1 /*! \file */
2 /*
3  * kmp.h -- KPTS runtime header file.
4  */
5 
6 //===----------------------------------------------------------------------===//
7 //
8 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
9 // See https://llvm.org/LICENSE.txt for license information.
10 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef KMP_H
15 #define KMP_H
16 
17 #include "kmp_config.h"
18 
19 /* #define BUILD_PARALLEL_ORDERED 1 */
20 
21 /* This fix replaces gettimeofday with clock_gettime for better scalability on
22    the Altix.  Requires user code to be linked with -lrt. */
23 //#define FIX_SGI_CLOCK
24 
25 /* Defines for OpenMP 3.0 tasking and auto scheduling */
26 
27 #ifndef KMP_STATIC_STEAL_ENABLED
28 #define KMP_STATIC_STEAL_ENABLED 1
29 #endif
30 
31 #define TASK_CURRENT_NOT_QUEUED 0
32 #define TASK_CURRENT_QUEUED 1
33 
34 #ifdef BUILD_TIED_TASK_STACK
35 #define TASK_STACK_EMPTY 0 // entries when the stack is empty
36 #define TASK_STACK_BLOCK_BITS 5 // Used in TASK_STACK_SIZE and TASK_STACK_MASK
37 // Number of entries in each task stack array
38 #define TASK_STACK_BLOCK_SIZE (1 << TASK_STACK_BLOCK_BITS)
39 // Mask for determining index into stack block
40 #define TASK_STACK_INDEX_MASK (TASK_STACK_BLOCK_SIZE - 1)
41 #endif // BUILD_TIED_TASK_STACK
42 
43 #define TASK_NOT_PUSHED 1
44 #define TASK_SUCCESSFULLY_PUSHED 0
45 #define TASK_TIED 1
46 #define TASK_UNTIED 0
47 #define TASK_EXPLICIT 1
48 #define TASK_IMPLICIT 0
49 #define TASK_PROXY 1
50 #define TASK_FULL 0
51 #define TASK_DETACHABLE 1
52 #define TASK_UNDETACHABLE 0
53 
54 #define KMP_CANCEL_THREADS
55 #define KMP_THREAD_ATTR
56 
57 // Android does not have pthread_cancel.  Undefine KMP_CANCEL_THREADS if being
58 // built on Android
59 #if defined(__ANDROID__)
60 #undef KMP_CANCEL_THREADS
61 #endif
62 
63 #include <signal.h>
64 #include <stdarg.h>
65 #include <stddef.h>
66 #include <stdio.h>
67 #include <stdlib.h>
68 #include <string.h>
69 /* include <ctype.h> don't use; problems with /MD on Windows* OS NT due to bad
70    Microsoft library. Some macros provided below to replace these functions  */
71 #ifndef __ABSOFT_WIN
72 #include <sys/types.h>
73 #endif
74 #include <limits.h>
75 #include <time.h>
76 
77 #include <errno.h>
78 
79 #include "kmp_os.h"
80 
81 #include "kmp_safe_c_api.h"
82 
83 #if KMP_STATS_ENABLED
84 class kmp_stats_list;
85 #endif
86 
87 #if KMP_USE_HIER_SCHED
88 // Only include hierarchical scheduling if affinity is supported
89 #undef KMP_USE_HIER_SCHED
90 #define KMP_USE_HIER_SCHED KMP_AFFINITY_SUPPORTED
91 #endif
92 
93 #if KMP_USE_HWLOC && KMP_AFFINITY_SUPPORTED
94 #include "hwloc.h"
95 #ifndef HWLOC_OBJ_NUMANODE
96 #define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE
97 #endif
98 #ifndef HWLOC_OBJ_PACKAGE
99 #define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET
100 #endif
101 #if HWLOC_API_VERSION >= 0x00020000
102 // hwloc 2.0 changed type of depth of object from unsigned to int
103 typedef int kmp_hwloc_depth_t;
104 #else
105 typedef unsigned int kmp_hwloc_depth_t;
106 #endif
107 #endif
108 
109 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
110 #include <xmmintrin.h>
111 #endif
112 
113 #include "kmp_debug.h"
114 #include "kmp_lock.h"
115 #include "kmp_version.h"
116 #if USE_DEBUGGER
117 #include "kmp_debugger.h"
118 #endif
119 #include "kmp_i18n.h"
120 
121 #define KMP_HANDLE_SIGNALS (KMP_OS_UNIX || KMP_OS_WINDOWS)
122 
123 #include "kmp_wrapper_malloc.h"
124 #if KMP_OS_UNIX
125 #include <unistd.h>
126 #if !defined NSIG && defined _NSIG
127 #define NSIG _NSIG
128 #endif
129 #endif
130 
131 #if KMP_OS_LINUX
132 #pragma weak clock_gettime
133 #endif
134 
135 #if OMPT_SUPPORT
136 #include "ompt-internal.h"
137 #endif
138 
139 // Affinity format function
140 #include "kmp_str.h"
141 
142 // 0 - no fast memory allocation, alignment: 8-byte on x86, 16-byte on x64.
143 // 3 - fast allocation using sync, non-sync free lists of any size, non-self
144 // free lists of limited size.
145 #ifndef USE_FAST_MEMORY
146 #define USE_FAST_MEMORY 3
147 #endif
148 
149 #ifndef KMP_NESTED_HOT_TEAMS
150 #define KMP_NESTED_HOT_TEAMS 0
151 #define USE_NESTED_HOT_ARG(x)
152 #else
153 #if KMP_NESTED_HOT_TEAMS
154 #define USE_NESTED_HOT_ARG(x) , x
155 #else
156 #define USE_NESTED_HOT_ARG(x)
157 #endif
158 #endif
159 
160 // Assume using BGET compare_exchange instruction instead of lock by default.
161 #ifndef USE_CMP_XCHG_FOR_BGET
162 #define USE_CMP_XCHG_FOR_BGET 1
163 #endif
164 
165 // Test to see if queuing lock is better than bootstrap lock for bget
166 // #ifndef USE_QUEUING_LOCK_FOR_BGET
167 // #define USE_QUEUING_LOCK_FOR_BGET
168 // #endif
169 
170 #define KMP_NSEC_PER_SEC 1000000000L
171 #define KMP_USEC_PER_SEC 1000000L
172 
173 /*!
174 @ingroup BASIC_TYPES
175 @{
176 */
177 
178 /*!
179 Values for bit flags used in the ident_t to describe the fields.
180 */
181 enum {
182   /*! Use trampoline for internal microtasks */
183   KMP_IDENT_IMB = 0x01,
184   /*! Use c-style ident structure */
185   KMP_IDENT_KMPC = 0x02,
186   /* 0x04 is no longer used */
187   /*! Entry point generated by auto-parallelization */
188   KMP_IDENT_AUTOPAR = 0x08,
189   /*! Compiler generates atomic reduction option for kmpc_reduce* */
190   KMP_IDENT_ATOMIC_REDUCE = 0x10,
191   /*! To mark a 'barrier' directive in user code */
192   KMP_IDENT_BARRIER_EXPL = 0x20,
193   /*! To Mark implicit barriers. */
194   KMP_IDENT_BARRIER_IMPL = 0x0040,
195   KMP_IDENT_BARRIER_IMPL_MASK = 0x01C0,
196   KMP_IDENT_BARRIER_IMPL_FOR = 0x0040,
197   KMP_IDENT_BARRIER_IMPL_SECTIONS = 0x00C0,
198 
199   KMP_IDENT_BARRIER_IMPL_SINGLE = 0x0140,
200   KMP_IDENT_BARRIER_IMPL_WORKSHARE = 0x01C0,
201 
202   /*! To mark a static loop in OMPT callbacks */
203   KMP_IDENT_WORK_LOOP = 0x200,
204   /*! To mark a sections directive in OMPT callbacks */
205   KMP_IDENT_WORK_SECTIONS = 0x400,
206   /*! To mark a distribute construct in OMPT callbacks */
207   KMP_IDENT_WORK_DISTRIBUTE = 0x800,
208   /*! Atomic hint; bottom four bits as omp_sync_hint_t. Top four reserved and
209       not currently used. If one day we need more bits, then we can use
210       an invalid combination of hints to mean that another, larger field
211       should be used in a different flag. */
212   KMP_IDENT_ATOMIC_HINT_MASK = 0xFF0000,
213   KMP_IDENT_ATOMIC_HINT_UNCONTENDED = 0x010000,
214   KMP_IDENT_ATOMIC_HINT_CONTENDED = 0x020000,
215   KMP_IDENT_ATOMIC_HINT_NONSPECULATIVE = 0x040000,
216   KMP_IDENT_ATOMIC_HINT_SPECULATIVE = 0x080000,
217 };
218 
219 /*!
220  * The ident structure that describes a source location.
221  */
222 typedef struct ident {
223   kmp_int32 reserved_1; /**<  might be used in Fortran; see above  */
224   kmp_int32 flags; /**<  also f.flags; KMP_IDENT_xxx flags; KMP_IDENT_KMPC
225                       identifies this union member  */
226   kmp_int32 reserved_2; /**<  not really used in Fortran any more; see above */
227 #if USE_ITT_BUILD
228 /*  but currently used for storing region-specific ITT */
229 /*  contextual information. */
230 #endif /* USE_ITT_BUILD */
231   kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for C++  */
232   char const *psource; /**< String describing the source location.
233                        The string is composed of semi-colon separated fields
234                        which describe the source file, the function and a pair
235                        of line numbers that delimit the construct. */
236 } ident_t;
237 /*!
238 @}
239 */
240 
241 // Some forward declarations.
242 typedef union kmp_team kmp_team_t;
243 typedef struct kmp_taskdata kmp_taskdata_t;
244 typedef union kmp_task_team kmp_task_team_t;
245 typedef union kmp_team kmp_team_p;
246 typedef union kmp_info kmp_info_p;
247 typedef union kmp_root kmp_root_p;
248 
249 #ifdef __cplusplus
250 extern "C" {
251 #endif
252 
253 /* ------------------------------------------------------------------------ */
254 
255 /* Pack two 32-bit signed integers into a 64-bit signed integer */
256 /* ToDo: Fix word ordering for big-endian machines. */
257 #define KMP_PACK_64(HIGH_32, LOW_32)                                           \
258   ((kmp_int64)((((kmp_uint64)(HIGH_32)) << 32) | (kmp_uint64)(LOW_32)))
259 
260 // Generic string manipulation macros. Assume that _x is of type char *
261 #define SKIP_WS(_x)                                                            \
262   {                                                                            \
263     while (*(_x) == ' ' || *(_x) == '\t')                                      \
264       (_x)++;                                                                  \
265   }
266 #define SKIP_DIGITS(_x)                                                        \
267   {                                                                            \
268     while (*(_x) >= '0' && *(_x) <= '9')                                       \
269       (_x)++;                                                                  \
270   }
271 #define SKIP_TOKEN(_x)                                                         \
272   {                                                                            \
273     while ((*(_x) >= '0' && *(_x) <= '9') || (*(_x) >= 'a' && *(_x) <= 'z') || \
274            (*(_x) >= 'A' && *(_x) <= 'Z') || *(_x) == '_')                     \
275       (_x)++;                                                                  \
276   }
277 #define SKIP_TO(_x, _c)                                                        \
278   {                                                                            \
279     while (*(_x) != '\0' && *(_x) != (_c))                                     \
280       (_x)++;                                                                  \
281   }
282 
283 /* ------------------------------------------------------------------------ */
284 
285 #define KMP_MAX(x, y) ((x) > (y) ? (x) : (y))
286 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y))
287 
288 /* ------------------------------------------------------------------------ */
289 /* Enumeration types */
290 
291 enum kmp_state_timer {
292   ts_stop,
293   ts_start,
294   ts_pause,
295 
296   ts_last_state
297 };
298 
299 enum dynamic_mode {
300   dynamic_default,
301 #ifdef USE_LOAD_BALANCE
302   dynamic_load_balance,
303 #endif /* USE_LOAD_BALANCE */
304   dynamic_random,
305   dynamic_thread_limit,
306   dynamic_max
307 };
308 
309 /* external schedule constants, duplicate enum omp_sched in omp.h in order to
310  * not include it here */
311 #ifndef KMP_SCHED_TYPE_DEFINED
312 #define KMP_SCHED_TYPE_DEFINED
313 typedef enum kmp_sched {
314   kmp_sched_lower = 0, // lower and upper bounds are for routine parameter check
315   // Note: need to adjust __kmp_sch_map global array in case enum is changed
316   kmp_sched_static = 1, // mapped to kmp_sch_static_chunked           (33)
317   kmp_sched_dynamic = 2, // mapped to kmp_sch_dynamic_chunked          (35)
318   kmp_sched_guided = 3, // mapped to kmp_sch_guided_chunked           (36)
319   kmp_sched_auto = 4, // mapped to kmp_sch_auto                     (38)
320   kmp_sched_upper_std = 5, // upper bound for standard schedules
321   kmp_sched_lower_ext = 100, // lower bound of Intel extension schedules
322   kmp_sched_trapezoidal = 101, // mapped to kmp_sch_trapezoidal (39)
323 #if KMP_STATIC_STEAL_ENABLED
324   kmp_sched_static_steal = 102, // mapped to kmp_sch_static_steal (44)
325 #endif
326   kmp_sched_upper,
327   kmp_sched_default = kmp_sched_static, // default scheduling
328   kmp_sched_monotonic = 0x80000000
329 } kmp_sched_t;
330 #endif
331 
332 /*!
333  @ingroup WORK_SHARING
334  * Describes the loop schedule to be used for a parallel for loop.
335  */
336 enum sched_type : kmp_int32 {
337   kmp_sch_lower = 32, /**< lower bound for unordered values */
338   kmp_sch_static_chunked = 33,
339   kmp_sch_static = 34, /**< static unspecialized */
340   kmp_sch_dynamic_chunked = 35,
341   kmp_sch_guided_chunked = 36, /**< guided unspecialized */
342   kmp_sch_runtime = 37,
343   kmp_sch_auto = 38, /**< auto */
344   kmp_sch_trapezoidal = 39,
345 
346   /* accessible only through KMP_SCHEDULE environment variable */
347   kmp_sch_static_greedy = 40,
348   kmp_sch_static_balanced = 41,
349   /* accessible only through KMP_SCHEDULE environment variable */
350   kmp_sch_guided_iterative_chunked = 42,
351   kmp_sch_guided_analytical_chunked = 43,
352   /* accessible only through KMP_SCHEDULE environment variable */
353   kmp_sch_static_steal = 44,
354 
355   /* static with chunk adjustment (e.g., simd) */
356   kmp_sch_static_balanced_chunked = 45,
357   kmp_sch_guided_simd = 46, /**< guided with chunk adjustment */
358   kmp_sch_runtime_simd = 47, /**< runtime with chunk adjustment */
359 
360   /* accessible only through KMP_SCHEDULE environment variable */
361   kmp_sch_upper, /**< upper bound for unordered values */
362 
363   kmp_ord_lower = 64, /**< lower bound for ordered values, must be power of 2 */
364   kmp_ord_static_chunked = 65,
365   kmp_ord_static = 66, /**< ordered static unspecialized */
366   kmp_ord_dynamic_chunked = 67,
367   kmp_ord_guided_chunked = 68,
368   kmp_ord_runtime = 69,
369   kmp_ord_auto = 70, /**< ordered auto */
370   kmp_ord_trapezoidal = 71,
371   kmp_ord_upper, /**< upper bound for ordered values */
372 
373   /* Schedules for Distribute construct */
374   kmp_distribute_static_chunked = 91, /**< distribute static chunked */
375   kmp_distribute_static = 92, /**< distribute static unspecialized */
376 
377   /* For the "nomerge" versions, kmp_dispatch_next*() will always return a
378      single iteration/chunk, even if the loop is serialized. For the schedule
379      types listed above, the entire iteration vector is returned if the loop is
380      serialized. This doesn't work for gcc/gcomp sections. */
381   kmp_nm_lower = 160, /**< lower bound for nomerge values */
382 
383   kmp_nm_static_chunked =
384       (kmp_sch_static_chunked - kmp_sch_lower + kmp_nm_lower),
385   kmp_nm_static = 162, /**< static unspecialized */
386   kmp_nm_dynamic_chunked = 163,
387   kmp_nm_guided_chunked = 164, /**< guided unspecialized */
388   kmp_nm_runtime = 165,
389   kmp_nm_auto = 166, /**< auto */
390   kmp_nm_trapezoidal = 167,
391 
392   /* accessible only through KMP_SCHEDULE environment variable */
393   kmp_nm_static_greedy = 168,
394   kmp_nm_static_balanced = 169,
395   /* accessible only through KMP_SCHEDULE environment variable */
396   kmp_nm_guided_iterative_chunked = 170,
397   kmp_nm_guided_analytical_chunked = 171,
398   kmp_nm_static_steal =
399       172, /* accessible only through OMP_SCHEDULE environment variable */
400 
401   kmp_nm_ord_static_chunked = 193,
402   kmp_nm_ord_static = 194, /**< ordered static unspecialized */
403   kmp_nm_ord_dynamic_chunked = 195,
404   kmp_nm_ord_guided_chunked = 196,
405   kmp_nm_ord_runtime = 197,
406   kmp_nm_ord_auto = 198, /**< auto */
407   kmp_nm_ord_trapezoidal = 199,
408   kmp_nm_upper, /**< upper bound for nomerge values */
409 
410   /* Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. Since
411      we need to distinguish the three possible cases (no modifier, monotonic
412      modifier, nonmonotonic modifier), we need separate bits for each modifier.
413      The absence of monotonic does not imply nonmonotonic, especially since 4.5
414      says that the behaviour of the "no modifier" case is implementation defined
415      in 4.5, but will become "nonmonotonic" in 5.0.
416 
417      Since we're passing a full 32 bit value, we can use a couple of high bits
418      for these flags; out of paranoia we avoid the sign bit.
419 
420      These modifiers can be or-ed into non-static schedules by the compiler to
421      pass the additional information. They will be stripped early in the
422      processing in __kmp_dispatch_init when setting up schedules, so most of the
423      code won't ever see schedules with these bits set.  */
424   kmp_sch_modifier_monotonic =
425       (1 << 29), /**< Set if the monotonic schedule modifier was present */
426   kmp_sch_modifier_nonmonotonic =
427       (1 << 30), /**< Set if the nonmonotonic schedule modifier was present */
428 
429 #define SCHEDULE_WITHOUT_MODIFIERS(s)                                          \
430   (enum sched_type)(                                                           \
431       (s) & ~(kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic))
432 #define SCHEDULE_HAS_MONOTONIC(s) (((s)&kmp_sch_modifier_monotonic) != 0)
433 #define SCHEDULE_HAS_NONMONOTONIC(s) (((s)&kmp_sch_modifier_nonmonotonic) != 0)
434 #define SCHEDULE_HAS_NO_MODIFIERS(s)                                           \
435   (((s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) == 0)
436 #define SCHEDULE_GET_MODIFIERS(s)                                              \
437   ((enum sched_type)(                                                          \
438       (s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)))
439 #define SCHEDULE_SET_MODIFIERS(s, m)                                           \
440   (s = (enum sched_type)((kmp_int32)s | (kmp_int32)m))
441 #define SCHEDULE_NONMONOTONIC 0
442 #define SCHEDULE_MONOTONIC 1
443 
444   kmp_sch_default = kmp_sch_static /**< default scheduling algorithm */
445 };
446 
447 // Apply modifiers on internal kind to standard kind
448 static inline void
449 __kmp_sched_apply_mods_stdkind(kmp_sched_t *kind,
450                                enum sched_type internal_kind) {
451   if (SCHEDULE_HAS_MONOTONIC(internal_kind)) {
452     *kind = (kmp_sched_t)((int)*kind | (int)kmp_sched_monotonic);
453   }
454 }
455 
456 // Apply modifiers on standard kind to internal kind
457 static inline void
458 __kmp_sched_apply_mods_intkind(kmp_sched_t kind,
459                                enum sched_type *internal_kind) {
460   if ((int)kind & (int)kmp_sched_monotonic) {
461     *internal_kind = (enum sched_type)((int)*internal_kind |
462                                        (int)kmp_sch_modifier_monotonic);
463   }
464 }
465 
466 // Get standard schedule without modifiers
467 static inline kmp_sched_t __kmp_sched_without_mods(kmp_sched_t kind) {
468   return (kmp_sched_t)((int)kind & ~((int)kmp_sched_monotonic));
469 }
470 
471 /* Type to keep runtime schedule set via OMP_SCHEDULE or omp_set_schedule() */
472 typedef union kmp_r_sched {
473   struct {
474     enum sched_type r_sched_type;
475     int chunk;
476   };
477   kmp_int64 sched;
478 } kmp_r_sched_t;
479 
480 extern enum sched_type __kmp_sch_map[]; // map OMP 3.0 schedule types with our
481 // internal schedule types
482 
483 enum library_type {
484   library_none,
485   library_serial,
486   library_turnaround,
487   library_throughput
488 };
489 
490 #if KMP_OS_LINUX
491 enum clock_function_type {
492   clock_function_gettimeofday,
493   clock_function_clock_gettime
494 };
495 #endif /* KMP_OS_LINUX */
496 
497 #if KMP_MIC_SUPPORTED
498 enum mic_type { non_mic, mic1, mic2, mic3, dummy };
499 #endif
500 
501 /* -- fast reduction stuff ------------------------------------------------ */
502 
503 #undef KMP_FAST_REDUCTION_BARRIER
504 #define KMP_FAST_REDUCTION_BARRIER 1
505 
506 #undef KMP_FAST_REDUCTION_CORE_DUO
507 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
508 #define KMP_FAST_REDUCTION_CORE_DUO 1
509 #endif
510 
511 enum _reduction_method {
512   reduction_method_not_defined = 0,
513   critical_reduce_block = (1 << 8),
514   atomic_reduce_block = (2 << 8),
515   tree_reduce_block = (3 << 8),
516   empty_reduce_block = (4 << 8)
517 };
518 
519 // Description of the packed_reduction_method variable:
520 // The packed_reduction_method variable consists of two enum types variables
521 // that are packed together into 0-th byte and 1-st byte:
522 // 0: (packed_reduction_method & 0x000000FF) is a 'enum barrier_type' value of
523 // barrier that will be used in fast reduction: bs_plain_barrier or
524 // bs_reduction_barrier
525 // 1: (packed_reduction_method & 0x0000FF00) is a reduction method that will
526 // be used in fast reduction;
527 // Reduction method is of 'enum _reduction_method' type and it's defined the way
528 // so that the bits of 0-th byte are empty, so no need to execute a shift
529 // instruction while packing/unpacking
530 
531 #if KMP_FAST_REDUCTION_BARRIER
532 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type)      \
533   ((reduction_method) | (barrier_type))
534 
535 #define UNPACK_REDUCTION_METHOD(packed_reduction_method)                       \
536   ((enum _reduction_method)((packed_reduction_method) & (0x0000FF00)))
537 
538 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method)                      \
539   ((enum barrier_type)((packed_reduction_method) & (0x000000FF)))
540 #else
541 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type)      \
542   (reduction_method)
543 
544 #define UNPACK_REDUCTION_METHOD(packed_reduction_method)                       \
545   (packed_reduction_method)
546 
547 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) (bs_plain_barrier)
548 #endif
549 
550 #define TEST_REDUCTION_METHOD(packed_reduction_method, which_reduction_block)  \
551   ((UNPACK_REDUCTION_METHOD(packed_reduction_method)) ==                       \
552    (which_reduction_block))
553 
554 #if KMP_FAST_REDUCTION_BARRIER
555 #define TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER                               \
556   (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_reduction_barrier))
557 
558 #define TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER                                   \
559   (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_plain_barrier))
560 #endif
561 
562 typedef int PACKED_REDUCTION_METHOD_T;
563 
564 /* -- end of fast reduction stuff ----------------------------------------- */
565 
566 #if KMP_OS_WINDOWS
567 #define USE_CBLKDATA
568 #if KMP_MSVC_COMPAT
569 #pragma warning(push)
570 #pragma warning(disable : 271 310)
571 #endif
572 #include <windows.h>
573 #if KMP_MSVC_COMPAT
574 #pragma warning(pop)
575 #endif
576 #endif
577 
578 #if KMP_OS_UNIX
579 #include <dlfcn.h>
580 #include <pthread.h>
581 #endif
582 
583 /* Only Linux* OS and Windows* OS support thread affinity. */
584 #if KMP_AFFINITY_SUPPORTED
585 
586 // GROUP_AFFINITY is already defined for _MSC_VER>=1600 (VS2010 and later).
