ENCODING("TILE", ENCODING_REG)
1235   errs() << "Unhandled reg/opcode register encoding " << s << "\n";
1236   llvm_unreachable("Unhandled reg/opcode register encoding");
1237 }
1238 
1239 OperandEncoding
1240 RecognizableInstr::vvvvRegisterEncodingFromString(const std::string &s,
1241                                                   uint8_t OpSize) {
1242   ENCODING("GR8", ENCODING_VVVV)
1243   ENCODING("GR16", ENCODING_VVVV)
1244   ENCODING("GR32", ENCODING_VVVV)
1245   ENCODING("GR64", ENCODING_VVVV)
1246   ENCODING("FR32", ENCODING_VVVV)
1247   ENCODING("FR128", ENCODING_VVVV)
1248   ENCODING("FR64", ENCODING_VVVV)
1249   ENCODING("VR128", ENCODING_VVVV)
1250   ENCODING("VR256", ENCODING_VVVV)
1251   ENCODING("FR16X", ENCODING_VVVV)
1252   ENCODING("FR32X", ENCODING_VVVV)
1253   ENCODING("FR64X", ENCODING_VVVV)
1254   ENCODING("VR128X", ENCODING_VVVV)
1255   ENCODING("VR256X", ENCODING_VVVV)
1256   ENCODING("VR512", ENCODING_VVVV)
1257   ENCODING("VK1", ENCODING_VVVV)
1258   ENCODING("VK2", ENCODING_VVVV)
1259   ENCODING("VK4", ENCODING_VVVV)
1260   ENCODING("VK8", ENCODING_VVVV)
1261   ENCODING("VK16", ENCODING_VVVV)
1262   ENCODING("VK32", ENCODING_VVVV)
1263   ENCODING("VK64", ENCODING_VVVV)
1264   ENCODING("TILE", ENCODING_VVVV)
1265   errs() << "Unhandled VEX.vvvv register encoding " << s << "\n";
1266   llvm_unreachable("Unhandled VEX.vvvv register encoding");
1267 }
1268 
1269 OperandEncoding
1270 RecognizableInstr::writemaskRegisterEncodingFromString(const std::string &s,
1271                                                        uint8_t OpSize) {
1272   ENCODING("VK1WM", ENCODING_WRITEMASK)
1273   ENCODING("VK2WM", ENCODING_WRITEMASK)
1274   ENCODING("VK4WM", ENCODING_WRITEMASK)
1275   ENCODING("VK8WM", ENCODING_WRITEMASK)
1276   ENCODING("VK16WM", ENCODING_WRITEMASK)
1277   ENCODING("VK32WM", ENCODING_WRITEMASK)
1278   ENCODING("VK64WM", ENCODING_WRITEMASK)
1279   errs() << "Unhandled mask register encoding " << s << "\n";
1280   llvm_unreachable("Unhandled mask register encoding");
1281 }
1282 
1283 OperandEncoding
1284 RecognizableInstr::memoryEncodingFromString(const std::string &s,
1285                                             uint8_t OpSize) {
1286   ENCODING("i16mem", ENCODING_RM)
1287   ENCODING("i32mem", ENCODING_RM)
1288   ENCODING("i64mem", ENCODING_RM)
1289   ENCODING("i8mem", ENCODING_RM)
1290   ENCODING("shmem", ENCODING_RM)
1291   ENCODING("ssmem", ENCODING_RM)
1292   ENCODING("sdmem", ENCODING_RM)
1293   ENCODING("f128mem", ENCODING_RM)
1294   ENCODING("f256mem", ENCODING_RM)
1295   ENCODING("f512mem", ENCODING_RM)
1296   ENCODING("f64mem", ENCODING_RM)
1297   ENCODING("f32mem", ENCODING_RM)
1298   ENCODING("f16mem", ENCODING_RM)
1299   ENCODING("i128mem", ENCODING_RM)
1300   ENCODING("i256mem", ENCODING_RM)
1301   ENCODING("i512mem", ENCODING_RM)
1302   ENCODING("i512mem_GR16", ENCODING_RM)
1303   ENCODING("i512mem_GR32", ENCODING_RM)
1304   ENCODING("i512mem_GR64", ENCODING_RM)
1305   ENCODING("f80mem", ENCODING_RM)
1306   ENCODING("lea64_32mem", ENCODING_RM)
1307   ENCODING("lea64mem", ENCODING_RM)
1308   ENCODING("anymem", ENCODING_RM)
1309   ENCODING("opaquemem", ENCODING_RM)
1310   ENCODING("sibmem", ENCODING_SIB)
1311   ENCODING("vx64mem", ENCODING_VSIB)
1312   ENCODING("vx128mem", ENCODING_VSIB)
1313   ENCODING("vx256mem", ENCODING_VSIB)
1314   ENCODING("vy128mem", ENCODING_VSIB)
1315   ENCODING("vy256mem", ENCODING_VSIB)
1316   ENCODING("vx64xmem", ENCODING_VSIB)
1317   ENCODING("vx128xmem", ENCODING_VSIB)
1318   ENCODING("vx256xmem", ENCODING_VSIB)
1319   ENCODING("vy128xmem", ENCODING_VSIB)
1320   ENCODING("vy256xmem", ENCODING_VSIB)
1321   ENCODING("vy512xmem", ENCODING_VSIB)
1322   ENCODING("vz256mem", ENCODING_VSIB)
1323   ENCODING("vz512mem", ENCODING_VSIB)
1324   errs() << "Unhandled memory encoding " << s << "\n";
1325   llvm_unreachable("Unhandled memory encoding");
1326 }
1327 
1328 OperandEncoding
1329 RecognizableInstr::relocationEncodingFromString(const std::string &s,
1330                                                 uint8_t OpSize) {
1331   if (OpSize != X86Local::OpSize16) {
1332     // For instructions without an OpSize prefix, a declared 16-bit register or
1333     // immediate encoding is special.
