xref: /freebsd/contrib/lua/doc/manual.html (revision b00ab754)
1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2<HTML>
3<HEAD>
4<TITLE>Lua 5.3 Reference Manual</TITLE>
5<LINK REL="stylesheet" TYPE="text/css" HREF="lua.css">
6<LINK REL="stylesheet" TYPE="text/css" HREF="manual.css">
7<META HTTP-EQUIV="content-type" CONTENT="text/html; charset=iso-8859-1">
8</HEAD>
9
10<BODY>
11
12<H1>
13<A HREF="http://www.lua.org/"><IMG SRC="logo.gif" ALT="Lua"></A>
14Lua 5.3 Reference Manual
15</H1>
16
17<P>
18by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes
19
20<P>
21<SMALL>
22Copyright &copy; 2015&ndash;2017 Lua.org, PUC-Rio.
23Freely available under the terms of the
24<a href="http://www.lua.org/license.html">Lua license</a>.
25</SMALL>
26
27<DIV CLASS="menubar">
28<A HREF="contents.html#contents">contents</A>
29&middot;
30<A HREF="contents.html#index">index</A>
31&middot;
32<A HREF="http://www.lua.org/manual/">other versions</A>
33</DIV>
34
35<!-- ====================================================================== -->
36<p>
37
38<!-- $Id: manual.of,v 1.167 2017/01/09 15:18:11 roberto Exp $ -->
39
40
41
42
43<h1>1 &ndash; <a name="1">Introduction</a></h1>
44
45<p>
46Lua is a powerful, efficient, lightweight, embeddable scripting language.
47It supports procedural programming,
48object-oriented programming, functional programming,
49data-driven programming, and data description.
50
51
52<p>
53Lua combines simple procedural syntax with powerful data description
54constructs based on associative arrays and extensible semantics.
55Lua is dynamically typed,
56runs by interpreting bytecode with a register-based
57virtual machine,
58and has automatic memory management with
59incremental garbage collection,
60making it ideal for configuration, scripting,
61and rapid prototyping.
62
63
64<p>
65Lua is implemented as a library, written in <em>clean C</em>,
66the common subset of Standard&nbsp;C and C++.
67The Lua distribution includes a host program called <code>lua</code>,
68which uses the Lua library to offer a complete,
69standalone Lua interpreter,
70for interactive or batch use.
71Lua is intended to be used both as a powerful, lightweight,
72embeddable scripting language for any program that needs one,
73and as a powerful but lightweight and efficient stand-alone language.
74
75
76<p>
77As an extension language, Lua has no notion of a "main" program:
78it works <em>embedded</em> in a host client,
79called the <em>embedding program</em> or simply the <em>host</em>.
80(Frequently, this host is the stand-alone <code>lua</code> program.)
81The host program can invoke functions to execute a piece of Lua code,
82can write and read Lua variables,
83and can register C&nbsp;functions to be called by Lua code.
84Through the use of C&nbsp;functions, Lua can be augmented to cope with
85a wide range of different domains,
86thus creating customized programming languages sharing a syntactical framework.
87
88
89<p>
90Lua is free software,
91and is provided as usual with no guarantees,
92as stated in its license.
93The implementation described in this manual is available
94at Lua's official web site, <code>www.lua.org</code>.
95
96
97<p>
98Like any other reference manual,
99this document is dry in places.
100For a discussion of the decisions behind the design of Lua,
101see the technical papers available at Lua's web site.
102For a detailed introduction to programming in Lua,
103see Roberto's book, <em>Programming in Lua</em>.
104
105
106
107<h1>2 &ndash; <a name="2">Basic Concepts</a></h1>
108
109<p>
110This section describes the basic concepts of the language.
111
112
113
114<h2>2.1 &ndash; <a name="2.1">Values and Types</a></h2>
115
116<p>
117Lua is a <em>dynamically typed language</em>.
118This means that
119variables do not have types; only values do.
120There are no type definitions in the language.
121All values carry their own type.
122
123
124<p>
125All values in Lua are <em>first-class values</em>.
126This means that all values can be stored in variables,
127passed as arguments to other functions, and returned as results.
128
129
130<p>
131There are eight basic types in Lua:
132<em>nil</em>, <em>boolean</em>, <em>number</em>,
133<em>string</em>, <em>function</em>, <em>userdata</em>,
134<em>thread</em>, and <em>table</em>.
135The type <em>nil</em> has one single value, <b>nil</b>,
136whose main property is to be different from any other value;
137it usually represents the absence of a useful value.
138The type <em>boolean</em> has two values, <b>false</b> and <b>true</b>.
139Both <b>nil</b> and <b>false</b> make a condition false;
140any other value makes it true.
141The type <em>number</em> represents both
142integer numbers and real (floating-point) numbers.
143The type <em>string</em> represents immutable sequences of bytes.
144
145Lua is 8-bit clean:
146strings can contain any 8-bit value,
147including embedded zeros ('<code>\0</code>').
148Lua is also encoding-agnostic;
149it makes no assumptions about the contents of a string.
150
151
152<p>
153The type <em>number</em> uses two internal representations,
154or two subtypes,
155one called <em>integer</em> and the other called <em>float</em>.
156Lua has explicit rules about when each representation is used,
157but it also converts between them automatically as needed (see <a href="#3.4.3">&sect;3.4.3</a>).
158Therefore,
159the programmer may choose to mostly ignore the difference
160between integers and floats
161or to assume complete control over the representation of each number.
162Standard Lua uses 64-bit integers and double-precision (64-bit) floats,
163but you can also compile Lua so that it
164uses 32-bit integers and/or single-precision (32-bit) floats.
165The option with 32 bits for both integers and floats
166is particularly attractive
167for small machines and embedded systems.
168(See macro <code>LUA_32BITS</code> in file <code>luaconf.h</code>.)
169
170
171<p>
172Lua can call (and manipulate) functions written in Lua and
173functions written in C (see <a href="#3.4.10">&sect;3.4.10</a>).
174Both are represented by the type <em>function</em>.
175
176
177<p>
178The type <em>userdata</em> is provided to allow arbitrary C&nbsp;data to
179be stored in Lua variables.
180A userdata value represents a block of raw memory.
181There are two kinds of userdata:
182<em>full userdata</em>,
183which is an object with a block of memory managed by Lua,
184and <em>light userdata</em>,
185which is simply a C&nbsp;pointer value.
186Userdata has no predefined operations in Lua,
187except assignment and identity test.
188By using <em>metatables</em>,
189the programmer can define operations for full userdata values
190(see <a href="#2.4">&sect;2.4</a>).
191Userdata values cannot be created or modified in Lua,
192only through the C&nbsp;API.
193This guarantees the integrity of data owned by the host program.
194
195
196<p>
197The type <em>thread</em> represents independent threads of execution
198and it is used to implement coroutines (see <a href="#2.6">&sect;2.6</a>).
199Lua threads are not related to operating-system threads.
200Lua supports coroutines on all systems,
201even those that do not support threads natively.
202
203
204<p>
205The type <em>table</em> implements associative arrays,
206that is, arrays that can be indexed not only with numbers,
207but with any Lua value except <b>nil</b> and NaN.
208(<em>Not a Number</em> is a special value used to represent
209undefined or unrepresentable numerical results, such as <code>0/0</code>.)
210Tables can be <em>heterogeneous</em>;
211that is, they can contain values of all types (except <b>nil</b>).
212Any key with value <b>nil</b> is not considered part of the table.
213Conversely, any key that is not part of a table has
214an associated value <b>nil</b>.
215
216
217<p>
218Tables are the sole data-structuring mechanism in Lua;
219they can be used to represent ordinary arrays, lists,
220symbol tables, sets, records, graphs, trees, etc.
221To represent records, Lua uses the field name as an index.
222The language supports this representation by
223providing <code>a.name</code> as syntactic sugar for <code>a["name"]</code>.
224There are several convenient ways to create tables in Lua
225(see <a href="#3.4.9">&sect;3.4.9</a>).
226
227
228<p>
229Like indices,
230the values of table fields can be of any type.
231In particular,
232because functions are first-class values,
233table fields can contain functions.
234Thus tables can also carry <em>methods</em> (see <a href="#3.4.11">&sect;3.4.11</a>).
235
236
237<p>
238The indexing of tables follows
239the definition of raw equality in the language.
240The expressions <code>a[i]</code> and <code>a[j]</code>
241denote the same table element
242if and only if <code>i</code> and <code>j</code> are raw equal
243(that is, equal without metamethods).
244In particular, floats with integral values
245are equal to their respective integers
246(e.g., <code>1.0 == 1</code>).
247To avoid ambiguities,
248any float with integral value used as a key
249is converted to its respective integer.
250For instance, if you write <code>a[2.0] = true</code>,
251the actual key inserted into the table will be the
252integer <code>2</code>.
253(On the other hand,
2542 and "<code>2</code>" are different Lua values and therefore
255denote different table entries.)
256
257
258<p>
259Tables, functions, threads, and (full) userdata values are <em>objects</em>:
260variables do not actually <em>contain</em> these values,
261only <em>references</em> to them.
262Assignment, parameter passing, and function returns
263always manipulate references to such values;
264these operations do not imply any kind of copy.
265
266
267<p>
268The library function <a href="#pdf-type"><code>type</code></a> returns a string describing the type
269of a given value (see <a href="#6.1">&sect;6.1</a>).
270
271
272
273
274
275<h2>2.2 &ndash; <a name="2.2">Environments and the Global Environment</a></h2>
276
277<p>
278As will be discussed in <a href="#3.2">&sect;3.2</a> and <a href="#3.3.3">&sect;3.3.3</a>,
279any reference to a free name
280(that is, a name not bound to any declaration) <code>var</code>
281is syntactically translated to <code>_ENV.var</code>.
282Moreover, every chunk is compiled in the scope of
283an external local variable named <code>_ENV</code> (see <a href="#3.3.2">&sect;3.3.2</a>),
284so <code>_ENV</code> itself is never a free name in a chunk.
285
286
287<p>
288Despite the existence of this external <code>_ENV</code> variable and
289the translation of free names,
290<code>_ENV</code> is a completely regular name.
291In particular,
292you can define new variables and parameters with that name.
293Each reference to a free name uses the <code>_ENV</code> that is
294visible at that point in the program,
295following the usual visibility rules of Lua (see <a href="#3.5">&sect;3.5</a>).
296
297
298<p>
299Any table used as the value of <code>_ENV</code> is called an <em>environment</em>.
300
301
302<p>
303Lua keeps a distinguished environment called the <em>global environment</em>.
304This value is kept at a special index in the C registry (see <a href="#4.5">&sect;4.5</a>).
305In Lua, the global variable <a href="#pdf-_G"><code>_G</code></a> is initialized with this same value.
306(<a href="#pdf-_G"><code>_G</code></a> is never used internally.)
307
308
309<p>
310When Lua loads a chunk,
311the default value for its <code>_ENV</code> upvalue
312is the global environment (see <a href="#pdf-load"><code>load</code></a>).
313Therefore, by default,
314free names in Lua code refer to entries in the global environment
315(and, therefore, they are also called <em>global variables</em>).
316Moreover, all standard libraries are loaded in the global environment
317and some functions there operate on that environment.
318You can use <a href="#pdf-load"><code>load</code></a> (or <a href="#pdf-loadfile"><code>loadfile</code></a>)
319to load a chunk with a different environment.
320(In C, you have to load the chunk and then change the value
321of its first upvalue.)
322
323
324
325
326
327<h2>2.3 &ndash; <a name="2.3">Error Handling</a></h2>
328
329<p>
330Because Lua is an embedded extension language,
331all Lua actions start from C&nbsp;code in the host program
332calling a function from the Lua library.
333(When you use Lua standalone,
334the <code>lua</code> application is the host program.)
335Whenever an error occurs during
336the compilation or execution of a Lua chunk,
337control returns to the host,
338which can take appropriate measures
339(such as printing an error message).
340
341
342<p>
343Lua code can explicitly generate an error by calling the
344<a href="#pdf-error"><code>error</code></a> function.
345If you need to catch errors in Lua,
346you can use <a href="#pdf-pcall"><code>pcall</code></a> or <a href="#pdf-xpcall"><code>xpcall</code></a>
347to call a given function in <em>protected mode</em>.
348
349
350<p>
351Whenever there is an error,
352an <em>error object</em> (also called an <em>error message</em>)
353is propagated with information about the error.
354Lua itself only generates errors whose error object is a string,
355but programs may generate errors with
356any value as the error object.
357It is up to the Lua program or its host to handle such error objects.
358
359
360<p>
361When you use <a href="#pdf-xpcall"><code>xpcall</code></a> or <a href="#lua_pcall"><code>lua_pcall</code></a>,
362you may give a <em>message handler</em>
363to be called in case of errors.
364This function is called with the original error object
365and returns a new error object.
366It is called before the error unwinds the stack,
367so that it can gather more information about the error,
368for instance by inspecting the stack and creating a stack traceback.
369This message handler is still protected by the protected call;
370so, an error inside the message handler
371will call the message handler again.
372If this loop goes on for too long,
373Lua breaks it and returns an appropriate message.
374(The message handler is called only for regular runtime errors.
375It is not called for memory-allocation errors
376nor for errors while running finalizers.)
377
378
379
380
381
382<h2>2.4 &ndash; <a name="2.4">Metatables and Metamethods</a></h2>
383
384<p>
385Every value in Lua can have a <em>metatable</em>.
386This <em>metatable</em> is an ordinary Lua table
387that defines the behavior of the original value
388under certain special operations.
389You can change several aspects of the behavior
390of operations over a value by setting specific fields in its metatable.
391For instance, when a non-numeric value is the operand of an addition,
392Lua checks for a function in the field "<code>__add</code>" of the value's metatable.
393If it finds one,
394Lua calls this function to perform the addition.
395
396
397<p>
398The key for each event in a metatable is a string
399with the event name prefixed by two underscores;
400the corresponding values are called <em>metamethods</em>.
401In the previous example, the key is "<code>__add</code>"
402and the metamethod is the function that performs the addition.
403
404
405<p>
406You can query the metatable of any value
407using the <a href="#pdf-getmetatable"><code>getmetatable</code></a> function.
408Lua queries metamethods in metatables using a raw access (see <a href="#pdf-rawget"><code>rawget</code></a>).
409So, to retrieve the metamethod for event <code>ev</code> in object <code>o</code>,
410Lua does the equivalent to the following code:
411
412<pre>
413     rawget(getmetatable(<em>o</em>) or {}, "__<em>ev</em>")
414</pre>
415
416<p>
417You can replace the metatable of tables
418using the <a href="#pdf-setmetatable"><code>setmetatable</code></a> function.
419You cannot change the metatable of other types from Lua code
420(except by using the debug library (<a href="#6.10">&sect;6.10</a>));
421you should use the C&nbsp;API for that.
422
423
424<p>
425Tables and full userdata have individual metatables
426(although multiple tables and userdata can share their metatables).
427Values of all other types share one single metatable per type;
428that is, there is one single metatable for all numbers,
429one for all strings, etc.
430By default, a value has no metatable,
431but the string library sets a metatable for the string type (see <a href="#6.4">&sect;6.4</a>).
432
433
434<p>
435A metatable controls how an object behaves in
436arithmetic operations, bitwise operations,
437order comparisons, concatenation, length operation, calls, and indexing.
438A metatable also can define a function to be called
439when a userdata or a table is garbage collected (<a href="#2.5">&sect;2.5</a>).
440
441
442<p>
443For the unary operators (negation, length, and bitwise NOT),
444the metamethod is computed and called with a dummy second operand,
445equal to the first one.
446This extra operand is only to simplify Lua's internals
447(by making these operators behave like a binary operation)
448and may be removed in future versions.
449(For most uses this extra operand is irrelevant.)
450
451
452<p>
453A detailed list of events controlled by metatables is given next.
454Each operation is identified by its corresponding key.
455
456
457
458<ul>
459
460<li><b><code>__add</code>: </b>
461the addition (<code>+</code>) operation.
462If any operand for an addition is not a number
463(nor a string coercible to a number),
464Lua will try to call a metamethod.
465First, Lua will check the first operand (even if it is valid).
466If that operand does not define a metamethod for <code>__add</code>,
467then Lua will check the second operand.
468If Lua can find a metamethod,
469it calls the metamethod with the two operands as arguments,
470and the result of the call
471(adjusted to one value)
472is the result of the operation.
473Otherwise,
474it raises an error.
475</li>
476
477<li><b><code>__sub</code>: </b>
478the subtraction (<code>-</code>) operation.
479Behavior similar to the addition operation.
480</li>
481
482<li><b><code>__mul</code>: </b>
483the multiplication (<code>*</code>) operation.
484Behavior similar to the addition operation.
485</li>
486
487<li><b><code>__div</code>: </b>
488the division (<code>/</code>) operation.
489Behavior similar to the addition operation.
490</li>
491
492<li><b><code>__mod</code>: </b>
493the modulo (<code>%</code>) operation.
494Behavior similar to the addition operation.
495</li>
496
497<li><b><code>__pow</code>: </b>
498the exponentiation (<code>^</code>) operation.
499Behavior similar to the addition operation.
500</li>
501
502<li><b><code>__unm</code>: </b>
503the negation (unary <code>-</code>) operation.
504Behavior similar to the addition operation.
505</li>
506
507<li><b><code>__idiv</code>: </b>
508the floor division (<code>//</code>) operation.
509Behavior similar to the addition operation.
510</li>
511
512<li><b><code>__band</code>: </b>
513the bitwise AND (<code>&amp;</code>) operation.
514Behavior similar to the addition operation,
515except that Lua will try a metamethod
516if any operand is neither an integer
517nor a value coercible to an integer (see <a href="#3.4.3">&sect;3.4.3</a>).
518</li>
519
520<li><b><code>__bor</code>: </b>
521the bitwise OR (<code>|</code>) operation.
522Behavior similar to the bitwise AND operation.
523</li>
524
525<li><b><code>__bxor</code>: </b>
526the bitwise exclusive OR (binary <code>~</code>) operation.
527Behavior similar to the bitwise AND operation.
528</li>
529
530<li><b><code>__bnot</code>: </b>
531the bitwise NOT (unary <code>~</code>) operation.
532Behavior similar to the bitwise AND operation.
533</li>
534
535<li><b><code>__shl</code>: </b>
536the bitwise left shift (<code>&lt;&lt;</code>) operation.
537Behavior similar to the bitwise AND operation.
538</li>
539
540<li><b><code>__shr</code>: </b>
541the bitwise right shift (<code>&gt;&gt;</code>) operation.
542Behavior similar to the bitwise AND operation.
543</li>
544
545<li><b><code>__concat</code>: </b>
546the concatenation (<code>..</code>) operation.
547Behavior similar to the addition operation,
548except that Lua will try a metamethod
549if any operand is neither a string nor a number
550(which is always coercible to a string).
551</li>
552
553<li><b><code>__len</code>: </b>
554the length (<code>#</code>) operation.
555If the object is not a string,
556Lua will try its metamethod.
557If there is a metamethod,
558Lua calls it with the object as argument,
559and the result of the call
560(always adjusted to one value)
561is the result of the operation.
562If there is no metamethod but the object is a table,
563then Lua uses the table length operation (see <a href="#3.4.7">&sect;3.4.7</a>).
564Otherwise, Lua raises an error.
565</li>
566
567<li><b><code>__eq</code>: </b>
568the equal (<code>==</code>) operation.
569Behavior similar to the addition operation,
570except that Lua will try a metamethod only when the values
571being compared are either both tables or both full userdata
572and they are not primitively equal.
573The result of the call is always converted to a boolean.
574</li>
575
576<li><b><code>__lt</code>: </b>
577the less than (<code>&lt;</code>) operation.
578Behavior similar to the addition operation,
579except that Lua will try a metamethod only when the values
580being compared are neither both numbers nor both strings.
581The result of the call is always converted to a boolean.
582</li>
583
584<li><b><code>__le</code>: </b>
585the less equal (<code>&lt;=</code>) operation.
586Unlike other operations,
587the less-equal operation can use two different events.
588First, Lua looks for the <code>__le</code> metamethod in both operands,
589like in the less than operation.
590If it cannot find such a metamethod,
591then it will try the <code>__lt</code> metamethod,
592assuming that <code>a &lt;= b</code> is equivalent to <code>not (b &lt; a)</code>.
593As with the other comparison operators,
594the result is always a boolean.
595(This use of the <code>__lt</code> event can be removed in future versions;
596it is also slower than a real <code>__le</code> metamethod.)
597</li>
598
599<li><b><code>__index</code>: </b>
600The indexing access <code>table[key]</code>.
601This event happens when <code>table</code> is not a table or
602when <code>key</code> is not present in <code>table</code>.
603The metamethod is looked up in <code>table</code>.
604
605
606<p>
607Despite the name,
608the metamethod for this event can be either a function or a table.
609If it is a function,
610it is called with <code>table</code> and <code>key</code> as arguments,
611and the result of the call
612(adjusted to one value)
613is the result of the operation.
614If it is a table,
615the final result is the result of indexing this table with <code>key</code>.
616(This indexing is regular, not raw,
617and therefore can trigger another metamethod.)
618</li>
619
620<li><b><code>__newindex</code>: </b>
621The indexing assignment <code>table[key] = value</code>.
622Like the index event,
623this event happens when <code>table</code> is not a table or
624when <code>key</code> is not present in <code>table</code>.
625The metamethod is looked up in <code>table</code>.
626
627
628<p>
629Like with indexing,
630the metamethod for this event can be either a function or a table.
631If it is a function,
632it is called with <code>table</code>, <code>key</code>, and <code>value</code> as arguments.
633If it is a table,
634Lua does an indexing assignment to this table with the same key and value.
635(This assignment is regular, not raw,
636and therefore can trigger another metamethod.)
637
638
639<p>
640Whenever there is a <code>__newindex</code> metamethod,
641Lua does not perform the primitive assignment.
642(If necessary,
643the metamethod itself can call <a href="#pdf-rawset"><code>rawset</code></a>
644to do the assignment.)
645</li>
646
647<li><b><code>__call</code>: </b>
648The call operation <code>func(args)</code>.
649This event happens when Lua tries to call a non-function value
650(that is, <code>func</code> is not a function).
651The metamethod is looked up in <code>func</code>.
652If present,
653the metamethod is called with <code>func</code> as its first argument,
654followed by the arguments of the original call (<code>args</code>).
655All results of the call
656are the result of the operation.
657(This is the only metamethod that allows multiple results.)
658</li>
659
660</ul>
661
662<p>
663It is a good practice to add all needed metamethods to a table
664before setting it as a metatable of some object.
665In particular, the <code>__gc</code> metamethod works only when this order
666is followed (see <a href="#2.5.1">&sect;2.5.1</a>).
667
668
669<p>
670Because metatables are regular tables,
671they can contain arbitrary fields,
672not only the event names defined above.
673Some functions in the standard library
674(e.g., <a href="#pdf-tostring"><code>tostring</code></a>)
675use other fields in metatables for their own purposes.
676
677
678
679
680
681<h2>2.5 &ndash; <a name="2.5">Garbage Collection</a></h2>
682
683<p>
684Lua performs automatic memory management.
685This means that
686you do not have to worry about allocating memory for new objects
687or freeing it when the objects are no longer needed.
688Lua manages memory automatically by running
689a <em>garbage collector</em> to collect all <em>dead objects</em>
690(that is, objects that are no longer accessible from Lua).
691All memory used by Lua is subject to automatic management:
692strings, tables, userdata, functions, threads, internal structures, etc.
693
694
695<p>
696Lua implements an incremental mark-and-sweep collector.
697It uses two numbers to control its garbage-collection cycles:
698the <em>garbage-collector pause</em> and
699the <em>garbage-collector step multiplier</em>.
700Both use percentage points as units
701(e.g., a value of 100 means an internal value of 1).
702
703
704<p>
705The garbage-collector pause
706controls how long the collector waits before starting a new cycle.
707Larger values make the collector less aggressive.
708Values smaller than 100 mean the collector will not wait to
709start a new cycle.
710A value of 200 means that the collector waits for the total memory in use
711to double before starting a new cycle.
712
713
714<p>
715The garbage-collector step multiplier
716controls the relative speed of the collector relative to
717memory allocation.
718Larger values make the collector more aggressive but also increase
719the size of each incremental step.
720You should not use values smaller than 100,
721because they make the collector too slow and
722can result in the collector never finishing a cycle.
723The default is 200,
724which means that the collector runs at "twice"
725the speed of memory allocation.
726
727
728<p>
729If you set the step multiplier to a very large number
730(larger than 10% of the maximum number of
731bytes that the program may use),
732the collector behaves like a stop-the-world collector.
733If you then set the pause to 200,
734the collector behaves as in old Lua versions,
735doing a complete collection every time Lua doubles its
736memory usage.
737
738
739<p>
740You can change these numbers by calling <a href="#lua_gc"><code>lua_gc</code></a> in C
741or <a href="#pdf-collectgarbage"><code>collectgarbage</code></a> in Lua.
742You can also use these functions to control
743the collector directly (e.g., stop and restart it).
744
745
746
747<h3>2.5.1 &ndash; <a name="2.5.1">Garbage-Collection Metamethods</a></h3>
748
749<p>
750You can set garbage-collector metamethods for tables
751and, using the C&nbsp;API,
752for full userdata (see <a href="#2.4">&sect;2.4</a>).
753These metamethods are also called <em>finalizers</em>.
754Finalizers allow you to coordinate Lua's garbage collection
755with external resource management
756(such as closing files, network or database connections,
757or freeing your own memory).
758
759
760<p>
761For an object (table or userdata) to be finalized when collected,
762you must <em>mark</em> it for finalization.
763
764You mark an object for finalization when you set its metatable
765and the metatable has a field indexed by the string "<code>__gc</code>".
766Note that if you set a metatable without a <code>__gc</code> field
767and later create that field in the metatable,
768the object will not be marked for finalization.
769
770
771<p>
772When a marked object becomes garbage,
773it is not collected immediately by the garbage collector.
774Instead, Lua puts it in a list.
775After the collection,
776Lua goes through that list.
777For each object in the list,
778it checks the object's <code>__gc</code> metamethod:
779If it is a function,
780Lua calls it with the object as its single argument;
781if the metamethod is not a function,
782Lua simply ignores it.
783
784
785<p>
786At the end of each garbage-collection cycle,
787the finalizers for objects are called in
788the reverse order that the objects were marked for finalization,
789among those collected in that cycle;
790that is, the first finalizer to be called is the one associated
791with the object marked last in the program.
792The execution of each finalizer may occur at any point during
793the execution of the regular code.
794
795
796<p>
797Because the object being collected must still be used by the finalizer,
798that object (and other objects accessible only through it)
799must be <em>resurrected</em> by Lua.
800Usually, this resurrection is transient,
801and the object memory is freed in the next garbage-collection cycle.
802However, if the finalizer stores the object in some global place
803(e.g., a global variable),
804then the resurrection is permanent.
805Moreover, if the finalizer marks a finalizing object for finalization again,
806its finalizer will be called again in the next cycle where the
807object is unreachable.
808In any case,
809the object memory is freed only in a GC cycle where
810the object is unreachable and not marked for finalization.
811
812
813<p>
814When you close a state (see <a href="#lua_close"><code>lua_close</code></a>),
815Lua calls the finalizers of all objects marked for finalization,
816following the reverse order that they were marked.
817If any finalizer marks objects for collection during that phase,
818these marks have no effect.
819
820
821
822
823
824<h3>2.5.2 &ndash; <a name="2.5.2">Weak Tables</a></h3>
825
826<p>
827A <em>weak table</em> is a table whose elements are
828<em>weak references</em>.
829A weak reference is ignored by the garbage collector.
830In other words,
831if the only references to an object are weak references,
832then the garbage collector will collect that object.
833
834
835<p>
836A weak table can have weak keys, weak values, or both.
837A table with weak values allows the collection of its values,
838but prevents the collection of its keys.
839A table with both weak keys and weak values allows the collection of
840both keys and values.
841In any case, if either the key or the value is collected,
842the whole pair is removed from the table.
843The weakness of a table is controlled by the
844<code>__mode</code> field of its metatable.
845If the <code>__mode</code> field is a string containing the character&nbsp;'<code>k</code>',
846the keys in the table are weak.
847If <code>__mode</code> contains '<code>v</code>',
848the values in the table are weak.
849
850
851<p>
852A table with weak keys and strong values
853is also called an <em>ephemeron table</em>.
854In an ephemeron table,
855a value is considered reachable only if its key is reachable.
856In particular,
857if the only reference to a key comes through its value,
858the pair is removed.
859
860
861<p>
862Any change in the weakness of a table may take effect only
863at the next collect cycle.
864In particular, if you change the weakness to a stronger mode,
865Lua may still collect some items from that table
866before the change takes effect.
867
868
869<p>
870Only objects that have an explicit construction
871are removed from weak tables.
872Values, such as numbers and light C&nbsp;functions,
873are not subject to garbage collection,
874and therefore are not removed from weak tables
875(unless their associated values are collected).
876Although strings are subject to garbage collection,
877they do not have an explicit construction,
878and therefore are not removed from weak tables.
879
880
881<p>
882Resurrected objects
883(that is, objects being finalized
884and objects accessible only through objects being finalized)
885have a special behavior in weak tables.
886They are removed from weak values before running their finalizers,
887but are removed from weak keys only in the next collection
888after running their finalizers, when such objects are actually freed.
889This behavior allows the finalizer to access properties
890associated with the object through weak tables.
891
892
893<p>
894If a weak table is among the resurrected objects in a collection cycle,
895it may not be properly cleared until the next cycle.
896
897
898
899
900
901
902
903<h2>2.6 &ndash; <a name="2.6">Coroutines</a></h2>
904
905<p>
906Lua supports coroutines,
907also called <em>collaborative multithreading</em>.
908A coroutine in Lua represents an independent thread of execution.
909Unlike threads in multithread systems, however,
910a coroutine only suspends its execution by explicitly calling
911a yield function.
912
913
914<p>
915You create a coroutine by calling <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>.
916Its sole argument is a function
917that is the main function of the coroutine.
918The <code>create</code> function only creates a new coroutine and
919returns a handle to it (an object of type <em>thread</em>);
920it does not start the coroutine.
921
922
923<p>
924You execute a coroutine by calling <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>.
925When you first call <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>,
926passing as its first argument
927a thread returned by <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>,
928the coroutine starts its execution by
929calling its main function.
930Extra arguments passed to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> are passed
931as arguments to that function.
932After the coroutine starts running,
933it runs until it terminates or <em>yields</em>.
934
935
936<p>
937A coroutine can terminate its execution in two ways:
938normally, when its main function returns
939(explicitly or implicitly, after the last instruction);
940and abnormally, if there is an unprotected error.
941In case of normal termination,
942<a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns <b>true</b>,
943plus any values returned by the coroutine main function.
944In case of errors, <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns <b>false</b>
945plus an error object.
946
947
948<p>
949A coroutine yields by calling <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a>.
950When a coroutine yields,
951the corresponding <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns immediately,
952even if the yield happens inside nested function calls
953(that is, not in the main function,
954but in a function directly or indirectly called by the main function).
955In the case of a yield, <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> also returns <b>true</b>,
956plus any values passed to <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a>.
957The next time you resume the same coroutine,
958it continues its execution from the point where it yielded,
959with the call to <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a> returning any extra
960arguments passed to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>.
961
962
963<p>
964Like <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>,
965the <a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> function also creates a coroutine,
966but instead of returning the coroutine itself,
967it returns a function that, when called, resumes the coroutine.
968Any arguments passed to this function
969go as extra arguments to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>.
970<a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> returns all the values returned by <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>,
971except the first one (the boolean error code).
972Unlike <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>,
973<a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> does not catch errors;
974any error is propagated to the caller.
975
976
977<p>
978As an example of how coroutines work,
979consider the following code:
980
981<pre>
982     function foo (a)
983       print("foo", a)
984       return coroutine.yield(2*a)
985     end
986
987     co = coroutine.create(function (a,b)
988           print("co-body", a, b)
989           local r = foo(a+1)
990           print("co-body", r)
991           local r, s = coroutine.yield(a+b, a-b)
992           print("co-body", r, s)
993           return b, "end"
994     end)
995
996     print("main", coroutine.resume(co, 1, 10))
997     print("main", coroutine.resume(co, "r"))
998     print("main", coroutine.resume(co, "x", "y"))
999     print("main", coroutine.resume(co, "x", "y"))
1000</pre><p>
1001When you run it, it produces the following output:
1002
1003<pre>
1004     co-body 1       10
1005     foo     2
1006     main    true    4
1007     co-body r
1008     main    true    11      -9
1009     co-body x       y
1010     main    true    10      end
1011     main    false   cannot resume dead coroutine
1012</pre>
1013
1014<p>
1015You can also create and manipulate coroutines through the C API:
1016see functions <a href="#lua_newthread"><code>lua_newthread</code></a>, <a href="#lua_resume"><code>lua_resume</code></a>,
1017and <a href="#lua_yield"><code>lua_yield</code></a>.
1018
1019
1020
1021
1022
1023<h1>3 &ndash; <a name="3">The Language</a></h1>
1024
1025<p>
1026This section describes the lexis, the syntax, and the semantics of Lua.
1027In other words,
1028this section describes
1029which tokens are valid,
1030how they can be combined,
1031and what their combinations mean.
1032
1033
1034<p>
1035Language constructs will be explained using the usual extended BNF notation,
1036in which
1037{<em>a</em>}&nbsp;means&nbsp;0 or more <em>a</em>'s, and
1038[<em>a</em>]&nbsp;means an optional <em>a</em>.
1039Non-terminals are shown like non-terminal,
1040keywords are shown like <b>kword</b>,
1041and other terminal symbols are shown like &lsquo;<b>=</b>&rsquo;.
1042The complete syntax of Lua can be found in <a href="#9">&sect;9</a>
1043at the end of this manual.
1044
1045
1046
1047<h2>3.1 &ndash; <a name="3.1">Lexical Conventions</a></h2>
1048
1049<p>
1050Lua is a free-form language.
1051It ignores spaces (including new lines) and comments
1052between lexical elements (tokens),
1053except as delimiters between names and keywords.
1054
1055
1056<p>
1057<em>Names</em>
1058(also called <em>identifiers</em>)
1059in Lua can be any string of letters,
1060digits, and underscores,
1061not beginning with a digit and
1062not being a reserved word.
1063Identifiers are used to name variables, table fields, and labels.
1064
1065
1066<p>
1067The following <em>keywords</em> are reserved
1068and cannot be used as names:
1069
1070
1071<pre>
1072     and       break     do        else      elseif    end
1073     false     for       function  goto      if        in
1074     local     nil       not       or        repeat    return
1075     then      true      until     while
1076</pre>
1077
1078<p>
1079Lua is a case-sensitive language:
1080<code>and</code> is a reserved word, but <code>And</code> and <code>AND</code>
1081are two different, valid names.