587 #if KMP_OS_WINDOWS
588 #if _MSC_VER < 1600 && KMP_MSVC_COMPAT
589 typedef struct GROUP_AFFINITY {
590   KAFFINITY Mask;
591   WORD Group;
592   WORD Reserved[3];
593 } GROUP_AFFINITY;
594 #endif /* _MSC_VER < 1600 */
595 #if KMP_GROUP_AFFINITY
596 extern int __kmp_num_proc_groups;
597 #else
598 static const int __kmp_num_proc_groups = 1;
599 #endif /* KMP_GROUP_AFFINITY */
600 typedef DWORD (*kmp_GetActiveProcessorCount_t)(WORD);
601 extern kmp_GetActiveProcessorCount_t __kmp_GetActiveProcessorCount;
602 
603 typedef WORD (*kmp_GetActiveProcessorGroupCount_t)(void);
604 extern kmp_GetActiveProcessorGroupCount_t __kmp_GetActiveProcessorGroupCount;
605 
606 typedef BOOL (*kmp_GetThreadGroupAffinity_t)(HANDLE, GROUP_AFFINITY *);
607 extern kmp_GetThreadGroupAffinity_t __kmp_GetThreadGroupAffinity;
608 
609 typedef BOOL (*kmp_SetThreadGroupAffinity_t)(HANDLE, const GROUP_AFFINITY *,
610                                              GROUP_AFFINITY *);
611 extern kmp_SetThreadGroupAffinity_t __kmp_SetThreadGroupAffinity;
612 #endif /* KMP_OS_WINDOWS */
613 
614 #if KMP_USE_HWLOC
615 extern hwloc_topology_t __kmp_hwloc_topology;
616 extern int __kmp_hwloc_error;
617 extern int __kmp_numa_detected;
618 extern int __kmp_tile_depth;
619 #endif
620 
621 extern size_t __kmp_affin_mask_size;
622 #define KMP_AFFINITY_CAPABLE() (__kmp_affin_mask_size > 0)
623 #define KMP_AFFINITY_DISABLE() (__kmp_affin_mask_size = 0)
624 #define KMP_AFFINITY_ENABLE(mask_size) (__kmp_affin_mask_size = mask_size)
625 #define KMP_CPU_SET_ITERATE(i, mask)                                           \
626   for (i = (mask)->begin(); (int)i != (mask)->end(); i = (mask)->next(i))
627 #define KMP_CPU_SET(i, mask) (mask)->set(i)
628 #define KMP_CPU_ISSET(i, mask) (mask)->is_set(i)
629 #define KMP_CPU_CLR(i, mask) (mask)->clear(i)
630 #define KMP_CPU_ZERO(mask) (mask)->zero()
631 #define KMP_CPU_COPY(dest, src) (dest)->copy(src)
632 #define KMP_CPU_AND(dest, src) (dest)->bitwise_and(src)
633 #define KMP_CPU_COMPLEMENT(max_bit_number, mask) (mask)->bitwise_not()
634 #define KMP_CPU_UNION(dest, src) (dest)->bitwise_or(src)
635 #define KMP_CPU_ALLOC(ptr) (ptr = __kmp_affinity_dispatch->allocate_mask())
636 #define KMP_CPU_FREE(ptr) __kmp_affinity_dispatch->deallocate_mask(ptr)
637 #define KMP_CPU_ALLOC_ON_STACK(ptr) KMP_CPU_ALLOC(ptr)
638 #define KMP_CPU_FREE_FROM_STACK(ptr) KMP_CPU_FREE(ptr)
639 #define KMP_CPU_INTERNAL_ALLOC(ptr) KMP_CPU_ALLOC(ptr)
640 #define KMP_CPU_INTERNAL_FREE(ptr) KMP_CPU_FREE(ptr)
641 #define KMP_CPU_INDEX(arr, i) __kmp_affinity_dispatch->index_mask_array(arr, i)
642 #define KMP_CPU_ALLOC_ARRAY(arr, n)                                            \
643   (arr = __kmp_affinity_dispatch->allocate_mask_array(n))
644 #define KMP_CPU_FREE_ARRAY(arr, n)                                             \
645   __kmp_affinity_dispatch->deallocate_mask_array(arr)
646 #define KMP_CPU_INTERNAL_ALLOC_ARRAY(arr, n) KMP_CPU_ALLOC_ARRAY(arr, n)
647 #define KMP_CPU_INTERNAL_FREE_ARRAY(arr, n) KMP_CPU_FREE_ARRAY(arr, n)
648 #define __kmp_get_system_affinity(mask, abort_bool)                            \
649   (mask)->get_system_affinity(abort_bool)
650 #define __kmp_set_system_affinity(mask, abort_bool)                            \
651   (mask)->set_system_affinity(abort_bool)
652 #define __kmp_get_proc_group(mask) (mask)->get_proc_group()
653 
654 class KMPAffinity {
655 public:
656   class Mask {
657   public:
658     void *operator new(size_t n);
659     void operator delete(void *p);
660     void *operator new[](size_t n);
661     void operator delete[](void *p);
662     virtual ~Mask() {}
663     // Set bit i to 1
664     virtual void set(int i) {}
665     // Return bit i
666     virtual bool is_set(int i) const { return false; }
667     // Set bit i to 0
668     virtual void clear(int i) {}
669     // Zero out entire mask
670     virtual void zero() {}
671     // Copy src into this mask
672     virtual void copy(const Mask *src) {}
673     // this &= rhs
674     virtual void bitwise_and(const Mask *rhs) {}
675     // this |= rhs
676     virtual void bitwise_or(const Mask *rhs) {}
677     // this = ~this
678     virtual void bitwise_not() {}
679     // API for iterating over an affinity mask
680     // for (int i = mask->begin(); i != mask->end(); i = mask->next(i))
681     virtual int begin() const { return 0; }
682     virtual int end() const { return 0; }
683     virtual int next(int previous) const { return 0; }
684     // Set the system's affinity to this affinity mask's value
685     virtual int set_system_affinity(bool abort_on_error) const { return -1; }
686     // Set this affinity mask to the current system affinity
687     virtual int get_system_affinity(bool abort_on_error) { return -1; }
688     // Only 1 DWORD in the mask should have any procs set.
689     // Return the appropriate index, or -1 for an invalid mask.
690     virtual int get_proc_group() const { return -1; }
691   };
692   void *operator new(size_t n);
693   void operator delete(void *p);
694   // Need virtual destructor
695   virtual ~KMPAffinity() = default;
696   // Determine if affinity is capable
697   virtual void determine_capable(const char *env_var) {}
698   // Bind the current thread to os proc
699   virtual void bind_thread(int proc) {}
700   // Factory functions to allocate/deallocate a mask
701   virtual Mask *allocate_mask() { return nullptr; }
702   virtual void deallocate_mask(Mask *m) {}
703   virtual Mask *allocate_mask_array(int num) { return nullptr; }
704   virtual void deallocate_mask_array(Mask *m) {}
705   virtual Mask *index_mask_array(Mask *m, int index) { return nullptr; }
706   static void pick_api();
707   static void destroy_api();
708   enum api_type {
709     NATIVE_OS
710 #if KMP_USE_HWLOC
711     ,
712     HWLOC
713 #endif
714   };
715   virtual api_type get_api_type() const {
716     KMP_ASSERT(0);
717     return NATIVE_OS;
718   }
719 
720 private:
721   static bool picked_api;
722 };
723 
724 typedef KMPAffinity::Mask kmp_affin_mask_t;
725 extern KMPAffinity *__kmp_affinity_dispatch;
726 
727 // Declare local char buffers with this size for printing debug and info
728 // messages, using __kmp_affinity_print_mask().
729 #define KMP_AFFIN_MASK_PRINT_LEN 1024
730 
731 enum affinity_type {
732   affinity_none = 0,
733   affinity_physical,
734   affinity_logical,
735   affinity_compact,
736   affinity_scatter,
737   affinity_explicit,
738   affinity_balanced,
739   affinity_disabled, // not used outsize the env var parser
740   affinity_default
741 };
742 
743 enum affinity_gran {
744   affinity_gran_fine = 0,
745   affinity_gran_thread,
746   affinity_gran_core,
747   affinity_gran_tile,
748   affinity_gran_numa,
749   affinity_gran_package,
750   affinity_gran_node,
751 #if KMP_GROUP_AFFINITY
752   // The "group" granularity isn't necesssarily coarser than all of the
753   // other levels, but we put it last in the enum.
754   affinity_gran_group,
755 #endif /* KMP_GROUP_AFFINITY */
756   affinity_gran_default
757 };
758 
759 enum affinity_top_method {
760   affinity_top_method_all = 0, // try all (supported) methods, in order
761 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
762   affinity_top_method_apicid,
763   affinity_top_method_x2apicid,
764 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
765   affinity_top_method_cpuinfo, // KMP_CPUINFO_FILE is usable on Windows* OS, too
766 #if KMP_GROUP_AFFINITY
767   affinity_top_method_group,
768 #endif /* KMP_GROUP_AFFINITY */
769   affinity_top_method_flat,
770 #if KMP_USE_HWLOC
771   affinity_top_method_hwloc,
772 #endif
773   affinity_top_method_default
774 };
775 
776 #define affinity_respect_mask_default (-1)
777 
778 extern enum affinity_type __kmp_affinity_type; /* Affinity type */
779 extern enum affinity_gran __kmp_affinity_gran; /* Affinity granularity */
780 extern int __kmp_affinity_gran_levels; /* corresponding int value */
781 extern int __kmp_affinity_dups; /* Affinity duplicate masks */
782 extern enum affinity_top_method __kmp_affinity_top_method;
783 extern int __kmp_affinity_compact; /* Affinity 'compact' value */
784 extern int __kmp_affinity_offset; /* Affinity offset value  */
785 extern int __kmp_affinity_verbose; /* Was verbose specified for KMP_AFFINITY? */
786 extern int __kmp_affinity_warnings; /* KMP_AFFINITY warnings enabled ? */
787 extern int __kmp_affinity_respect_mask; // Respect process' init affinity mask?
788 extern char *__kmp_affinity_proclist; /* proc ID list */
789 extern kmp_affin_mask_t *__kmp_affinity_masks;
790 extern unsigned __kmp_affinity_num_masks;
791 extern void __kmp_affinity_bind_thread(int which);
792 
793 extern kmp_affin_mask_t *__kmp_affin_fullMask;
794 extern char *__kmp_cpuinfo_file;
795 
796 #endif /* KMP_AFFINITY_SUPPORTED */
797 
798 // This needs to be kept in sync with the values in omp.h !!!
799 typedef enum kmp_proc_bind_t {
800   proc_bind_false = 0,
801   proc_bind_true,
802   proc_bind_master,
803   proc_bind_close,
804   proc_bind_spread,
805   proc_bind_intel, // use KMP_AFFINITY interface
806   proc_bind_default
807 } kmp_proc_bind_t;
808 
809 typedef struct kmp_nested_proc_bind_t {
810   kmp_proc_bind_t *bind_types;
811   int size;
812   int used;
813 } kmp_nested_proc_bind_t;
814 
815 extern kmp_nested_proc_bind_t __kmp_nested_proc_bind;
816 
817 extern int __kmp_display_affinity;
818 extern char *__kmp_affinity_format;
819 static const size_t KMP_AFFINITY_FORMAT_SIZE = 512;
820 
821 #if KMP_AFFINITY_SUPPORTED
822 #define KMP_PLACE_ALL (-1)
823 #define KMP_PLACE_UNDEFINED (-2)
824 // Is KMP_AFFINITY is being used instead of OMP_PROC_BIND/OMP_PLACES?
825 #define KMP_AFFINITY_NON_PROC_BIND                                             \
826   ((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false ||                 \
827     __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) &&                \
828    (__kmp_affinity_num_masks > 0 || __kmp_affinity_type == affinity_balanced))
829 #endif /* KMP_AFFINITY_SUPPORTED */
830 
831 extern int __kmp_affinity_num_places;
832 
833 typedef enum kmp_cancel_kind_t {
834   cancel_noreq = 0,
835   cancel_parallel = 1,
836   cancel_loop = 2,
837   cancel_sections = 3,
838   cancel_taskgroup = 4
839 } kmp_cancel_kind_t;
840 
841 // KMP_HW_SUBSET support:
842 typedef struct kmp_hws_item {
843   int num;
844   int offset;
845 } kmp_hws_item_t;
846 
847 extern kmp_hws_item_t __kmp_hws_socket;
848 extern kmp_hws_item_t __kmp_hws_node;
849 extern kmp_hws_item_t __kmp_hws_tile;
850 extern kmp_hws_item_t __kmp_hws_core;
851 extern kmp_hws_item_t __kmp_hws_proc;
852 extern int __kmp_hws_requested;
853 extern int __kmp_hws_abs_flag; // absolute or per-item number requested
854 
855 /* ------------------------------------------------------------------------ */
856 
857 #define KMP_PAD(type, sz)                                                      \
858   (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1))
859 
860 // We need to avoid using -1 as a GTID as +1 is added to the gtid
861 // when storing it in a lock, and the value 0 is reserved.
862 #define KMP_GTID_DNE (-2) /* Does not exist */
863 #define KMP_GTID_SHUTDOWN (-3) /* Library is shutting down */
864 #define KMP_GTID_MONITOR (-4) /* Monitor thread ID */
865 #define KMP_GTID_UNKNOWN (-5) /* Is not known */
866 #define KMP_GTID_MIN (-6) /* Minimal gtid for low bound check in DEBUG */
867 
868 /* OpenMP 5.0 Memory Management support */
869 
870 #ifndef __OMP_H
871 // Duplicate type definitions from omp.h
872 typedef uintptr_t omp_uintptr_t;
873 
874 typedef enum {
875   omp_atk_threadmodel = 1,
876   omp_atk_alignment = 2,
877   omp_atk_access = 3,
878   omp_atk_pool_size = 4,
879   omp_atk_fallback = 5,
880   omp_atk_fb_data = 6,
881   omp_atk_pinned = 7,
882   omp_atk_partition = 8
883 } omp_alloctrait_key_t;
884 
885 typedef enum {
886   omp_atv_false = 0,
887   omp_atv_true = 1,
888   omp_atv_default = 2,
889   omp_atv_contended = 3,
890   omp_atv_uncontended = 4,
891   omp_atv_sequential = 5,
892   omp_atv_private = 6,
893   omp_atv_all = 7,
894   omp_atv_thread = 8,
895   omp_atv_pteam = 9,
896   omp_atv_cgroup = 10,
897   omp_atv_default_mem_fb = 11,
898   omp_atv_null_fb = 12,
899   omp_atv_abort_fb = 13,
900   omp_atv_allocator_fb = 14,
901   omp_atv_environment = 15,
902   omp_atv_nearest = 16,
903   omp_atv_blocked = 17,
904   omp_atv_interleaved = 18
905 } omp_alloctrait_value_t;
906 
907 typedef void *omp_memspace_handle_t;
908 extern omp_memspace_handle_t const omp_default_mem_space;
909 extern omp_memspace_handle_t const omp_large_cap_mem_space;
910 extern omp_memspace_handle_t const omp_const_mem_space;
911 extern omp_memspace_handle_t const omp_high_bw_mem_space;
912 extern omp_memspace_handle_t const omp_low_lat_mem_space;
913 
914 typedef struct {
915   omp_alloctrait_key_t key;
916   omp_uintptr_t value;
917 } omp_alloctrait_t;
918 
919 typedef void *omp_allocator_handle_t;
920 extern omp_allocator_handle_t const omp_null_allocator;
921 extern omp_allocator_handle_t const omp_default_mem_alloc;
922 extern omp_allocator_handle_t const omp_large_cap_mem_alloc;
923 extern omp_allocator_handle_t const omp_const_mem_alloc;
924 extern omp_allocator_handle_t const omp_high_bw_mem_alloc;
925 extern omp_allocator_handle_t const omp_low_lat_mem_alloc;
926 extern omp_allocator_handle_t const omp_cgroup_mem_alloc;
927 extern omp_allocator_handle_t const omp_pteam_mem_alloc;
928 extern omp_allocator_handle_t const omp_thread_mem_alloc;
929 extern omp_allocator_handle_t const kmp_max_mem_alloc;
930 extern omp_allocator_handle_t __kmp_def_allocator;
931 
932 // end of duplicate type definitions from omp.h
933 #endif
934 
935 extern int __kmp_memkind_available;
936 
937 typedef omp_memspace_handle_t kmp_memspace_t; // placeholder
938 
939 typedef struct kmp_allocator_t {
940   omp_memspace_handle_t memspace;
941   void **memkind; // pointer to memkind
942   int alignment;
943   omp_alloctrait_value_t fb;
944   kmp_allocator_t *fb_data;
945   kmp_uint64 pool_size;
946   kmp_uint64 pool_used;
947 } kmp_allocator_t;
948 
949 extern omp_allocator_handle_t __kmpc_init_allocator(int gtid,
950                                                     omp_memspace_handle_t,
951                                                     int ntraits,
952                                                     omp_alloctrait_t traits[]);
953 extern void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t al);
954 extern void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t al);
955 extern omp_allocator_handle_t __kmpc_get_default_allocator(int gtid);
956 extern void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al);
957 extern void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
958 
959 extern void __kmp_init_memkind();
960 extern void __kmp_fini_memkind();
961 
962 /* ------------------------------------------------------------------------ */
963 
964 #define KMP_UINT64_MAX                                                         \
965   (~((kmp_uint64)1 << ((sizeof(kmp_uint64) * (1 << 3)) - 1)))
966 
967 #define KMP_MIN_NTH 1
968 
969 #ifndef KMP_MAX_NTH
970 #if defined(PTHREAD_THREADS_MAX) && PTHREAD_THREADS_MAX < INT_MAX
971 #define KMP_MAX_NTH PTHREAD_THREADS_MAX
972 #else
973 #define KMP_MAX_NTH INT_MAX
974 #endif
975 #endif /* KMP_MAX_NTH */
976 
977 #ifdef PTHREAD_STACK_MIN
978 #define KMP_MIN_STKSIZE PTHREAD_STACK_MIN
979 #else
980 #define KMP_MIN_STKSIZE ((size_t)(32 * 1024))
981 #endif
982 
983 #define KMP_MAX_STKSIZE (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
984 
985 #if KMP_ARCH_X86
986 #define KMP_DEFAULT_STKSIZE ((size_t)(2 * 1024 * 1024))
987 #elif KMP_ARCH_X86_64
988 #define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
989 #define KMP_BACKUP_STKSIZE ((size_t)(2 * 1024 * 1024))
990 #else
991 #define KMP_DEFAULT_STKSIZE ((size_t)(1024 * 1024))
992 #endif
993 
994 #define KMP_DEFAULT_MALLOC_POOL_INCR ((size_t)(1024 * 1024))
995 #define KMP_MIN_MALLOC_POOL_INCR ((size_t)(4 * 1024))
996 #define KMP_MAX_MALLOC_POOL_INCR                                               \
997   (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
998 
999 #define KMP_MIN_STKOFFSET (0)
1000 #define KMP_MAX_STKOFFSET KMP_MAX_STKSIZE
1001 #if KMP_OS_DARWIN
1002 #define KMP_DEFAULT_STKOFFSET KMP_MIN_STKOFFSET
1003 #else
1004 #define KMP_DEFAULT_STKOFFSET CACHE_LINE
1005 #endif
1006 
1007 #define KMP_MIN_STKPADDING (0)
1008 #define KMP_MAX_STKPADDING (2 * 1024 * 1024)
1009 
1010 #define KMP_BLOCKTIME_MULTIPLIER                                               \
1011   (1000) /* number of blocktime units per second */
1012 #define KMP_MIN_BLOCKTIME (0)
1013 #define KMP_MAX_BLOCKTIME                                                      \
1014   (INT_MAX) /* Must be this for "infinite" setting the work */
1015 #define KMP_DEFAULT_BLOCKTIME (200) /*  __kmp_blocktime is in milliseconds  */
1016 
1017 #if KMP_USE_MONITOR
1018 #define KMP_DEFAULT_MONITOR_STKSIZE ((size_t)(64 * 1024))
1019 #define KMP_MIN_MONITOR_WAKEUPS (1) // min times monitor wakes up per second
1020 #define KMP_MAX_MONITOR_WAKEUPS (1000) // max times monitor can wake up per sec
1021 
1022 /* Calculate new number of monitor wakeups for a specific block time based on
1023    previous monitor_wakeups. Only allow increasing number of wakeups */
1024 #define KMP_WAKEUPS_FROM_BLOCKTIME(blocktime, monitor_wakeups)                 \
1025   (((blocktime) == KMP_MAX_BLOCKTIME)                                          \
1026        ? (monitor_wakeups)                                                     \
1027        : ((blocktime) == KMP_MIN_BLOCKTIME)                                    \
1028              ? KMP_MAX_MONITOR_WAKEUPS                                         \
1029              : ((monitor_wakeups) > (KMP_BLOCKTIME_MULTIPLIER / (blocktime)))  \
1030                    ? (monitor_wakeups)                                         \
1031                    : (KMP_BLOCKTIME_MULTIPLIER) / (blocktime))
1032 
1033 /* Calculate number of intervals for a specific block time based on
1034    monitor_wakeups */
1035 #define KMP_INTERVALS_FROM_BLOCKTIME(blocktime, monitor_wakeups)               \
1036   (((blocktime) + (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) - 1) /        \
1037    (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)))
1038 #else
1039 #define KMP_BLOCKTIME(team, tid)                                               \
1040   (get__bt_set(team, tid) ? get__blocktime(team, tid) : __kmp_dflt_blocktime)
1041 #if KMP_OS_UNIX && (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1042 // HW TSC is used to reduce overhead (clock tick instead of nanosecond).