1334     ENCODING("i16imm", ENCODING_IW)
1335   }
1336   ENCODING("i16imm", ENCODING_Iv)
1337   ENCODING("i16i8imm", ENCODING_IB)
1338   ENCODING("i32imm", ENCODING_Iv)
1339   ENCODING("i32i8imm", ENCODING_IB)
1340   ENCODING("i64i32imm", ENCODING_ID)
1341   ENCODING("i64i8imm", ENCODING_IB)
1342   ENCODING("i8imm", ENCODING_IB)
1343   ENCODING("u8imm", ENCODING_IB)
1344   ENCODING("i16u8imm", ENCODING_IB)
1345   ENCODING("i32u8imm", ENCODING_IB)
1346   ENCODING("i64u8imm", ENCODING_IB)
1347   ENCODING("i64i32imm_brtarget", ENCODING_ID)
1348   ENCODING("i16imm_brtarget", ENCODING_IW)
1349   ENCODING("i32imm_brtarget", ENCODING_ID)
1350   ENCODING("brtarget32", ENCODING_ID)
1351   ENCODING("brtarget16", ENCODING_IW)
1352   ENCODING("brtarget8", ENCODING_IB)
1353   ENCODING("i64imm", ENCODING_IO)
1354   ENCODING("offset16_8", ENCODING_Ia)
1355   ENCODING("offset16_16", ENCODING_Ia)
1356   ENCODING("offset16_32", ENCODING_Ia)
1357   ENCODING("offset32_8", ENCODING_Ia)
1358   ENCODING("offset32_16", ENCODING_Ia)
1359   ENCODING("offset32_32", ENCODING_Ia)
1360   ENCODING("offset32_64", ENCODING_Ia)
1361   ENCODING("offset64_8", ENCODING_Ia)
1362   ENCODING("offset64_16", ENCODING_Ia)
1363   ENCODING("offset64_32", ENCODING_Ia)
1364   ENCODING("offset64_64", ENCODING_Ia)
1365   ENCODING("srcidx8", ENCODING_SI)
1366   ENCODING("srcidx16", ENCODING_SI)
1367   ENCODING("srcidx32", ENCODING_SI)
1368   ENCODING("srcidx64", ENCODING_SI)
1369   ENCODING("dstidx8", ENCODING_DI)
1370   ENCODING("dstidx16", ENCODING_DI)
1371   ENCODING("dstidx32", ENCODING_DI)
1372   ENCODING("dstidx64", ENCODING_DI)
1373   errs() << "Unhandled relocation encoding " << s << "\n";
1374   llvm_unreachable("Unhandled relocation encoding");
1375 }
1376 
1377 OperandEncoding
1378 RecognizableInstr::opcodeModifierEncodingFromString(const std::string &s,
1379                                                     uint8_t OpSize) {
1380   ENCODING("GR32", ENCODING_Rv)
1381   ENCODING("GR64", ENCODING_RO)
1382   ENCODING("GR16", ENCODING_Rv)
1383   ENCODING("GR8", ENCODING_RB)
1384   ENCODING("ccode", ENCODING_CC)
1385   errs() << "Unhandled opcode modifier encoding " << s << "\n";
1386   llvm_unreachable("Unhandled opcode modifier encoding");
1387 }
1388 #undef ENCODING
1389