1082As a convention,
1083programs should avoid creating
1084names that start with an underscore followed by
1085one or more uppercase letters (such as <a href="#pdf-_VERSION"><code>_VERSION</code></a>).
1086
1087
1088<p>
1089The following strings denote other tokens:
1090
1091<pre>
1092     +     -     *     /     %     ^     #
1093     &amp;     ~     |     &lt;&lt;    &gt;&gt;    //
1094     ==    ~=    &lt;=    &gt;=    &lt;     &gt;     =
1095     (     )     {     }     [     ]     ::
1096     ;     :     ,     .     ..    ...
1097</pre>
1098
1099<p>
1100A <em>short literal string</em>
1101can be delimited by matching single or double quotes,
1102and can contain the following C-like escape sequences:
1103'<code>\a</code>' (bell),
1104'<code>\b</code>' (backspace),
1105'<code>\f</code>' (form feed),
1106'<code>\n</code>' (newline),
1107'<code>\r</code>' (carriage return),
1108'<code>\t</code>' (horizontal tab),
1109'<code>\v</code>' (vertical tab),
1110'<code>\\</code>' (backslash),
1111'<code>\"</code>' (quotation mark [double quote]),
1112and '<code>\'</code>' (apostrophe [single quote]).
1113A backslash followed by a line break
1114results in a newline in the string.
1115The escape sequence '<code>\z</code>' skips the following span
1116of white-space characters,
1117including line breaks;
1118it is particularly useful to break and indent a long literal string
1119into multiple lines without adding the newlines and spaces
1120into the string contents.
1121A short literal string cannot contain unescaped line breaks
1122nor escapes not forming a valid escape sequence.
1123
1124
1125<p>
1126We can specify any byte in a short literal string by its numeric value
1127(including embedded zeros).
1128This can be done
1129with the escape sequence <code>\x<em>XX</em></code>,
1130where <em>XX</em> is a sequence of exactly two hexadecimal digits,
1131or with the escape sequence <code>\<em>ddd</em></code>,
1132where <em>ddd</em> is a sequence of up to three decimal digits.
1133(Note that if a decimal escape sequence is to be followed by a digit,
1134it must be expressed using exactly three digits.)
1135
1136
1137<p>
1138The UTF-8 encoding of a Unicode character
1139can be inserted in a literal string with
1140the escape sequence <code>\u{<em>XXX</em>}</code>
1141(note the mandatory enclosing brackets),
1142where <em>XXX</em> is a sequence of one or more hexadecimal digits
1143representing the character code point.
1144
1145
1146<p>
1147Literal strings can also be defined using a long format
1148enclosed by <em>long brackets</em>.
1149We define an <em>opening long bracket of level <em>n</em></em> as an opening
1150square bracket followed by <em>n</em> equal signs followed by another
1151opening square bracket.
1152So, an opening long bracket of level&nbsp;0 is written as <code>[[</code>,
1153an opening long bracket of level&nbsp;1 is written as <code>[=[</code>,
1154and so on.
1155A <em>closing long bracket</em> is defined similarly;
1156for instance,
1157a closing long bracket of level&nbsp;4 is written as  <code>]====]</code>.
1158A <em>long literal</em> starts with an opening long bracket of any level and
1159ends at the first closing long bracket of the same level.
1160It can contain any text except a closing bracket of the same level.
1161Literals in this bracketed form can run for several lines,
1162do not interpret any escape sequences,
1163and ignore long brackets of any other level.
1164Any kind of end-of-line sequence
1165(carriage return, newline, carriage return followed by newline,
1166or newline followed by carriage return)
1167is converted to a simple newline.
1168
1169
1170<p>
1171For convenience,
1172when the opening long bracket is immediately followed by a newline,
1173the newline is not included in the string.
1174As an example, in a system using ASCII
1175(in which '<code>a</code>' is coded as&nbsp;97,
1176newline is coded as&nbsp;10, and '<code>1</code>' is coded as&nbsp;49),
1177the five literal strings below denote the same string:
1178
1179<pre>
1180     a = 'alo\n123"'
1181     a = "alo\n123\""
1182     a = '\97lo\10\04923"'
1183     a = [[alo
1184     123"]]
1185     a = [==[
1186     alo
1187     123"]==]
1188</pre>
1189
1190<p>
1191Any byte in a literal string not
1192explicitly affected by the previous rules represents itself.
1193However, Lua opens files for parsing in text mode,
1194and the system file functions may have problems with
1195some control characters.
1196So, it is safer to represent
1197non-text data as a quoted literal with
1198explicit escape sequences for the non-text characters.
1199
1200
1201<p>
1202A <em>numeric constant</em> (or <em>numeral</em>)
1203can be written with an optional fractional part
1204and an optional decimal exponent,
1205marked by a letter '<code>e</code>' or '<code>E</code>'.
1206Lua also accepts hexadecimal constants,
1207which start with <code>0x</code> or <code>0X</code>.
1208Hexadecimal constants also accept an optional fractional part
1209plus an optional binary exponent,
1210marked by a letter '<code>p</code>' or '<code>P</code>'.
1211A numeric constant with a radix point or an exponent
1212denotes a float;
1213otherwise,
1214if its value fits in an integer,
1215it denotes an integer.
1216Examples of valid integer constants are
1217
1218<pre>
1219     3   345   0xff   0xBEBADA
1220</pre><p>
1221Examples of valid float constants are
1222
1223<pre>
1224     3.0     3.1416     314.16e-2     0.31416E1     34e1
1225     0x0.1E  0xA23p-4   0X1.921FB54442D18P+1
1226</pre>
1227
1228<p>
1229A <em>comment</em> starts with a double hyphen (<code>--</code>)
1230anywhere outside a string.
1231If the text immediately after <code>--</code> is not an opening long bracket,
1232the comment is a <em>short comment</em>,
1233which runs until the end of the line.
1234Otherwise, it is a <em>long comment</em>,
1235which runs until the corresponding closing long bracket.
1236Long comments are frequently used to disable code temporarily.
1237
1238
1239
1240
1241
1242<h2>3.2 &ndash; <a name="3.2">Variables</a></h2>
1243
1244<p>
1245Variables are places that store values.
1246There are three kinds of variables in Lua:
1247global variables, local variables, and table fields.
1248
1249
1250<p>
1251A single name can denote a global variable or a local variable
1252(or a function's formal parameter,
1253which is a particular kind of local variable):
1254
1255<pre>
1256	var ::= Name
1257</pre><p>
1258Name denotes identifiers, as defined in <a href="#3.1">&sect;3.1</a>.
1259
1260
1261<p>
1262Any variable name is assumed to be global unless explicitly declared
1263as a local (see <a href="#3.3.7">&sect;3.3.7</a>).
1264Local variables are <em>lexically scoped</em>:
1265local variables can be freely accessed by functions
1266defined inside their scope (see <a href="#3.5">&sect;3.5</a>).
1267
1268
1269<p>
1270Before the first assignment to a variable, its value is <b>nil</b>.
1271
1272
1273<p>
1274Square brackets are used to index a table:
1275
1276<pre>
1277	var ::= prefixexp &lsquo;<b>[</b>&rsquo; exp &lsquo;<b>]</b>&rsquo;
1278</pre><p>
1279The meaning of accesses to table fields can be changed via metatables.
1280An access to an indexed variable <code>t[i]</code> is equivalent to
1281a call <code>gettable_event(t,i)</code>.
1282(See <a href="#2.4">&sect;2.4</a> for a complete description of the
1283<code>gettable_event</code> function.
1284This function is not defined or callable in Lua.
1285We use it here only for explanatory purposes.)
1286
1287
1288<p>
1289The syntax <code>var.Name</code> is just syntactic sugar for
1290<code>var["Name"]</code>:
1291
1292<pre>
1293	var ::= prefixexp &lsquo;<b>.</b>&rsquo; Name
1294</pre>
1295
1296<p>
1297An access to a global variable <code>x</code>
1298is equivalent to <code>_ENV.x</code>.
1299Due to the way that chunks are compiled,
1300<code>_ENV</code> is never a global name (see <a href="#2.2">&sect;2.2</a>).
1301
1302
1303
1304
1305
1306<h2>3.3 &ndash; <a name="3.3">Statements</a></h2>
1307
1308<p>
1309Lua supports an almost conventional set of statements,
1310similar to those in Pascal or C.
1311This set includes
1312assignments, control structures, function calls,
1313and variable declarations.
1314
1315
1316
1317<h3>3.3.1 &ndash; <a name="3.3.1">Blocks</a></h3>
1318
1319<p>
1320A block is a list of statements,
1321which are executed sequentially:
1322
1323<pre>
1324	block ::= {stat}
1325</pre><p>
1326Lua has <em>empty statements</em>
1327that allow you to separate statements with semicolons,
1328start a block with a semicolon
1329or write two semicolons in sequence:
1330
1331<pre>
1332	stat ::= &lsquo;<b>;</b>&rsquo;
1333</pre>
1334
1335<p>
1336Function calls and assignments
1337can start with an open parenthesis.
1338This possibility leads to an ambiguity in Lua's grammar.
1339Consider the following fragment:
1340
1341<pre>
1342     a = b + c
1343     (print or io.write)('done')
1344</pre><p>
1345The grammar could see it in two ways:
1346
1347<pre>
1348     a = b + c(print or io.write)('done')
1349
1350     a = b + c; (print or io.write)('done')
1351</pre><p>
1352The current parser always sees such constructions
1353in the first way,
1354interpreting the open parenthesis
1355as the start of the arguments to a call.
1356To avoid this ambiguity,
1357it is a good practice to always precede with a semicolon
1358statements that start with a parenthesis:
1359
1360<pre>
1361     ;(print or io.write)('done')
1362</pre>
1363
1364<p>
1365A block can be explicitly delimited to produce a single statement:
1366
1367<pre>
1368	stat ::= <b>do</b> block <b>end</b>
1369</pre><p>
1370Explicit blocks are useful
1371to control the scope of variable declarations.
1372Explicit blocks are also sometimes used to
1373add a <b>return</b> statement in the middle
1374of another block (see <a href="#3.3.4">&sect;3.3.4</a>).
1375
1376
1377
1378
1379
1380<h3>3.3.2 &ndash; <a name="3.3.2">Chunks</a></h3>
1381
1382<p>
1383The unit of compilation of Lua is called a <em>chunk</em>.
1384Syntactically,
1385a chunk is simply a block:
1386
1387<pre>
1388	chunk ::= block
1389</pre>
1390
1391<p>
1392Lua handles a chunk as the body of an anonymous function
1393with a variable number of arguments
1394(see <a href="#3.4.11">&sect;3.4.11</a>).
1395As such, chunks can define local variables,
1396receive arguments, and return values.
1397Moreover, such anonymous function is compiled as in the
1398scope of an external local variable called <code>_ENV</code> (see <a href="#2.2">&sect;2.2</a>).
1399The resulting function always has <code>_ENV</code> as its only upvalue,
1400even if it does not use that variable.
1401
1402
1403<p>
1404A chunk can be stored in a file or in a string inside the host program.
1405To execute a chunk,
1406Lua first <em>loads</em> it,
1407precompiling the chunk's code into instructions for a virtual machine,
1408and then Lua executes the compiled code
1409with an interpreter for the virtual machine.
1410
1411
1412<p>
1413Chunks can also be precompiled into binary form;
1414see program <code>luac</code> and function <a href="#pdf-string.dump"><code>string.dump</code></a> for details.
1415Programs in source and compiled forms are interchangeable;
1416Lua automatically detects the file type and acts accordingly (see <a href="#pdf-load"><code>load</code></a>).
1417
1418
1419
1420
1421
1422<h3>3.3.3 &ndash; <a name="3.3.3">Assignment</a></h3>
1423
1424<p>
1425Lua allows multiple assignments.
1426Therefore, the syntax for assignment
1427defines a list of variables on the left side
1428and a list of expressions on the right side.
1429The elements in both lists are separated by commas:
1430
1431<pre>
1432	stat ::= varlist &lsquo;<b>=</b>&rsquo; explist
1433	varlist ::= var {&lsquo;<b>,</b>&rsquo; var}
1434	explist ::= exp {&lsquo;<b>,</b>&rsquo; exp}
1435</pre><p>
1436Expressions are discussed in <a href="#3.4">&sect;3.4</a>.
1437
1438
1439<p>
1440Before the assignment,
1441the list of values is <em>adjusted</em> to the length of
1442the list of variables.
1443If there are more values than needed,
1444the excess values are thrown away.
1445If there are fewer values than needed,
1446the list is extended with as many  <b>nil</b>'s as needed.
1447If the list of expressions ends with a function call,
1448then all values returned by that call enter the list of values,
1449before the adjustment
1450(except when the call is enclosed in parentheses; see <a href="#3.4">&sect;3.4</a>).
1451
1452
1453<p>
1454The assignment statement first evaluates all its expressions
1455and only then the assignments are performed.
1456Thus the code
1457
1458<pre>
1459     i = 3
1460     i, a[i] = i+1, 20
1461</pre><p>
1462sets <code>a[3]</code> to 20, without affecting <code>a[4]</code>
1463because the <code>i</code> in <code>a[i]</code> is evaluated (to 3)
1464before it is assigned&nbsp;4.
1465Similarly, the line
1466
1467<pre>
1468     x, y = y, x
1469</pre><p>
1470exchanges the values of <code>x</code> and <code>y</code>,
1471and
1472
1473<pre>
1474     x, y, z = y, z, x
1475</pre><p>
1476cyclically permutes the values of <code>x</code>, <code>y</code>, and <code>z</code>.
1477
1478
1479<p>
1480The meaning of assignments to global variables
1481and table fields can be changed via metatables.
1482An assignment to an indexed variable <code>t[i] = val</code> is equivalent to
1483<code>settable_event(t,i,val)</code>.
1484(See <a href="#2.4">&sect;2.4</a> for a complete description of the
1485<code>settable_event</code> function.
1486This function is not defined or callable in Lua.
1487We use it here only for explanatory purposes.)
1488
1489
1490<p>
1491An assignment to a global name <code>x = val</code>
1492is equivalent to the assignment
1493<code>_ENV.x = val</code> (see <a href="#2.2">&sect;2.2</a>).
1494
1495
1496
1497
1498
1499<h3>3.3.4 &ndash; <a name="3.3.4">Control Structures</a></h3><p>
1500The control structures
1501<b>if</b>, <b>while</b>, and <b>repeat</b> have the usual meaning and
1502familiar syntax:
1503
1504
1505
1506
1507<pre>
1508	stat ::= <b>while</b> exp <b>do</b> block <b>end</b>
1509	stat ::= <b>repeat</b> block <b>until</b> exp
1510	stat ::= <b>if</b> exp <b>then</b> block {<b>elseif</b> exp <b>then</b> block} [<b>else</b> block] <b>end</b>
1511</pre><p>
1512Lua also has a <b>for</b> statement, in two flavors (see <a href="#3.3.5">&sect;3.3.5</a>).
1513
1514
1515<p>
1516The condition expression of a
1517control structure can return any value.
1518Both <b>false</b> and <b>nil</b> are considered false.
1519All values different from <b>nil</b> and <b>false</b> are considered true
1520(in particular, the number 0 and the empty string are also true).
1521
1522
1523<p>
1524In the <b>repeat</b>&ndash;<b>until</b> loop,
1525the inner block does not end at the <b>until</b> keyword,
1526but only after the condition.
1527So, the condition can refer to local variables
1528declared inside the loop block.
1529
1530
1531<p>
1532The <b>goto</b> statement transfers the program control to a label.
1533For syntactical reasons,
1534labels in Lua are considered statements too:
1535
1536
1537
1538<pre>
1539	stat ::= <b>goto</b> Name
1540	stat ::= label
1541	label ::= &lsquo;<b>::</b>&rsquo; Name &lsquo;<b>::</b>&rsquo;
1542</pre>
1543
1544<p>
1545A label is visible in the entire block where it is defined,
1546except
1547inside nested blocks where a label with the same name is defined and
1548inside nested functions.
1549A goto may jump to any visible label as long as it does not
1550enter into the scope of a local variable.
1551
1552
1553<p>
1554Labels and empty statements are called <em>void statements</em>,
1555as they perform no actions.
1556
1557
1558<p>
1559The <b>break</b> statement terminates the execution of a
1560<b>while</b>, <b>repeat</b>, or <b>for</b> loop,
1561skipping to the next statement after the loop:
1562
1563
1564<pre>
1565	stat ::= <b>break</b>
1566</pre><p>
1567A <b>break</b> ends the innermost enclosing loop.
1568
1569
1570<p>
1571The <b>return</b> statement is used to return values
1572from a function or a chunk
1573(which is an anonymous function).
1574
1575Functions can return more than one value,
1576so the syntax for the <b>return</b> statement is
1577
1578<pre>
1579	stat ::= <b>return</b> [explist] [&lsquo;<b>;</b>&rsquo;]
1580</pre>
1581
1582<p>
1583The <b>return</b> statement can only be written
1584as the last statement of a block.
1585If it is really necessary to <b>return</b> in the middle of a block,
1586then an explicit inner block can be used,
1587as in the idiom <code>do return end</code>,
1588because now <b>return</b> is the last statement in its (inner) block.
1589
1590
1591
1592
1593
1594<h3>3.3.5 &ndash; <a name="3.3.5">For Statement</a></h3>
1595
1596<p>
1597
1598The <b>for</b> statement has two forms:
1599one numerical and one generic.
1600
1601
1602<p>
1603The numerical <b>for</b> loop repeats a block of code while a
1604control variable runs through an arithmetic progression.
1605It has the following syntax:
1606
1607<pre>
1608	stat ::= <b>for</b> Name &lsquo;<b>=</b>&rsquo; exp &lsquo;<b>,</b>&rsquo; exp [&lsquo;<b>,</b>&rsquo; exp] <b>do</b> block <b>end</b>
1609</pre><p>
1610The <em>block</em> is repeated for <em>name</em> starting at the value of
1611the first <em>exp</em>, until it passes the second <em>exp</em> by steps of the
1612third <em>exp</em>.
1613More precisely, a <b>for</b> statement like
1614
1615<pre>
1616     for v = <em>e1</em>, <em>e2</em>, <em>e3</em> do <em>block</em> end
1617</pre><p>
1618is equivalent to the code:
1619
1620<pre>
1621     do
1622       local <em>var</em>, <em>limit</em>, <em>step</em> = tonumber(<em>e1</em>), tonumber(<em>e2</em>), tonumber(<em>e3</em>)
1623       if not (<em>var</em> and <em>limit</em> and <em>step</em>) then error() end
1624       <em>var</em> = <em>var</em> - <em>step</em>
1625       while true do
1626         <em>var</em> = <em>var</em> + <em>step</em>
1627         if (<em>step</em> &gt;= 0 and <em>var</em> &gt; <em>limit</em>) or (<em>step</em> &lt; 0 and <em>var</em> &lt; <em>limit</em>) then
1628           break
1629         end
1630         local v = <em>var</em>
1631         <em>block</em>
1632       end
1633     end
1634</pre>
1635
1636<p>
1637Note the following:
1638
1639<ul>
1640
1641<li>
1642All three control expressions are evaluated only once,
1643before the loop starts.
1644They must all result in numbers.
1645</li>
1646
1647<li>
1648<code><em>var</em></code>, <code><em>limit</em></code>, and <code><em>step</em></code> are invisible variables.
1649The names shown here are for explanatory purposes only.
1650</li>
1651
1652<li>
1653If the third expression (the step) is absent,
1654then a step of&nbsp;1 is used.
1655</li>
1656
1657<li>
1658You can use <b>break</b> and <b>goto</b> to exit a <b>for</b> loop.
1659</li>
1660
1661<li>
1662The loop variable <code>v</code> is local to the loop body.
1663If you need its value after the loop,
1664assign it to another variable before exiting the loop.
1665</li>
1666
1667</ul>
1668
1669<p>
1670The generic <b>for</b> statement works over functions,
1671called <em>iterators</em>.
1672On each iteration, the iterator function is called to produce a new value,
1673stopping when this new value is <b>nil</b>.
1674The generic <b>for</b> loop has the following syntax:
1675
1676<pre>
1677	stat ::= <b>for</b> namelist <b>in</b> explist <b>do</b> block <b>end</b>
1678	namelist ::= Name {&lsquo;<b>,</b>&rsquo; Name}
1679</pre><p>
1680A <b>for</b> statement like
1681
1682<pre>
1683     for <em>var_1</em>, &middot;&middot;&middot;, <em>var_n</em> in <em>explist</em> do <em>block</em> end
1684</pre><p>
1685is equivalent to the code:
1686
1687<pre>
1688     do
1689       local <em>f</em>, <em>s</em>, <em>var</em> = <em>explist</em>
1690       while true do
1691         local <em>var_1</em>, &middot;&middot;&middot;, <em>var_n</em> = <em>f</em>(<em>s</em>, <em>var</em>)
1692         if <em>var_1</em> == nil then break end
1693         <em>var</em> = <em>var_1</em>
1694         <em>block</em>
1695       end
1696     end
1697</pre><p>
1698Note the following:
1699
1700<ul>
1701
1702<li>
1703<code><em>explist</em></code> is evaluated only once.
1704Its results are an <em>iterator</em> function,
1705a <em>state</em>,
1706and an initial value for the first <em>iterator variable</em>.
1707</li>
1708
1709<li>
1710<code><em>f</em></code>, <code><em>s</em></code>, and <code><em>var</em></code> are invisible variables.
1711The names are here for explanatory purposes only.
1712</li>
1713
1714<li>
1715You can use <b>break</b> to exit a <b>for</b> loop.
1716</li>
1717
1718<li>
1719The loop variables <code><em>var_i</em></code> are local to the loop;
1720you cannot use their values after the <b>for</b> ends.
1721If you need these values,
1722then assign them to other variables before breaking or exiting the loop.
1723</li>
1724
1725</ul>
1726
1727
1728
1729
1730<h3>3.3.6 &ndash; <a name="3.3.6">Function Calls as Statements</a></h3><p>
1731To allow possible side-effects,
1732function calls can be executed as statements:
1733
1734<pre>
1735	stat ::= functioncall
1736</pre><p>
1737In this case, all returned values are thrown away.
1738Function calls are explained in <a href="#3.4.10">&sect;3.4.10</a>.
1739
1740
1741
1742
1743
1744<h3>3.3.7 &ndash; <a name="3.3.7">Local Declarations</a></h3><p>
1745Local variables can be declared anywhere inside a block.
1746The declaration can include an initial assignment:
1747
1748<pre>
1749	stat ::= <b>local</b> namelist [&lsquo;<b>=</b>&rsquo; explist]
1750</pre><p>
1751If present, an initial assignment has the same semantics
1752of a multiple assignment (see <a href="#3.3.3">&sect;3.3.3</a>).
1753Otherwise, all variables are initialized with <b>nil</b>.
1754
1755
1756<p>
1757A chunk is also a block (see <a href="#3.3.2">&sect;3.3.2</a>),
1758and so local variables can be declared in a chunk outside any explicit block.
1759
1760
1761<p>
1762The visibility rules for local variables are explained in <a href="#3.5">&sect;3.5</a>.
1763
1764
1765
1766
1767
1768
1769
1770<h2>3.4 &ndash; <a name="3.4">Expressions</a></h2>
1771
1772<p>
1773The basic expressions in Lua are the following:
1774
1775<pre>
1776	exp ::= prefixexp
1777	exp ::= <b>nil</b> | <b>false</b> | <b>true</b>
1778	exp ::= Numeral
1779	exp ::= LiteralString
1780	exp ::= functiondef
1781	exp ::= tableconstructor
1782	exp ::= &lsquo;<b>...</b>&rsquo;
1783	exp ::= exp binop exp
1784	exp ::= unop exp
1785	prefixexp ::= var | functioncall | &lsquo;<b>(</b>&rsquo; exp &lsquo;<b>)</b>&rsquo;
1786</pre>
1787
1788<p>
1789Numerals and literal strings are explained in <a href="#3.1">&sect;3.1</a>;
1790variables are explained in <a href="#3.2">&sect;3.2</a>;
1791function definitions are explained in <a href="#3.4.11">&sect;3.4.11</a>;
1792function calls are explained in <a href="#3.4.10">&sect;3.4.10</a>;
1793table constructors are explained in <a href="#3.4.9">&sect;3.4.9</a>.
1794Vararg expressions,
1795denoted by three dots ('<code>...</code>'), can only be used when
1796directly inside a vararg function;
1797they are explained in <a href="#3.4.11">&sect;3.4.11</a>.
1798
1799
1800<p>
1801Binary operators comprise arithmetic operators (see <a href="#3.4.1">&sect;3.4.1</a>),
1802bitwise operators (see <a href="#3.4.2">&sect;3.4.2</a>),
1803relational operators (see <a href="#3.4.4">&sect;3.4.4</a>), logical operators (see <a href="#3.4.5">&sect;3.4.5</a>),
1804and the concatenation operator (see <a href="#3.4.6">&sect;3.4.6</a>).
1805Unary operators comprise the unary minus (see <a href="#3.4.1">&sect;3.4.1</a>),
1806the unary bitwise NOT (see <a href="#3.4.2">&sect;3.4.2</a>),
1807the unary logical <b>not</b> (see <a href="#3.4.5">&sect;3.4.5</a>),
1808and the unary <em>length operator</em> (see <a href="#3.4.7">&sect;3.4.7</a>).
1809
1810
1811<p>
1812Both function calls and vararg expressions can result in multiple values.
1813If a function call is used as a statement (see <a href="#3.3.6">&sect;3.3.6</a>),
1814then its return list is adjusted to zero elements,
1815thus discarding all returned values.
1816If an expression is used as the last (or the only) element
1817of a list of expressions,
1818then no adjustment is made
1819(unless the expression is enclosed in parentheses).
1820In all other contexts,
1821Lua adjusts the result list to one element,
1822either discarding all values except the first one
1823or adding a single <b>nil</b> if there are no values.
1824
1825
1826<p>
1827Here are some examples:
1828
1829<pre>
1830     f()                -- adjusted to 0 results
1831     g(f(), x)          -- f() is adjusted to 1 result
1832     g(x, f())          -- g gets x plus all results from f()
1833     a,b,c = f(), x     -- f() is adjusted to 1 result (c gets nil)
1834     a,b = ...          -- a gets the first vararg parameter, b gets
1835                        -- the second (both a and b can get nil if there
1836                        -- is no corresponding vararg parameter)
1837
1838     a,b,c = x, f()     -- f() is adjusted to 2 results
1839     a,b,c = f()        -- f() is adjusted to 3 results
1840     return f()         -- returns all results from f()
1841     return ...         -- returns all received vararg parameters
1842     return x,y,f()     -- returns x, y, and all results from f()
1843     {f()}              -- creates a list with all results from f()
1844     {...}              -- creates a list with all vararg parameters
1845     {f(), nil}         -- f() is adjusted to 1 result
1846</pre>
1847
1848<p>
1849Any expression enclosed in parentheses always results in only one value.
1850Thus,
1851<code>(f(x,y,z))</code> is always a single value,
1852even if <code>f</code> returns several values.
1853(The value of <code>(f(x,y,z))</code> is the first value returned by <code>f</code>
1854or <b>nil</b> if <code>f</code> does not return any values.)
1855
1856
1857
1858<h3>3.4.1 &ndash; <a name="3.4.1">Arithmetic Operators</a></h3><p>
1859Lua supports the following arithmetic operators:
1860
1861<ul>
1862<li><b><code>+</code>: </b>addition</li>
1863<li><b><code>-</code>: </b>subtraction</li>
1864<li><b><code>*</code>: </b>multiplication</li>
1865<li><b><code>/</code>: </b>float division</li>
1866<li><b><code>//</code>: </b>floor division</li>
1867<li><b><code>%</code>: </b>modulo</li>
1868<li><b><code>^</code>: </b>exponentiation</li>
1869<li><b><code>-</code>: </b>unary minus</li>
1870</ul>
1871
1872<p>
1873With the exception of exponentiation and float division,
1874the arithmetic operators work as follows:
1875If both operands are integers,
1876the operation is performed over integers and the result is an integer.
1877Otherwise, if both operands are numbers
1878or strings that can be converted to
1879numbers (see <a href="#3.4.3">&sect;3.4.3</a>),
1880then they are converted to floats,
1881the operation is performed following the usual rules
1882for floating-point arithmetic
1883(usually the IEEE 754 standard),
1884and the result is a float.
1885
1886
1887<p>
1888Exponentiation and float division (<code>/</code>)
1889always convert their operands to floats
1890and the result is always a float.
1891Exponentiation uses the ISO&nbsp;C function <code>pow</code>,
1892so that it works for non-integer exponents too.
1893
1894
1895<p>
1896Floor division (<code>//</code>) is a division
1897that rounds the quotient towards minus infinity,
1898that is, the floor of the division of its operands.
1899
1900
1901<p>
1902Modulo is defined as the remainder of a division
1903that rounds the quotient towards minus infinity (floor division).
1904
1905
1906<p>
1907In case of overflows in integer arithmetic,
1908all operations <em>wrap around</em>,
1909according to the usual rules of two-complement arithmetic.
1910(In other words,
1911they return the unique representable integer
1912that is equal modulo <em>2<sup>64</sup></em> to the mathematical result.)
1913
1914
1915
1916<h3>3.4.2 &ndash; <a name="3.4.2">Bitwise Operators</a></h3><p>
1917Lua supports the following bitwise operators:
1918
1919<ul>
1920<li><b><code>&amp;</code>: </b>bitwise AND</li>
1921<li><b><code>&#124;</code>: </b>bitwise OR</li>
1922<li><b><code>~</code>: </b>bitwise exclusive OR</li>
1923<li><b><code>&gt;&gt;</code>: </b>right shift</li>
1924<li><b><code>&lt;&lt;</code>: </b>left shift</li>
1925<li><b><code>~</code>: </b>unary bitwise NOT</li>
1926</ul>
1927
1928<p>
1929All bitwise operations convert its operands to integers
1930(see <a href="#3.4.3">&sect;3.4.3</a>),
1931operate on all bits of those integers,
1932and result in an integer.
1933
1934
1935<p>
1936Both right and left shifts fill the vacant bits with zeros.
1937Negative displacements shift to the other direction;
1938displacements with absolute values equal to or higher than
1939the number of bits in an integer
1940result in zero (as all bits are shifted out).
1941
1942
1943
1944
1945
1946<h3>3.4.3 &ndash; <a name="3.4.3">Coercions and Conversions</a></h3><p>
1947Lua provides some automatic conversions between some
1948types and representations at run time.
1949Bitwise operators always convert float operands to integers.
1950Exponentiation and float division
1951always convert integer operands to floats.
1952All other arithmetic operations applied to mixed numbers
1953(integers and floats) convert the integer operand to a float;
1954this is called the <em>usual rule</em>.
1955The C API also converts both integers to floats and
1956floats to integers, as needed.
1957Moreover, string concatenation accepts numbers as arguments,
1958besides strings.
1959
1960
1961<p>
1962Lua also converts strings to numbers,
1963whenever a number is expected.
1964
1965
1966<p>
1967In a conversion from integer to float,
1968if the integer value has an exact representation as a float,
1969that is the result.
1970Otherwise,
1971the conversion gets the nearest higher or
1972the nearest lower representable value.
1973This kind of conversion never fails.
1974
1975
1976<p>
1977The conversion from float to integer
1978checks whether the float has an exact representation as an integer
1979(that is, the float has an integral value and
1980it is in the range of integer representation).
1981If it does, that representation is the result.
1982Otherwise, the conversion fails.
1983
1984
1985<p>
1986The conversion from strings to numbers goes as follows:
1987First, the string is converted to an integer or a float,
1988following its syntax and the rules of the Lua lexer.
1989(The string may have also leading and trailing spaces and a sign.)
1990Then, the resulting number (float or integer)
1991is converted to the type (float or integer) required by the context
1992(e.g., the operation that forced the conversion).
1993
1994
1995<p>
1996All conversions from strings to numbers
1997accept both a dot and the current locale mark
1998as the radix character.
1999(The Lua lexer, however, accepts only a dot.)
2000
2001
2002<p>
2003The conversion from numbers to strings uses a
2004non-specified human-readable format.
2005For complete control over how numbers are converted to strings,
2006use the <code>format</code> function from the string library
2007(see <a href="#pdf-string.format"><code>string.format</code></a>).
2008
2009
2010
2011
2012
2013<h3>3.4.4 &ndash; <a name="3.4.4">Relational Operators</a></h3><p>
2014Lua supports the following relational operators:
2015
2016<ul>
2017<li><b><code>==</code>: </b>equality</li>
2018<li><b><code>~=</code>: </b>inequality</li>
2019<li><b><code>&lt;</code>: </b>less than</li>
2020<li><b><code>&gt;</code>: </b>greater than</li>
2021<li><b><code>&lt;=</code>: </b>less or equal</li>
2022<li><b><code>&gt;=</code>: </b>greater or equal</li>
2023</ul><p>
2024These operators always result in <b>false</b> or <b>true</b>.
2025
2026
2027<p>
2028Equality (<code>==</code>) first compares the type of its operands.
2029If the types are different, then the result is <b>false</b>.
2030Otherwise, the values of the operands are compared.
2031Strings are compared in the obvious way.
2032Numbers are equal if they denote the same mathematical value.
2033
2034
2035<p>
2036Tables, userdata, and threads
2037are compared by reference:
2038two objects are considered equal only if they are the same object.
2039Every time you create a new object
2040(a table, userdata, or thread),
2041this new object is different from any previously existing object.
2042Closures with the same reference are always equal.
2043Closures with any detectable difference
2044(different behavior, different definition) are always different.
2045
2046
2047<p>
2048You can change the way that Lua compares tables and userdata
2049by using the "eq" metamethod (see <a href="#2.4">&sect;2.4</a>).
2050
2051
2052<p>
2053Equality comparisons do not convert strings to numbers
2054or vice versa.
2055Thus, <code>"0"==0</code> evaluates to <b>false</b>,
2056and <code>t[0]</code> and <code>t["0"]</code> denote different
2057entries in a table.
2058
2059
2060<p>
2061The operator <code>~=</code> is exactly the negation of equality (<code>==</code>).
2062
2063
2064<p>
2065The order operators work as follows.
2066If both arguments are numbers,
2067then they are compared according to their mathematical values
2068(regardless of their subtypes).
2069Otherwise, if both arguments are strings,
2070then their values are compared according to the current locale.
2071Otherwise, Lua tries to call the "lt" or the "le"
2072metamethod (see <a href="#2.4">&sect;2.4</a>).
2073A comparison <code>a &gt; b</code> is translated to <code>b &lt; a</code>
2074and <code>a &gt;= b</code> is translated to <code>b &lt;= a</code>.
2075
2076
2077<p>
2078Following the IEEE 754 standard,
2079NaN is considered neither smaller than,
2080nor equal to, nor greater than any value (including itself).