1043 extern kmp_uint64 __kmp_ticks_per_msec;
1044 #if KMP_COMPILER_ICC
1045 #define KMP_NOW() ((kmp_uint64)_rdtsc())
1046 #else
1047 #define KMP_NOW() __kmp_hardware_timestamp()
1048 #endif
1049 #define KMP_NOW_MSEC() (KMP_NOW() / __kmp_ticks_per_msec)
1050 #define KMP_BLOCKTIME_INTERVAL(team, tid)                                      \
1051   (KMP_BLOCKTIME(team, tid) * __kmp_ticks_per_msec)
1052 #define KMP_BLOCKING(goal, count) ((goal) > KMP_NOW())
1053 #else
1054 // System time is retrieved sporadically while blocking.
1055 extern kmp_uint64 __kmp_now_nsec();
1056 #define KMP_NOW() __kmp_now_nsec()
1057 #define KMP_NOW_MSEC() (KMP_NOW() / KMP_USEC_PER_SEC)
1058 #define KMP_BLOCKTIME_INTERVAL(team, tid)                                      \
1059   (KMP_BLOCKTIME(team, tid) * KMP_USEC_PER_SEC)
1060 #define KMP_BLOCKING(goal, count) ((count) % 1000 != 0 || (goal) > KMP_NOW())
1061 #endif
1062 #endif // KMP_USE_MONITOR
1063 
1064 #define KMP_MIN_STATSCOLS 40
1065 #define KMP_MAX_STATSCOLS 4096
1066 #define KMP_DEFAULT_STATSCOLS 80
1067 
1068 #define KMP_MIN_INTERVAL 0
1069 #define KMP_MAX_INTERVAL (INT_MAX - 1)
1070 #define KMP_DEFAULT_INTERVAL 0
1071 
1072 #define KMP_MIN_CHUNK 1
1073 #define KMP_MAX_CHUNK (INT_MAX - 1)
1074 #define KMP_DEFAULT_CHUNK 1
1075 
1076 #define KMP_DFLT_DISP_NUM_BUFF 7
1077 #define KMP_MAX_ORDERED 8
1078 
1079 #define KMP_MAX_FIELDS 32
1080 
1081 #define KMP_MAX_BRANCH_BITS 31
1082 
1083 #define KMP_MAX_ACTIVE_LEVELS_LIMIT INT_MAX
1084 
1085 #define KMP_MAX_DEFAULT_DEVICE_LIMIT INT_MAX
1086 
1087 #define KMP_MAX_TASK_PRIORITY_LIMIT INT_MAX
1088 
1089 /* Minimum number of threads before switch to TLS gtid (experimentally
1090    determined) */
1091 /* josh TODO: what about OS X* tuning? */
1092 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1093 #define KMP_TLS_GTID_MIN 5
1094 #else
1095 #define KMP_TLS_GTID_MIN INT_MAX
1096 #endif
1097 
1098 #define KMP_MASTER_TID(tid) ((tid) == 0)
1099 #define KMP_WORKER_TID(tid) ((tid) != 0)
1100 
1101 #define KMP_MASTER_GTID(gtid) (__kmp_tid_from_gtid((gtid)) == 0)
1102 #define KMP_WORKER_GTID(gtid) (__kmp_tid_from_gtid((gtid)) != 0)
1103 #define KMP_INITIAL_GTID(gtid) ((gtid) == 0)
1104 
1105 #ifndef TRUE
1106 #define FALSE 0
1107 #define TRUE (!FALSE)
1108 #endif
1109 
1110 /* NOTE: all of the following constants must be even */
1111 
1112 #if KMP_OS_WINDOWS
1113 #define KMP_INIT_WAIT 64U /* initial number of spin-tests   */
1114 #define KMP_NEXT_WAIT 32U /* susequent number of spin-tests */
1115 #elif KMP_OS_CNK
1116 #define KMP_INIT_WAIT 16U /* initial number of spin-tests   */
1117 #define KMP_NEXT_WAIT 8U /* susequent number of spin-tests */
1118 #elif KMP_OS_LINUX
1119 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1120 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1121 #elif KMP_OS_DARWIN
1122 /* TODO: tune for KMP_OS_DARWIN */
1123 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1124 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1125 #elif KMP_OS_DRAGONFLY
1126 /* TODO: tune for KMP_OS_DRAGONFLY */
1127 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1128 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1129 #elif KMP_OS_FREEBSD
1130 /* TODO: tune for KMP_OS_FREEBSD */
1131 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1132 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1133 #elif KMP_OS_NETBSD
1134 /* TODO: tune for KMP_OS_NETBSD */
1135 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1136 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1137 #elif KMP_OS_HURD
1138 /* TODO: tune for KMP_OS_HURD */
1139 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1140 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1141 #elif KMP_OS_OPENBSD
1142 /* TODO: tune for KMP_OS_OPENBSD */
1143 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1144 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1145 #endif
1146 
1147 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1148 typedef struct kmp_cpuid {
1149   kmp_uint32 eax;
1150   kmp_uint32 ebx;
1151   kmp_uint32 ecx;
1152   kmp_uint32 edx;
1153 } kmp_cpuid_t;
1154 
1155 typedef struct kmp_cpuinfo {
1156   int initialized; // If 0, other fields are not initialized.
1157   int signature; // CPUID(1).EAX
1158   int family; // CPUID(1).EAX[27:20]+CPUID(1).EAX[11:8] (Extended Family+Family)
1159   int model; // ( CPUID(1).EAX[19:16] << 4 ) + CPUID(1).EAX[7:4] ( ( Extended
1160   // Model << 4 ) + Model)
1161   int stepping; // CPUID(1).EAX[3:0] ( Stepping )
1162   int sse2; // 0 if SSE2 instructions are not supported, 1 otherwise.
1163   int rtm; // 0 if RTM instructions are not supported, 1 otherwise.
1164   int cpu_stackoffset;
1165   int apic_id;
1166   int physical_id;
1167   int logical_id;
1168   kmp_uint64 frequency; // Nominal CPU frequency in Hz.
1169   char name[3 * sizeof(kmp_cpuid_t)]; // CPUID(0x80000002,0x80000003,0x80000004)
1170 } kmp_cpuinfo_t;
1171 
1172 extern void __kmp_query_cpuid(kmp_cpuinfo_t *p);
1173 
1174 #if KMP_OS_UNIX
1175 // subleaf is only needed for cache and topology discovery and can be set to
1176 // zero in most cases
1177 static inline void __kmp_x86_cpuid(int leaf, int subleaf, struct kmp_cpuid *p) {
1178   __asm__ __volatile__("cpuid"
1179                        : "=a"(p->eax), "=b"(p->ebx), "=c"(p->ecx), "=d"(p->edx)
1180                        : "a"(leaf), "c"(subleaf));
1181 }
1182 // Load p into FPU control word
1183 static inline void __kmp_load_x87_fpu_control_word(const kmp_int16 *p) {
1184   __asm__ __volatile__("fldcw %0" : : "m"(*p));
1185 }
1186 // Store FPU control word into p
1187 static inline void __kmp_store_x87_fpu_control_word(kmp_int16 *p) {
1188   __asm__ __volatile__("fstcw %0" : "=m"(*p));
1189 }
1190 static inline void __kmp_clear_x87_fpu_status_word() {
1191 #if KMP_MIC
1192   // 32-bit protected mode x87 FPU state
1193   struct x87_fpu_state {
1194     unsigned cw;
1195     unsigned sw;
1196     unsigned tw;
1197     unsigned fip;
1198     unsigned fips;
1199     unsigned fdp;
1200     unsigned fds;
1201   };
1202   struct x87_fpu_state fpu_state = {0, 0, 0, 0, 0, 0, 0};
1203   __asm__ __volatile__("fstenv %0\n\t" // store FP env
1204                        "andw $0x7f00, %1\n\t" // clear 0-7,15 bits of FP SW
1205                        "fldenv %0\n\t" // load FP env back
1206                        : "+m"(fpu_state), "+m"(fpu_state.sw));
1207 #else
1208   __asm__ __volatile__("fnclex");
1209 #endif // KMP_MIC
1210 }
1211 #if __SSE__
1212 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1213 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1214 #else
1215 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) {}
1216 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = 0; }
1217 #endif
1218 #else
1219 // Windows still has these as external functions in assembly file
1220 extern void __kmp_x86_cpuid(int mode, int mode2, struct kmp_cpuid *p);
1221 extern void __kmp_load_x87_fpu_control_word(const kmp_int16 *p);
1222 extern void __kmp_store_x87_fpu_control_word(kmp_int16 *p);
1223 extern void __kmp_clear_x87_fpu_status_word();
1224 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1225 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1226 #endif // KMP_OS_UNIX
1227 
1228 #define KMP_X86_MXCSR_MASK 0xffffffc0 /* ignore status flags (6 lsb) */
1229 
1230 #if KMP_ARCH_X86
1231 extern void __kmp_x86_pause(void);
1232 #elif KMP_MIC
1233 // Performance testing on KNC (C0QS-7120 P/A/X/D, 61-core, 16 GB Memory) showed
1234 // regression after removal of extra PAUSE from spin loops. Changing
1235 // the delay from 100 to 300 showed even better performance than double PAUSE
1236 // on Spec OMP2001 and LCPC tasking tests, no regressions on EPCC.
1237 static inline void __kmp_x86_pause(void) { _mm_delay_32(300); }
1238 #else
1239 static inline void __kmp_x86_pause(void) { _mm_pause(); }
1240 #endif
1241 #define KMP_CPU_PAUSE() __kmp_x86_pause()
1242 #elif KMP_ARCH_PPC64
1243 #define KMP_PPC64_PRI_LOW() __asm__ volatile("or 1, 1, 1")
1244 #define KMP_PPC64_PRI_MED() __asm__ volatile("or 2, 2, 2")
1245 #define KMP_PPC64_PRI_LOC_MB() __asm__ volatile("" : : : "memory")
1246 #define KMP_CPU_PAUSE()                                                        \
1247   do {                                                                         \
1248     KMP_PPC64_PRI_LOW();                                                       \
1249     KMP_PPC64_PRI_MED();                                                       \
1250     KMP_PPC64_PRI_LOC_MB();                                                    \
1251   } while (0)
1252 #else
1253 #define KMP_CPU_PAUSE() /* nothing to do */
1254 #endif
1255 
1256 #define KMP_INIT_YIELD(count)                                                  \
1257   { (count) = __kmp_yield_init; }
1258 
1259 #define KMP_OVERSUBSCRIBED                                                     \
1260   (TCR_4(__kmp_nth) > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc))
1261 
1262 #define KMP_TRY_YIELD                                                          \
1263   ((__kmp_use_yield == 1) || (__kmp_use_yield == 2 && (KMP_OVERSUBSCRIBED)))
1264 
1265 #define KMP_TRY_YIELD_OVERSUB                                                  \
1266   ((__kmp_use_yield == 1 || __kmp_use_yield == 2) && (KMP_OVERSUBSCRIBED))
1267 
1268 #define KMP_YIELD(cond)                                                        \
1269   {                                                                            \
1270     KMP_CPU_PAUSE();                                                           \
1271     if ((cond) && (KMP_TRY_YIELD))                                             \
1272       __kmp_yield();                                                           \
1273   }
1274 
1275 #define KMP_YIELD_OVERSUB()                                                    \
1276   {                                                                            \
1277     KMP_CPU_PAUSE();                                                           \
1278     if ((KMP_TRY_YIELD_OVERSUB))                                               \
1279       __kmp_yield();                                                           \
1280   }
1281 
1282 // Note the decrement of 2 in the following Macros. With KMP_LIBRARY=turnaround,
1283 // there should be no yielding since initial value from KMP_INIT_YIELD() is odd.
1284 #define KMP_YIELD_SPIN(count)                                                  \
1285   {                                                                            \
1286     KMP_CPU_PAUSE();                                                           \
1287     if (KMP_TRY_YIELD) {                                                       \
1288       (count) -= 2;                                                            \
1289       if (!(count)) {                                                          \
1290         __kmp_yield();                                                         \
1291         (count) = __kmp_yield_next;                                            \
1292       }                                                                        \
1293     }                                                                          \
1294   }
1295 
1296 #define KMP_YIELD_OVERSUB_ELSE_SPIN(count)                                     \
1297   {                                                                            \
1298     KMP_CPU_PAUSE();                                                           \
1299     if ((KMP_TRY_YIELD_OVERSUB))                                               \
1300       __kmp_yield();                                                           \
1301     else if (__kmp_use_yield == 1) {                                           \
1302       (count) -= 2;                                                            \
1303       if (!(count)) {                                                          \
1304         __kmp_yield();                                                         \
1305         (count) = __kmp_yield_next;                                            \
1306       }                                                                        \
1307     }                                                                          \
1308   }
1309 
1310 /* ------------------------------------------------------------------------ */
1311 /* Support datatypes for the orphaned construct nesting checks.             */
1312 /* ------------------------------------------------------------------------ */
1313 
1314 enum cons_type {
1315   ct_none,
1316   ct_parallel,
1317   ct_pdo,
1318   ct_pdo_ordered,
1319   ct_psections,
1320   ct_psingle,
1321   ct_critical,
1322   ct_ordered_in_parallel,
1323   ct_ordered_in_pdo,
1324   ct_master,
1325   ct_reduce,
1326   ct_barrier
1327 };
1328 
1329 #define IS_CONS_TYPE_ORDERED(ct) ((ct) == ct_pdo_ordered)
1330 
1331 struct cons_data {
1332   ident_t const *ident;
1333   enum cons_type type;
1334   int prev;
1335   kmp_user_lock_p
1336       name; /* address exclusively for critical section name comparison */
1337 };
1338 
1339 struct cons_header {
1340   int p_top, w_top, s_top;
1341   int stack_size, stack_top;
1342   struct cons_data *stack_data;
1343 };
1344 
1345 struct kmp_region_info {
1346   char *text;
1347   int offset[KMP_MAX_FIELDS];
1348   int length[KMP_MAX_FIELDS];
1349 };
1350 
1351 /* ---------------------------------------------------------------------- */
1352 /* ---------------------------------------------------------------------- */
1353 
1354 #if KMP_OS_WINDOWS
1355 typedef HANDLE kmp_thread_t;
1356 typedef DWORD kmp_key_t;
1357 #endif /* KMP_OS_WINDOWS */
1358 
1359 #if KMP_OS_UNIX
1360 typedef pthread_t kmp_thread_t;
1361 typedef pthread_key_t kmp_key_t;
1362 #endif
1363 
1364 extern kmp_key_t __kmp_gtid_threadprivate_key;
1365 
1366 typedef struct kmp_sys_info {
1367   long maxrss; /* the maximum resident set size utilized (in kilobytes)     */
1368   long minflt; /* the number of page faults serviced without any I/O        */
1369   long majflt; /* the number of page faults serviced that required I/O      */
1370   long nswap; /* the number of times a process was "swapped" out of memory */
1371   long inblock; /* the number of times the file system had to perform input  */
1372   long oublock; /* the number of times the file system had to perform output */
1373   long nvcsw; /* the number of times a context switch was voluntarily      */
1374   long nivcsw; /* the number of times a context switch was forced           */
1375 } kmp_sys_info_t;
1376 
1377 #if USE_ITT_BUILD
1378 // We cannot include "kmp_itt.h" due to circular dependency. Declare the only
1379 // required type here. Later we will check the type meets requirements.
1380 typedef int kmp_itt_mark_t;
1381 #define KMP_ITT_DEBUG 0
1382 #endif /* USE_ITT_BUILD */
1383 
1384 typedef kmp_int32 kmp_critical_name[8];
1385 
1386 /*!
1387 @ingroup PARALLEL
1388 The type for a microtask which gets passed to @ref __kmpc_fork_call().
1389 The arguments to the outlined function are
1390 @param global_tid the global thread identity of the thread executing the
1391 function.
1392 @param bound_tid  the local identity of the thread executing the function
1393 @param ... pointers to shared variables accessed by the function.
1394 */
1395 typedef void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid, ...);
1396 typedef void (*kmpc_micro_bound)(kmp_int32 *bound_tid, kmp_int32 *bound_nth,
1397                                  ...);
1398 
1399 /*!
1400 @ingroup THREADPRIVATE
1401 @{
1402 */
1403 /* ---------------------------------------------------------------------------
1404  */
1405 /* Threadprivate initialization/finalization function declarations */
1406 
1407 /*  for non-array objects:  __kmpc_threadprivate_register()  */
1408 
1409 /*!
1410  Pointer to the constructor function.
1411  The first argument is the <tt>this</tt> pointer
1412 */
1413 typedef void *(*kmpc_ctor)(void *);
1414 
1415 /*!
1416  Pointer to the destructor function.
1417  The first argument is the <tt>this</tt> pointer
1418 */
1419 typedef void (*kmpc_dtor)(
1420     void * /*, size_t */); /* 2nd arg: magic number for KCC unused by Intel
1421                               compiler */
1422 /*!
1423  Pointer to an alternate constructor.
1424  The first argument is the <tt>this</tt> pointer.
1425 */
1426 typedef void *(*kmpc_cctor)(void *, void *);
1427 
1428 /* for array objects: __kmpc_threadprivate_register_vec() */
1429 /* First arg: "this" pointer */
1430 /* Last arg: number of array elements */
1431 /*!
1432  Array constructor.
1433  First argument is the <tt>this</tt> pointer
1434  Second argument the number of array elements.
1435 */
1436 typedef void *(*kmpc_ctor_vec)(void *, size_t);
1437 /*!
1438  Pointer to the array destructor function.
1439  The first argument is the <tt>this</tt> pointer
1440  Second argument the number of array elements.
1441 */
1442 typedef void (*kmpc_dtor_vec)(void *, size_t);
1443 /*!
1444  Array constructor.
1445  First argument is the <tt>this</tt> pointer
1446  Third argument the number of array elements.
1447 */
1448 typedef void *(*kmpc_cctor_vec)(void *, void *,
1449                                 size_t); /* function unused by compiler */
1450 
1451 /*!
1452 @}
1453 */
1454 
1455 /* keeps tracked of threadprivate cache allocations for cleanup later */
1456 typedef struct kmp_cached_addr {
1457   void **addr; /* address of allocated cache */
1458   void ***compiler_cache; /* pointer to compiler's cache */
1459   void *data; /* pointer to global data */
1460   struct kmp_cached_addr *next; /* pointer to next cached address */
1461 } kmp_cached_addr_t;
1462 
1463 struct private_data {
1464   struct private_data *next; /* The next descriptor in the list      */
1465   void *data; /* The data buffer for this descriptor  */
1466   int more; /* The repeat count for this descriptor */
1467   size_t size; /* The data size for this descriptor    */
1468 };
1469 
1470 struct private_common {
1471   struct private_common *next;
1472   struct private_common *link;
1473   void *gbl_addr;
1474   void *par_addr; /* par_addr == gbl_addr for MASTER thread */
1475   size_t cmn_size;
1476 };
1477 
1478 struct shared_common {
1479   struct shared_common *next;
1480   struct private_data *pod_init;
1481   void *obj_init;
1482   void *gbl_addr;
1483   union {
1484     kmpc_ctor ctor;
1485     kmpc_ctor_vec ctorv;
1486   } ct;
1487   union {
1488     kmpc_cctor cctor;
1489     kmpc_cctor_vec cctorv;
1490   } cct;
1491   union {
1492     kmpc_dtor dtor;
1493     kmpc_dtor_vec dtorv;
1494   } dt;
1495   size_t vec_len;
1496   int is_vec;
1497   size_t cmn_size;
1498 };
1499 
1500 #define KMP_HASH_TABLE_LOG2 9 /* log2 of the hash table size */
1501 #define KMP_HASH_TABLE_SIZE                                                    \
1502   (1 << KMP_HASH_TABLE_LOG2) /* size of the hash table */
1503 #define KMP_HASH_SHIFT 3 /* throw away this many low bits from the address */
1504 #define KMP_HASH(x)                                                            \
1505   ((((kmp_uintptr_t)x) >> KMP_HASH_SHIFT) & (KMP_HASH_TABLE_SIZE - 1))
1506 
1507 struct common_table {
1508   struct private_common *data[KMP_HASH_TABLE_SIZE];
1509 };
1510 
1511 struct shared_table {
1512   struct shared_common *data[KMP_HASH_TABLE_SIZE];
1513 };
1514 
1515 /* ------------------------------------------------------------------------ */
1516 
1517 #if KMP_USE_HIER_SCHED
1518 // Shared barrier data that exists inside a single unit of the scheduling
1519 // hierarchy
1520 typedef struct kmp_hier_private_bdata_t {
1521   kmp_int32 num_active;
1522   kmp_uint64 index;
1523   kmp_uint64 wait_val[2];
1524 } kmp_hier_private_bdata_t;
1525 #endif
1526 
1527 typedef struct kmp_sched_flags {
1528   unsigned ordered : 1;
1529   unsigned nomerge : 1;
1530   unsigned contains_last : 1;
1531 #if KMP_USE_HIER_SCHED
1532   unsigned use_hier : 1;
1533   unsigned unused : 28;
1534 #else
1535   unsigned unused : 29;
1536 #endif
1537 } kmp_sched_flags_t;
1538 
1539 KMP_BUILD_ASSERT(sizeof(kmp_sched_flags_t) == 4);
1540 
1541 #if KMP_STATIC_STEAL_ENABLED
1542 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1543   kmp_int32 count;
1544   kmp_int32 ub;
1545   /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1546   kmp_int32 lb;
1547   kmp_int32 st;
1548   kmp_int32 tc;
1549   kmp_int32 static_steal_counter; /* for static_steal only; maybe better to put
1550                                      after ub */
1551   kmp_lock_t *th_steal_lock; // lock used for chunk stealing
1552   // KMP_ALIGN( 16 ) ensures ( if the KMP_ALIGN macro is turned on )
1553   //    a) parm3 is properly aligned and
1554   //    b) all parm1-4 are in the same cache line.
