1 /*! \file */
2 /*
3  * kmp.h -- KPTS runtime header file.
4  */
5 
6 //===----------------------------------------------------------------------===//
7 //
8 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
9 // See https://llvm.org/LICENSE.txt for license information.
10 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef KMP_H
15 #define KMP_H
16 
17 #include "kmp_config.h"
18 
19 /* #define BUILD_PARALLEL_ORDERED 1 */
20 
21 /* This fix replaces gettimeofday with clock_gettime for better scalability on
22    the Altix.  Requires user code to be linked with -lrt. */
23 //#define FIX_SGI_CLOCK
24 
25 /* Defines for OpenMP 3.0 tasking and auto scheduling */
26 
27 #ifndef KMP_STATIC_STEAL_ENABLED
28 #define KMP_STATIC_STEAL_ENABLED 1
29 #endif
30 
31 #define TASK_CURRENT_NOT_QUEUED 0
32 #define TASK_CURRENT_QUEUED 1
33 
34 #ifdef BUILD_TIED_TASK_STACK
35 #define TASK_STACK_EMPTY 0 // entries when the stack is empty
36 #define TASK_STACK_BLOCK_BITS 5 // Used in TASK_STACK_SIZE and TASK_STACK_MASK
37 // Number of entries in each task stack array
38 #define TASK_STACK_BLOCK_SIZE (1 << TASK_STACK_BLOCK_BITS)
39 // Mask for determining index into stack block
40 #define TASK_STACK_INDEX_MASK (TASK_STACK_BLOCK_SIZE - 1)
41 #endif // BUILD_TIED_TASK_STACK
42 
43 #define TASK_NOT_PUSHED 1
44 #define TASK_SUCCESSFULLY_PUSHED 0
45 #define TASK_TIED 1
46 #define TASK_UNTIED 0
47 #define TASK_EXPLICIT 1
48 #define TASK_IMPLICIT 0
49 #define TASK_PROXY 1
50 #define TASK_FULL 0
51 #define TASK_DETACHABLE 1
52 #define TASK_UNDETACHABLE 0
53 
54 #define KMP_CANCEL_THREADS
55 #define KMP_THREAD_ATTR
56 
57 // Android does not have pthread_cancel.  Undefine KMP_CANCEL_THREADS if being
58 // built on Android
59 #if defined(__ANDROID__)
60 #undef KMP_CANCEL_THREADS
61 #endif
62 
63 #include <signal.h>
64 #include <stdarg.h>
65 #include <stddef.h>
66 #include <stdio.h>
67 #include <stdlib.h>
68 #include <string.h>
69 #include <limits>
70 #include <type_traits>
71 /* include <ctype.h> don't use; problems with /MD on Windows* OS NT due to bad
72    Microsoft library. Some macros provided below to replace these functions  */
73 #ifndef __ABSOFT_WIN
74 #include <sys/types.h>
75 #endif
76 #include <limits.h>
77 #include <time.h>
78 
79 #include <errno.h>
80 
81 #include "kmp_os.h"
82 
83 #include "kmp_safe_c_api.h"
84 
85 #if KMP_STATS_ENABLED
86 class kmp_stats_list;
87 #endif
88 
89 #if KMP_USE_HIER_SCHED
90 // Only include hierarchical scheduling if affinity is supported
91 #undef KMP_USE_HIER_SCHED
92 #define KMP_USE_HIER_SCHED KMP_AFFINITY_SUPPORTED
93 #endif
94 
95 #if KMP_USE_HWLOC && KMP_AFFINITY_SUPPORTED
96 #include "hwloc.h"
97 #ifndef HWLOC_OBJ_NUMANODE
98 #define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE
99 #endif
100 #ifndef HWLOC_OBJ_PACKAGE
101 #define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET
102 #endif
103 #endif
104 
105 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
106 #include <xmmintrin.h>
107 #endif
108 
109 // The below has to be defined before including "kmp_barrier.h".
110 #define KMP_INTERNAL_MALLOC(sz) malloc(sz)
111 #define KMP_INTERNAL_FREE(p) free(p)
112 #define KMP_INTERNAL_REALLOC(p, sz) realloc((p), (sz))
113 #define KMP_INTERNAL_CALLOC(n, sz) calloc((n), (sz))
114 
115 #include "kmp_debug.h"
116 #include "kmp_lock.h"
117 #include "kmp_version.h"
118 #include "kmp_barrier.h"
119 #if USE_DEBUGGER
120 #include "kmp_debugger.h"
121 #endif
122 #include "kmp_i18n.h"
123 
124 #define KMP_HANDLE_SIGNALS (KMP_OS_UNIX || KMP_OS_WINDOWS)
125 
126 #include "kmp_wrapper_malloc.h"
127 #if KMP_OS_UNIX
128 #include <unistd.h>
129 #if !defined NSIG && defined _NSIG
130 #define NSIG _NSIG
131 #endif
132 #endif
133 
134 #if KMP_OS_LINUX
135 #pragma weak clock_gettime
136 #endif
137 
138 #if OMPT_SUPPORT
139 #include "ompt-internal.h"
140 #endif
141 
142 #if OMPD_SUPPORT
143 #include "ompd-specific.h"
144 #endif
145 
146 #ifndef UNLIKELY
147 #define UNLIKELY(x) (x)
148 #endif
149 
150 // Affinity format function
151 #include "kmp_str.h"
152 
153 // 0 - no fast memory allocation, alignment: 8-byte on x86, 16-byte on x64.
154 // 3 - fast allocation using sync, non-sync free lists of any size, non-self
155 // free lists of limited size.
156 #ifndef USE_FAST_MEMORY
157 #define USE_FAST_MEMORY 3
158 #endif
159 
160 #ifndef KMP_NESTED_HOT_TEAMS
161 #define KMP_NESTED_HOT_TEAMS 0
162 #define USE_NESTED_HOT_ARG(x)
163 #else
164 #if KMP_NESTED_HOT_TEAMS
165 #define USE_NESTED_HOT_ARG(x) , x
166 #else
167 #define USE_NESTED_HOT_ARG(x)
168 #endif
169 #endif
170 
171 // Assume using BGET compare_exchange instruction instead of lock by default.
172 #ifndef USE_CMP_XCHG_FOR_BGET
173 #define USE_CMP_XCHG_FOR_BGET 1
174 #endif
175 
176 // Test to see if queuing lock is better than bootstrap lock for bget
177 // #ifndef USE_QUEUING_LOCK_FOR_BGET
178 // #define USE_QUEUING_LOCK_FOR_BGET
179 // #endif
180 
181 #define KMP_NSEC_PER_SEC 1000000000L
182 #define KMP_USEC_PER_SEC 1000000L
183 
184 /*!
185 @ingroup BASIC_TYPES
186 @{
187 */
188 
189 /*!
190 Values for bit flags used in the ident_t to describe the fields.
191 */
192 enum {
193   /*! Use trampoline for internal microtasks */
194   KMP_IDENT_IMB = 0x01,
195   /*! Use c-style ident structure */
196   KMP_IDENT_KMPC = 0x02,
197   /* 0x04 is no longer used */
198   /*! Entry point generated by auto-parallelization */
199   KMP_IDENT_AUTOPAR = 0x08,
200   /*! Compiler generates atomic reduction option for kmpc_reduce* */
201   KMP_IDENT_ATOMIC_REDUCE = 0x10,
202   /*! To mark a 'barrier' directive in user code */
203   KMP_IDENT_BARRIER_EXPL = 0x20,
204   /*! To Mark implicit barriers. */
205   KMP_IDENT_BARRIER_IMPL = 0x0040,
206   KMP_IDENT_BARRIER_IMPL_MASK = 0x01C0,
207   KMP_IDENT_BARRIER_IMPL_FOR = 0x0040,
208   KMP_IDENT_BARRIER_IMPL_SECTIONS = 0x00C0,
209 
210   KMP_IDENT_BARRIER_IMPL_SINGLE = 0x0140,
211   KMP_IDENT_BARRIER_IMPL_WORKSHARE = 0x01C0,
212 
213   /*! To mark a static loop in OMPT callbacks */
214   KMP_IDENT_WORK_LOOP = 0x200,
215   /*! To mark a sections directive in OMPT callbacks */
216   KMP_IDENT_WORK_SECTIONS = 0x400,
217   /*! To mark a distribute construct in OMPT callbacks */
218   KMP_IDENT_WORK_DISTRIBUTE = 0x800,
219   /*! Atomic hint; bottom four bits as omp_sync_hint_t. Top four reserved and
220       not currently used. If one day we need more bits, then we can use
221       an invalid combination of hints to mean that another, larger field
222       should be used in a different flag. */
223   KMP_IDENT_ATOMIC_HINT_MASK = 0xFF0000,
224   KMP_IDENT_ATOMIC_HINT_UNCONTENDED = 0x010000,
225   KMP_IDENT_ATOMIC_HINT_CONTENDED = 0x020000,
226   KMP_IDENT_ATOMIC_HINT_NONSPECULATIVE = 0x040000,
227   KMP_IDENT_ATOMIC_HINT_SPECULATIVE = 0x080000,
228   KMP_IDENT_OPENMP_SPEC_VERSION_MASK = 0xFF000000
229 };
230 
231 /*!
232  * The ident structure that describes a source location.
233  */
234 typedef struct ident {
235   kmp_int32 reserved_1; /**<  might be used in Fortran; see above  */
236   kmp_int32 flags; /**<  also f.flags; KMP_IDENT_xxx flags; KMP_IDENT_KMPC
237                       identifies this union member  */
238   kmp_int32 reserved_2; /**<  not really used in Fortran any more; see above */
239 #if USE_ITT_BUILD
240 /*  but currently used for storing region-specific ITT */
241 /*  contextual information. */
242 #endif /* USE_ITT_BUILD */
243   kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for C++  */
244   char const *psource; /**< String describing the source location.
245                        The string is composed of semi-colon separated fields
246                        which describe the source file, the function and a pair
247                        of line numbers that delimit the construct. */
248   // Returns the OpenMP version in form major*10+minor (e.g., 50 for 5.0)
249   kmp_int32 get_openmp_version() {
250     return (((flags & KMP_IDENT_OPENMP_SPEC_VERSION_MASK) >> 24) & 0xFF);
251   }
252 } ident_t;
253 /*!
254 @}
255 */
256 
257 // Some forward declarations.
258 typedef union kmp_team kmp_team_t;
259 typedef struct kmp_taskdata kmp_taskdata_t;
260 typedef union kmp_task_team kmp_task_team_t;
261 typedef union kmp_team kmp_team_p;
262 typedef union kmp_info kmp_info_p;
263 typedef union kmp_root kmp_root_p;
264 
265 template <bool C = false, bool S = true> class kmp_flag_32;
266 template <bool C = false, bool S = true> class kmp_flag_64;
267 template <bool C = false, bool S = true> class kmp_atomic_flag_64;
268 class kmp_flag_oncore;
269 
270 #ifdef __cplusplus
271 extern "C" {
272 #endif
273 
274 /* ------------------------------------------------------------------------ */
275 
276 /* Pack two 32-bit signed integers into a 64-bit signed integer */
277 /* ToDo: Fix word ordering for big-endian machines. */
278 #define KMP_PACK_64(HIGH_32, LOW_32)                                           \
279   ((kmp_int64)((((kmp_uint64)(HIGH_32)) << 32) | (kmp_uint64)(LOW_32)))
280 
281 // Generic string manipulation macros. Assume that _x is of type char *
282 #define SKIP_WS(_x)                                                            \
283   {                                                                            \
284     while (*(_x) == ' ' || *(_x) == '\t')                                      \
285       (_x)++;                                                                  \
286   }
287 #define SKIP_DIGITS(_x)                                                        \
288   {                                                                            \
289     while (*(_x) >= '0' && *(_x) <= '9')                                       \
290       (_x)++;                                                                  \
291   }
292 #define SKIP_TOKEN(_x)                                                         \
293   {                                                                            \
294     while ((*(_x) >= '0' && *(_x) <= '9') || (*(_x) >= 'a' && *(_x) <= 'z') || \
295            (*(_x) >= 'A' && *(_x) <= 'Z') || *(_x) == '_')                     \
296       (_x)++;                                                                  \
297   }
298 #define SKIP_TO(_x, _c)                                                        \
299   {                                                                            \
300     while (*(_x) != '\0' && *(_x) != (_c))                                     \
301       (_x)++;                                                                  \
302   }
303 
304 /* ------------------------------------------------------------------------ */
305 
306 #define KMP_MAX(x, y) ((x) > (y) ? (x) : (y))
307 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y))
308 
309 /* ------------------------------------------------------------------------ */
310 /* Enumeration types */
311 
312 enum kmp_state_timer {
313   ts_stop,
314   ts_start,
315   ts_pause,
316 
317   ts_last_state
318 };
319 
320 enum dynamic_mode {
321   dynamic_default,
322 #ifdef USE_LOAD_BALANCE
323   dynamic_load_balance,
324 #endif /* USE_LOAD_BALANCE */
325   dynamic_random,
326   dynamic_thread_limit,
327   dynamic_max
328 };
329 
330 /* external schedule constants, duplicate enum omp_sched in omp.h in order to
331  * not include it here */
332 #ifndef KMP_SCHED_TYPE_DEFINED
333 #define KMP_SCHED_TYPE_DEFINED
334 typedef enum kmp_sched {
335   kmp_sched_lower = 0, // lower and upper bounds are for routine parameter check
336   // Note: need to adjust __kmp_sch_map global array in case enum is changed
337   kmp_sched_static = 1, // mapped to kmp_sch_static_chunked           (33)
338   kmp_sched_dynamic = 2, // mapped to kmp_sch_dynamic_chunked          (35)
339   kmp_sched_guided = 3, // mapped to kmp_sch_guided_chunked           (36)
340   kmp_sched_auto = 4, // mapped to kmp_sch_auto                     (38)
341   kmp_sched_upper_std = 5, // upper bound for standard schedules
342   kmp_sched_lower_ext = 100, // lower bound of Intel extension schedules
343   kmp_sched_trapezoidal = 101, // mapped to kmp_sch_trapezoidal (39)
344 #if KMP_STATIC_STEAL_ENABLED
345   kmp_sched_static_steal = 102, // mapped to kmp_sch_static_steal (44)
346 #endif
347   kmp_sched_upper,
348   kmp_sched_default = kmp_sched_static, // default scheduling
349   kmp_sched_monotonic = 0x80000000
350 } kmp_sched_t;
351 #endif
352 
353 /*!
354  @ingroup WORK_SHARING
355  * Describes the loop schedule to be used for a parallel for loop.
356  */
357 enum sched_type : kmp_int32 {
358   kmp_sch_lower = 32, /**< lower bound for unordered values */
359   kmp_sch_static_chunked = 33,
360   kmp_sch_static = 34, /**< static unspecialized */
361   kmp_sch_dynamic_chunked = 35,
362   kmp_sch_guided_chunked = 36, /**< guided unspecialized */
363   kmp_sch_runtime = 37,
364   kmp_sch_auto = 38, /**< auto */
365   kmp_sch_trapezoidal = 39,
366 
367   /* accessible only through KMP_SCHEDULE environment variable */
368   kmp_sch_static_greedy = 40,
369   kmp_sch_static_balanced = 41,
370   /* accessible only through KMP_SCHEDULE environment variable */
371   kmp_sch_guided_iterative_chunked = 42,
372   kmp_sch_guided_analytical_chunked = 43,
373   /* accessible only through KMP_SCHEDULE environment variable */
374   kmp_sch_static_steal = 44,
375 
376   /* static with chunk adjustment (e.g., simd) */
377   kmp_sch_static_balanced_chunked = 45,
378   kmp_sch_guided_simd = 46, /**< guided with chunk adjustment */
379   kmp_sch_runtime_simd = 47, /**< runtime with chunk adjustment */
380 
381   /* accessible only through KMP_SCHEDULE environment variable */
382   kmp_sch_upper, /**< upper bound for unordered values */
383 
384   kmp_ord_lower = 64, /**< lower bound for ordered values, must be power of 2 */
385   kmp_ord_static_chunked = 65,
386   kmp_ord_static = 66, /**< ordered static unspecialized */
387   kmp_ord_dynamic_chunked = 67,
388   kmp_ord_guided_chunked = 68,
389   kmp_ord_runtime = 69,
390   kmp_ord_auto = 70, /**< ordered auto */
391   kmp_ord_trapezoidal = 71,
392   kmp_ord_upper, /**< upper bound for ordered values */
393 
394   /* Schedules for Distribute construct */
395   kmp_distribute_static_chunked = 91, /**< distribute static chunked */
396   kmp_distribute_static = 92, /**< distribute static unspecialized */
397 
398   /* For the "nomerge" versions, kmp_dispatch_next*() will always return a
399      single iteration/chunk, even if the loop is serialized. For the schedule
400      types listed above, the entire iteration vector is returned if the loop is
401      serialized. This doesn't work for gcc/gcomp sections. */
402   kmp_nm_lower = 160, /**< lower bound for nomerge values */
403 
404   kmp_nm_static_chunked =
405       (kmp_sch_static_chunked - kmp_sch_lower + kmp_nm_lower),
406   kmp_nm_static = 162, /**< static unspecialized */
407   kmp_nm_dynamic_chunked = 163,
408   kmp_nm_guided_chunked = 164, /**< guided unspecialized */
409   kmp_nm_runtime = 165,
410   kmp_nm_auto = 166, /**< auto */
411   kmp_nm_trapezoidal = 167,
412 
413   /* accessible only through KMP_SCHEDULE environment variable */
414   kmp_nm_static_greedy = 168,
415   kmp_nm_static_balanced = 169,
416   /* accessible only through KMP_SCHEDULE environment variable */
417   kmp_nm_guided_iterative_chunked = 170,
418   kmp_nm_guided_analytical_chunked = 171,
419   kmp_nm_static_steal =
420       172, /* accessible only through OMP_SCHEDULE environment variable */
421 
422   kmp_nm_ord_static_chunked = 193,
423   kmp_nm_ord_static = 194, /**< ordered static unspecialized */
424   kmp_nm_ord_dynamic_chunked = 195,
425   kmp_nm_ord_guided_chunked = 196,
426   kmp_nm_ord_runtime = 197,
427   kmp_nm_ord_auto = 198, /**< auto */
428   kmp_nm_ord_trapezoidal = 199,
429   kmp_nm_upper, /**< upper bound for nomerge values */
430 
431   /* Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. Since
432      we need to distinguish the three possible cases (no modifier, monotonic
433      modifier, nonmonotonic modifier), we need separate bits for each modifier.
434      The absence of monotonic does not imply nonmonotonic, especially since 4.5
435      says that the behaviour of the "no modifier" case is implementation defined
436      in 4.5, but will become "nonmonotonic" in 5.0.
437 
438      Since we're passing a full 32 bit value, we can use a couple of high bits
439      for these flags; out of paranoia we avoid the sign bit.
440 
441      These modifiers can be or-ed into non-static schedules by the compiler to
442      pass the additional information. They will be stripped early in the
443      processing in __kmp_dispatch_init when setting up schedules, so most of the
444      code won't ever see schedules with these bits set.  */
445   kmp_sch_modifier_monotonic =
446       (1 << 29), /**< Set if the monotonic schedule modifier was present */
447   kmp_sch_modifier_nonmonotonic =
448       (1 << 30), /**< Set if the nonmonotonic schedule modifier was present */
449 
450 #define SCHEDULE_WITHOUT_MODIFIERS(s)                                          \
451   (enum sched_type)(                                                           \
452       (s) & ~(kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic))
453 #define SCHEDULE_HAS_MONOTONIC(s) (((s)&kmp_sch_modifier_monotonic) != 0)
454 #define SCHEDULE_HAS_NONMONOTONIC(s) (((s)&kmp_sch_modifier_nonmonotonic) != 0)
455 #define SCHEDULE_HAS_NO_MODIFIERS(s)                                           \
456   (((s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) == 0)
457 #define SCHEDULE_GET_MODIFIERS(s)                                              \
458   ((enum sched_type)(                                                          \
459       (s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)))
460 #define SCHEDULE_SET_MODIFIERS(s, m)                                           \
461   (s = (enum sched_type)((kmp_int32)s | (kmp_int32)m))
462 #define SCHEDULE_NONMONOTONIC 0
463 #define SCHEDULE_MONOTONIC 1
464 
465   kmp_sch_default = kmp_sch_static /**< default scheduling algorithm */
466 };
467 
468 // Apply modifiers on internal kind to standard kind
469 static inline void
470 __kmp_sched_apply_mods_stdkind(kmp_sched_t *kind,
471                                enum sched_type internal_kind) {
472   if (SCHEDULE_HAS_MONOTONIC(internal_kind)) {
473     *kind = (kmp_sched_t)((int)*kind | (int)kmp_sched_monotonic);
474   }
475 }
476 
477 // Apply modifiers on standard kind to internal kind
478 static inline void
479 __kmp_sched_apply_mods_intkind(kmp_sched_t kind,
480                                enum sched_type *internal_kind) {
481   if ((int)kind & (int)kmp_sched_monotonic) {
482     *internal_kind = (enum sched_type)((int)*internal_kind |
483                                        (int)kmp_sch_modifier_monotonic);
484   }
485 }
486 
487 // Get standard schedule without modifiers
488 static inline kmp_sched_t __kmp_sched_without_mods(kmp_sched_t kind) {
489   return (kmp_sched_t)((int)kind & ~((int)kmp_sched_monotonic));
490 }
491 
492 /* Type to keep runtime schedule set via OMP_SCHEDULE or omp_set_schedule() */
493 typedef union kmp_r_sched {
494   struct {
495     enum sched_type r_sched_type;
496     int chunk;
497   };
498   kmp_int64 sched;
499 } kmp_r_sched_t;
500 
501 extern enum sched_type __kmp_sch_map[]; // map OMP 3.0 schedule types with our
502 // internal schedule types
503 
504 enum library_type {
505   library_none,
506   library_serial,
507   library_turnaround,
508   library_throughput
509 };
510 
511 #if KMP_OS_LINUX
512 enum clock_function_type {
513   clock_function_gettimeofday,
514   clock_function_clock_gettime
515 };
516 #endif /* KMP_OS_LINUX */
517 
518 #if KMP_MIC_SUPPORTED
519 enum mic_type { non_mic, mic1, mic2, mic3, dummy };
520 #endif
521 
522 /* -- fast reduction stuff ------------------------------------------------ */
523 
524 #undef KMP_FAST_REDUCTION_BARRIER
525 #define KMP_FAST_REDUCTION_BARRIER 1
526 
527 #undef KMP_FAST_REDUCTION_CORE_DUO
528 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
529 #define KMP_FAST_REDUCTION_CORE_DUO 1
530 #endif
531 
532 enum _reduction_method {
533   reduction_method_not_defined = 0,
534   critical_reduce_block = (1 << 8),
535   atomic_reduce_block = (2 << 8),
536   tree_reduce_block = (3 << 8),
537   empty_reduce_block = (4 << 8)
538 };
539 
540 // Description of the packed_reduction_method variable:
541 // The packed_reduction_method variable consists of two enum types variables
542 // that are packed together into 0-th byte and 1-st byte:
543 // 0: (packed_reduction_method & 0x000000FF) is a 'enum barrier_type' value of
544 // barrier that will be used in fast reduction: bs_plain_barrier or
545 // bs_reduction_barrier
546 // 1: (packed_reduction_method & 0x0000FF00) is a reduction method that will
547 // be used in fast reduction;
548 // Reduction method is of 'enum _reduction_method' type and it's defined the way
549 // so that the bits of 0-th byte are empty, so no need to execute a shift
550 // instruction while packing/unpacking
551 
552 #if KMP_FAST_REDUCTION_BARRIER
553 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type)      \
554   ((reduction_method) | (barrier_type))
555 
556 #define UNPACK_REDUCTION_METHOD(packed_reduction_method)                       \
557   ((enum _reduction_method)((packed_reduction_method) & (0x0000FF00)))
558 
559 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method)                      \
560   ((enum barrier_type)((packed_reduction_method) & (0x000000FF)))
561 #else
562 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type)      \
563   (reduction_method)
564 
565 #define UNPACK_REDUCTION_METHOD(packed_reduction_method)                       \
566   (packed_reduction_method)
567 
568 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) (bs_plain_barrier)
569 #endif
570 
571 #define TEST_REDUCTION_METHOD(packed_reduction_method, which_reduction_block)  \
572   ((UNPACK_REDUCTION_METHOD(packed_reduction_method)) ==                       \
573    (which_reduction_block))
574 
575 #if KMP_FAST_REDUCTION_BARRIER
576 #define TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER                               \
577   (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_reduction_barrier))
578 
579 #define TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER                                   \
580   (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_plain_barrier))
581 #endif
582 
583 typedef int PACKED_REDUCTION_METHOD_T;
584 
585 /* -- end of fast reduction stuff ----------------------------------------- */
586 
587 #if KMP_OS_WINDOWS
588 #define USE_CBLKDATA
589 #if KMP_MSVC_COMPAT
590 #pragma warning(push)
591 #pragma warning(disable : 271 310)
592 #endif
593 #include <windows.h>
594 #if KMP_MSVC_COMPAT
595 #pragma warning(pop)
596 #endif
597 #endif
598 
599 #if KMP_OS_UNIX
600 #include <dlfcn.h>
601 #include <pthread.h>
602 #endif
603 
604 enum kmp_hw_t : int {
605   KMP_HW_UNKNOWN = -1,
606   KMP_HW_SOCKET = 0,
607   KMP_HW_PROC_GROUP,
608   KMP_HW_NUMA,
609   KMP_HW_DIE,
610   KMP_HW_LLC,
611   KMP_HW_L3,
612   KMP_HW_TILE,
613   KMP_HW_MODULE,
614   KMP_HW_L2,
615   KMP_HW_L1,
616   KMP_HW_CORE,
617   KMP_HW_THREAD,
618   KMP_HW_LAST
619 };
620 
621 typedef enum kmp_hw_core_type_t {
622   KMP_HW_CORE_TYPE_UNKNOWN = 0x0,
623 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
624   KMP_HW_CORE_TYPE_ATOM = 0x20,
625   KMP_HW_CORE_TYPE_CORE = 0x40,
626   KMP_HW_MAX_NUM_CORE_TYPES = 3,
627 #else
628   KMP_HW_MAX_NUM_CORE_TYPES = 1,
629 #endif
630 } kmp_hw_core_type_t;
631 
632 #define KMP_HW_MAX_NUM_CORE_EFFS 8
633 
634 #define KMP_DEBUG_ASSERT_VALID_HW_TYPE(type)                                   \
635   KMP_DEBUG_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
636 #define KMP_ASSERT_VALID_HW_TYPE(type)                                         \
637   KMP_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
638 
639 #define KMP_FOREACH_HW_TYPE(type)                                              \
640   for (kmp_hw_t type = (kmp_hw_t)0; type < KMP_HW_LAST;                        \
641        type = (kmp_hw_t)((int)type + 1))
642 
643 const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural = false);
644 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural = false);
645 const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type);
646 
647 /* Only Linux* OS and Windows* OS support thread affinity. */
648 #if KMP_AFFINITY_SUPPORTED
649 
650 // GROUP_AFFINITY is already defined for _MSC_VER>=1600 (VS2010 and later).