2081
2082
2083
2084
2085
2086<h3>3.4.5 &ndash; <a name="3.4.5">Logical Operators</a></h3><p>
2087The logical operators in Lua are
2088<b>and</b>, <b>or</b>, and <b>not</b>.
2089Like the control structures (see <a href="#3.3.4">&sect;3.3.4</a>),
2090all logical operators consider both <b>false</b> and <b>nil</b> as false
2091and anything else as true.
2092
2093
2094<p>
2095The negation operator <b>not</b> always returns <b>false</b> or <b>true</b>.
2096The conjunction operator <b>and</b> returns its first argument
2097if this value is <b>false</b> or <b>nil</b>;
2098otherwise, <b>and</b> returns its second argument.
2099The disjunction operator <b>or</b> returns its first argument
2100if this value is different from <b>nil</b> and <b>false</b>;
2101otherwise, <b>or</b> returns its second argument.
2102Both <b>and</b> and <b>or</b> use short-circuit evaluation;
2103that is,
2104the second operand is evaluated only if necessary.
2105Here are some examples:
2106
2107<pre>
2108     10 or 20            --&gt; 10
2109     10 or error()       --&gt; 10
2110     nil or "a"          --&gt; "a"
2111     nil and 10          --&gt; nil
2112     false and error()   --&gt; false
2113     false and nil       --&gt; false
2114     false or nil        --&gt; nil
2115     10 and 20           --&gt; 20
2116</pre><p>
2117(In this manual,
2118<code>--&gt;</code> indicates the result of the preceding expression.)
2119
2120
2121
2122
2123
2124<h3>3.4.6 &ndash; <a name="3.4.6">Concatenation</a></h3><p>
2125The string concatenation operator in Lua is
2126denoted by two dots ('<code>..</code>').
2127If both operands are strings or numbers, then they are converted to
2128strings according to the rules described in <a href="#3.4.3">&sect;3.4.3</a>.
2129Otherwise, the <code>__concat</code> metamethod is called (see <a href="#2.4">&sect;2.4</a>).
2130
2131
2132
2133
2134
2135<h3>3.4.7 &ndash; <a name="3.4.7">The Length Operator</a></h3>
2136
2137<p>
2138The length operator is denoted by the unary prefix operator <code>#</code>.
2139
2140
2141<p>
2142The length of a string is its number of bytes
2143(that is, the usual meaning of string length when each
2144character is one byte).
2145
2146
2147<p>
2148The length operator applied on a table
2149returns a border in that table.
2150A <em>border</em> in a table <code>t</code> is any natural number
2151that satisfies the following condition:
2152
2153<pre>
2154     (border == 0 or t[border] ~= nil) and t[border + 1] == nil
2155</pre><p>
2156In words,
2157a border is any (natural) index in a table
2158where a non-nil value is followed by a nil value
2159(or zero, when index 1 is nil).
2160
2161
2162<p>
2163A table with exactly one border is called a <em>sequence</em>.
2164For instance, the table <code>{10, 20, 30, 40, 50}</code> is a sequence,
2165as it has only one border (5).
2166The table <code>{10, 20, 30, nil, 50}</code> has two borders (3 and 5),
2167and therefore it is not a sequence.
2168The table <code>{nil, 20, 30, nil, nil, 60, nil}</code>
2169has three borders (0, 3, and 6),
2170so it is not a sequence, too.
2171The table <code>{}</code> is a sequence with border 0.
2172Note that non-natural keys do not interfere
2173with whether a table is a sequence.
2174
2175
2176<p>
2177When <code>t</code> is a sequence,
2178<code>#t</code> returns its only border,
2179which corresponds to the intuitive notion of the length of the sequence.
2180When <code>t</code> is not a sequence,
2181<code>#t</code> can return any of its borders.
2182(The exact one depends on details of
2183the internal representation of the table,
2184which in turn can depend on how the table was populated and
2185the memory addresses of its non-numeric keys.)
2186
2187
2188<p>
2189The computation of the length of a table
2190has a guaranteed worst time of <em>O(log n)</em>,
2191where <em>n</em> is the largest natural key in the table.
2192
2193
2194<p>
2195A program can modify the behavior of the length operator for
2196any value but strings through the <code>__len</code> metamethod (see <a href="#2.4">&sect;2.4</a>).
2197
2198
2199
2200
2201
2202<h3>3.4.8 &ndash; <a name="3.4.8">Precedence</a></h3><p>
2203Operator precedence in Lua follows the table below,
2204from lower to higher priority:
2205
2206<pre>
2207     or
2208     and
2209     &lt;     &gt;     &lt;=    &gt;=    ~=    ==
2210     |
2211     ~
2212     &amp;
2213     &lt;&lt;    &gt;&gt;
2214     ..
2215     +     -
2216     *     /     //    %
2217     unary operators (not   #     -     ~)
2218     ^
2219</pre><p>
2220As usual,
2221you can use parentheses to change the precedences of an expression.
2222The concatenation ('<code>..</code>') and exponentiation ('<code>^</code>')
2223operators are right associative.
2224All other binary operators are left associative.
2225
2226
2227
2228
2229
2230<h3>3.4.9 &ndash; <a name="3.4.9">Table Constructors</a></h3><p>
2231Table constructors are expressions that create tables.
2232Every time a constructor is evaluated, a new table is created.
2233A constructor can be used to create an empty table
2234or to create a table and initialize some of its fields.
2235The general syntax for constructors is
2236
2237<pre>
2238	tableconstructor ::= &lsquo;<b>{</b>&rsquo; [fieldlist] &lsquo;<b>}</b>&rsquo;
2239	fieldlist ::= field {fieldsep field} [fieldsep]
2240	field ::= &lsquo;<b>[</b>&rsquo; exp &lsquo;<b>]</b>&rsquo; &lsquo;<b>=</b>&rsquo; exp | Name &lsquo;<b>=</b>&rsquo; exp | exp
2241	fieldsep ::= &lsquo;<b>,</b>&rsquo; | &lsquo;<b>;</b>&rsquo;
2242</pre>
2243
2244<p>
2245Each field of the form <code>[exp1] = exp2</code> adds to the new table an entry
2246with key <code>exp1</code> and value <code>exp2</code>.
2247A field of the form <code>name = exp</code> is equivalent to
2248<code>["name"] = exp</code>.
2249Finally, fields of the form <code>exp</code> are equivalent to
2250<code>[i] = exp</code>, where <code>i</code> are consecutive integers
2251starting with 1.
2252Fields in the other formats do not affect this counting.
2253For example,
2254
2255<pre>
2256     a = { [f(1)] = g; "x", "y"; x = 1, f(x), [30] = 23; 45 }
2257</pre><p>
2258is equivalent to
2259
2260<pre>
2261     do
2262       local t = {}
2263       t[f(1)] = g
2264       t[1] = "x"         -- 1st exp
2265       t[2] = "y"         -- 2nd exp
2266       t.x = 1            -- t["x"] = 1
2267       t[3] = f(x)        -- 3rd exp
2268       t[30] = 23
2269       t[4] = 45          -- 4th exp
2270       a = t
2271     end
2272</pre>
2273
2274<p>
2275The order of the assignments in a constructor is undefined.
2276(This order would be relevant only when there are repeated keys.)
2277
2278
2279<p>
2280If the last field in the list has the form <code>exp</code>
2281and the expression is a function call or a vararg expression,
2282then all values returned by this expression enter the list consecutively
2283(see <a href="#3.4.10">&sect;3.4.10</a>).
2284
2285
2286<p>
2287The field list can have an optional trailing separator,
2288as a convenience for machine-generated code.
2289
2290
2291
2292
2293
2294<h3>3.4.10 &ndash; <a name="3.4.10">Function Calls</a></h3><p>
2295A function call in Lua has the following syntax:
2296
2297<pre>
2298	functioncall ::= prefixexp args
2299</pre><p>
2300In a function call,
2301first prefixexp and args are evaluated.
2302If the value of prefixexp has type <em>function</em>,
2303then this function is called
2304with the given arguments.
2305Otherwise, the prefixexp "call" metamethod is called,
2306having as first parameter the value of prefixexp,
2307followed by the original call arguments
2308(see <a href="#2.4">&sect;2.4</a>).
2309
2310
2311<p>
2312The form
2313
2314<pre>
2315	functioncall ::= prefixexp &lsquo;<b>:</b>&rsquo; Name args
2316</pre><p>
2317can be used to call "methods".
2318A call <code>v:name(<em>args</em>)</code>
2319is syntactic sugar for <code>v.name(v,<em>args</em>)</code>,
2320except that <code>v</code> is evaluated only once.
2321
2322
2323<p>
2324Arguments have the following syntax:
2325
2326<pre>
2327	args ::= &lsquo;<b>(</b>&rsquo; [explist] &lsquo;<b>)</b>&rsquo;
2328	args ::= tableconstructor
2329	args ::= LiteralString
2330</pre><p>
2331All argument expressions are evaluated before the call.
2332A call of the form <code>f{<em>fields</em>}</code> is
2333syntactic sugar for <code>f({<em>fields</em>})</code>;
2334that is, the argument list is a single new table.
2335A call of the form <code>f'<em>string</em>'</code>
2336(or <code>f"<em>string</em>"</code> or <code>f[[<em>string</em>]]</code>)
2337is syntactic sugar for <code>f('<em>string</em>')</code>;
2338that is, the argument list is a single literal string.
2339
2340
2341<p>
2342A call of the form <code>return <em>functioncall</em></code> is called
2343a <em>tail call</em>.
2344Lua implements <em>proper tail calls</em>
2345(or <em>proper tail recursion</em>):
2346in a tail call,
2347the called function reuses the stack entry of the calling function.
2348Therefore, there is no limit on the number of nested tail calls that
2349a program can execute.
2350However, a tail call erases any debug information about the
2351calling function.
2352Note that a tail call only happens with a particular syntax,
2353where the <b>return</b> has one single function call as argument;
2354this syntax makes the calling function return exactly
2355the returns of the called function.
2356So, none of the following examples are tail calls:
2357
2358<pre>
2359     return (f(x))        -- results adjusted to 1
2360     return 2 * f(x)
2361     return x, f(x)       -- additional results
2362     f(x); return         -- results discarded
2363     return x or f(x)     -- results adjusted to 1
2364</pre>
2365
2366
2367
2368
2369<h3>3.4.11 &ndash; <a name="3.4.11">Function Definitions</a></h3>
2370
2371<p>
2372The syntax for function definition is
2373
2374<pre>
2375	functiondef ::= <b>function</b> funcbody
2376	funcbody ::= &lsquo;<b>(</b>&rsquo; [parlist] &lsquo;<b>)</b>&rsquo; block <b>end</b>
2377</pre>
2378
2379<p>
2380The following syntactic sugar simplifies function definitions:
2381
2382<pre>
2383	stat ::= <b>function</b> funcname funcbody
2384	stat ::= <b>local</b> <b>function</b> Name funcbody
2385	funcname ::= Name {&lsquo;<b>.</b>&rsquo; Name} [&lsquo;<b>:</b>&rsquo; Name]
2386</pre><p>
2387The statement
2388
2389<pre>
2390     function f () <em>body</em> end
2391</pre><p>
2392translates to
2393
2394<pre>
2395     f = function () <em>body</em> end
2396</pre><p>
2397The statement
2398
2399<pre>
2400     function t.a.b.c.f () <em>body</em> end
2401</pre><p>
2402translates to
2403
2404<pre>
2405     t.a.b.c.f = function () <em>body</em> end
2406</pre><p>
2407The statement
2408
2409<pre>
2410     local function f () <em>body</em> end
2411</pre><p>
2412translates to
2413
2414<pre>
2415     local f; f = function () <em>body</em> end
2416</pre><p>
2417not to
2418
2419<pre>
2420     local f = function () <em>body</em> end
2421</pre><p>
2422(This only makes a difference when the body of the function
2423contains references to <code>f</code>.)
2424
2425
2426<p>
2427A function definition is an executable expression,
2428whose value has type <em>function</em>.
2429When Lua precompiles a chunk,
2430all its function bodies are precompiled too.
2431Then, whenever Lua executes the function definition,
2432the function is <em>instantiated</em> (or <em>closed</em>).
2433This function instance (or <em>closure</em>)
2434is the final value of the expression.
2435
2436
2437<p>
2438Parameters act as local variables that are
2439initialized with the argument values:
2440
2441<pre>
2442	parlist ::= namelist [&lsquo;<b>,</b>&rsquo; &lsquo;<b>...</b>&rsquo;] | &lsquo;<b>...</b>&rsquo;
2443</pre><p>
2444When a function is called,
2445the list of arguments is adjusted to
2446the length of the list of parameters,
2447unless the function is a <em>vararg function</em>,
2448which is indicated by three dots ('<code>...</code>')
2449at the end of its parameter list.
2450A vararg function does not adjust its argument list;
2451instead, it collects all extra arguments and supplies them
2452to the function through a <em>vararg expression</em>,
2453which is also written as three dots.
2454The value of this expression is a list of all actual extra arguments,
2455similar to a function with multiple results.
2456If a vararg expression is used inside another expression
2457or in the middle of a list of expressions,
2458then its return list is adjusted to one element.
2459If the expression is used as the last element of a list of expressions,
2460then no adjustment is made
2461(unless that last expression is enclosed in parentheses).
2462
2463
2464<p>
2465As an example, consider the following definitions:
2466
2467<pre>
2468     function f(a, b) end
2469     function g(a, b, ...) end
2470     function r() return 1,2,3 end
2471</pre><p>
2472Then, we have the following mapping from arguments to parameters and
2473to the vararg expression:
2474
2475<pre>
2476     CALL            PARAMETERS
2477
2478     f(3)             a=3, b=nil
2479     f(3, 4)          a=3, b=4
2480     f(3, 4, 5)       a=3, b=4
2481     f(r(), 10)       a=1, b=10
2482     f(r())           a=1, b=2
2483
2484     g(3)             a=3, b=nil, ... --&gt;  (nothing)
2485     g(3, 4)          a=3, b=4,   ... --&gt;  (nothing)
2486     g(3, 4, 5, 8)    a=3, b=4,   ... --&gt;  5  8
2487     g(5, r())        a=5, b=1,   ... --&gt;  2  3
2488</pre>
2489
2490<p>
2491Results are returned using the <b>return</b> statement (see <a href="#3.3.4">&sect;3.3.4</a>).
2492If control reaches the end of a function
2493without encountering a <b>return</b> statement,
2494then the function returns with no results.
2495
2496
2497<p>
2498
2499There is a system-dependent limit on the number of values
2500that a function may return.
2501This limit is guaranteed to be larger than 1000.
2502
2503
2504<p>
2505The <em>colon</em> syntax
2506is used for defining <em>methods</em>,
2507that is, functions that have an implicit extra parameter <code>self</code>.
2508Thus, the statement
2509
2510<pre>
2511     function t.a.b.c:f (<em>params</em>) <em>body</em> end
2512</pre><p>
2513is syntactic sugar for
2514
2515<pre>
2516     t.a.b.c.f = function (self, <em>params</em>) <em>body</em> end
2517</pre>
2518
2519
2520
2521
2522
2523
2524<h2>3.5 &ndash; <a name="3.5">Visibility Rules</a></h2>
2525
2526<p>
2527
2528Lua is a lexically scoped language.
2529The scope of a local variable begins at the first statement after
2530its declaration and lasts until the last non-void statement
2531of the innermost block that includes the declaration.
2532Consider the following example:
2533
2534<pre>
2535     x = 10                -- global variable
2536     do                    -- new block
2537       local x = x         -- new 'x', with value 10
2538       print(x)            --&gt; 10
2539       x = x+1
2540       do                  -- another block
2541         local x = x+1     -- another 'x'
2542         print(x)          --&gt; 12
2543       end
2544       print(x)            --&gt; 11
2545     end
2546     print(x)              --&gt; 10  (the global one)
2547</pre>
2548
2549<p>
2550Notice that, in a declaration like <code>local x = x</code>,
2551the new <code>x</code> being declared is not in scope yet,
2552and so the second <code>x</code> refers to the outside variable.
2553
2554
2555<p>
2556Because of the lexical scoping rules,
2557local variables can be freely accessed by functions
2558defined inside their scope.
2559A local variable used by an inner function is called
2560an <em>upvalue</em>, or <em>external local variable</em>,
2561inside the inner function.
2562
2563
2564<p>
2565Notice that each execution of a <b>local</b> statement
2566defines new local variables.
2567Consider the following example:
2568
2569<pre>
2570     a = {}
2571     local x = 20
2572     for i=1,10 do
2573       local y = 0
2574       a[i] = function () y=y+1; return x+y end
2575     end
2576</pre><p>
2577The loop creates ten closures
2578(that is, ten instances of the anonymous function).
2579Each of these closures uses a different <code>y</code> variable,
2580while all of them share the same <code>x</code>.
2581
2582
2583
2584
2585
2586<h1>4 &ndash; <a name="4">The Application Program Interface</a></h1>
2587
2588<p>
2589
2590This section describes the C&nbsp;API for Lua, that is,
2591the set of C&nbsp;functions available to the host program to communicate
2592with Lua.
2593All API functions and related types and constants
2594are declared in the header file <a name="pdf-lua.h"><code>lua.h</code></a>.
2595
2596
2597<p>
2598Even when we use the term "function",
2599any facility in the API may be provided as a macro instead.
2600Except where stated otherwise,
2601all such macros use each of their arguments exactly once
2602(except for the first argument, which is always a Lua state),
2603and so do not generate any hidden side-effects.
2604
2605
2606<p>
2607As in most C&nbsp;libraries,
2608the Lua API functions do not check their arguments for validity or consistency.
2609However, you can change this behavior by compiling Lua
2610with the macro <a name="pdf-LUA_USE_APICHECK"><code>LUA_USE_APICHECK</code></a> defined.
2611
2612
2613<p>
2614The Lua library is fully reentrant:
2615it has no global variables.
2616It keeps all information it needs in a dynamic structure,
2617called the <em>Lua state</em>.
2618
2619
2620<p>
2621Each Lua state has one or more threads,
2622which correspond to independent, cooperative lines of execution.
2623The type <a href="#lua_State"><code>lua_State</code></a> (despite its name) refers to a thread.
2624(Indirectly, through the thread, it also refers to the
2625Lua state associated to the thread.)
2626
2627
2628<p>
2629A pointer to a thread must be passed as the first argument to
2630every function in the library, except to <a href="#lua_newstate"><code>lua_newstate</code></a>,
2631which creates a Lua state from scratch and returns a pointer
2632to the <em>main thread</em> in the new state.
2633
2634
2635
2636<h2>4.1 &ndash; <a name="4.1">The Stack</a></h2>
2637
2638<p>
2639Lua uses a <em>virtual stack</em> to pass values to and from C.
2640Each element in this stack represents a Lua value
2641(<b>nil</b>, number, string, etc.).
2642Functions in the API can access this stack through the
2643Lua state parameter that they receive.
2644
2645
2646<p>
2647Whenever Lua calls C, the called function gets a new stack,
2648which is independent of previous stacks and of stacks of
2649C&nbsp;functions that are still active.
2650This stack initially contains any arguments to the C&nbsp;function
2651and it is where the C&nbsp;function can store temporary
2652Lua values and must push its results
2653to be returned to the caller (see <a href="#lua_CFunction"><code>lua_CFunction</code></a>).
2654
2655
2656<p>
2657For convenience,
2658most query operations in the API do not follow a strict stack discipline.
2659Instead, they can refer to any element in the stack
2660by using an <em>index</em>:
2661A positive index represents an absolute stack position
2662(starting at&nbsp;1);
2663a negative index represents an offset relative to the top of the stack.
2664More specifically, if the stack has <em>n</em> elements,
2665then index&nbsp;1 represents the first element
2666(that is, the element that was pushed onto the stack first)
2667and
2668index&nbsp;<em>n</em> represents the last element;
2669index&nbsp;-1 also represents the last element
2670(that is, the element at the&nbsp;top)
2671and index <em>-n</em> represents the first element.
2672
2673
2674
2675
2676
2677<h2>4.2 &ndash; <a name="4.2">Stack Size</a></h2>
2678
2679<p>
2680When you interact with the Lua API,
2681you are responsible for ensuring consistency.
2682In particular,
2683<em>you are responsible for controlling stack overflow</em>.
2684You can use the function <a href="#lua_checkstack"><code>lua_checkstack</code></a>
2685to ensure that the stack has enough space for pushing new elements.
2686
2687
2688<p>
2689Whenever Lua calls C,
2690it ensures that the stack has space for
2691at least <a name="pdf-LUA_MINSTACK"><code>LUA_MINSTACK</code></a> extra slots.
2692<code>LUA_MINSTACK</code> is defined as 20,
2693so that usually you do not have to worry about stack space
2694unless your code has loops pushing elements onto the stack.
2695
2696
2697<p>
2698When you call a Lua function
2699without a fixed number of results (see <a href="#lua_call"><code>lua_call</code></a>),
2700Lua ensures that the stack has enough space for all results,
2701but it does not ensure any extra space.
2702So, before pushing anything in the stack after such a call
2703you should use <a href="#lua_checkstack"><code>lua_checkstack</code></a>.
2704
2705
2706
2707
2708
2709<h2>4.3 &ndash; <a name="4.3">Valid and Acceptable Indices</a></h2>
2710
2711<p>
2712Any function in the API that receives stack indices
2713works only with <em>valid indices</em> or <em>acceptable indices</em>.
2714
2715
2716<p>
2717A <em>valid index</em> is an index that refers to a
2718position that stores a modifiable Lua value.
2719It comprises stack indices between&nbsp;1 and the stack top
2720(<code>1 &le; abs(index) &le; top</code>)
2721
2722plus <em>pseudo-indices</em>,
2723which represent some positions that are accessible to C&nbsp;code
2724but that are not in the stack.
2725Pseudo-indices are used to access the registry (see <a href="#4.5">&sect;4.5</a>)
2726and the upvalues of a C&nbsp;function (see <a href="#4.4">&sect;4.4</a>).
2727
2728
2729<p>
2730Functions that do not need a specific mutable position,
2731but only a value (e.g., query functions),
2732can be called with acceptable indices.
2733An <em>acceptable index</em> can be any valid index,
2734but it also can be any positive index after the stack top
2735within the space allocated for the stack,
2736that is, indices up to the stack size.
2737(Note that 0 is never an acceptable index.)
2738Except when noted otherwise,
2739functions in the API work with acceptable indices.
2740
2741
2742<p>
2743Acceptable indices serve to avoid extra tests
2744against the stack top when querying the stack.
2745For instance, a C&nbsp;function can query its third argument
2746without the need to first check whether there is a third argument,
2747that is, without the need to check whether 3 is a valid index.
2748
2749
2750<p>
2751For functions that can be called with acceptable indices,
2752any non-valid index is treated as if it
2753contains a value of a virtual type <a name="pdf-LUA_TNONE"><code>LUA_TNONE</code></a>,
2754which behaves like a nil value.
2755
2756
2757
2758
2759
2760<h2>4.4 &ndash; <a name="4.4">C Closures</a></h2>
2761
2762<p>
2763When a C&nbsp;function is created,
2764it is possible to associate some values with it,
2765thus creating a <em>C&nbsp;closure</em>
2766(see <a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a>);
2767these values are called <em>upvalues</em> and are
2768accessible to the function whenever it is called.
2769
2770
2771<p>
2772Whenever a C&nbsp;function is called,
2773its upvalues are located at specific pseudo-indices.
2774These pseudo-indices are produced by the macro
2775<a href="#lua_upvalueindex"><code>lua_upvalueindex</code></a>.
2776The first upvalue associated with a function is at index
2777<code>lua_upvalueindex(1)</code>, and so on.
2778Any access to <code>lua_upvalueindex(<em>n</em>)</code>,
2779where <em>n</em> is greater than the number of upvalues of the
2780current function
2781(but not greater than 256,
2782which is one plus the maximum number of upvalues in a closure),
2783produces an acceptable but invalid index.
2784
2785
2786
2787
2788
2789<h2>4.5 &ndash; <a name="4.5">Registry</a></h2>
2790
2791<p>
2792Lua provides a <em>registry</em>,
2793a predefined table that can be used by any C&nbsp;code to
2794store whatever Lua values it needs to store.
2795The registry table is always located at pseudo-index
2796<a name="pdf-LUA_REGISTRYINDEX"><code>LUA_REGISTRYINDEX</code></a>.
2797Any C&nbsp;library can store data into this table,
2798but it must take care to choose keys
2799that are different from those used
2800by other libraries, to avoid collisions.
2801Typically, you should use as key a string containing your library name,
2802or a light userdata with the address of a C&nbsp;object in your code,
2803or any Lua object created by your code.
2804As with variable names,
2805string keys starting with an underscore followed by
2806uppercase letters are reserved for Lua.
2807
2808
2809<p>
2810The integer keys in the registry are used
2811by the reference mechanism (see <a href="#luaL_ref"><code>luaL_ref</code></a>)
2812and by some predefined values.
2813Therefore, integer keys must not be used for other purposes.
2814
2815
2816<p>
2817When you create a new Lua state,
2818its registry comes with some predefined values.
2819These predefined values are indexed with integer keys
2820defined as constants in <code>lua.h</code>.
2821The following constants are defined:
2822
2823<ul>
2824<li><b><a name="pdf-LUA_RIDX_MAINTHREAD"><code>LUA_RIDX_MAINTHREAD</code></a>: </b> At this index the registry has
2825the main thread of the state.
2826(The main thread is the one created together with the state.)
2827</li>
2828
2829<li><b><a name="pdf-LUA_RIDX_GLOBALS"><code>LUA_RIDX_GLOBALS</code></a>: </b> At this index the registry has
2830the global environment.
2831</li>
2832</ul>
2833
2834
2835
2836
2837<h2>4.6 &ndash; <a name="4.6">Error Handling in C</a></h2>
2838
2839<p>
2840Internally, Lua uses the C <code>longjmp</code> facility to handle errors.
2841(Lua will use exceptions if you compile it as C++;
2842search for <code>LUAI_THROW</code> in the source code for details.)
2843When Lua faces any error
2844(such as a memory allocation error or a type error)
2845it <em>raises</em> an error;
2846that is, it does a long jump.
2847A <em>protected environment</em> uses <code>setjmp</code>
2848to set a recovery point;
2849any error jumps to the most recent active recovery point.
2850
2851
2852<p>
2853Inside a C&nbsp;function you can raise an error by calling <a href="#lua_error"><code>lua_error</code></a>.
2854
2855
2856<p>
2857Most functions in the API can raise an error,
2858for instance due to a memory allocation error.
2859The documentation for each function indicates whether
2860it can raise errors.
2861
2862
2863<p>
2864If an error happens outside any protected environment,
2865Lua calls a <em>panic function</em> (see <a href="#lua_atpanic"><code>lua_atpanic</code></a>)
2866and then calls <code>abort</code>,
2867thus exiting the host application.
2868Your panic function can avoid this exit by
2869never returning
2870(e.g., doing a long jump to your own recovery point outside Lua).
2871
2872
2873<p>
2874The panic function,
2875as its name implies,
2876is a mechanism of last resort.
2877Programs should avoid it.
2878As a general rule,
2879when a C&nbsp;function is called by Lua with a Lua state,
2880it can do whatever it wants on that Lua state,
2881as it should be already protected.
2882However,
2883when C code operates on other Lua states
2884(e.g., a Lua parameter to the function,
2885a Lua state stored in the registry, or
2886the result of <a href="#lua_newthread"><code>lua_newthread</code></a>),
2887it should use them only in API calls that cannot raise errors.
2888
2889
2890<p>
2891The panic function runs as if it were a message handler (see <a href="#2.3">&sect;2.3</a>);
2892in particular, the error object is at the top of the stack.
2893However, there is no guarantee about stack space.
2894To push anything on the stack,
2895the panic function must first check the available space (see <a href="#4.2">&sect;4.2</a>).
2896
2897
2898
2899
2900
2901<h2>4.7 &ndash; <a name="4.7">Handling Yields in C</a></h2>
2902
2903<p>
2904Internally, Lua uses the C <code>longjmp</code> facility to yield a coroutine.
2905Therefore, if a C&nbsp;function <code>foo</code> calls an API function
2906and this API function yields
2907(directly or indirectly by calling another function that yields),
2908Lua cannot return to <code>foo</code> any more,
2909because the <code>longjmp</code> removes its frame from the C stack.
2910
2911
2912<p>
2913To avoid this kind of problem,
2914Lua raises an error whenever it tries to yield across an API call,
2915except for three functions:
2916<a href="#lua_yieldk"><code>lua_yieldk</code></a>, <a href="#lua_callk"><code>lua_callk</code></a>, and <a href="#lua_pcallk"><code>lua_pcallk</code></a>.
2917All those functions receive a <em>continuation function</em>
2918(as a parameter named <code>k</code>) to continue execution after a yield.
2919
2920
2921<p>
2922We need to set some terminology to explain continuations.
2923We have a C&nbsp;function called from Lua which we will call
2924the <em>original function</em>.
2925This original function then calls one of those three functions in the C API,
2926which we will call the <em>callee function</em>,
2927that then yields the current thread.
2928(This can happen when the callee function is <a href="#lua_yieldk"><code>lua_yieldk</code></a>,
2929or when the callee function is either <a href="#lua_callk"><code>lua_callk</code></a> or <a href="#lua_pcallk"><code>lua_pcallk</code></a>
2930and the function called by them yields.)
2931
2932
2933<p>
2934Suppose the running thread yields while executing the callee function.
2935After the thread resumes,
2936it eventually will finish running the callee function.
2937However,
2938the callee function cannot return to the original function,
2939because its frame in the C stack was destroyed by the yield.
2940Instead, Lua calls a <em>continuation function</em>,
2941which was given as an argument to the callee function.
2942As the name implies,
2943the continuation function should continue the task
2944of the original function.
2945
2946
2947<p>
2948As an illustration, consider the following function:
2949
2950<pre>
2951     int original_function (lua_State *L) {
2952       ...     /* code 1 */
2953       status = lua_pcall(L, n, m, h);  /* calls Lua */
2954       ...     /* code 2 */
2955     }
2956</pre><p>
2957Now we want to allow
2958the Lua code being run by <a href="#lua_pcall"><code>lua_pcall</code></a> to yield.
2959First, we can rewrite our function like here:
2960
2961<pre>
2962     int k (lua_State *L, int status, lua_KContext ctx) {
2963       ...  /* code 2 */
2964     }
2965
2966     int original_function (lua_State *L) {
2967       ...     /* code 1 */
2968       return k(L, lua_pcall(L, n, m, h), ctx);
2969     }
2970</pre><p>
2971In the above code,
2972the new function <code>k</code> is a
2973<em>continuation function</em> (with type <a href="#lua_KFunction"><code>lua_KFunction</code></a>),
2974which should do all the work that the original function
2975was doing after calling <a href="#lua_pcall"><code>lua_pcall</code></a>.
2976Now, we must inform Lua that it must call <code>k</code> if the Lua code
2977being executed by <a href="#lua_pcall"><code>lua_pcall</code></a> gets interrupted in some way
2978(errors or yielding),
2979so we rewrite the code as here,
2980replacing <a href="#lua_pcall"><code>lua_pcall</code></a> by <a href="#lua_pcallk"><code>lua_pcallk</code></a>:
2981
2982<pre>
2983     int original_function (lua_State *L) {
2984       ...     /* code 1 */
2985       return k(L, lua_pcallk(L, n, m, h, ctx2, k), ctx1);
2986     }
2987</pre><p>
2988Note the external, explicit call to the continuation:
2989Lua will call the continuation only if needed, that is,
2990in case of errors or resuming after a yield.
2991If the called function returns normally without ever yielding,
2992<a href="#lua_pcallk"><code>lua_pcallk</code></a> (and <a href="#lua_callk"><code>lua_callk</code></a>) will also return normally.
2993(Of course, instead of calling the continuation in that case,
2994you can do the equivalent work directly inside the original function.)
2995
2996
2997<p>
2998Besides the Lua state,
2999the continuation function has two other parameters:
3000the final status of the call plus the context value (<code>ctx</code>) that
3001was passed originally to <a href="#lua_pcallk"><code>lua_pcallk</code></a>.
3002(Lua does not use this context value;
3003it only passes this value from the original function to the
3004continuation function.)
3005For <a href="#lua_pcallk"><code>lua_pcallk</code></a>,
3006the status is the same value that would be returned by <a href="#lua_pcallk"><code>lua_pcallk</code></a>,
3007except that it is <a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> when being executed after a yield
3008(instead of <a href="#pdf-LUA_OK"><code>LUA_OK</code></a>).
3009For <a href="#lua_yieldk"><code>lua_yieldk</code></a> and <a href="#lua_callk"><code>lua_callk</code></a>,
3010the status is always <a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> when Lua calls the continuation.
3011(For these two functions,
3012Lua will not call the continuation in case of errors,
3013because they do not handle errors.)
3014Similarly, when using <a href="#lua_callk"><code>lua_callk</code></a>,
3015you should call the continuation function
3016with <a href="#pdf-LUA_OK"><code>LUA_OK</code></a> as the status.
3017(For <a href="#lua_yieldk"><code>lua_yieldk</code></a>, there is not much point in calling
3018directly the continuation function,
3019because <a href="#lua_yieldk"><code>lua_yieldk</code></a> usually does not return.)
3020
3021
3022<p>
3023Lua treats the continuation function as if it were the original function.
3024The continuation function receives the same Lua stack
3025from the original function,
3026in the same state it would be if the callee function had returned.
3027(For instance,
3028after a <a href="#lua_callk"><code>lua_callk</code></a> the function and its arguments are
3029removed from the stack and replaced by the results from the call.)
3030It also has the same upvalues.
3031Whatever it returns is handled by Lua as if it were the return
3032of the original function.
3033
3034
3035
3036
3037
3038<h2>4.8 &ndash; <a name="4.8">Functions and Types</a></h2>
3039
3040<p>
3041Here we list all functions and types from the C&nbsp;API in
3042alphabetical order.
3043Each function has an indicator like this:
3044<span class="apii">[-o, +p, <em>x</em>]</span>
3045
3046
3047<p>
3048The first field, <code>o</code>,
3049is how many elements the function pops from the stack.
3050The second field, <code>p</code>,
3051is how many elements the function pushes onto the stack.
3052(Any function always pushes its results after popping its arguments.)
3053A field in the form <code>x|y</code> means the function can push (or pop)
3054<code>x</code> or <code>y</code> elements,
3055depending on the situation;
3056an interrogation mark '<code>?</code>' means that
3057we cannot know how many elements the function pops/pushes
3058by looking only at its arguments
3059(e.g., they may depend on what is on the stack).
3060The third field, <code>x</code>,
3061tells whether the function may raise errors:
3062'<code>-</code>' means the function never raises any error;
3063'<code>m</code>' means the function may raise out-of-memory errors
3064and errors running a <code>__gc</code> metamethod;
3065'<code>e</code>' means the function may raise any errors
3066(it can run arbitrary Lua code,
3067either directly or through metamethods);
3068'<code>v</code>' means the function may raise an error on purpose.