1555   // Because of parm1-4 are used together, performance seems to be better
1556   // if they are in the same line (not measured though).
1557 
1558   struct KMP_ALIGN(32) { // AC: changed 16 to 32 in order to simplify template
1559     kmp_int32 parm1; //     structures in kmp_dispatch.cpp. This should
1560     kmp_int32 parm2; //     make no real change at least while padding is off.
1561     kmp_int32 parm3;
1562     kmp_int32 parm4;
1563   };
1564 
1565   kmp_uint32 ordered_lower;
1566   kmp_uint32 ordered_upper;
1567 #if KMP_OS_WINDOWS
1568   // This var can be placed in the hole between 'tc' and 'parm1', instead of
1569   // 'static_steal_counter'. It would be nice to measure execution times.
1570   // Conditional if/endif can be removed at all.
1571   kmp_int32 last_upper;
1572 #endif /* KMP_OS_WINDOWS */
1573 } dispatch_private_info32_t;
1574 
1575 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1576   kmp_int64 count; // current chunk number for static & static-steal scheduling
1577   kmp_int64 ub; /* upper-bound */
1578   /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1579   kmp_int64 lb; /* lower-bound */
1580   kmp_int64 st; /* stride */
1581   kmp_int64 tc; /* trip count (number of iterations) */
1582   kmp_int64 static_steal_counter; /* for static_steal only; maybe better to put
1583                                      after ub */
1584   kmp_lock_t *th_steal_lock; // lock used for chunk stealing
1585   /* parm[1-4] are used in different ways by different scheduling algorithms */
1586 
1587   // KMP_ALIGN( 32 ) ensures ( if the KMP_ALIGN macro is turned on )
1588   //    a) parm3 is properly aligned and
1589   //    b) all parm1-4 are in the same cache line.
1590   // Because of parm1-4 are used together, performance seems to be better
1591   // if they are in the same line (not measured though).
1592 
1593   struct KMP_ALIGN(32) {
1594     kmp_int64 parm1;
1595     kmp_int64 parm2;
1596     kmp_int64 parm3;
1597     kmp_int64 parm4;
1598   };
1599 
1600   kmp_uint64 ordered_lower;
1601   kmp_uint64 ordered_upper;
1602 #if KMP_OS_WINDOWS
1603   // This var can be placed in the hole between 'tc' and 'parm1', instead of
1604   // 'static_steal_counter'. It would be nice to measure execution times.
1605   // Conditional if/endif can be removed at all.
1606   kmp_int64 last_upper;
1607 #endif /* KMP_OS_WINDOWS */
1608 } dispatch_private_info64_t;
1609 #else /* KMP_STATIC_STEAL_ENABLED */
1610 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1611   kmp_int32 lb;
1612   kmp_int32 ub;
1613   kmp_int32 st;
1614   kmp_int32 tc;
1615 
1616   kmp_int32 parm1;
1617   kmp_int32 parm2;
1618   kmp_int32 parm3;
1619   kmp_int32 parm4;
1620 
1621   kmp_int32 count;
1622 
1623   kmp_uint32 ordered_lower;
1624   kmp_uint32 ordered_upper;
1625 #if KMP_OS_WINDOWS
1626   kmp_int32 last_upper;
1627 #endif /* KMP_OS_WINDOWS */
1628 } dispatch_private_info32_t;
1629 
1630 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1631   kmp_int64 lb; /* lower-bound */
1632   kmp_int64 ub; /* upper-bound */
1633   kmp_int64 st; /* stride */
1634   kmp_int64 tc; /* trip count (number of iterations) */
1635 
1636   /* parm[1-4] are used in different ways by different scheduling algorithms */
1637   kmp_int64 parm1;
1638   kmp_int64 parm2;
1639   kmp_int64 parm3;
1640   kmp_int64 parm4;
1641 
1642   kmp_int64 count; /* current chunk number for static scheduling */
1643 
1644   kmp_uint64 ordered_lower;
1645   kmp_uint64 ordered_upper;
1646 #if KMP_OS_WINDOWS
1647   kmp_int64 last_upper;
1648 #endif /* KMP_OS_WINDOWS */
1649 } dispatch_private_info64_t;
1650 #endif /* KMP_STATIC_STEAL_ENABLED */
1651 
1652 typedef struct KMP_ALIGN_CACHE dispatch_private_info {
1653   union private_info {
1654     dispatch_private_info32_t p32;
1655     dispatch_private_info64_t p64;
1656   } u;
1657   enum sched_type schedule; /* scheduling algorithm */
1658   kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */
1659   kmp_int32 ordered_bumped;
1660   // To retain the structure size after making ordered_iteration scalar
1661   kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 3];
1662   // Stack of buffers for nest of serial regions
1663   struct dispatch_private_info *next;
1664   kmp_int32 type_size; /* the size of types in private_info */
1665 #if KMP_USE_HIER_SCHED
1666   kmp_int32 hier_id;
1667   void *parent; /* hierarchical scheduling parent pointer */
1668 #endif
1669   enum cons_type pushed_ws;
1670 } dispatch_private_info_t;
1671 
1672 typedef struct dispatch_shared_info32 {
1673   /* chunk index under dynamic, number of idle threads under static-steal;
1674      iteration index otherwise */
1675   volatile kmp_uint32 iteration;
1676   volatile kmp_uint32 num_done;
1677   volatile kmp_uint32 ordered_iteration;
1678   // Dummy to retain the structure size after making ordered_iteration scalar
1679   kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 1];
1680 } dispatch_shared_info32_t;
1681 
1682 typedef struct dispatch_shared_info64 {
1683   /* chunk index under dynamic, number of idle threads under static-steal;
1684      iteration index otherwise */
1685   volatile kmp_uint64 iteration;
1686   volatile kmp_uint64 num_done;
1687   volatile kmp_uint64 ordered_iteration;
1688   // Dummy to retain the structure size after making ordered_iteration scalar
1689   kmp_int64 ordered_dummy[KMP_MAX_ORDERED - 3];
1690 } dispatch_shared_info64_t;
1691 
1692 typedef struct dispatch_shared_info {
1693   union shared_info {
1694     dispatch_shared_info32_t s32;
1695     dispatch_shared_info64_t s64;
1696   } u;
1697   volatile kmp_uint32 buffer_index;
1698   volatile kmp_int32 doacross_buf_idx; // teamwise index
1699   volatile kmp_uint32 *doacross_flags; // shared array of iteration flags (0/1)
1700   kmp_int32 doacross_num_done; // count finished threads
1701 #if KMP_USE_HIER_SCHED
1702   void *hier;
1703 #endif
1704 #if KMP_USE_HWLOC
1705   // When linking with libhwloc, the ORDERED EPCC test slows down on big
1706   // machines (> 48 cores). Performance analysis showed that a cache thrash
1707   // was occurring and this padding helps alleviate the problem.
1708   char padding[64];
1709 #endif
1710 } dispatch_shared_info_t;
1711 
1712 typedef struct kmp_disp {
1713   /* Vector for ORDERED SECTION */
1714   void (*th_deo_fcn)(int *gtid, int *cid, ident_t *);
1715   /* Vector for END ORDERED SECTION */
1716   void (*th_dxo_fcn)(int *gtid, int *cid, ident_t *);
1717 
1718   dispatch_shared_info_t *th_dispatch_sh_current;
1719   dispatch_private_info_t *th_dispatch_pr_current;
1720 
1721   dispatch_private_info_t *th_disp_buffer;
1722   kmp_int32 th_disp_index;
1723   kmp_int32 th_doacross_buf_idx; // thread's doacross buffer index
1724   volatile kmp_uint32 *th_doacross_flags; // pointer to shared array of flags
1725   kmp_int64 *th_doacross_info; // info on loop bounds
1726 #if KMP_USE_INTERNODE_ALIGNMENT
1727   char more_padding[INTERNODE_CACHE_LINE];
1728 #endif
1729 } kmp_disp_t;
1730 
1731 /* ------------------------------------------------------------------------ */
1732 /* Barrier stuff */
1733 
1734 /* constants for barrier state update */
1735 #define KMP_INIT_BARRIER_STATE 0 /* should probably start from zero */
1736 #define KMP_BARRIER_SLEEP_BIT 0 /* bit used for suspend/sleep part of state */
1737 #define KMP_BARRIER_UNUSED_BIT 1 // bit that must never be set for valid state
1738 #define KMP_BARRIER_BUMP_BIT 2 /* lsb used for bump of go/arrived state */
1739 
1740 #define KMP_BARRIER_SLEEP_STATE (1 << KMP_BARRIER_SLEEP_BIT)
1741 #define KMP_BARRIER_UNUSED_STATE (1 << KMP_BARRIER_UNUSED_BIT)
1742 #define KMP_BARRIER_STATE_BUMP (1 << KMP_BARRIER_BUMP_BIT)
1743 
1744 #if (KMP_BARRIER_SLEEP_BIT >= KMP_BARRIER_BUMP_BIT)
1745 #error "Barrier sleep bit must be smaller than barrier bump bit"
1746 #endif
1747 #if (KMP_BARRIER_UNUSED_BIT >= KMP_BARRIER_BUMP_BIT)
1748 #error "Barrier unused bit must be smaller than barrier bump bit"
1749 #endif
1750 
1751 // Constants for release barrier wait state: currently, hierarchical only
1752 #define KMP_BARRIER_NOT_WAITING 0 // Normal state; worker not in wait_sleep
1753 #define KMP_BARRIER_OWN_FLAG                                                   \
1754   1 // Normal state; worker waiting on own b_go flag in release
1755 #define KMP_BARRIER_PARENT_FLAG                                                \
1756   2 // Special state; worker waiting on parent's b_go flag in release
1757 #define KMP_BARRIER_SWITCH_TO_OWN_FLAG                                         \
1758   3 // Special state; tells worker to shift from parent to own b_go
1759 #define KMP_BARRIER_SWITCHING                                                  \
1760   4 // Special state; worker resets appropriate flag on wake-up
1761 
1762 #define KMP_NOT_SAFE_TO_REAP                                                   \
1763   0 // Thread th_reap_state: not safe to reap (tasking)
1764 #define KMP_SAFE_TO_REAP 1 // Thread th_reap_state: safe to reap (not tasking)
1765 
1766 enum barrier_type {
1767   bs_plain_barrier = 0, /* 0, All non-fork/join barriers (except reduction
1768                            barriers if enabled) */
1769   bs_forkjoin_barrier, /* 1, All fork/join (parallel region) barriers */
1770 #if KMP_FAST_REDUCTION_BARRIER
1771   bs_reduction_barrier, /* 2, All barriers that are used in reduction */
1772 #endif // KMP_FAST_REDUCTION_BARRIER
1773   bs_last_barrier /* Just a placeholder to mark the end */
1774 };
1775 
1776 // to work with reduction barriers just like with plain barriers
1777 #if !KMP_FAST_REDUCTION_BARRIER
1778 #define bs_reduction_barrier bs_plain_barrier
1779 #endif // KMP_FAST_REDUCTION_BARRIER
1780 
1781 typedef enum kmp_bar_pat { /* Barrier communication patterns */
1782                            bp_linear_bar =
1783                                0, /* Single level (degenerate) tree */
1784                            bp_tree_bar =
1785                                1, /* Balanced tree with branching factor 2^n */
1786                            bp_hyper_bar =
1787                                2, /* Hypercube-embedded tree with min branching
1788                                      factor 2^n */
1789                            bp_hierarchical_bar = 3, /* Machine hierarchy tree */
1790                            bp_last_bar /* Placeholder to mark the end */
1791 } kmp_bar_pat_e;
1792 
1793 #define KMP_BARRIER_ICV_PUSH 1
1794 
1795 /* Record for holding the values of the internal controls stack records */
1796 typedef struct kmp_internal_control {
1797   int serial_nesting_level; /* corresponds to the value of the
1798                                th_team_serialized field */
1799   kmp_int8 dynamic; /* internal control for dynamic adjustment of threads (per
1800                        thread) */
1801   kmp_int8
1802       bt_set; /* internal control for whether blocktime is explicitly set */
1803   int blocktime; /* internal control for blocktime */
1804 #if KMP_USE_MONITOR
1805   int bt_intervals; /* internal control for blocktime intervals */
1806 #endif
1807   int nproc; /* internal control for #threads for next parallel region (per
1808                 thread) */
1809   int thread_limit; /* internal control for thread-limit-var */
1810   int max_active_levels; /* internal control for max_active_levels */
1811   kmp_r_sched_t
1812       sched; /* internal control for runtime schedule {sched,chunk} pair */
1813   kmp_proc_bind_t proc_bind; /* internal control for affinity  */
1814   kmp_int32 default_device; /* internal control for default device */
1815   struct kmp_internal_control *next;
1816 } kmp_internal_control_t;
1817 
1818 static inline void copy_icvs(kmp_internal_control_t *dst,
1819                              kmp_internal_control_t *src) {
1820   *dst = *src;
1821 }
1822 
1823 /* Thread barrier needs volatile barrier fields */
1824 typedef struct KMP_ALIGN_CACHE kmp_bstate {
1825   // th_fixed_icvs is aligned by virtue of kmp_bstate being aligned (and all
1826   // uses of it). It is not explicitly aligned below, because we *don't* want
1827   // it to be padded -- instead, we fit b_go into the same cache line with
1828   // th_fixed_icvs, enabling NGO cache lines stores in the hierarchical barrier.
1829   kmp_internal_control_t th_fixed_icvs; // Initial ICVs for the thread
1830   // Tuck b_go into end of th_fixed_icvs cache line, so it can be stored with
1831   // same NGO store
1832   volatile kmp_uint64 b_go; // STATE => task should proceed (hierarchical)
1833   KMP_ALIGN_CACHE volatile kmp_uint64
1834       b_arrived; // STATE => task reached synch point.
1835   kmp_uint32 *skip_per_level;
1836   kmp_uint32 my_level;
1837   kmp_int32 parent_tid;
1838   kmp_int32 old_tid;
1839   kmp_uint32 depth;
1840   struct kmp_bstate *parent_bar;
1841   kmp_team_t *team;
1842   kmp_uint64 leaf_state;
1843   kmp_uint32 nproc;
1844   kmp_uint8 base_leaf_kids;
1845   kmp_uint8 leaf_kids;
1846   kmp_uint8 offset;
1847   kmp_uint8 wait_flag;
1848   kmp_uint8 use_oncore_barrier;
1849 #if USE_DEBUGGER
1850   // The following field is intended for the debugger solely. Only the worker
1851   // thread itself accesses this field: the worker increases it by 1 when it
1852   // arrives to a barrier.
1853   KMP_ALIGN_CACHE kmp_uint b_worker_arrived;
1854 #endif /* USE_DEBUGGER */
1855 } kmp_bstate_t;
1856 
1857 union KMP_ALIGN_CACHE kmp_barrier_union {
1858   double b_align; /* use worst case alignment */
1859   char b_pad[KMP_PAD(kmp_bstate_t, CACHE_LINE)];
1860   kmp_bstate_t bb;
1861 };
1862 
1863 typedef union kmp_barrier_union kmp_balign_t;
1864 
1865 /* Team barrier needs only non-volatile arrived counter */
1866 union KMP_ALIGN_CACHE kmp_barrier_team_union {
1867   double b_align; /* use worst case alignment */
1868   char b_pad[CACHE_LINE];
1869   struct {
1870     kmp_uint64 b_arrived; /* STATE => task reached synch point. */
1871 #if USE_DEBUGGER
1872     // The following two fields are indended for the debugger solely. Only
1873     // master of the team accesses these fields: the first one is increased by
1874     // 1 when master arrives to a barrier, the second one is increased by one
1875     // when all the threads arrived.
1876     kmp_uint b_master_arrived;
1877     kmp_uint b_team_arrived;
1878 #endif
1879   };
1880 };
1881 
1882 typedef union kmp_barrier_team_union kmp_balign_team_t;
1883 
1884 /* Padding for Linux* OS pthreads condition variables and mutexes used to signal
1885    threads when a condition changes.  This is to workaround an NPTL bug where
1886    padding was added to pthread_cond_t which caused the initialization routine
1887    to write outside of the structure if compiled on pre-NPTL threads.  */
1888 #if KMP_OS_WINDOWS
1889 typedef struct kmp_win32_mutex {
1890   /* The Lock */
1891   CRITICAL_SECTION cs;
1892 } kmp_win32_mutex_t;
1893 
1894 typedef struct kmp_win32_cond {
1895   /* Count of the number of waiters. */
1896   int waiters_count_;
1897 
1898   /* Serialize access to <waiters_count_> */
1899   kmp_win32_mutex_t waiters_count_lock_;
1900 
1901   /* Number of threads to release via a <cond_broadcast> or a <cond_signal> */
1902   int release_count_;
1903 
1904   /* Keeps track of the current "generation" so that we don't allow */
1905   /* one thread to steal all the "releases" from the broadcast. */
1906   int wait_generation_count_;
1907 
1908   /* A manual-reset event that's used to block and release waiting threads. */
1909   HANDLE event_;
1910 } kmp_win32_cond_t;
1911 #endif
1912 
1913 #if KMP_OS_UNIX
1914 
1915 union KMP_ALIGN_CACHE kmp_cond_union {
1916   double c_align;
1917   char c_pad[CACHE_LINE];
1918   pthread_cond_t c_cond;
1919 };
1920 
1921 typedef union kmp_cond_union kmp_cond_align_t;
1922 
1923 union KMP_ALIGN_CACHE kmp_mutex_union {
1924   double m_align;
1925   char m_pad[CACHE_LINE];
1926   pthread_mutex_t m_mutex;
1927 };
1928 
1929 typedef union kmp_mutex_union kmp_mutex_align_t;
1930 
1931 #endif /* KMP_OS_UNIX */
1932 
1933 typedef struct kmp_desc_base {
1934   void *ds_stackbase;
1935   size_t ds_stacksize;
1936   int ds_stackgrow;
1937   kmp_thread_t ds_thread;
1938   volatile int ds_tid;
1939   int ds_gtid;
1940 #if KMP_OS_WINDOWS
1941   volatile int ds_alive;
1942   DWORD ds_thread_id;
1943 /* ds_thread keeps thread handle on Windows* OS. It is enough for RTL purposes.
1944    However, debugger support (libomp_db) cannot work with handles, because they
1945    uncomparable. For example, debugger requests info about thread with handle h.
1946    h is valid within debugger process, and meaningless within debugee process.
1947    Even if h is duped by call to DuplicateHandle(), so the result h' is valid
1948    within debugee process, but it is a *new* handle which does *not* equal to
1949    any other handle in debugee... The only way to compare handles is convert
1950    them to system-wide ids. GetThreadId() function is available only in
1951    Longhorn and Server 2003. :-( In contrast, GetCurrentThreadId() is available
1952    on all Windows* OS flavours (including Windows* 95). Thus, we have to get
1953    thread id by call to GetCurrentThreadId() from within the thread and save it
1954    to let libomp_db identify threads.  */
1955 #endif /* KMP_OS_WINDOWS */
1956 } kmp_desc_base_t;
1957 
1958 typedef union KMP_ALIGN_CACHE kmp_desc {
1959   double ds_align; /* use worst case alignment */
1960   char ds_pad[KMP_PAD(kmp_desc_base_t, CACHE_LINE)];
1961   kmp_desc_base_t ds;
1962 } kmp_desc_t;
1963 
1964 typedef struct kmp_local {
1965   volatile int this_construct; /* count of single's encountered by thread */
1966   void *reduce_data;
1967 #if KMP_USE_BGET
1968   void *bget_data;
1969   void *bget_list;
1970 #if !USE_CMP_XCHG_FOR_BGET
1971 #ifdef USE_QUEUING_LOCK_FOR_BGET
1972   kmp_lock_t bget_lock; /* Lock for accessing bget free list */
1973 #else
1974   kmp_bootstrap_lock_t bget_lock; // Lock for accessing bget free list. Must be
1975 // bootstrap lock so we can use it at library
1976 // shutdown.