651 #if KMP_OS_WINDOWS
652 #if _MSC_VER < 1600 && KMP_MSVC_COMPAT
653 typedef struct GROUP_AFFINITY {
654   KAFFINITY Mask;
655   WORD Group;
656   WORD Reserved[3];
657 } GROUP_AFFINITY;
658 #endif /* _MSC_VER < 1600 */
659 #if KMP_GROUP_AFFINITY
660 extern int __kmp_num_proc_groups;
661 #else
662 static const int __kmp_num_proc_groups = 1;
663 #endif /* KMP_GROUP_AFFINITY */
664 typedef DWORD (*kmp_GetActiveProcessorCount_t)(WORD);
665 extern kmp_GetActiveProcessorCount_t __kmp_GetActiveProcessorCount;
666 
667 typedef WORD (*kmp_GetActiveProcessorGroupCount_t)(void);
668 extern kmp_GetActiveProcessorGroupCount_t __kmp_GetActiveProcessorGroupCount;
669 
670 typedef BOOL (*kmp_GetThreadGroupAffinity_t)(HANDLE, GROUP_AFFINITY *);
671 extern kmp_GetThreadGroupAffinity_t __kmp_GetThreadGroupAffinity;
672 
673 typedef BOOL (*kmp_SetThreadGroupAffinity_t)(HANDLE, const GROUP_AFFINITY *,
674                                              GROUP_AFFINITY *);
675 extern kmp_SetThreadGroupAffinity_t __kmp_SetThreadGroupAffinity;
676 #endif /* KMP_OS_WINDOWS */
677 
678 #if KMP_USE_HWLOC
679 extern hwloc_topology_t __kmp_hwloc_topology;
680 extern int __kmp_hwloc_error;
681 #endif
682 
683 extern size_t __kmp_affin_mask_size;
684 #define KMP_AFFINITY_CAPABLE() (__kmp_affin_mask_size > 0)
685 #define KMP_AFFINITY_DISABLE() (__kmp_affin_mask_size = 0)
686 #define KMP_AFFINITY_ENABLE(mask_size) (__kmp_affin_mask_size = mask_size)
687 #define KMP_CPU_SET_ITERATE(i, mask)                                           \
688   for (i = (mask)->begin(); (int)i != (mask)->end(); i = (mask)->next(i))
689 #define KMP_CPU_SET(i, mask) (mask)->set(i)
690 #define KMP_CPU_ISSET(i, mask) (mask)->is_set(i)
691 #define KMP_CPU_CLR(i, mask) (mask)->clear(i)
692 #define KMP_CPU_ZERO(mask) (mask)->zero()
693 #define KMP_CPU_COPY(dest, src) (dest)->copy(src)
694 #define KMP_CPU_AND(dest, src) (dest)->bitwise_and(src)
695 #define KMP_CPU_COMPLEMENT(max_bit_number, mask) (mask)->bitwise_not()
696 #define KMP_CPU_UNION(dest, src) (dest)->bitwise_or(src)
697 #define KMP_CPU_ALLOC(ptr) (ptr = __kmp_affinity_dispatch->allocate_mask())
698 #define KMP_CPU_FREE(ptr) __kmp_affinity_dispatch->deallocate_mask(ptr)
699 #define KMP_CPU_ALLOC_ON_STACK(ptr) KMP_CPU_ALLOC(ptr)
700 #define KMP_CPU_FREE_FROM_STACK(ptr) KMP_CPU_FREE(ptr)
701 #define KMP_CPU_INTERNAL_ALLOC(ptr) KMP_CPU_ALLOC(ptr)
702 #define KMP_CPU_INTERNAL_FREE(ptr) KMP_CPU_FREE(ptr)
703 #define KMP_CPU_INDEX(arr, i) __kmp_affinity_dispatch->index_mask_array(arr, i)
704 #define KMP_CPU_ALLOC_ARRAY(arr, n)                                            \
705   (arr = __kmp_affinity_dispatch->allocate_mask_array(n))
706 #define KMP_CPU_FREE_ARRAY(arr, n)                                             \
707   __kmp_affinity_dispatch->deallocate_mask_array(arr)
708 #define KMP_CPU_INTERNAL_ALLOC_ARRAY(arr, n) KMP_CPU_ALLOC_ARRAY(arr, n)
709 #define KMP_CPU_INTERNAL_FREE_ARRAY(arr, n) KMP_CPU_FREE_ARRAY(arr, n)
710 #define __kmp_get_system_affinity(mask, abort_bool)                            \
711   (mask)->get_system_affinity(abort_bool)
712 #define __kmp_set_system_affinity(mask, abort_bool)                            \
713   (mask)->set_system_affinity(abort_bool)
714 #define __kmp_get_proc_group(mask) (mask)->get_proc_group()
715 
716 class KMPAffinity {
717 public:
718   class Mask {
719   public:
720     void *operator new(size_t n);
721     void operator delete(void *p);
722     void *operator new[](size_t n);
723     void operator delete[](void *p);
724     virtual ~Mask() {}
725     // Set bit i to 1
726     virtual void set(int i) {}
727     // Return bit i
728     virtual bool is_set(int i) const { return false; }
729     // Set bit i to 0
730     virtual void clear(int i) {}
731     // Zero out entire mask
732     virtual void zero() {}
733     // Copy src into this mask
734     virtual void copy(const Mask *src) {}
735     // this &= rhs
736     virtual void bitwise_and(const Mask *rhs) {}
737     // this |= rhs
738     virtual void bitwise_or(const Mask *rhs) {}
739     // this = ~this
740     virtual void bitwise_not() {}
741     // API for iterating over an affinity mask
742     // for (int i = mask->begin(); i != mask->end(); i = mask->next(i))
743     virtual int begin() const { return 0; }
744     virtual int end() const { return 0; }
745     virtual int next(int previous) const { return 0; }
746 #if KMP_OS_WINDOWS
747     virtual int set_process_affinity(bool abort_on_error) const { return -1; }
748 #endif
749     // Set the system's affinity to this affinity mask's value
750     virtual int set_system_affinity(bool abort_on_error) const { return -1; }
751     // Set this affinity mask to the current system affinity
752     virtual int get_system_affinity(bool abort_on_error) { return -1; }
753     // Only 1 DWORD in the mask should have any procs set.
754     // Return the appropriate index, or -1 for an invalid mask.
755     virtual int get_proc_group() const { return -1; }
756   };
757   void *operator new(size_t n);
758   void operator delete(void *p);
759   // Need virtual destructor
760   virtual ~KMPAffinity() = default;
761   // Determine if affinity is capable
762   virtual void determine_capable(const char *env_var) {}
763   // Bind the current thread to os proc
764   virtual void bind_thread(int proc) {}
765   // Factory functions to allocate/deallocate a mask
766   virtual Mask *allocate_mask() { return nullptr; }
767   virtual void deallocate_mask(Mask *m) {}
768   virtual Mask *allocate_mask_array(int num) { return nullptr; }
769   virtual void deallocate_mask_array(Mask *m) {}
770   virtual Mask *index_mask_array(Mask *m, int index) { return nullptr; }
771   static void pick_api();
772   static void destroy_api();
773   enum api_type {
774     NATIVE_OS
775 #if KMP_USE_HWLOC
776     ,
777     HWLOC
778 #endif
779   };
780   virtual api_type get_api_type() const {
781     KMP_ASSERT(0);
782     return NATIVE_OS;
783   }
784 
785 private:
786   static bool picked_api;
787 };
788 
789 typedef KMPAffinity::Mask kmp_affin_mask_t;
790 extern KMPAffinity *__kmp_affinity_dispatch;
791 
792 // Declare local char buffers with this size for printing debug and info
793 // messages, using __kmp_affinity_print_mask().
794 #define KMP_AFFIN_MASK_PRINT_LEN 1024
795 
796 enum affinity_type {
797   affinity_none = 0,
798   affinity_physical,
799   affinity_logical,
800   affinity_compact,
801   affinity_scatter,
802   affinity_explicit,
803   affinity_balanced,
804   affinity_disabled, // not used outsize the env var parser
805   affinity_default
806 };
807 
808 enum affinity_top_method {
809   affinity_top_method_all = 0, // try all (supported) methods, in order
810 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
811   affinity_top_method_apicid,
812   affinity_top_method_x2apicid,
813   affinity_top_method_x2apicid_1f,
814 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
815   affinity_top_method_cpuinfo, // KMP_CPUINFO_FILE is usable on Windows* OS, too
816 #if KMP_GROUP_AFFINITY
817   affinity_top_method_group,
818 #endif /* KMP_GROUP_AFFINITY */
819   affinity_top_method_flat,
820 #if KMP_USE_HWLOC
821   affinity_top_method_hwloc,
822 #endif
823   affinity_top_method_default
824 };
825 
826 #define affinity_respect_mask_default (-1)
827 
828 extern enum affinity_type __kmp_affinity_type; /* Affinity type */
829 extern kmp_hw_t __kmp_affinity_gran; /* Affinity granularity */
830 extern int __kmp_affinity_gran_levels; /* corresponding int value */
831 extern int __kmp_affinity_dups; /* Affinity duplicate masks */
832 extern enum affinity_top_method __kmp_affinity_top_method;
833 extern int __kmp_affinity_compact; /* Affinity 'compact' value */
834 extern int __kmp_affinity_offset; /* Affinity offset value  */
835 extern int __kmp_affinity_verbose; /* Was verbose specified for KMP_AFFINITY? */
836 extern int __kmp_affinity_warnings; /* KMP_AFFINITY warnings enabled ? */
837 extern int __kmp_affinity_respect_mask; // Respect process' init affinity mask?
838 extern char *__kmp_affinity_proclist; /* proc ID list */
839 extern kmp_affin_mask_t *__kmp_affinity_masks;
840 extern unsigned __kmp_affinity_num_masks;
841 extern void __kmp_affinity_bind_thread(int which);
842 
843 extern kmp_affin_mask_t *__kmp_affin_fullMask;
844 extern char *__kmp_cpuinfo_file;
845 
846 #endif /* KMP_AFFINITY_SUPPORTED */
847 
848 // This needs to be kept in sync with the values in omp.h !!!
849 typedef enum kmp_proc_bind_t {
850   proc_bind_false = 0,
851   proc_bind_true,
852   proc_bind_primary,
853   proc_bind_close,
854   proc_bind_spread,
855   proc_bind_intel, // use KMP_AFFINITY interface
856   proc_bind_default
857 } kmp_proc_bind_t;
858 
859 typedef struct kmp_nested_proc_bind_t {
860   kmp_proc_bind_t *bind_types;
861   int size;
862   int used;
863 } kmp_nested_proc_bind_t;
864 
865 extern kmp_nested_proc_bind_t __kmp_nested_proc_bind;
866 extern kmp_proc_bind_t __kmp_teams_proc_bind;
867 
868 extern int __kmp_display_affinity;
869 extern char *__kmp_affinity_format;
870 static const size_t KMP_AFFINITY_FORMAT_SIZE = 512;
871 #if OMPT_SUPPORT
872 extern int __kmp_tool;
873 extern char *__kmp_tool_libraries;
874 #endif // OMPT_SUPPORT
875 
876 #if KMP_AFFINITY_SUPPORTED
877 #define KMP_PLACE_ALL (-1)
878 #define KMP_PLACE_UNDEFINED (-2)
879 // Is KMP_AFFINITY is being used instead of OMP_PROC_BIND/OMP_PLACES?
880 #define KMP_AFFINITY_NON_PROC_BIND                                             \
881   ((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false ||                 \
882     __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) &&                \
883    (__kmp_affinity_num_masks > 0 || __kmp_affinity_type == affinity_balanced))
884 #endif /* KMP_AFFINITY_SUPPORTED */
885 
886 extern int __kmp_affinity_num_places;
887 
888 typedef enum kmp_cancel_kind_t {
889   cancel_noreq = 0,
890   cancel_parallel = 1,
891   cancel_loop = 2,
892   cancel_sections = 3,
893   cancel_taskgroup = 4
894 } kmp_cancel_kind_t;
895 
896 // KMP_HW_SUBSET support:
897 typedef struct kmp_hws_item {
898   int num;
899   int offset;
900 } kmp_hws_item_t;
901 
902 extern kmp_hws_item_t __kmp_hws_socket;
903 extern kmp_hws_item_t __kmp_hws_die;
904 extern kmp_hws_item_t __kmp_hws_node;
905 extern kmp_hws_item_t __kmp_hws_tile;
906 extern kmp_hws_item_t __kmp_hws_core;
907 extern kmp_hws_item_t __kmp_hws_proc;
908 extern int __kmp_hws_requested;
909 extern int __kmp_hws_abs_flag; // absolute or per-item number requested
910 
911 /* ------------------------------------------------------------------------ */
912 
913 #define KMP_PAD(type, sz)                                                      \
914   (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1))
915 
916 // We need to avoid using -1 as a GTID as +1 is added to the gtid
917 // when storing it in a lock, and the value 0 is reserved.
918 #define KMP_GTID_DNE (-2) /* Does not exist */
919 #define KMP_GTID_SHUTDOWN (-3) /* Library is shutting down */
920 #define KMP_GTID_MONITOR (-4) /* Monitor thread ID */
921 #define KMP_GTID_UNKNOWN (-5) /* Is not known */
922 #define KMP_GTID_MIN (-6) /* Minimal gtid for low bound check in DEBUG */
923 
924 /* OpenMP 5.0 Memory Management support */
925 
926 #ifndef __OMP_H
927 // Duplicate type definitions from omp.h
928 typedef uintptr_t omp_uintptr_t;
929 
930 typedef enum {
931   omp_atk_sync_hint = 1,
932   omp_atk_alignment = 2,
933   omp_atk_access = 3,
934   omp_atk_pool_size = 4,
935   omp_atk_fallback = 5,
936   omp_atk_fb_data = 6,
937   omp_atk_pinned = 7,
938   omp_atk_partition = 8
939 } omp_alloctrait_key_t;
940 
941 typedef enum {
942   omp_atv_false = 0,
943   omp_atv_true = 1,
944   omp_atv_contended = 3,
945   omp_atv_uncontended = 4,
946   omp_atv_serialized = 5,
947   omp_atv_sequential = omp_atv_serialized, // (deprecated)
948   omp_atv_private = 6,
949   omp_atv_all = 7,
950   omp_atv_thread = 8,
951   omp_atv_pteam = 9,
952   omp_atv_cgroup = 10,
953   omp_atv_default_mem_fb = 11,
954   omp_atv_null_fb = 12,
955   omp_atv_abort_fb = 13,
956   omp_atv_allocator_fb = 14,
957   omp_atv_environment = 15,
958   omp_atv_nearest = 16,
959   omp_atv_blocked = 17,
960   omp_atv_interleaved = 18
961 } omp_alloctrait_value_t;
962 #define omp_atv_default ((omp_uintptr_t)-1)
963 
964 typedef void *omp_memspace_handle_t;
965 extern omp_memspace_handle_t const omp_default_mem_space;
966 extern omp_memspace_handle_t const omp_large_cap_mem_space;
967 extern omp_memspace_handle_t const omp_const_mem_space;
968 extern omp_memspace_handle_t const omp_high_bw_mem_space;
969 extern omp_memspace_handle_t const omp_low_lat_mem_space;
970 extern omp_memspace_handle_t const llvm_omp_target_host_mem_space;
971 extern omp_memspace_handle_t const llvm_omp_target_shared_mem_space;
972 extern omp_memspace_handle_t const llvm_omp_target_device_mem_space;
973 
974 typedef struct {
975   omp_alloctrait_key_t key;
976   omp_uintptr_t value;
977 } omp_alloctrait_t;
978 
979 typedef void *omp_allocator_handle_t;
980 extern omp_allocator_handle_t const omp_null_allocator;
981 extern omp_allocator_handle_t const omp_default_mem_alloc;
982 extern omp_allocator_handle_t const omp_large_cap_mem_alloc;
983 extern omp_allocator_handle_t const omp_const_mem_alloc;
984 extern omp_allocator_handle_t const omp_high_bw_mem_alloc;
985 extern omp_allocator_handle_t const omp_low_lat_mem_alloc;
986 extern omp_allocator_handle_t const omp_cgroup_mem_alloc;
987 extern omp_allocator_handle_t const omp_pteam_mem_alloc;
988 extern omp_allocator_handle_t const omp_thread_mem_alloc;
989 extern omp_allocator_handle_t const llvm_omp_target_host_mem_alloc;
990 extern omp_allocator_handle_t const llvm_omp_target_shared_mem_alloc;
991 extern omp_allocator_handle_t const llvm_omp_target_device_mem_alloc;
992 extern omp_allocator_handle_t const kmp_max_mem_alloc;
993 extern omp_allocator_handle_t __kmp_def_allocator;
994 
995 // end of duplicate type definitions from omp.h
996 #endif
997 
998 extern int __kmp_memkind_available;
999 
1000 typedef omp_memspace_handle_t kmp_memspace_t; // placeholder
1001 
1002 typedef struct kmp_allocator_t {
1003   omp_memspace_handle_t memspace;
1004   void **memkind; // pointer to memkind
1005   size_t alignment;
1006   omp_alloctrait_value_t fb;
1007   kmp_allocator_t *fb_data;
1008   kmp_uint64 pool_size;
1009   kmp_uint64 pool_used;
1010 } kmp_allocator_t;
1011 
1012 extern omp_allocator_handle_t __kmpc_init_allocator(int gtid,
1013                                                     omp_memspace_handle_t,
1014                                                     int ntraits,
1015                                                     omp_alloctrait_t traits[]);
1016 extern void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t al);
1017 extern void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t al);
1018 extern omp_allocator_handle_t __kmpc_get_default_allocator(int gtid);
1019 // external interfaces, may be used by compiler
1020 extern void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al);
1021 extern void *__kmpc_aligned_alloc(int gtid, size_t align, size_t sz,
1022                                   omp_allocator_handle_t al);
1023 extern void *__kmpc_calloc(int gtid, size_t nmemb, size_t sz,
1024                            omp_allocator_handle_t al);
1025 extern void *__kmpc_realloc(int gtid, void *ptr, size_t sz,
1026                             omp_allocator_handle_t al,
1027                             omp_allocator_handle_t free_al);
1028 extern void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1029 // internal interfaces, contain real implementation
1030 extern void *__kmp_alloc(int gtid, size_t align, size_t sz,
1031                          omp_allocator_handle_t al);
1032 extern void *__kmp_calloc(int gtid, size_t align, size_t nmemb, size_t sz,
1033                           omp_allocator_handle_t al);
1034 extern void *__kmp_realloc(int gtid, void *ptr, size_t sz,
1035                            omp_allocator_handle_t al,
1036                            omp_allocator_handle_t free_al);
1037 extern void ___kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1038 
1039 extern void __kmp_init_memkind();
1040 extern void __kmp_fini_memkind();
1041 extern void __kmp_init_target_mem();
1042 
1043 /* ------------------------------------------------------------------------ */
1044 
1045 #define KMP_UINT64_MAX                                                         \
1046   (~((kmp_uint64)1 << ((sizeof(kmp_uint64) * (1 << 3)) - 1)))
1047 
1048 #define KMP_MIN_NTH 1
1049 
1050 #ifndef KMP_MAX_NTH
1051 #if defined(PTHREAD_THREADS_MAX) && PTHREAD_THREADS_MAX < INT_MAX
1052 #define KMP_MAX_NTH PTHREAD_THREADS_MAX
1053 #else
1054 #define KMP_MAX_NTH INT_MAX
1055 #endif
1056 #endif /* KMP_MAX_NTH */
1057 
1058 #ifdef PTHREAD_STACK_MIN
1059 #define KMP_MIN_STKSIZE PTHREAD_STACK_MIN
1060 #else
1061 #define KMP_MIN_STKSIZE ((size_t)(32 * 1024))
1062 #endif
1063 
1064 #define KMP_MAX_STKSIZE (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1065 
1066 #if KMP_ARCH_X86
1067 #define KMP_DEFAULT_STKSIZE ((size_t)(2 * 1024 * 1024))
1068 #elif KMP_ARCH_X86_64
1069 #define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1070 #define KMP_BACKUP_STKSIZE ((size_t)(2 * 1024 * 1024))
1071 #else
1072 #define KMP_DEFAULT_STKSIZE ((size_t)(1024 * 1024))
1073 #endif
1074 
1075 #define KMP_DEFAULT_MALLOC_POOL_INCR ((size_t)(1024 * 1024))
1076 #define KMP_MIN_MALLOC_POOL_INCR ((size_t)(4 * 1024))
1077 #define KMP_MAX_MALLOC_POOL_INCR                                               \
1078   (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1079 
1080 #define KMP_MIN_STKOFFSET (0)
1081 #define KMP_MAX_STKOFFSET KMP_MAX_STKSIZE
1082 #if KMP_OS_DARWIN
1083 #define KMP_DEFAULT_STKOFFSET KMP_MIN_STKOFFSET
1084 #else
1085 #define KMP_DEFAULT_STKOFFSET CACHE_LINE
1086 #endif
1087 
1088 #define KMP_MIN_STKPADDING (0)
1089 #define KMP_MAX_STKPADDING (2 * 1024 * 1024)
1090 
1091 #define KMP_BLOCKTIME_MULTIPLIER                                               \
1092   (1000) /* number of blocktime units per second */
1093 #define KMP_MIN_BLOCKTIME (0)
1094 #define KMP_MAX_BLOCKTIME                                                      \
1095   (INT_MAX) /* Must be this for "infinite" setting the work */
1096 
1097 /* __kmp_blocktime is in milliseconds */
1098 #define KMP_DEFAULT_BLOCKTIME (__kmp_is_hybrid_cpu() ? (0) : (200))
1099 
1100 #if KMP_USE_MONITOR
1101 #define KMP_DEFAULT_MONITOR_STKSIZE ((size_t)(64 * 1024))
1102 #define KMP_MIN_MONITOR_WAKEUPS (1) // min times monitor wakes up per second
1103 #define KMP_MAX_MONITOR_WAKEUPS (1000) // max times monitor can wake up per sec
1104 
1105 /* Calculate new number of monitor wakeups for a specific block time based on
1106    previous monitor_wakeups. Only allow increasing number of wakeups */
1107 #define KMP_WAKEUPS_FROM_BLOCKTIME(blocktime, monitor_wakeups)                 \
1108   (((blocktime) == KMP_MAX_BLOCKTIME)   ? (monitor_wakeups)                    \
1109    : ((blocktime) == KMP_MIN_BLOCKTIME) ? KMP_MAX_MONITOR_WAKEUPS              \
1110    : ((monitor_wakeups) > (KMP_BLOCKTIME_MULTIPLIER / (blocktime)))            \
1111        ? (monitor_wakeups)                                                     \
1112        : (KMP_BLOCKTIME_MULTIPLIER) / (blocktime))
1113 
1114 /* Calculate number of intervals for a specific block time based on
1115    monitor_wakeups */
1116 #define KMP_INTERVALS_FROM_BLOCKTIME(blocktime, monitor_wakeups)               \
1117   (((blocktime) + (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) - 1) /        \
1118    (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)))
1119 #else
1120 #define KMP_BLOCKTIME(team, tid)                                               \
1121   (get__bt_set(team, tid) ? get__blocktime(team, tid) : __kmp_dflt_blocktime)
1122 #if KMP_OS_UNIX && (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1123 // HW TSC is used to reduce overhead (clock tick instead of nanosecond).
1124 extern kmp_uint64 __kmp_ticks_per_msec;
1125 #if KMP_COMPILER_ICC || KMP_COMPILER_ICX
1126 #define KMP_NOW() ((kmp_uint64)_rdtsc())
1127 #else
1128 #define KMP_NOW() __kmp_hardware_timestamp()
1129 #endif
1130 #define KMP_NOW_MSEC() (KMP_NOW() / __kmp_ticks_per_msec)
1131 #define KMP_BLOCKTIME_INTERVAL(team, tid)                                      \
1132   (KMP_BLOCKTIME(team, tid) * __kmp_ticks_per_msec)
1133 #define KMP_BLOCKING(goal, count) ((goal) > KMP_NOW())
1134 #else
1135 // System time is retrieved sporadically while blocking.