3069
3070
3071
3072<hr><h3><a name="lua_absindex"><code>lua_absindex</code></a></h3><p>
3073<span class="apii">[-0, +0, &ndash;]</span>
3074<pre>int lua_absindex (lua_State *L, int idx);</pre>
3075
3076<p>
3077Converts the acceptable index <code>idx</code>
3078into an equivalent absolute index
3079(that is, one that does not depend on the stack top).
3080
3081
3082
3083
3084
3085<hr><h3><a name="lua_Alloc"><code>lua_Alloc</code></a></h3>
3086<pre>typedef void * (*lua_Alloc) (void *ud,
3087                             void *ptr,
3088                             size_t osize,
3089                             size_t nsize);</pre>
3090
3091<p>
3092The type of the memory-allocation function used by Lua states.
3093The allocator function must provide a
3094functionality similar to <code>realloc</code>,
3095but not exactly the same.
3096Its arguments are
3097<code>ud</code>, an opaque pointer passed to <a href="#lua_newstate"><code>lua_newstate</code></a>;
3098<code>ptr</code>, a pointer to the block being allocated/reallocated/freed;
3099<code>osize</code>, the original size of the block or some code about what
3100is being allocated;
3101and <code>nsize</code>, the new size of the block.
3102
3103
3104<p>
3105When <code>ptr</code> is not <code>NULL</code>,
3106<code>osize</code> is the size of the block pointed by <code>ptr</code>,
3107that is, the size given when it was allocated or reallocated.
3108
3109
3110<p>
3111When <code>ptr</code> is <code>NULL</code>,
3112<code>osize</code> encodes the kind of object that Lua is allocating.
3113<code>osize</code> is any of
3114<a href="#pdf-LUA_TSTRING"><code>LUA_TSTRING</code></a>, <a href="#pdf-LUA_TTABLE"><code>LUA_TTABLE</code></a>, <a href="#pdf-LUA_TFUNCTION"><code>LUA_TFUNCTION</code></a>,
3115<a href="#pdf-LUA_TUSERDATA"><code>LUA_TUSERDATA</code></a>, or <a href="#pdf-LUA_TTHREAD"><code>LUA_TTHREAD</code></a> when (and only when)
3116Lua is creating a new object of that type.
3117When <code>osize</code> is some other value,
3118Lua is allocating memory for something else.
3119
3120
3121<p>
3122Lua assumes the following behavior from the allocator function:
3123
3124
3125<p>
3126When <code>nsize</code> is zero,
3127the allocator must behave like <code>free</code>
3128and return <code>NULL</code>.
3129
3130
3131<p>
3132When <code>nsize</code> is not zero,
3133the allocator must behave like <code>realloc</code>.
3134The allocator returns <code>NULL</code>
3135if and only if it cannot fulfill the request.
3136Lua assumes that the allocator never fails when
3137<code>osize &gt;= nsize</code>.
3138
3139
3140<p>
3141Here is a simple implementation for the allocator function.
3142It is used in the auxiliary library by <a href="#luaL_newstate"><code>luaL_newstate</code></a>.
3143
3144<pre>
3145     static void *l_alloc (void *ud, void *ptr, size_t osize,
3146                                                size_t nsize) {
3147       (void)ud;  (void)osize;  /* not used */
3148       if (nsize == 0) {
3149         free(ptr);
3150         return NULL;
3151       }
3152       else
3153         return realloc(ptr, nsize);
3154     }
3155</pre><p>
3156Note that Standard&nbsp;C ensures
3157that <code>free(NULL)</code> has no effect and that
3158<code>realloc(NULL,size)</code> is equivalent to <code>malloc(size)</code>.
3159This code assumes that <code>realloc</code> does not fail when shrinking a block.
3160(Although Standard&nbsp;C does not ensure this behavior,
3161it seems to be a safe assumption.)
3162
3163
3164
3165
3166
3167<hr><h3><a name="lua_arith"><code>lua_arith</code></a></h3><p>
3168<span class="apii">[-(2|1), +1, <em>e</em>]</span>
3169<pre>void lua_arith (lua_State *L, int op);</pre>
3170
3171<p>
3172Performs an arithmetic or bitwise operation over the two values
3173(or one, in the case of negations)
3174at the top of the stack,
3175with the value at the top being the second operand,
3176pops these values, and pushes the result of the operation.
3177The function follows the semantics of the corresponding Lua operator
3178(that is, it may call metamethods).
3179
3180
3181<p>
3182The value of <code>op</code> must be one of the following constants:
3183
3184<ul>
3185
3186<li><b><a name="pdf-LUA_OPADD"><code>LUA_OPADD</code></a>: </b> performs addition (<code>+</code>)</li>
3187<li><b><a name="pdf-LUA_OPSUB"><code>LUA_OPSUB</code></a>: </b> performs subtraction (<code>-</code>)</li>
3188<li><b><a name="pdf-LUA_OPMUL"><code>LUA_OPMUL</code></a>: </b> performs multiplication (<code>*</code>)</li>
3189<li><b><a name="pdf-LUA_OPDIV"><code>LUA_OPDIV</code></a>: </b> performs float division (<code>/</code>)</li>
3190<li><b><a name="pdf-LUA_OPIDIV"><code>LUA_OPIDIV</code></a>: </b> performs floor division (<code>//</code>)</li>
3191<li><b><a name="pdf-LUA_OPMOD"><code>LUA_OPMOD</code></a>: </b> performs modulo (<code>%</code>)</li>
3192<li><b><a name="pdf-LUA_OPPOW"><code>LUA_OPPOW</code></a>: </b> performs exponentiation (<code>^</code>)</li>
3193<li><b><a name="pdf-LUA_OPUNM"><code>LUA_OPUNM</code></a>: </b> performs mathematical negation (unary <code>-</code>)</li>
3194<li><b><a name="pdf-LUA_OPBNOT"><code>LUA_OPBNOT</code></a>: </b> performs bitwise NOT (<code>~</code>)</li>
3195<li><b><a name="pdf-LUA_OPBAND"><code>LUA_OPBAND</code></a>: </b> performs bitwise AND (<code>&amp;</code>)</li>
3196<li><b><a name="pdf-LUA_OPBOR"><code>LUA_OPBOR</code></a>: </b> performs bitwise OR (<code>|</code>)</li>
3197<li><b><a name="pdf-LUA_OPBXOR"><code>LUA_OPBXOR</code></a>: </b> performs bitwise exclusive OR (<code>~</code>)</li>
3198<li><b><a name="pdf-LUA_OPSHL"><code>LUA_OPSHL</code></a>: </b> performs left shift (<code>&lt;&lt;</code>)</li>
3199<li><b><a name="pdf-LUA_OPSHR"><code>LUA_OPSHR</code></a>: </b> performs right shift (<code>&gt;&gt;</code>)</li>
3200
3201</ul>
3202
3203
3204
3205
3206<hr><h3><a name="lua_atpanic"><code>lua_atpanic</code></a></h3><p>
3207<span class="apii">[-0, +0, &ndash;]</span>
3208<pre>lua_CFunction lua_atpanic (lua_State *L, lua_CFunction panicf);</pre>
3209
3210<p>
3211Sets a new panic function and returns the old one (see <a href="#4.6">&sect;4.6</a>).
3212
3213
3214
3215
3216
3217<hr><h3><a name="lua_call"><code>lua_call</code></a></h3><p>
3218<span class="apii">[-(nargs+1), +nresults, <em>e</em>]</span>
3219<pre>void lua_call (lua_State *L, int nargs, int nresults);</pre>
3220
3221<p>
3222Calls a function.
3223
3224
3225<p>
3226To call a function you must use the following protocol:
3227first, the function to be called is pushed onto the stack;
3228then, the arguments to the function are pushed
3229in direct order;
3230that is, the first argument is pushed first.
3231Finally you call <a href="#lua_call"><code>lua_call</code></a>;
3232<code>nargs</code> is the number of arguments that you pushed onto the stack.
3233All arguments and the function value are popped from the stack
3234when the function is called.
3235The function results are pushed onto the stack when the function returns.
3236The number of results is adjusted to <code>nresults</code>,
3237unless <code>nresults</code> is <a name="pdf-LUA_MULTRET"><code>LUA_MULTRET</code></a>.
3238In this case, all results from the function are pushed;
3239Lua takes care that the returned values fit into the stack space,
3240but it does not ensure any extra space in the stack.
3241The function results are pushed onto the stack in direct order
3242(the first result is pushed first),
3243so that after the call the last result is on the top of the stack.
3244
3245
3246<p>
3247Any error inside the called function is propagated upwards
3248(with a <code>longjmp</code>).
3249
3250
3251<p>
3252The following example shows how the host program can do the
3253equivalent to this Lua code:
3254
3255<pre>
3256     a = f("how", t.x, 14)
3257</pre><p>
3258Here it is in&nbsp;C:
3259
3260<pre>
3261     lua_getglobal(L, "f");                  /* function to be called */
3262     lua_pushliteral(L, "how");                       /* 1st argument */
3263     lua_getglobal(L, "t");                    /* table to be indexed */
3264     lua_getfield(L, -1, "x");        /* push result of t.x (2nd arg) */
3265     lua_remove(L, -2);                  /* remove 't' from the stack */
3266     lua_pushinteger(L, 14);                          /* 3rd argument */
3267     lua_call(L, 3, 1);     /* call 'f' with 3 arguments and 1 result */
3268     lua_setglobal(L, "a");                         /* set global 'a' */
3269</pre><p>
3270Note that the code above is <em>balanced</em>:
3271at its end, the stack is back to its original configuration.
3272This is considered good programming practice.
3273
3274
3275
3276
3277
3278<hr><h3><a name="lua_callk"><code>lua_callk</code></a></h3><p>
3279<span class="apii">[-(nargs + 1), +nresults, <em>e</em>]</span>
3280<pre>void lua_callk (lua_State *L,
3281                int nargs,
3282                int nresults,
3283                lua_KContext ctx,
3284                lua_KFunction k);</pre>
3285
3286<p>
3287This function behaves exactly like <a href="#lua_call"><code>lua_call</code></a>,
3288but allows the called function to yield (see <a href="#4.7">&sect;4.7</a>).
3289
3290
3291
3292
3293
3294<hr><h3><a name="lua_CFunction"><code>lua_CFunction</code></a></h3>
3295<pre>typedef int (*lua_CFunction) (lua_State *L);</pre>
3296
3297<p>
3298Type for C&nbsp;functions.
3299
3300
3301<p>
3302In order to communicate properly with Lua,
3303a C&nbsp;function must use the following protocol,
3304which defines the way parameters and results are passed:
3305a C&nbsp;function receives its arguments from Lua in its stack
3306in direct order (the first argument is pushed first).
3307So, when the function starts,
3308<code>lua_gettop(L)</code> returns the number of arguments received by the function.
3309The first argument (if any) is at index 1
3310and its last argument is at index <code>lua_gettop(L)</code>.
3311To return values to Lua, a C&nbsp;function just pushes them onto the stack,
3312in direct order (the first result is pushed first),
3313and returns the number of results.
3314Any other value in the stack below the results will be properly
3315discarded by Lua.
3316Like a Lua function, a C&nbsp;function called by Lua can also return
3317many results.
3318
3319
3320<p>
3321As an example, the following function receives a variable number
3322of numeric arguments and returns their average and their sum:
3323
3324<pre>
3325     static int foo (lua_State *L) {
3326       int n = lua_gettop(L);    /* number of arguments */
3327       lua_Number sum = 0.0;
3328       int i;
3329       for (i = 1; i &lt;= n; i++) {
3330         if (!lua_isnumber(L, i)) {
3331           lua_pushliteral(L, "incorrect argument");
3332           lua_error(L);
3333         }
3334         sum += lua_tonumber(L, i);
3335       }
3336       lua_pushnumber(L, sum/n);        /* first result */
3337       lua_pushnumber(L, sum);         /* second result */
3338       return 2;                   /* number of results */
3339     }
3340</pre>
3341
3342
3343
3344
3345<hr><h3><a name="lua_checkstack"><code>lua_checkstack</code></a></h3><p>
3346<span class="apii">[-0, +0, &ndash;]</span>
3347<pre>int lua_checkstack (lua_State *L, int n);</pre>
3348
3349<p>
3350Ensures that the stack has space for at least <code>n</code> extra slots
3351(that is, that you can safely push up to <code>n</code> values into it).
3352It returns false if it cannot fulfill the request,
3353either because it would cause the stack
3354to be larger than a fixed maximum size
3355(typically at least several thousand elements) or
3356because it cannot allocate memory for the extra space.
3357This function never shrinks the stack;
3358if the stack already has space for the extra slots,
3359it is left unchanged.
3360
3361
3362
3363
3364
3365<hr><h3><a name="lua_close"><code>lua_close</code></a></h3><p>
3366<span class="apii">[-0, +0, &ndash;]</span>
3367<pre>void lua_close (lua_State *L);</pre>
3368
3369<p>
3370Destroys all objects in the given Lua state
3371(calling the corresponding garbage-collection metamethods, if any)
3372and frees all dynamic memory used by this state.
3373On several platforms, you may not need to call this function,
3374because all resources are naturally released when the host program ends.
3375On the other hand, long-running programs that create multiple states,
3376such as daemons or web servers,
3377will probably need to close states as soon as they are not needed.
3378
3379
3380
3381
3382
3383<hr><h3><a name="lua_compare"><code>lua_compare</code></a></h3><p>
3384<span class="apii">[-0, +0, <em>e</em>]</span>
3385<pre>int lua_compare (lua_State *L, int index1, int index2, int op);</pre>
3386
3387<p>
3388Compares two Lua values.
3389Returns 1 if the value at index <code>index1</code> satisfies <code>op</code>
3390when compared with the value at index <code>index2</code>,
3391following the semantics of the corresponding Lua operator
3392(that is, it may call metamethods).
3393Otherwise returns&nbsp;0.
3394Also returns&nbsp;0 if any of the indices is not valid.
3395
3396
3397<p>
3398The value of <code>op</code> must be one of the following constants:
3399
3400<ul>
3401
3402<li><b><a name="pdf-LUA_OPEQ"><code>LUA_OPEQ</code></a>: </b> compares for equality (<code>==</code>)</li>
3403<li><b><a name="pdf-LUA_OPLT"><code>LUA_OPLT</code></a>: </b> compares for less than (<code>&lt;</code>)</li>
3404<li><b><a name="pdf-LUA_OPLE"><code>LUA_OPLE</code></a>: </b> compares for less or equal (<code>&lt;=</code>)</li>
3405
3406</ul>
3407
3408
3409
3410
3411<hr><h3><a name="lua_concat"><code>lua_concat</code></a></h3><p>
3412<span class="apii">[-n, +1, <em>e</em>]</span>
3413<pre>void lua_concat (lua_State *L, int n);</pre>
3414
3415<p>
3416Concatenates the <code>n</code> values at the top of the stack,
3417pops them, and leaves the result at the top.
3418If <code>n</code>&nbsp;is&nbsp;1, the result is the single value on the stack
3419(that is, the function does nothing);
3420if <code>n</code> is 0, the result is the empty string.
3421Concatenation is performed following the usual semantics of Lua
3422(see <a href="#3.4.6">&sect;3.4.6</a>).
3423
3424
3425
3426
3427
3428<hr><h3><a name="lua_copy"><code>lua_copy</code></a></h3><p>
3429<span class="apii">[-0, +0, &ndash;]</span>
3430<pre>void lua_copy (lua_State *L, int fromidx, int toidx);</pre>
3431
3432<p>
3433Copies the element at index <code>fromidx</code>
3434into the valid index <code>toidx</code>,
3435replacing the value at that position.
3436Values at other positions are not affected.
3437
3438
3439
3440
3441
3442<hr><h3><a name="lua_createtable"><code>lua_createtable</code></a></h3><p>
3443<span class="apii">[-0, +1, <em>m</em>]</span>
3444<pre>void lua_createtable (lua_State *L, int narr, int nrec);</pre>
3445
3446<p>
3447Creates a new empty table and pushes it onto the stack.
3448Parameter <code>narr</code> is a hint for how many elements the table
3449will have as a sequence;
3450parameter <code>nrec</code> is a hint for how many other elements
3451the table will have.
3452Lua may use these hints to preallocate memory for the new table.
3453This preallocation is useful for performance when you know in advance
3454how many elements the table will have.
3455Otherwise you can use the function <a href="#lua_newtable"><code>lua_newtable</code></a>.
3456
3457
3458
3459
3460
3461<hr><h3><a name="lua_dump"><code>lua_dump</code></a></h3><p>
3462<span class="apii">[-0, +0, &ndash;]</span>
3463<pre>int lua_dump (lua_State *L,
3464                        lua_Writer writer,
3465                        void *data,
3466                        int strip);</pre>
3467
3468<p>
3469Dumps a function as a binary chunk.
3470Receives a Lua function on the top of the stack
3471and produces a binary chunk that,
3472if loaded again,
3473results in a function equivalent to the one dumped.
3474As it produces parts of the chunk,
3475<a href="#lua_dump"><code>lua_dump</code></a> calls function <code>writer</code> (see <a href="#lua_Writer"><code>lua_Writer</code></a>)
3476with the given <code>data</code>
3477to write them.
3478
3479
3480<p>
3481If <code>strip</code> is true,
3482the binary representation may not include all debug information
3483about the function,
3484to save space.
3485
3486
3487<p>
3488The value returned is the error code returned by the last
3489call to the writer;
34900&nbsp;means no errors.
3491
3492
3493<p>
3494This function does not pop the Lua function from the stack.
3495
3496
3497
3498
3499
3500<hr><h3><a name="lua_error"><code>lua_error</code></a></h3><p>
3501<span class="apii">[-1, +0, <em>v</em>]</span>
3502<pre>int lua_error (lua_State *L);</pre>
3503
3504<p>
3505Generates a Lua error,
3506using the value at the top of the stack as the error object.
3507This function does a long jump,
3508and therefore never returns
3509(see <a href="#luaL_error"><code>luaL_error</code></a>).
3510
3511
3512
3513
3514
3515<hr><h3><a name="lua_gc"><code>lua_gc</code></a></h3><p>
3516<span class="apii">[-0, +0, <em>m</em>]</span>
3517<pre>int lua_gc (lua_State *L, int what, int data);</pre>
3518
3519<p>
3520Controls the garbage collector.
3521
3522
3523<p>
3524This function performs several tasks,
3525according to the value of the parameter <code>what</code>:
3526
3527<ul>
3528
3529<li><b><code>LUA_GCSTOP</code>: </b>
3530stops the garbage collector.
3531</li>
3532
3533<li><b><code>LUA_GCRESTART</code>: </b>
3534restarts the garbage collector.
3535</li>
3536
3537<li><b><code>LUA_GCCOLLECT</code>: </b>
3538performs a full garbage-collection cycle.
3539</li>
3540
3541<li><b><code>LUA_GCCOUNT</code>: </b>
3542returns the current amount of memory (in Kbytes) in use by Lua.
3543</li>
3544
3545<li><b><code>LUA_GCCOUNTB</code>: </b>
3546returns the remainder of dividing the current amount of bytes of
3547memory in use by Lua by 1024.
3548</li>
3549
3550<li><b><code>LUA_GCSTEP</code>: </b>
3551performs an incremental step of garbage collection.
3552</li>
3553
3554<li><b><code>LUA_GCSETPAUSE</code>: </b>
3555sets <code>data</code> as the new value
3556for the <em>pause</em> of the collector (see <a href="#2.5">&sect;2.5</a>)
3557and returns the previous value of the pause.
3558</li>
3559
3560<li><b><code>LUA_GCSETSTEPMUL</code>: </b>
3561sets <code>data</code> as the new value for the <em>step multiplier</em> of
3562the collector (see <a href="#2.5">&sect;2.5</a>)
3563and returns the previous value of the step multiplier.
3564</li>
3565
3566<li><b><code>LUA_GCISRUNNING</code>: </b>
3567returns a boolean that tells whether the collector is running
3568(i.e., not stopped).
3569</li>
3570
3571</ul>
3572
3573<p>
3574For more details about these options,
3575see <a href="#pdf-collectgarbage"><code>collectgarbage</code></a>.
3576
3577
3578
3579
3580
3581<hr><h3><a name="lua_getallocf"><code>lua_getallocf</code></a></h3><p>
3582<span class="apii">[-0, +0, &ndash;]</span>
3583<pre>lua_Alloc lua_getallocf (lua_State *L, void **ud);</pre>
3584
3585<p>
3586Returns the memory-allocation function of a given state.
3587If <code>ud</code> is not <code>NULL</code>, Lua stores in <code>*ud</code> the
3588opaque pointer given when the memory-allocator function was set.
3589
3590
3591
3592
3593
3594<hr><h3><a name="lua_getfield"><code>lua_getfield</code></a></h3><p>
3595<span class="apii">[-0, +1, <em>e</em>]</span>
3596<pre>int lua_getfield (lua_State *L, int index, const char *k);</pre>
3597
3598<p>
3599Pushes onto the stack the value <code>t[k]</code>,
3600where <code>t</code> is the value at the given index.
3601As in Lua, this function may trigger a metamethod
3602for the "index" event (see <a href="#2.4">&sect;2.4</a>).
3603
3604
3605<p>
3606Returns the type of the pushed value.
3607
3608
3609
3610
3611
3612<hr><h3><a name="lua_getextraspace"><code>lua_getextraspace</code></a></h3><p>
3613<span class="apii">[-0, +0, &ndash;]</span>
3614<pre>void *lua_getextraspace (lua_State *L);</pre>
3615
3616<p>
3617Returns a pointer to a raw memory area associated with the
3618given Lua state.
3619The application can use this area for any purpose;
3620Lua does not use it for anything.
3621
3622
3623<p>
3624Each new thread has this area initialized with a copy
3625of the area of the main thread.
3626
3627
3628<p>
3629By default, this area has the size of a pointer to void,
3630but you can recompile Lua with a different size for this area.
3631(See <code>LUA_EXTRASPACE</code> in <code>luaconf.h</code>.)
3632
3633
3634
3635
3636
3637<hr><h3><a name="lua_getglobal"><code>lua_getglobal</code></a></h3><p>
3638<span class="apii">[-0, +1, <em>e</em>]</span>
3639<pre>int lua_getglobal (lua_State *L, const char *name);</pre>
3640
3641<p>
3642Pushes onto the stack the value of the global <code>name</code>.
3643Returns the type of that value.
3644
3645
3646
3647
3648
3649<hr><h3><a name="lua_geti"><code>lua_geti</code></a></h3><p>
3650<span class="apii">[-0, +1, <em>e</em>]</span>
3651<pre>int lua_geti (lua_State *L, int index, lua_Integer i);</pre>
3652
3653<p>
3654Pushes onto the stack the value <code>t[i]</code>,
3655where <code>t</code> is the value at the given index.
3656As in Lua, this function may trigger a metamethod
3657for the "index" event (see <a href="#2.4">&sect;2.4</a>).
3658
3659
3660<p>
3661Returns the type of the pushed value.
3662
3663
3664
3665
3666
3667<hr><h3><a name="lua_getmetatable"><code>lua_getmetatable</code></a></h3><p>
3668<span class="apii">[-0, +(0|1), &ndash;]</span>
3669<pre>int lua_getmetatable (lua_State *L, int index);</pre>
3670
3671<p>
3672If the value at the given index has a metatable,
3673the function pushes that metatable onto the stack and returns&nbsp;1.
3674Otherwise,
3675the function returns&nbsp;0 and pushes nothing on the stack.
3676
3677
3678
3679
3680
3681<hr><h3><a name="lua_gettable"><code>lua_gettable</code></a></h3><p>
3682<span class="apii">[-1, +1, <em>e</em>]</span>
3683<pre>int lua_gettable (lua_State *L, int index);</pre>
3684
3685<p>
3686Pushes onto the stack the value <code>t[k]</code>,
3687where <code>t</code> is the value at the given index
3688and <code>k</code> is the value at the top of the stack.
3689
3690
3691<p>
3692This function pops the key from the stack,
3693pushing the resulting value in its place.
3694As in Lua, this function may trigger a metamethod
3695for the "index" event (see <a href="#2.4">&sect;2.4</a>).
3696
3697
3698<p>
3699Returns the type of the pushed value.
3700
3701
3702
3703
3704
3705<hr><h3><a name="lua_gettop"><code>lua_gettop</code></a></h3><p>
3706<span class="apii">[-0, +0, &ndash;]</span>
3707<pre>int lua_gettop (lua_State *L);</pre>
3708
3709<p>
3710Returns the index of the top element in the stack.
3711Because indices start at&nbsp;1,
3712this result is equal to the number of elements in the stack;
3713in particular, 0&nbsp;means an empty stack.
3714
3715
3716
3717
3718
3719<hr><h3><a name="lua_getuservalue"><code>lua_getuservalue</code></a></h3><p>
3720<span class="apii">[-0, +1, &ndash;]</span>
3721<pre>int lua_getuservalue (lua_State *L, int index);</pre>
3722
3723<p>
3724Pushes onto the stack the Lua value associated with the full userdata
3725at the given index.
3726
3727
3728<p>
3729Returns the type of the pushed value.
3730
3731
3732
3733
3734
3735<hr><h3><a name="lua_insert"><code>lua_insert</code></a></h3><p>
3736<span class="apii">[-1, +1, &ndash;]</span>
3737<pre>void lua_insert (lua_State *L, int index);</pre>
3738
3739<p>
3740Moves the top element into the given valid index,
3741shifting up the elements above this index to open space.
3742This function cannot be called with a pseudo-index,
3743because a pseudo-index is not an actual stack position.
3744
3745
3746
3747
3748
3749<hr><h3><a name="lua_Integer"><code>lua_Integer</code></a></h3>
3750<pre>typedef ... lua_Integer;</pre>
3751
3752<p>
3753The type of integers in Lua.
3754
3755
3756<p>
3757By default this type is <code>long long</code>,
3758(usually a 64-bit two-complement integer),
3759but that can be changed to <code>long</code> or <code>int</code>
3760(usually a 32-bit two-complement integer).
3761(See <code>LUA_INT_TYPE</code> in <code>luaconf.h</code>.)
3762
3763
3764<p>
3765Lua also defines the constants
3766<a name="pdf-LUA_MININTEGER"><code>LUA_MININTEGER</code></a> and <a name="pdf-LUA_MAXINTEGER"><code>LUA_MAXINTEGER</code></a>,
3767with the minimum and the maximum values that fit in this type.
3768
3769
3770
3771
3772
3773<hr><h3><a name="lua_isboolean"><code>lua_isboolean</code></a></h3><p>
3774<span class="apii">[-0, +0, &ndash;]</span>
3775<pre>int lua_isboolean (lua_State *L, int index);</pre>
3776
3777<p>
3778Returns 1 if the value at the given index is a boolean,
3779and 0&nbsp;otherwise.
3780
3781
3782
3783
3784
3785<hr><h3><a name="lua_iscfunction"><code>lua_iscfunction</code></a></h3><p>
3786<span class="apii">[-0, +0, &ndash;]</span>
3787<pre>int lua_iscfunction (lua_State *L, int index);</pre>
3788
3789<p>
3790Returns 1 if the value at the given index is a C&nbsp;function,
3791and 0&nbsp;otherwise.
3792
3793
3794
3795
3796
3797<hr><h3><a name="lua_isfunction"><code>lua_isfunction</code></a></h3><p>
3798<span class="apii">[-0, +0, &ndash;]</span>
3799<pre>int lua_isfunction (lua_State *L, int index);</pre>
3800
3801<p>
3802Returns 1 if the value at the given index is a function
3803(either C or Lua), and 0&nbsp;otherwise.
3804
3805
3806
3807
3808
3809<hr><h3><a name="lua_isinteger"><code>lua_isinteger</code></a></h3><p>
3810<span class="apii">[-0, +0, &ndash;]</span>
3811<pre>int lua_isinteger (lua_State *L, int index);</pre>
3812
3813<p>
3814Returns 1 if the value at the given index is an integer
3815(that is, the value is a number and is represented as an integer),
3816and 0&nbsp;otherwise.
3817
3818
3819
3820
3821
3822<hr><h3><a name="lua_islightuserdata"><code>lua_islightuserdata</code></a></h3><p>
3823<span class="apii">[-0, +0, &ndash;]</span>
3824<pre>int lua_islightuserdata (lua_State *L, int index);</pre>
3825
3826<p>
3827Returns 1 if the value at the given index is a light userdata,
3828and 0&nbsp;otherwise.
3829
3830
3831
3832
3833
3834<hr><h3><a name="lua_isnil"><code>lua_isnil</code></a></h3><p>
3835<span class="apii">[-0, +0, &ndash;]</span>
3836<pre>int lua_isnil (lua_State *L, int index);</pre>
3837
3838<p>
3839Returns 1 if the value at the given index is <b>nil</b>,
3840and 0&nbsp;otherwise.
3841
3842
3843
3844
3845
3846<hr><h3><a name="lua_isnone"><code>lua_isnone</code></a></h3><p>
3847<span class="apii">[-0, +0, &ndash;]</span>
3848<pre>int lua_isnone (lua_State *L, int index);</pre>
3849
3850<p>
3851Returns 1 if the given index is not valid,
3852and 0&nbsp;otherwise.
3853
3854
3855
3856
3857
3858<hr><h3><a name="lua_isnoneornil"><code>lua_isnoneornil</code></a></h3><p>
3859<span class="apii">[-0, +0, &ndash;]</span>
3860<pre>int lua_isnoneornil (lua_State *L, int index);</pre>
3861
3862<p>
3863Returns 1 if the given index is not valid
3864or if the value at this index is <b>nil</b>,
3865and 0&nbsp;otherwise.
3866
3867
3868
3869
3870
3871<hr><h3><a name="lua_isnumber"><code>lua_isnumber</code></a></h3><p>
3872<span class="apii">[-0, +0, &ndash;]</span>
3873<pre>int lua_isnumber (lua_State *L, int index);</pre>
3874
3875<p>
3876Returns 1 if the value at the given index is a number
3877or a string convertible to a number,
3878and 0&nbsp;otherwise.
3879
3880
3881
3882
3883
3884<hr><h3><a name="lua_isstring"><code>lua_isstring</code></a></h3><p>
3885<span class="apii">[-0, +0, &ndash;]</span>
3886<pre>int lua_isstring (lua_State *L, int index);</pre>
3887
3888<p>
3889Returns 1 if the value at the given index is a string
3890or a number (which is always convertible to a string),
3891and 0&nbsp;otherwise.
3892
3893
3894
3895
3896
3897<hr><h3><a name="lua_istable"><code>lua_istable</code></a></h3><p>
3898<span class="apii">[-0, +0, &ndash;]</span>
3899<pre>int lua_istable (lua_State *L, int index);</pre>
3900
3901<p>
3902Returns 1 if the value at the given index is a table,
3903and 0&nbsp;otherwise.
3904
3905
3906
3907
3908
3909<hr><h3><a name="lua_isthread"><code>lua_isthread</code></a></h3><p>
3910<span class="apii">[-0, +0, &ndash;]</span>
3911<pre>int lua_isthread (lua_State *L, int index);</pre>
3912
3913<p>
3914Returns 1 if the value at the given index is a thread,
3915and 0&nbsp;otherwise.
3916
3917
3918
3919
3920
3921<hr><h3><a name="lua_isuserdata"><code>lua_isuserdata</code></a></h3><p>
3922<span class="apii">[-0, +0, &ndash;]</span>
3923<pre>int lua_isuserdata (lua_State *L, int index);</pre>
3924
3925<p>
3926Returns 1 if the value at the given index is a userdata
3927(either full or light), and 0&nbsp;otherwise.
3928
3929
3930
3931
3932
3933<hr><h3><a name="lua_isyieldable"><code>lua_isyieldable</code></a></h3><p>
3934<span class="apii">[-0, +0, &ndash;]</span>
3935<pre>int lua_isyieldable (lua_State *L);</pre>
3936
3937<p>
3938Returns 1 if the given coroutine can yield,
3939and 0&nbsp;otherwise.
3940
3941
3942
3943
3944
3945<hr><h3><a name="lua_KContext"><code>lua_KContext</code></a></h3>
3946<pre>typedef ... lua_KContext;</pre>
3947
3948<p>
3949The type for continuation-function contexts.
3950It must be a numeric type.
3951This type is defined as <code>intptr_t</code>
3952when <code>intptr_t</code> is available,
3953so that it can store pointers too.
3954Otherwise, it is defined as <code>ptrdiff_t</code>.
3955
3956
3957
3958
3959
3960<hr><h3><a name="lua_KFunction"><code>lua_KFunction</code></a></h3>
3961<pre>typedef int (*lua_KFunction) (lua_State *L, int status, lua_KContext ctx);</pre>
3962
3963<p>
3964Type for continuation functions (see <a href="#4.7">&sect;4.7</a>).
3965
3966
3967
3968
3969
3970<hr><h3><a name="lua_len"><code>lua_len</code></a></h3><p>
3971<span class="apii">[-0, +1, <em>e</em>]</span>
3972<pre>void lua_len (lua_State *L, int index);</pre>
3973
3974<p>
3975Returns the length of the value at the given index.
3976It is equivalent to the '<code>#</code>' operator in Lua (see <a href="#3.4.7">&sect;3.4.7</a>) and
3977may trigger a metamethod for the "length" event (see <a href="#2.4">&sect;2.4</a>).
3978The result is pushed on the stack.
3979
3980
3981
3982
3983
3984<hr><h3><a name="lua_load"><code>lua_load</code></a></h3><p>
3985<span class="apii">[-0, +1, &ndash;]</span>
3986<pre>int lua_load (lua_State *L,
3987              lua_Reader reader,
3988              void *data,
3989              const char *chunkname,
3990              const char *mode);</pre>
3991
3992<p>
3993Loads a Lua chunk without running it.
3994If there are no errors,
3995<code>lua_load</code> pushes the compiled chunk as a Lua
3996function on top of the stack.
3997Otherwise, it pushes an error message.
3998
3999
4000<p>
4001The return values of <code>lua_load</code> are:
4002
4003<ul>
4004
4005<li><b><a href="#pdf-LUA_OK"><code>LUA_OK</code></a>: </b> no errors;</li>
4006
4007<li><b><a name="pdf-LUA_ERRSYNTAX"><code>LUA_ERRSYNTAX</code></a>: </b>
4008syntax error during precompilation;</li>
4009
4010<li><b><a href="#pdf-LUA_ERRMEM"><code>LUA_ERRMEM</code></a>: </b>
4011memory allocation (out-of-memory) error;</li>
4012
4013<li><b><a href="#pdf-LUA_ERRGCMM"><code>LUA_ERRGCMM</code></a>: </b>
4014error while running a <code>__gc</code> metamethod.