1977 #endif /* USE_LOCK_FOR_BGET */
1978 #endif /* ! USE_CMP_XCHG_FOR_BGET */
1979 #endif /* KMP_USE_BGET */
1980 
1981   PACKED_REDUCTION_METHOD_T
1982   packed_reduction_method; /* stored by __kmpc_reduce*(), used by
1983                               __kmpc_end_reduce*() */
1984 
1985 } kmp_local_t;
1986 
1987 #define KMP_CHECK_UPDATE(a, b)                                                 \
1988   if ((a) != (b))                                                              \
1989   (a) = (b)
1990 #define KMP_CHECK_UPDATE_SYNC(a, b)                                            \
1991   if ((a) != (b))                                                              \
1992   TCW_SYNC_PTR((a), (b))
1993 
1994 #define get__blocktime(xteam, xtid)                                            \
1995   ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime)
1996 #define get__bt_set(xteam, xtid)                                               \
1997   ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set)
1998 #if KMP_USE_MONITOR
1999 #define get__bt_intervals(xteam, xtid)                                         \
2000   ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals)
2001 #endif
2002 
2003 #define get__dynamic_2(xteam, xtid)                                            \
2004   ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.dynamic)
2005 #define get__nproc_2(xteam, xtid)                                              \
2006   ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nproc)
2007 #define get__sched_2(xteam, xtid)                                              \
2008   ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.sched)
2009 
2010 #define set__blocktime_team(xteam, xtid, xval)                                 \
2011   (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) =     \
2012        (xval))
2013 
2014 #if KMP_USE_MONITOR
2015 #define set__bt_intervals_team(xteam, xtid, xval)                              \
2016   (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) =  \
2017        (xval))
2018 #endif
2019 
2020 #define set__bt_set_team(xteam, xtid, xval)                                    \
2021   (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) = (xval))
2022 
2023 #define set__dynamic(xthread, xval)                                            \
2024   (((xthread)->th.th_current_task->td_icvs.dynamic) = (xval))
2025 #define get__dynamic(xthread)                                                  \
2026   (((xthread)->th.th_current_task->td_icvs.dynamic) ? (FTN_TRUE) : (FTN_FALSE))
2027 
2028 #define set__nproc(xthread, xval)                                              \
2029   (((xthread)->th.th_current_task->td_icvs.nproc) = (xval))
2030 
2031 #define set__thread_limit(xthread, xval)                                       \
2032   (((xthread)->th.th_current_task->td_icvs.thread_limit) = (xval))
2033 
2034 #define set__max_active_levels(xthread, xval)                                  \
2035   (((xthread)->th.th_current_task->td_icvs.max_active_levels) = (xval))
2036 
2037 #define get__max_active_levels(xthread)                                        \
2038   ((xthread)->th.th_current_task->td_icvs.max_active_levels)
2039 
2040 #define set__sched(xthread, xval)                                              \
2041   (((xthread)->th.th_current_task->td_icvs.sched) = (xval))
2042 
2043 #define set__proc_bind(xthread, xval)                                          \
2044   (((xthread)->th.th_current_task->td_icvs.proc_bind) = (xval))
2045 #define get__proc_bind(xthread)                                                \
2046   ((xthread)->th.th_current_task->td_icvs.proc_bind)
2047 
2048 // OpenMP tasking data structures
2049 
2050 typedef enum kmp_tasking_mode {
2051   tskm_immediate_exec = 0,
2052   tskm_extra_barrier = 1,
2053   tskm_task_teams = 2,
2054   tskm_max = 2
2055 } kmp_tasking_mode_t;
2056 
2057 extern kmp_tasking_mode_t
2058     __kmp_tasking_mode; /* determines how/when to execute tasks */
2059 extern int __kmp_task_stealing_constraint;
2060 extern int __kmp_enable_task_throttling;
2061 extern kmp_int32 __kmp_default_device; // Set via OMP_DEFAULT_DEVICE if
2062 // specified, defaults to 0 otherwise
2063 // Set via OMP_MAX_TASK_PRIORITY if specified, defaults to 0 otherwise
2064 extern kmp_int32 __kmp_max_task_priority;
2065 // Set via KMP_TASKLOOP_MIN_TASKS if specified, defaults to 0 otherwise
2066 extern kmp_uint64 __kmp_taskloop_min_tasks;
2067 
2068 /* NOTE: kmp_taskdata_t and kmp_task_t structures allocated in single block with
2069    taskdata first */
2070 #define KMP_TASK_TO_TASKDATA(task) (((kmp_taskdata_t *)task) - 1)
2071 #define KMP_TASKDATA_TO_TASK(taskdata) (kmp_task_t *)(taskdata + 1)
2072 
2073 // The tt_found_tasks flag is a signal to all threads in the team that tasks
2074 // were spawned and queued since the previous barrier release.
2075 #define KMP_TASKING_ENABLED(task_team)                                         \
2076   (TCR_SYNC_4((task_team)->tt.tt_found_tasks) == TRUE)
2077 /*!
2078 @ingroup BASIC_TYPES
2079 @{
2080 */
2081 
2082 /*!
2083  */
2084 typedef kmp_int32 (*kmp_routine_entry_t)(kmp_int32, void *);
2085 
2086 typedef union kmp_cmplrdata {
2087   kmp_int32 priority; /**< priority specified by user for the task */
2088   kmp_routine_entry_t
2089       destructors; /* pointer to function to invoke deconstructors of
2090                       firstprivate C++ objects */
2091   /* future data */
2092 } kmp_cmplrdata_t;
2093 
2094 /*  sizeof_kmp_task_t passed as arg to kmpc_omp_task call  */
2095 /*!
2096  */
2097 typedef struct kmp_task { /* GEH: Shouldn't this be aligned somehow? */
2098   void *shareds; /**< pointer to block of pointers to shared vars   */
2099   kmp_routine_entry_t
2100       routine; /**< pointer to routine to call for executing task */
2101   kmp_int32 part_id; /**< part id for the task                          */
2102   kmp_cmplrdata_t
2103       data1; /* Two known optional additions: destructors and priority */
2104   kmp_cmplrdata_t data2; /* Process destructors first, priority second */
2105   /* future data */
2106   /*  private vars  */
2107 } kmp_task_t;
2108 
2109 /*!
2110 @}
2111 */
2112 
2113 typedef struct kmp_taskgroup {
2114   std::atomic<kmp_int32> count; // number of allocated and incomplete tasks
2115   std::atomic<kmp_int32>
2116       cancel_request; // request for cancellation of this taskgroup
2117   struct kmp_taskgroup *parent; // parent taskgroup
2118   // Block of data to perform task reduction
2119   void *reduce_data; // reduction related info
2120   kmp_int32 reduce_num_data; // number of data items to reduce
2121 } kmp_taskgroup_t;
2122 
2123 // forward declarations
2124 typedef union kmp_depnode kmp_depnode_t;
2125 typedef struct kmp_depnode_list kmp_depnode_list_t;
2126 typedef struct kmp_dephash_entry kmp_dephash_entry_t;
2127 
2128 // Compiler sends us this info:
2129 typedef struct kmp_depend_info {
2130   kmp_intptr_t base_addr;
2131   size_t len;
2132   struct {
2133     bool in : 1;
2134     bool out : 1;
2135     bool mtx : 1;
2136   } flags;
2137 } kmp_depend_info_t;
2138 
2139 // Internal structures to work with task dependencies:
2140 struct kmp_depnode_list {
2141   kmp_depnode_t *node;
2142   kmp_depnode_list_t *next;
2143 };
2144 
2145 // Max number of mutexinoutset dependencies per node
2146 #define MAX_MTX_DEPS 4
2147 
2148 typedef struct kmp_base_depnode {
2149   kmp_depnode_list_t *successors; /* used under lock */
2150   kmp_task_t *task; /* non-NULL if depnode is active, used under lock */
2151   kmp_lock_t *mtx_locks[MAX_MTX_DEPS]; /* lock mutexinoutset dependent tasks */
2152   kmp_int32 mtx_num_locks; /* number of locks in mtx_locks array */
2153   kmp_lock_t lock; /* guards shared fields: task, successors */
2154 #if KMP_SUPPORT_GRAPH_OUTPUT
2155   kmp_uint32 id;
2156 #endif
2157   std::atomic<kmp_int32> npredecessors;
2158   std::atomic<kmp_int32> nrefs;
2159 } kmp_base_depnode_t;
2160 
2161 union KMP_ALIGN_CACHE kmp_depnode {
2162   double dn_align; /* use worst case alignment */
2163   char dn_pad[KMP_PAD(kmp_base_depnode_t, CACHE_LINE)];
2164   kmp_base_depnode_t dn;
2165 };
2166 
2167 struct kmp_dephash_entry {
2168   kmp_intptr_t addr;
2169   kmp_depnode_t *last_out;
2170   kmp_depnode_list_t *last_ins;
2171   kmp_depnode_list_t *last_mtxs;
2172   kmp_int32 last_flag;
2173   kmp_lock_t *mtx_lock; /* is referenced by depnodes w/mutexinoutset dep */
2174   kmp_dephash_entry_t *next_in_bucket;
2175 };
2176 
2177 typedef struct kmp_dephash {
2178   kmp_dephash_entry_t **buckets;
2179   size_t size;
2180   size_t generation;
2181   kmp_uint32 nelements;
2182   kmp_uint32 nconflicts;
2183 } kmp_dephash_t;
2184 
2185 typedef struct kmp_task_affinity_info {
2186   kmp_intptr_t base_addr;
2187   size_t len;
2188   struct {
2189     bool flag1 : 1;
2190     bool flag2 : 1;
2191     kmp_int32 reserved : 30;
2192   } flags;
2193 } kmp_task_affinity_info_t;
2194 
2195 typedef enum kmp_event_type_t {
2196   KMP_EVENT_UNINITIALIZED = 0,
2197   KMP_EVENT_ALLOW_COMPLETION = 1
2198 } kmp_event_type_t;
2199 
2200 typedef struct {
2201   kmp_event_type_t type;
2202   kmp_tas_lock_t lock;
2203   union {
2204     kmp_task_t *task;
2205   } ed;
2206 } kmp_event_t;
2207 
2208 #ifdef BUILD_TIED_TASK_STACK
2209 
2210 /* Tied Task stack definitions */
2211 typedef struct kmp_stack_block {
2212   kmp_taskdata_t *sb_block[TASK_STACK_BLOCK_SIZE];
2213   struct kmp_stack_block *sb_next;
2214   struct kmp_stack_block *sb_prev;
2215 } kmp_stack_block_t;
2216 
2217 typedef struct kmp_task_stack {
2218   kmp_stack_block_t ts_first_block; // first block of stack entries
2219   kmp_taskdata_t **ts_top; // pointer to the top of stack
2220   kmp_int32 ts_entries; // number of entries on the stack
2221 } kmp_task_stack_t;
2222 
2223 #endif // BUILD_TIED_TASK_STACK
2224 
2225 typedef struct kmp_tasking_flags { /* Total struct must be exactly 32 bits */
2226   /* Compiler flags */ /* Total compiler flags must be 16 bits */
2227   unsigned tiedness : 1; /* task is either tied (1) or untied (0) */
2228   unsigned final : 1; /* task is final(1) so execute immediately */
2229   unsigned merged_if0 : 1; /* no __kmpc_task_{begin/complete}_if0 calls in if0
2230                               code path */
2231   unsigned destructors_thunk : 1; /* set if the compiler creates a thunk to
2232                                      invoke destructors from the runtime */
2233   unsigned proxy : 1; /* task is a proxy task (it will be executed outside the
2234                          context of the RTL) */
2235   unsigned priority_specified : 1; /* set if the compiler provides priority
2236                                       setting for the task */
2237   unsigned detachable : 1; /* 1 == can detach */
2238   unsigned reserved : 9; /* reserved for compiler use */
2239 
2240   /* Library flags */ /* Total library flags must be 16 bits */
2241   unsigned tasktype : 1; /* task is either explicit(1) or implicit (0) */
2242   unsigned task_serial : 1; // task is executed immediately (1) or deferred (0)
2243   unsigned tasking_ser : 1; // all tasks in team are either executed immediately
2244   // (1) or may be deferred (0)
2245   unsigned team_serial : 1; // entire team is serial (1) [1 thread] or parallel
2246   // (0) [>= 2 threads]
2247   /* If either team_serial or tasking_ser is set, task team may be NULL */
2248   /* Task State Flags: */
2249   unsigned started : 1; /* 1==started, 0==not started     */
2250   unsigned executing : 1; /* 1==executing, 0==not executing */
2251   unsigned complete : 1; /* 1==complete, 0==not complete   */
2252   unsigned freed : 1; /* 1==freed, 0==allocated        */
2253   unsigned native : 1; /* 1==gcc-compiled task, 0==intel */
2254   unsigned reserved31 : 7; /* reserved for library use */
2255 
2256 } kmp_tasking_flags_t;
2257 
2258 struct kmp_taskdata { /* aligned during dynamic allocation       */
2259   kmp_int32 td_task_id; /* id, assigned by debugger                */
2260   kmp_tasking_flags_t td_flags; /* task flags                              */
2261   kmp_team_t *td_team; /* team for this task                      */
2262   kmp_info_p *td_alloc_thread; /* thread that allocated data structures   */
2263   /* Currently not used except for perhaps IDB */
2264   kmp_taskdata_t *td_parent; /* parent task                             */
2265   kmp_int32 td_level; /* task nesting level                      */
2266   std::atomic<kmp_int32> td_untied_count; // untied task active parts counter
2267   ident_t *td_ident; /* task identifier                         */
2268   // Taskwait data.
2269   ident_t *td_taskwait_ident;
2270   kmp_uint32 td_taskwait_counter;
2271   kmp_int32 td_taskwait_thread; /* gtid + 1 of thread encountered taskwait */
2272   KMP_ALIGN_CACHE kmp_internal_control_t
2273       td_icvs; /* Internal control variables for the task */
2274   KMP_ALIGN_CACHE std::atomic<kmp_int32>
2275       td_allocated_child_tasks; /* Child tasks (+ current task) not yet
2276                                    deallocated */
2277   std::atomic<kmp_int32>
2278       td_incomplete_child_tasks; /* Child tasks not yet complete */
2279   kmp_taskgroup_t
2280       *td_taskgroup; // Each task keeps pointer to its current taskgroup
2281   kmp_dephash_t
2282       *td_dephash; // Dependencies for children tasks are tracked from here
2283   kmp_depnode_t
2284       *td_depnode; // Pointer to graph node if this task has dependencies
2285   kmp_task_team_t *td_task_team;
2286   kmp_int32 td_size_alloc; // The size of task structure, including shareds etc.
2287 #if defined(KMP_GOMP_COMPAT)
2288   // 4 or 8 byte integers for the loop bounds in GOMP_taskloop
2289   kmp_int32 td_size_loop_bounds;
2290 #endif
2291   kmp_taskdata_t *td_last_tied; // keep tied task for task scheduling constraint
2292 #if defined(KMP_GOMP_COMPAT)
2293   // GOMP sends in a copy function for copy constructors
2294   void (*td_copy_func)(void *, void *);
2295 #endif
2296   kmp_event_t td_allow_completion_event;
2297 #if OMPT_SUPPORT
2298   ompt_task_info_t ompt_task_info;
2299 #endif
2300 }; // struct kmp_taskdata
2301 
2302 // Make sure padding above worked
2303 KMP_BUILD_ASSERT(sizeof(kmp_taskdata_t) % sizeof(void *) == 0);
2304 
2305 // Data for task team but per thread
2306 typedef struct kmp_base_thread_data {
2307   kmp_info_p *td_thr; // Pointer back to thread info
2308   // Used only in __kmp_execute_tasks_template, maybe not avail until task is
2309   // queued?
2310   kmp_bootstrap_lock_t td_deque_lock; // Lock for accessing deque
2311   kmp_taskdata_t *
2312       *td_deque; // Deque of tasks encountered by td_thr, dynamically allocated
2313   kmp_int32 td_deque_size; // Size of deck
2314   kmp_uint32 td_deque_head; // Head of deque (will wrap)
2315   kmp_uint32 td_deque_tail; // Tail of deque (will wrap)
2316   kmp_int32 td_deque_ntasks; // Number of tasks in deque
2317   // GEH: shouldn't this be volatile since used in while-spin?
2318   kmp_int32 td_deque_last_stolen; // Thread number of last successful steal
2319 #ifdef BUILD_TIED_TASK_STACK
2320   kmp_task_stack_t td_susp_tied_tasks; // Stack of suspended tied tasks for task
2321 // scheduling constraint
2322 #endif // BUILD_TIED_TASK_STACK
2323 } kmp_base_thread_data_t;
2324 
2325 #define TASK_DEQUE_BITS 8 // Used solely to define INITIAL_TASK_DEQUE_SIZE
2326 #define INITIAL_TASK_DEQUE_SIZE (1 << TASK_DEQUE_BITS)
2327 
2328 #define TASK_DEQUE_SIZE(td) ((td).td_deque_size)
2329 #define TASK_DEQUE_MASK(td) ((td).td_deque_size - 1)
2330 
2331 typedef union KMP_ALIGN_CACHE kmp_thread_data {
2332   kmp_base_thread_data_t td;
2333   double td_align; /* use worst case alignment */
2334   char td_pad[KMP_PAD(kmp_base_thread_data_t, CACHE_LINE)];
2335 } kmp_thread_data_t;
2336 
2337 // Data for task teams which are used when tasking is enabled for the team
2338 typedef struct kmp_base_task_team {
2339   kmp_bootstrap_lock_t
2340       tt_threads_lock; /* Lock used to allocate per-thread part of task team */
2341   /* must be bootstrap lock since used at library shutdown*/
2342   kmp_task_team_t *tt_next; /* For linking the task team free list */
2343   kmp_thread_data_t
2344       *tt_threads_data; /* Array of per-thread structures for task team */
2345   /* Data survives task team deallocation */
2346   kmp_int32 tt_found_tasks; /* Have we found tasks and queued them while
2347                                executing this team? */
2348   /* TRUE means tt_threads_data is set up and initialized */
2349   kmp_int32 tt_nproc; /* #threads in team           */
2350   kmp_int32 tt_max_threads; // # entries allocated for threads_data array
2351   kmp_int32 tt_found_proxy_tasks; // found proxy tasks since last barrier
2352   kmp_int32 tt_untied_task_encountered;
2353 
2354   KMP_ALIGN_CACHE
2355   std::atomic<kmp_int32> tt_unfinished_threads; /* #threads still active */
2356 
2357   KMP_ALIGN_CACHE
2358   volatile kmp_uint32
2359       tt_active; /* is the team still actively executing tasks */
2360 } kmp_base_task_team_t;
2361 
2362 union KMP_ALIGN_CACHE kmp_task_team {
2363   kmp_base_task_team_t tt;
2364   double tt_align; /* use worst case alignment */
2365   char tt_pad[KMP_PAD(kmp_base_task_team_t, CACHE_LINE)];
2366 };
2367 
2368 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2369 // Free lists keep same-size free memory slots for fast memory allocation
2370 // routines
2371 typedef struct kmp_free_list {
2372   void *th_free_list_self; // Self-allocated tasks free list
2373   void *th_free_list_sync; // Self-allocated tasks stolen/returned by other
2374   // threads
2375   void *th_free_list_other; // Non-self free list (to be returned to owner's
2376   // sync list)
2377 } kmp_free_list_t;
2378 #endif
2379 #if KMP_NESTED_HOT_TEAMS
2380 // Hot teams array keeps hot teams and their sizes for given thread. Hot teams
2381 // are not put in teams pool, and they don't put threads in threads pool.
2382 typedef struct kmp_hot_team_ptr {
2383   kmp_team_p *hot_team; // pointer to hot_team of given nesting level
2384   kmp_int32 hot_team_nth; // number of threads allocated for the hot_team
2385 } kmp_hot_team_ptr_t;
2386 #endif
2387 typedef struct kmp_teams_size {
2388   kmp_int32 nteams; // number of teams in a league
2389   kmp_int32 nth; // number of threads in each team of the league
2390 } kmp_teams_size_t;
2391 
2392 // This struct stores a thread that acts as a "root" for a contention
2393 // group. Contention groups are rooted at kmp_root threads, but also at
2394 // each master thread of each team created in the teams construct.
2395 // This struct therefore also stores a thread_limit associated with
2396 // that contention group, and a counter to track the number of threads
2397 // active in that contention group. Each thread has a list of these: CG
2398 // root threads have an entry in their list in which cg_root refers to
2399 // the thread itself, whereas other workers in the CG will have a
2400 // single entry where cg_root is same as the entry containing their CG
2401 // root. When a thread encounters a teams construct, it will add a new
2402 // entry to the front of its list, because it now roots a new CG.