1136 extern kmp_uint64 __kmp_now_nsec();
1137 #define KMP_NOW() __kmp_now_nsec()
1138 #define KMP_NOW_MSEC() (KMP_NOW() / KMP_USEC_PER_SEC)
1139 #define KMP_BLOCKTIME_INTERVAL(team, tid)                                      \
1140   (KMP_BLOCKTIME(team, tid) * KMP_USEC_PER_SEC)
1141 #define KMP_BLOCKING(goal, count) ((count) % 1000 != 0 || (goal) > KMP_NOW())
1142 #endif
1143 #endif // KMP_USE_MONITOR
1144 
1145 #define KMP_MIN_STATSCOLS 40
1146 #define KMP_MAX_STATSCOLS 4096
1147 #define KMP_DEFAULT_STATSCOLS 80
1148 
1149 #define KMP_MIN_INTERVAL 0
1150 #define KMP_MAX_INTERVAL (INT_MAX - 1)
1151 #define KMP_DEFAULT_INTERVAL 0
1152 
1153 #define KMP_MIN_CHUNK 1
1154 #define KMP_MAX_CHUNK (INT_MAX - 1)
1155 #define KMP_DEFAULT_CHUNK 1
1156 
1157 #define KMP_MIN_DISP_NUM_BUFF 1
1158 #define KMP_DFLT_DISP_NUM_BUFF 7
1159 #define KMP_MAX_DISP_NUM_BUFF 4096
1160 
1161 #define KMP_MAX_ORDERED 8
1162 
1163 #define KMP_MAX_FIELDS 32
1164 
1165 #define KMP_MAX_BRANCH_BITS 31
1166 
1167 #define KMP_MAX_ACTIVE_LEVELS_LIMIT INT_MAX
1168 
1169 #define KMP_MAX_DEFAULT_DEVICE_LIMIT INT_MAX
1170 
1171 #define KMP_MAX_TASK_PRIORITY_LIMIT INT_MAX
1172 
1173 /* Minimum number of threads before switch to TLS gtid (experimentally
1174    determined) */
1175 /* josh TODO: what about OS X* tuning? */
1176 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1177 #define KMP_TLS_GTID_MIN 5
1178 #else
1179 #define KMP_TLS_GTID_MIN INT_MAX
1180 #endif
1181 
1182 #define KMP_MASTER_TID(tid) (0 == (tid))
1183 #define KMP_WORKER_TID(tid) (0 != (tid))
1184 
1185 #define KMP_MASTER_GTID(gtid) (0 == __kmp_tid_from_gtid((gtid)))
1186 #define KMP_WORKER_GTID(gtid) (0 != __kmp_tid_from_gtid((gtid)))
1187 #define KMP_INITIAL_GTID(gtid) (0 == (gtid))
1188 
1189 #ifndef TRUE
1190 #define FALSE 0
1191 #define TRUE (!FALSE)
1192 #endif
1193 
1194 /* NOTE: all of the following constants must be even */
1195 
1196 #if KMP_OS_WINDOWS
1197 #define KMP_INIT_WAIT 64U /* initial number of spin-tests   */
1198 #define KMP_NEXT_WAIT 32U /* susequent number of spin-tests */
1199 #elif KMP_OS_LINUX
1200 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1201 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1202 #elif KMP_OS_DARWIN
1203 /* TODO: tune for KMP_OS_DARWIN */
1204 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1205 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1206 #elif KMP_OS_DRAGONFLY
1207 /* TODO: tune for KMP_OS_DRAGONFLY */
1208 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1209 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1210 #elif KMP_OS_FREEBSD
1211 /* TODO: tune for KMP_OS_FREEBSD */
1212 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1213 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1214 #elif KMP_OS_NETBSD
1215 /* TODO: tune for KMP_OS_NETBSD */
1216 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1217 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1218 #elif KMP_OS_HURD
1219 /* TODO: tune for KMP_OS_HURD */
1220 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1221 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1222 #elif KMP_OS_OPENBSD
1223 /* TODO: tune for KMP_OS_OPENBSD */
1224 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1225 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1226 #endif
1227 
1228 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1229 typedef struct kmp_cpuid {
1230   kmp_uint32 eax;
1231   kmp_uint32 ebx;
1232   kmp_uint32 ecx;
1233   kmp_uint32 edx;
1234 } kmp_cpuid_t;
1235 
1236 typedef struct kmp_cpuinfo_flags_t {
1237   unsigned sse2 : 1; // 0 if SSE2 instructions are not supported, 1 otherwise.
1238   unsigned rtm : 1; // 0 if RTM instructions are not supported, 1 otherwise.
1239   unsigned hybrid : 1;
1240   unsigned reserved : 29; // Ensure size of 32 bits
1241 } kmp_cpuinfo_flags_t;
1242 
1243 typedef struct kmp_cpuinfo {
1244   int initialized; // If 0, other fields are not initialized.
1245   int signature; // CPUID(1).EAX
1246   int family; // CPUID(1).EAX[27:20]+CPUID(1).EAX[11:8] (Extended Family+Family)
1247   int model; // ( CPUID(1).EAX[19:16] << 4 ) + CPUID(1).EAX[7:4] ( ( Extended
1248   // Model << 4 ) + Model)
1249   int stepping; // CPUID(1).EAX[3:0] ( Stepping )
1250   kmp_cpuinfo_flags_t flags;
1251   int apic_id;
1252   int physical_id;
1253   int logical_id;
1254   kmp_uint64 frequency; // Nominal CPU frequency in Hz.
1255   char name[3 * sizeof(kmp_cpuid_t)]; // CPUID(0x80000002,0x80000003,0x80000004)
1256 } kmp_cpuinfo_t;
1257 
1258 extern void __kmp_query_cpuid(kmp_cpuinfo_t *p);
1259 
1260 #if KMP_OS_UNIX
1261 // subleaf is only needed for cache and topology discovery and can be set to
1262 // zero in most cases
1263 static inline void __kmp_x86_cpuid(int leaf, int subleaf, struct kmp_cpuid *p) {
1264   __asm__ __volatile__("cpuid"
1265                        : "=a"(p->eax), "=b"(p->ebx), "=c"(p->ecx), "=d"(p->edx)
1266                        : "a"(leaf), "c"(subleaf));
1267 }
1268 // Load p into FPU control word
1269 static inline void __kmp_load_x87_fpu_control_word(const kmp_int16 *p) {
1270   __asm__ __volatile__("fldcw %0" : : "m"(*p));
1271 }
1272 // Store FPU control word into p
1273 static inline void __kmp_store_x87_fpu_control_word(kmp_int16 *p) {
1274   __asm__ __volatile__("fstcw %0" : "=m"(*p));
1275 }
1276 static inline void __kmp_clear_x87_fpu_status_word() {
1277 #if KMP_MIC
1278   // 32-bit protected mode x87 FPU state
1279   struct x87_fpu_state {
1280     unsigned cw;
1281     unsigned sw;
1282     unsigned tw;
1283     unsigned fip;
1284     unsigned fips;
1285     unsigned fdp;
1286     unsigned fds;
1287   };
1288   struct x87_fpu_state fpu_state = {0, 0, 0, 0, 0, 0, 0};
1289   __asm__ __volatile__("fstenv %0\n\t" // store FP env
1290                        "andw $0x7f00, %1\n\t" // clear 0-7,15 bits of FP SW
1291                        "fldenv %0\n\t" // load FP env back
1292                        : "+m"(fpu_state), "+m"(fpu_state.sw));
1293 #else
1294   __asm__ __volatile__("fnclex");
1295 #endif // KMP_MIC
1296 }
1297 #if __SSE__
1298 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1299 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1300 #else
1301 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) {}
1302 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = 0; }
1303 #endif
1304 #else
1305 // Windows still has these as external functions in assembly file
1306 extern void __kmp_x86_cpuid(int mode, int mode2, struct kmp_cpuid *p);
1307 extern void __kmp_load_x87_fpu_control_word(const kmp_int16 *p);
1308 extern void __kmp_store_x87_fpu_control_word(kmp_int16 *p);
1309 extern void __kmp_clear_x87_fpu_status_word();
1310 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1311 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1312 #endif // KMP_OS_UNIX
1313 
1314 #define KMP_X86_MXCSR_MASK 0xffffffc0 /* ignore status flags (6 lsb) */
1315 
1316 // User-level Monitor/Mwait
1317 #if KMP_HAVE_UMWAIT
1318 // We always try for UMWAIT first
1319 #if KMP_HAVE_WAITPKG_INTRINSICS
1320 #if KMP_HAVE_IMMINTRIN_H
1321 #include <immintrin.h>
1322 #elif KMP_HAVE_INTRIN_H
1323 #include <intrin.h>
1324 #endif
1325 #endif // KMP_HAVE_WAITPKG_INTRINSICS
1326 
1327 KMP_ATTRIBUTE_TARGET_WAITPKG
1328 static inline int __kmp_tpause(uint32_t hint, uint64_t counter) {
1329 #if !KMP_HAVE_WAITPKG_INTRINSICS
1330   uint32_t timeHi = uint32_t(counter >> 32);
1331   uint32_t timeLo = uint32_t(counter & 0xffffffff);
1332   char flag;
1333   __asm__ volatile("#tpause\n.byte 0x66, 0x0F, 0xAE, 0xF1\n"
1334                    "setb   %0"
1335                    // The "=q" restraint means any register accessible as rl
1336                    //   in 32-bit mode: a, b, c, and d;
1337                    //   in 64-bit mode: any integer register
1338                    : "=q"(flag)
1339                    : "a"(timeLo), "d"(timeHi), "c"(hint)
1340                    :);
1341   return flag;
1342 #else
1343   return _tpause(hint, counter);
1344 #endif
1345 }
1346 KMP_ATTRIBUTE_TARGET_WAITPKG
1347 static inline void __kmp_umonitor(void *cacheline) {
1348 #if !KMP_HAVE_WAITPKG_INTRINSICS
1349   __asm__ volatile("# umonitor\n.byte 0xF3, 0x0F, 0xAE, 0x01 "
1350                    :
1351                    : "a"(cacheline)
1352                    :);
1353 #else
1354   _umonitor(cacheline);
1355 #endif
1356 }
1357 KMP_ATTRIBUTE_TARGET_WAITPKG
1358 static inline int __kmp_umwait(uint32_t hint, uint64_t counter) {
1359 #if !KMP_HAVE_WAITPKG_INTRINSICS
1360   uint32_t timeHi = uint32_t(counter >> 32);
1361   uint32_t timeLo = uint32_t(counter & 0xffffffff);
1362   char flag;
1363   __asm__ volatile("#umwait\n.byte 0xF2, 0x0F, 0xAE, 0xF1\n"
1364                    "setb   %0"
1365                    // The "=q" restraint means any register accessible as rl
1366                    //   in 32-bit mode: a, b, c, and d;
1367                    //   in 64-bit mode: any integer register
1368                    : "=q"(flag)
1369                    : "a"(timeLo), "d"(timeHi), "c"(hint)
1370                    :);
1371   return flag;
1372 #else
1373   return _umwait(hint, counter);
1374 #endif
1375 }
1376 #elif KMP_HAVE_MWAIT
1377 #if KMP_OS_UNIX
1378 #include <pmmintrin.h>
1379 #else
1380 #include <intrin.h>
1381 #endif
1382 #if KMP_OS_UNIX
1383 __attribute__((target("sse3")))
1384 #endif
1385 static inline void
1386 __kmp_mm_monitor(void *cacheline, unsigned extensions, unsigned hints) {
1387   _mm_monitor(cacheline, extensions, hints);
1388 }
1389 #if KMP_OS_UNIX
1390 __attribute__((target("sse3")))
1391 #endif
1392 static inline void
1393 __kmp_mm_mwait(unsigned extensions, unsigned hints) {
1394   _mm_mwait(extensions, hints);
1395 }
1396 #endif // KMP_HAVE_UMWAIT
1397 
1398 #if KMP_ARCH_X86
1399 extern void __kmp_x86_pause(void);
1400 #elif KMP_MIC
1401 // Performance testing on KNC (C0QS-7120 P/A/X/D, 61-core, 16 GB Memory) showed
1402 // regression after removal of extra PAUSE from spin loops. Changing
1403 // the delay from 100 to 300 showed even better performance than double PAUSE
1404 // on Spec OMP2001 and LCPC tasking tests, no regressions on EPCC.
1405 static inline void __kmp_x86_pause(void) { _mm_delay_32(300); }
1406 #else
1407 static inline void __kmp_x86_pause(void) { _mm_pause(); }
1408 #endif
1409 #define KMP_CPU_PAUSE() __kmp_x86_pause()
1410 #elif KMP_ARCH_PPC64
1411 #define KMP_PPC64_PRI_LOW() __asm__ volatile("or 1, 1, 1")
1412 #define KMP_PPC64_PRI_MED() __asm__ volatile("or 2, 2, 2")
1413 #define KMP_PPC64_PRI_LOC_MB() __asm__ volatile("" : : : "memory")
1414 #define KMP_CPU_PAUSE()                                                        \
1415   do {                                                                         \
1416     KMP_PPC64_PRI_LOW();                                                       \
1417     KMP_PPC64_PRI_MED();                                                       \
1418     KMP_PPC64_PRI_LOC_MB();                                                    \
1419   } while (0)
1420 #else
1421 #define KMP_CPU_PAUSE() /* nothing to do */
1422 #endif
1423 
1424 #define KMP_INIT_YIELD(count)                                                  \
1425   { (count) = __kmp_yield_init; }
1426 
1427 #define KMP_INIT_BACKOFF(time)                                                 \
1428   { (time) = __kmp_pause_init; }
1429 
1430 #define KMP_OVERSUBSCRIBED                                                     \
1431   (TCR_4(__kmp_nth) > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc))
1432 
1433 #define KMP_TRY_YIELD                                                          \
1434   ((__kmp_use_yield == 1) || (__kmp_use_yield == 2 && (KMP_OVERSUBSCRIBED)))
1435 
1436 #define KMP_TRY_YIELD_OVERSUB                                                  \
1437   ((__kmp_use_yield == 1 || __kmp_use_yield == 2) && (KMP_OVERSUBSCRIBED))
1438 
1439 #define KMP_YIELD(cond)                                                        \
1440   {                                                                            \
1441     KMP_CPU_PAUSE();                                                           \
1442     if ((cond) && (KMP_TRY_YIELD))                                             \
1443       __kmp_yield();                                                           \
1444   }
1445 
1446 #define KMP_YIELD_OVERSUB()                                                    \
1447   {                                                                            \
1448     KMP_CPU_PAUSE();                                                           \
1449     if ((KMP_TRY_YIELD_OVERSUB))                                               \
1450       __kmp_yield();                                                           \
1451   }
1452 
1453 // Note the decrement of 2 in the following Macros. With KMP_LIBRARY=turnaround,
1454 // there should be no yielding since initial value from KMP_INIT_YIELD() is odd.
1455 #define KMP_YIELD_SPIN(count)                                                  \
1456   {                                                                            \
1457     KMP_CPU_PAUSE();                                                           \
1458     if (KMP_TRY_YIELD) {                                                       \
1459       (count) -= 2;                                                            \
1460       if (!(count)) {                                                          \
1461         __kmp_yield();                                                         \
1462         (count) = __kmp_yield_next;                                            \
1463       }                                                                        \
1464     }                                                                          \
1465   }
1466 
1467 // If TPAUSE is available & enabled, use it. If oversubscribed, use the slower
1468 // (C0.2) state, which improves performance of other SMT threads on the same
1469 // core, otherwise, use the fast (C0.1) default state, or whatever the user has
1470 // requested. Uses a timed TPAUSE, and exponential backoff. If TPAUSE isn't
1471 // available, fall back to the regular CPU pause and yield combination.
1472 #if KMP_HAVE_UMWAIT
1473 #define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time)                               \
1474   {                                                                            \
1475     if (__kmp_tpause_enabled) {                                                \
1476       if (KMP_OVERSUBSCRIBED) {                                                \
1477         __kmp_tpause(0, (time));                                               \
1478       } else {                                                                 \
1479         __kmp_tpause(__kmp_tpause_hint, (time));                               \
1480       }                                                                        \
1481       (time) *= 2;                                                             \
1482     } else {                                                                   \
1483       KMP_CPU_PAUSE();                                                         \
1484       if ((KMP_TRY_YIELD_OVERSUB)) {                                           \
1485         __kmp_yield();                                                         \
1486       } else if (__kmp_use_yield == 1) {                                       \
1487         (count) -= 2;                                                          \
1488         if (!(count)) {                                                        \
1489           __kmp_yield();                                                       \
1490           (count) = __kmp_yield_next;                                          \
1491         }                                                                      \
1492       }                                                                        \
1493     }                                                                          \
1494   }
1495 #else
1496 #define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time)                               \
1497   {                                                                            \
1498     KMP_CPU_PAUSE();                                                           \
1499     if ((KMP_TRY_YIELD_OVERSUB))                                               \
1500       __kmp_yield();                                                           \
1501     else if (__kmp_use_yield == 1) {                                           \
1502       (count) -= 2;                                                            \
1503       if (!(count)) {                                                          \
1504         __kmp_yield();                                                         \
1505         (count) = __kmp_yield_next;                                            \
1506       }                                                                        \
1507     }                                                                          \
1508   }
1509 #endif // KMP_HAVE_UMWAIT
1510 
1511 /* ------------------------------------------------------------------------ */
1512 /* Support datatypes for the orphaned construct nesting checks.             */
1513 /* ------------------------------------------------------------------------ */
1514 
1515 /* When adding to this enum, add its corresponding string in cons_text_c[]
1516  * array in kmp_error.cpp */
1517 enum cons_type {
1518   ct_none,
1519   ct_parallel,
1520   ct_pdo,
1521   ct_pdo_ordered,
1522   ct_psections,
1523   ct_psingle,
1524   ct_critical,
1525   ct_ordered_in_parallel,
1526   ct_ordered_in_pdo,
1527   ct_master,
1528   ct_reduce,
1529   ct_barrier,
1530   ct_masked
1531 };
1532 
1533 #define IS_CONS_TYPE_ORDERED(ct) ((ct) == ct_pdo_ordered)
1534 
1535 struct cons_data {
1536   ident_t const *ident;
1537   enum cons_type type;
1538   int prev;
1539   kmp_user_lock_p
1540       name; /* address exclusively for critical section name comparison */
1541 };
1542 
1543 struct cons_header {
1544   int p_top, w_top, s_top;
1545   int stack_size, stack_top;
1546   struct cons_data *stack_data;
1547 };
1548 
1549 struct kmp_region_info {
1550   char *text;
1551   int offset[KMP_MAX_FIELDS];
1552   int length[KMP_MAX_FIELDS];
1553 };
1554 
1555 /* ---------------------------------------------------------------------- */
1556 /* ---------------------------------------------------------------------- */
1557 
1558 #if KMP_OS_WINDOWS
1559 typedef HANDLE kmp_thread_t;
1560 typedef DWORD kmp_key_t;
1561 #endif /* KMP_OS_WINDOWS */
1562 
1563 #if KMP_OS_UNIX
1564 typedef pthread_t kmp_thread_t;
1565 typedef pthread_key_t kmp_key_t;
1566 #endif
1567 
1568 extern kmp_key_t __kmp_gtid_threadprivate_key;
1569 
1570 typedef struct kmp_sys_info {
1571   long maxrss; /* the maximum resident set size utilized (in kilobytes)     */
1572   long minflt; /* the number of page faults serviced without any I/O        */
1573   long majflt; /* the number of page faults serviced that required I/O      */
1574   long nswap; /* the number of times a process was "swapped" out of memory */
1575   long inblock; /* the number of times the file system had to perform input  */
1576   long oublock; /* the number of times the file system had to perform output */
1577   long nvcsw; /* the number of times a context switch was voluntarily      */
1578   long nivcsw; /* the number of times a context switch was forced           */
1579 } kmp_sys_info_t;
1580 
1581 #if USE_ITT_BUILD
1582 // We cannot include "kmp_itt.h" due to circular dependency. Declare the only
1583 // required type here. Later we will check the type meets requirements.
1584 typedef int kmp_itt_mark_t;
1585 #define KMP_ITT_DEBUG 0
1586 #endif /* USE_ITT_BUILD */
1587 
1588 typedef kmp_int32 kmp_critical_name[8];
1589 
1590 /*!
1591 @ingroup PARALLEL
1592 The type for a microtask which gets passed to @ref __kmpc_fork_call().
1593 The arguments to the outlined function are
1594 @param global_tid the global thread identity of the thread executing the
1595 function.
1596 @param bound_tid  the local identity of the thread executing the function
1597 @param ... pointers to shared variables accessed by the function.
1598 */
1599 typedef void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid, ...);
1600 typedef void (*kmpc_micro_bound)(kmp_int32 *bound_tid, kmp_int32 *bound_nth,
1601                                  ...);
1602 
1603 /*!
1604 @ingroup THREADPRIVATE
1605 @{
1606 */
1607 /* ---------------------------------------------------------------------------
1608  */
1609 /* Threadprivate initialization/finalization function declarations */
1610 
1611 /*  for non-array objects:  __kmpc_threadprivate_register()  */
1612 
1613 /*!
1614  Pointer to the constructor function.
1615  The first argument is the <tt>this</tt> pointer
1616 */
1617 typedef void *(*kmpc_ctor)(void *);
1618 
1619 /*!
1620  Pointer to the destructor function.
1621  The first argument is the <tt>this</tt> pointer
1622 */
1623 typedef void (*kmpc_dtor)(
1624     void * /*, size_t */); /* 2nd arg: magic number for KCC unused by Intel
1625                               compiler */
1626 /*!
1627  Pointer to an alternate constructor.
1628  The first argument is the <tt>this</tt> pointer.
1629 */
1630 typedef void *(*kmpc_cctor)(void *, void *);
1631 
1632 /* for array objects: __kmpc_threadprivate_register_vec() */
1633 /* First arg: "this" pointer */
1634 /* Last arg: number of array elements */
1635 /*!
1636  Array constructor.
1637  First argument is the <tt>this</tt> pointer
1638  Second argument the number of array elements.
1639 */
1640 typedef void *(*kmpc_ctor_vec)(void *, size_t);
1641 /*!
1642  Pointer to the array destructor function.
1643  The first argument is the <tt>this</tt> pointer
1644  Second argument the number of array elements.
1645 */
1646 typedef void (*kmpc_dtor_vec)(void *, size_t);
1647 /*!
1648  Array constructor.
1649  First argument is the <tt>this</tt> pointer
1650  Third argument the number of array elements.
1651 */
1652 typedef void *(*kmpc_cctor_vec)(void *, void *,
1653                                 size_t); /* function unused by compiler */
1654 
1655 /*!
1656 @}
1657 */
1658 
1659 /* keeps tracked of threadprivate cache allocations for cleanup later */
1660 typedef struct kmp_cached_addr {
1661   void **addr; /* address of allocated cache */
1662   void ***compiler_cache; /* pointer to compiler's cache */
1663   void *data; /* pointer to global data */
1664   struct kmp_cached_addr *next; /* pointer to next cached address */
1665 } kmp_cached_addr_t;
1666 
1667 struct private_data {
1668   struct private_data *next; /* The next descriptor in the list      */
1669   void *data; /* The data buffer for this descriptor  */
1670   int more; /* The repeat count for this descriptor */
1671   size_t size; /* The data size for this descriptor    */
1672 };
1673 
1674 struct private_common {
1675   struct private_common *next;
1676   struct private_common *link;
1677   void *gbl_addr;
1678   void *par_addr; /* par_addr == gbl_addr for PRIMARY thread */
1679   size_t cmn_size;
1680 };
1681 
1682 struct shared_common {
1683   struct shared_common *next;
1684   struct private_data *pod_init;
1685   void *obj_init;
1686   void *gbl_addr;
1687   union {
1688     kmpc_ctor ctor;
1689     kmpc_ctor_vec ctorv;
1690   } ct;
1691   union {
1692     kmpc_cctor cctor;
1693     kmpc_cctor_vec cctorv;
1694   } cct;
1695   union {
1696     kmpc_dtor dtor;
1697     kmpc_dtor_vec dtorv;
1698   } dt;
1699   size_t vec_len;
1700   int is_vec;
1701   size_t cmn_size;
1702 };
1703 
1704 #define KMP_HASH_TABLE_LOG2 9 /* log2 of the hash table size */
1705 #define KMP_HASH_TABLE_SIZE                                                    \
1706   (1 << KMP_HASH_TABLE_LOG2) /* size of the hash table */
1707 #define KMP_HASH_SHIFT 3 /* throw away this many low bits from the address */
1708 #define KMP_HASH(x)                                                            \
1709   ((((kmp_uintptr_t)x) >> KMP_HASH_SHIFT) & (KMP_HASH_TABLE_SIZE - 1))
1710 
1711 struct common_table {
1712   struct private_common *data[KMP_HASH_TABLE_SIZE];
1713 };
1714 
1715 struct shared_table {
1716   struct shared_common *data[KMP_HASH_TABLE_SIZE];
1717 };
1718 
1719 /* ------------------------------------------------------------------------ */
1720 
1721 #if KMP_USE_HIER_SCHED
1722 // Shared barrier data that exists inside a single unit of the scheduling
1723 // hierarchy
1724 typedef struct kmp_hier_private_bdata_t {
1725   kmp_int32 num_active;
1726   kmp_uint64 index;
1727   kmp_uint64 wait_val[2];
1728 } kmp_hier_private_bdata_t;
1729 #endif
1730 
1731 typedef struct kmp_sched_flags {
1732   unsigned ordered : 1;
1733   unsigned nomerge : 1;
1734   unsigned contains_last : 1;
1735 #if KMP_USE_HIER_SCHED
1736   unsigned use_hier : 1;
1737   unsigned unused : 28;
1738 #else
1739   unsigned unused : 29;
1740 #endif
1741 } kmp_sched_flags_t;
1742 
1743 KMP_BUILD_ASSERT(sizeof(kmp_sched_flags_t) == 4);
1744 
1745 #if KMP_STATIC_STEAL_ENABLED
1746 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1747   kmp_int32 count;
1748   kmp_int32 ub;
1749   /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1750   kmp_int32 lb;
1751   kmp_int32 st;
1752   kmp_int32 tc;
1753   kmp_lock_t *steal_lock; // lock used for chunk stealing
1754   // KMP_ALIGN(32) ensures (if the KMP_ALIGN macro is turned on)
1755   //    a) parm3 is properly aligned and
1756   //    b) all parm1-4 are on the same cache line.
1757   // Because of parm1-4 are used together, performance seems to be better
1758   // if they are on the same cache line (not measured though).