4015(This error has no relation with the chunk being loaded.
4016It is generated by the garbage collector.)
4017</li>
4018
4019</ul>
4020
4021<p>
4022The <code>lua_load</code> function uses a user-supplied <code>reader</code> function
4023to read the chunk (see <a href="#lua_Reader"><code>lua_Reader</code></a>).
4024The <code>data</code> argument is an opaque value passed to the reader function.
4025
4026
4027<p>
4028The <code>chunkname</code> argument gives a name to the chunk,
4029which is used for error messages and in debug information (see <a href="#4.9">&sect;4.9</a>).
4030
4031
4032<p>
4033<code>lua_load</code> automatically detects whether the chunk is text or binary
4034and loads it accordingly (see program <code>luac</code>).
4035The string <code>mode</code> works as in function <a href="#pdf-load"><code>load</code></a>,
4036with the addition that
4037a <code>NULL</code> value is equivalent to the string "<code>bt</code>".
4038
4039
4040<p>
4041<code>lua_load</code> uses the stack internally,
4042so the reader function must always leave the stack
4043unmodified when returning.
4044
4045
4046<p>
4047If the resulting function has upvalues,
4048its first upvalue is set to the value of the global environment
4049stored at index <code>LUA_RIDX_GLOBALS</code> in the registry (see <a href="#4.5">&sect;4.5</a>).
4050When loading main chunks,
4051this upvalue will be the <code>_ENV</code> variable (see <a href="#2.2">&sect;2.2</a>).
4052Other upvalues are initialized with <b>nil</b>.
4053
4054
4055
4056
4057
4058<hr><h3><a name="lua_newstate"><code>lua_newstate</code></a></h3><p>
4059<span class="apii">[-0, +0, &ndash;]</span>
4060<pre>lua_State *lua_newstate (lua_Alloc f, void *ud);</pre>
4061
4062<p>
4063Creates a new thread running in a new, independent state.
4064Returns <code>NULL</code> if it cannot create the thread or the state
4065(due to lack of memory).
4066The argument <code>f</code> is the allocator function;
4067Lua does all memory allocation for this state
4068through this function (see <a href="#lua_Alloc"><code>lua_Alloc</code></a>).
4069The second argument, <code>ud</code>, is an opaque pointer that Lua
4070passes to the allocator in every call.
4071
4072
4073
4074
4075
4076<hr><h3><a name="lua_newtable"><code>lua_newtable</code></a></h3><p>
4077<span class="apii">[-0, +1, <em>m</em>]</span>
4078<pre>void lua_newtable (lua_State *L);</pre>
4079
4080<p>
4081Creates a new empty table and pushes it onto the stack.
4082It is equivalent to <code>lua_createtable(L, 0, 0)</code>.
4083
4084
4085
4086
4087
4088<hr><h3><a name="lua_newthread"><code>lua_newthread</code></a></h3><p>
4089<span class="apii">[-0, +1, <em>m</em>]</span>
4090<pre>lua_State *lua_newthread (lua_State *L);</pre>
4091
4092<p>
4093Creates a new thread, pushes it on the stack,
4094and returns a pointer to a <a href="#lua_State"><code>lua_State</code></a> that represents this new thread.
4095The new thread returned by this function shares with the original thread
4096its global environment,
4097but has an independent execution stack.
4098
4099
4100<p>
4101There is no explicit function to close or to destroy a thread.
4102Threads are subject to garbage collection,
4103like any Lua object.
4104
4105
4106
4107
4108
4109<hr><h3><a name="lua_newuserdata"><code>lua_newuserdata</code></a></h3><p>
4110<span class="apii">[-0, +1, <em>m</em>]</span>
4111<pre>void *lua_newuserdata (lua_State *L, size_t size);</pre>
4112
4113<p>
4114This function allocates a new block of memory with the given size,
4115pushes onto the stack a new full userdata with the block address,
4116and returns this address.
4117The host program can freely use this memory.
4118
4119
4120
4121
4122
4123<hr><h3><a name="lua_next"><code>lua_next</code></a></h3><p>
4124<span class="apii">[-1, +(2|0), <em>e</em>]</span>
4125<pre>int lua_next (lua_State *L, int index);</pre>
4126
4127<p>
4128Pops a key from the stack,
4129and pushes a key&ndash;value pair from the table at the given index
4130(the "next" pair after the given key).
4131If there are no more elements in the table,
4132then <a href="#lua_next"><code>lua_next</code></a> returns 0 (and pushes nothing).
4133
4134
4135<p>
4136A typical traversal looks like this:
4137
4138<pre>
4139     /* table is in the stack at index 't' */
4140     lua_pushnil(L);  /* first key */
4141     while (lua_next(L, t) != 0) {
4142       /* uses 'key' (at index -2) and 'value' (at index -1) */
4143       printf("%s - %s\n",
4144              lua_typename(L, lua_type(L, -2)),
4145              lua_typename(L, lua_type(L, -1)));
4146       /* removes 'value'; keeps 'key' for next iteration */
4147       lua_pop(L, 1);
4148     }
4149</pre>
4150
4151<p>
4152While traversing a table,
4153do not call <a href="#lua_tolstring"><code>lua_tolstring</code></a> directly on a key,
4154unless you know that the key is actually a string.
4155Recall that <a href="#lua_tolstring"><code>lua_tolstring</code></a> may change
4156the value at the given index;
4157this confuses the next call to <a href="#lua_next"><code>lua_next</code></a>.
4158
4159
4160<p>
4161See function <a href="#pdf-next"><code>next</code></a> for the caveats of modifying
4162the table during its traversal.
4163
4164
4165
4166
4167
4168<hr><h3><a name="lua_Number"><code>lua_Number</code></a></h3>
4169<pre>typedef ... lua_Number;</pre>
4170
4171<p>
4172The type of floats in Lua.
4173
4174
4175<p>
4176By default this type is double,
4177but that can be changed to a single float or a long double.
4178(See <code>LUA_FLOAT_TYPE</code> in <code>luaconf.h</code>.)
4179
4180
4181
4182
4183
4184<hr><h3><a name="lua_numbertointeger"><code>lua_numbertointeger</code></a></h3>
4185<pre>int lua_numbertointeger (lua_Number n, lua_Integer *p);</pre>
4186
4187<p>
4188Converts a Lua float to a Lua integer.
4189This macro assumes that <code>n</code> has an integral value.
4190If that value is within the range of Lua integers,
4191it is converted to an integer and assigned to <code>*p</code>.
4192The macro results in a boolean indicating whether the
4193conversion was successful.
4194(Note that this range test can be tricky to do
4195correctly without this macro,
4196due to roundings.)
4197
4198
4199<p>
4200This macro may evaluate its arguments more than once.
4201
4202
4203
4204
4205
4206<hr><h3><a name="lua_pcall"><code>lua_pcall</code></a></h3><p>
4207<span class="apii">[-(nargs + 1), +(nresults|1), &ndash;]</span>
4208<pre>int lua_pcall (lua_State *L, int nargs, int nresults, int msgh);</pre>
4209
4210<p>
4211Calls a function in protected mode.
4212
4213
4214<p>
4215Both <code>nargs</code> and <code>nresults</code> have the same meaning as
4216in <a href="#lua_call"><code>lua_call</code></a>.
4217If there are no errors during the call,
4218<a href="#lua_pcall"><code>lua_pcall</code></a> behaves exactly like <a href="#lua_call"><code>lua_call</code></a>.
4219However, if there is any error,
4220<a href="#lua_pcall"><code>lua_pcall</code></a> catches it,
4221pushes a single value on the stack (the error object),
4222and returns an error code.
4223Like <a href="#lua_call"><code>lua_call</code></a>,
4224<a href="#lua_pcall"><code>lua_pcall</code></a> always removes the function
4225and its arguments from the stack.
4226
4227
4228<p>
4229If <code>msgh</code> is 0,
4230then the error object returned on the stack
4231is exactly the original error object.
4232Otherwise, <code>msgh</code> is the stack index of a
4233<em>message handler</em>.
4234(This index cannot be a pseudo-index.)
4235In case of runtime errors,
4236this function will be called with the error object
4237and its return value will be the object
4238returned on the stack by <a href="#lua_pcall"><code>lua_pcall</code></a>.
4239
4240
4241<p>
4242Typically, the message handler is used to add more debug
4243information to the error object, such as a stack traceback.
4244Such information cannot be gathered after the return of <a href="#lua_pcall"><code>lua_pcall</code></a>,
4245since by then the stack has unwound.
4246
4247
4248<p>
4249The <a href="#lua_pcall"><code>lua_pcall</code></a> function returns one of the following constants
4250(defined in <code>lua.h</code>):
4251
4252<ul>
4253
4254<li><b><a name="pdf-LUA_OK"><code>LUA_OK</code></a> (0): </b>
4255success.</li>
4256
4257<li><b><a name="pdf-LUA_ERRRUN"><code>LUA_ERRRUN</code></a>: </b>
4258a runtime error.
4259</li>
4260
4261<li><b><a name="pdf-LUA_ERRMEM"><code>LUA_ERRMEM</code></a>: </b>
4262memory allocation error.
4263For such errors, Lua does not call the message handler.
4264</li>
4265
4266<li><b><a name="pdf-LUA_ERRERR"><code>LUA_ERRERR</code></a>: </b>
4267error while running the message handler.
4268</li>
4269
4270<li><b><a name="pdf-LUA_ERRGCMM"><code>LUA_ERRGCMM</code></a>: </b>
4271error while running a <code>__gc</code> metamethod.
4272For such errors, Lua does not call the message handler
4273(as this kind of error typically has no relation
4274with the function being called).
4275</li>
4276
4277</ul>
4278
4279
4280
4281
4282<hr><h3><a name="lua_pcallk"><code>lua_pcallk</code></a></h3><p>
4283<span class="apii">[-(nargs + 1), +(nresults|1), &ndash;]</span>
4284<pre>int lua_pcallk (lua_State *L,
4285                int nargs,
4286                int nresults,
4287                int msgh,
4288                lua_KContext ctx,
4289                lua_KFunction k);</pre>
4290
4291<p>
4292This function behaves exactly like <a href="#lua_pcall"><code>lua_pcall</code></a>,
4293but allows the called function to yield (see <a href="#4.7">&sect;4.7</a>).
4294
4295
4296
4297
4298
4299<hr><h3><a name="lua_pop"><code>lua_pop</code></a></h3><p>
4300<span class="apii">[-n, +0, &ndash;]</span>
4301<pre>void lua_pop (lua_State *L, int n);</pre>
4302
4303<p>
4304Pops <code>n</code> elements from the stack.
4305
4306
4307
4308
4309
4310<hr><h3><a name="lua_pushboolean"><code>lua_pushboolean</code></a></h3><p>
4311<span class="apii">[-0, +1, &ndash;]</span>
4312<pre>void lua_pushboolean (lua_State *L, int b);</pre>
4313
4314<p>
4315Pushes a boolean value with value <code>b</code> onto the stack.
4316
4317
4318
4319
4320
4321<hr><h3><a name="lua_pushcclosure"><code>lua_pushcclosure</code></a></h3><p>
4322<span class="apii">[-n, +1, <em>m</em>]</span>
4323<pre>void lua_pushcclosure (lua_State *L, lua_CFunction fn, int n);</pre>
4324
4325<p>
4326Pushes a new C&nbsp;closure onto the stack.
4327
4328
4329<p>
4330When a C&nbsp;function is created,
4331it is possible to associate some values with it,
4332thus creating a C&nbsp;closure (see <a href="#4.4">&sect;4.4</a>);
4333these values are then accessible to the function whenever it is called.
4334To associate values with a C&nbsp;function,
4335first these values must be pushed onto the stack
4336(when there are multiple values, the first value is pushed first).
4337Then <a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a>
4338is called to create and push the C&nbsp;function onto the stack,
4339with the argument <code>n</code> telling how many values will be
4340associated with the function.
4341<a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a> also pops these values from the stack.
4342
4343
4344<p>
4345The maximum value for <code>n</code> is 255.
4346
4347
4348<p>
4349When <code>n</code> is zero,
4350this function creates a <em>light C&nbsp;function</em>,
4351which is just a pointer to the C&nbsp;function.
4352In that case, it never raises a memory error.
4353
4354
4355
4356
4357
4358<hr><h3><a name="lua_pushcfunction"><code>lua_pushcfunction</code></a></h3><p>
4359<span class="apii">[-0, +1, &ndash;]</span>
4360<pre>void lua_pushcfunction (lua_State *L, lua_CFunction f);</pre>
4361
4362<p>
4363Pushes a C&nbsp;function onto the stack.
4364This function receives a pointer to a C&nbsp;function
4365and pushes onto the stack a Lua value of type <code>function</code> that,
4366when called, invokes the corresponding C&nbsp;function.
4367
4368
4369<p>
4370Any function to be callable by Lua must
4371follow the correct protocol to receive its parameters
4372and return its results (see <a href="#lua_CFunction"><code>lua_CFunction</code></a>).
4373
4374
4375
4376
4377
4378<hr><h3><a name="lua_pushfstring"><code>lua_pushfstring</code></a></h3><p>
4379<span class="apii">[-0, +1, <em>e</em>]</span>
4380<pre>const char *lua_pushfstring (lua_State *L, const char *fmt, ...);</pre>
4381
4382<p>
4383Pushes onto the stack a formatted string
4384and returns a pointer to this string.
4385It is similar to the ISO&nbsp;C function <code>sprintf</code>,
4386but has some important differences:
4387
4388<ul>
4389
4390<li>
4391You do not have to allocate space for the result:
4392the result is a Lua string and Lua takes care of memory allocation
4393(and deallocation, through garbage collection).
4394</li>
4395
4396<li>
4397The conversion specifiers are quite restricted.
4398There are no flags, widths, or precisions.
4399The conversion specifiers can only be
4400'<code>%%</code>' (inserts the character '<code>%</code>'),
4401'<code>%s</code>' (inserts a zero-terminated string, with no size restrictions),
4402'<code>%f</code>' (inserts a <a href="#lua_Number"><code>lua_Number</code></a>),
4403'<code>%I</code>' (inserts a <a href="#lua_Integer"><code>lua_Integer</code></a>),
4404'<code>%p</code>' (inserts a pointer as a hexadecimal numeral),
4405'<code>%d</code>' (inserts an <code>int</code>),
4406'<code>%c</code>' (inserts an <code>int</code> as a one-byte character), and
4407'<code>%U</code>' (inserts a <code>long int</code> as a UTF-8 byte sequence).
4408</li>
4409
4410</ul>
4411
4412<p>
4413Unlike other push functions,
4414this function checks for the stack space it needs,
4415including the slot for its result.
4416
4417
4418
4419
4420
4421<hr><h3><a name="lua_pushglobaltable"><code>lua_pushglobaltable</code></a></h3><p>
4422<span class="apii">[-0, +1, &ndash;]</span>
4423<pre>void lua_pushglobaltable (lua_State *L);</pre>
4424
4425<p>
4426Pushes the global environment onto the stack.
4427
4428
4429
4430
4431
4432<hr><h3><a name="lua_pushinteger"><code>lua_pushinteger</code></a></h3><p>
4433<span class="apii">[-0, +1, &ndash;]</span>
4434<pre>void lua_pushinteger (lua_State *L, lua_Integer n);</pre>
4435
4436<p>
4437Pushes an integer with value <code>n</code> onto the stack.
4438
4439
4440
4441
4442
4443<hr><h3><a name="lua_pushlightuserdata"><code>lua_pushlightuserdata</code></a></h3><p>
4444<span class="apii">[-0, +1, &ndash;]</span>
4445<pre>void lua_pushlightuserdata (lua_State *L, void *p);</pre>
4446
4447<p>
4448Pushes a light userdata onto the stack.
4449
4450
4451<p>
4452Userdata represent C&nbsp;values in Lua.
4453A <em>light userdata</em> represents a pointer, a <code>void*</code>.
4454It is a value (like a number):
4455you do not create it, it has no individual metatable,
4456and it is not collected (as it was never created).
4457A light userdata is equal to "any"
4458light userdata with the same C&nbsp;address.
4459
4460
4461
4462
4463
4464<hr><h3><a name="lua_pushliteral"><code>lua_pushliteral</code></a></h3><p>
4465<span class="apii">[-0, +1, <em>m</em>]</span>
4466<pre>const char *lua_pushliteral (lua_State *L, const char *s);</pre>
4467
4468<p>
4469This macro is equivalent to <a href="#lua_pushstring"><code>lua_pushstring</code></a>,
4470but should be used only when <code>s</code> is a literal string.
4471
4472
4473
4474
4475
4476<hr><h3><a name="lua_pushlstring"><code>lua_pushlstring</code></a></h3><p>
4477<span class="apii">[-0, +1, <em>m</em>]</span>
4478<pre>const char *lua_pushlstring (lua_State *L, const char *s, size_t len);</pre>
4479
4480<p>
4481Pushes the string pointed to by <code>s</code> with size <code>len</code>
4482onto the stack.
4483Lua makes (or reuses) an internal copy of the given string,
4484so the memory at <code>s</code> can be freed or reused immediately after
4485the function returns.
4486The string can contain any binary data,
4487including embedded zeros.
4488
4489
4490<p>
4491Returns a pointer to the internal copy of the string.
4492
4493
4494
4495
4496
4497<hr><h3><a name="lua_pushnil"><code>lua_pushnil</code></a></h3><p>
4498<span class="apii">[-0, +1, &ndash;]</span>
4499<pre>void lua_pushnil (lua_State *L);</pre>
4500
4501<p>
4502Pushes a nil value onto the stack.
4503
4504
4505
4506
4507
4508<hr><h3><a name="lua_pushnumber"><code>lua_pushnumber</code></a></h3><p>
4509<span class="apii">[-0, +1, &ndash;]</span>
4510<pre>void lua_pushnumber (lua_State *L, lua_Number n);</pre>
4511
4512<p>
4513Pushes a float with value <code>n</code> onto the stack.
4514
4515
4516
4517
4518
4519<hr><h3><a name="lua_pushstring"><code>lua_pushstring</code></a></h3><p>
4520<span class="apii">[-0, +1, <em>m</em>]</span>
4521<pre>const char *lua_pushstring (lua_State *L, const char *s);</pre>
4522
4523<p>
4524Pushes the zero-terminated string pointed to by <code>s</code>
4525onto the stack.
4526Lua makes (or reuses) an internal copy of the given string,
4527so the memory at <code>s</code> can be freed or reused immediately after
4528the function returns.
4529
4530
4531<p>
4532Returns a pointer to the internal copy of the string.
4533
4534
4535<p>
4536If <code>s</code> is <code>NULL</code>, pushes <b>nil</b> and returns <code>NULL</code>.
4537
4538
4539
4540
4541
4542<hr><h3><a name="lua_pushthread"><code>lua_pushthread</code></a></h3><p>
4543<span class="apii">[-0, +1, &ndash;]</span>
4544<pre>int lua_pushthread (lua_State *L);</pre>
4545
4546<p>
4547Pushes the thread represented by <code>L</code> onto the stack.
4548Returns 1 if this thread is the main thread of its state.
4549
4550
4551
4552
4553
4554<hr><h3><a name="lua_pushvalue"><code>lua_pushvalue</code></a></h3><p>
4555<span class="apii">[-0, +1, &ndash;]</span>
4556<pre>void lua_pushvalue (lua_State *L, int index);</pre>
4557
4558<p>
4559Pushes a copy of the element at the given index
4560onto the stack.
4561
4562
4563
4564
4565
4566<hr><h3><a name="lua_pushvfstring"><code>lua_pushvfstring</code></a></h3><p>
4567<span class="apii">[-0, +1, <em>m</em>]</span>
4568<pre>const char *lua_pushvfstring (lua_State *L,
4569                              const char *fmt,
4570                              va_list argp);</pre>
4571
4572<p>
4573Equivalent to <a href="#lua_pushfstring"><code>lua_pushfstring</code></a>, except that it receives a <code>va_list</code>
4574instead of a variable number of arguments.
4575
4576
4577
4578
4579
4580<hr><h3><a name="lua_rawequal"><code>lua_rawequal</code></a></h3><p>
4581<span class="apii">[-0, +0, &ndash;]</span>
4582<pre>int lua_rawequal (lua_State *L, int index1, int index2);</pre>
4583
4584<p>
4585Returns 1 if the two values in indices <code>index1</code> and
4586<code>index2</code> are primitively equal
4587(that is, without calling the <code>__eq</code> metamethod).
4588Otherwise returns&nbsp;0.
4589Also returns&nbsp;0 if any of the indices are not valid.
4590
4591
4592
4593
4594
4595<hr><h3><a name="lua_rawget"><code>lua_rawget</code></a></h3><p>
4596<span class="apii">[-1, +1, &ndash;]</span>
4597<pre>int lua_rawget (lua_State *L, int index);</pre>
4598
4599<p>
4600Similar to <a href="#lua_gettable"><code>lua_gettable</code></a>, but does a raw access
4601(i.e., without metamethods).
4602
4603
4604
4605
4606
4607<hr><h3><a name="lua_rawgeti"><code>lua_rawgeti</code></a></h3><p>
4608<span class="apii">[-0, +1, &ndash;]</span>
4609<pre>int lua_rawgeti (lua_State *L, int index, lua_Integer n);</pre>
4610
4611<p>
4612Pushes onto the stack the value <code>t[n]</code>,
4613where <code>t</code> is the table at the given index.
4614The access is raw,
4615that is, it does not invoke the <code>__index</code> metamethod.
4616
4617
4618<p>
4619Returns the type of the pushed value.
4620
4621
4622
4623
4624
4625<hr><h3><a name="lua_rawgetp"><code>lua_rawgetp</code></a></h3><p>
4626<span class="apii">[-0, +1, &ndash;]</span>
4627<pre>int lua_rawgetp (lua_State *L, int index, const void *p);</pre>
4628
4629<p>
4630Pushes onto the stack the value <code>t[k]</code>,
4631where <code>t</code> is the table at the given index and
4632<code>k</code> is the pointer <code>p</code> represented as a light userdata.
4633The access is raw;
4634that is, it does not invoke the <code>__index</code> metamethod.
4635
4636
4637<p>
4638Returns the type of the pushed value.
4639
4640
4641
4642
4643
4644<hr><h3><a name="lua_rawlen"><code>lua_rawlen</code></a></h3><p>
4645<span class="apii">[-0, +0, &ndash;]</span>
4646<pre>size_t lua_rawlen (lua_State *L, int index);</pre>
4647
4648<p>
4649Returns the raw "length" of the value at the given index:
4650for strings, this is the string length;
4651for tables, this is the result of the length operator ('<code>#</code>')
4652with no metamethods;
4653for userdata, this is the size of the block of memory allocated
4654for the userdata;
4655for other values, it is&nbsp;0.
4656
4657
4658
4659
4660
4661<hr><h3><a name="lua_rawset"><code>lua_rawset</code></a></h3><p>
4662<span class="apii">[-2, +0, <em>m</em>]</span>
4663<pre>void lua_rawset (lua_State *L, int index);</pre>
4664
4665<p>
4666Similar to <a href="#lua_settable"><code>lua_settable</code></a>, but does a raw assignment
4667(i.e., without metamethods).
4668
4669
4670
4671
4672
4673<hr><h3><a name="lua_rawseti"><code>lua_rawseti</code></a></h3><p>
4674<span class="apii">[-1, +0, <em>m</em>]</span>
4675<pre>void lua_rawseti (lua_State *L, int index, lua_Integer i);</pre>
4676
4677<p>
4678Does the equivalent of <code>t[i] = v</code>,
4679where <code>t</code> is the table at the given index
4680and <code>v</code> is the value at the top of the stack.
4681
4682
4683<p>
4684This function pops the value from the stack.
4685The assignment is raw,
4686that is, it does not invoke the <code>__newindex</code> metamethod.
4687
4688
4689
4690
4691
4692<hr><h3><a name="lua_rawsetp"><code>lua_rawsetp</code></a></h3><p>
4693<span class="apii">[-1, +0, <em>m</em>]</span>
4694<pre>void lua_rawsetp (lua_State *L, int index, const void *p);</pre>
4695
4696<p>
4697Does the equivalent of <code>t[p] = v</code>,
4698where <code>t</code> is the table at the given index,
4699<code>p</code> is encoded as a light userdata,
4700and <code>v</code> is the value at the top of the stack.
4701
4702
4703<p>
4704This function pops the value from the stack.
4705The assignment is raw,
4706that is, it does not invoke <code>__newindex</code> metamethod.
4707
4708
4709
4710
4711
4712<hr><h3><a name="lua_Reader"><code>lua_Reader</code></a></h3>
4713<pre>typedef const char * (*lua_Reader) (lua_State *L,
4714                                    void *data,
4715                                    size_t *size);</pre>
4716
4717<p>
4718The reader function used by <a href="#lua_load"><code>lua_load</code></a>.
4719Every time it needs another piece of the chunk,
4720<a href="#lua_load"><code>lua_load</code></a> calls the reader,
4721passing along its <code>data</code> parameter.
4722The reader must return a pointer to a block of memory
4723with a new piece of the chunk
4724and set <code>size</code> to the block size.
4725The block must exist until the reader function is called again.
4726To signal the end of the chunk,
4727the reader must return <code>NULL</code> or set <code>size</code> to zero.
4728The reader function may return pieces of any size greater than zero.
4729
4730
4731
4732
4733
4734<hr><h3><a name="lua_register"><code>lua_register</code></a></h3><p>
4735<span class="apii">[-0, +0, <em>e</em>]</span>
4736<pre>void lua_register (lua_State *L, const char *name, lua_CFunction f);</pre>
4737
4738<p>
4739Sets the C&nbsp;function <code>f</code> as the new value of global <code>name</code>.
4740It is defined as a macro:
4741
4742<pre>
4743     #define lua_register(L,n,f) \
4744            (lua_pushcfunction(L, f), lua_setglobal(L, n))
4745</pre>
4746
4747
4748
4749
4750<hr><h3><a name="lua_remove"><code>lua_remove</code></a></h3><p>
4751<span class="apii">[-1, +0, &ndash;]</span>
4752<pre>void lua_remove (lua_State *L, int index);</pre>
4753
4754<p>
4755Removes the element at the given valid index,
4756shifting down the elements above this index to fill the gap.
4757This function cannot be called with a pseudo-index,
4758because a pseudo-index is not an actual stack position.
4759
4760
4761
4762
4763
4764<hr><h3><a name="lua_replace"><code>lua_replace</code></a></h3><p>
4765<span class="apii">[-1, +0, &ndash;]</span>
4766<pre>void lua_replace (lua_State *L, int index);</pre>
4767
4768<p>
4769Moves the top element into the given valid index
4770without shifting any element
4771(therefore replacing the value at that given index),
4772and then pops the top element.
4773
4774
4775
4776
4777
4778<hr><h3><a name="lua_resume"><code>lua_resume</code></a></h3><p>
4779<span class="apii">[-?, +?, &ndash;]</span>
4780<pre>int lua_resume (lua_State *L, lua_State *from, int nargs);</pre>
4781
4782<p>
4783Starts and resumes a coroutine in the given thread <code>L</code>.
4784
4785
4786<p>
4787To start a coroutine,
4788you push onto the thread stack the main function plus any arguments;
4789then you call <a href="#lua_resume"><code>lua_resume</code></a>,
4790with <code>nargs</code> being the number of arguments.
4791This call returns when the coroutine suspends or finishes its execution.
4792When it returns, the stack contains all values passed to <a href="#lua_yield"><code>lua_yield</code></a>,
4793or all values returned by the body function.
4794<a href="#lua_resume"><code>lua_resume</code></a> returns
4795<a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> if the coroutine yields,
4796<a href="#pdf-LUA_OK"><code>LUA_OK</code></a> if the coroutine finishes its execution
4797without errors,
4798or an error code in case of errors (see <a href="#lua_pcall"><code>lua_pcall</code></a>).
4799
4800
4801<p>
4802In case of errors,
4803the stack is not unwound,
4804so you can use the debug API over it.
4805The error object is on the top of the stack.
4806
4807
4808<p>
4809To resume a coroutine,
4810you remove any results from the last <a href="#lua_yield"><code>lua_yield</code></a>,
4811put on its stack only the values to
4812be passed as results from <code>yield</code>,
4813and then call <a href="#lua_resume"><code>lua_resume</code></a>.
4814
4815
4816<p>
4817The parameter <code>from</code> represents the coroutine that is resuming <code>L</code>.
4818If there is no such coroutine,
4819this parameter can be <code>NULL</code>.
4820
4821
4822
4823
4824
4825<hr><h3><a name="lua_rotate"><code>lua_rotate</code></a></h3><p>
4826<span class="apii">[-0, +0, &ndash;]</span>
4827<pre>void lua_rotate (lua_State *L, int idx, int n);</pre>
4828
4829<p>
4830Rotates the stack elements between the valid index <code>idx</code>
4831and the top of the stack.
4832The elements are rotated <code>n</code> positions in the direction of the top,
4833for a positive <code>n</code>,
4834or <code>-n</code> positions in the direction of the bottom,
4835for a negative <code>n</code>.
4836The absolute value of <code>n</code> must not be greater than the size
4837of the slice being rotated.
4838This function cannot be called with a pseudo-index,
4839because a pseudo-index is not an actual stack position.
4840
4841
4842
4843
4844
4845<hr><h3><a name="lua_setallocf"><code>lua_setallocf</code></a></h3><p>
4846<span class="apii">[-0, +0, &ndash;]</span>
4847<pre>void lua_setallocf (lua_State *L, lua_Alloc f, void *ud);</pre>
4848
4849<p>
4850Changes the allocator function of a given state to <code>f</code>
4851with user data <code>ud</code>.
4852
4853
4854
4855
4856
4857<hr><h3><a name="lua_setfield"><code>lua_setfield</code></a></h3><p>
4858<span class="apii">[-1, +0, <em>e</em>]</span>
4859<pre>void lua_setfield (lua_State *L, int index, const char *k);</pre>
4860
4861<p>
4862Does the equivalent to <code>t[k] = v</code>,
4863where <code>t</code> is the value at the given index
4864and <code>v</code> is the value at the top of the stack.
4865
4866
4867<p>
4868This function pops the value from the stack.
4869As in Lua, this function may trigger a metamethod
4870for the "newindex" event (see <a href="#2.4">&sect;2.4</a>).
4871
4872
4873
4874
4875
4876<hr><h3><a name="lua_setglobal"><code>lua_setglobal</code></a></h3><p>
4877<span class="apii">[-1, +0, <em>e</em>]</span>
4878<pre>void lua_setglobal (lua_State *L, const char *name);</pre>
4879
4880<p>
4881Pops a value from the stack and
4882sets it as the new value of global <code>name</code>.
4883
4884
4885
4886
4887
4888<hr><h3><a name="lua_seti"><code>lua_seti</code></a></h3><p>
4889<span class="apii">[-1, +0, <em>e</em>]</span>
4890<pre>void lua_seti (lua_State *L, int index, lua_Integer n);</pre>
4891
4892<p>
4893Does the equivalent to <code>t[n] = v</code>,
4894where <code>t</code> is the value at the given index
4895and <code>v</code> is the value at the top of the stack.
4896
4897
4898<p>
4899This function pops the value from the stack.
4900As in Lua, this function may trigger a metamethod
4901for the "newindex" event (see <a href="#2.4">&sect;2.4</a>).
4902
4903
4904
4905
4906
4907<hr><h3><a name="lua_setmetatable"><code>lua_setmetatable</code></a></h3><p>
4908<span class="apii">[-1, +0, &ndash;]</span>
4909<pre>void lua_setmetatable (lua_State *L, int index);</pre>
4910
4911<p>
4912Pops a table from the stack and
4913sets it as the new metatable for the value at the given index.
4914
4915
4916
4917
4918
4919<hr><h3><a name="lua_settable"><code>lua_settable</code></a></h3><p>
4920<span class="apii">[-2, +0, <em>e</em>]</span>
4921<pre>void lua_settable (lua_State *L, int index);</pre>
4922
4923<p>
4924Does the equivalent to <code>t[k] = v</code>,
4925where <code>t</code> is the value at the given index,
4926<code>v</code> is the value at the top of the stack,
4927and <code>k</code> is the value just below the top.
4928
4929
4930<p>
4931This function pops both the key and the value from the stack.
4932As in Lua, this function may trigger a metamethod
4933for the "newindex" event (see <a href="#2.4">&sect;2.4</a>).
4934
4935
4936
4937
4938
4939<hr><h3><a name="lua_settop"><code>lua_settop</code></a></h3><p>
4940<span class="apii">[-?, +?, &ndash;]</span>
4941<pre>void lua_settop (lua_State *L, int index);</pre>
4942
4943<p>
4944Accepts any index, or&nbsp;0,
4945and sets the stack top to this index.
4946If the new top is larger than the old one,
4947then the new elements are filled with <b>nil</b>.
4948If <code>index</code> is&nbsp;0, then all stack elements are removed.
4949
4950
4951
4952
4953
4954<hr><h3><a name="lua_setuservalue"><code>lua_setuservalue</code></a></h3><p>
4955<span class="apii">[-1, +0, &ndash;]</span>
4956<pre>void lua_setuservalue (lua_State *L, int index);</pre>
4957
4958<p>
4959Pops a value from the stack and sets it as
4960the new value associated to the full userdata at the given index.
4961
4962
4963
4964
4965
4966<hr><h3><a name="lua_State"><code>lua_State</code></a></h3>
4967<pre>typedef struct lua_State lua_State;</pre>
4968
4969<p>
4970An opaque structure that points to a thread and indirectly
4971(through the thread) to the whole state of a Lua interpreter.
4972The Lua library is fully reentrant:
4973it has no global variables.
4974All information about a state is accessible through this structure.
4975
4976
4977<p>
4978A pointer to this structure must be passed as the first argument to
4979every function in the library, except to <a href="#lua_newstate"><code>lua_newstate</code></a>,
4980which creates a Lua state from scratch.
4981
4982
4983
4984
4985
4986<hr><h3><a name="lua_status"><code>lua_status</code></a></h3><p>
4987<span class="apii">[-0, +0, &ndash;]</span>
4988<pre>int lua_status (lua_State *L);</pre>
4989
4990<p>
4991Returns the status of the thread <code>L</code>.
4992
4993
4994<p>
4995The status can be 0 (<a href="#pdf-LUA_OK"><code>LUA_OK</code></a>) for a normal thread,
4996an error code if the thread finished the execution
4997of a <a href="#lua_resume"><code>lua_resume</code></a> with an error,
4998or <a name="pdf-LUA_YIELD"><code>LUA_YIELD</code></a> if the thread is suspended.
4999
5000
5001<p>
5002You can only call functions in threads with status <a href="#pdf-LUA_OK"><code>LUA_OK</code></a>.
5003You can resume threads with status <a href="#pdf-LUA_OK"><code>LUA_OK</code></a>
5004(to start a new coroutine) or <a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a>
5005(to resume a coroutine).