2403 typedef struct kmp_cg_root {
2404   kmp_info_p *cg_root; // "root" thread for a contention group
2405   // The CG root's limit comes from OMP_THREAD_LIMIT for root threads, or
2406   // thread_limit clause for teams masters
2407   kmp_int32 cg_thread_limit;
2408   kmp_int32 cg_nthreads; // Count of active threads in CG rooted at cg_root
2409   struct kmp_cg_root *up; // pointer to higher level CG root in list
2410 } kmp_cg_root_t;
2411 
2412 // OpenMP thread data structures
2413 
2414 typedef struct KMP_ALIGN_CACHE kmp_base_info {
2415   /* Start with the readonly data which is cache aligned and padded. This is
2416      written before the thread starts working by the master. Uber masters may
2417      update themselves later. Usage does not consider serialized regions.  */
2418   kmp_desc_t th_info;
2419   kmp_team_p *th_team; /* team we belong to */
2420   kmp_root_p *th_root; /* pointer to root of task hierarchy */
2421   kmp_info_p *th_next_pool; /* next available thread in the pool */
2422   kmp_disp_t *th_dispatch; /* thread's dispatch data */
2423   int th_in_pool; /* in thread pool (32 bits for TCR/TCW) */
2424 
2425   /* The following are cached from the team info structure */
2426   /* TODO use these in more places as determined to be needed via profiling */
2427   int th_team_nproc; /* number of threads in a team */
2428   kmp_info_p *th_team_master; /* the team's master thread */
2429   int th_team_serialized; /* team is serialized */
2430   microtask_t th_teams_microtask; /* save entry address for teams construct */
2431   int th_teams_level; /* save initial level of teams construct */
2432 /* it is 0 on device but may be any on host */
2433 
2434 /* The blocktime info is copied from the team struct to the thread struct */
2435 /* at the start of a barrier, and the values stored in the team are used  */
2436 /* at points in the code where the team struct is no longer guaranteed    */
2437 /* to exist (from the POV of worker threads).                             */
2438 #if KMP_USE_MONITOR
2439   int th_team_bt_intervals;
2440   int th_team_bt_set;
2441 #else
2442   kmp_uint64 th_team_bt_intervals;
2443 #endif
2444 
2445 #if KMP_AFFINITY_SUPPORTED
2446   kmp_affin_mask_t *th_affin_mask; /* thread's current affinity mask */
2447 #endif
2448   omp_allocator_handle_t th_def_allocator; /* default allocator */
2449   /* The data set by the master at reinit, then R/W by the worker */
2450   KMP_ALIGN_CACHE int
2451       th_set_nproc; /* if > 0, then only use this request for the next fork */
2452 #if KMP_NESTED_HOT_TEAMS
2453   kmp_hot_team_ptr_t *th_hot_teams; /* array of hot teams */
2454 #endif
2455   kmp_proc_bind_t
2456       th_set_proc_bind; /* if != proc_bind_default, use request for next fork */
2457   kmp_teams_size_t
2458       th_teams_size; /* number of teams/threads in teams construct */
2459 #if KMP_AFFINITY_SUPPORTED
2460   int th_current_place; /* place currently bound to */
2461   int th_new_place; /* place to bind to in par reg */
2462   int th_first_place; /* first place in partition */
2463   int th_last_place; /* last place in partition */
2464 #endif
2465   int th_prev_level; /* previous level for affinity format */
2466   int th_prev_num_threads; /* previous num_threads for affinity format */
2467 #if USE_ITT_BUILD
2468   kmp_uint64 th_bar_arrive_time; /* arrival to barrier timestamp */
2469   kmp_uint64 th_bar_min_time; /* minimum arrival time at the barrier */
2470   kmp_uint64 th_frame_time; /* frame timestamp */
2471 #endif /* USE_ITT_BUILD */
2472   kmp_local_t th_local;
2473   struct private_common *th_pri_head;
2474 
2475   /* Now the data only used by the worker (after initial allocation) */
2476   /* TODO the first serial team should actually be stored in the info_t
2477      structure.  this will help reduce initial allocation overhead */
2478   KMP_ALIGN_CACHE kmp_team_p
2479       *th_serial_team; /*serialized team held in reserve*/
2480 
2481 #if OMPT_SUPPORT
2482   ompt_thread_info_t ompt_thread_info;
2483 #endif
2484 
2485   /* The following are also read by the master during reinit */
2486   struct common_table *th_pri_common;
2487 
2488   volatile kmp_uint32 th_spin_here; /* thread-local location for spinning */
2489   /* while awaiting queuing lock acquire */
2490 
2491   volatile void *th_sleep_loc; // this points at a kmp_flag<T>
2492 
2493   ident_t *th_ident;
2494   unsigned th_x; // Random number generator data
2495   unsigned th_a; // Random number generator data
2496 
2497   /* Tasking-related data for the thread */
2498   kmp_task_team_t *th_task_team; // Task team struct
2499   kmp_taskdata_t *th_current_task; // Innermost Task being executed
2500   kmp_uint8 th_task_state; // alternating 0/1 for task team identification
2501   kmp_uint8 *th_task_state_memo_stack; // Stack holding memos of th_task_state
2502   // at nested levels
2503   kmp_uint32 th_task_state_top; // Top element of th_task_state_memo_stack
2504   kmp_uint32 th_task_state_stack_sz; // Size of th_task_state_memo_stack
2505   kmp_uint32 th_reap_state; // Non-zero indicates thread is not
2506   // tasking, thus safe to reap
2507 
2508   /* More stuff for keeping track of active/sleeping threads (this part is
2509      written by the worker thread) */
2510   kmp_uint8 th_active_in_pool; // included in count of #active threads in pool
2511   int th_active; // ! sleeping; 32 bits for TCR/TCW
2512   struct cons_header *th_cons; // used for consistency check
2513 #if KMP_USE_HIER_SCHED
2514   // used for hierarchical scheduling
2515   kmp_hier_private_bdata_t *th_hier_bar_data;
2516 #endif
2517 
2518   /* Add the syncronizing data which is cache aligned and padded. */
2519   KMP_ALIGN_CACHE kmp_balign_t th_bar[bs_last_barrier];
2520 
2521   KMP_ALIGN_CACHE volatile kmp_int32
2522       th_next_waiting; /* gtid+1 of next thread on lock wait queue, 0 if none */
2523 
2524 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2525 #define NUM_LISTS 4
2526   kmp_free_list_t th_free_lists[NUM_LISTS]; // Free lists for fast memory
2527 // allocation routines
2528 #endif
2529 
2530 #if KMP_OS_WINDOWS
2531   kmp_win32_cond_t th_suspend_cv;
2532   kmp_win32_mutex_t th_suspend_mx;
2533   std::atomic<int> th_suspend_init;
2534 #endif
2535 #if KMP_OS_UNIX
2536   kmp_cond_align_t th_suspend_cv;
2537   kmp_mutex_align_t th_suspend_mx;
2538   std::atomic<int> th_suspend_init_count;
2539 #endif
2540 
2541 #if USE_ITT_BUILD
2542   kmp_itt_mark_t th_itt_mark_single;
2543 // alignment ???
2544 #endif /* USE_ITT_BUILD */
2545 #if KMP_STATS_ENABLED
2546   kmp_stats_list *th_stats;
2547 #endif
2548 #if KMP_OS_UNIX
2549   std::atomic<bool> th_blocking;
2550 #endif
2551   kmp_cg_root_t *th_cg_roots; // list of cg_roots associated with this thread
2552 } kmp_base_info_t;
2553 
2554 typedef union KMP_ALIGN_CACHE kmp_info {
2555   double th_align; /* use worst case alignment */
2556   char th_pad[KMP_PAD(kmp_base_info_t, CACHE_LINE)];
2557   kmp_base_info_t th;
2558 } kmp_info_t;
2559 
2560 // OpenMP thread team data structures
2561 
2562 typedef struct kmp_base_data { volatile kmp_uint32 t_value; } kmp_base_data_t;
2563 
2564 typedef union KMP_ALIGN_CACHE kmp_sleep_team {
2565   double dt_align; /* use worst case alignment */
2566   char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2567   kmp_base_data_t dt;
2568 } kmp_sleep_team_t;
2569 
2570 typedef union KMP_ALIGN_CACHE kmp_ordered_team {
2571   double dt_align; /* use worst case alignment */
2572   char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2573   kmp_base_data_t dt;
2574 } kmp_ordered_team_t;
2575 
2576 typedef int (*launch_t)(int gtid);
2577 
2578 /* Minimum number of ARGV entries to malloc if necessary */
2579 #define KMP_MIN_MALLOC_ARGV_ENTRIES 100
2580 
2581 // Set up how many argv pointers will fit in cache lines containing
2582 // t_inline_argv. Historically, we have supported at least 96 bytes. Using a
2583 // larger value for more space between the master write/worker read section and
2584 // read/write by all section seems to buy more performance on EPCC PARALLEL.
2585 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2586 #define KMP_INLINE_ARGV_BYTES                                                  \
2587   (4 * CACHE_LINE -                                                            \
2588    ((3 * KMP_PTR_SKIP + 2 * sizeof(int) + 2 * sizeof(kmp_int8) +               \
2589      sizeof(kmp_int16) + sizeof(kmp_uint32)) %                                 \
2590     CACHE_LINE))
2591 #else
2592 #define KMP_INLINE_ARGV_BYTES                                                  \
2593   (2 * CACHE_LINE - ((3 * KMP_PTR_SKIP + 2 * sizeof(int)) % CACHE_LINE))
2594 #endif
2595 #define KMP_INLINE_ARGV_ENTRIES (int)(KMP_INLINE_ARGV_BYTES / KMP_PTR_SKIP)
2596 
2597 typedef struct KMP_ALIGN_CACHE kmp_base_team {
2598   // Synchronization Data
2599   // ---------------------------------------------------------------------------
2600   KMP_ALIGN_CACHE kmp_ordered_team_t t_ordered;
2601   kmp_balign_team_t t_bar[bs_last_barrier];
2602   std::atomic<int> t_construct; // count of single directive encountered by team
2603   char pad[sizeof(kmp_lock_t)]; // padding to maintain performance on big iron
2604 
2605   // [0] - parallel / [1] - worksharing task reduction data shared by taskgroups
2606   std::atomic<void *> t_tg_reduce_data[2]; // to support task modifier
2607   std::atomic<int> t_tg_fini_counter[2]; // sync end of task reductions
2608 
2609   // Master only
2610   // ---------------------------------------------------------------------------
2611   KMP_ALIGN_CACHE int t_master_tid; // tid of master in parent team
2612   int t_master_this_cons; // "this_construct" single counter of master in parent
2613   // team
2614   ident_t *t_ident; // if volatile, have to change too much other crud to
2615   // volatile too
2616   kmp_team_p *t_parent; // parent team
2617   kmp_team_p *t_next_pool; // next free team in the team pool
2618   kmp_disp_t *t_dispatch; // thread's dispatch data
2619   kmp_task_team_t *t_task_team[2]; // Task team struct; switch between 2
2620   kmp_proc_bind_t t_proc_bind; // bind type for par region
2621 #if USE_ITT_BUILD
2622   kmp_uint64 t_region_time; // region begin timestamp
2623 #endif /* USE_ITT_BUILD */
2624 
2625   // Master write, workers read
2626   // --------------------------------------------------------------------------
2627   KMP_ALIGN_CACHE void **t_argv;
2628   int t_argc;
2629   int t_nproc; // number of threads in team
2630   microtask_t t_pkfn;
2631   launch_t t_invoke; // procedure to launch the microtask
2632 
2633 #if OMPT_SUPPORT
2634   ompt_team_info_t ompt_team_info;
2635   ompt_lw_taskteam_t *ompt_serialized_team_info;
2636 #endif
2637 
2638 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2639   kmp_int8 t_fp_control_saved;
2640   kmp_int8 t_pad2b;
2641   kmp_int16 t_x87_fpu_control_word; // FP control regs
2642   kmp_uint32 t_mxcsr;
2643 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
2644 
2645   void *t_inline_argv[KMP_INLINE_ARGV_ENTRIES];
2646 
2647   KMP_ALIGN_CACHE kmp_info_t **t_threads;
2648   kmp_taskdata_t
2649       *t_implicit_task_taskdata; // Taskdata for the thread's implicit task
2650   int t_level; // nested parallel level
2651 
2652   KMP_ALIGN_CACHE int t_max_argc;
2653   int t_max_nproc; // max threads this team can handle (dynamically expandable)
2654   int t_serialized; // levels deep of serialized teams
2655   dispatch_shared_info_t *t_disp_buffer; // buffers for dispatch system
2656   int t_id; // team's id, assigned by debugger.
2657   int t_active_level; // nested active parallel level
2658   kmp_r_sched_t t_sched; // run-time schedule for the team
2659 #if KMP_AFFINITY_SUPPORTED
2660   int t_first_place; // first & last place in parent thread's partition.
2661   int t_last_place; // Restore these values to master after par region.
2662 #endif // KMP_AFFINITY_SUPPORTED
2663   int t_display_affinity;
2664   int t_size_changed; // team size was changed?: 0: no, 1: yes, -1: changed via
2665   // omp_set_num_threads() call
2666   omp_allocator_handle_t t_def_allocator; /* default allocator */
2667 
2668 // Read/write by workers as well
2669 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
2670   // Using CACHE_LINE=64 reduces memory footprint, but causes a big perf
2671   // regression of epcc 'parallel' and 'barrier' on fxe256lin01. This extra
2672   // padding serves to fix the performance of epcc 'parallel' and 'barrier' when
2673   // CACHE_LINE=64. TODO: investigate more and get rid if this padding.
2674   char dummy_padding[1024];
2675 #endif
2676   // Internal control stack for additional nested teams.
2677   KMP_ALIGN_CACHE kmp_internal_control_t *t_control_stack_top;
2678   // for SERIALIZED teams nested 2 or more levels deep
2679   // typed flag to store request state of cancellation
2680   std::atomic<kmp_int32> t_cancel_request;
2681   int t_master_active; // save on fork, restore on join
2682   void *t_copypriv_data; // team specific pointer to copyprivate data array
2683 #if KMP_OS_WINDOWS
2684   std::atomic<kmp_uint32> t_copyin_counter;
2685 #endif
2686 #if USE_ITT_BUILD
2687   void *t_stack_id; // team specific stack stitching id (for ittnotify)
2688 #endif /* USE_ITT_BUILD */
2689 } kmp_base_team_t;
2690 
2691 union KMP_ALIGN_CACHE kmp_team {
2692   kmp_base_team_t t;
2693   double t_align; /* use worst case alignment */
2694   char t_pad[KMP_PAD(kmp_base_team_t, CACHE_LINE)];
2695 };
2696 
2697 typedef union KMP_ALIGN_CACHE kmp_time_global {
2698   double dt_align; /* use worst case alignment */
2699   char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2700   kmp_base_data_t dt;
2701 } kmp_time_global_t;
2702 
2703 typedef struct kmp_base_global {
2704   /* cache-aligned */
2705   kmp_time_global_t g_time;
2706 
2707   /* non cache-aligned */
2708   volatile int g_abort;
2709   volatile int g_done;
2710 
2711   int g_dynamic;
2712   enum dynamic_mode g_dynamic_mode;
2713 } kmp_base_global_t;
2714 
2715 typedef union KMP_ALIGN_CACHE kmp_global {
2716   kmp_base_global_t g;
2717   double g_align; /* use worst case alignment */
2718   char g_pad[KMP_PAD(kmp_base_global_t, CACHE_LINE)];
2719 } kmp_global_t;
2720 
2721 typedef struct kmp_base_root {
2722   // TODO: GEH - combine r_active with r_in_parallel then r_active ==
2723   // (r_in_parallel>= 0)
2724   // TODO: GEH - then replace r_active with t_active_levels if we can to reduce
2725   // the synch overhead or keeping r_active
2726   volatile int r_active; /* TRUE if some region in a nest has > 1 thread */
2727   // keeps a count of active parallel regions per root
2728   std::atomic<int> r_in_parallel;
2729   // GEH: This is misnamed, should be r_active_levels
2730   kmp_team_t *r_root_team;
2731   kmp_team_t *r_hot_team;
2732   kmp_info_t *r_uber_thread;
2733   kmp_lock_t r_begin_lock;
2734   volatile int r_begin;
2735   int r_blocktime; /* blocktime for this root and descendants */
2736 } kmp_base_root_t;
2737 
2738 typedef union KMP_ALIGN_CACHE kmp_root {
2739   kmp_base_root_t r;
2740   double r_align; /* use worst case alignment */
2741   char r_pad[KMP_PAD(kmp_base_root_t, CACHE_LINE)];
2742 } kmp_root_t;
2743 
2744 struct fortran_inx_info {
2745   kmp_int32 data;
2746 };
2747 
2748 /* ------------------------------------------------------------------------ */
2749 
2750 extern int __kmp_settings;
2751 extern int __kmp_duplicate_library_ok;
2752 #if USE_ITT_BUILD
2753 extern int __kmp_forkjoin_frames;
2754 extern int __kmp_forkjoin_frames_mode;
2755 #endif
2756 extern PACKED_REDUCTION_METHOD_T __kmp_force_reduction_method;
2757 extern int __kmp_determ_red;
2758 
2759 #ifdef KMP_DEBUG
2760 extern int kmp_a_debug;
2761 extern int kmp_b_debug;
2762 extern int kmp_c_debug;
2763 extern int kmp_d_debug;
2764 extern int kmp_e_debug;
2765 extern int kmp_f_debug;
2766 #endif /* KMP_DEBUG */
2767 
2768 /* For debug information logging using rotating buffer */
2769 #define KMP_DEBUG_BUF_LINES_INIT 512
2770 #define KMP_DEBUG_BUF_LINES_MIN 1
2771 
2772 #define KMP_DEBUG_BUF_CHARS_INIT 128
2773 #define KMP_DEBUG_BUF_CHARS_MIN 2
2774 
2775 extern int
2776     __kmp_debug_buf; /* TRUE means use buffer, FALSE means print to stderr */
2777 extern int __kmp_debug_buf_lines; /* How many lines of debug stored in buffer */
2778 extern int
2779     __kmp_debug_buf_chars; /* How many characters allowed per line in buffer */
2780 extern int __kmp_debug_buf_atomic; /* TRUE means use atomic update of buffer
2781                                       entry pointer */
2782 
2783 extern char *__kmp_debug_buffer; /* Debug buffer itself */
2784 extern std::atomic<int> __kmp_debug_count; /* Counter for number of lines
2785                                               printed in buffer so far */
2786 extern int __kmp_debug_buf_warn_chars; /* Keep track of char increase
2787                                           recommended in warnings */
2788 /* end rotating debug buffer */
2789 
2790 #ifdef KMP_DEBUG
2791 extern int __kmp_par_range; /* +1 => only go par for constructs in range */
2792 
2793 #define KMP_PAR_RANGE_ROUTINE_LEN 1024
2794 extern char __kmp_par_range_routine[KMP_PAR_RANGE_ROUTINE_LEN];
2795 #define KMP_PAR_RANGE_FILENAME_LEN 1024
2796 extern char __kmp_par_range_filename[KMP_PAR_RANGE_FILENAME_LEN];
2797 extern int __kmp_par_range_lb;
2798 extern int __kmp_par_range_ub;
2799 #endif
2800 
2801 /* For printing out dynamic storage map for threads and teams */
2802 extern int
2803     __kmp_storage_map; /* True means print storage map for threads and teams */
2804 extern int __kmp_storage_map_verbose; /* True means storage map includes
2805                                          placement info */
2806 extern int __kmp_storage_map_verbose_specified;
2807 
2808 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2809 extern kmp_cpuinfo_t __kmp_cpuinfo;
2810 #endif
2811 
2812 extern volatile int __kmp_init_serial;
2813 extern volatile int __kmp_init_gtid;
2814 extern volatile int __kmp_init_common;
2815 extern volatile int __kmp_init_middle;
2816 extern volatile int __kmp_init_parallel;
2817 #if KMP_USE_MONITOR
2818 extern volatile int __kmp_init_monitor;
2819 #endif
2820 extern volatile int __kmp_init_user_locks;
2821 extern int __kmp_init_counter;
2822 extern int __kmp_root_counter;
2823 extern int __kmp_version;
2824 
2825 /* list of address of allocated caches for commons */
2826 extern kmp_cached_addr_t *__kmp_threadpriv_cache_list;
2827 
2828 /* Barrier algorithm types and options */
2829 extern kmp_uint32 __kmp_barrier_gather_bb_dflt;
2830 extern kmp_uint32 __kmp_barrier_release_bb_dflt;
2831 extern kmp_bar_pat_e __kmp_barrier_gather_pat_dflt;
2832 extern kmp_bar_pat_e __kmp_barrier_release_pat_dflt;
2833 extern kmp_uint32 __kmp_barrier_gather_branch_bits[bs_last_barrier];
2834 extern kmp_uint32 __kmp_barrier_release_branch_bits[bs_last_barrier];
2835 extern kmp_bar_pat_e __kmp_barrier_gather_pattern[bs_last_barrier];
2836 extern kmp_bar_pat_e __kmp_barrier_release_pattern[bs_last_barrier];
2837 extern char const *__kmp_barrier_branch_bit_env_name[bs_last_barrier];
2838 extern char const *__kmp_barrier_pattern_env_name[bs_last_barrier];
2839 extern char const *__kmp_barrier_type_name[bs_last_barrier];
2840 extern char const *__kmp_barrier_pattern_name[bp_last_bar];
2841 
2842 /* Global Locks */
2843 extern kmp_bootstrap_lock_t __kmp_initz_lock; /* control initialization */
2844 extern kmp_bootstrap_lock_t __kmp_forkjoin_lock; /* control fork/join access */
2845 extern kmp_bootstrap_lock_t __kmp_task_team_lock;
2846 extern kmp_bootstrap_lock_t
2847     __kmp_exit_lock; /* exit() is not always thread-safe */
2848 #if KMP_USE_MONITOR
2849 extern kmp_bootstrap_lock_t
2850     __kmp_monitor_lock; /* control monitor thread creation */
2851 #endif
2852 extern kmp_bootstrap_lock_t
2853     __kmp_tp_cached_lock; /* used for the hack to allow threadprivate cache and
2854                              __kmp_threads expansion to co-exist */
2855 
2856 extern kmp_lock_t __kmp_global_lock; /* control OS/global access  */
2857 extern kmp_queuing_lock_t __kmp_dispatch_lock; /* control dispatch access  */
2858 extern kmp_lock_t __kmp_debug_lock; /* control I/O access for KMP_DEBUG */
2859 
2860 extern enum library_type __kmp_library;
2861 
2862 extern enum sched_type __kmp_sched; /* default runtime scheduling */
2863 extern enum sched_type __kmp_static; /* default static scheduling method */
2864 extern enum sched_type __kmp_guided; /* default guided scheduling method */
2865 extern enum sched_type __kmp_auto; /* default auto scheduling method */
2866 extern int __kmp_chunk; /* default runtime chunk size */
2867 
2868 extern size_t __kmp_stksize; /* stack size per thread         */
2869 #if KMP_USE_MONITOR
2870 extern size_t __kmp_monitor_stksize; /* stack size for monitor thread */
2871 #endif
2872 extern size_t __kmp_stkoffset; /* stack offset per thread       */
2873 extern int __kmp_stkpadding; /* Should we pad root thread(s) stack */
2874 
2875 extern size_t
2876     __kmp_malloc_pool_incr; /* incremental size of pool for kmp_malloc() */
2877 extern int __kmp_env_stksize; /* was KMP_STACKSIZE specified? */
2878 extern int __kmp_env_blocktime; /* was KMP_BLOCKTIME specified? */
2879 extern int __kmp_env_checks; /* was KMP_CHECKS specified?    */
2880 extern int __kmp_env_consistency_check; // was KMP_CONSISTENCY_CHECK specified?