1759 
1760   struct KMP_ALIGN(32) { // AC: changed 16 to 32 in order to simplify template
1761     kmp_int32 parm1; //     structures in kmp_dispatch.cpp. This should
1762     kmp_int32 parm2; //     make no real change at least while padding is off.
1763     kmp_int32 parm3;
1764     kmp_int32 parm4;
1765   };
1766 
1767   kmp_uint32 ordered_lower;
1768   kmp_uint32 ordered_upper;
1769 #if KMP_OS_WINDOWS
1770   kmp_int32 last_upper;
1771 #endif /* KMP_OS_WINDOWS */
1772 } dispatch_private_info32_t;
1773 
1774 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1775   kmp_int64 count; // current chunk number for static & static-steal scheduling
1776   kmp_int64 ub; /* upper-bound */
1777   /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1778   kmp_int64 lb; /* lower-bound */
1779   kmp_int64 st; /* stride */
1780   kmp_int64 tc; /* trip count (number of iterations) */
1781   kmp_lock_t *steal_lock; // lock used for chunk stealing
1782   /* parm[1-4] are used in different ways by different scheduling algorithms */
1783 
1784   // KMP_ALIGN( 32 ) ensures ( if the KMP_ALIGN macro is turned on )
1785   //    a) parm3 is properly aligned and
1786   //    b) all parm1-4 are in the same cache line.
1787   // Because of parm1-4 are used together, performance seems to be better
1788   // if they are in the same line (not measured though).
1789 
1790   struct KMP_ALIGN(32) {
1791     kmp_int64 parm1;
1792     kmp_int64 parm2;
1793     kmp_int64 parm3;
1794     kmp_int64 parm4;
1795   };
1796 
1797   kmp_uint64 ordered_lower;
1798   kmp_uint64 ordered_upper;
1799 #if KMP_OS_WINDOWS
1800   kmp_int64 last_upper;
1801 #endif /* KMP_OS_WINDOWS */
1802 } dispatch_private_info64_t;
1803 #else /* KMP_STATIC_STEAL_ENABLED */
1804 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1805   kmp_int32 lb;
1806   kmp_int32 ub;
1807   kmp_int32 st;
1808   kmp_int32 tc;
1809 
1810   kmp_int32 parm1;
1811   kmp_int32 parm2;
1812   kmp_int32 parm3;
1813   kmp_int32 parm4;
1814 
1815   kmp_int32 count;
1816 
1817   kmp_uint32 ordered_lower;
1818   kmp_uint32 ordered_upper;
1819 #if KMP_OS_WINDOWS
1820   kmp_int32 last_upper;
1821 #endif /* KMP_OS_WINDOWS */
1822 } dispatch_private_info32_t;
1823 
1824 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1825   kmp_int64 lb; /* lower-bound */
1826   kmp_int64 ub; /* upper-bound */
1827   kmp_int64 st; /* stride */
1828   kmp_int64 tc; /* trip count (number of iterations) */
1829 
1830   /* parm[1-4] are used in different ways by different scheduling algorithms */
1831   kmp_int64 parm1;
1832   kmp_int64 parm2;
1833   kmp_int64 parm3;
1834   kmp_int64 parm4;
1835 
1836   kmp_int64 count; /* current chunk number for static scheduling */
1837 
1838   kmp_uint64 ordered_lower;
1839   kmp_uint64 ordered_upper;
1840 #if KMP_OS_WINDOWS
1841   kmp_int64 last_upper;
1842 #endif /* KMP_OS_WINDOWS */
1843 } dispatch_private_info64_t;
1844 #endif /* KMP_STATIC_STEAL_ENABLED */
1845 
1846 typedef struct KMP_ALIGN_CACHE dispatch_private_info {
1847   union private_info {
1848     dispatch_private_info32_t p32;
1849     dispatch_private_info64_t p64;
1850   } u;
1851   enum sched_type schedule; /* scheduling algorithm */
1852   kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */
1853   std::atomic<kmp_uint32> steal_flag; // static_steal only, state of a buffer
1854   kmp_int32 ordered_bumped;
1855   // Stack of buffers for nest of serial regions
1856   struct dispatch_private_info *next;
1857   kmp_int32 type_size; /* the size of types in private_info */
1858 #if KMP_USE_HIER_SCHED
1859   kmp_int32 hier_id;
1860   void *parent; /* hierarchical scheduling parent pointer */
1861 #endif
1862   enum cons_type pushed_ws;
1863 } dispatch_private_info_t;
1864 
1865 typedef struct dispatch_shared_info32 {
1866   /* chunk index under dynamic, number of idle threads under static-steal;
1867      iteration index otherwise */
1868   volatile kmp_uint32 iteration;
1869   volatile kmp_int32 num_done;
1870   volatile kmp_uint32 ordered_iteration;
1871   // Dummy to retain the structure size after making ordered_iteration scalar
1872   kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 1];
1873 } dispatch_shared_info32_t;
1874 
1875 typedef struct dispatch_shared_info64 {
1876   /* chunk index under dynamic, number of idle threads under static-steal;
1877      iteration index otherwise */
1878   volatile kmp_uint64 iteration;
1879   volatile kmp_int64 num_done;
1880   volatile kmp_uint64 ordered_iteration;
1881   // Dummy to retain the structure size after making ordered_iteration scalar
1882   kmp_int64 ordered_dummy[KMP_MAX_ORDERED - 3];
1883 } dispatch_shared_info64_t;
1884 
1885 typedef struct dispatch_shared_info {
1886   union shared_info {
1887     dispatch_shared_info32_t s32;
1888     dispatch_shared_info64_t s64;
1889   } u;
1890   volatile kmp_uint32 buffer_index;
1891   volatile kmp_int32 doacross_buf_idx; // teamwise index
1892   volatile kmp_uint32 *doacross_flags; // shared array of iteration flags (0/1)
1893   kmp_int32 doacross_num_done; // count finished threads
1894 #if KMP_USE_HIER_SCHED
1895   void *hier;
1896 #endif
1897 #if KMP_USE_HWLOC
1898   // When linking with libhwloc, the ORDERED EPCC test slows down on big
1899   // machines (> 48 cores). Performance analysis showed that a cache thrash
1900   // was occurring and this padding helps alleviate the problem.
1901   char padding[64];
1902 #endif
1903 } dispatch_shared_info_t;
1904 
1905 typedef struct kmp_disp {
1906   /* Vector for ORDERED SECTION */
1907   void (*th_deo_fcn)(int *gtid, int *cid, ident_t *);
1908   /* Vector for END ORDERED SECTION */
1909   void (*th_dxo_fcn)(int *gtid, int *cid, ident_t *);
1910 
1911   dispatch_shared_info_t *th_dispatch_sh_current;
1912   dispatch_private_info_t *th_dispatch_pr_current;
1913 
1914   dispatch_private_info_t *th_disp_buffer;
1915   kmp_uint32 th_disp_index;
1916   kmp_int32 th_doacross_buf_idx; // thread's doacross buffer index
1917   volatile kmp_uint32 *th_doacross_flags; // pointer to shared array of flags
1918   kmp_int64 *th_doacross_info; // info on loop bounds
1919 #if KMP_USE_INTERNODE_ALIGNMENT
1920   char more_padding[INTERNODE_CACHE_LINE];
1921 #endif
1922 } kmp_disp_t;
1923 
1924 /* ------------------------------------------------------------------------ */
1925 /* Barrier stuff */
1926 
1927 /* constants for barrier state update */
1928 #define KMP_INIT_BARRIER_STATE 0 /* should probably start from zero */
1929 #define KMP_BARRIER_SLEEP_BIT 0 /* bit used for suspend/sleep part of state */
1930 #define KMP_BARRIER_UNUSED_BIT 1 // bit that must never be set for valid state
1931 #define KMP_BARRIER_BUMP_BIT 2 /* lsb used for bump of go/arrived state */
1932 
1933 #define KMP_BARRIER_SLEEP_STATE (1 << KMP_BARRIER_SLEEP_BIT)
1934 #define KMP_BARRIER_UNUSED_STATE (1 << KMP_BARRIER_UNUSED_BIT)
1935 #define KMP_BARRIER_STATE_BUMP (1 << KMP_BARRIER_BUMP_BIT)
1936 
1937 #if (KMP_BARRIER_SLEEP_BIT >= KMP_BARRIER_BUMP_BIT)
1938 #error "Barrier sleep bit must be smaller than barrier bump bit"
1939 #endif
1940 #if (KMP_BARRIER_UNUSED_BIT >= KMP_BARRIER_BUMP_BIT)
1941 #error "Barrier unused bit must be smaller than barrier bump bit"
1942 #endif
1943 
1944 // Constants for release barrier wait state: currently, hierarchical only
1945 #define KMP_BARRIER_NOT_WAITING 0 // Normal state; worker not in wait_sleep
1946 #define KMP_BARRIER_OWN_FLAG                                                   \
1947   1 // Normal state; worker waiting on own b_go flag in release
1948 #define KMP_BARRIER_PARENT_FLAG                                                \
1949   2 // Special state; worker waiting on parent's b_go flag in release
1950 #define KMP_BARRIER_SWITCH_TO_OWN_FLAG                                         \
1951   3 // Special state; tells worker to shift from parent to own b_go
1952 #define KMP_BARRIER_SWITCHING                                                  \
1953   4 // Special state; worker resets appropriate flag on wake-up
1954 
1955 #define KMP_NOT_SAFE_TO_REAP                                                   \
1956   0 // Thread th_reap_state: not safe to reap (tasking)
1957 #define KMP_SAFE_TO_REAP 1 // Thread th_reap_state: safe to reap (not tasking)
1958 
1959 // The flag_type describes the storage used for the flag.
1960 enum flag_type {
1961   flag32, /**< atomic 32 bit flags */
1962   flag64, /**< 64 bit flags */
1963   atomic_flag64, /**< atomic 64 bit flags */
1964   flag_oncore, /**< special 64-bit flag for on-core barrier (hierarchical) */
1965   flag_unset
1966 };
1967 
1968 enum barrier_type {
1969   bs_plain_barrier = 0, /* 0, All non-fork/join barriers (except reduction
1970                            barriers if enabled) */
1971   bs_forkjoin_barrier, /* 1, All fork/join (parallel region) barriers */
1972 #if KMP_FAST_REDUCTION_BARRIER
1973   bs_reduction_barrier, /* 2, All barriers that are used in reduction */
1974 #endif // KMP_FAST_REDUCTION_BARRIER
1975   bs_last_barrier /* Just a placeholder to mark the end */
1976 };
1977 
1978 // to work with reduction barriers just like with plain barriers
1979 #if !KMP_FAST_REDUCTION_BARRIER
1980 #define bs_reduction_barrier bs_plain_barrier
1981 #endif // KMP_FAST_REDUCTION_BARRIER
1982 
1983 typedef enum kmp_bar_pat { /* Barrier communication patterns */
1984                            bp_linear_bar =
1985                                0, /* Single level (degenerate) tree */
1986                            bp_tree_bar =
1987                                1, /* Balanced tree with branching factor 2^n */
1988                            bp_hyper_bar = 2, /* Hypercube-embedded tree with min
1989                                                 branching factor 2^n */
1990                            bp_hierarchical_bar = 3, /* Machine hierarchy tree */
1991                            bp_dist_bar = 4, /* Distributed barrier */
1992                            bp_last_bar /* Placeholder to mark the end */
1993 } kmp_bar_pat_e;
1994 
1995 #define KMP_BARRIER_ICV_PUSH 1
1996 
1997 /* Record for holding the values of the internal controls stack records */
1998 typedef struct kmp_internal_control {
1999   int serial_nesting_level; /* corresponds to the value of the
2000                                th_team_serialized field */
2001   kmp_int8 dynamic; /* internal control for dynamic adjustment of threads (per
2002                        thread) */
2003   kmp_int8
2004       bt_set; /* internal control for whether blocktime is explicitly set */
2005   int blocktime; /* internal control for blocktime */
2006 #if KMP_USE_MONITOR
2007   int bt_intervals; /* internal control for blocktime intervals */
2008 #endif
2009   int nproc; /* internal control for #threads for next parallel region (per
2010                 thread) */
2011   int thread_limit; /* internal control for thread-limit-var */
2012   int max_active_levels; /* internal control for max_active_levels */
2013   kmp_r_sched_t
2014       sched; /* internal control for runtime schedule {sched,chunk} pair */
2015   kmp_proc_bind_t proc_bind; /* internal control for affinity  */
2016   kmp_int32 default_device; /* internal control for default device */
2017   struct kmp_internal_control *next;
2018 } kmp_internal_control_t;
2019 
2020 static inline void copy_icvs(kmp_internal_control_t *dst,
2021                              kmp_internal_control_t *src) {
2022   *dst = *src;
2023 }
2024 
2025 /* Thread barrier needs volatile barrier fields */
2026 typedef struct KMP_ALIGN_CACHE kmp_bstate {
2027   // th_fixed_icvs is aligned by virtue of kmp_bstate being aligned (and all
2028   // uses of it). It is not explicitly aligned below, because we *don't* want
2029   // it to be padded -- instead, we fit b_go into the same cache line with
2030   // th_fixed_icvs, enabling NGO cache lines stores in the hierarchical barrier.
2031   kmp_internal_control_t th_fixed_icvs; // Initial ICVs for the thread
2032   // Tuck b_go into end of th_fixed_icvs cache line, so it can be stored with
2033   // same NGO store
2034   volatile kmp_uint64 b_go; // STATE => task should proceed (hierarchical)
2035   KMP_ALIGN_CACHE volatile kmp_uint64
2036       b_arrived; // STATE => task reached synch point.
2037   kmp_uint32 *skip_per_level;
2038   kmp_uint32 my_level;
2039   kmp_int32 parent_tid;
2040   kmp_int32 old_tid;
2041   kmp_uint32 depth;
2042   struct kmp_bstate *parent_bar;
2043   kmp_team_t *team;
2044   kmp_uint64 leaf_state;
2045   kmp_uint32 nproc;
2046   kmp_uint8 base_leaf_kids;
2047   kmp_uint8 leaf_kids;
2048   kmp_uint8 offset;
2049   kmp_uint8 wait_flag;
2050   kmp_uint8 use_oncore_barrier;
2051 #if USE_DEBUGGER
2052   // The following field is intended for the debugger solely. Only the worker
2053   // thread itself accesses this field: the worker increases it by 1 when it
2054   // arrives to a barrier.
2055   KMP_ALIGN_CACHE kmp_uint b_worker_arrived;
2056 #endif /* USE_DEBUGGER */
2057 } kmp_bstate_t;
2058 
2059 union KMP_ALIGN_CACHE kmp_barrier_union {
2060   double b_align; /* use worst case alignment */
2061   char b_pad[KMP_PAD(kmp_bstate_t, CACHE_LINE)];
2062   kmp_bstate_t bb;
2063 };
2064 
2065 typedef union kmp_barrier_union kmp_balign_t;
2066 
2067 /* Team barrier needs only non-volatile arrived counter */
2068 union KMP_ALIGN_CACHE kmp_barrier_team_union {
2069   double b_align; /* use worst case alignment */
2070   char b_pad[CACHE_LINE];
2071   struct {
2072     kmp_uint64 b_arrived; /* STATE => task reached synch point. */
2073 #if USE_DEBUGGER
2074     // The following two fields are indended for the debugger solely. Only
2075     // primary thread of the team accesses these fields: the first one is
2076     // increased by 1 when the primary thread arrives to a barrier, the second
2077     // one is increased by one when all the threads arrived.
2078     kmp_uint b_master_arrived;
2079     kmp_uint b_team_arrived;
2080 #endif
2081   };
2082 };
2083 
2084 typedef union kmp_barrier_team_union kmp_balign_team_t;
2085 
2086 /* Padding for Linux* OS pthreads condition variables and mutexes used to signal
2087    threads when a condition changes.  This is to workaround an NPTL bug where
2088    padding was added to pthread_cond_t which caused the initialization routine
2089    to write outside of the structure if compiled on pre-NPTL threads.  */
2090 #if KMP_OS_WINDOWS
2091 typedef struct kmp_win32_mutex {
2092   /* The Lock */
2093   CRITICAL_SECTION cs;
2094 } kmp_win32_mutex_t;
2095 
2096 typedef struct kmp_win32_cond {
2097   /* Count of the number of waiters. */
2098   int waiters_count_;
2099 
2100   /* Serialize access to <waiters_count_> */
2101   kmp_win32_mutex_t waiters_count_lock_;
2102 
2103   /* Number of threads to release via a <cond_broadcast> or a <cond_signal> */
2104   int release_count_;
2105 
2106   /* Keeps track of the current "generation" so that we don't allow */
2107   /* one thread to steal all the "releases" from the broadcast. */
2108   int wait_generation_count_;
2109 
2110   /* A manual-reset event that's used to block and release waiting threads. */
2111   HANDLE event_;
2112 } kmp_win32_cond_t;
2113 #endif
2114 
2115 #if KMP_OS_UNIX
2116 
2117 union KMP_ALIGN_CACHE kmp_cond_union {
2118   double c_align;
2119   char c_pad[CACHE_LINE];
2120   pthread_cond_t c_cond;
2121 };
2122 
2123 typedef union kmp_cond_union kmp_cond_align_t;
2124 
2125 union KMP_ALIGN_CACHE kmp_mutex_union {
2126   double m_align;
2127   char m_pad[CACHE_LINE];
2128   pthread_mutex_t m_mutex;
2129 };
2130 
2131 typedef union kmp_mutex_union kmp_mutex_align_t;
2132 
2133 #endif /* KMP_OS_UNIX */
2134 
2135 typedef struct kmp_desc_base {
2136   void *ds_stackbase;
2137   size_t ds_stacksize;
2138   int ds_stackgrow;
2139   kmp_thread_t ds_thread;
2140   volatile int ds_tid;
2141   int ds_gtid;
2142 #if KMP_OS_WINDOWS
2143   volatile int ds_alive;
2144   DWORD ds_thread_id;
2145 /* ds_thread keeps thread handle on Windows* OS. It is enough for RTL purposes.
2146    However, debugger support (libomp_db) cannot work with handles, because they
2147    uncomparable. For example, debugger requests info about thread with handle h.
2148    h is valid within debugger process, and meaningless within debugee process.
2149    Even if h is duped by call to DuplicateHandle(), so the result h' is valid
2150    within debugee process, but it is a *new* handle which does *not* equal to
2151    any other handle in debugee... The only way to compare handles is convert
2152    them to system-wide ids. GetThreadId() function is available only in
2153    Longhorn and Server 2003. :-( In contrast, GetCurrentThreadId() is available
2154    on all Windows* OS flavours (including Windows* 95). Thus, we have to get
2155    thread id by call to GetCurrentThreadId() from within the thread and save it
2156    to let libomp_db identify threads.  */
2157 #endif /* KMP_OS_WINDOWS */
2158 } kmp_desc_base_t;
2159 
2160 typedef union KMP_ALIGN_CACHE kmp_desc {
2161   double ds_align; /* use worst case alignment */
2162   char ds_pad[KMP_PAD(kmp_desc_base_t, CACHE_LINE)];
2163   kmp_desc_base_t ds;
2164 } kmp_desc_t;
2165 
2166 typedef struct kmp_local {
2167   volatile int this_construct; /* count of single's encountered by thread */
2168   void *reduce_data;
2169 #if KMP_USE_BGET
2170   void *bget_data;
2171   void *bget_list;
2172 #if !USE_CMP_XCHG_FOR_BGET
2173 #ifdef USE_QUEUING_LOCK_FOR_BGET
2174   kmp_lock_t bget_lock; /* Lock for accessing bget free list */
2175 #else
2176   kmp_bootstrap_lock_t bget_lock; // Lock for accessing bget free list. Must be
2177 // bootstrap lock so we can use it at library
2178 // shutdown.
2179 #endif /* USE_LOCK_FOR_BGET */
2180 #endif /* ! USE_CMP_XCHG_FOR_BGET */
2181 #endif /* KMP_USE_BGET */
2182 
2183   PACKED_REDUCTION_METHOD_T
2184   packed_reduction_method; /* stored by __kmpc_reduce*(), used by
2185                               __kmpc_end_reduce*() */
2186 
2187 } kmp_local_t;
2188 
2189 #define KMP_CHECK_UPDATE(a, b)                                                 \
2190   if ((a) != (b))                                                              \
2191   (a) = (b)
2192 #define KMP_CHECK_UPDATE_SYNC(a, b)                                            \
2193   if ((a) != (b))                                                              \
2194   TCW_SYNC_PTR((a), (b))
2195 
2196 #define get__blocktime(xteam, xtid)                                            \
2197   ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime)
2198 #define get__bt_set(xteam, xtid)                                               \
2199   ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set)
2200 #if KMP_USE_MONITOR
2201 #define get__bt_intervals(xteam, xtid)                                         \
2202   ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals)
2203 #endif
2204 
2205 #define get__dynamic_2(xteam, xtid)                                            \
2206   ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.dynamic)
2207 #define get__nproc_2(xteam, xtid)                                              \
2208   ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nproc)
2209 #define get__sched_2(xteam, xtid)                                              \
2210   ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.sched)
2211 
2212 #define set__blocktime_team(xteam, xtid, xval)                                 \
2213   (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) =     \
2214        (xval))
2215 
2216 #if KMP_USE_MONITOR
2217 #define set__bt_intervals_team(xteam, xtid, xval)                              \
2218   (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) =  \
2219        (xval))
2220 #endif
2221 
2222 #define set__bt_set_team(xteam, xtid, xval)                                    \
2223   (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) = (xval))
2224 
2225 #define set__dynamic(xthread, xval)                                            \
2226   (((xthread)->th.th_current_task->td_icvs.dynamic) = (xval))
2227 #define get__dynamic(xthread)                                                  \
2228   (((xthread)->th.th_current_task->td_icvs.dynamic) ? (FTN_TRUE) : (FTN_FALSE))
2229 
2230 #define set__nproc(xthread, xval)                                              \
2231   (((xthread)->th.th_current_task->td_icvs.nproc) = (xval))
2232 
2233 #define set__thread_limit(xthread, xval)                                       \
2234   (((xthread)->th.th_current_task->td_icvs.thread_limit) = (xval))
2235 
2236 #define set__max_active_levels(xthread, xval)                                  \
2237   (((xthread)->th.th_current_task->td_icvs.max_active_levels) = (xval))
2238 
2239 #define get__max_active_levels(xthread)                                        \
2240   ((xthread)->th.th_current_task->td_icvs.max_active_levels)
2241 
2242 #define set__sched(xthread, xval)                                              \
2243   (((xthread)->th.th_current_task->td_icvs.sched) = (xval))
2244 
2245 #define set__proc_bind(xthread, xval)                                          \
2246   (((xthread)->th.th_current_task->td_icvs.proc_bind) = (xval))
2247 #define get__proc_bind(xthread)                                                \
2248   ((xthread)->th.th_current_task->td_icvs.proc_bind)
2249 
2250 // OpenMP tasking data structures
2251 
2252 typedef enum kmp_tasking_mode {
2253   tskm_immediate_exec = 0,
2254   tskm_extra_barrier = 1,
2255   tskm_task_teams = 2,
2256   tskm_max = 2
2257 } kmp_tasking_mode_t;
2258 
2259 extern kmp_tasking_mode_t
2260     __kmp_tasking_mode; /* determines how/when to execute tasks */
2261 extern int __kmp_task_stealing_constraint;
2262 extern int __kmp_enable_task_throttling;
2263 extern kmp_int32 __kmp_default_device; // Set via OMP_DEFAULT_DEVICE if
2264 // specified, defaults to 0 otherwise
2265 // Set via OMP_MAX_TASK_PRIORITY if specified, defaults to 0 otherwise
2266 extern kmp_int32 __kmp_max_task_priority;
2267 // Set via KMP_TASKLOOP_MIN_TASKS if specified, defaults to 0 otherwise
2268 extern kmp_uint64 __kmp_taskloop_min_tasks;
2269 
2270 /* NOTE: kmp_taskdata_t and kmp_task_t structures allocated in single block with
2271    taskdata first */
2272 #define KMP_TASK_TO_TASKDATA(task) (((kmp_taskdata_t *)task) - 1)
2273 #define KMP_TASKDATA_TO_TASK(taskdata) (kmp_task_t *)(taskdata + 1)
2274 
2275 // The tt_found_tasks flag is a signal to all threads in the team that tasks
2276 // were spawned and queued since the previous barrier release.
2277 #define KMP_TASKING_ENABLED(task_team)                                         \
2278   (TRUE == TCR_SYNC_4((task_team)->tt.tt_found_tasks))
2279 /*!
2280 @ingroup BASIC_TYPES
2281 @{
2282 */
2283 
2284 /*!
2285  */
2286 typedef kmp_int32 (*kmp_routine_entry_t)(kmp_int32, void *);
2287 
2288 typedef union kmp_cmplrdata {
2289   kmp_int32 priority; /**< priority specified by user for the task */
2290   kmp_routine_entry_t
2291       destructors; /* pointer to function to invoke deconstructors of
2292                       firstprivate C++ objects */
2293   /* future data */
2294 } kmp_cmplrdata_t;
2295 
2296 /*  sizeof_kmp_task_t passed as arg to kmpc_omp_task call  */
2297 /*!
2298  */
2299 typedef struct kmp_task { /* GEH: Shouldn't this be aligned somehow? */
2300   void *shareds; /**< pointer to block of pointers to shared vars   */
2301   kmp_routine_entry_t
2302       routine; /**< pointer to routine to call for executing task */
2303   kmp_int32 part_id; /**< part id for the task                          */
2304   kmp_cmplrdata_t
2305       data1; /* Two known optional additions: destructors and priority */
2306   kmp_cmplrdata_t data2; /* Process destructors first, priority second */
2307   /* future data */
2308   /*  private vars  */
2309 } kmp_task_t;
2310 
2311 /*!