5006
5007
5008
5009
5010
5011<hr><h3><a name="lua_stringtonumber"><code>lua_stringtonumber</code></a></h3><p>
5012<span class="apii">[-0, +1, &ndash;]</span>
5013<pre>size_t lua_stringtonumber (lua_State *L, const char *s);</pre>
5014
5015<p>
5016Converts the zero-terminated string <code>s</code> to a number,
5017pushes that number into the stack,
5018and returns the total size of the string,
5019that is, its length plus one.
5020The conversion can result in an integer or a float,
5021according to the lexical conventions of Lua (see <a href="#3.1">&sect;3.1</a>).
5022The string may have leading and trailing spaces and a sign.
5023If the string is not a valid numeral,
5024returns 0 and pushes nothing.
5025(Note that the result can be used as a boolean,
5026true if the conversion succeeds.)
5027
5028
5029
5030
5031
5032<hr><h3><a name="lua_toboolean"><code>lua_toboolean</code></a></h3><p>
5033<span class="apii">[-0, +0, &ndash;]</span>
5034<pre>int lua_toboolean (lua_State *L, int index);</pre>
5035
5036<p>
5037Converts the Lua value at the given index to a C&nbsp;boolean
5038value (0&nbsp;or&nbsp;1).
5039Like all tests in Lua,
5040<a href="#lua_toboolean"><code>lua_toboolean</code></a> returns true for any Lua value
5041different from <b>false</b> and <b>nil</b>;
5042otherwise it returns false.
5043(If you want to accept only actual boolean values,
5044use <a href="#lua_isboolean"><code>lua_isboolean</code></a> to test the value's type.)
5045
5046
5047
5048
5049
5050<hr><h3><a name="lua_tocfunction"><code>lua_tocfunction</code></a></h3><p>
5051<span class="apii">[-0, +0, &ndash;]</span>
5052<pre>lua_CFunction lua_tocfunction (lua_State *L, int index);</pre>
5053
5054<p>
5055Converts a value at the given index to a C&nbsp;function.
5056That value must be a C&nbsp;function;
5057otherwise, returns <code>NULL</code>.
5058
5059
5060
5061
5062
5063<hr><h3><a name="lua_tointeger"><code>lua_tointeger</code></a></h3><p>
5064<span class="apii">[-0, +0, &ndash;]</span>
5065<pre>lua_Integer lua_tointeger (lua_State *L, int index);</pre>
5066
5067<p>
5068Equivalent to <a href="#lua_tointegerx"><code>lua_tointegerx</code></a> with <code>isnum</code> equal to <code>NULL</code>.
5069
5070
5071
5072
5073
5074<hr><h3><a name="lua_tointegerx"><code>lua_tointegerx</code></a></h3><p>
5075<span class="apii">[-0, +0, &ndash;]</span>
5076<pre>lua_Integer lua_tointegerx (lua_State *L, int index, int *isnum);</pre>
5077
5078<p>
5079Converts the Lua value at the given index
5080to the signed integral type <a href="#lua_Integer"><code>lua_Integer</code></a>.
5081The Lua value must be an integer,
5082or a number or string convertible to an integer (see <a href="#3.4.3">&sect;3.4.3</a>);
5083otherwise, <code>lua_tointegerx</code> returns&nbsp;0.
5084
5085
5086<p>
5087If <code>isnum</code> is not <code>NULL</code>,
5088its referent is assigned a boolean value that
5089indicates whether the operation succeeded.
5090
5091
5092
5093
5094
5095<hr><h3><a name="lua_tolstring"><code>lua_tolstring</code></a></h3><p>
5096<span class="apii">[-0, +0, <em>m</em>]</span>
5097<pre>const char *lua_tolstring (lua_State *L, int index, size_t *len);</pre>
5098
5099<p>
5100Converts the Lua value at the given index to a C&nbsp;string.
5101If <code>len</code> is not <code>NULL</code>,
5102it sets <code>*len</code> with the string length.
5103The Lua value must be a string or a number;
5104otherwise, the function returns <code>NULL</code>.
5105If the value is a number,
5106then <code>lua_tolstring</code> also
5107<em>changes the actual value in the stack to a string</em>.
5108(This change confuses <a href="#lua_next"><code>lua_next</code></a>
5109when <code>lua_tolstring</code> is applied to keys during a table traversal.)
5110
5111
5112<p>
5113<code>lua_tolstring</code> returns a pointer
5114to a string inside the Lua state.
5115This string always has a zero ('<code>\0</code>')
5116after its last character (as in&nbsp;C),
5117but can contain other zeros in its body.
5118
5119
5120<p>
5121Because Lua has garbage collection,
5122there is no guarantee that the pointer returned by <code>lua_tolstring</code>
5123will be valid after the corresponding Lua value is removed from the stack.
5124
5125
5126
5127
5128
5129<hr><h3><a name="lua_tonumber"><code>lua_tonumber</code></a></h3><p>
5130<span class="apii">[-0, +0, &ndash;]</span>
5131<pre>lua_Number lua_tonumber (lua_State *L, int index);</pre>
5132
5133<p>
5134Equivalent to <a href="#lua_tonumberx"><code>lua_tonumberx</code></a> with <code>isnum</code> equal to <code>NULL</code>.
5135
5136
5137
5138
5139
5140<hr><h3><a name="lua_tonumberx"><code>lua_tonumberx</code></a></h3><p>
5141<span class="apii">[-0, +0, &ndash;]</span>
5142<pre>lua_Number lua_tonumberx (lua_State *L, int index, int *isnum);</pre>
5143
5144<p>
5145Converts the Lua value at the given index
5146to the C&nbsp;type <a href="#lua_Number"><code>lua_Number</code></a> (see <a href="#lua_Number"><code>lua_Number</code></a>).
5147The Lua value must be a number or a string convertible to a number
5148(see <a href="#3.4.3">&sect;3.4.3</a>);
5149otherwise, <a href="#lua_tonumberx"><code>lua_tonumberx</code></a> returns&nbsp;0.
5150
5151
5152<p>
5153If <code>isnum</code> is not <code>NULL</code>,
5154its referent is assigned a boolean value that
5155indicates whether the operation succeeded.
5156
5157
5158
5159
5160
5161<hr><h3><a name="lua_topointer"><code>lua_topointer</code></a></h3><p>
5162<span class="apii">[-0, +0, &ndash;]</span>
5163<pre>const void *lua_topointer (lua_State *L, int index);</pre>
5164
5165<p>
5166Converts the value at the given index to a generic
5167C&nbsp;pointer (<code>void*</code>).
5168The value can be a userdata, a table, a thread, or a function;
5169otherwise, <code>lua_topointer</code> returns <code>NULL</code>.
5170Different objects will give different pointers.
5171There is no way to convert the pointer back to its original value.
5172
5173
5174<p>
5175Typically this function is used only for hashing and debug information.
5176
5177
5178
5179
5180
5181<hr><h3><a name="lua_tostring"><code>lua_tostring</code></a></h3><p>
5182<span class="apii">[-0, +0, <em>m</em>]</span>
5183<pre>const char *lua_tostring (lua_State *L, int index);</pre>
5184
5185<p>
5186Equivalent to <a href="#lua_tolstring"><code>lua_tolstring</code></a> with <code>len</code> equal to <code>NULL</code>.
5187
5188
5189
5190
5191
5192<hr><h3><a name="lua_tothread"><code>lua_tothread</code></a></h3><p>
5193<span class="apii">[-0, +0, &ndash;]</span>
5194<pre>lua_State *lua_tothread (lua_State *L, int index);</pre>
5195
5196<p>
5197Converts the value at the given index to a Lua thread
5198(represented as <code>lua_State*</code>).
5199This value must be a thread;
5200otherwise, the function returns <code>NULL</code>.
5201
5202
5203
5204
5205
5206<hr><h3><a name="lua_touserdata"><code>lua_touserdata</code></a></h3><p>
5207<span class="apii">[-0, +0, &ndash;]</span>
5208<pre>void *lua_touserdata (lua_State *L, int index);</pre>
5209
5210<p>
5211If the value at the given index is a full userdata,
5212returns its block address.
5213If the value is a light userdata,
5214returns its pointer.
5215Otherwise, returns <code>NULL</code>.
5216
5217
5218
5219
5220
5221<hr><h3><a name="lua_type"><code>lua_type</code></a></h3><p>
5222<span class="apii">[-0, +0, &ndash;]</span>
5223<pre>int lua_type (lua_State *L, int index);</pre>
5224
5225<p>
5226Returns the type of the value in the given valid index,
5227or <code>LUA_TNONE</code> for a non-valid (but acceptable) index.
5228The types returned by <a href="#lua_type"><code>lua_type</code></a> are coded by the following constants
5229defined in <code>lua.h</code>:
5230<a name="pdf-LUA_TNIL"><code>LUA_TNIL</code></a> (0),
5231<a name="pdf-LUA_TNUMBER"><code>LUA_TNUMBER</code></a>,
5232<a name="pdf-LUA_TBOOLEAN"><code>LUA_TBOOLEAN</code></a>,
5233<a name="pdf-LUA_TSTRING"><code>LUA_TSTRING</code></a>,
5234<a name="pdf-LUA_TTABLE"><code>LUA_TTABLE</code></a>,
5235<a name="pdf-LUA_TFUNCTION"><code>LUA_TFUNCTION</code></a>,
5236<a name="pdf-LUA_TUSERDATA"><code>LUA_TUSERDATA</code></a>,
5237<a name="pdf-LUA_TTHREAD"><code>LUA_TTHREAD</code></a>,
5238and
5239<a name="pdf-LUA_TLIGHTUSERDATA"><code>LUA_TLIGHTUSERDATA</code></a>.
5240
5241
5242
5243
5244
5245<hr><h3><a name="lua_typename"><code>lua_typename</code></a></h3><p>
5246<span class="apii">[-0, +0, &ndash;]</span>
5247<pre>const char *lua_typename (lua_State *L, int tp);</pre>
5248
5249<p>
5250Returns the name of the type encoded by the value <code>tp</code>,
5251which must be one the values returned by <a href="#lua_type"><code>lua_type</code></a>.
5252
5253
5254
5255
5256
5257<hr><h3><a name="lua_Unsigned"><code>lua_Unsigned</code></a></h3>
5258<pre>typedef ... lua_Unsigned;</pre>
5259
5260<p>
5261The unsigned version of <a href="#lua_Integer"><code>lua_Integer</code></a>.
5262
5263
5264
5265
5266
5267<hr><h3><a name="lua_upvalueindex"><code>lua_upvalueindex</code></a></h3><p>
5268<span class="apii">[-0, +0, &ndash;]</span>
5269<pre>int lua_upvalueindex (int i);</pre>
5270
5271<p>
5272Returns the pseudo-index that represents the <code>i</code>-th upvalue of
5273the running function (see <a href="#4.4">&sect;4.4</a>).
5274
5275
5276
5277
5278
5279<hr><h3><a name="lua_version"><code>lua_version</code></a></h3><p>
5280<span class="apii">[-0, +0, &ndash;]</span>
5281<pre>const lua_Number *lua_version (lua_State *L);</pre>
5282
5283<p>
5284Returns the address of the version number
5285(a C static variable)
5286stored in the Lua core.
5287When called with a valid <a href="#lua_State"><code>lua_State</code></a>,
5288returns the address of the version used to create that state.
5289When called with <code>NULL</code>,
5290returns the address of the version running the call.
5291
5292
5293
5294
5295
5296<hr><h3><a name="lua_Writer"><code>lua_Writer</code></a></h3>
5297<pre>typedef int (*lua_Writer) (lua_State *L,
5298                           const void* p,
5299                           size_t sz,
5300                           void* ud);</pre>
5301
5302<p>
5303The type of the writer function used by <a href="#lua_dump"><code>lua_dump</code></a>.
5304Every time it produces another piece of chunk,
5305<a href="#lua_dump"><code>lua_dump</code></a> calls the writer,
5306passing along the buffer to be written (<code>p</code>),
5307its size (<code>sz</code>),
5308and the <code>data</code> parameter supplied to <a href="#lua_dump"><code>lua_dump</code></a>.
5309
5310
5311<p>
5312The writer returns an error code:
53130&nbsp;means no errors;
5314any other value means an error and stops <a href="#lua_dump"><code>lua_dump</code></a> from
5315calling the writer again.
5316
5317
5318
5319
5320
5321<hr><h3><a name="lua_xmove"><code>lua_xmove</code></a></h3><p>
5322<span class="apii">[-?, +?, &ndash;]</span>
5323<pre>void lua_xmove (lua_State *from, lua_State *to, int n);</pre>
5324
5325<p>
5326Exchange values between different threads of the same state.
5327
5328
5329<p>
5330This function pops <code>n</code> values from the stack <code>from</code>,
5331and pushes them onto the stack <code>to</code>.
5332
5333
5334
5335
5336
5337<hr><h3><a name="lua_yield"><code>lua_yield</code></a></h3><p>
5338<span class="apii">[-?, +?, <em>e</em>]</span>
5339<pre>int lua_yield (lua_State *L, int nresults);</pre>
5340
5341<p>
5342This function is equivalent to <a href="#lua_yieldk"><code>lua_yieldk</code></a>,
5343but it has no continuation (see <a href="#4.7">&sect;4.7</a>).
5344Therefore, when the thread resumes,
5345it continues the function that called
5346the function calling <code>lua_yield</code>.
5347
5348
5349
5350
5351
5352<hr><h3><a name="lua_yieldk"><code>lua_yieldk</code></a></h3><p>
5353<span class="apii">[-?, +?, <em>e</em>]</span>
5354<pre>int lua_yieldk (lua_State *L,
5355                int nresults,
5356                lua_KContext ctx,
5357                lua_KFunction k);</pre>
5358
5359<p>
5360Yields a coroutine (thread).
5361
5362
5363<p>
5364When a C&nbsp;function calls <a href="#lua_yieldk"><code>lua_yieldk</code></a>,
5365the running coroutine suspends its execution,
5366and the call to <a href="#lua_resume"><code>lua_resume</code></a> that started this coroutine returns.
5367The parameter <code>nresults</code> is the number of values from the stack
5368that will be passed as results to <a href="#lua_resume"><code>lua_resume</code></a>.
5369
5370
5371<p>
5372When the coroutine is resumed again,
5373Lua calls the given continuation function <code>k</code> to continue
5374the execution of the C&nbsp;function that yielded (see <a href="#4.7">&sect;4.7</a>).
5375This continuation function receives the same stack
5376from the previous function,
5377with the <code>n</code> results removed and
5378replaced by the arguments passed to <a href="#lua_resume"><code>lua_resume</code></a>.
5379Moreover,
5380the continuation function receives the value <code>ctx</code>
5381that was passed to <a href="#lua_yieldk"><code>lua_yieldk</code></a>.
5382
5383
5384<p>
5385Usually, this function does not return;
5386when the coroutine eventually resumes,
5387it continues executing the continuation function.
5388However, there is one special case,
5389which is when this function is called
5390from inside a line or a count hook (see <a href="#4.9">&sect;4.9</a>).
5391In that case, <code>lua_yieldk</code> should be called with no continuation
5392(probably in the form of <a href="#lua_yield"><code>lua_yield</code></a>) and no results,
5393and the hook should return immediately after the call.
5394Lua will yield and,
5395when the coroutine resumes again,
5396it will continue the normal execution
5397of the (Lua) function that triggered the hook.
5398
5399
5400<p>
5401This function can raise an error if it is called from a thread
5402with a pending C call with no continuation function,
5403or it is called from a thread that is not running inside a resume
5404(e.g., the main thread).
5405
5406
5407
5408
5409
5410
5411
5412<h2>4.9 &ndash; <a name="4.9">The Debug Interface</a></h2>
5413
5414<p>
5415Lua has no built-in debugging facilities.
5416Instead, it offers a special interface
5417by means of functions and <em>hooks</em>.
5418This interface allows the construction of different
5419kinds of debuggers, profilers, and other tools
5420that need "inside information" from the interpreter.
5421
5422
5423
5424<hr><h3><a name="lua_Debug"><code>lua_Debug</code></a></h3>
5425<pre>typedef struct lua_Debug {
5426  int event;
5427  const char *name;           /* (n) */
5428  const char *namewhat;       /* (n) */
5429  const char *what;           /* (S) */
5430  const char *source;         /* (S) */
5431  int currentline;            /* (l) */
5432  int linedefined;            /* (S) */
5433  int lastlinedefined;        /* (S) */
5434  unsigned char nups;         /* (u) number of upvalues */
5435  unsigned char nparams;      /* (u) number of parameters */
5436  char isvararg;              /* (u) */
5437  char istailcall;            /* (t) */
5438  char short_src[LUA_IDSIZE]; /* (S) */
5439  /* private part */
5440  <em>other fields</em>
5441} lua_Debug;</pre>
5442
5443<p>
5444A structure used to carry different pieces of
5445information about a function or an activation record.
5446<a href="#lua_getstack"><code>lua_getstack</code></a> fills only the private part
5447of this structure, for later use.
5448To fill the other fields of <a href="#lua_Debug"><code>lua_Debug</code></a> with useful information,
5449call <a href="#lua_getinfo"><code>lua_getinfo</code></a>.
5450
5451
5452<p>
5453The fields of <a href="#lua_Debug"><code>lua_Debug</code></a> have the following meaning:
5454
5455<ul>
5456
5457<li><b><code>source</code>: </b>
5458the name of the chunk that created the function.
5459If <code>source</code> starts with a '<code>@</code>',
5460it means that the function was defined in a file where
5461the file name follows the '<code>@</code>'.
5462If <code>source</code> starts with a '<code>=</code>',
5463the remainder of its contents describe the source in a user-dependent manner.
5464Otherwise,
5465the function was defined in a string where
5466<code>source</code> is that string.
5467</li>
5468
5469<li><b><code>short_src</code>: </b>
5470a "printable" version of <code>source</code>, to be used in error messages.
5471</li>
5472
5473<li><b><code>linedefined</code>: </b>
5474the line number where the definition of the function starts.
5475</li>
5476
5477<li><b><code>lastlinedefined</code>: </b>
5478the line number where the definition of the function ends.
5479</li>
5480
5481<li><b><code>what</code>: </b>
5482the string <code>"Lua"</code> if the function is a Lua function,
5483<code>"C"</code> if it is a C&nbsp;function,
5484<code>"main"</code> if it is the main part of a chunk.
5485</li>
5486
5487<li><b><code>currentline</code>: </b>
5488the current line where the given function is executing.
5489When no line information is available,
5490<code>currentline</code> is set to -1.
5491</li>
5492
5493<li><b><code>name</code>: </b>
5494a reasonable name for the given function.
5495Because functions in Lua are first-class values,
5496they do not have a fixed name:
5497some functions can be the value of multiple global variables,
5498while others can be stored only in a table field.
5499The <code>lua_getinfo</code> function checks how the function was
5500called to find a suitable name.
5501If it cannot find a name,
5502then <code>name</code> is set to <code>NULL</code>.
5503</li>
5504
5505<li><b><code>namewhat</code>: </b>
5506explains the <code>name</code> field.
5507The value of <code>namewhat</code> can be
5508<code>"global"</code>, <code>"local"</code>, <code>"method"</code>,
5509<code>"field"</code>, <code>"upvalue"</code>, or <code>""</code> (the empty string),
5510according to how the function was called.
5511(Lua uses the empty string when no other option seems to apply.)
5512</li>
5513
5514<li><b><code>istailcall</code>: </b>
5515true if this function invocation was called by a tail call.
5516In this case, the caller of this level is not in the stack.
5517</li>
5518
5519<li><b><code>nups</code>: </b>
5520the number of upvalues of the function.
5521</li>
5522
5523<li><b><code>nparams</code>: </b>
5524the number of fixed parameters of the function
5525(always 0&nbsp;for C&nbsp;functions).
5526</li>
5527
5528<li><b><code>isvararg</code>: </b>
5529true if the function is a vararg function
5530(always true for C&nbsp;functions).
5531</li>
5532
5533</ul>
5534
5535
5536
5537
5538<hr><h3><a name="lua_gethook"><code>lua_gethook</code></a></h3><p>
5539<span class="apii">[-0, +0, &ndash;]</span>
5540<pre>lua_Hook lua_gethook (lua_State *L);</pre>
5541
5542<p>
5543Returns the current hook function.
5544
5545
5546
5547
5548
5549<hr><h3><a name="lua_gethookcount"><code>lua_gethookcount</code></a></h3><p>
5550<span class="apii">[-0, +0, &ndash;]</span>
5551<pre>int lua_gethookcount (lua_State *L);</pre>
5552
5553<p>
5554Returns the current hook count.
5555
5556
5557
5558
5559
5560<hr><h3><a name="lua_gethookmask"><code>lua_gethookmask</code></a></h3><p>
5561<span class="apii">[-0, +0, &ndash;]</span>
5562<pre>int lua_gethookmask (lua_State *L);</pre>
5563
5564<p>
5565Returns the current hook mask.
5566
5567
5568
5569
5570
5571<hr><h3><a name="lua_getinfo"><code>lua_getinfo</code></a></h3><p>
5572<span class="apii">[-(0|1), +(0|1|2), <em>e</em>]</span>
5573<pre>int lua_getinfo (lua_State *L, const char *what, lua_Debug *ar);</pre>
5574
5575<p>
5576Gets information about a specific function or function invocation.
5577
5578
5579<p>
5580To get information about a function invocation,
5581the parameter <code>ar</code> must be a valid activation record that was
5582filled by a previous call to <a href="#lua_getstack"><code>lua_getstack</code></a> or
5583given as argument to a hook (see <a href="#lua_Hook"><code>lua_Hook</code></a>).
5584
5585
5586<p>
5587To get information about a function you push it onto the stack
5588and start the <code>what</code> string with the character '<code>&gt;</code>'.
5589(In that case,
5590<code>lua_getinfo</code> pops the function from the top of the stack.)
5591For instance, to know in which line a function <code>f</code> was defined,
5592you can write the following code:
5593
5594<pre>
5595     lua_Debug ar;
5596     lua_getglobal(L, "f");  /* get global 'f' */
5597     lua_getinfo(L, "&gt;S", &amp;ar);
5598     printf("%d\n", ar.linedefined);
5599</pre>
5600
5601<p>
5602Each character in the string <code>what</code>
5603selects some fields of the structure <code>ar</code> to be filled or
5604a value to be pushed on the stack:
5605
5606<ul>
5607
5608<li><b>'<code>n</code>': </b> fills in the field <code>name</code> and <code>namewhat</code>;
5609</li>
5610
5611<li><b>'<code>S</code>': </b>
5612fills in the fields <code>source</code>, <code>short_src</code>,
5613<code>linedefined</code>, <code>lastlinedefined</code>, and <code>what</code>;
5614</li>
5615
5616<li><b>'<code>l</code>': </b> fills in the field <code>currentline</code>;
5617</li>
5618
5619<li><b>'<code>t</code>': </b> fills in the field <code>istailcall</code>;
5620</li>
5621
5622<li><b>'<code>u</code>': </b> fills in the fields
5623<code>nups</code>, <code>nparams</code>, and <code>isvararg</code>;
5624</li>
5625
5626<li><b>'<code>f</code>': </b>
5627pushes onto the stack the function that is
5628running at the given level;
5629</li>
5630
5631<li><b>'<code>L</code>': </b>
5632pushes onto the stack a table whose indices are the
5633numbers of the lines that are valid on the function.
5634(A <em>valid line</em> is a line with some associated code,
5635that is, a line where you can put a break point.
5636Non-valid lines include empty lines and comments.)
5637
5638
5639<p>
5640If this option is given together with option '<code>f</code>',
5641its table is pushed after the function.
5642</li>
5643
5644</ul>
5645
5646<p>
5647This function returns 0 on error
5648(for instance, an invalid option in <code>what</code>).
5649
5650
5651
5652
5653
5654<hr><h3><a name="lua_getlocal"><code>lua_getlocal</code></a></h3><p>
5655<span class="apii">[-0, +(0|1), &ndash;]</span>
5656<pre>const char *lua_getlocal (lua_State *L, const lua_Debug *ar, int n);</pre>
5657
5658<p>
5659Gets information about a local variable of
5660a given activation record or a given function.
5661
5662
5663<p>
5664In the first case,
5665the parameter <code>ar</code> must be a valid activation record that was
5666filled by a previous call to <a href="#lua_getstack"><code>lua_getstack</code></a> or
5667given as argument to a hook (see <a href="#lua_Hook"><code>lua_Hook</code></a>).
5668The index <code>n</code> selects which local variable to inspect;
5669see <a href="#pdf-debug.getlocal"><code>debug.getlocal</code></a> for details about variable indices
5670and names.
5671
5672
5673<p>
5674<a href="#lua_getlocal"><code>lua_getlocal</code></a> pushes the variable's value onto the stack
5675and returns its name.
5676
5677
5678<p>
5679In the second case, <code>ar</code> must be <code>NULL</code> and the function
5680to be inspected must be at the top of the stack.
5681In this case, only parameters of Lua functions are visible
5682(as there is no information about what variables are active)
5683and no values are pushed onto the stack.
5684
5685
5686<p>
5687Returns <code>NULL</code> (and pushes nothing)
5688when the index is greater than
5689the number of active local variables.
5690
5691
5692
5693
5694
5695<hr><h3><a name="lua_getstack"><code>lua_getstack</code></a></h3><p>
5696<span class="apii">[-0, +0, &ndash;]</span>
5697<pre>int lua_getstack (lua_State *L, int level, lua_Debug *ar);</pre>
5698
5699<p>
5700Gets information about the interpreter runtime stack.
5701
5702
5703<p>
5704This function fills parts of a <a href="#lua_Debug"><code>lua_Debug</code></a> structure with
5705an identification of the <em>activation record</em>
5706of the function executing at a given level.
5707Level&nbsp;0 is the current running function,
5708whereas level <em>n+1</em> is the function that has called level <em>n</em>
5709(except for tail calls, which do not count on the stack).
5710When there are no errors, <a href="#lua_getstack"><code>lua_getstack</code></a> returns 1;
5711when called with a level greater than the stack depth,
5712it returns 0.
5713
5714
5715
5716
5717
5718<hr><h3><a name="lua_getupvalue"><code>lua_getupvalue</code></a></h3><p>
5719<span class="apii">[-0, +(0|1), &ndash;]</span>
5720<pre>const char *lua_getupvalue (lua_State *L, int funcindex, int n);</pre>
5721
5722<p>
5723Gets information about the <code>n</code>-th upvalue
5724of the closure at index <code>funcindex</code>.
5725It pushes the upvalue's value onto the stack
5726and returns its name.
5727Returns <code>NULL</code> (and pushes nothing)
5728when the index <code>n</code> is greater than the number of upvalues.
5729
5730
5731<p>
5732For C&nbsp;functions, this function uses the empty string <code>""</code>
5733as a name for all upvalues.
5734(For Lua functions,
5735upvalues are the external local variables that the function uses,
5736and that are consequently included in its closure.)
5737
5738
5739<p>
5740Upvalues have no particular order,
5741as they are active through the whole function.
5742They are numbered in an arbitrary order.
5743
5744
5745
5746
5747
5748<hr><h3><a name="lua_Hook"><code>lua_Hook</code></a></h3>
5749<pre>typedef void (*lua_Hook) (lua_State *L, lua_Debug *ar);</pre>
5750
5751<p>
5752Type for debugging hook functions.
5753
5754
5755<p>
5756Whenever a hook is called, its <code>ar</code> argument has its field
5757<code>event</code> set to the specific event that triggered the hook.
5758Lua identifies these events with the following constants:
5759<a name="pdf-LUA_HOOKCALL"><code>LUA_HOOKCALL</code></a>, <a name="pdf-LUA_HOOKRET"><code>LUA_HOOKRET</code></a>,
5760<a name="pdf-LUA_HOOKTAILCALL"><code>LUA_HOOKTAILCALL</code></a>, <a name="pdf-LUA_HOOKLINE"><code>LUA_HOOKLINE</code></a>,
5761and <a name="pdf-LUA_HOOKCOUNT"><code>LUA_HOOKCOUNT</code></a>.
5762Moreover, for line events, the field <code>currentline</code> is also set.
5763To get the value of any other field in <code>ar</code>,
5764the hook must call <a href="#lua_getinfo"><code>lua_getinfo</code></a>.
5765
5766
5767<p>
5768For call events, <code>event</code> can be <code>LUA_HOOKCALL</code>,
5769the normal value, or <code>LUA_HOOKTAILCALL</code>, for a tail call;
5770in this case, there will be no corresponding return event.
5771
5772
5773<p>
5774While Lua is running a hook, it disables other calls to hooks.
5775Therefore, if a hook calls back Lua to execute a function or a chunk,
5776this execution occurs without any calls to hooks.
5777
5778
5779<p>
5780Hook functions cannot have continuations,
5781that is, they cannot call <a href="#lua_yieldk"><code>lua_yieldk</code></a>,
5782<a href="#lua_pcallk"><code>lua_pcallk</code></a>, or <a href="#lua_callk"><code>lua_callk</code></a> with a non-null <code>k</code>.
5783
5784
5785<p>
5786Hook functions can yield under the following conditions:
5787Only count and line events can yield;
5788to yield, a hook function must finish its execution
5789calling <a href="#lua_yield"><code>lua_yield</code></a> with <code>nresults</code> equal to zero
5790(that is, with no values).
5791
5792
5793
5794
5795
5796<hr><h3><a name="lua_sethook"><code>lua_sethook</code></a></h3><p>
5797<span class="apii">[-0, +0, &ndash;]</span>
5798<pre>void lua_sethook (lua_State *L, lua_Hook f, int mask, int count);</pre>
5799
5800<p>
5801Sets the debugging hook function.
5802
5803
5804<p>
5805Argument <code>f</code> is the hook function.
5806<code>mask</code> specifies on which events the hook will be called:
5807it is formed by a bitwise OR of the constants
5808<a name="pdf-LUA_MASKCALL"><code>LUA_MASKCALL</code></a>,
5809<a name="pdf-LUA_MASKRET"><code>LUA_MASKRET</code></a>,
5810<a name="pdf-LUA_MASKLINE"><code>LUA_MASKLINE</code></a>,
5811and <a name="pdf-LUA_MASKCOUNT"><code>LUA_MASKCOUNT</code></a>.
5812The <code>count</code> argument is only meaningful when the mask
5813includes <code>LUA_MASKCOUNT</code>.
5814For each event, the hook is called as explained below:
5815
5816<ul>
5817
5818<li><b>The call hook: </b> is called when the interpreter calls a function.
5819The hook is called just after Lua enters the new function,
5820before the function gets its arguments.
5821</li>
5822
5823<li><b>The return hook: </b> is called when the interpreter returns from a function.
5824The hook is called just before Lua leaves the function.
5825There is no standard way to access the values
5826to be returned by the function.
5827</li>
5828
5829<li><b>The line hook: </b> is called when the interpreter is about to
5830start the execution of a new line of code,
5831or when it jumps back in the code (even to the same line).
5832(This event only happens while Lua is executing a Lua function.)
5833</li>
5834
5835<li><b>The count hook: </b> is called after the interpreter executes every
5836<code>count</code> instructions.
5837(This event only happens while Lua is executing a Lua function.)
5838</li>
5839
5840</ul>
5841
5842<p>
5843A hook is disabled by setting <code>mask</code> to zero.
5844
5845
5846
5847
5848
5849<hr><h3><a name="lua_setlocal"><code>lua_setlocal</code></a></h3><p>
5850<span class="apii">[-(0|1), +0, &ndash;]</span>
5851<pre>const char *lua_setlocal (lua_State *L, const lua_Debug *ar, int n);</pre>
5852
5853<p>
5854Sets the value of a local variable of a given activation record.
5855It assigns the value at the top of the stack
5856to the variable and returns its name.
5857It also pops the value from the stack.
5858
5859
5860<p>
5861Returns <code>NULL</code> (and pops nothing)
5862when the index is greater than
5863the number of active local variables.
5864
5865
5866<p>
5867Parameters <code>ar</code> and <code>n</code> are as in function <a href="#lua_getlocal"><code>lua_getlocal</code></a>.
5868
5869
5870
5871
5872
5873<hr><h3><a name="lua_setupvalue"><code>lua_setupvalue</code></a></h3><p>
5874<span class="apii">[-(0|1), +0, &ndash;]</span>
5875<pre>const char *lua_setupvalue (lua_State *L, int funcindex, int n);</pre>
5876
5877<p>
5878Sets the value of a closure's upvalue.
5879It assigns the value at the top of the stack
5880to the upvalue and returns its name.
5881It also pops the value from the stack.
5882
5883
5884<p>
5885Returns <code>NULL</code> (and pops nothing)
5886when the index <code>n</code> is greater than the number of upvalues.
5887
5888
5889<p>
5890Parameters <code>funcindex</code> and <code>n</code> are as in function <a href="#lua_getupvalue"><code>lua_getupvalue</code></a>.
5891
5892
5893
5894
5895
5896<hr><h3><a name="lua_upvalueid"><code>lua_upvalueid</code></a></h3><p>
5897<span class="apii">[-0, +0, &ndash;]</span>
5898<pre>void *lua_upvalueid (lua_State *L, int funcindex, int n);</pre>
5899
5900<p>
5901Returns a unique identifier for the upvalue numbered <code>n</code>
5902from the closure at index <code>funcindex</code>.
5903
5904
5905<p>
5906These unique identifiers allow a program to check whether different
5907closures share upvalues.
5908Lua closures that share an upvalue
5909(that is, that access a same external local variable)
5910will return identical ids for those upvalue indices.
5911
5912
5913<p>
5914Parameters <code>funcindex</code> and <code>n</code> are as in function <a href="#lua_getupvalue"><code>lua_getupvalue</code></a>,
5915but <code>n</code> cannot be greater than the number of upvalues.
5916
5917
5918
5919
5920
5921<hr><h3><a name="lua_upvaluejoin"><code>lua_upvaluejoin</code></a></h3><p>
5922<span class="apii">[-0, +0, &ndash;]</span>
5923<pre>void lua_upvaluejoin (lua_State *L, int funcindex1, int n1,
5924                                    int funcindex2, int n2);</pre>
5925
5926<p>
5927Make the <code>n1</code>-th upvalue of the Lua closure at index <code>funcindex1</code>
5928refer to the <code>n2</code>-th upvalue of the Lua closure at index <code>funcindex2</code>.
5929
5930
5931
5932
5933
5934
5935
5936<h1>5 &ndash; <a name="5">The Auxiliary Library</a></h1>
5937
5938<p>
5939
5940The <em>auxiliary library</em> provides several convenient functions
5941to interface C with Lua.
5942While the basic API provides the primitive functions for all
5943interactions between C and Lua,
5944the auxiliary library provides higher-level functions for some
5945common tasks.