2881 extern int __kmp_generate_warnings; /* should we issue warnings? */
2882 extern int __kmp_reserve_warn; /* have we issued reserve_threads warning? */
2883 
2884 #ifdef DEBUG_SUSPEND
2885 extern int __kmp_suspend_count; /* count inside __kmp_suspend_template() */
2886 #endif
2887 
2888 extern kmp_int32 __kmp_use_yield;
2889 extern kmp_int32 __kmp_use_yield_exp_set;
2890 extern kmp_uint32 __kmp_yield_init;
2891 extern kmp_uint32 __kmp_yield_next;
2892 
2893 /* ------------------------------------------------------------------------- */
2894 extern int __kmp_allThreadsSpecified;
2895 
2896 extern size_t __kmp_align_alloc;
2897 /* following data protected by initialization routines */
2898 extern int __kmp_xproc; /* number of processors in the system */
2899 extern int __kmp_avail_proc; /* number of processors available to the process */
2900 extern size_t __kmp_sys_min_stksize; /* system-defined minimum stack size */
2901 extern int __kmp_sys_max_nth; /* system-imposed maximum number of threads */
2902 // maximum total number of concurrently-existing threads on device
2903 extern int __kmp_max_nth;
2904 // maximum total number of concurrently-existing threads in a contention group
2905 extern int __kmp_cg_max_nth;
2906 extern int __kmp_teams_max_nth; // max threads used in a teams construct
2907 extern int __kmp_threads_capacity; /* capacity of the arrays __kmp_threads and
2908                                       __kmp_root */
2909 extern int __kmp_dflt_team_nth; /* default number of threads in a parallel
2910                                    region a la OMP_NUM_THREADS */
2911 extern int __kmp_dflt_team_nth_ub; /* upper bound on "" determined at serial
2912                                       initialization */
2913 extern int __kmp_tp_capacity; /* capacity of __kmp_threads if threadprivate is
2914                                  used (fixed) */
2915 extern int __kmp_tp_cached; /* whether threadprivate cache has been created
2916                                (__kmpc_threadprivate_cached()) */
2917 extern int __kmp_dflt_blocktime; /* number of milliseconds to wait before
2918                                     blocking (env setting) */
2919 #if KMP_USE_MONITOR
2920 extern int
2921     __kmp_monitor_wakeups; /* number of times monitor wakes up per second */
2922 extern int __kmp_bt_intervals; /* number of monitor timestamp intervals before
2923                                   blocking */
2924 #endif
2925 #ifdef KMP_ADJUST_BLOCKTIME
2926 extern int __kmp_zero_bt; /* whether blocktime has been forced to zero */
2927 #endif /* KMP_ADJUST_BLOCKTIME */
2928 #ifdef KMP_DFLT_NTH_CORES
2929 extern int __kmp_ncores; /* Total number of cores for threads placement */
2930 #endif
2931 /* Number of millisecs to delay on abort for Intel(R) VTune(TM) tools */
2932 extern int __kmp_abort_delay;
2933 
2934 extern int __kmp_need_register_atfork_specified;
2935 extern int
2936     __kmp_need_register_atfork; /* At initialization, call pthread_atfork to
2937                                    install fork handler */
2938 extern int __kmp_gtid_mode; /* Method of getting gtid, values:
2939                                0 - not set, will be set at runtime
2940                                1 - using stack search
2941                                2 - dynamic TLS (pthread_getspecific(Linux* OS/OS
2942                                    X*) or TlsGetValue(Windows* OS))
2943                                3 - static TLS (__declspec(thread) __kmp_gtid),
2944                                    Linux* OS .so only.  */
2945 extern int
2946     __kmp_adjust_gtid_mode; /* If true, adjust method based on #threads */
2947 #ifdef KMP_TDATA_GTID
2948 extern KMP_THREAD_LOCAL int __kmp_gtid;
2949 #endif
2950 extern int __kmp_tls_gtid_min; /* #threads below which use sp search for gtid */
2951 extern int __kmp_foreign_tp; // If true, separate TP var for each foreign thread
2952 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2953 extern int __kmp_inherit_fp_control; // copy fp creg(s) parent->workers at fork
2954 extern kmp_int16 __kmp_init_x87_fpu_control_word; // init thread's FP ctrl reg
2955 extern kmp_uint32 __kmp_init_mxcsr; /* init thread's mxscr */
2956 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
2957 
2958 // max_active_levels for nested parallelism enabled by default via
2959 // OMP_MAX_ACTIVE_LEVELS, OMP_NESTED, OMP_NUM_THREADS, and OMP_PROC_BIND
2960 extern int __kmp_dflt_max_active_levels;
2961 // Indicates whether value of __kmp_dflt_max_active_levels was already
2962 // explicitly set by OMP_MAX_ACTIVE_LEVELS or OMP_NESTED=false
2963 extern bool __kmp_dflt_max_active_levels_set;
2964 extern int __kmp_dispatch_num_buffers; /* max possible dynamic loops in
2965                                           concurrent execution per team */
2966 #if KMP_NESTED_HOT_TEAMS
2967 extern int __kmp_hot_teams_mode;
2968 extern int __kmp_hot_teams_max_level;
2969 #endif
2970 
2971 #if KMP_OS_LINUX
2972 extern enum clock_function_type __kmp_clock_function;
2973 extern int __kmp_clock_function_param;
2974 #endif /* KMP_OS_LINUX */
2975 
2976 #if KMP_MIC_SUPPORTED
2977 extern enum mic_type __kmp_mic_type;
2978 #endif
2979 
2980 #ifdef USE_LOAD_BALANCE
2981 extern double __kmp_load_balance_interval; // load balance algorithm interval
2982 #endif /* USE_LOAD_BALANCE */
2983 
2984 // OpenMP 3.1 - Nested num threads array
2985 typedef struct kmp_nested_nthreads_t {
2986   int *nth;
2987   int size;
2988   int used;
2989 } kmp_nested_nthreads_t;
2990 
2991 extern kmp_nested_nthreads_t __kmp_nested_nth;
2992 
2993 #if KMP_USE_ADAPTIVE_LOCKS
2994 
2995 // Parameters for the speculative lock backoff system.
2996 struct kmp_adaptive_backoff_params_t {
2997   // Number of soft retries before it counts as a hard retry.
2998   kmp_uint32 max_soft_retries;
2999   // Badness is a bit mask : 0,1,3,7,15,... on each hard failure we move one to
3000   // the right
3001   kmp_uint32 max_badness;
3002 };
3003 
3004 extern kmp_adaptive_backoff_params_t __kmp_adaptive_backoff_params;
3005 
3006 #if KMP_DEBUG_ADAPTIVE_LOCKS
3007 extern const char *__kmp_speculative_statsfile;
3008 #endif
3009 
3010 #endif // KMP_USE_ADAPTIVE_LOCKS
3011 
3012 extern int __kmp_display_env; /* TRUE or FALSE */
3013 extern int __kmp_display_env_verbose; /* TRUE if OMP_DISPLAY_ENV=VERBOSE */
3014 extern int __kmp_omp_cancellation; /* TRUE or FALSE */
3015 
3016 /* ------------------------------------------------------------------------- */
3017 
3018 /* the following are protected by the fork/join lock */
3019 /* write: lock  read: anytime */
3020 extern kmp_info_t **__kmp_threads; /* Descriptors for the threads */
3021 /* read/write: lock */
3022 extern volatile kmp_team_t *__kmp_team_pool;
3023 extern volatile kmp_info_t *__kmp_thread_pool;
3024 extern kmp_info_t *__kmp_thread_pool_insert_pt;
3025 
3026 // total num threads reachable from some root thread including all root threads
3027 extern volatile int __kmp_nth;
3028 /* total number of threads reachable from some root thread including all root
3029    threads, and those in the thread pool */
3030 extern volatile int __kmp_all_nth;
3031 extern std::atomic<int> __kmp_thread_pool_active_nth;
3032 
3033 extern kmp_root_t **__kmp_root; /* root of thread hierarchy */
3034 /* end data protected by fork/join lock */
3035 /* ------------------------------------------------------------------------- */
3036 
3037 #define __kmp_get_gtid() __kmp_get_global_thread_id()
3038 #define __kmp_entry_gtid() __kmp_get_global_thread_id_reg()
3039 #define __kmp_get_tid() (__kmp_tid_from_gtid(__kmp_get_gtid()))
3040 #define __kmp_get_team() (__kmp_threads[(__kmp_get_gtid())]->th.th_team)
3041 #define __kmp_get_thread() (__kmp_thread_from_gtid(__kmp_get_gtid()))
3042 
3043 // AT: Which way is correct?
3044 // AT: 1. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc;
3045 // AT: 2. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team_nproc;
3046 #define __kmp_get_team_num_threads(gtid)                                       \
3047   (__kmp_threads[(gtid)]->th.th_team->t.t_nproc)
3048 
3049 static inline bool KMP_UBER_GTID(int gtid) {
3050   KMP_DEBUG_ASSERT(gtid >= KMP_GTID_MIN);
3051   KMP_DEBUG_ASSERT(gtid < __kmp_threads_capacity);
3052   return (gtid >= 0 && __kmp_root[gtid] && __kmp_threads[gtid] &&
3053           __kmp_threads[gtid] == __kmp_root[gtid]->r.r_uber_thread);
3054 }
3055 
3056 static inline int __kmp_tid_from_gtid(int gtid) {
3057   KMP_DEBUG_ASSERT(gtid >= 0);
3058   return __kmp_threads[gtid]->th.th_info.ds.ds_tid;
3059 }
3060 
3061 static inline int __kmp_gtid_from_tid(int tid, const kmp_team_t *team) {
3062   KMP_DEBUG_ASSERT(tid >= 0 && team);
3063   return team->t.t_threads[tid]->th.th_info.ds.ds_gtid;
3064 }
3065 
3066 static inline int __kmp_gtid_from_thread(const kmp_info_t *thr) {
3067   KMP_DEBUG_ASSERT(thr);
3068   return thr->th.th_info.ds.ds_gtid;
3069 }
3070 
3071 static inline kmp_info_t *__kmp_thread_from_gtid(int gtid) {
3072   KMP_DEBUG_ASSERT(gtid >= 0);
3073   return __kmp_threads[gtid];
3074 }
3075 
3076 static inline kmp_team_t *__kmp_team_from_gtid(int gtid) {
3077   KMP_DEBUG_ASSERT(gtid >= 0);
3078   return __kmp_threads[gtid]->th.th_team;
3079 }
3080 
3081 /* ------------------------------------------------------------------------- */
3082 
3083 extern kmp_global_t __kmp_global; /* global status */
3084 
3085 extern kmp_info_t __kmp_monitor;
3086 // For Debugging Support Library
3087 extern std::atomic<kmp_int32> __kmp_team_counter;
3088 // For Debugging Support Library
3089 extern std::atomic<kmp_int32> __kmp_task_counter;
3090 
3091 #if USE_DEBUGGER
3092 #define _KMP_GEN_ID(counter)                                                   \
3093   (__kmp_debugging ? KMP_ATOMIC_INC(&counter) + 1 : ~0)
3094 #else
3095 #define _KMP_GEN_ID(counter) (~0)
3096 #endif /* USE_DEBUGGER */
3097 
3098 #define KMP_GEN_TASK_ID() _KMP_GEN_ID(__kmp_task_counter)
3099 #define KMP_GEN_TEAM_ID() _KMP_GEN_ID(__kmp_team_counter)
3100 
3101 /* ------------------------------------------------------------------------ */
3102 
3103 extern void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2,
3104                                          size_t size, char const *format, ...);
3105 
3106 extern void __kmp_serial_initialize(void);
3107 extern void __kmp_middle_initialize(void);
3108 extern void __kmp_parallel_initialize(void);
3109 
3110 extern void __kmp_internal_begin(void);
3111 extern void __kmp_internal_end_library(int gtid);
3112 extern void __kmp_internal_end_thread(int gtid);
3113 extern void __kmp_internal_end_atexit(void);
3114 extern void __kmp_internal_end_dtor(void);
3115 extern void __kmp_internal_end_dest(void *);
3116 
3117 extern int __kmp_register_root(int initial_thread);
3118 extern void __kmp_unregister_root(int gtid);
3119 
3120 extern int __kmp_ignore_mppbeg(void);
3121 extern int __kmp_ignore_mppend(void);
3122 
3123 extern int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws);
3124 extern void __kmp_exit_single(int gtid);
3125 
3126 extern void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3127 extern void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3128 
3129 #ifdef USE_LOAD_BALANCE
3130 extern int __kmp_get_load_balance(int);
3131 #endif
3132 
3133 extern int __kmp_get_global_thread_id(void);
3134 extern int __kmp_get_global_thread_id_reg(void);
3135 extern void __kmp_exit_thread(int exit_status);
3136 extern void __kmp_abort(char const *format, ...);
3137 extern void __kmp_abort_thread(void);
3138 KMP_NORETURN extern void __kmp_abort_process(void);
3139 extern void __kmp_warn(char const *format, ...);
3140 
3141 extern void __kmp_set_num_threads(int new_nth, int gtid);
3142 
3143 // Returns current thread (pointer to kmp_info_t). Current thread *must* be
3144 // registered.
3145 static inline kmp_info_t *__kmp_entry_thread() {
3146   int gtid = __kmp_entry_gtid();
3147 
3148   return __kmp_threads[gtid];
3149 }
3150 
3151 extern void __kmp_set_max_active_levels(int gtid, int new_max_active_levels);
3152 extern int __kmp_get_max_active_levels(int gtid);
3153 extern int __kmp_get_ancestor_thread_num(int gtid, int level);
3154 extern int __kmp_get_team_size(int gtid, int level);
3155 extern void __kmp_set_schedule(int gtid, kmp_sched_t new_sched, int chunk);
3156 extern void __kmp_get_schedule(int gtid, kmp_sched_t *sched, int *chunk);
3157 
3158 extern unsigned short __kmp_get_random(kmp_info_t *thread);
3159 extern void __kmp_init_random(kmp_info_t *thread);
3160 
3161 extern kmp_r_sched_t __kmp_get_schedule_global(void);
3162 extern void __kmp_adjust_num_threads(int new_nproc);
3163 extern void __kmp_check_stksize(size_t *val);
3164 
3165 extern void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL);
3166 extern void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL);
3167 extern void ___kmp_free(void *ptr KMP_SRC_LOC_DECL);
3168 #define __kmp_allocate(size) ___kmp_allocate((size)KMP_SRC_LOC_CURR)
3169 #define __kmp_page_allocate(size) ___kmp_page_allocate((size)KMP_SRC_LOC_CURR)
3170 #define __kmp_free(ptr) ___kmp_free((ptr)KMP_SRC_LOC_CURR)
3171 
3172 #if USE_FAST_MEMORY
3173 extern void *___kmp_fast_allocate(kmp_info_t *this_thr,
3174                                   size_t size KMP_SRC_LOC_DECL);
3175 extern void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL);
3176 extern void __kmp_free_fast_memory(kmp_info_t *this_thr);
3177 extern void __kmp_initialize_fast_memory(kmp_info_t *this_thr);
3178 #define __kmp_fast_allocate(this_thr, size)                                    \
3179   ___kmp_fast_allocate((this_thr), (size)KMP_SRC_LOC_CURR)
3180 #define __kmp_fast_free(this_thr, ptr)                                         \
3181   ___kmp_fast_free((this_thr), (ptr)KMP_SRC_LOC_CURR)
3182 #endif
3183 
3184 extern void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL);
3185 extern void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem,
3186                                   size_t elsize KMP_SRC_LOC_DECL);
3187 extern void *___kmp_thread_realloc(kmp_info_t *th, void *ptr,
3188                                    size_t size KMP_SRC_LOC_DECL);
3189 extern void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL);
3190 #define __kmp_thread_malloc(th, size)                                          \
3191   ___kmp_thread_malloc((th), (size)KMP_SRC_LOC_CURR)
3192 #define __kmp_thread_calloc(th, nelem, elsize)                                 \
3193   ___kmp_thread_calloc((th), (nelem), (elsize)KMP_SRC_LOC_CURR)
3194 #define __kmp_thread_realloc(th, ptr, size)                                    \
3195   ___kmp_thread_realloc((th), (ptr), (size)KMP_SRC_LOC_CURR)
3196 #define __kmp_thread_free(th, ptr)                                             \
3197   ___kmp_thread_free((th), (ptr)KMP_SRC_LOC_CURR)
3198 
3199 #define KMP_INTERNAL_MALLOC(sz) malloc(sz)
3200 #define KMP_INTERNAL_FREE(p) free(p)
3201 #define KMP_INTERNAL_REALLOC(p, sz) realloc((p), (sz))
3202 #define KMP_INTERNAL_CALLOC(n, sz) calloc((n), (sz))
3203 
3204 extern void __kmp_push_num_threads(ident_t *loc, int gtid, int num_threads);
3205 
3206 extern void __kmp_push_proc_bind(ident_t *loc, int gtid,
3207                                  kmp_proc_bind_t proc_bind);
3208 extern void __kmp_push_num_teams(ident_t *loc, int gtid, int num_teams,
3209                                  int num_threads);
3210 
3211 extern void __kmp_yield();
3212 
3213 extern void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3214                                    enum sched_type schedule, kmp_int32 lb,
3215                                    kmp_int32 ub, kmp_int32 st, kmp_int32 chunk);
3216 extern void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3217                                     enum sched_type schedule, kmp_uint32 lb,
3218                                     kmp_uint32 ub, kmp_int32 st,
3219                                     kmp_int32 chunk);
3220 extern void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3221                                    enum sched_type schedule, kmp_int64 lb,
3222                                    kmp_int64 ub, kmp_int64 st, kmp_int64 chunk);
3223 extern void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3224                                     enum sched_type schedule, kmp_uint64 lb,
3225                                     kmp_uint64 ub, kmp_int64 st,
3226                                     kmp_int64 chunk);
3227 
3228 extern int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid,
3229                                   kmp_int32 *p_last, kmp_int32 *p_lb,
3230                                   kmp_int32 *p_ub, kmp_int32 *p_st);
3231 extern int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid,
3232                                    kmp_int32 *p_last, kmp_uint32 *p_lb,
3233                                    kmp_uint32 *p_ub, kmp_int32 *p_st);
3234 extern int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid,
3235                                   kmp_int32 *p_last, kmp_int64 *p_lb,
3236                                   kmp_int64 *p_ub, kmp_int64 *p_st);
3237 extern int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid,
3238                                    kmp_int32 *p_last, kmp_uint64 *p_lb,
3239                                    kmp_uint64 *p_ub, kmp_int64 *p_st);
3240 
3241 extern void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid);
3242 extern void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid);
3243 extern void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid);
3244 extern void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid);
3245 
3246 #ifdef KMP_GOMP_COMPAT
3247 
3248 extern void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3249                                       enum sched_type schedule, kmp_int32 lb,
3250                                       kmp_int32 ub, kmp_int32 st,
3251                                       kmp_int32 chunk, int push_ws);
3252 extern void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3253                                        enum sched_type schedule, kmp_uint32 lb,
3254                                        kmp_uint32 ub, kmp_int32 st,
3255                                        kmp_int32 chunk, int push_ws);
3256 extern void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3257                                       enum sched_type schedule, kmp_int64 lb,
3258                                       kmp_int64 ub, kmp_int64 st,
3259                                       kmp_int64 chunk, int push_ws);
3260 extern void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3261                                        enum sched_type schedule, kmp_uint64 lb,
3262                                        kmp_uint64 ub, kmp_int64 st,
3263                                        kmp_int64 chunk, int push_ws);
3264 extern void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid);
3265 extern void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid);
3266 extern void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid);
3267 extern void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid);
3268 
3269 #endif /* KMP_GOMP_COMPAT */
3270 
3271 extern kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker);
3272 extern kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker);
3273 extern kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker);
3274 extern kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker);
3275 extern kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker);
3276 extern kmp_uint32 __kmp_wait_4(kmp_uint32 volatile *spinner, kmp_uint32 checker,
3277                                kmp_uint32 (*pred)(kmp_uint32, kmp_uint32),
3278                                void *obj);
3279 extern void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker,
3280                              kmp_uint32 (*pred)(void *, kmp_uint32), void *obj);
3281 
3282 class kmp_flag_32;
3283 class kmp_flag_64;
3284 class kmp_flag_oncore;
3285 extern void __kmp_wait_64(kmp_info_t *this_thr, kmp_flag_64 *flag,
3286                           int final_spin
3287 #if USE_ITT_BUILD
3288                           ,
3289                           void *itt_sync_obj
3290 #endif
3291                           );
3292 extern void __kmp_release_64(kmp_flag_64 *flag);
3293 
3294 extern void __kmp_infinite_loop(void);
3295 
3296 extern void __kmp_cleanup(void);
3297 
3298 #if KMP_HANDLE_SIGNALS
3299 extern int __kmp_handle_signals;
3300 extern void __kmp_install_signals(int parallel_init);
3301 extern void __kmp_remove_signals(void);
3302 #endif
3303 
3304 extern void __kmp_clear_system_time(void);
3305 extern void __kmp_read_system_time(double *delta);
3306 
3307 extern void __kmp_check_stack_overlap(kmp_info_t *thr);
3308 
3309 extern void __kmp_expand_host_name(char *buffer, size_t size);
3310 extern void __kmp_expand_file_name(char *result, size_t rlen, char *pattern);
3311 
3312 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3313 extern void
3314 __kmp_initialize_system_tick(void); /* Initialize timer tick value */
3315 #endif
3316 
3317 extern void
3318 __kmp_runtime_initialize(void); /* machine specific initialization */
3319 extern void __kmp_runtime_destroy(void);
3320 
3321 #if KMP_AFFINITY_SUPPORTED
3322 extern char *__kmp_affinity_print_mask(char *buf, int buf_len,
3323                                        kmp_affin_mask_t *mask);
3324 extern kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
3325                                                   kmp_affin_mask_t *mask);
3326 extern void __kmp_affinity_initialize(void);
3327 extern void __kmp_affinity_uninitialize(void);
3328 extern void __kmp_affinity_set_init_mask(
3329     int gtid, int isa_root); /* set affinity according to KMP_AFFINITY */
3330 extern void __kmp_affinity_set_place(int gtid);
3331 extern void __kmp_affinity_determine_capable(const char *env_var);
3332 extern int __kmp_aux_set_affinity(void **mask);
3333 extern int __kmp_aux_get_affinity(void **mask);
3334 extern int __kmp_aux_get_affinity_max_proc();
3335 extern int __kmp_aux_set_affinity_mask_proc(int proc, void **mask);
3336 extern int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask);
3337 extern int __kmp_aux_get_affinity_mask_proc(int proc, void **mask);
3338 extern void __kmp_balanced_affinity(kmp_info_t *th, int team_size);
3339 #if KMP_OS_LINUX || KMP_OS_FREEBSD
3340 extern int kmp_set_thread_affinity_mask_initial(void);
3341 #endif
3342 #endif /* KMP_AFFINITY_SUPPORTED */
3343 // No need for KMP_AFFINITY_SUPPORTED guard as only one field in the
3344 // format string is for affinity, so platforms that do not support
3345 // affinity can still use the other fields, e.g., %n for num_threads
3346 extern size_t __kmp_aux_capture_affinity(int gtid, const char *format,
3347                                          kmp_str_buf_t *buffer);
3348 extern void __kmp_aux_display_affinity(int gtid, const char *format);
3349 
3350 extern void __kmp_cleanup_hierarchy();
3351 extern void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar);
3352 
3353 #if KMP_USE_FUTEX
3354 
3355 extern int __kmp_futex_determine_capable(void);
3356 
3357 #endif // KMP_USE_FUTEX
3358 
3359 extern void __kmp_gtid_set_specific(int gtid);
3360 extern int __kmp_gtid_get_specific(void);
3361 
3362 extern double __kmp_read_cpu_time(void);
3363 
3364 extern int __kmp_read_system_info(struct kmp_sys_info *info);
3365 
3366 #if KMP_USE_MONITOR
3367 extern void __kmp_create_monitor(kmp_info_t *th);
3368 #endif
3369 
3370 extern void *__kmp_launch_thread(kmp_info_t *thr);
3371 
3372 extern void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size);
3373 
3374 #if KMP_OS_WINDOWS
3375 extern int __kmp_still_running(kmp_info_t *th);
3376 extern int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val);
3377 extern void __kmp_free_handle(kmp_thread_t tHandle);
3378 #endif
3379 
3380 #if KMP_USE_MONITOR
3381 extern void __kmp_reap_monitor(kmp_info_t *th);
3382 #endif
3383 extern void __kmp_reap_worker(kmp_info_t *th);
3384 extern void __kmp_terminate_thread(int gtid);
3385 
3386 extern int __kmp_try_suspend_mx(kmp_info_t *th);
3387 extern void __kmp_lock_suspend_mx(kmp_info_t *th);
3388 extern void __kmp_unlock_suspend_mx(kmp_info_t *th);
3389 
3390 extern void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag);
3391 extern void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag);
3392 extern void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag);
3393 extern void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag);
3394 extern void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag);
3395 extern void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag);
3396 
3397 extern void __kmp_elapsed(double *);
3398 extern void __kmp_elapsed_tick(double *);
3399 
3400 extern void __kmp_enable(int old_state);
3401 extern void __kmp_disable(int *old_state);
3402 
3403 extern void __kmp_thread_sleep(int millis);
3404 
3405 extern void __kmp_common_initialize(void);
3406 extern void __kmp_common_destroy(void);
3407 extern void __kmp_common_destroy_gtid(int gtid);
3408 
3409 #if KMP_OS_UNIX
3410 extern void __kmp_register_atfork(void);
3411 #endif
3412 extern void __kmp_suspend_initialize(void);
3413 extern void __kmp_suspend_initialize_thread(kmp_info_t *th);
3414 extern void __kmp_suspend_uninitialize_thread(kmp_info_t *th);
3415 
3416 extern kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team,
3417                                          int tid);
3418 extern kmp_team_t *
3419 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc,
3420 #if OMPT_SUPPORT
3421                     ompt_data_t ompt_parallel_data,
3422 #endif
3423                     kmp_proc_bind_t proc_bind, kmp_internal_control_t *new_icvs,
3424                     int argc USE_NESTED_HOT_ARG(kmp_info_t *thr));
3425 extern void __kmp_free_thread(kmp_info_t *);
3426 extern void __kmp_free_team(kmp_root_t *,
3427                             kmp_team_t *USE_NESTED_HOT_ARG(kmp_info_t *));
3428 extern kmp_team_t *__kmp_reap_team(kmp_team_t *);
3429 
3430 /* ------------------------------------------------------------------------ */
3431 
3432 extern void __kmp_initialize_bget(kmp_info_t *th);
3433 extern void __kmp_finalize_bget(kmp_info_t *th);
3434 
3435 KMP_EXPORT void *kmpc_malloc(size_t size);
3436 KMP_EXPORT void *kmpc_aligned_malloc(size_t size, size_t alignment);
3437 KMP_EXPORT void *kmpc_calloc(size_t nelem, size_t elsize);
3438 KMP_EXPORT void *kmpc_realloc(void *ptr, size_t size);
3439 KMP_EXPORT void kmpc_free(void *ptr);
3440 
3441 /* declarations for internal use */
3442 
3443 extern int __kmp_barrier(enum barrier_type bt, int gtid, int is_split,
3444                          size_t reduce_size, void *reduce_data,
3445                          void (*reduce)(void *, void *));
3446 extern void __kmp_end_split_barrier(enum barrier_type bt, int gtid);
3447 extern int __kmp_barrier_gomp_cancel(int gtid);
3448 
3449 /*!