2312 @}
2313 */
2314 
2315 typedef struct kmp_taskgroup {
2316   std::atomic<kmp_int32> count; // number of allocated and incomplete tasks
2317   std::atomic<kmp_int32>
2318       cancel_request; // request for cancellation of this taskgroup
2319   struct kmp_taskgroup *parent; // parent taskgroup
2320   // Block of data to perform task reduction
2321   void *reduce_data; // reduction related info
2322   kmp_int32 reduce_num_data; // number of data items to reduce
2323   uintptr_t *gomp_data; // gomp reduction data
2324 } kmp_taskgroup_t;
2325 
2326 // forward declarations
2327 typedef union kmp_depnode kmp_depnode_t;
2328 typedef struct kmp_depnode_list kmp_depnode_list_t;
2329 typedef struct kmp_dephash_entry kmp_dephash_entry_t;
2330 
2331 // macros for checking dep flag as an integer
2332 #define KMP_DEP_IN 0x1
2333 #define KMP_DEP_OUT 0x2
2334 #define KMP_DEP_INOUT 0x3
2335 #define KMP_DEP_MTX 0x4
2336 #define KMP_DEP_SET 0x8
2337 #define KMP_DEP_ALL 0x80
2338 // Compiler sends us this info:
2339 typedef struct kmp_depend_info {
2340   kmp_intptr_t base_addr;
2341   size_t len;
2342   union {
2343     kmp_uint8 flag; // flag as an unsigned char
2344     struct { // flag as a set of 8 bits
2345       unsigned in : 1;
2346       unsigned out : 1;
2347       unsigned mtx : 1;
2348       unsigned set : 1;
2349       unsigned unused : 3;
2350       unsigned all : 1;
2351     } flags;
2352   };
2353 } kmp_depend_info_t;
2354 
2355 // Internal structures to work with task dependencies:
2356 struct kmp_depnode_list {
2357   kmp_depnode_t *node;
2358   kmp_depnode_list_t *next;
2359 };
2360 
2361 // Max number of mutexinoutset dependencies per node
2362 #define MAX_MTX_DEPS 4
2363 
2364 typedef struct kmp_base_depnode {
2365   kmp_depnode_list_t *successors; /* used under lock */
2366   kmp_task_t *task; /* non-NULL if depnode is active, used under lock */
2367   kmp_lock_t *mtx_locks[MAX_MTX_DEPS]; /* lock mutexinoutset dependent tasks */
2368   kmp_int32 mtx_num_locks; /* number of locks in mtx_locks array */
2369   kmp_lock_t lock; /* guards shared fields: task, successors */
2370 #if KMP_SUPPORT_GRAPH_OUTPUT
2371   kmp_uint32 id;
2372 #endif
2373   std::atomic<kmp_int32> npredecessors;
2374   std::atomic<kmp_int32> nrefs;
2375 } kmp_base_depnode_t;
2376 
2377 union KMP_ALIGN_CACHE kmp_depnode {
2378   double dn_align; /* use worst case alignment */
2379   char dn_pad[KMP_PAD(kmp_base_depnode_t, CACHE_LINE)];
2380   kmp_base_depnode_t dn;
2381 };
2382 
2383 struct kmp_dephash_entry {
2384   kmp_intptr_t addr;
2385   kmp_depnode_t *last_out;
2386   kmp_depnode_list_t *last_set;
2387   kmp_depnode_list_t *prev_set;
2388   kmp_uint8 last_flag;
2389   kmp_lock_t *mtx_lock; /* is referenced by depnodes w/mutexinoutset dep */
2390   kmp_dephash_entry_t *next_in_bucket;
2391 };
2392 
2393 typedef struct kmp_dephash {
2394   kmp_dephash_entry_t **buckets;
2395   size_t size;
2396   kmp_depnode_t *last_all;
2397   size_t generation;
2398   kmp_uint32 nelements;
2399   kmp_uint32 nconflicts;
2400 } kmp_dephash_t;
2401 
2402 typedef struct kmp_task_affinity_info {
2403   kmp_intptr_t base_addr;
2404   size_t len;
2405   struct {
2406     bool flag1 : 1;
2407     bool flag2 : 1;
2408     kmp_int32 reserved : 30;
2409   } flags;
2410 } kmp_task_affinity_info_t;
2411 
2412 typedef enum kmp_event_type_t {
2413   KMP_EVENT_UNINITIALIZED = 0,
2414   KMP_EVENT_ALLOW_COMPLETION = 1
2415 } kmp_event_type_t;
2416 
2417 typedef struct {
2418   kmp_event_type_t type;
2419   kmp_tas_lock_t lock;
2420   union {
2421     kmp_task_t *task;
2422   } ed;
2423 } kmp_event_t;
2424 
2425 #ifdef BUILD_TIED_TASK_STACK
2426 
2427 /* Tied Task stack definitions */
2428 typedef struct kmp_stack_block {
2429   kmp_taskdata_t *sb_block[TASK_STACK_BLOCK_SIZE];
2430   struct kmp_stack_block *sb_next;
2431   struct kmp_stack_block *sb_prev;
2432 } kmp_stack_block_t;
2433 
2434 typedef struct kmp_task_stack {
2435   kmp_stack_block_t ts_first_block; // first block of stack entries
2436   kmp_taskdata_t **ts_top; // pointer to the top of stack
2437   kmp_int32 ts_entries; // number of entries on the stack
2438 } kmp_task_stack_t;
2439 
2440 #endif // BUILD_TIED_TASK_STACK
2441 
2442 typedef struct kmp_tasking_flags { /* Total struct must be exactly 32 bits */
2443   /* Compiler flags */ /* Total compiler flags must be 16 bits */
2444   unsigned tiedness : 1; /* task is either tied (1) or untied (0) */
2445   unsigned final : 1; /* task is final(1) so execute immediately */
2446   unsigned merged_if0 : 1; /* no __kmpc_task_{begin/complete}_if0 calls in if0
2447                               code path */
2448   unsigned destructors_thunk : 1; /* set if the compiler creates a thunk to
2449                                      invoke destructors from the runtime */
2450   unsigned proxy : 1; /* task is a proxy task (it will be executed outside the
2451                          context of the RTL) */
2452   unsigned priority_specified : 1; /* set if the compiler provides priority
2453                                       setting for the task */
2454   unsigned detachable : 1; /* 1 == can detach */
2455   unsigned hidden_helper : 1; /* 1 == hidden helper task */
2456   unsigned reserved : 8; /* reserved for compiler use */
2457 
2458   /* Library flags */ /* Total library flags must be 16 bits */
2459   unsigned tasktype : 1; /* task is either explicit(1) or implicit (0) */
2460   unsigned task_serial : 1; // task is executed immediately (1) or deferred (0)
2461   unsigned tasking_ser : 1; // all tasks in team are either executed immediately
2462   // (1) or may be deferred (0)
2463   unsigned team_serial : 1; // entire team is serial (1) [1 thread] or parallel
2464   // (0) [>= 2 threads]
2465   /* If either team_serial or tasking_ser is set, task team may be NULL */
2466   /* Task State Flags: */
2467   unsigned started : 1; /* 1==started, 0==not started     */
2468   unsigned executing : 1; /* 1==executing, 0==not executing */
2469   unsigned complete : 1; /* 1==complete, 0==not complete   */
2470   unsigned freed : 1; /* 1==freed, 0==allocated        */
2471   unsigned native : 1; /* 1==gcc-compiled task, 0==intel */
2472   unsigned reserved31 : 7; /* reserved for library use */
2473 
2474 } kmp_tasking_flags_t;
2475 
2476 struct kmp_taskdata { /* aligned during dynamic allocation       */
2477   kmp_int32 td_task_id; /* id, assigned by debugger                */
2478   kmp_tasking_flags_t td_flags; /* task flags                              */
2479   kmp_team_t *td_team; /* team for this task                      */
2480   kmp_info_p *td_alloc_thread; /* thread that allocated data structures   */
2481   /* Currently not used except for perhaps IDB */
2482   kmp_taskdata_t *td_parent; /* parent task                             */
2483   kmp_int32 td_level; /* task nesting level                      */
2484   std::atomic<kmp_int32> td_untied_count; // untied task active parts counter
2485   ident_t *td_ident; /* task identifier                         */
2486   // Taskwait data.
2487   ident_t *td_taskwait_ident;
2488   kmp_uint32 td_taskwait_counter;
2489   kmp_int32 td_taskwait_thread; /* gtid + 1 of thread encountered taskwait */
2490   KMP_ALIGN_CACHE kmp_internal_control_t
2491       td_icvs; /* Internal control variables for the task */
2492   KMP_ALIGN_CACHE std::atomic<kmp_int32>
2493       td_allocated_child_tasks; /* Child tasks (+ current task) not yet
2494                                    deallocated */
2495   std::atomic<kmp_int32>
2496       td_incomplete_child_tasks; /* Child tasks not yet complete */
2497   kmp_taskgroup_t
2498       *td_taskgroup; // Each task keeps pointer to its current taskgroup
2499   kmp_dephash_t
2500       *td_dephash; // Dependencies for children tasks are tracked from here
2501   kmp_depnode_t
2502       *td_depnode; // Pointer to graph node if this task has dependencies
2503   kmp_task_team_t *td_task_team;
2504   size_t td_size_alloc; // Size of task structure, including shareds etc.
2505 #if defined(KMP_GOMP_COMPAT)
2506   // 4 or 8 byte integers for the loop bounds in GOMP_taskloop
2507   kmp_int32 td_size_loop_bounds;
2508 #endif
2509   kmp_taskdata_t *td_last_tied; // keep tied task for task scheduling constraint
2510 #if defined(KMP_GOMP_COMPAT)
2511   // GOMP sends in a copy function for copy constructors
2512   void (*td_copy_func)(void *, void *);
2513 #endif
2514   kmp_event_t td_allow_completion_event;
2515 #if OMPT_SUPPORT
2516   ompt_task_info_t ompt_task_info;
2517 #endif
2518 }; // struct kmp_taskdata
2519 
2520 // Make sure padding above worked
2521 KMP_BUILD_ASSERT(sizeof(kmp_taskdata_t) % sizeof(void *) == 0);
2522 
2523 // Data for task team but per thread
2524 typedef struct kmp_base_thread_data {
2525   kmp_info_p *td_thr; // Pointer back to thread info
2526   // Used only in __kmp_execute_tasks_template, maybe not avail until task is
2527   // queued?
2528   kmp_bootstrap_lock_t td_deque_lock; // Lock for accessing deque
2529   kmp_taskdata_t *
2530       *td_deque; // Deque of tasks encountered by td_thr, dynamically allocated
2531   kmp_int32 td_deque_size; // Size of deck
2532   kmp_uint32 td_deque_head; // Head of deque (will wrap)
2533   kmp_uint32 td_deque_tail; // Tail of deque (will wrap)
2534   kmp_int32 td_deque_ntasks; // Number of tasks in deque
2535   // GEH: shouldn't this be volatile since used in while-spin?
2536   kmp_int32 td_deque_last_stolen; // Thread number of last successful steal
2537 #ifdef BUILD_TIED_TASK_STACK
2538   kmp_task_stack_t td_susp_tied_tasks; // Stack of suspended tied tasks for task
2539 // scheduling constraint
2540 #endif // BUILD_TIED_TASK_STACK
2541 } kmp_base_thread_data_t;
2542 
2543 #define TASK_DEQUE_BITS 8 // Used solely to define INITIAL_TASK_DEQUE_SIZE
2544 #define INITIAL_TASK_DEQUE_SIZE (1 << TASK_DEQUE_BITS)
2545 
2546 #define TASK_DEQUE_SIZE(td) ((td).td_deque_size)
2547 #define TASK_DEQUE_MASK(td) ((td).td_deque_size - 1)
2548 
2549 typedef union KMP_ALIGN_CACHE kmp_thread_data {
2550   kmp_base_thread_data_t td;
2551   double td_align; /* use worst case alignment */
2552   char td_pad[KMP_PAD(kmp_base_thread_data_t, CACHE_LINE)];
2553 } kmp_thread_data_t;
2554 
2555 typedef struct kmp_task_pri {
2556   kmp_thread_data_t td;
2557   kmp_int32 priority;
2558   kmp_task_pri *next;
2559 } kmp_task_pri_t;
2560 
2561 // Data for task teams which are used when tasking is enabled for the team
2562 typedef struct kmp_base_task_team {
2563   kmp_bootstrap_lock_t
2564       tt_threads_lock; /* Lock used to allocate per-thread part of task team */
2565   /* must be bootstrap lock since used at library shutdown*/
2566 
2567   // TODO: check performance vs kmp_tas_lock_t
2568   kmp_bootstrap_lock_t tt_task_pri_lock; /* Lock to access priority tasks */
2569   kmp_task_pri_t *tt_task_pri_list;
2570 
2571   kmp_task_team_t *tt_next; /* For linking the task team free list */
2572   kmp_thread_data_t
2573       *tt_threads_data; /* Array of per-thread structures for task team */
2574   /* Data survives task team deallocation */
2575   kmp_int32 tt_found_tasks; /* Have we found tasks and queued them while
2576                                executing this team? */
2577   /* TRUE means tt_threads_data is set up and initialized */
2578   kmp_int32 tt_nproc; /* #threads in team           */
2579   kmp_int32 tt_max_threads; // # entries allocated for threads_data array
2580   kmp_int32 tt_found_proxy_tasks; // found proxy tasks since last barrier
2581   kmp_int32 tt_untied_task_encountered;
2582   std::atomic<kmp_int32> tt_num_task_pri; // number of priority tasks enqueued
2583   // There is hidden helper thread encountered in this task team so that we must
2584   // wait when waiting on task team
2585   kmp_int32 tt_hidden_helper_task_encountered;
2586 
2587   KMP_ALIGN_CACHE
2588   std::atomic<kmp_int32> tt_unfinished_threads; /* #threads still active */
2589 
2590   KMP_ALIGN_CACHE
2591   volatile kmp_uint32
2592       tt_active; /* is the team still actively executing tasks */
2593 } kmp_base_task_team_t;
2594 
2595 union KMP_ALIGN_CACHE kmp_task_team {
2596   kmp_base_task_team_t tt;
2597   double tt_align; /* use worst case alignment */
2598   char tt_pad[KMP_PAD(kmp_base_task_team_t, CACHE_LINE)];
2599 };
2600 
2601 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2602 // Free lists keep same-size free memory slots for fast memory allocation
2603 // routines
2604 typedef struct kmp_free_list {
2605   void *th_free_list_self; // Self-allocated tasks free list
2606   void *th_free_list_sync; // Self-allocated tasks stolen/returned by other
2607   // threads
2608   void *th_free_list_other; // Non-self free list (to be returned to owner's
2609   // sync list)
2610 } kmp_free_list_t;
2611 #endif
2612 #if KMP_NESTED_HOT_TEAMS
2613 // Hot teams array keeps hot teams and their sizes for given thread. Hot teams
2614 // are not put in teams pool, and they don't put threads in threads pool.
2615 typedef struct kmp_hot_team_ptr {
2616   kmp_team_p *hot_team; // pointer to hot_team of given nesting level
2617   kmp_int32 hot_team_nth; // number of threads allocated for the hot_team
2618 } kmp_hot_team_ptr_t;
2619 #endif
2620 typedef struct kmp_teams_size {
2621   kmp_int32 nteams; // number of teams in a league
2622   kmp_int32 nth; // number of threads in each team of the league
2623 } kmp_teams_size_t;
2624 
2625 // This struct stores a thread that acts as a "root" for a contention
2626 // group. Contention groups are rooted at kmp_root threads, but also at
2627 // each primary thread of each team created in the teams construct.
2628 // This struct therefore also stores a thread_limit associated with
2629 // that contention group, and a counter to track the number of threads
2630 // active in that contention group. Each thread has a list of these: CG
2631 // root threads have an entry in their list in which cg_root refers to
2632 // the thread itself, whereas other workers in the CG will have a
2633 // single entry where cg_root is same as the entry containing their CG
2634 // root. When a thread encounters a teams construct, it will add a new
2635 // entry to the front of its list, because it now roots a new CG.
2636 typedef struct kmp_cg_root {
2637   kmp_info_p *cg_root; // "root" thread for a contention group
2638   // The CG root's limit comes from OMP_THREAD_LIMIT for root threads, or
2639   // thread_limit clause for teams primary threads
2640   kmp_int32 cg_thread_limit;
2641   kmp_int32 cg_nthreads; // Count of active threads in CG rooted at cg_root
2642   struct kmp_cg_root *up; // pointer to higher level CG root in list
2643 } kmp_cg_root_t;
2644 
2645 // OpenMP thread data structures
2646 
2647 typedef struct KMP_ALIGN_CACHE kmp_base_info {
2648   /* Start with the readonly data which is cache aligned and padded. This is
2649      written before the thread starts working by the primary thread. Uber
2650      masters may update themselves later. Usage does not consider serialized
2651      regions.  */
2652   kmp_desc_t th_info;
2653   kmp_team_p *th_team; /* team we belong to */
2654   kmp_root_p *th_root; /* pointer to root of task hierarchy */
2655   kmp_info_p *th_next_pool; /* next available thread in the pool */
2656   kmp_disp_t *th_dispatch; /* thread's dispatch data */
2657   int th_in_pool; /* in thread pool (32 bits for TCR/TCW) */
2658 
2659   /* The following are cached from the team info structure */
2660   /* TODO use these in more places as determined to be needed via profiling */
2661   int th_team_nproc; /* number of threads in a team */
2662   kmp_info_p *th_team_master; /* the team's primary thread */
2663   int th_team_serialized; /* team is serialized */
2664   microtask_t th_teams_microtask; /* save entry address for teams construct */
2665   int th_teams_level; /* save initial level of teams construct */
2666 /* it is 0 on device but may be any on host */
2667 
2668 /* The blocktime info is copied from the team struct to the thread struct */
2669 /* at the start of a barrier, and the values stored in the team are used  */
2670 /* at points in the code where the team struct is no longer guaranteed    */
2671 /* to exist (from the POV of worker threads).                             */
2672 #if KMP_USE_MONITOR
2673   int th_team_bt_intervals;
2674   int th_team_bt_set;
2675 #else
2676   kmp_uint64 th_team_bt_intervals;
2677 #endif
2678 
2679 #if KMP_AFFINITY_SUPPORTED
2680   kmp_affin_mask_t *th_affin_mask; /* thread's current affinity mask */
2681 #endif
2682   omp_allocator_handle_t th_def_allocator; /* default allocator */
2683   /* The data set by the primary thread at reinit, then R/W by the worker */
2684   KMP_ALIGN_CACHE int
2685       th_set_nproc; /* if > 0, then only use this request for the next fork */
2686 #if KMP_NESTED_HOT_TEAMS
2687   kmp_hot_team_ptr_t *th_hot_teams; /* array of hot teams */
2688 #endif
2689   kmp_proc_bind_t
2690       th_set_proc_bind; /* if != proc_bind_default, use request for next fork */
2691   kmp_teams_size_t
2692       th_teams_size; /* number of teams/threads in teams construct */
2693 #if KMP_AFFINITY_SUPPORTED
2694   int th_current_place; /* place currently bound to */
2695   int th_new_place; /* place to bind to in par reg */
2696   int th_first_place; /* first place in partition */
2697   int th_last_place; /* last place in partition */
2698 #endif
2699   int th_prev_level; /* previous level for affinity format */
2700   int th_prev_num_threads; /* previous num_threads for affinity format */
2701 #if USE_ITT_BUILD
2702   kmp_uint64 th_bar_arrive_time; /* arrival to barrier timestamp */
2703   kmp_uint64 th_bar_min_time; /* minimum arrival time at the barrier */
2704   kmp_uint64 th_frame_time; /* frame timestamp */
2705 #endif /* USE_ITT_BUILD */
2706   kmp_local_t th_local;
2707   struct private_common *th_pri_head;
2708 
2709   /* Now the data only used by the worker (after initial allocation) */
2710   /* TODO the first serial team should actually be stored in the info_t
2711      structure.  this will help reduce initial allocation overhead */
2712   KMP_ALIGN_CACHE kmp_team_p
2713       *th_serial_team; /*serialized team held in reserve*/
2714 
2715 #if OMPT_SUPPORT
2716   ompt_thread_info_t ompt_thread_info;
2717 #endif
2718 
2719   /* The following are also read by the primary thread during reinit */
2720   struct common_table *th_pri_common;
2721 
2722   volatile kmp_uint32 th_spin_here; /* thread-local location for spinning */
2723   /* while awaiting queuing lock acquire */
2724 
2725   volatile void *th_sleep_loc; // this points at a kmp_flag<T>
2726   flag_type th_sleep_loc_type; // enum type of flag stored in th_sleep_loc
2727 
2728   ident_t *th_ident;
2729   unsigned th_x; // Random number generator data
2730   unsigned th_a; // Random number generator data
2731 
2732   /* Tasking-related data for the thread */
2733   kmp_task_team_t *th_task_team; // Task team struct
2734   kmp_taskdata_t *th_current_task; // Innermost Task being executed
2735   kmp_uint8 th_task_state; // alternating 0/1 for task team identification
2736   kmp_uint8 *th_task_state_memo_stack; // Stack holding memos of th_task_state
2737   // at nested levels
2738   kmp_uint32 th_task_state_top; // Top element of th_task_state_memo_stack
2739   kmp_uint32 th_task_state_stack_sz; // Size of th_task_state_memo_stack
2740   kmp_uint32 th_reap_state; // Non-zero indicates thread is not
2741   // tasking, thus safe to reap
2742 
2743   /* More stuff for keeping track of active/sleeping threads (this part is
2744      written by the worker thread) */
2745   kmp_uint8 th_active_in_pool; // included in count of #active threads in pool
2746   int th_active; // ! sleeping; 32 bits for TCR/TCW
2747   std::atomic<kmp_uint32> th_used_in_team; // Flag indicating use in team
2748   // 0 = not used in team; 1 = used in team;
2749   // 2 = transitioning to not used in team; 3 = transitioning to used in team
2750   struct cons_header *th_cons; // used for consistency check
2751 #if KMP_USE_HIER_SCHED
2752   // used for hierarchical scheduling
2753   kmp_hier_private_bdata_t *th_hier_bar_data;
2754 #endif
2755 
2756   /* Add the syncronizing data which is cache aligned and padded. */
2757   KMP_ALIGN_CACHE kmp_balign_t th_bar[bs_last_barrier];
2758 
2759   KMP_ALIGN_CACHE volatile kmp_int32
2760       th_next_waiting; /* gtid+1 of next thread on lock wait queue, 0 if none */
2761 
2762 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2763 #define NUM_LISTS 4
2764   kmp_free_list_t th_free_lists[NUM_LISTS]; // Free lists for fast memory
2765 // allocation routines
2766 #endif
2767 
2768 #if KMP_OS_WINDOWS
2769   kmp_win32_cond_t th_suspend_cv;
2770   kmp_win32_mutex_t th_suspend_mx;
2771   std::atomic<int> th_suspend_init;
2772 #endif
2773 #if KMP_OS_UNIX
2774   kmp_cond_align_t th_suspend_cv;
2775   kmp_mutex_align_t th_suspend_mx;
2776   std::atomic<int> th_suspend_init_count;
2777 #endif
2778 
2779 #if USE_ITT_BUILD
2780   kmp_itt_mark_t th_itt_mark_single;
2781 // alignment ???
2782 #endif /* USE_ITT_BUILD */
2783 #if KMP_STATS_ENABLED
2784   kmp_stats_list *th_stats;
2785 #endif
2786 #if KMP_OS_UNIX
2787   std::atomic<bool> th_blocking;
2788 #endif
2789   kmp_cg_root_t *th_cg_roots; // list of cg_roots associated with this thread
2790 } kmp_base_info_t;
2791 
2792 typedef union KMP_ALIGN_CACHE kmp_info {
2793   double th_align; /* use worst case alignment */
2794   char th_pad[KMP_PAD(kmp_base_info_t, CACHE_LINE)];
2795   kmp_base_info_t th;
2796 } kmp_info_t;
2797 
2798 // OpenMP thread team data structures
2799 
2800 typedef struct kmp_base_data {
2801   volatile kmp_uint32 t_value;
2802 } kmp_base_data_t;
2803 
2804 typedef union KMP_ALIGN_CACHE kmp_sleep_team {
2805   double dt_align; /* use worst case alignment */
2806   char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2807   kmp_base_data_t dt;
2808 } kmp_sleep_team_t;
2809 
2810 typedef union KMP_ALIGN_CACHE kmp_ordered_team {
2811   double dt_align; /* use worst case alignment */
2812   char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2813   kmp_base_data_t dt;
2814 } kmp_ordered_team_t;
2815 
2816 typedef int (*launch_t)(int gtid);
2817 
2818 /* Minimum number of ARGV entries to malloc if necessary */
2819 #define KMP_MIN_MALLOC_ARGV_ENTRIES 100
2820 
2821 // Set up how many argv pointers will fit in cache lines containing
2822 // t_inline_argv. Historically, we have supported at least 96 bytes. Using a
2823 // larger value for more space between the primary write/worker read section and
2824 // read/write by all section seems to buy more performance on EPCC PARALLEL.