5946
5947
5948<p>
5949All functions and types from the auxiliary library
5950are defined in header file <code>lauxlib.h</code> and
5951have a prefix <code>luaL_</code>.
5952
5953
5954<p>
5955All functions in the auxiliary library are built on
5956top of the basic API,
5957and so they provide nothing that cannot be done with that API.
5958Nevertheless, the use of the auxiliary library ensures
5959more consistency to your code.
5960
5961
5962<p>
5963Several functions in the auxiliary library use internally some
5964extra stack slots.
5965When a function in the auxiliary library uses less than five slots,
5966it does not check the stack size;
5967it simply assumes that there are enough slots.
5968
5969
5970<p>
5971Several functions in the auxiliary library are used to
5972check C&nbsp;function arguments.
5973Because the error message is formatted for arguments
5974(e.g., "<code>bad argument #1</code>"),
5975you should not use these functions for other stack values.
5976
5977
5978<p>
5979Functions called <code>luaL_check*</code>
5980always raise an error if the check is not satisfied.
5981
5982
5983
5984<h2>5.1 &ndash; <a name="5.1">Functions and Types</a></h2>
5985
5986<p>
5987Here we list all functions and types from the auxiliary library
5988in alphabetical order.
5989
5990
5991
5992<hr><h3><a name="luaL_addchar"><code>luaL_addchar</code></a></h3><p>
5993<span class="apii">[-?, +?, <em>m</em>]</span>
5994<pre>void luaL_addchar (luaL_Buffer *B, char c);</pre>
5995
5996<p>
5997Adds the byte <code>c</code> to the buffer <code>B</code>
5998(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
5999
6000
6001
6002
6003
6004<hr><h3><a name="luaL_addlstring"><code>luaL_addlstring</code></a></h3><p>
6005<span class="apii">[-?, +?, <em>m</em>]</span>
6006<pre>void luaL_addlstring (luaL_Buffer *B, const char *s, size_t l);</pre>
6007
6008<p>
6009Adds the string pointed to by <code>s</code> with length <code>l</code> to
6010the buffer <code>B</code>
6011(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
6012The string can contain embedded zeros.
6013
6014
6015
6016
6017
6018<hr><h3><a name="luaL_addsize"><code>luaL_addsize</code></a></h3><p>
6019<span class="apii">[-?, +?, &ndash;]</span>
6020<pre>void luaL_addsize (luaL_Buffer *B, size_t n);</pre>
6021
6022<p>
6023Adds to the buffer <code>B</code> (see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>)
6024a string of length <code>n</code> previously copied to the
6025buffer area (see <a href="#luaL_prepbuffer"><code>luaL_prepbuffer</code></a>).
6026
6027
6028
6029
6030
6031<hr><h3><a name="luaL_addstring"><code>luaL_addstring</code></a></h3><p>
6032<span class="apii">[-?, +?, <em>m</em>]</span>
6033<pre>void luaL_addstring (luaL_Buffer *B, const char *s);</pre>
6034
6035<p>
6036Adds the zero-terminated string pointed to by <code>s</code>
6037to the buffer <code>B</code>
6038(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
6039
6040
6041
6042
6043
6044<hr><h3><a name="luaL_addvalue"><code>luaL_addvalue</code></a></h3><p>
6045<span class="apii">[-1, +?, <em>m</em>]</span>
6046<pre>void luaL_addvalue (luaL_Buffer *B);</pre>
6047
6048<p>
6049Adds the value at the top of the stack
6050to the buffer <code>B</code>
6051(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
6052Pops the value.
6053
6054
6055<p>
6056This is the only function on string buffers that can (and must)
6057be called with an extra element on the stack,
6058which is the value to be added to the buffer.
6059
6060
6061
6062
6063
6064<hr><h3><a name="luaL_argcheck"><code>luaL_argcheck</code></a></h3><p>
6065<span class="apii">[-0, +0, <em>v</em>]</span>
6066<pre>void luaL_argcheck (lua_State *L,
6067                    int cond,
6068                    int arg,
6069                    const char *extramsg);</pre>
6070
6071<p>
6072Checks whether <code>cond</code> is true.
6073If it is not, raises an error with a standard message (see <a href="#luaL_argerror"><code>luaL_argerror</code></a>).
6074
6075
6076
6077
6078
6079<hr><h3><a name="luaL_argerror"><code>luaL_argerror</code></a></h3><p>
6080<span class="apii">[-0, +0, <em>v</em>]</span>
6081<pre>int luaL_argerror (lua_State *L, int arg, const char *extramsg);</pre>
6082
6083<p>
6084Raises an error reporting a problem with argument <code>arg</code>
6085of the C&nbsp;function that called it,
6086using a standard message
6087that includes <code>extramsg</code> as a comment:
6088
6089<pre>
6090     bad argument #<em>arg</em> to '<em>funcname</em>' (<em>extramsg</em>)
6091</pre><p>
6092This function never returns.
6093
6094
6095
6096
6097
6098<hr><h3><a name="luaL_Buffer"><code>luaL_Buffer</code></a></h3>
6099<pre>typedef struct luaL_Buffer luaL_Buffer;</pre>
6100
6101<p>
6102Type for a <em>string buffer</em>.
6103
6104
6105<p>
6106A string buffer allows C&nbsp;code to build Lua strings piecemeal.
6107Its pattern of use is as follows:
6108
6109<ul>
6110
6111<li>First declare a variable <code>b</code> of type <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>.</li>
6112
6113<li>Then initialize it with a call <code>luaL_buffinit(L, &amp;b)</code>.</li>
6114
6115<li>
6116Then add string pieces to the buffer calling any of
6117the <code>luaL_add*</code> functions.
6118</li>
6119
6120<li>
6121Finish by calling <code>luaL_pushresult(&amp;b)</code>.
6122This call leaves the final string on the top of the stack.
6123</li>
6124
6125</ul>
6126
6127<p>
6128If you know beforehand the total size of the resulting string,
6129you can use the buffer like this:
6130
6131<ul>
6132
6133<li>First declare a variable <code>b</code> of type <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>.</li>
6134
6135<li>Then initialize it and preallocate a space of
6136size <code>sz</code> with a call <code>luaL_buffinitsize(L, &amp;b, sz)</code>.</li>
6137
6138<li>Then copy the string into that space.</li>
6139
6140<li>
6141Finish by calling <code>luaL_pushresultsize(&amp;b, sz)</code>,
6142where <code>sz</code> is the total size of the resulting string
6143copied into that space.
6144</li>
6145
6146</ul>
6147
6148<p>
6149During its normal operation,
6150a string buffer uses a variable number of stack slots.
6151So, while using a buffer, you cannot assume that you know where
6152the top of the stack is.
6153You can use the stack between successive calls to buffer operations
6154as long as that use is balanced;
6155that is,
6156when you call a buffer operation,
6157the stack is at the same level
6158it was immediately after the previous buffer operation.
6159(The only exception to this rule is <a href="#luaL_addvalue"><code>luaL_addvalue</code></a>.)
6160After calling <a href="#luaL_pushresult"><code>luaL_pushresult</code></a> the stack is back to its
6161level when the buffer was initialized,
6162plus the final string on its top.
6163
6164
6165
6166
6167
6168<hr><h3><a name="luaL_buffinit"><code>luaL_buffinit</code></a></h3><p>
6169<span class="apii">[-0, +0, &ndash;]</span>
6170<pre>void luaL_buffinit (lua_State *L, luaL_Buffer *B);</pre>
6171
6172<p>
6173Initializes a buffer <code>B</code>.
6174This function does not allocate any space;
6175the buffer must be declared as a variable
6176(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
6177
6178
6179
6180
6181
6182<hr><h3><a name="luaL_buffinitsize"><code>luaL_buffinitsize</code></a></h3><p>
6183<span class="apii">[-?, +?, <em>m</em>]</span>
6184<pre>char *luaL_buffinitsize (lua_State *L, luaL_Buffer *B, size_t sz);</pre>
6185
6186<p>
6187Equivalent to the sequence
6188<a href="#luaL_buffinit"><code>luaL_buffinit</code></a>, <a href="#luaL_prepbuffsize"><code>luaL_prepbuffsize</code></a>.
6189
6190
6191
6192
6193
6194<hr><h3><a name="luaL_callmeta"><code>luaL_callmeta</code></a></h3><p>
6195<span class="apii">[-0, +(0|1), <em>e</em>]</span>
6196<pre>int luaL_callmeta (lua_State *L, int obj, const char *e);</pre>
6197
6198<p>
6199Calls a metamethod.
6200
6201
6202<p>
6203If the object at index <code>obj</code> has a metatable and this
6204metatable has a field <code>e</code>,
6205this function calls this field passing the object as its only argument.
6206In this case this function returns true and pushes onto the
6207stack the value returned by the call.
6208If there is no metatable or no metamethod,
6209this function returns false (without pushing any value on the stack).
6210
6211
6212
6213
6214
6215<hr><h3><a name="luaL_checkany"><code>luaL_checkany</code></a></h3><p>
6216<span class="apii">[-0, +0, <em>v</em>]</span>
6217<pre>void luaL_checkany (lua_State *L, int arg);</pre>
6218
6219<p>
6220Checks whether the function has an argument
6221of any type (including <b>nil</b>) at position <code>arg</code>.
6222
6223
6224
6225
6226
6227<hr><h3><a name="luaL_checkinteger"><code>luaL_checkinteger</code></a></h3><p>
6228<span class="apii">[-0, +0, <em>v</em>]</span>
6229<pre>lua_Integer luaL_checkinteger (lua_State *L, int arg);</pre>
6230
6231<p>
6232Checks whether the function argument <code>arg</code> is an integer
6233(or can be converted to an integer)
6234and returns this integer cast to a <a href="#lua_Integer"><code>lua_Integer</code></a>.
6235
6236
6237
6238
6239
6240<hr><h3><a name="luaL_checklstring"><code>luaL_checklstring</code></a></h3><p>
6241<span class="apii">[-0, +0, <em>v</em>]</span>
6242<pre>const char *luaL_checklstring (lua_State *L, int arg, size_t *l);</pre>
6243
6244<p>
6245Checks whether the function argument <code>arg</code> is a string
6246and returns this string;
6247if <code>l</code> is not <code>NULL</code> fills <code>*l</code>
6248with the string's length.
6249
6250
6251<p>
6252This function uses <a href="#lua_tolstring"><code>lua_tolstring</code></a> to get its result,
6253so all conversions and caveats of that function apply here.
6254
6255
6256
6257
6258
6259<hr><h3><a name="luaL_checknumber"><code>luaL_checknumber</code></a></h3><p>
6260<span class="apii">[-0, +0, <em>v</em>]</span>
6261<pre>lua_Number luaL_checknumber (lua_State *L, int arg);</pre>
6262
6263<p>
6264Checks whether the function argument <code>arg</code> is a number
6265and returns this number.
6266
6267
6268
6269
6270
6271<hr><h3><a name="luaL_checkoption"><code>luaL_checkoption</code></a></h3><p>
6272<span class="apii">[-0, +0, <em>v</em>]</span>
6273<pre>int luaL_checkoption (lua_State *L,
6274                      int arg,
6275                      const char *def,
6276                      const char *const lst[]);</pre>
6277
6278<p>
6279Checks whether the function argument <code>arg</code> is a string and
6280searches for this string in the array <code>lst</code>
6281(which must be NULL-terminated).
6282Returns the index in the array where the string was found.
6283Raises an error if the argument is not a string or
6284if the string cannot be found.
6285
6286
6287<p>
6288If <code>def</code> is not <code>NULL</code>,
6289the function uses <code>def</code> as a default value when
6290there is no argument <code>arg</code> or when this argument is <b>nil</b>.
6291
6292
6293<p>
6294This is a useful function for mapping strings to C&nbsp;enums.
6295(The usual convention in Lua libraries is
6296to use strings instead of numbers to select options.)
6297
6298
6299
6300
6301
6302<hr><h3><a name="luaL_checkstack"><code>luaL_checkstack</code></a></h3><p>
6303<span class="apii">[-0, +0, <em>v</em>]</span>
6304<pre>void luaL_checkstack (lua_State *L, int sz, const char *msg);</pre>
6305
6306<p>
6307Grows the stack size to <code>top + sz</code> elements,
6308raising an error if the stack cannot grow to that size.
6309<code>msg</code> is an additional text to go into the error message
6310(or <code>NULL</code> for no additional text).
6311
6312
6313
6314
6315
6316<hr><h3><a name="luaL_checkstring"><code>luaL_checkstring</code></a></h3><p>
6317<span class="apii">[-0, +0, <em>v</em>]</span>
6318<pre>const char *luaL_checkstring (lua_State *L, int arg);</pre>
6319
6320<p>
6321Checks whether the function argument <code>arg</code> is a string
6322and returns this string.
6323
6324
6325<p>
6326This function uses <a href="#lua_tolstring"><code>lua_tolstring</code></a> to get its result,
6327so all conversions and caveats of that function apply here.
6328
6329
6330
6331
6332
6333<hr><h3><a name="luaL_checktype"><code>luaL_checktype</code></a></h3><p>
6334<span class="apii">[-0, +0, <em>v</em>]</span>
6335<pre>void luaL_checktype (lua_State *L, int arg, int t);</pre>
6336
6337<p>
6338Checks whether the function argument <code>arg</code> has type <code>t</code>.
6339See <a href="#lua_type"><code>lua_type</code></a> for the encoding of types for <code>t</code>.
6340
6341
6342
6343
6344
6345<hr><h3><a name="luaL_checkudata"><code>luaL_checkudata</code></a></h3><p>
6346<span class="apii">[-0, +0, <em>v</em>]</span>
6347<pre>void *luaL_checkudata (lua_State *L, int arg, const char *tname);</pre>
6348
6349<p>
6350Checks whether the function argument <code>arg</code> is a userdata
6351of the type <code>tname</code> (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>) and
6352returns the userdata address (see <a href="#lua_touserdata"><code>lua_touserdata</code></a>).
6353
6354
6355
6356
6357
6358<hr><h3><a name="luaL_checkversion"><code>luaL_checkversion</code></a></h3><p>
6359<span class="apii">[-0, +0, <em>v</em>]</span>
6360<pre>void luaL_checkversion (lua_State *L);</pre>
6361
6362<p>
6363Checks whether the core running the call,
6364the core that created the Lua state,
6365and the code making the call are all using the same version of Lua.
6366Also checks whether the core running the call
6367and the core that created the Lua state
6368are using the same address space.
6369
6370
6371
6372
6373
6374<hr><h3><a name="luaL_dofile"><code>luaL_dofile</code></a></h3><p>
6375<span class="apii">[-0, +?, <em>e</em>]</span>
6376<pre>int luaL_dofile (lua_State *L, const char *filename);</pre>
6377
6378<p>
6379Loads and runs the given file.
6380It is defined as the following macro:
6381
6382<pre>
6383     (luaL_loadfile(L, filename) || lua_pcall(L, 0, LUA_MULTRET, 0))
6384</pre><p>
6385It returns false if there are no errors
6386or true in case of errors.
6387
6388
6389
6390
6391
6392<hr><h3><a name="luaL_dostring"><code>luaL_dostring</code></a></h3><p>
6393<span class="apii">[-0, +?, &ndash;]</span>
6394<pre>int luaL_dostring (lua_State *L, const char *str);</pre>
6395
6396<p>
6397Loads and runs the given string.
6398It is defined as the following macro:
6399
6400<pre>
6401     (luaL_loadstring(L, str) || lua_pcall(L, 0, LUA_MULTRET, 0))
6402</pre><p>
6403It returns false if there are no errors
6404or true in case of errors.
6405
6406
6407
6408
6409
6410<hr><h3><a name="luaL_error"><code>luaL_error</code></a></h3><p>
6411<span class="apii">[-0, +0, <em>v</em>]</span>
6412<pre>int luaL_error (lua_State *L, const char *fmt, ...);</pre>
6413
6414<p>
6415Raises an error.
6416The error message format is given by <code>fmt</code>
6417plus any extra arguments,
6418following the same rules of <a href="#lua_pushfstring"><code>lua_pushfstring</code></a>.
6419It also adds at the beginning of the message the file name and
6420the line number where the error occurred,
6421if this information is available.
6422
6423
6424<p>
6425This function never returns,
6426but it is an idiom to use it in C&nbsp;functions
6427as <code>return luaL_error(<em>args</em>)</code>.
6428
6429
6430
6431
6432
6433<hr><h3><a name="luaL_execresult"><code>luaL_execresult</code></a></h3><p>
6434<span class="apii">[-0, +3, <em>m</em>]</span>
6435<pre>int luaL_execresult (lua_State *L, int stat);</pre>
6436
6437<p>
6438This function produces the return values for
6439process-related functions in the standard library
6440(<a href="#pdf-os.execute"><code>os.execute</code></a> and <a href="#pdf-io.close"><code>io.close</code></a>).
6441
6442
6443
6444
6445
6446<hr><h3><a name="luaL_fileresult"><code>luaL_fileresult</code></a></h3><p>
6447<span class="apii">[-0, +(1|3), <em>m</em>]</span>
6448<pre>int luaL_fileresult (lua_State *L, int stat, const char *fname);</pre>
6449
6450<p>
6451This function produces the return values for
6452file-related functions in the standard library
6453(<a href="#pdf-io.open"><code>io.open</code></a>, <a href="#pdf-os.rename"><code>os.rename</code></a>, <a href="#pdf-file:seek"><code>file:seek</code></a>, etc.).
6454
6455
6456
6457
6458
6459<hr><h3><a name="luaL_getmetafield"><code>luaL_getmetafield</code></a></h3><p>
6460<span class="apii">[-0, +(0|1), <em>m</em>]</span>
6461<pre>int luaL_getmetafield (lua_State *L, int obj, const char *e);</pre>
6462
6463<p>
6464Pushes onto the stack the field <code>e</code> from the metatable
6465of the object at index <code>obj</code> and returns the type of pushed value.
6466If the object does not have a metatable,
6467or if the metatable does not have this field,
6468pushes nothing and returns <code>LUA_TNIL</code>.
6469
6470
6471
6472
6473
6474<hr><h3><a name="luaL_getmetatable"><code>luaL_getmetatable</code></a></h3><p>
6475<span class="apii">[-0, +1, <em>m</em>]</span>
6476<pre>int luaL_getmetatable (lua_State *L, const char *tname);</pre>
6477
6478<p>
6479Pushes onto the stack the metatable associated with name <code>tname</code>
6480in the registry (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>)
6481(<b>nil</b> if there is no metatable associated with that name).
6482Returns the type of the pushed value.
6483
6484
6485
6486
6487
6488<hr><h3><a name="luaL_getsubtable"><code>luaL_getsubtable</code></a></h3><p>
6489<span class="apii">[-0, +1, <em>e</em>]</span>
6490<pre>int luaL_getsubtable (lua_State *L, int idx, const char *fname);</pre>
6491
6492<p>
6493Ensures that the value <code>t[fname]</code>,
6494where <code>t</code> is the value at index <code>idx</code>,
6495is a table,
6496and pushes that table onto the stack.
6497Returns true if it finds a previous table there
6498and false if it creates a new table.
6499
6500
6501
6502
6503
6504<hr><h3><a name="luaL_gsub"><code>luaL_gsub</code></a></h3><p>
6505<span class="apii">[-0, +1, <em>m</em>]</span>
6506<pre>const char *luaL_gsub (lua_State *L,
6507                       const char *s,
6508                       const char *p,
6509                       const char *r);</pre>
6510
6511<p>
6512Creates a copy of string <code>s</code> by replacing
6513any occurrence of the string <code>p</code>
6514with the string <code>r</code>.
6515Pushes the resulting string on the stack and returns it.
6516
6517
6518
6519
6520
6521<hr><h3><a name="luaL_len"><code>luaL_len</code></a></h3><p>
6522<span class="apii">[-0, +0, <em>e</em>]</span>
6523<pre>lua_Integer luaL_len (lua_State *L, int index);</pre>
6524
6525<p>
6526Returns the "length" of the value at the given index
6527as a number;
6528it is equivalent to the '<code>#</code>' operator in Lua (see <a href="#3.4.7">&sect;3.4.7</a>).
6529Raises an error if the result of the operation is not an integer.
6530(This case only can happen through metamethods.)
6531
6532
6533
6534
6535
6536<hr><h3><a name="luaL_loadbuffer"><code>luaL_loadbuffer</code></a></h3><p>
6537<span class="apii">[-0, +1, &ndash;]</span>
6538<pre>int luaL_loadbuffer (lua_State *L,
6539                     const char *buff,
6540                     size_t sz,
6541                     const char *name);</pre>
6542
6543<p>
6544Equivalent to <a href="#luaL_loadbufferx"><code>luaL_loadbufferx</code></a> with <code>mode</code> equal to <code>NULL</code>.
6545
6546
6547
6548
6549
6550<hr><h3><a name="luaL_loadbufferx"><code>luaL_loadbufferx</code></a></h3><p>
6551<span class="apii">[-0, +1, &ndash;]</span>
6552<pre>int luaL_loadbufferx (lua_State *L,
6553                      const char *buff,
6554                      size_t sz,
6555                      const char *name,
6556                      const char *mode);</pre>
6557
6558<p>
6559Loads a buffer as a Lua chunk.
6560This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in the
6561buffer pointed to by <code>buff</code> with size <code>sz</code>.
6562
6563
6564<p>
6565This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>.
6566<code>name</code> is the chunk name,
6567used for debug information and error messages.
6568The string <code>mode</code> works as in function <a href="#lua_load"><code>lua_load</code></a>.
6569
6570
6571
6572
6573
6574<hr><h3><a name="luaL_loadfile"><code>luaL_loadfile</code></a></h3><p>
6575<span class="apii">[-0, +1, <em>m</em>]</span>
6576<pre>int luaL_loadfile (lua_State *L, const char *filename);</pre>
6577
6578<p>
6579Equivalent to <a href="#luaL_loadfilex"><code>luaL_loadfilex</code></a> with <code>mode</code> equal to <code>NULL</code>.
6580
6581
6582
6583
6584
6585<hr><h3><a name="luaL_loadfilex"><code>luaL_loadfilex</code></a></h3><p>
6586<span class="apii">[-0, +1, <em>m</em>]</span>
6587<pre>int luaL_loadfilex (lua_State *L, const char *filename,
6588                                            const char *mode);</pre>
6589
6590<p>
6591Loads a file as a Lua chunk.
6592This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in the file
6593named <code>filename</code>.
6594If <code>filename</code> is <code>NULL</code>,
6595then it loads from the standard input.
6596The first line in the file is ignored if it starts with a <code>#</code>.
6597
6598
6599<p>
6600The string <code>mode</code> works as in function <a href="#lua_load"><code>lua_load</code></a>.
6601
6602
6603<p>
6604This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>,
6605but it has an extra error code <a name="pdf-LUA_ERRFILE"><code>LUA_ERRFILE</code></a>
6606for file-related errors
6607(e.g., it cannot open or read the file).
6608
6609
6610<p>
6611As <a href="#lua_load"><code>lua_load</code></a>, this function only loads the chunk;
6612it does not run it.
6613
6614
6615
6616
6617
6618<hr><h3><a name="luaL_loadstring"><code>luaL_loadstring</code></a></h3><p>
6619<span class="apii">[-0, +1, &ndash;]</span>
6620<pre>int luaL_loadstring (lua_State *L, const char *s);</pre>
6621
6622<p>
6623Loads a string as a Lua chunk.
6624This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in
6625the zero-terminated string <code>s</code>.
6626
6627
6628<p>
6629This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>.
6630
6631
6632<p>
6633Also as <a href="#lua_load"><code>lua_load</code></a>, this function only loads the chunk;
6634it does not run it.
6635
6636
6637
6638
6639
6640<hr><h3><a name="luaL_newlib"><code>luaL_newlib</code></a></h3><p>
6641<span class="apii">[-0, +1, <em>m</em>]</span>
6642<pre>void luaL_newlib (lua_State *L, const luaL_Reg l[]);</pre>
6643
6644<p>
6645Creates a new table and registers there
6646the functions in list <code>l</code>.
6647
6648
6649<p>
6650It is implemented as the following macro:
6651
6652<pre>
6653     (luaL_newlibtable(L,l), luaL_setfuncs(L,l,0))
6654</pre><p>
6655The array <code>l</code> must be the actual array,
6656not a pointer to it.
6657
6658
6659
6660
6661
6662<hr><h3><a name="luaL_newlibtable"><code>luaL_newlibtable</code></a></h3><p>
6663<span class="apii">[-0, +1, <em>m</em>]</span>
6664<pre>void luaL_newlibtable (lua_State *L, const luaL_Reg l[]);</pre>
6665
6666<p>
6667Creates a new table with a size optimized
6668to store all entries in the array <code>l</code>
6669(but does not actually store them).
6670It is intended to be used in conjunction with <a href="#luaL_setfuncs"><code>luaL_setfuncs</code></a>
6671(see <a href="#luaL_newlib"><code>luaL_newlib</code></a>).
6672
6673
6674<p>
6675It is implemented as a macro.
6676The array <code>l</code> must be the actual array,
6677not a pointer to it.
6678
6679
6680
6681
6682
6683<hr><h3><a name="luaL_newmetatable"><code>luaL_newmetatable</code></a></h3><p>
6684<span class="apii">[-0, +1, <em>m</em>]</span>
6685<pre>int luaL_newmetatable (lua_State *L, const char *tname);</pre>
6686
6687<p>
6688If the registry already has the key <code>tname</code>,
6689returns 0.
6690Otherwise,
6691creates a new table to be used as a metatable for userdata,
6692adds to this new table the pair <code>__name = tname</code>,
6693adds to the registry the pair <code>[tname] = new table</code>,
6694and returns 1.
6695(The entry <code>__name</code> is used by some error-reporting functions.)
6696
6697
6698<p>
6699In both cases pushes onto the stack the final value associated
6700with <code>tname</code> in the registry.
6701
6702
6703
6704
6705
6706<hr><h3><a name="luaL_newstate"><code>luaL_newstate</code></a></h3><p>
6707<span class="apii">[-0, +0, &ndash;]</span>
6708<pre>lua_State *luaL_newstate (void);</pre>
6709
6710<p>
6711Creates a new Lua state.
6712It calls <a href="#lua_newstate"><code>lua_newstate</code></a> with an
6713allocator based on the standard&nbsp;C <code>realloc</code> function
6714and then sets a panic function (see <a href="#4.6">&sect;4.6</a>) that prints
6715an error message to the standard error output in case of fatal
6716errors.
6717
6718
6719<p>
6720Returns the new state,
6721or <code>NULL</code> if there is a memory allocation error.
6722
6723
6724
6725
6726
6727<hr><h3><a name="luaL_openlibs"><code>luaL_openlibs</code></a></h3><p>
6728<span class="apii">[-0, +0, <em>e</em>]</span>
6729<pre>void luaL_openlibs (lua_State *L);</pre>
6730
6731<p>
6732Opens all standard Lua libraries into the given state.
6733
6734
6735
6736
6737
6738<hr><h3><a name="luaL_opt"><code>luaL_opt</code></a></h3><p>
6739<span class="apii">[-0, +0, <em>e</em>]</span>
6740<pre>T luaL_opt (L, func, arg, dflt);</pre>
6741
6742<p>
6743This macro is defined as follows:
6744
6745<pre>
6746     (lua_isnoneornil(L,(arg)) ? (dflt) : func(L,(arg)))
6747</pre><p>
6748In words, if the argument <code>arg</code> is nil or absent,
6749the macro results in the default <code>dflt</code>.
6750Otherwise, it results in the result of calling <code>func</code>
6751with the state <code>L</code> and the argument index <code>arg</code> as
6752parameters.
6753Note that it evaluates the expression <code>dflt</code> only if needed.
6754
6755
6756
6757
6758
6759<hr><h3><a name="luaL_optinteger"><code>luaL_optinteger</code></a></h3><p>
6760<span class="apii">[-0, +0, <em>v</em>]</span>
6761<pre>lua_Integer luaL_optinteger (lua_State *L,
6762                             int arg,
6763                             lua_Integer d);</pre>
6764
6765<p>
6766If the function argument <code>arg</code> is an integer
6767(or convertible to an integer),
6768returns this integer.
6769If this argument is absent or is <b>nil</b>,
6770returns <code>d</code>.
6771Otherwise, raises an error.
6772
6773
6774
6775
6776
6777<hr><h3><a name="luaL_optlstring"><code>luaL_optlstring</code></a></h3><p>
6778<span class="apii">[-0, +0, <em>v</em>]</span>
6779<pre>const char *luaL_optlstring (lua_State *L,
6780                             int arg,
6781                             const char *d,
6782                             size_t *l);</pre>
6783
6784<p>
6785If the function argument <code>arg</code> is a string,
6786returns this string.
6787If this argument is absent or is <b>nil</b>,
6788returns <code>d</code>.
6789Otherwise, raises an error.
6790
6791
6792<p>
6793If <code>l</code> is not <code>NULL</code>,
6794fills the position <code>*l</code> with the result's length.
6795If the result is <code>NULL</code>
6796(only possible when returning <code>d</code> and <code>d == NULL</code>),
6797its length is considered zero.
6798
6799
6800<p>
6801This function uses <a href="#lua_tolstring"><code>lua_tolstring</code></a> to get its result,
6802so all conversions and caveats of that function apply here.
6803
6804
6805
6806
6807
6808<hr><h3><a name="luaL_optnumber"><code>luaL_optnumber</code></a></h3><p>
6809<span class="apii">[-0, +0, <em>v</em>]</span>
6810<pre>lua_Number luaL_optnumber (lua_State *L, int arg, lua_Number d);</pre>
6811
6812<p>
6813If the function argument <code>arg</code> is a number,
6814returns this number.
6815If this argument is absent or is <b>nil</b>,
6816returns <code>d</code>.
6817Otherwise, raises an error.
6818
6819
6820
6821
6822
6823<hr><h3><a name="luaL_optstring"><code>luaL_optstring</code></a></h3><p>
6824<span class="apii">[-0, +0, <em>v</em>]</span>
6825<pre>const char *luaL_optstring (lua_State *L,
6826                            int arg,
6827                            const char *d);</pre>
6828
6829<p>
6830If the function argument <code>arg</code> is a string,
6831returns this string.
6832If this argument is absent or is <b>nil</b>,
6833returns <code>d</code>.
6834Otherwise, raises an error.
6835
6836
6837
6838
6839
6840<hr><h3><a name="luaL_prepbuffer"><code>luaL_prepbuffer</code></a></h3><p>
6841<span class="apii">[-?, +?, <em>m</em>]</span>
6842<pre>char *luaL_prepbuffer (luaL_Buffer *B);</pre>
6843
6844<p>
6845Equivalent to <a href="#luaL_prepbuffsize"><code>luaL_prepbuffsize</code></a>
6846with the predefined size <a name="pdf-LUAL_BUFFERSIZE"><code>LUAL_BUFFERSIZE</code></a>.
6847
6848
6849
6850
6851
6852<hr><h3><a name="luaL_prepbuffsize"><code>luaL_prepbuffsize</code></a></h3><p>
6853<span class="apii">[-?, +?, <em>m</em>]</span>
6854<pre>char *luaL_prepbuffsize (luaL_Buffer *B, size_t sz);</pre>
6855
6856<p>
6857Returns an address to a space of size <code>sz</code>
6858where you can copy a string to be added to buffer <code>B</code>
6859(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
6860After copying the string into this space you must call
6861<a href="#luaL_addsize"><code>luaL_addsize</code></a> with the size of the string to actually add
6862it to the buffer.
6863
6864
6865
6866
6867
6868<hr><h3><a name="luaL_pushresult"><code>luaL_pushresult</code></a></h3><p>
6869<span class="apii">[-?, +1, <em>m</em>]</span>
6870<pre>void luaL_pushresult (luaL_Buffer *B);</pre>
6871
6872<p>
6873Finishes the use of buffer <code>B</code> leaving the final string on
6874the top of the stack.
6875
6876
6877
6878
6879
6880<hr><h3><a name="luaL_pushresultsize"><code>luaL_pushresultsize</code></a></h3><p>
6881<span class="apii">[-?, +1, <em>m</em>]</span>
6882<pre>void luaL_pushresultsize (luaL_Buffer *B, size_t sz);</pre>
6883
6884<p>
6885Equivalent to the sequence <a href="#luaL_addsize"><code>luaL_addsize</code></a>, <a href="#luaL_pushresult"><code>luaL_pushresult</code></a>.
6886
6887
6888
6889
6890
6891<hr><h3><a name="luaL_ref"><code>luaL_ref</code></a></h3><p>
6892<span class="apii">[-1, +0, <em>m</em>]</span>
6893<pre>int luaL_ref (lua_State *L, int t);</pre>
6894
6895<p>
6896Creates and returns a <em>reference</em>,
6897in the table at index <code>t</code>,
6898for the object at the top of the stack (and pops the object).
6899
6900
6901<p>
6902A reference is a unique integer key.
6903As long as you do not manually add integer keys into table <code>t</code>,
6904<a href="#luaL_ref"><code>luaL_ref</code></a> ensures the uniqueness of the key it returns.
6905You can retrieve an object referred by reference <code>r</code>
6906by calling <code>lua_rawgeti(L, t, r)</code>.
6907Function <a href="#luaL_unref"><code>luaL_unref</code></a> frees a reference and its associated object.
6908
6909
6910<p>
6911If the object at the top of the stack is <b>nil</b>,
6912<a href="#luaL_ref"><code>luaL_ref</code></a> returns the constant <a name="pdf-LUA_REFNIL"><code>LUA_REFNIL</code></a>.
6913The constant <a name="pdf-LUA_NOREF"><code>LUA_NOREF</code></a> is guaranteed to be different
6914from any reference returned by <a href="#luaL_ref"><code>luaL_ref</code></a>.
6915
6916
6917
6918
6919
6920<hr><h3><a name="luaL_Reg"><code>luaL_Reg</code></a></h3>
6921<pre>typedef struct luaL_Reg {
6922  const char *name;
6923  lua_CFunction func;
6924} luaL_Reg;</pre>
6925
6926<p>
6927Type for arrays of functions to be registered by
6928<a href="#luaL_setfuncs"><code>luaL_setfuncs</code></a>.
6929<code>name</code> is the function name and <code>func</code> is a pointer to
6930the function.
6931Any array of <a href="#luaL_Reg"><code>luaL_Reg</code></a> must end with a sentinel entry
6932in which both <code>name</code> and <code>func</code> are <code>NULL</code>.
6933
6934
6935
6936
6937
6938<hr><h3><a name="luaL_requiref"><code>luaL_requiref</code></a></h3><p>
6939<span class="apii">[-0, +1, <em>e</em>]</span>
6940<pre>void luaL_requiref (lua_State *L, const char *modname,
6941                    lua_CFunction openf, int glb);</pre>
6942
6943<p>
6944If <code>modname</code> is not already present in <a href="#pdf-package.loaded"><code>package.loaded</code></a>,
6945calls function <code>openf</code> with string <code>modname</code> as an argument
6946and sets the call result in <code>package.loaded[modname]</code>,
6947as if that function has been called through <a href="#pdf-require"><code>require</code></a>.