3450  * Tell the fork call which compiler generated the fork call, and therefore how
3451  * to deal with the call.
3452  */
3453 enum fork_context_e {
3454   fork_context_gnu, /**< Called from GNU generated code, so must not invoke the
3455                        microtask internally. */
3456   fork_context_intel, /**< Called from Intel generated code.  */
3457   fork_context_last
3458 };
3459 extern int __kmp_fork_call(ident_t *loc, int gtid,
3460                            enum fork_context_e fork_context, kmp_int32 argc,
3461                            microtask_t microtask, launch_t invoker,
3462                            kmp_va_list ap);
3463 
3464 extern void __kmp_join_call(ident_t *loc, int gtid
3465 #if OMPT_SUPPORT
3466                             ,
3467                             enum fork_context_e fork_context
3468 #endif
3469                             ,
3470                             int exit_teams = 0);
3471 
3472 extern void __kmp_serialized_parallel(ident_t *id, kmp_int32 gtid);
3473 extern void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team);
3474 extern void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team);
3475 extern int __kmp_invoke_task_func(int gtid);
3476 extern void __kmp_run_before_invoked_task(int gtid, int tid,
3477                                           kmp_info_t *this_thr,
3478                                           kmp_team_t *team);
3479 extern void __kmp_run_after_invoked_task(int gtid, int tid,
3480                                          kmp_info_t *this_thr,
3481                                          kmp_team_t *team);
3482 
3483 // should never have been exported
3484 KMP_EXPORT int __kmpc_invoke_task_func(int gtid);
3485 extern int __kmp_invoke_teams_master(int gtid);
3486 extern void __kmp_teams_master(int gtid);
3487 extern int __kmp_aux_get_team_num();
3488 extern int __kmp_aux_get_num_teams();
3489 extern void __kmp_save_internal_controls(kmp_info_t *thread);
3490 extern void __kmp_user_set_library(enum library_type arg);
3491 extern void __kmp_aux_set_library(enum library_type arg);
3492 extern void __kmp_aux_set_stacksize(size_t arg);
3493 extern void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid);
3494 extern void __kmp_aux_set_defaults(char const *str, int len);
3495 
3496 /* Functions called from __kmp_aux_env_initialize() in kmp_settings.cpp */
3497 void kmpc_set_blocktime(int arg);
3498 void ompc_set_nested(int flag);
3499 void ompc_set_dynamic(int flag);
3500 void ompc_set_num_threads(int arg);
3501 
3502 extern void __kmp_push_current_task_to_thread(kmp_info_t *this_thr,
3503                                               kmp_team_t *team, int tid);
3504 extern void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr);
3505 extern kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3506                                     kmp_tasking_flags_t *flags,
3507                                     size_t sizeof_kmp_task_t,
3508                                     size_t sizeof_shareds,
3509                                     kmp_routine_entry_t task_entry);
3510 extern void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
3511                                      kmp_team_t *team, int tid,
3512                                      int set_curr_task);
3513 extern void __kmp_finish_implicit_task(kmp_info_t *this_thr);
3514 extern void __kmp_free_implicit_task(kmp_info_t *this_thr);
3515 
3516 extern kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref,
3517                                                        int gtid,
3518                                                        kmp_task_t *task);
3519 extern void __kmp_fulfill_event(kmp_event_t *event);
3520 
3521 int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid,
3522                            kmp_flag_32 *flag, int final_spin,
3523                            int *thread_finished,
3524 #if USE_ITT_BUILD
3525                            void *itt_sync_obj,
3526 #endif /* USE_ITT_BUILD */
3527                            kmp_int32 is_constrained);
3528 int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
3529                            kmp_flag_64 *flag, int final_spin,
3530                            int *thread_finished,
3531 #if USE_ITT_BUILD
3532                            void *itt_sync_obj,
3533 #endif /* USE_ITT_BUILD */
3534                            kmp_int32 is_constrained);
3535 int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid,
3536                                kmp_flag_oncore *flag, int final_spin,
3537                                int *thread_finished,
3538 #if USE_ITT_BUILD
3539                                void *itt_sync_obj,
3540 #endif /* USE_ITT_BUILD */
3541                                kmp_int32 is_constrained);
3542 
3543 extern void __kmp_free_task_team(kmp_info_t *thread,
3544                                  kmp_task_team_t *task_team);
3545 extern void __kmp_reap_task_teams(void);
3546 extern void __kmp_wait_to_unref_task_teams(void);
3547 extern void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team,
3548                                   int always);
3549 extern void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team);
3550 extern void __kmp_task_team_wait(kmp_info_t *this_thr, kmp_team_t *team
3551 #if USE_ITT_BUILD
3552                                  ,
3553                                  void *itt_sync_obj
3554 #endif /* USE_ITT_BUILD */
3555                                  ,
3556                                  int wait = 1);
3557 extern void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread,
3558                                   int gtid);
3559 
3560 extern int __kmp_is_address_mapped(void *addr);
3561 extern kmp_uint64 __kmp_hardware_timestamp(void);
3562 
3563 #if KMP_OS_UNIX
3564 extern int __kmp_read_from_file(char const *path, char const *format, ...);
3565 #endif
3566 
3567 /* ------------------------------------------------------------------------ */
3568 //
3569 // Assembly routines that have no compiler intrinsic replacement
3570 //
3571 
3572 extern int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int npr, int argc,
3573                                   void *argv[]
3574 #if OMPT_SUPPORT
3575                                   ,
3576                                   void **exit_frame_ptr
3577 #endif
3578                                   );
3579 
3580 /* ------------------------------------------------------------------------ */
3581 
3582 KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags);
3583 KMP_EXPORT void __kmpc_end(ident_t *);
3584 
3585 KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data,
3586                                                   kmpc_ctor_vec ctor,
3587                                                   kmpc_cctor_vec cctor,
3588                                                   kmpc_dtor_vec dtor,
3589                                                   size_t vector_length);
3590 KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data,
3591                                               kmpc_ctor ctor, kmpc_cctor cctor,
3592                                               kmpc_dtor dtor);
3593 KMP_EXPORT void *__kmpc_threadprivate(ident_t *, kmp_int32 global_tid,
3594                                       void *data, size_t size);
3595 
3596 KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *);
3597 KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *);
3598 KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *);
3599 KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *);
3600 
3601 KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *);
3602 KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs,
3603                                  kmpc_micro microtask, ...);
3604 
3605 KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid);
3606 KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid);
3607 
3608 KMP_EXPORT void __kmpc_flush(ident_t *);
3609 KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid);
3610 KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
3611 KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
3612 KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid);
3613 KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid);
3614 KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid,
3615                                 kmp_critical_name *);
3616 KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid,
3617                                     kmp_critical_name *);
3618 KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid,
3619                                           kmp_critical_name *, uint32_t hint);
3620 
3621 KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid);
3622 KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid);
3623 
3624 KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *,
3625                                                   kmp_int32 global_tid);
3626 
3627 KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
3628 KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
3629 
3630 KMP_EXPORT void KMPC_FOR_STATIC_INIT(ident_t *loc, kmp_int32 global_tid,
3631                                      kmp_int32 schedtype, kmp_int32 *plastiter,
3632                                      kmp_int *plower, kmp_int *pupper,
3633                                      kmp_int *pstride, kmp_int incr,
3634                                      kmp_int chunk);
3635 
3636 KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
3637 
3638 KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
3639                                    size_t cpy_size, void *cpy_data,
3640                                    void (*cpy_func)(void *, void *),
3641                                    kmp_int32 didit);
3642 
3643 extern void KMPC_SET_NUM_THREADS(int arg);
3644 extern void KMPC_SET_DYNAMIC(int flag);
3645 extern void KMPC_SET_NESTED(int flag);
3646 
3647 /* OMP 3.0 tasking interface routines */
3648 KMP_EXPORT kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
3649                                      kmp_task_t *new_task);
3650 KMP_EXPORT kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3651                                              kmp_int32 flags,
3652                                              size_t sizeof_kmp_task_t,
3653                                              size_t sizeof_shareds,
3654                                              kmp_routine_entry_t task_entry);
3655 KMP_EXPORT kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3656                                                     kmp_int32 flags,
3657                                                     size_t sizeof_kmp_task_t,
3658                                                     size_t sizeof_shareds,
3659                                                     kmp_routine_entry_t task_entry,
3660                                                     kmp_int64 device_id);
3661 KMP_EXPORT void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
3662                                           kmp_task_t *task);
3663 KMP_EXPORT void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
3664                                              kmp_task_t *task);
3665 KMP_EXPORT kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
3666                                            kmp_task_t *new_task);
3667 KMP_EXPORT kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid);
3668 
3669 KMP_EXPORT kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid,
3670                                           int end_part);
3671 
3672 #if TASK_UNUSED
3673 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task);
3674 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
3675                               kmp_task_t *task);
3676 #endif // TASK_UNUSED
3677 
3678 /* ------------------------------------------------------------------------ */
3679 
3680 KMP_EXPORT void __kmpc_taskgroup(ident_t *loc, int gtid);
3681 KMP_EXPORT void __kmpc_end_taskgroup(ident_t *loc, int gtid);
3682 
3683 KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(
3684     ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps,
3685     kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
3686     kmp_depend_info_t *noalias_dep_list);
3687 KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid,
3688                                      kmp_int32 ndeps,
3689                                      kmp_depend_info_t *dep_list,
3690                                      kmp_int32 ndeps_noalias,
3691                                      kmp_depend_info_t *noalias_dep_list);
3692 extern kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
3693                                 bool serialize_immediate);
3694 
3695 KMP_EXPORT kmp_int32 __kmpc_cancel(ident_t *loc_ref, kmp_int32 gtid,
3696                                    kmp_int32 cncl_kind);
3697 KMP_EXPORT kmp_int32 __kmpc_cancellationpoint(ident_t *loc_ref, kmp_int32 gtid,
3698                                               kmp_int32 cncl_kind);
3699 KMP_EXPORT kmp_int32 __kmpc_cancel_barrier(ident_t *loc_ref, kmp_int32 gtid);
3700 KMP_EXPORT int __kmp_get_cancellation_status(int cancel_kind);
3701 
3702 KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask);
3703 KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask);
3704 KMP_EXPORT void __kmpc_taskloop(ident_t *loc, kmp_int32 gtid, kmp_task_t *task,
3705                                 kmp_int32 if_val, kmp_uint64 *lb,
3706                                 kmp_uint64 *ub, kmp_int64 st, kmp_int32 nogroup,
3707                                 kmp_int32 sched, kmp_uint64 grainsize,
3708                                 void *task_dup);
3709 KMP_EXPORT void *__kmpc_task_reduction_init(int gtid, int num_data, void *data);
3710 KMP_EXPORT void *__kmpc_taskred_init(int gtid, int num_data, void *data);
3711 KMP_EXPORT void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d);
3712 KMP_EXPORT void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid,
3713                                                      int is_ws, int num,
3714                                                      void *data);
3715 KMP_EXPORT void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws,
3716                                               int num, void *data);
3717 KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid,
3718                                                     int is_ws);
3719 KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(
3720     ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins,
3721     kmp_task_affinity_info_t *affin_list);
3722 
3723 /* Lock interface routines (fast versions with gtid passed in) */
3724 KMP_EXPORT void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid,
3725                                  void **user_lock);
3726 KMP_EXPORT void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid,
3727                                       void **user_lock);
3728 KMP_EXPORT void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid,
3729                                     void **user_lock);
3730 KMP_EXPORT void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid,
3731                                          void **user_lock);
3732 KMP_EXPORT void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
3733 KMP_EXPORT void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid,
3734                                      void **user_lock);
3735 KMP_EXPORT void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid,
3736                                   void **user_lock);
3737 KMP_EXPORT void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid,
3738                                        void **user_lock);
3739 KMP_EXPORT int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
3740 KMP_EXPORT int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid,
3741                                      void **user_lock);
3742 
3743 KMP_EXPORT void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid,
3744                                            void **user_lock, uintptr_t hint);
3745 KMP_EXPORT void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid,
3746                                                 void **user_lock,
3747                                                 uintptr_t hint);
3748 
3749 /* Interface to fast scalable reduce methods routines */
3750 
3751 KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(
3752     ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
3753     void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
3754     kmp_critical_name *lck);
3755 KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
3756                                          kmp_critical_name *lck);
3757 KMP_EXPORT kmp_int32 __kmpc_reduce(
3758     ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
3759     void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
3760     kmp_critical_name *lck);
3761 KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
3762                                   kmp_critical_name *lck);
3763 
3764 /* Internal fast reduction routines */
3765 
3766 extern PACKED_REDUCTION_METHOD_T __kmp_determine_reduction_method(
3767     ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
3768     void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
3769     kmp_critical_name *lck);
3770 
3771 // this function is for testing set/get/determine reduce method
3772 KMP_EXPORT kmp_int32 __kmp_get_reduce_method(void);
3773 
3774 KMP_EXPORT kmp_uint64 __kmpc_get_taskid();
3775 KMP_EXPORT kmp_uint64 __kmpc_get_parent_taskid();
3776 
3777 // C++ port
3778 // missing 'extern "C"' declarations
3779 
3780 KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc);
3781 KMP_EXPORT void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid);
3782 KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
3783                                         kmp_int32 num_threads);
3784 
3785 KMP_EXPORT void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
3786                                       int proc_bind);
3787 KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
3788                                       kmp_int32 num_teams,
3789                                       kmp_int32 num_threads);
3790 KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc,
3791                                   kmpc_micro microtask, ...);
3792 struct kmp_dim { // loop bounds info casted to kmp_int64
3793   kmp_int64 lo; // lower
3794   kmp_int64 up; // upper
3795   kmp_int64 st; // stride
3796 };
3797 KMP_EXPORT void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
3798                                      kmp_int32 num_dims,
3799                                      const struct kmp_dim *dims);
3800 KMP_EXPORT void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid,
3801                                      const kmp_int64 *vec);
3802 KMP_EXPORT void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid,
3803                                      const kmp_int64 *vec);
3804 KMP_EXPORT void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
3805 
3806 KMP_EXPORT void *__kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid,
3807                                              void *data, size_t size,
3808                                              void ***cache);
3809 
3810 // Symbols for MS mutual detection.
3811 extern int _You_must_link_with_exactly_one_OpenMP_library;
3812 extern int _You_must_link_with_Intel_OpenMP_library;
3813 #if KMP_OS_WINDOWS && (KMP_VERSION_MAJOR > 4)
3814 extern int _You_must_link_with_Microsoft_OpenMP_library;
3815 #endif
3816 
3817 // The routines below are not exported.
3818 // Consider making them 'static' in corresponding source files.
3819 void kmp_threadprivate_insert_private_data(int gtid, void *pc_addr,
3820                                            void *data_addr, size_t pc_size);
3821 struct private_common *kmp_threadprivate_insert(int gtid, void *pc_addr,
3822                                                 void *data_addr,
3823                                                 size_t pc_size);
3824 void __kmp_threadprivate_resize_cache(int newCapacity);
3825 void __kmp_cleanup_threadprivate_caches();
3826 
3827 // ompc_, kmpc_ entries moved from omp.h.
3828 #if KMP_OS_WINDOWS
3829 #define KMPC_CONVENTION __cdecl
3830 #else
3831 #define KMPC_CONVENTION
3832 #endif
3833 
3834 #ifndef __OMP_H
3835 typedef enum omp_sched_t {
3836   omp_sched_static = 1,
3837   omp_sched_dynamic = 2,
3838   omp_sched_guided = 3,
3839   omp_sched_auto = 4
3840 } omp_sched_t;
3841 typedef void *kmp_affinity_mask_t;
3842 #endif
3843 
3844 KMP_EXPORT void KMPC_CONVENTION ompc_set_max_active_levels(int);
3845 KMP_EXPORT void KMPC_CONVENTION ompc_set_schedule(omp_sched_t, int);
3846 KMP_EXPORT int KMPC_CONVENTION ompc_get_ancestor_thread_num(int);
3847 KMP_EXPORT int KMPC_CONVENTION ompc_get_team_size(int);
3848 KMP_EXPORT int KMPC_CONVENTION
3849 kmpc_set_affinity_mask_proc(int, kmp_affinity_mask_t *);
3850 KMP_EXPORT int KMPC_CONVENTION
3851 kmpc_unset_affinity_mask_proc(int, kmp_affinity_mask_t *);
3852 KMP_EXPORT int KMPC_CONVENTION
3853 kmpc_get_affinity_mask_proc(int, kmp_affinity_mask_t *);
3854 
3855 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize(int);
3856 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize_s(size_t);
3857 KMP_EXPORT void KMPC_CONVENTION kmpc_set_library(int);
3858 KMP_EXPORT void KMPC_CONVENTION kmpc_set_defaults(char const *);
3859 KMP_EXPORT void KMPC_CONVENTION kmpc_set_disp_num_buffers(int);
3860 
3861 enum kmp_target_offload_kind {
3862   tgt_disabled = 0,
3863   tgt_default = 1,
3864   tgt_mandatory = 2
3865 };
3866 typedef enum kmp_target_offload_kind kmp_target_offload_kind_t;
3867 // Set via OMP_TARGET_OFFLOAD if specified, defaults to tgt_default otherwise
3868 extern kmp_target_offload_kind_t __kmp_target_offload;
3869 extern int __kmpc_get_target_offload();
3870 
3871 // Constants used in libomptarget
3872 #define KMP_DEVICE_DEFAULT -1 // This is libomptarget's default device.
3873 #define KMP_HOST_DEVICE -10 // This is what it is in libomptarget, go figure.
3874 #define KMP_DEVICE_ALL -11 // This is libomptarget's "all devices".
3875 
3876 // OMP Pause Resource
3877 
3878 // The following enum is used both to set the status in __kmp_pause_status, and
3879 // as the internal equivalent of the externally-visible omp_pause_resource_t.
3880 typedef enum kmp_pause_status_t {
3881   kmp_not_paused = 0, // status is not paused, or, requesting resume
3882   kmp_soft_paused = 1, // status is soft-paused, or, requesting soft pause
3883   kmp_hard_paused = 2 // status is hard-paused, or, requesting hard pause
3884 } kmp_pause_status_t;
3885 
3886 // This stores the pause state of the runtime
3887 extern kmp_pause_status_t __kmp_pause_status;
3888 extern int __kmpc_pause_resource(kmp_pause_status_t level);
3889 extern int __kmp_pause_resource(kmp_pause_status_t level);
3890 // Soft resume sets __kmp_pause_status, and wakes up all threads.
3891 extern void __kmp_resume_if_soft_paused();
3892 // Hard resume simply resets the status to not paused. Library will appear to
3893 // be uninitialized after hard pause. Let OMP constructs trigger required
3894 // initializations.
3895 static inline void __kmp_resume_if_hard_paused() {
3896   if (__kmp_pause_status == kmp_hard_paused) {
3897     __kmp_pause_status = kmp_not_paused;
3898   }
3899 }
3900 
3901 extern void __kmp_omp_display_env(int verbose);
3902 
3903 #ifdef __cplusplus
3904 }
3905 #endif
3906 
3907 #endif /* KMP_H */
3908