2825 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2826 #define KMP_INLINE_ARGV_BYTES                                                  \
2827   (4 * CACHE_LINE -                                                            \
2828    ((3 * KMP_PTR_SKIP + 2 * sizeof(int) + 2 * sizeof(kmp_int8) +               \
2829      sizeof(kmp_int16) + sizeof(kmp_uint32)) %                                 \
2830     CACHE_LINE))
2831 #else
2832 #define KMP_INLINE_ARGV_BYTES                                                  \
2833   (2 * CACHE_LINE - ((3 * KMP_PTR_SKIP + 2 * sizeof(int)) % CACHE_LINE))
2834 #endif
2835 #define KMP_INLINE_ARGV_ENTRIES (int)(KMP_INLINE_ARGV_BYTES / KMP_PTR_SKIP)
2836 
2837 typedef struct KMP_ALIGN_CACHE kmp_base_team {
2838   // Synchronization Data
2839   // ---------------------------------------------------------------------------
2840   KMP_ALIGN_CACHE kmp_ordered_team_t t_ordered;
2841   kmp_balign_team_t t_bar[bs_last_barrier];
2842   std::atomic<int> t_construct; // count of single directive encountered by team
2843   char pad[sizeof(kmp_lock_t)]; // padding to maintain performance on big iron
2844 
2845   // [0] - parallel / [1] - worksharing task reduction data shared by taskgroups
2846   std::atomic<void *> t_tg_reduce_data[2]; // to support task modifier
2847   std::atomic<int> t_tg_fini_counter[2]; // sync end of task reductions
2848 
2849   // Primary thread only
2850   // ---------------------------------------------------------------------------
2851   KMP_ALIGN_CACHE int t_master_tid; // tid of primary thread in parent team
2852   int t_master_this_cons; // "this_construct" single counter of primary thread
2853   // in parent team
2854   ident_t *t_ident; // if volatile, have to change too much other crud to
2855   // volatile too
2856   kmp_team_p *t_parent; // parent team
2857   kmp_team_p *t_next_pool; // next free team in the team pool
2858   kmp_disp_t *t_dispatch; // thread's dispatch data
2859   kmp_task_team_t *t_task_team[2]; // Task team struct; switch between 2
2860   kmp_proc_bind_t t_proc_bind; // bind type for par region
2861 #if USE_ITT_BUILD
2862   kmp_uint64 t_region_time; // region begin timestamp
2863 #endif /* USE_ITT_BUILD */
2864 
2865   // Primary thread write, workers read
2866   // --------------------------------------------------------------------------
2867   KMP_ALIGN_CACHE void **t_argv;
2868   int t_argc;
2869   int t_nproc; // number of threads in team
2870   microtask_t t_pkfn;
2871   launch_t t_invoke; // procedure to launch the microtask
2872 
2873 #if OMPT_SUPPORT
2874   ompt_team_info_t ompt_team_info;
2875   ompt_lw_taskteam_t *ompt_serialized_team_info;
2876 #endif
2877 
2878 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2879   kmp_int8 t_fp_control_saved;
2880   kmp_int8 t_pad2b;
2881   kmp_int16 t_x87_fpu_control_word; // FP control regs
2882   kmp_uint32 t_mxcsr;
2883 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
2884 
2885   void *t_inline_argv[KMP_INLINE_ARGV_ENTRIES];
2886 
2887   KMP_ALIGN_CACHE kmp_info_t **t_threads;
2888   kmp_taskdata_t
2889       *t_implicit_task_taskdata; // Taskdata for the thread's implicit task
2890   int t_level; // nested parallel level
2891 
2892   KMP_ALIGN_CACHE int t_max_argc;
2893   int t_max_nproc; // max threads this team can handle (dynamically expandable)
2894   int t_serialized; // levels deep of serialized teams
2895   dispatch_shared_info_t *t_disp_buffer; // buffers for dispatch system
2896   int t_id; // team's id, assigned by debugger.
2897   int t_active_level; // nested active parallel level
2898   kmp_r_sched_t t_sched; // run-time schedule for the team
2899 #if KMP_AFFINITY_SUPPORTED
2900   int t_first_place; // first & last place in parent thread's partition.
2901   int t_last_place; // Restore these values to primary thread after par region.
2902 #endif // KMP_AFFINITY_SUPPORTED
2903   int t_display_affinity;
2904   int t_size_changed; // team size was changed?: 0: no, 1: yes, -1: changed via
2905   // omp_set_num_threads() call
2906   omp_allocator_handle_t t_def_allocator; /* default allocator */
2907 
2908 // Read/write by workers as well
2909 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
2910   // Using CACHE_LINE=64 reduces memory footprint, but causes a big perf
2911   // regression of epcc 'parallel' and 'barrier' on fxe256lin01. This extra
2912   // padding serves to fix the performance of epcc 'parallel' and 'barrier' when
2913   // CACHE_LINE=64. TODO: investigate more and get rid if this padding.
2914   char dummy_padding[1024];
2915 #endif
2916   // Internal control stack for additional nested teams.
2917   KMP_ALIGN_CACHE kmp_internal_control_t *t_control_stack_top;
2918   // for SERIALIZED teams nested 2 or more levels deep
2919   // typed flag to store request state of cancellation
2920   std::atomic<kmp_int32> t_cancel_request;
2921   int t_master_active; // save on fork, restore on join
2922   void *t_copypriv_data; // team specific pointer to copyprivate data array
2923 #if KMP_OS_WINDOWS
2924   std::atomic<kmp_uint32> t_copyin_counter;
2925 #endif
2926 #if USE_ITT_BUILD
2927   void *t_stack_id; // team specific stack stitching id (for ittnotify)
2928 #endif /* USE_ITT_BUILD */
2929   distributedBarrier *b; // Distributed barrier data associated with team
2930 } kmp_base_team_t;
2931 
2932 union KMP_ALIGN_CACHE kmp_team {
2933   kmp_base_team_t t;
2934   double t_align; /* use worst case alignment */
2935   char t_pad[KMP_PAD(kmp_base_team_t, CACHE_LINE)];
2936 };
2937 
2938 typedef union KMP_ALIGN_CACHE kmp_time_global {
2939   double dt_align; /* use worst case alignment */
2940   char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2941   kmp_base_data_t dt;
2942 } kmp_time_global_t;
2943 
2944 typedef struct kmp_base_global {
2945   /* cache-aligned */
2946   kmp_time_global_t g_time;
2947 
2948   /* non cache-aligned */
2949   volatile int g_abort;
2950   volatile int g_done;
2951 
2952   int g_dynamic;
2953   enum dynamic_mode g_dynamic_mode;
2954 } kmp_base_global_t;
2955 
2956 typedef union KMP_ALIGN_CACHE kmp_global {
2957   kmp_base_global_t g;
2958   double g_align; /* use worst case alignment */
2959   char g_pad[KMP_PAD(kmp_base_global_t, CACHE_LINE)];
2960 } kmp_global_t;
2961 
2962 typedef struct kmp_base_root {
2963   // TODO: GEH - combine r_active with r_in_parallel then r_active ==
2964   // (r_in_parallel>= 0)
2965   // TODO: GEH - then replace r_active with t_active_levels if we can to reduce
2966   // the synch overhead or keeping r_active
2967   volatile int r_active; /* TRUE if some region in a nest has > 1 thread */
2968   // keeps a count of active parallel regions per root
2969   std::atomic<int> r_in_parallel;
2970   // GEH: This is misnamed, should be r_active_levels
2971   kmp_team_t *r_root_team;
2972   kmp_team_t *r_hot_team;
2973   kmp_info_t *r_uber_thread;
2974   kmp_lock_t r_begin_lock;
2975   volatile int r_begin;
2976   int r_blocktime; /* blocktime for this root and descendants */
2977 #if KMP_AFFINITY_SUPPORTED
2978   int r_affinity_assigned;
2979 #endif // KMP_AFFINITY_SUPPORTED
2980 } kmp_base_root_t;
2981 
2982 typedef union KMP_ALIGN_CACHE kmp_root {
2983   kmp_base_root_t r;
2984   double r_align; /* use worst case alignment */
2985   char r_pad[KMP_PAD(kmp_base_root_t, CACHE_LINE)];
2986 } kmp_root_t;
2987 
2988 struct fortran_inx_info {
2989   kmp_int32 data;
2990 };
2991 
2992 // This list type exists to hold old __kmp_threads arrays so that
2993 // old references to them may complete while reallocation takes place when
2994 // expanding the array. The items in this list are kept alive until library
2995 // shutdown.
2996 typedef struct kmp_old_threads_list_t {
2997   kmp_info_t **threads;
2998   struct kmp_old_threads_list_t *next;
2999 } kmp_old_threads_list_t;
3000 
3001 /* ------------------------------------------------------------------------ */
3002 
3003 extern int __kmp_settings;
3004 extern int __kmp_duplicate_library_ok;
3005 #if USE_ITT_BUILD
3006 extern int __kmp_forkjoin_frames;
3007 extern int __kmp_forkjoin_frames_mode;
3008 #endif
3009 extern PACKED_REDUCTION_METHOD_T __kmp_force_reduction_method;
3010 extern int __kmp_determ_red;
3011 
3012 #ifdef KMP_DEBUG
3013 extern int kmp_a_debug;
3014 extern int kmp_b_debug;
3015 extern int kmp_c_debug;
3016 extern int kmp_d_debug;
3017 extern int kmp_e_debug;
3018 extern int kmp_f_debug;
3019 #endif /* KMP_DEBUG */
3020 
3021 /* For debug information logging using rotating buffer */
3022 #define KMP_DEBUG_BUF_LINES_INIT 512
3023 #define KMP_DEBUG_BUF_LINES_MIN 1
3024 
3025 #define KMP_DEBUG_BUF_CHARS_INIT 128
3026 #define KMP_DEBUG_BUF_CHARS_MIN 2
3027 
3028 extern int
3029     __kmp_debug_buf; /* TRUE means use buffer, FALSE means print to stderr */
3030 extern int __kmp_debug_buf_lines; /* How many lines of debug stored in buffer */
3031 extern int
3032     __kmp_debug_buf_chars; /* How many characters allowed per line in buffer */
3033 extern int __kmp_debug_buf_atomic; /* TRUE means use atomic update of buffer
3034                                       entry pointer */
3035 
3036 extern char *__kmp_debug_buffer; /* Debug buffer itself */
3037 extern std::atomic<int> __kmp_debug_count; /* Counter for number of lines
3038                                               printed in buffer so far */
3039 extern int __kmp_debug_buf_warn_chars; /* Keep track of char increase
3040                                           recommended in warnings */
3041 /* end rotating debug buffer */
3042 
3043 #ifdef KMP_DEBUG
3044 extern int __kmp_par_range; /* +1 => only go par for constructs in range */
3045 
3046 #define KMP_PAR_RANGE_ROUTINE_LEN 1024
3047 extern char __kmp_par_range_routine[KMP_PAR_RANGE_ROUTINE_LEN];
3048 #define KMP_PAR_RANGE_FILENAME_LEN 1024
3049 extern char __kmp_par_range_filename[KMP_PAR_RANGE_FILENAME_LEN];
3050 extern int __kmp_par_range_lb;
3051 extern int __kmp_par_range_ub;
3052 #endif
3053 
3054 /* For printing out dynamic storage map for threads and teams */
3055 extern int
3056     __kmp_storage_map; /* True means print storage map for threads and teams */
3057 extern int __kmp_storage_map_verbose; /* True means storage map includes
3058                                          placement info */
3059 extern int __kmp_storage_map_verbose_specified;
3060 
3061 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3062 extern kmp_cpuinfo_t __kmp_cpuinfo;
3063 static inline bool __kmp_is_hybrid_cpu() { return __kmp_cpuinfo.flags.hybrid; }
3064 #elif KMP_OS_DARWIN && KMP_ARCH_AARCH64
3065 static inline bool __kmp_is_hybrid_cpu() { return true; }
3066 #else
3067 static inline bool __kmp_is_hybrid_cpu() { return false; }
3068 #endif
3069 
3070 extern volatile int __kmp_init_serial;
3071 extern volatile int __kmp_init_gtid;
3072 extern volatile int __kmp_init_common;
3073 extern volatile int __kmp_init_middle;
3074 extern volatile int __kmp_init_parallel;
3075 #if KMP_USE_MONITOR
3076 extern volatile int __kmp_init_monitor;
3077 #endif
3078 extern volatile int __kmp_init_user_locks;
3079 extern volatile int __kmp_init_hidden_helper_threads;
3080 extern int __kmp_init_counter;
3081 extern int __kmp_root_counter;
3082 extern int __kmp_version;
3083 
3084 /* list of address of allocated caches for commons */
3085 extern kmp_cached_addr_t *__kmp_threadpriv_cache_list;
3086 
3087 /* Barrier algorithm types and options */
3088 extern kmp_uint32 __kmp_barrier_gather_bb_dflt;
3089 extern kmp_uint32 __kmp_barrier_release_bb_dflt;
3090 extern kmp_bar_pat_e __kmp_barrier_gather_pat_dflt;
3091 extern kmp_bar_pat_e __kmp_barrier_release_pat_dflt;
3092 extern kmp_uint32 __kmp_barrier_gather_branch_bits[bs_last_barrier];
3093 extern kmp_uint32 __kmp_barrier_release_branch_bits[bs_last_barrier];
3094 extern kmp_bar_pat_e __kmp_barrier_gather_pattern[bs_last_barrier];
3095 extern kmp_bar_pat_e __kmp_barrier_release_pattern[bs_last_barrier];
3096 extern char const *__kmp_barrier_branch_bit_env_name[bs_last_barrier];
3097 extern char const *__kmp_barrier_pattern_env_name[bs_last_barrier];
3098 extern char const *__kmp_barrier_type_name[bs_last_barrier];
3099 extern char const *__kmp_barrier_pattern_name[bp_last_bar];
3100 
3101 /* Global Locks */
3102 extern kmp_bootstrap_lock_t __kmp_initz_lock; /* control initialization */
3103 extern kmp_bootstrap_lock_t __kmp_forkjoin_lock; /* control fork/join access */
3104 extern kmp_bootstrap_lock_t __kmp_task_team_lock;
3105 extern kmp_bootstrap_lock_t
3106     __kmp_exit_lock; /* exit() is not always thread-safe */
3107 #if KMP_USE_MONITOR
3108 extern kmp_bootstrap_lock_t
3109     __kmp_monitor_lock; /* control monitor thread creation */
3110 #endif
3111 extern kmp_bootstrap_lock_t
3112     __kmp_tp_cached_lock; /* used for the hack to allow threadprivate cache and
3113                              __kmp_threads expansion to co-exist */
3114 
3115 extern kmp_lock_t __kmp_global_lock; /* control OS/global access  */
3116 extern kmp_queuing_lock_t __kmp_dispatch_lock; /* control dispatch access  */
3117 extern kmp_lock_t __kmp_debug_lock; /* control I/O access for KMP_DEBUG */
3118 
3119 extern enum library_type __kmp_library;
3120 
3121 extern enum sched_type __kmp_sched; /* default runtime scheduling */
3122 extern enum sched_type __kmp_static; /* default static scheduling method */
3123 extern enum sched_type __kmp_guided; /* default guided scheduling method */
3124 extern enum sched_type __kmp_auto; /* default auto scheduling method */
3125 extern int __kmp_chunk; /* default runtime chunk size */
3126 extern int __kmp_force_monotonic; /* whether monotonic scheduling forced */
3127 
3128 extern size_t __kmp_stksize; /* stack size per thread         */
3129 #if KMP_USE_MONITOR
3130 extern size_t __kmp_monitor_stksize; /* stack size for monitor thread */
3131 #endif
3132 extern size_t __kmp_stkoffset; /* stack offset per thread       */
3133 extern int __kmp_stkpadding; /* Should we pad root thread(s) stack */
3134 
3135 extern size_t
3136     __kmp_malloc_pool_incr; /* incremental size of pool for kmp_malloc() */
3137 extern int __kmp_env_stksize; /* was KMP_STACKSIZE specified? */
3138 extern int __kmp_env_blocktime; /* was KMP_BLOCKTIME specified? */
3139 extern int __kmp_env_checks; /* was KMP_CHECKS specified?    */
3140 extern int __kmp_env_consistency_check; // was KMP_CONSISTENCY_CHECK specified?
3141 extern int __kmp_generate_warnings; /* should we issue warnings? */
3142 extern int __kmp_reserve_warn; /* have we issued reserve_threads warning? */
3143 
3144 #ifdef DEBUG_SUSPEND
3145 extern int __kmp_suspend_count; /* count inside __kmp_suspend_template() */
3146 #endif
3147 
3148 extern kmp_int32 __kmp_use_yield;
3149 extern kmp_int32 __kmp_use_yield_exp_set;
3150 extern kmp_uint32 __kmp_yield_init;
3151 extern kmp_uint32 __kmp_yield_next;
3152 extern kmp_uint64 __kmp_pause_init;
3153 
3154 /* ------------------------------------------------------------------------- */
3155 extern int __kmp_allThreadsSpecified;
3156 
3157 extern size_t __kmp_align_alloc;
3158 /* following data protected by initialization routines */
3159 extern int __kmp_xproc; /* number of processors in the system */
3160 extern int __kmp_avail_proc; /* number of processors available to the process */
3161 extern size_t __kmp_sys_min_stksize; /* system-defined minimum stack size */
3162 extern int __kmp_sys_max_nth; /* system-imposed maximum number of threads */
3163 // maximum total number of concurrently-existing threads on device
3164 extern int __kmp_max_nth;
3165 // maximum total number of concurrently-existing threads in a contention group
3166 extern int __kmp_cg_max_nth;
3167 extern int __kmp_teams_max_nth; // max threads used in a teams construct
3168 extern int __kmp_threads_capacity; /* capacity of the arrays __kmp_threads and
3169                                       __kmp_root */
3170 extern int __kmp_dflt_team_nth; /* default number of threads in a parallel
3171                                    region a la OMP_NUM_THREADS */
3172 extern int __kmp_dflt_team_nth_ub; /* upper bound on "" determined at serial
3173                                       initialization */
3174 extern int __kmp_tp_capacity; /* capacity of __kmp_threads if threadprivate is
3175                                  used (fixed) */
3176 extern int __kmp_tp_cached; /* whether threadprivate cache has been created
3177                                (__kmpc_threadprivate_cached()) */
3178 extern int __kmp_dflt_blocktime; /* number of milliseconds to wait before
3179                                     blocking (env setting) */
3180 extern bool __kmp_wpolicy_passive; /* explicitly set passive wait policy */
3181 #if KMP_USE_MONITOR
3182 extern int
3183     __kmp_monitor_wakeups; /* number of times monitor wakes up per second */
3184 extern int __kmp_bt_intervals; /* number of monitor timestamp intervals before
3185                                   blocking */
3186 #endif
3187 #ifdef KMP_ADJUST_BLOCKTIME
3188 extern int __kmp_zero_bt; /* whether blocktime has been forced to zero */
3189 #endif /* KMP_ADJUST_BLOCKTIME */
3190 #ifdef KMP_DFLT_NTH_CORES
3191 extern int __kmp_ncores; /* Total number of cores for threads placement */
3192 #endif
3193 /* Number of millisecs to delay on abort for Intel(R) VTune(TM) tools */
3194 extern int __kmp_abort_delay;
3195 
3196 extern int __kmp_need_register_atfork_specified;
3197 extern int __kmp_need_register_atfork; /* At initialization, call pthread_atfork
3198                                           to install fork handler */
3199 extern int __kmp_gtid_mode; /* Method of getting gtid, values:
3200                                0 - not set, will be set at runtime
3201                                1 - using stack search
3202                                2 - dynamic TLS (pthread_getspecific(Linux* OS/OS
3203                                    X*) or TlsGetValue(Windows* OS))
3204                                3 - static TLS (__declspec(thread) __kmp_gtid),
3205                                    Linux* OS .so only.  */
3206 extern int
3207     __kmp_adjust_gtid_mode; /* If true, adjust method based on #threads */
3208 #ifdef KMP_TDATA_GTID
3209 extern KMP_THREAD_LOCAL int __kmp_gtid;
3210 #endif
3211 extern int __kmp_tls_gtid_min; /* #threads below which use sp search for gtid */
3212 extern int __kmp_foreign_tp; // If true, separate TP var for each foreign thread
3213 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3214 extern int __kmp_inherit_fp_control; // copy fp creg(s) parent->workers at fork
3215 extern kmp_int16 __kmp_init_x87_fpu_control_word; // init thread's FP ctrl reg
3216 extern kmp_uint32 __kmp_init_mxcsr; /* init thread's mxscr */
3217 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3218 
3219 // max_active_levels for nested parallelism enabled by default via
3220 // OMP_MAX_ACTIVE_LEVELS, OMP_NESTED, OMP_NUM_THREADS, and OMP_PROC_BIND
3221 extern int __kmp_dflt_max_active_levels;
3222 // Indicates whether value of __kmp_dflt_max_active_levels was already
3223 // explicitly set by OMP_MAX_ACTIVE_LEVELS or OMP_NESTED=false
3224 extern bool __kmp_dflt_max_active_levels_set;
3225 extern int __kmp_dispatch_num_buffers; /* max possible dynamic loops in
3226                                           concurrent execution per team */
3227 #if KMP_NESTED_HOT_TEAMS
3228 extern int __kmp_hot_teams_mode;
3229 extern int __kmp_hot_teams_max_level;
3230 #endif
3231 
3232 #if KMP_OS_LINUX
3233 extern enum clock_function_type __kmp_clock_function;
3234 extern int __kmp_clock_function_param;
3235 #endif /* KMP_OS_LINUX */
3236 
3237 #if KMP_MIC_SUPPORTED
3238 extern enum mic_type __kmp_mic_type;
3239 #endif
3240 
3241 #ifdef USE_LOAD_BALANCE
3242 extern double __kmp_load_balance_interval; // load balance algorithm interval
3243 #endif /* USE_LOAD_BALANCE */
3244 
3245 // OpenMP 3.1 - Nested num threads array
3246 typedef struct kmp_nested_nthreads_t {
3247   int *nth;
3248   int size;
3249   int used;
3250 } kmp_nested_nthreads_t;
3251 
3252 extern kmp_nested_nthreads_t __kmp_nested_nth;
3253 
3254 #if KMP_USE_ADAPTIVE_LOCKS
3255 
3256 // Parameters for the speculative lock backoff system.
3257 struct kmp_adaptive_backoff_params_t {
3258   // Number of soft retries before it counts as a hard retry.
3259   kmp_uint32 max_soft_retries;
3260   // Badness is a bit mask : 0,1,3,7,15,... on each hard failure we move one to
3261   // the right
3262   kmp_uint32 max_badness;
3263 };
3264 
3265 extern kmp_adaptive_backoff_params_t __kmp_adaptive_backoff_params;
3266 
3267 #if KMP_DEBUG_ADAPTIVE_LOCKS
3268 extern const char *__kmp_speculative_statsfile;
3269 #endif
3270 
3271 #endif // KMP_USE_ADAPTIVE_LOCKS
3272 
3273 extern int __kmp_display_env; /* TRUE or FALSE */
3274 extern int __kmp_display_env_verbose; /* TRUE if OMP_DISPLAY_ENV=VERBOSE */
3275 extern int __kmp_omp_cancellation; /* TRUE or FALSE */
3276 extern int __kmp_nteams;
3277 extern int __kmp_teams_thread_limit;
3278 
3279 /* ------------------------------------------------------------------------- */
3280 
3281 /* the following are protected by the fork/join lock */
3282 /* write: lock  read: anytime */
3283 extern kmp_info_t **__kmp_threads; /* Descriptors for the threads */
3284 /* Holds old arrays of __kmp_threads until library shutdown */
3285 extern kmp_old_threads_list_t *__kmp_old_threads_list;
3286 /* read/write: lock */
3287 extern volatile kmp_team_t *__kmp_team_pool;
3288 extern volatile kmp_info_t *__kmp_thread_pool;
3289 extern kmp_info_t *__kmp_thread_pool_insert_pt;
3290 
3291 // total num threads reachable from some root thread including all root threads
3292 extern volatile int __kmp_nth;
3293 /* total number of threads reachable from some root thread including all root
3294    threads, and those in the thread pool */
3295 extern volatile int __kmp_all_nth;
3296 extern std::atomic<int> __kmp_thread_pool_active_nth;
3297 
3298 extern kmp_root_t **__kmp_root; /* root of thread hierarchy */
3299 /* end data protected by fork/join lock */
3300 /* ------------------------------------------------------------------------- */
3301 
3302 #define __kmp_get_gtid() __kmp_get_global_thread_id()
3303 #define __kmp_entry_gtid() __kmp_get_global_thread_id_reg()
3304 #define __kmp_get_tid() (__kmp_tid_from_gtid(__kmp_get_gtid()))
3305 #define __kmp_get_team() (__kmp_threads[(__kmp_get_gtid())]->th.th_team)
3306 #define __kmp_get_thread() (__kmp_thread_from_gtid(__kmp_get_gtid()))
3307 
3308 // AT: Which way is correct?
3309 // AT: 1. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc;
3310 // AT: 2. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team_nproc;
3311 #define __kmp_get_team_num_threads(gtid)                                       \
3312   (__kmp_threads[(gtid)]->th.th_team->t.t_nproc)
3313 
3314 static inline bool KMP_UBER_GTID(int gtid) {
3315   KMP_DEBUG_ASSERT(gtid >= KMP_GTID_MIN);
3316   KMP_DEBUG_ASSERT(gtid < __kmp_threads_capacity);
3317   return (gtid >= 0 && __kmp_root[gtid] && __kmp_threads[gtid] &&
3318           __kmp_threads[gtid] == __kmp_root[gtid]->r.r_uber_thread);
3319 }
3320 
3321 static inline int __kmp_tid_from_gtid(int gtid) {
3322   KMP_DEBUG_ASSERT(gtid >= 0);
3323   return __kmp_threads[gtid]->th.th_info.ds.ds_tid;
3324 }
3325 
3326 static inline int __kmp_gtid_from_tid(int tid, const kmp_team_t *team) {
3327   KMP_DEBUG_ASSERT(tid >= 0 && team);
3328   return team->t.t_threads[tid]->th.th_info.ds.ds_gtid;
3329 }
3330 
3331 static inline int __kmp_gtid_from_thread(const kmp_info_t *thr) {
3332   KMP_DEBUG_ASSERT(thr);
3333   return thr->th.th_info.ds.ds_gtid;
3334 }
3335 
3336 static inline kmp_info_t *__kmp_thread_from_gtid(int gtid) {
3337   KMP_DEBUG_ASSERT(gtid >= 0);
3338   return __kmp_threads[gtid];
3339 }
3340 
3341 static inline kmp_team_t *__kmp_team_from_gtid(int gtid) {
3342   KMP_DEBUG_ASSERT(gtid >= 0);
3343   return __kmp_threads[gtid]->th.th_team;
3344 }
3345 
3346 static inline void __kmp_assert_valid_gtid(kmp_int32 gtid) {
3347   if (UNLIKELY(gtid < 0 || gtid >= __kmp_threads_capacity))
3348     KMP_FATAL(ThreadIdentInvalid);
3349 }
3350 
3351 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
3352 extern int __kmp_user_level_mwait; // TRUE or FALSE; from KMP_USER_LEVEL_MWAIT
3353 extern int __kmp_umwait_enabled; // Runtime check if user-level mwait enabled
3354 extern int __kmp_mwait_enabled; // Runtime check if ring3 mwait is enabled
3355 extern int __kmp_mwait_hints; // Hints to pass in to mwait
3356 #endif
3357 
3358 #if KMP_HAVE_UMWAIT
3359 extern int __kmp_waitpkg_enabled; // Runtime check if waitpkg exists
3360 extern int __kmp_tpause_state; // 0 (default), 1=C0.1, 2=C0.2; from KMP_TPAUSE
3361 extern int __kmp_tpause_hint; // 1=C0.1 (default), 0=C0.2; from KMP_TPAUSE
3362 extern int __kmp_tpause_enabled; // 0 (default), 1 (KMP_TPAUSE is non-zero)
3363 #endif
3364 
3365 /* ------------------------------------------------------------------------- */
3366 
3367 extern kmp_global_t __kmp_global; /* global status */
3368 
3369 extern kmp_info_t __kmp_monitor;
3370 // For Debugging Support Library
3371 extern std::atomic<kmp_int32> __kmp_team_counter;
3372 // For Debugging Support Library
3373 extern std::atomic<kmp_int32> __kmp_task_counter;
3374 
3375 #if USE_DEBUGGER
3376 #define _KMP_GEN_ID(counter)                                                   \
3377   (__kmp_debugging ? KMP_ATOMIC_INC(&counter) + 1 : ~0)
3378 #else
3379 #define _KMP_GEN_ID(counter) (~0)
3380 #endif /* USE_DEBUGGER */
3381 
3382 #define KMP_GEN_TASK_ID() _KMP_GEN_ID(__kmp_task_counter)
3383 #define KMP_GEN_TEAM_ID() _KMP_GEN_ID(__kmp_team_counter)
3384 
3385 /* ------------------------------------------------------------------------ */
3386 
3387 extern void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2,
3388                                          size_t size, char const *format, ...);
3389 
3390 extern void __kmp_serial_initialize(void);
3391 extern void __kmp_middle_initialize(void);
3392 extern void __kmp_parallel_initialize(void);
3393 
3394 extern void __kmp_internal_begin(void);
3395 extern void __kmp_internal_end_library(int gtid);
3396 extern void __kmp_internal_end_thread(int gtid);
3397 extern void __kmp_internal_end_atexit(void);
3398 extern void __kmp_internal_end_dtor(void);
3399 extern void __kmp_internal_end_dest(void *);
3400 
3401 extern int __kmp_register_root(int initial_thread);
3402 extern void __kmp_unregister_root(int gtid);
3403 extern void __kmp_unregister_library(void); // called by __kmp_internal_end()
3404 
3405 extern int __kmp_ignore_mppbeg(void);
3406 extern int __kmp_ignore_mppend(void);
3407 
3408 extern int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws);
3409 extern void __kmp_exit_single(int gtid);
3410 
3411 extern void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3412 extern void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3413 
3414 #ifdef USE_LOAD_BALANCE
3415 extern int __kmp_get_load_balance(int);
3416 #endif
3417 
3418 extern int __kmp_get_global_thread_id(void);
3419 extern int __kmp_get_global_thread_id_reg(void);
3420 extern void __kmp_exit_thread(int exit_status);
3421 extern void __kmp_abort(char const *format, ...);
3422 extern void __kmp_abort_thread(void);
3423 KMP_NORETURN extern void __kmp_abort_process(void);
3424 extern void __kmp_warn(char const *format, ...);
3425 
3426 extern void __kmp_set_num_threads(int new_nth, int gtid);
3427 
3428 // Returns current thread (pointer to kmp_info_t). Current thread *must* be
3429 // registered.
3430 static inline kmp_info_t *__kmp_entry_thread() {
3431   int gtid = __kmp_entry_gtid();
3432 
3433   return __kmp_threads[gtid];
3434 }
3435 
3436 extern void __kmp_set_max_active_levels(int gtid, int new_max_active_levels);
3437 extern int __kmp_get_max_active_levels(int gtid);
3438 extern int __kmp_get_ancestor_thread_num(int gtid, int level);
3439 extern int __kmp_get_team_size(int gtid, int level);
3440 extern void __kmp_set_schedule(int gtid, kmp_sched_t new_sched, int chunk);
3441 extern void __kmp_get_schedule(int gtid, kmp_sched_t *sched, int *chunk);
3442 
3443 extern unsigned short __kmp_get_random(kmp_info_t *thread);
3444 extern void __kmp_init_random(kmp_info_t *thread);
3445 
3446 extern kmp_r_sched_t __kmp_get_schedule_global(void);
3447 extern void __kmp_adjust_num_threads(int new_nproc);
3448 extern void __kmp_check_stksize(size_t *val);
3449 
3450 extern void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL);
3451 extern void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL);
3452 extern void ___kmp_free(void *ptr KMP_SRC_LOC_DECL);
3453 #define __kmp_allocate(size) ___kmp_allocate((size)KMP_SRC_LOC_CURR)
3454 #define __kmp_page_allocate(size) ___kmp_page_allocate((size)KMP_SRC_LOC_CURR)
3455 #define __kmp_free(ptr) ___kmp_free((ptr)KMP_SRC_LOC_CURR)
3456 
3457 #if USE_FAST_MEMORY
3458 extern void *___kmp_fast_allocate(kmp_info_t *this_thr,
3459                                   size_t size KMP_SRC_LOC_DECL);
3460 extern void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL);
3461 extern void __kmp_free_fast_memory(kmp_info_t *this_thr);
3462 extern void __kmp_initialize_fast_memory(kmp_info_t *this_thr);
3463 #define __kmp_fast_allocate(this_thr, size)                                    \
3464   ___kmp_fast_allocate((this_thr), (size)KMP_SRC_LOC_CURR)
3465 #define __kmp_fast_free(this_thr, ptr)                                         \
3466   ___kmp_fast_free((this_thr), (ptr)KMP_SRC_LOC_CURR)
3467 #endif
3468 
3469 extern void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL);
3470 extern void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem,
3471                                   size_t elsize KMP_SRC_LOC_DECL);
3472 extern void *___kmp_thread_realloc(kmp_info_t *th, void *ptr,
3473                                    size_t size KMP_SRC_LOC_DECL);
3474 extern void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL);
3475 #define __kmp_thread_malloc(th, size)                                          \
3476   ___kmp_thread_malloc((th), (size)KMP_SRC_LOC_CURR)
3477 #define __kmp_thread_calloc(th, nelem, elsize)                                 \
3478   ___kmp_thread_calloc((th), (nelem), (elsize)KMP_SRC_LOC_CURR)
3479 #define __kmp_thread_realloc(th, ptr, size)                                    \
3480   ___kmp_thread_realloc((th), (ptr), (size)KMP_SRC_LOC_CURR)
3481 #define __kmp_thread_free(th, ptr)                                             \
3482   ___kmp_thread_free((th), (ptr)KMP_SRC_LOC_CURR)
3483 
3484 extern void __kmp_push_num_threads(ident_t *loc, int gtid, int num_threads);
3485 
3486 extern void __kmp_push_proc_bind(ident_t *loc, int gtid,
3487                                  kmp_proc_bind_t proc_bind);
3488 extern void __kmp_push_num_teams(ident_t *loc, int gtid, int num_teams,
3489                                  int num_threads);
3490 extern void __kmp_push_num_teams_51(ident_t *loc, int gtid, int num_teams_lb,
3491                                     int num_teams_ub, int num_threads);
3492 
3493 extern void __kmp_yield();
3494 
3495 extern void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3496                                    enum sched_type schedule, kmp_int32 lb,
3497                                    kmp_int32 ub, kmp_int32 st, kmp_int32 chunk);
3498 extern void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3499                                     enum sched_type schedule, kmp_uint32 lb,
3500                                     kmp_uint32 ub, kmp_int32 st,
3501                                     kmp_int32 chunk);
3502 extern void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3503                                    enum sched_type schedule, kmp_int64 lb,
3504                                    kmp_int64 ub, kmp_int64 st, kmp_int64 chunk);
3505 extern void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3506                                     enum sched_type schedule, kmp_uint64 lb,
3507                                     kmp_uint64 ub, kmp_int64 st,
3508                                     kmp_int64 chunk);
3509 
3510 extern int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid,
3511                                   kmp_int32 *p_last, kmp_int32 *p_lb,
3512                                   kmp_int32 *p_ub, kmp_int32 *p_st);
3513 extern int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid,
3514                                    kmp_int32 *p_last, kmp_uint32 *p_lb,
3515                                    kmp_uint32 *p_ub, kmp_int32 *p_st);
3516 extern int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid,
3517                                   kmp_int32 *p_last, kmp_int64 *p_lb,
3518                                   kmp_int64 *p_ub, kmp_int64 *p_st);
3519 extern int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid,
3520                                    kmp_int32 *p_last, kmp_uint64 *p_lb,
3521                                    kmp_uint64 *p_ub, kmp_int64 *p_st);
3522 
3523 extern void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid);
3524 extern void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid);
3525 extern void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid);
3526 extern void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid);
3527 
3528 #ifdef KMP_GOMP_COMPAT
3529 
3530 extern void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3531                                       enum sched_type schedule, kmp_int32 lb,
3532                                       kmp_int32 ub, kmp_int32 st,
3533                                       kmp_int32 chunk, int push_ws);
3534 extern void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3535                                        enum sched_type schedule, kmp_uint32 lb,
3536                                        kmp_uint32 ub, kmp_int32 st,
3537                                        kmp_int32 chunk, int push_ws);
3538 extern void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3539                                       enum sched_type schedule, kmp_int64 lb,
3540                                       kmp_int64 ub, kmp_int64 st,
3541                                       kmp_int64 chunk, int push_ws);
3542 extern void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3543                                        enum sched_type schedule, kmp_uint64 lb,
3544                                        kmp_uint64 ub, kmp_int64 st,
3545                                        kmp_int64 chunk, int push_ws);
3546 extern void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid);
3547 extern void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid);
3548 extern void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid);
3549 extern void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid);
3550 
3551 #endif /* KMP_GOMP_COMPAT */
3552 
3553 extern kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker);
3554 extern kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker);
3555 extern kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker);
3556 extern kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker);
3557 extern kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker);
3558 extern kmp_uint32 __kmp_wait_4(kmp_uint32 volatile *spinner, kmp_uint32 checker,
3559                                kmp_uint32 (*pred)(kmp_uint32, kmp_uint32),
3560                                void *obj);
3561 extern void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker,
3562                              kmp_uint32 (*pred)(void *, kmp_uint32), void *obj);
3563 
3564 extern void __kmp_wait_64(kmp_info_t *this_thr, kmp_flag_64<> *flag,
3565                           int final_spin
3566 #if USE_ITT_BUILD
3567                           ,
3568                           void *itt_sync_obj
3569 #endif
3570 );
3571 extern void __kmp_release_64(kmp_flag_64<> *flag);
3572 
3573 extern void __kmp_infinite_loop(void);
3574 
3575 extern void __kmp_cleanup(void);
3576 
3577 #if KMP_HANDLE_SIGNALS
3578 extern int __kmp_handle_signals;
3579 extern void __kmp_install_signals(int parallel_init);
3580 extern void __kmp_remove_signals(void);
3581 #endif
3582 
3583 extern void __kmp_clear_system_time(void);
3584 extern void __kmp_read_system_time(double *delta);
3585 
3586 extern void __kmp_check_stack_overlap(kmp_info_t *thr);
3587 
3588 extern void __kmp_expand_host_name(char *buffer, size_t size);
3589 extern void __kmp_expand_file_name(char *result, size_t rlen, char *pattern);
3590 
3591 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 || (KMP_OS_WINDOWS && KMP_ARCH_AARCH64)
3592 extern void
3593 __kmp_initialize_system_tick(void); /* Initialize timer tick value */
3594 #endif
3595 
3596 extern void
3597 __kmp_runtime_initialize(void); /* machine specific initialization */
3598 extern void __kmp_runtime_destroy(void);
3599 
3600 #if KMP_AFFINITY_SUPPORTED
3601 extern char *__kmp_affinity_print_mask(char *buf, int buf_len,
3602                                        kmp_affin_mask_t *mask);
3603 extern kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
3604                                                   kmp_affin_mask_t *mask);
3605 extern void __kmp_affinity_initialize(void);
3606 extern void __kmp_affinity_uninitialize(void);
3607 extern void __kmp_affinity_set_init_mask(
3608     int gtid, int isa_root); /* set affinity according to KMP_AFFINITY */
3609 extern void __kmp_affinity_set_place(int gtid);
3610 extern void __kmp_affinity_determine_capable(const char *env_var);
3611 extern int __kmp_aux_set_affinity(void **mask);
3612 extern int __kmp_aux_get_affinity(void **mask);
3613 extern int __kmp_aux_get_affinity_max_proc();
3614 extern int __kmp_aux_set_affinity_mask_proc(int proc, void **mask);
3615 extern int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask);
3616 extern int __kmp_aux_get_affinity_mask_proc(int proc, void **mask);
3617 extern void __kmp_balanced_affinity(kmp_info_t *th, int team_size);
3618 #if KMP_OS_LINUX || KMP_OS_FREEBSD
3619 extern int kmp_set_thread_affinity_mask_initial(void);
3620 #endif
3621 static inline void __kmp_assign_root_init_mask() {
3622   int gtid = __kmp_entry_gtid();
3623   kmp_root_t *r = __kmp_threads[gtid]->th.th_root;
3624   if (r->r.r_uber_thread == __kmp_threads[gtid] && !r->r.r_affinity_assigned) {
3625     __kmp_affinity_set_init_mask(gtid, TRUE);
3626     r->r.r_affinity_assigned = TRUE;
3627   }
3628 }
3629 #else /* KMP_AFFINITY_SUPPORTED */
3630 #define __kmp_assign_root_init_mask() /* Nothing */
3631 #endif /* KMP_AFFINITY_SUPPORTED */
3632 // No need for KMP_AFFINITY_SUPPORTED guard as only one field in the
3633 // format string is for affinity, so platforms that do not support
3634 // affinity can still use the other fields, e.g., %n for num_threads
3635 extern size_t __kmp_aux_capture_affinity(int gtid, const char *format,
3636                                          kmp_str_buf_t *buffer);
3637 extern void __kmp_aux_display_affinity(int gtid, const char *format);
3638 
3639 extern void __kmp_cleanup_hierarchy();
3640 extern void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar);
3641 
3642 #if KMP_USE_FUTEX
3643 
3644 extern int __kmp_futex_determine_capable(void);
3645 
3646 #endif // KMP_USE_FUTEX
3647 
3648 extern void __kmp_gtid_set_specific(int gtid);
3649 extern int __kmp_gtid_get_specific(void);
3650 
3651 extern double __kmp_read_cpu_time(void);
3652 
3653 extern int __kmp_read_system_info(struct kmp_sys_info *info);
3654 
3655 #if KMP_USE_MONITOR
3656 extern void __kmp_create_monitor(kmp_info_t *th);
3657 #endif
3658 
3659 extern void *__kmp_launch_thread(kmp_info_t *thr);
3660 
3661 extern void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size);
3662 
3663 #if KMP_OS_WINDOWS
3664 extern int __kmp_still_running(kmp_info_t *th);
3665 extern int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val);
3666 extern void __kmp_free_handle(kmp_thread_t tHandle);
3667 #endif
3668 
3669 #if KMP_USE_MONITOR
3670 extern void __kmp_reap_monitor(kmp_info_t *th);
3671 #endif
3672 extern void __kmp_reap_worker(kmp_info_t *th);
3673 extern void __kmp_terminate_thread(int gtid);
3674 
3675 extern int __kmp_try_suspend_mx(kmp_info_t *th);
3676 extern void __kmp_lock_suspend_mx(kmp_info_t *th);
3677 extern void __kmp_unlock_suspend_mx(kmp_info_t *th);
3678 
3679 extern void __kmp_elapsed(double *);
3680 extern void __kmp_elapsed_tick(double *);
3681 
3682 extern void __kmp_enable(int old_state);
3683 extern void __kmp_disable(int *old_state);
3684 
3685 extern void __kmp_thread_sleep(int millis);
3686 
3687 extern void __kmp_common_initialize(void);
3688 extern void __kmp_common_destroy(void);
3689 extern void __kmp_common_destroy_gtid(int gtid);
3690 
3691 #if KMP_OS_UNIX
3692 extern void __kmp_register_atfork(void);
3693 #endif
3694 extern void __kmp_suspend_initialize(void);
3695 extern void __kmp_suspend_initialize_thread(kmp_info_t *th);
3696 extern void __kmp_suspend_uninitialize_thread(kmp_info_t *th);
3697 
3698 extern kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team,
3699                                          int tid);
3700 extern kmp_team_t *
3701 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc,
3702 #if OMPT_SUPPORT
3703                     ompt_data_t ompt_parallel_data,
3704 #endif
3705                     kmp_proc_bind_t proc_bind, kmp_internal_control_t *new_icvs,
3706                     int argc USE_NESTED_HOT_ARG(kmp_info_t *thr));
3707 extern void __kmp_free_thread(kmp_info_t *);
3708 extern void __kmp_free_team(kmp_root_t *,
3709                             kmp_team_t *USE_NESTED_HOT_ARG(kmp_info_t *));
3710 extern kmp_team_t *__kmp_reap_team(kmp_team_t *);
3711 
3712 /* ------------------------------------------------------------------------ */
3713 
3714 extern void __kmp_initialize_bget(kmp_info_t *th);
3715 extern void __kmp_finalize_bget(kmp_info_t *th);
3716 
3717 KMP_EXPORT void *kmpc_malloc(size_t size);
3718 KMP_EXPORT void *kmpc_aligned_malloc(size_t size, size_t alignment);
3719 KMP_EXPORT void *kmpc_calloc(size_t nelem, size_t elsize);
3720 KMP_EXPORT void *kmpc_realloc(void *ptr, size_t size);
3721 KMP_EXPORT void kmpc_free(void *ptr);
3722 
3723 /* declarations for internal use */
3724 
3725 extern int __kmp_barrier(enum barrier_type bt, int gtid, int is_split,
3726                          size_t reduce_size, void *reduce_data,
3727                          void (*reduce)(void *, void *));
3728 extern void __kmp_end_split_barrier(enum barrier_type bt, int gtid);
3729 extern int __kmp_barrier_gomp_cancel(int gtid);
3730 
3731 /*!
3732  * Tell the fork call which compiler generated the fork call, and therefore how
3733  * to deal with the call.
3734  */
3735 enum fork_context_e {
3736   fork_context_gnu, /**< Called from GNU generated code, so must not invoke the
3737                        microtask internally. */
3738   fork_context_intel, /**< Called from Intel generated code.  */
3739   fork_context_last
3740 };
3741 extern int __kmp_fork_call(ident_t *loc, int gtid,
3742                            enum fork_context_e fork_context, kmp_int32 argc,
3743                            microtask_t microtask, launch_t invoker,
3744                            kmp_va_list ap);
3745 
3746 extern void __kmp_join_call(ident_t *loc, int gtid
3747 #if OMPT_SUPPORT
3748                             ,
3749                             enum fork_context_e fork_context
3750 #endif
3751                             ,
3752                             int exit_teams = 0);
3753 
3754 extern void __kmp_serialized_parallel(ident_t *id, kmp_int32 gtid);
3755 extern void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team);
3756 extern void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team);
3757 extern int __kmp_invoke_task_func(int gtid);
3758 extern void __kmp_run_before_invoked_task(int gtid, int tid,
3759                                           kmp_info_t *this_thr,
3760                                           kmp_team_t *team);
3761 extern void __kmp_run_after_invoked_task(int gtid, int tid,
3762                                          kmp_info_t *this_thr,
3763                                          kmp_team_t *team);
3764 
3765 // should never have been exported
3766 KMP_EXPORT int __kmpc_invoke_task_func(int gtid);
3767 extern int __kmp_invoke_teams_master(int gtid);
3768 extern void __kmp_teams_master(int gtid);
3769 extern int __kmp_aux_get_team_num();
3770 extern int __kmp_aux_get_num_teams();
3771 extern void __kmp_save_internal_controls(kmp_info_t *thread);
3772 extern void __kmp_user_set_library(enum library_type arg);
3773 extern void __kmp_aux_set_library(enum library_type arg);
3774 extern void __kmp_aux_set_stacksize(size_t arg);
3775 extern void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid);
3776 extern void __kmp_aux_set_defaults(char const *str, size_t len);
3777 
3778 /* Functions called from __kmp_aux_env_initialize() in kmp_settings.cpp */
3779 void kmpc_set_blocktime(int arg);
3780 void ompc_set_nested(int flag);
3781 void ompc_set_dynamic(int flag);
3782 void ompc_set_num_threads(int arg);
3783 
3784 extern void __kmp_push_current_task_to_thread(kmp_info_t *this_thr,
3785                                               kmp_team_t *team, int tid);
3786 extern void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr);
3787 extern kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3788                                     kmp_tasking_flags_t *flags,
3789                                     size_t sizeof_kmp_task_t,
3790                                     size_t sizeof_shareds,
3791                                     kmp_routine_entry_t task_entry);
3792 extern void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
3793                                      kmp_team_t *team, int tid,
3794                                      int set_curr_task);
3795 extern void __kmp_finish_implicit_task(kmp_info_t *this_thr);
3796 extern void __kmp_free_implicit_task(kmp_info_t *this_thr);
3797 
3798 extern kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref,
3799                                                        int gtid,
3800                                                        kmp_task_t *task);
3801 extern void __kmp_fulfill_event(kmp_event_t *event);
3802 
3803 extern void __kmp_free_task_team(kmp_info_t *thread,
3804                                  kmp_task_team_t *task_team);
3805 extern void __kmp_reap_task_teams(void);
3806 extern void __kmp_wait_to_unref_task_teams(void);
3807 extern void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team,
3808                                   int always);
3809 extern void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team);
3810 extern void __kmp_task_team_wait(kmp_info_t *this_thr, kmp_team_t *team
3811 #if USE_ITT_BUILD
3812                                  ,
3813                                  void *itt_sync_obj
3814 #endif /* USE_ITT_BUILD */
3815                                  ,
3816                                  int wait = 1);
3817 extern void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread,
3818                                   int gtid);
3819 
3820 extern int __kmp_is_address_mapped(void *addr);
3821 extern kmp_uint64 __kmp_hardware_timestamp(void);
3822 
3823 #if KMP_OS_UNIX
3824 extern int __kmp_read_from_file(char const *path, char const *format, ...);
3825 #endif
3826 
3827 /* ------------------------------------------------------------------------ */
3828 //
3829 // Assembly routines that have no compiler intrinsic replacement
3830 //
3831 
3832 extern int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int npr, int argc,
3833                                   void *argv[]
3834 #if OMPT_SUPPORT
3835                                   ,
3836                                   void **exit_frame_ptr
3837 #endif
3838 );
3839 
3840 /* ------------------------------------------------------------------------ */
3841 
3842 KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags);
3843 KMP_EXPORT void __kmpc_end(ident_t *);
3844 
3845 KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data,
3846                                                   kmpc_ctor_vec ctor,
3847                                                   kmpc_cctor_vec cctor,
3848                                                   kmpc_dtor_vec dtor,
3849                                                   size_t vector_length);
3850 KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data,
3851                                               kmpc_ctor ctor, kmpc_cctor cctor,
3852                                               kmpc_dtor dtor);
3853 KMP_EXPORT void *__kmpc_threadprivate(ident_t *, kmp_int32 global_tid,
3854                                       void *data, size_t size);
3855 
3856 KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *);
3857 KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *);
3858 KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *);
3859 KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *);
3860 
3861 KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *);
3862 KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs,
3863                                  kmpc_micro microtask, ...);
3864 
3865 KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid);
3866 KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid);
3867 
3868 KMP_EXPORT void __kmpc_flush(ident_t *);
3869 KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid);
3870 KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
3871 KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
3872 KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid,
3873                                    kmp_int32 filter);
3874 KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid);
3875 KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid);
3876 KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid);
3877 KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid,
3878                                 kmp_critical_name *);
3879 KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid,
3880                                     kmp_critical_name *);
3881 KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid,
3882                                           kmp_critical_name *, uint32_t hint);
3883 
3884 KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid);
3885 KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid);
3886 
3887 KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *,
3888                                                   kmp_int32 global_tid);
3889 
3890 KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
3891 KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
3892 
3893 KMP_EXPORT kmp_int32 __kmpc_sections_init(ident_t *loc, kmp_int32 global_tid);
3894 KMP_EXPORT kmp_int32 __kmpc_next_section(ident_t *loc, kmp_int32 global_tid,
3895                                          kmp_int32 numberOfSections);
3896 KMP_EXPORT void __kmpc_end_sections(ident_t *loc, kmp_int32 global_tid);
3897 
3898 KMP_EXPORT void KMPC_FOR_STATIC_INIT(ident_t *loc, kmp_int32 global_tid,
3899                                      kmp_int32 schedtype, kmp_int32 *plastiter,
3900                                      kmp_int *plower, kmp_int *pupper,
3901                                      kmp_int *pstride, kmp_int incr,
3902                                      kmp_int chunk);
3903 
3904 KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
3905 
3906 KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
3907                                    size_t cpy_size, void *cpy_data,
3908                                    void (*cpy_func)(void *, void *),
3909                                    kmp_int32 didit);
3910 
3911 KMP_EXPORT void *__kmpc_copyprivate_light(ident_t *loc, kmp_int32 gtid,
3912                                           void *cpy_data);
3913 
3914 extern void KMPC_SET_NUM_THREADS(int arg);
3915 extern void KMPC_SET_DYNAMIC(int flag);
3916 extern void KMPC_SET_NESTED(int flag);
3917 
3918 /* OMP 3.0 tasking interface routines */
3919 KMP_EXPORT kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
3920                                      kmp_task_t *new_task);
3921 KMP_EXPORT kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3922                                              kmp_int32 flags,
3923                                              size_t sizeof_kmp_task_t,
3924                                              size_t sizeof_shareds,
3925                                              kmp_routine_entry_t task_entry);
3926 KMP_EXPORT kmp_task_t *__kmpc_omp_target_task_alloc(
3927     ident_t *loc_ref, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t,
3928     size_t sizeof_shareds, kmp_routine_entry_t task_entry, kmp_int64 device_id);
3929 KMP_EXPORT void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
3930                                           kmp_task_t *task);
3931 KMP_EXPORT void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
3932                                              kmp_task_t *task);
3933 KMP_EXPORT kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
3934                                            kmp_task_t *new_task);
3935 KMP_EXPORT kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid);
3936 
3937 KMP_EXPORT kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid,
3938                                           int end_part);
3939 
3940 #if TASK_UNUSED
3941 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task);
3942 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
3943                               kmp_task_t *task);
3944 #endif // TASK_UNUSED
3945 
3946 /* ------------------------------------------------------------------------ */
3947 
3948 KMP_EXPORT void __kmpc_taskgroup(ident_t *loc, int gtid);
3949 KMP_EXPORT void __kmpc_end_taskgroup(ident_t *loc, int gtid);
3950 
3951 KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(
3952     ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps,
3953     kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
3954     kmp_depend_info_t *noalias_dep_list);
3955 KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid,
3956                                      kmp_int32 ndeps,
3957                                      kmp_depend_info_t *dep_list,
3958                                      kmp_int32 ndeps_noalias,
3959                                      kmp_depend_info_t *noalias_dep_list);
3960 extern kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
3961                                 bool serialize_immediate);
3962 
3963 KMP_EXPORT kmp_int32 __kmpc_cancel(ident_t *loc_ref, kmp_int32 gtid,
3964                                    kmp_int32 cncl_kind);
3965 KMP_EXPORT kmp_int32 __kmpc_cancellationpoint(ident_t *loc_ref, kmp_int32 gtid,
3966                                               kmp_int32 cncl_kind);
3967 KMP_EXPORT kmp_int32 __kmpc_cancel_barrier(ident_t *loc_ref, kmp_int32 gtid);
3968 KMP_EXPORT int __kmp_get_cancellation_status(int cancel_kind);
3969 
3970 KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask);
3971 KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask);
3972 KMP_EXPORT void __kmpc_taskloop(ident_t *loc, kmp_int32 gtid, kmp_task_t *task,
3973                                 kmp_int32 if_val, kmp_uint64 *lb,
3974                                 kmp_uint64 *ub, kmp_int64 st, kmp_int32 nogroup,
3975                                 kmp_int32 sched, kmp_uint64 grainsize,
3976                                 void *task_dup);
3977 KMP_EXPORT void __kmpc_taskloop_5(ident_t *loc, kmp_int32 gtid,
3978                                   kmp_task_t *task, kmp_int32 if_val,
3979                                   kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
3980                                   kmp_int32 nogroup, kmp_int32 sched,
3981                                   kmp_uint64 grainsize, kmp_int32 modifier,
3982                                   void *task_dup);
3983 KMP_EXPORT void *__kmpc_task_reduction_init(int gtid, int num_data, void *data);
3984 KMP_EXPORT void *__kmpc_taskred_init(int gtid, int num_data, void *data);
3985 KMP_EXPORT void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d);
3986 KMP_EXPORT void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid,
3987                                                      int is_ws, int num,
3988                                                      void *data);
3989 KMP_EXPORT void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws,
3990                                               int num, void *data);
3991 KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid,
3992                                                     int is_ws);
3993 KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(
3994     ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins,
3995     kmp_task_affinity_info_t *affin_list);
3996 KMP_EXPORT void __kmp_set_num_teams(int num_teams);
3997 KMP_EXPORT int __kmp_get_max_teams(void);
3998 KMP_EXPORT void __kmp_set_teams_thread_limit(int limit);
3999 KMP_EXPORT int __kmp_get_teams_thread_limit(void);
4000 
4001 /* Lock interface routines (fast versions with gtid passed in) */
4002 KMP_EXPORT void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid,
4003                                  void **user_lock);
4004 KMP_EXPORT void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid,
4005                                       void **user_lock);
4006 KMP_EXPORT void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid,
4007                                     void **user_lock);
4008 KMP_EXPORT void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid,
4009                                          void **user_lock);
4010 KMP_EXPORT void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
4011 KMP_EXPORT void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid,
4012                                      void **user_lock);
4013 KMP_EXPORT void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid,
4014                                   void **user_lock);
4015 KMP_EXPORT void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid,
4016                                        void **user_lock);
4017 KMP_EXPORT int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
4018 KMP_EXPORT int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid,
4019                                      void **user_lock);
4020 
4021 KMP_EXPORT void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid,
4022                                            void **user_lock, uintptr_t hint);
4023 KMP_EXPORT void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid,
4024                                                 void **user_lock,
4025                                                 uintptr_t hint);
4026 
4027 /* Interface to fast scalable reduce methods routines */
4028 
4029 KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(
4030     ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4031     void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4032     kmp_critical_name *lck);
4033 KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
4034                                          kmp_critical_name *lck);
4035 KMP_EXPORT kmp_int32 __kmpc_reduce(
4036     ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4037     void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4038     kmp_critical_name *lck);
4039 KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
4040                                   kmp_critical_name *lck);
4041 
4042 /* Internal fast reduction routines */
4043 
4044 extern PACKED_REDUCTION_METHOD_T __kmp_determine_reduction_method(
4045     ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4046     void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4047     kmp_critical_name *lck);
4048 
4049 // this function is for testing set/get/determine reduce method
4050 KMP_EXPORT kmp_int32 __kmp_get_reduce_method(void);
4051 
4052 KMP_EXPORT kmp_uint64 __kmpc_get_taskid();
4053 KMP_EXPORT kmp_uint64 __kmpc_get_parent_taskid();
4054 
4055 // C++ port
4056 // missing 'extern "C"' declarations
4057 
4058 KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc);
4059 KMP_EXPORT void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid);
4060 KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
4061                                         kmp_int32 num_threads);
4062 
4063 KMP_EXPORT void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
4064                                       int proc_bind);
4065 KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
4066                                       kmp_int32 num_teams,
4067                                       kmp_int32 num_threads);
4068 /* Function for OpenMP 5.1 num_teams clause */
4069 KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid,
4070                                          kmp_int32 num_teams_lb,
4071                                          kmp_int32 num_teams_ub,
4072                                          kmp_int32 num_threads);
4073 KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc,
4074                                   kmpc_micro microtask, ...);
4075 struct kmp_dim { // loop bounds info casted to kmp_int64
4076   kmp_int64 lo; // lower
4077   kmp_int64 up; // upper
4078   kmp_int64 st; // stride
4079 };
4080 KMP_EXPORT void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
4081                                      kmp_int32 num_dims,
4082                                      const struct kmp_dim *dims);
4083 KMP_EXPORT void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid,
4084                                      const kmp_int64 *vec);
4085 KMP_EXPORT void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid,
4086                                      const kmp_int64 *vec);
4087 KMP_EXPORT void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
4088 
4089 KMP_EXPORT void *__kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid,
4090                                              void *data, size_t size,
4091                                              void ***cache);
4092 
4093 // Symbols for MS mutual detection.
4094 extern int _You_must_link_with_exactly_one_OpenMP_library;
4095 extern int _You_must_link_with_Intel_OpenMP_library;
4096 #if KMP_OS_WINDOWS && (KMP_VERSION_MAJOR > 4)
4097 extern int _You_must_link_with_Microsoft_OpenMP_library;
4098 #endif
4099 
4100 // The routines below are not exported.
4101 // Consider making them 'static' in corresponding source files.
4102 void kmp_threadprivate_insert_private_data(int gtid, void *pc_addr,
4103                                            void *data_addr, size_t pc_size);
4104 struct private_common *kmp_threadprivate_insert(int gtid, void *pc_addr,
4105                                                 void *data_addr,
4106                                                 size_t pc_size);
4107 void __kmp_threadprivate_resize_cache(int newCapacity);
4108 void __kmp_cleanup_threadprivate_caches();
4109 
4110 // ompc_, kmpc_ entries moved from omp.h.
4111 #if KMP_OS_WINDOWS
4112 #define KMPC_CONVENTION __cdecl
4113 #else
4114 #define KMPC_CONVENTION
4115 #endif
4116 
4117 #ifndef __OMP_H
4118 typedef enum omp_sched_t {
4119   omp_sched_static = 1,
4120   omp_sched_dynamic = 2,
4121   omp_sched_guided = 3,
4122   omp_sched_auto = 4
4123 } omp_sched_t;
4124 typedef void *kmp_affinity_mask_t;
4125 #endif
4126 
4127 KMP_EXPORT void KMPC_CONVENTION ompc_set_max_active_levels(int);
4128 KMP_EXPORT void KMPC_CONVENTION ompc_set_schedule(omp_sched_t, int);
4129 KMP_EXPORT int KMPC_CONVENTION ompc_get_ancestor_thread_num(int);
4130 KMP_EXPORT int KMPC_CONVENTION ompc_get_team_size(int);
4131 KMP_EXPORT int KMPC_CONVENTION
4132 kmpc_set_affinity_mask_proc(int, kmp_affinity_mask_t *);
4133 KMP_EXPORT int KMPC_CONVENTION
4134 kmpc_unset_affinity_mask_proc(int, kmp_affinity_mask_t *);
4135 KMP_EXPORT int KMPC_CONVENTION
4136 kmpc_get_affinity_mask_proc(int, kmp_affinity_mask_t *);
4137 
4138 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize(int);
4139 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize_s(size_t);
4140 KMP_EXPORT void KMPC_CONVENTION kmpc_set_library(int);
4141 KMP_EXPORT void KMPC_CONVENTION kmpc_set_defaults(char const *);
4142 KMP_EXPORT void KMPC_CONVENTION kmpc_set_disp_num_buffers(int);
4143 void KMP_EXPAND_NAME(ompc_set_affinity_format)(char const *format);
4144 size_t KMP_EXPAND_NAME(ompc_get_affinity_format)(char *buffer, size_t size);
4145 void KMP_EXPAND_NAME(ompc_display_affinity)(char const *format);
4146 size_t KMP_EXPAND_NAME(ompc_capture_affinity)(char *buffer, size_t buf_size,
4147                                               char const *format);
4148 
4149 enum kmp_target_offload_kind {
4150   tgt_disabled = 0,
4151   tgt_default = 1,
4152   tgt_mandatory = 2
4153 };
4154 typedef enum kmp_target_offload_kind kmp_target_offload_kind_t;
4155 // Set via OMP_TARGET_OFFLOAD if specified, defaults to tgt_default otherwise
4156 extern kmp_target_offload_kind_t __kmp_target_offload;
4157 extern int __kmpc_get_target_offload();
4158 
4159 // Constants used in libomptarget
4160 #define KMP_DEVICE_DEFAULT -1 // This is libomptarget's default device.
4161 #define KMP_DEVICE_ALL -11 // This is libomptarget's "all devices".
4162 
4163 // OMP Pause Resource
4164 
4165 // The following enum is used both to set the status in __kmp_pause_status, and
4166 // as the internal equivalent of the externally-visible omp_pause_resource_t.
4167 typedef enum kmp_pause_status_t {
4168   kmp_not_paused = 0, // status is not paused, or, requesting resume
4169   kmp_soft_paused = 1, // status is soft-paused, or, requesting soft pause
4170   kmp_hard_paused = 2 // status is hard-paused, or, requesting hard pause
4171 } kmp_pause_status_t;
4172 
4173 // This stores the pause state of the runtime
4174 extern kmp_pause_status_t __kmp_pause_status;
4175 extern int __kmpc_pause_resource(kmp_pause_status_t level);
4176 extern int __kmp_pause_resource(kmp_pause_status_t level);
4177 // Soft resume sets __kmp_pause_status, and wakes up all threads.
4178 extern void __kmp_resume_if_soft_paused();
4179 // Hard resume simply resets the status to not paused. Library will appear to
4180 // be uninitialized after hard pause. Let OMP constructs trigger required
4181 // initializations.
4182 static inline void __kmp_resume_if_hard_paused() {
4183   if (__kmp_pause_status == kmp_hard_paused) {
4184     __kmp_pause_status = kmp_not_paused;
4185   }
4186 }
4187 
4188 extern void __kmp_omp_display_env(int verbose);
4189 
4190 // 1: it is initializing hidden helper team
4191 extern volatile int __kmp_init_hidden_helper;
4192 // 1: the hidden helper team is done
4193 extern volatile int __kmp_hidden_helper_team_done;
4194 // 1: enable hidden helper task
4195 extern kmp_int32 __kmp_enable_hidden_helper;
4196 // Main thread of hidden helper team
4197 extern kmp_info_t *__kmp_hidden_helper_main_thread;
4198 // Descriptors for the hidden helper threads
4199 extern kmp_info_t **__kmp_hidden_helper_threads;
4200 // Number of hidden helper threads
4201 extern kmp_int32 __kmp_hidden_helper_threads_num;
4202 // Number of hidden helper tasks that have not been executed yet
4203 extern std::atomic<kmp_int32> __kmp_unexecuted_hidden_helper_tasks;
4204 
4205 extern void __kmp_hidden_helper_initialize();
4206 extern void __kmp_hidden_helper_threads_initz_routine();
4207 extern void __kmp_do_initialize_hidden_helper_threads();
4208 extern void __kmp_hidden_helper_threads_initz_wait();
4209 extern void __kmp_hidden_helper_initz_release();
4210 extern void __kmp_hidden_helper_threads_deinitz_wait();
4211 extern void __kmp_hidden_helper_threads_deinitz_release();
4212 extern void __kmp_hidden_helper_main_thread_wait();
4213 extern void __kmp_hidden_helper_worker_thread_wait();
4214 extern void __kmp_hidden_helper_worker_thread_signal();
4215 extern void __kmp_hidden_helper_main_thread_release();
4216 
4217 // Check whether a given thread is a hidden helper thread
4218 #define KMP_HIDDEN_HELPER_THREAD(gtid)                                         \
4219   ((gtid) >= 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4220 
4221 #define KMP_HIDDEN_HELPER_WORKER_THREAD(gtid)                                  \
4222   ((gtid) > 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4223 
4224 #define KMP_HIDDEN_HELPER_TEAM(team)                                           \
4225   (team->t.t_threads[0] == __kmp_hidden_helper_main_thread)
4226 
4227 // Map a gtid to a hidden helper thread. The first hidden helper thread, a.k.a
4228 // main thread, is skipped.
4229 #define KMP_GTID_TO_SHADOW_GTID(gtid)                                          \
4230   ((gtid) % (__kmp_hidden_helper_threads_num - 1) + 2)
4231 
4232 // Return the adjusted gtid value by subtracting from gtid the number
4233 // of hidden helper threads. This adjusted value is the gtid the thread would
4234 // have received if there were no hidden helper threads.
4235 static inline int __kmp_adjust_gtid_for_hidden_helpers(int gtid) {
4236   int adjusted_gtid = gtid;
4237   if (__kmp_hidden_helper_threads_num > 0 && gtid > 0 &&
4238       gtid - __kmp_hidden_helper_threads_num >= 0) {
4239     adjusted_gtid -= __kmp_hidden_helper_threads_num;
4240   }
4241   return adjusted_gtid;
4242 }
4243 
4244 // Support for error directive
4245 typedef enum kmp_severity_t {
4246   severity_warning = 1,
4247   severity_fatal = 2
4248 } kmp_severity_t;
4249 extern void __kmpc_error(ident_t *loc, int severity, const char *message);
4250 
4251 // Support for scope directive
4252 KMP_EXPORT void __kmpc_scope(ident_t *loc, kmp_int32 gtid, void *reserved);
4253 KMP_EXPORT void __kmpc_end_scope(ident_t *loc, kmp_int32 gtid, void *reserved);
4254 
4255 #ifdef __cplusplus
4256 }
4257 #endif
4258 
4259 template <bool C, bool S>
4260 extern void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag);
4261 template <bool C, bool S>
4262 extern void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag);
4263 template <bool C, bool S>
4264 extern void __kmp_atomic_suspend_64(int th_gtid,
4265                                     kmp_atomic_flag_64<C, S> *flag);
4266 extern void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag);
4267 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
4268 template <bool C, bool S>
4269 extern void __kmp_mwait_32(int th_gtid, kmp_flag_32<C, S> *flag);
4270 template <bool C, bool S>
4271 extern void __kmp_mwait_64(int th_gtid, kmp_flag_64<C, S> *flag);
4272 template <bool C, bool S>
4273 extern void __kmp_atomic_mwait_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag);
4274 extern void __kmp_mwait_oncore(int th_gtid, kmp_flag_oncore *flag);
4275 #endif
4276 template <bool C, bool S>
4277 extern void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag);
4278 template <bool C, bool S>
4279 extern void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag);
4280 template <bool C, bool S>
4281 extern void __kmp_atomic_resume_64(int target_gtid,
4282                                    kmp_atomic_flag_64<C, S> *flag);
4283 extern void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag);
4284 
4285 template <bool C, bool S>
4286 int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid,
4287                            kmp_flag_32<C, S> *flag, int final_spin,
4288                            int *thread_finished,
4289 #if USE_ITT_BUILD
4290                            void *itt_sync_obj,
4291 #endif /* USE_ITT_BUILD */
4292                            kmp_int32 is_constrained);
4293 template <bool C, bool S>
4294 int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4295                            kmp_flag_64<C, S> *flag, int final_spin,
4296                            int *thread_finished,
4297 #if USE_ITT_BUILD
4298                            void *itt_sync_obj,
4299 #endif /* USE_ITT_BUILD */
4300                            kmp_int32 is_constrained);
4301 template <bool C, bool S>
4302 int __kmp_atomic_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4303                                   kmp_atomic_flag_64<C, S> *flag,
4304                                   int final_spin, int *thread_finished,
4305 #if USE_ITT_BUILD
4306                                   void *itt_sync_obj,
4307 #endif /* USE_ITT_BUILD */
4308                                   kmp_int32 is_constrained);
4309 int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid,
4310                                kmp_flag_oncore *flag, int final_spin,
4311                                int *thread_finished,
4312 #if USE_ITT_BUILD
4313                                void *itt_sync_obj,
4314 #endif /* USE_ITT_BUILD */
4315                                kmp_int32 is_constrained);
4316 
4317 extern int __kmp_nesting_mode;
4318 extern int __kmp_nesting_mode_nlevels;
4319 extern int *__kmp_nesting_nth_level;
4320 extern void __kmp_init_nesting_mode();
4321 extern void __kmp_set_nesting_mode_threads();
4322 
4323 /// This class safely opens and closes a C-style FILE* object using RAII
4324 /// semantics. There are also methods which allow using stdout or stderr as
4325 /// the underlying FILE* object. With the implicit conversion operator to
4326 /// FILE*, an object with this type can be used in any function which takes
4327 /// a FILE* object e.g., fprintf().
4328 /// No close method is needed at use sites.
4329 class kmp_safe_raii_file_t {
4330   FILE *f;
4331 
4332   void close() {
4333     if (f && f != stdout && f != stderr) {
4334       fclose(f);
4335       f = nullptr;
4336     }
4337   }
4338 
4339 public:
4340   kmp_safe_raii_file_t() : f(nullptr) {}
4341   kmp_safe_raii_file_t(const char *filename, const char *mode,
4342                        const char *env_var = nullptr)
4343       : f(nullptr) {
4344     open(filename, mode, env_var);
4345   }
4346   ~kmp_safe_raii_file_t() { close(); }
4347 
4348   /// Open filename using mode. This is automatically closed in the destructor.
4349   /// The env_var parameter indicates the environment variable the filename
4350   /// came from if != nullptr.
4351   void open(const char *filename, const char *mode,
4352             const char *env_var = nullptr) {
4353     KMP_ASSERT(!f);
4354     f = fopen(filename, mode);
4355     if (!f) {
4356       int code = errno;
4357       if (env_var) {
4358         __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4359                     KMP_HNT(CheckEnvVar, env_var, filename), __kmp_msg_null);
4360       } else {
4361         __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4362                     __kmp_msg_null);
4363       }
4364     }
4365   }
4366   /// Instead of erroring out, return non-zero when
4367   /// unsuccessful fopen() for any reason
4368   int try_open(const char *filename, const char *mode) {
4369     KMP_ASSERT(!f);
4370     f = fopen(filename, mode);
4371     if (!f)
4372       return errno;
4373     return 0;
4374   }
4375   /// Set the FILE* object to stdout and output there
4376   /// No open call should happen before this call.
4377   void set_stdout() {
4378     KMP_ASSERT(!f);
4379     f = stdout;
4380   }
4381   /// Set the FILE* object to stderr and output there
4382   /// No open call should happen before this call.
4383   void set_stderr() {
4384     KMP_ASSERT(!f);
4385     f = stderr;
4386   }
4387   operator bool() { return bool(f); }
4388   operator FILE *() { return f; }
4389 };
4390 
4391 template <typename SourceType, typename TargetType,
4392           bool isSourceSmaller = (sizeof(SourceType) < sizeof(TargetType)),
4393           bool isSourceEqual = (sizeof(SourceType) == sizeof(TargetType)),
4394           bool isSourceSigned = std::is_signed<SourceType>::value,
4395           bool isTargetSigned = std::is_signed<TargetType>::value>
4396 struct kmp_convert {};
4397 
4398 // Both types are signed; Source smaller
4399 template <typename SourceType, typename TargetType>
4400 struct kmp_convert<SourceType, TargetType, true, false, true, true> {
4401   static TargetType to(SourceType src) { return (TargetType)src; }
4402 };
4403 // Source equal
4404 template <typename SourceType, typename TargetType>
4405 struct kmp_convert<SourceType, TargetType, false, true, true, true> {
4406   static TargetType to(SourceType src) { return src; }
4407 };
4408 // Source bigger
4409 template <typename SourceType, typename TargetType>
4410 struct kmp_convert<SourceType, TargetType, false, false, true, true> {
4411   static TargetType to(SourceType src) {
4412     KMP_ASSERT(src <= static_cast<SourceType>(
4413                           (std::numeric_limits<TargetType>::max)()));
4414     KMP_ASSERT(src >= static_cast<SourceType>(
4415                           (std::numeric_limits<TargetType>::min)()));
4416     return (TargetType)src;
4417   }
4418 };
4419 
4420 // Source signed, Target unsigned
4421 // Source smaller
4422 template <typename SourceType, typename TargetType>
4423 struct kmp_convert<SourceType, TargetType, true, false, true, false> {
4424   static TargetType to(SourceType src) {
4425     KMP_ASSERT(src >= 0);
4426     return (TargetType)src;
4427   }
4428 };
4429 // Source equal
4430 template <typename SourceType, typename TargetType>
4431 struct kmp_convert<SourceType, TargetType, false, true, true, false> {
4432   static TargetType to(SourceType src) {
4433     KMP_ASSERT(src >= 0);
4434     return (TargetType)src;
4435   }
4436 };
4437 // Source bigger
4438 template <typename SourceType, typename TargetType>
4439 struct kmp_convert<SourceType, TargetType, false, false, true, false> {
4440   static TargetType to(SourceType src) {
4441     KMP_ASSERT(src >= 0);
4442     KMP_ASSERT(src <= static_cast<SourceType>(
4443                           (std::numeric_limits<TargetType>::max)()));
4444     return (TargetType)src;
4445   }
4446 };
4447 
4448 // Source unsigned, Target signed
4449 // Source smaller
4450 template <typename SourceType, typename TargetType>
4451 struct kmp_convert<SourceType, TargetType, true, false, false, true> {
4452   static TargetType to(SourceType src) { return (TargetType)src; }
4453 };
4454 // Source equal
4455 template <typename SourceType, typename TargetType>
4456 struct kmp_convert<SourceType, TargetType, false, true, false, true> {
4457   static TargetType to(SourceType src) {
4458     KMP_ASSERT(src <= static_cast<SourceType>(
4459                           (std::numeric_limits<TargetType>::max)()));
4460     return (TargetType)src;
4461   }
4462 };
4463 // Source bigger
4464 template <typename SourceType, typename TargetType>
4465 struct kmp_convert<SourceType, TargetType, false, false, false, true> {
4466   static TargetType to(SourceType src) {
4467     KMP_ASSERT(src <= static_cast<SourceType>(
4468                           (std::numeric_limits<TargetType>::max)()));
4469     return (TargetType)src;
4470   }
4471 };
4472 
4473 // Source unsigned, Target unsigned
4474 // Source smaller
4475 template <typename SourceType, typename TargetType>
4476 struct kmp_convert<SourceType, TargetType, true, false, false, false> {
4477   static TargetType to(SourceType src) { return (TargetType)src; }
4478 };
4479 // Source equal
4480 template <typename SourceType, typename TargetType>
4481 struct kmp_convert<SourceType, TargetType, false, true, false, false> {
4482   static TargetType to(SourceType src) { return src; }
4483 };
4484 // Source bigger
4485 template <typename SourceType, typename TargetType>
4486 struct kmp_convert<SourceType, TargetType, false, false, false, false> {
4487   static TargetType to(SourceType src) {
4488     KMP_ASSERT(src <= static_cast<SourceType>(
4489                           (std::numeric_limits<TargetType>::max)()));
4490     return (TargetType)src;
4491   }
4492 };
4493 
4494 template <typename T1, typename T2>
4495 static inline void __kmp_type_convert(T1 src, T2 *dest) {
4496   *dest = kmp_convert<T1, T2>::to(src);
4497 }
4498 
4499 #endif /* KMP_H */
4500