6948
6949
6950<p>
6951If <code>glb</code> is true,
6952also stores the module into global <code>modname</code>.
6953
6954
6955<p>
6956Leaves a copy of the module on the stack.
6957
6958
6959
6960
6961
6962<hr><h3><a name="luaL_setfuncs"><code>luaL_setfuncs</code></a></h3><p>
6963<span class="apii">[-nup, +0, <em>m</em>]</span>
6964<pre>void luaL_setfuncs (lua_State *L, const luaL_Reg *l, int nup);</pre>
6965
6966<p>
6967Registers all functions in the array <code>l</code>
6968(see <a href="#luaL_Reg"><code>luaL_Reg</code></a>) into the table on the top of the stack
6969(below optional upvalues, see next).
6970
6971
6972<p>
6973When <code>nup</code> is not zero,
6974all functions are created sharing <code>nup</code> upvalues,
6975which must be previously pushed on the stack
6976on top of the library table.
6977These values are popped from the stack after the registration.
6978
6979
6980
6981
6982
6983<hr><h3><a name="luaL_setmetatable"><code>luaL_setmetatable</code></a></h3><p>
6984<span class="apii">[-0, +0, &ndash;]</span>
6985<pre>void luaL_setmetatable (lua_State *L, const char *tname);</pre>
6986
6987<p>
6988Sets the metatable of the object at the top of the stack
6989as the metatable associated with name <code>tname</code>
6990in the registry (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>).
6991
6992
6993
6994
6995
6996<hr><h3><a name="luaL_Stream"><code>luaL_Stream</code></a></h3>
6997<pre>typedef struct luaL_Stream {
6998  FILE *f;
6999  lua_CFunction closef;
7000} luaL_Stream;</pre>
7001
7002<p>
7003The standard representation for file handles,
7004which is used by the standard I/O library.
7005
7006
7007<p>
7008A file handle is implemented as a full userdata,
7009with a metatable called <code>LUA_FILEHANDLE</code>
7010(where <code>LUA_FILEHANDLE</code> is a macro with the actual metatable's name).
7011The metatable is created by the I/O library
7012(see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>).
7013
7014
7015<p>
7016This userdata must start with the structure <code>luaL_Stream</code>;
7017it can contain other data after this initial structure.
7018Field <code>f</code> points to the corresponding C stream
7019(or it can be <code>NULL</code> to indicate an incompletely created handle).
7020Field <code>closef</code> points to a Lua function
7021that will be called to close the stream
7022when the handle is closed or collected;
7023this function receives the file handle as its sole argument and
7024must return either <b>true</b> (in case of success)
7025or <b>nil</b> plus an error message (in case of error).
7026Once Lua calls this field,
7027it changes the field value to <code>NULL</code>
7028to signal that the handle is closed.
7029
7030
7031
7032
7033
7034<hr><h3><a name="luaL_testudata"><code>luaL_testudata</code></a></h3><p>
7035<span class="apii">[-0, +0, <em>m</em>]</span>
7036<pre>void *luaL_testudata (lua_State *L, int arg, const char *tname);</pre>
7037
7038<p>
7039This function works like <a href="#luaL_checkudata"><code>luaL_checkudata</code></a>,
7040except that, when the test fails,
7041it returns <code>NULL</code> instead of raising an error.
7042
7043
7044
7045
7046
7047<hr><h3><a name="luaL_tolstring"><code>luaL_tolstring</code></a></h3><p>
7048<span class="apii">[-0, +1, <em>e</em>]</span>
7049<pre>const char *luaL_tolstring (lua_State *L, int idx, size_t *len);</pre>
7050
7051<p>
7052Converts any Lua value at the given index to a C&nbsp;string
7053in a reasonable format.
7054The resulting string is pushed onto the stack and also
7055returned by the function.
7056If <code>len</code> is not <code>NULL</code>,
7057the function also sets <code>*len</code> with the string length.
7058
7059
7060<p>
7061If the value has a metatable with a <code>__tostring</code> field,
7062then <code>luaL_tolstring</code> calls the corresponding metamethod
7063with the value as argument,
7064and uses the result of the call as its result.
7065
7066
7067
7068
7069
7070<hr><h3><a name="luaL_traceback"><code>luaL_traceback</code></a></h3><p>
7071<span class="apii">[-0, +1, <em>m</em>]</span>
7072<pre>void luaL_traceback (lua_State *L, lua_State *L1, const char *msg,
7073                     int level);</pre>
7074
7075<p>
7076Creates and pushes a traceback of the stack <code>L1</code>.
7077If <code>msg</code> is not <code>NULL</code> it is appended
7078at the beginning of the traceback.
7079The <code>level</code> parameter tells at which level
7080to start the traceback.
7081
7082
7083
7084
7085
7086<hr><h3><a name="luaL_typename"><code>luaL_typename</code></a></h3><p>
7087<span class="apii">[-0, +0, &ndash;]</span>
7088<pre>const char *luaL_typename (lua_State *L, int index);</pre>
7089
7090<p>
7091Returns the name of the type of the value at the given index.
7092
7093
7094
7095
7096
7097<hr><h3><a name="luaL_unref"><code>luaL_unref</code></a></h3><p>
7098<span class="apii">[-0, +0, &ndash;]</span>
7099<pre>void luaL_unref (lua_State *L, int t, int ref);</pre>
7100
7101<p>
7102Releases reference <code>ref</code> from the table at index <code>t</code>
7103(see <a href="#luaL_ref"><code>luaL_ref</code></a>).
7104The entry is removed from the table,
7105so that the referred object can be collected.
7106The reference <code>ref</code> is also freed to be used again.
7107
7108
7109<p>
7110If <code>ref</code> is <a href="#pdf-LUA_NOREF"><code>LUA_NOREF</code></a> or <a href="#pdf-LUA_REFNIL"><code>LUA_REFNIL</code></a>,
7111<a href="#luaL_unref"><code>luaL_unref</code></a> does nothing.
7112
7113
7114
7115
7116
7117<hr><h3><a name="luaL_where"><code>luaL_where</code></a></h3><p>
7118<span class="apii">[-0, +1, <em>m</em>]</span>
7119<pre>void luaL_where (lua_State *L, int lvl);</pre>
7120
7121<p>
7122Pushes onto the stack a string identifying the current position
7123of the control at level <code>lvl</code> in the call stack.
7124Typically this string has the following format:
7125
7126<pre>
7127     <em>chunkname</em>:<em>currentline</em>:
7128</pre><p>
7129Level&nbsp;0 is the running function,
7130level&nbsp;1 is the function that called the running function,
7131etc.
7132
7133
7134<p>
7135This function is used to build a prefix for error messages.
7136
7137
7138
7139
7140
7141
7142
7143<h1>6 &ndash; <a name="6">Standard Libraries</a></h1>
7144
7145<p>
7146The standard Lua libraries provide useful functions
7147that are implemented directly through the C&nbsp;API.
7148Some of these functions provide essential services to the language
7149(e.g., <a href="#pdf-type"><code>type</code></a> and <a href="#pdf-getmetatable"><code>getmetatable</code></a>);
7150others provide access to "outside" services (e.g., I/O);
7151and others could be implemented in Lua itself,
7152but are quite useful or have critical performance requirements that
7153deserve an implementation in C (e.g., <a href="#pdf-table.sort"><code>table.sort</code></a>).
7154
7155
7156<p>
7157All libraries are implemented through the official C&nbsp;API
7158and are provided as separate C&nbsp;modules.
7159Currently, Lua has the following standard libraries:
7160
7161<ul>
7162
7163<li>basic library (<a href="#6.1">&sect;6.1</a>);</li>
7164
7165<li>coroutine library (<a href="#6.2">&sect;6.2</a>);</li>
7166
7167<li>package library (<a href="#6.3">&sect;6.3</a>);</li>
7168
7169<li>string manipulation (<a href="#6.4">&sect;6.4</a>);</li>
7170
7171<li>basic UTF-8 support (<a href="#6.5">&sect;6.5</a>);</li>
7172
7173<li>table manipulation (<a href="#6.6">&sect;6.6</a>);</li>
7174
7175<li>mathematical functions (<a href="#6.7">&sect;6.7</a>) (sin, log, etc.);</li>
7176
7177<li>input and output (<a href="#6.8">&sect;6.8</a>);</li>
7178
7179<li>operating system facilities (<a href="#6.9">&sect;6.9</a>);</li>
7180
7181<li>debug facilities (<a href="#6.10">&sect;6.10</a>).</li>
7182
7183</ul><p>
7184Except for the basic and the package libraries,
7185each library provides all its functions as fields of a global table
7186or as methods of its objects.
7187
7188
7189<p>
7190To have access to these libraries,
7191the C&nbsp;host program should call the <a href="#luaL_openlibs"><code>luaL_openlibs</code></a> function,
7192which opens all standard libraries.
7193Alternatively,
7194the host program can open them individually by using
7195<a href="#luaL_requiref"><code>luaL_requiref</code></a> to call
7196<a name="pdf-luaopen_base"><code>luaopen_base</code></a> (for the basic library),
7197<a name="pdf-luaopen_package"><code>luaopen_package</code></a> (for the package library),
7198<a name="pdf-luaopen_coroutine"><code>luaopen_coroutine</code></a> (for the coroutine library),
7199<a name="pdf-luaopen_string"><code>luaopen_string</code></a> (for the string library),
7200<a name="pdf-luaopen_utf8"><code>luaopen_utf8</code></a> (for the UTF8 library),
7201<a name="pdf-luaopen_table"><code>luaopen_table</code></a> (for the table library),
7202<a name="pdf-luaopen_math"><code>luaopen_math</code></a> (for the mathematical library),
7203<a name="pdf-luaopen_io"><code>luaopen_io</code></a> (for the I/O library),
7204<a name="pdf-luaopen_os"><code>luaopen_os</code></a> (for the operating system library),
7205and <a name="pdf-luaopen_debug"><code>luaopen_debug</code></a> (for the debug library).
7206These functions are declared in <a name="pdf-lualib.h"><code>lualib.h</code></a>.
7207
7208
7209
7210<h2>6.1 &ndash; <a name="6.1">Basic Functions</a></h2>
7211
7212<p>
7213The basic library provides core functions to Lua.
7214If you do not include this library in your application,
7215you should check carefully whether you need to provide
7216implementations for some of its facilities.
7217
7218
7219<p>
7220<hr><h3><a name="pdf-assert"><code>assert (v [, message])</code></a></h3>
7221
7222
7223<p>
7224Calls <a href="#pdf-error"><code>error</code></a> if
7225the value of its argument <code>v</code> is false (i.e., <b>nil</b> or <b>false</b>);
7226otherwise, returns all its arguments.
7227In case of error,
7228<code>message</code> is the error object;
7229when absent, it defaults to "<code>assertion failed!</code>"
7230
7231
7232
7233
7234<p>
7235<hr><h3><a name="pdf-collectgarbage"><code>collectgarbage ([opt [, arg]])</code></a></h3>
7236
7237
7238<p>
7239This function is a generic interface to the garbage collector.
7240It performs different functions according to its first argument, <code>opt</code>:
7241
7242<ul>
7243
7244<li><b>"<code>collect</code>": </b>
7245performs a full garbage-collection cycle.
7246This is the default option.
7247</li>
7248
7249<li><b>"<code>stop</code>": </b>
7250stops automatic execution of the garbage collector.
7251The collector will run only when explicitly invoked,
7252until a call to restart it.
7253</li>
7254
7255<li><b>"<code>restart</code>": </b>
7256restarts automatic execution of the garbage collector.
7257</li>
7258
7259<li><b>"<code>count</code>": </b>
7260returns the total memory in use by Lua in Kbytes.
7261The value has a fractional part,
7262so that it multiplied by 1024
7263gives the exact number of bytes in use by Lua
7264(except for overflows).
7265</li>
7266
7267<li><b>"<code>step</code>": </b>
7268performs a garbage-collection step.
7269The step "size" is controlled by <code>arg</code>.
7270With a zero value,
7271the collector will perform one basic (indivisible) step.
7272For non-zero values,
7273the collector will perform as if that amount of memory
7274(in KBytes) had been allocated by Lua.
7275Returns <b>true</b> if the step finished a collection cycle.
7276</li>
7277
7278<li><b>"<code>setpause</code>": </b>
7279sets <code>arg</code> as the new value for the <em>pause</em> of
7280the collector (see <a href="#2.5">&sect;2.5</a>).
7281Returns the previous value for <em>pause</em>.
7282</li>
7283
7284<li><b>"<code>setstepmul</code>": </b>
7285sets <code>arg</code> as the new value for the <em>step multiplier</em> of
7286the collector (see <a href="#2.5">&sect;2.5</a>).
7287Returns the previous value for <em>step</em>.
7288</li>
7289
7290<li><b>"<code>isrunning</code>": </b>
7291returns a boolean that tells whether the collector is running
7292(i.e., not stopped).
7293</li>
7294
7295</ul>
7296
7297
7298
7299<p>
7300<hr><h3><a name="pdf-dofile"><code>dofile ([filename])</code></a></h3>
7301Opens the named file and executes its contents as a Lua chunk.
7302When called without arguments,
7303<code>dofile</code> executes the contents of the standard input (<code>stdin</code>).
7304Returns all values returned by the chunk.
7305In case of errors, <code>dofile</code> propagates the error
7306to its caller (that is, <code>dofile</code> does not run in protected mode).
7307
7308
7309
7310
7311<p>
7312<hr><h3><a name="pdf-error"><code>error (message [, level])</code></a></h3>
7313Terminates the last protected function called
7314and returns <code>message</code> as the error object.
7315Function <code>error</code> never returns.
7316
7317
7318<p>
7319Usually, <code>error</code> adds some information about the error position
7320at the beginning of the message, if the message is a string.
7321The <code>level</code> argument specifies how to get the error position.
7322With level&nbsp;1 (the default), the error position is where the
7323<code>error</code> function was called.
7324Level&nbsp;2 points the error to where the function
7325that called <code>error</code> was called; and so on.
7326Passing a level&nbsp;0 avoids the addition of error position information
7327to the message.
7328
7329
7330
7331
7332<p>
7333<hr><h3><a name="pdf-_G"><code>_G</code></a></h3>
7334A global variable (not a function) that
7335holds the global environment (see <a href="#2.2">&sect;2.2</a>).
7336Lua itself does not use this variable;
7337changing its value does not affect any environment,
7338nor vice versa.
7339
7340
7341
7342
7343<p>
7344<hr><h3><a name="pdf-getmetatable"><code>getmetatable (object)</code></a></h3>
7345
7346
7347<p>
7348If <code>object</code> does not have a metatable, returns <b>nil</b>.
7349Otherwise,
7350if the object's metatable has a <code>__metatable</code> field,
7351returns the associated value.
7352Otherwise, returns the metatable of the given object.
7353
7354
7355
7356
7357<p>
7358<hr><h3><a name="pdf-ipairs"><code>ipairs (t)</code></a></h3>
7359
7360
7361<p>
7362Returns three values (an iterator function, the table <code>t</code>, and 0)
7363so that the construction
7364
7365<pre>
7366     for i,v in ipairs(t) do <em>body</em> end
7367</pre><p>
7368will iterate over the key&ndash;value pairs
7369(<code>1,t[1]</code>), (<code>2,t[2]</code>), ...,
7370up to the first nil value.
7371
7372
7373
7374
7375<p>
7376<hr><h3><a name="pdf-load"><code>load (chunk [, chunkname [, mode [, env]]])</code></a></h3>
7377
7378
7379<p>
7380Loads a chunk.
7381
7382
7383<p>
7384If <code>chunk</code> is a string, the chunk is this string.
7385If <code>chunk</code> is a function,
7386<code>load</code> calls it repeatedly to get the chunk pieces.
7387Each call to <code>chunk</code> must return a string that concatenates
7388with previous results.
7389A return of an empty string, <b>nil</b>, or no value signals the end of the chunk.
7390
7391
7392<p>
7393If there are no syntactic errors,
7394returns the compiled chunk as a function;
7395otherwise, returns <b>nil</b> plus the error message.
7396
7397
7398<p>
7399If the resulting function has upvalues,
7400the first upvalue is set to the value of <code>env</code>,
7401if that parameter is given,
7402or to the value of the global environment.
7403Other upvalues are initialized with <b>nil</b>.
7404(When you load a main chunk,
7405the resulting function will always have exactly one upvalue,
7406the <code>_ENV</code> variable (see <a href="#2.2">&sect;2.2</a>).
7407However,
7408when you load a binary chunk created from a function (see <a href="#pdf-string.dump"><code>string.dump</code></a>),
7409the resulting function can have an arbitrary number of upvalues.)
7410All upvalues are fresh, that is,
7411they are not shared with any other function.
7412
7413
7414<p>
7415<code>chunkname</code> is used as the name of the chunk for error messages
7416and debug information (see <a href="#4.9">&sect;4.9</a>).
7417When absent,
7418it defaults to <code>chunk</code>, if <code>chunk</code> is a string,
7419or to "<code>=(load)</code>" otherwise.
7420
7421
7422<p>
7423The string <code>mode</code> controls whether the chunk can be text or binary
7424(that is, a precompiled chunk).
7425It may be the string "<code>b</code>" (only binary chunks),
7426"<code>t</code>" (only text chunks),
7427or "<code>bt</code>" (both binary and text).
7428The default is "<code>bt</code>".
7429
7430
7431<p>
7432Lua does not check the consistency of binary chunks.
7433Maliciously crafted binary chunks can crash
7434the interpreter.
7435
7436
7437
7438
7439<p>
7440<hr><h3><a name="pdf-loadfile"><code>loadfile ([filename [, mode [, env]]])</code></a></h3>
7441
7442
7443<p>
7444Similar to <a href="#pdf-load"><code>load</code></a>,
7445but gets the chunk from file <code>filename</code>
7446or from the standard input,
7447if no file name is given.
7448
7449
7450
7451
7452<p>
7453<hr><h3><a name="pdf-next"><code>next (table [, index])</code></a></h3>
7454
7455
7456<p>
7457Allows a program to traverse all fields of a table.
7458Its first argument is a table and its second argument
7459is an index in this table.
7460<code>next</code> returns the next index of the table
7461and its associated value.
7462When called with <b>nil</b> as its second argument,
7463<code>next</code> returns an initial index
7464and its associated value.
7465When called with the last index,
7466or with <b>nil</b> in an empty table,
7467<code>next</code> returns <b>nil</b>.
7468If the second argument is absent, then it is interpreted as <b>nil</b>.
7469In particular,
7470you can use <code>next(t)</code> to check whether a table is empty.
7471
7472
7473<p>
7474The order in which the indices are enumerated is not specified,
7475<em>even for numeric indices</em>.
7476(To traverse a table in numerical order,
7477use a numerical <b>for</b>.)
7478
7479
7480<p>
7481The behavior of <code>next</code> is undefined if,
7482during the traversal,
7483you assign any value to a non-existent field in the table.
7484You may however modify existing fields.
7485In particular, you may clear existing fields.
7486
7487
7488
7489
7490<p>
7491<hr><h3><a name="pdf-pairs"><code>pairs (t)</code></a></h3>
7492
7493
7494<p>
7495If <code>t</code> has a metamethod <code>__pairs</code>,
7496calls it with <code>t</code> as argument and returns the first three
7497results from the call.
7498
7499
7500<p>
7501Otherwise,
7502returns three values: the <a href="#pdf-next"><code>next</code></a> function, the table <code>t</code>, and <b>nil</b>,
7503so that the construction
7504
7505<pre>
7506     for k,v in pairs(t) do <em>body</em> end
7507</pre><p>
7508will iterate over all key&ndash;value pairs of table <code>t</code>.
7509
7510
7511<p>
7512See function <a href="#pdf-next"><code>next</code></a> for the caveats of modifying
7513the table during its traversal.
7514
7515
7516
7517
7518<p>
7519<hr><h3><a name="pdf-pcall"><code>pcall (f [, arg1, &middot;&middot;&middot;])</code></a></h3>
7520
7521
7522<p>
7523Calls function <code>f</code> with
7524the given arguments in <em>protected mode</em>.
7525This means that any error inside&nbsp;<code>f</code> is not propagated;
7526instead, <code>pcall</code> catches the error
7527and returns a status code.
7528Its first result is the status code (a boolean),
7529which is true if the call succeeds without errors.
7530In such case, <code>pcall</code> also returns all results from the call,
7531after this first result.
7532In case of any error, <code>pcall</code> returns <b>false</b> plus the error message.
7533
7534
7535
7536
7537<p>
7538<hr><h3><a name="pdf-print"><code>print (&middot;&middot;&middot;)</code></a></h3>
7539Receives any number of arguments
7540and prints their values to <code>stdout</code>,
7541using the <a href="#pdf-tostring"><code>tostring</code></a> function to convert each argument to a string.
7542<code>print</code> is not intended for formatted output,
7543but only as a quick way to show a value,
7544for instance for debugging.
7545For complete control over the output,
7546use <a href="#pdf-string.format"><code>string.format</code></a> and <a href="#pdf-io.write"><code>io.write</code></a>.
7547
7548
7549
7550
7551<p>
7552<hr><h3><a name="pdf-rawequal"><code>rawequal (v1, v2)</code></a></h3>
7553Checks whether <code>v1</code> is equal to <code>v2</code>,
7554without invoking the <code>__eq</code> metamethod.
7555Returns a boolean.
7556
7557
7558
7559
7560<p>
7561<hr><h3><a name="pdf-rawget"><code>rawget (table, index)</code></a></h3>
7562Gets the real value of <code>table[index]</code>,
7563without invoking the <code>__index</code> metamethod.
7564<code>table</code> must be a table;
7565<code>index</code> may be any value.
7566
7567
7568
7569
7570<p>
7571<hr><h3><a name="pdf-rawlen"><code>rawlen (v)</code></a></h3>
7572Returns the length of the object <code>v</code>,
7573which must be a table or a string,
7574without invoking the <code>__len</code> metamethod.
7575Returns an integer.
7576
7577
7578
7579
7580<p>
7581<hr><h3><a name="pdf-rawset"><code>rawset (table, index, value)</code></a></h3>
7582Sets the real value of <code>table[index]</code> to <code>value</code>,
7583without invoking the <code>__newindex</code> metamethod.
7584<code>table</code> must be a table,
7585<code>index</code> any value different from <b>nil</b> and NaN,
7586and <code>value</code> any Lua value.
7587
7588
7589<p>
7590This function returns <code>table</code>.
7591
7592
7593
7594
7595<p>
7596<hr><h3><a name="pdf-select"><code>select (index, &middot;&middot;&middot;)</code></a></h3>
7597
7598
7599<p>
7600If <code>index</code> is a number,
7601returns all arguments after argument number <code>index</code>;
7602a negative number indexes from the end (-1 is the last argument).
7603Otherwise, <code>index</code> must be the string <code>"#"</code>,
7604and <code>select</code> returns the total number of extra arguments it received.
7605
7606
7607
7608
7609<p>
7610<hr><h3><a name="pdf-setmetatable"><code>setmetatable (table, metatable)</code></a></h3>
7611
7612
7613<p>
7614Sets the metatable for the given table.
7615(To change the metatable of other types from Lua code,
7616you must use the debug library (<a href="#6.10">&sect;6.10</a>).)
7617If <code>metatable</code> is <b>nil</b>,
7618removes the metatable of the given table.
7619If the original metatable has a <code>__metatable</code> field,
7620raises an error.
7621
7622
7623<p>
7624This function returns <code>table</code>.
7625
7626
7627
7628
7629<p>
7630<hr><h3><a name="pdf-tonumber"><code>tonumber (e [, base])</code></a></h3>
7631
7632
7633<p>
7634When called with no <code>base</code>,
7635<code>tonumber</code> tries to convert its argument to a number.
7636If the argument is already a number or
7637a string convertible to a number,
7638then <code>tonumber</code> returns this number;
7639otherwise, it returns <b>nil</b>.
7640
7641
7642<p>
7643The conversion of strings can result in integers or floats,
7644according to the lexical conventions of Lua (see <a href="#3.1">&sect;3.1</a>).
7645(The string may have leading and trailing spaces and a sign.)
7646
7647
7648<p>
7649When called with <code>base</code>,
7650then <code>e</code> must be a string to be interpreted as
7651an integer numeral in that base.
7652The base may be any integer between 2 and 36, inclusive.
7653In bases above&nbsp;10, the letter '<code>A</code>' (in either upper or lower case)
7654represents&nbsp;10, '<code>B</code>' represents&nbsp;11, and so forth,
7655with '<code>Z</code>' representing 35.
7656If the string <code>e</code> is not a valid numeral in the given base,
7657the function returns <b>nil</b>.
7658
7659
7660
7661
7662<p>
7663<hr><h3><a name="pdf-tostring"><code>tostring (v)</code></a></h3>
7664Receives a value of any type and
7665converts it to a string in a human-readable format.
7666(For complete control of how numbers are converted,
7667use <a href="#pdf-string.format"><code>string.format</code></a>.)
7668
7669
7670<p>
7671If the metatable of <code>v</code> has a <code>__tostring</code> field,
7672then <code>tostring</code> calls the corresponding value
7673with <code>v</code> as argument,
7674and uses the result of the call as its result.
7675
7676
7677
7678
7679<p>
7680<hr><h3><a name="pdf-type"><code>type (v)</code></a></h3>
7681Returns the type of its only argument, coded as a string.
7682The possible results of this function are
7683"<code>nil</code>" (a string, not the value <b>nil</b>),
7684"<code>number</code>",
7685"<code>string</code>",
7686"<code>boolean</code>",
7687"<code>table</code>",
7688"<code>function</code>",
7689"<code>thread</code>",
7690and "<code>userdata</code>".
7691
7692
7693
7694
7695<p>
7696<hr><h3><a name="pdf-_VERSION"><code>_VERSION</code></a></h3>
7697
7698
7699<p>
7700A global variable (not a function) that
7701holds a string containing the running Lua version.
7702The current value of this variable is "<code>Lua 5.3</code>".
7703
7704
7705
7706
7707<p>
7708<hr><h3><a name="pdf-xpcall"><code>xpcall (f, msgh [, arg1, &middot;&middot;&middot;])</code></a></h3>
7709
7710
7711<p>
7712This function is similar to <a href="#pdf-pcall"><code>pcall</code></a>,
7713except that it sets a new message handler <code>msgh</code>.
7714
7715
7716
7717
7718
7719
7720
7721<h2>6.2 &ndash; <a name="6.2">Coroutine Manipulation</a></h2>
7722
7723<p>
7724This library comprises the operations to manipulate coroutines,
7725which come inside the table <a name="pdf-coroutine"><code>coroutine</code></a>.
7726See <a href="#2.6">&sect;2.6</a> for a general description of coroutines.
7727
7728
7729<p>
7730<hr><h3><a name="pdf-coroutine.create"><code>coroutine.create (f)</code></a></h3>
7731
7732
7733<p>
7734Creates a new coroutine, with body <code>f</code>.
7735<code>f</code> must be a function.
7736Returns this new coroutine,
7737an object with type <code>"thread"</code>.
7738
7739
7740
7741
7742<p>
7743<hr><h3><a name="pdf-coroutine.isyieldable"><code>coroutine.isyieldable ()</code></a></h3>
7744
7745
7746<p>
7747Returns true when the running coroutine can yield.
7748
7749
7750<p>
7751A running coroutine is yieldable if it is not the main thread and
7752it is not inside a non-yieldable C&nbsp;function.
7753
7754
7755
7756
7757<p>
7758<hr><h3><a name="pdf-coroutine.resume"><code>coroutine.resume (co [, val1, &middot;&middot;&middot;])</code></a></h3>
7759
7760
7761<p>
7762Starts or continues the execution of coroutine <code>co</code>.
7763The first time you resume a coroutine,
7764it starts running its body.
7765The values <code>val1</code>, ... are passed
7766as the arguments to the body function.
7767If the coroutine has yielded,
7768<code>resume</code> restarts it;
7769the values <code>val1</code>, ... are passed
7770as the results from the yield.
7771
7772
7773<p>
7774If the coroutine runs without any errors,
7775<code>resume</code> returns <b>true</b> plus any values passed to <code>yield</code>
7776(when the coroutine yields) or any values returned by the body function
7777(when the coroutine terminates).
7778If there is any error,
7779<code>resume</code> returns <b>false</b> plus the error message.
7780
7781
7782
7783
7784<p>
7785<hr><h3><a name="pdf-coroutine.running"><code>coroutine.running ()</code></a></h3>
7786
7787
7788<p>
7789Returns the running coroutine plus a boolean,
7790true when the running coroutine is the main one.
7791
7792
7793
7794
7795<p>
7796<hr><h3><a name="pdf-coroutine.status"><code>coroutine.status (co)</code></a></h3>
7797
7798
7799<p>
7800Returns the status of coroutine <code>co</code>, as a string:
7801<code>"running"</code>,
7802if the coroutine is running (that is, it called <code>status</code>);
7803<code>"suspended"</code>, if the coroutine is suspended in a call to <code>yield</code>,
7804or if it has not started running yet;
7805<code>"normal"</code> if the coroutine is active but not running
7806(that is, it has resumed another coroutine);
7807and <code>"dead"</code> if the coroutine has finished its body function,
7808or if it has stopped with an error.
7809
7810
7811
7812
7813<p>
7814<hr><h3><a name="pdf-coroutine.wrap"><code>coroutine.wrap (f)</code></a></h3>
7815
7816
7817<p>
7818Creates a new coroutine, with body <code>f</code>.
7819<code>f</code> must be a function.
7820Returns a function that resumes the coroutine each time it is called.
7821Any arguments passed to the function behave as the
7822extra arguments to <code>resume</code>.
7823Returns the same values returned by <code>resume</code>,
7824except the first boolean.
7825In case of error, propagates the error.
7826
7827
7828
7829
7830<p>
7831<hr><h3><a name="pdf-coroutine.yield"><code>coroutine.yield (&middot;&middot;&middot;)</code></a></h3>
7832
7833
7834<p>
7835Suspends the execution of the calling coroutine.
7836Any arguments to <code>yield</code> are passed as extra results to <code>resume</code>.
7837
7838
7839
7840
7841
7842
7843
7844<h2>6.3 &ndash; <a name="6.3">Modules</a></h2>
7845
7846<p>
7847The package library provides basic
7848facilities for loading modules in Lua.
7849It exports one function directly in the global environment:
7850<a href="#pdf-require"><code>require</code></a>.
7851Everything else is exported in a table <a name="pdf-package"><code>package</code></a>.
7852
7853
7854<p>
7855<hr><h3><a name="pdf-require"><code>require (modname)</code></a></h3>
7856
7857
7858<p>
7859Loads the given module.
7860The function starts by looking into the <a href="#pdf-package.loaded"><code>package.loaded</code></a> table
7861to determine whether <code>modname</code> is already loaded.
7862If it is, then <code>require</code> returns the value stored
7863at <code>package.loaded[modname]</code>.
7864Otherwise, it tries to find a <em>loader</em> for the module.
7865
7866
7867<p>
7868To find a loader,
7869<code>require</code> is guided by the <a href="#pdf-package.searchers"><code>package.searchers</code></a> sequence.
7870By changing this sequence,
7871we can change how <code>require</code> looks for a module.
7872The following explanation is based on the default configuration
7873for <a href="#pdf-package.searchers"><code>package.searchers</code></a>.
7874
7875
7876<p>
7877First <code>require</code> queries <code>package.preload[modname]</code>.
7878If it has a value,
7879this value (which must be a function) is the loader.
7880Otherwise <code>require</code> searches for a Lua loader using the
7881path stored in <a href="#pdf-package.path"><code>package.path</code></a>.
7882If that also fails, it searches for a C&nbsp;loader using the
7883path stored in <a href="#pdf-package.cpath"><code>package.cpath</code></a>.
7884If that also fails,
7885it tries an <em>all-in-one</em> loader (see <a href="#pdf-package.searchers"><code>package.searchers</code></a>).
7886
7887
7888<p>
7889Once a loader is found,
7890<code>require</code> calls the loader with two arguments:
7891<code>modname</code> and an extra value dependent on how it got the loader.
7892(If the loader came from a file,
7893this extra value is the file name.)
7894If the loader returns any non-nil value,
7895<code>require</code> assigns the returned value to <code>package.loaded[modname]</code>.
7896If the loader does not return a non-nil value and
7897has not assigned any value to <code>package.loaded[modname]</code>,
7898then <code>require</code> assigns <b>true</b> to this entry.
7899In any case, <code>require</code> returns the
7900final value of <code>package.loaded[modname]</code>.
7901
7902
7903<p>
7904If there is any error loading or running the module,
7905or if it cannot find any loader for the module,
7906then <code>require</code> raises an error.
7907
7908
7909
7910
7911<p>
7912<hr><h3><a name="pdf-package.config"><code>package.config</code></a></h3>
7913
7914
7915<p>
7916A string describing some compile-time configurations for packages.
7917This string is a sequence of lines:
7918
7919<ul>
7920
7921<li>The first line is the directory separator string.
7922Default is '<code>\</code>' for Windows and '<code>/</code>' for all other systems.</li>
7923
7924<li>The second line is the character that separates templates in a path.
7925Default is '<code>;</code>'.</li>
7926
7927<li>The third line is the string that marks the
7928substitution points in a template.
7929Default is '<code>?</code>'.</li>
7930
7931<li>The fourth line is a string that, in a path in Windows,
7932is replaced by the executable's directory.
7933Default is '<code>!</code>'.</li>
7934
7935<li>The fifth line is a mark to ignore all text after it
7936when building the <code>luaopen_</code> function name.
7937Default is '<code>-</code>'.</li>
7938
7939</ul>
7940
7941
7942
7943<p>
7944<hr><h3><a name="pdf-package.cpath"><code>package.cpath</code></a></h3>
7945
7946
7947<p>
7948The path used by <a href="#pdf-require"><code>require</code></a> to search for a C&nbsp;loader.
7949
7950
7951<p>
7952Lua initializes the C&nbsp;path <a href="#pdf-package.cpath"><code>package.cpath</code></a> in the same way
7953it initializes the Lua path <a href="#pdf-package.path"><code>package.path</code></a>,
7954using the environment variable <a name="pdf-LUA_CPATH_5_3"><code>LUA_CPATH_5_3</code></a>,
7955or the environment variable <a name="pdf-LUA_CPATH"><code>LUA_CPATH</code></a>,
7956or a default path defined in <code>luaconf.h</code>.
7957
7958
7959
7960
7961<p>
7962<hr><h3><a name="pdf-package.loaded"><code>package.loaded</code></a></h3>
7963
7964
7965<p>
7966A table used by <a href="#pdf-require"><code>require</code></a> to control which
7967modules are already loaded.
7968When you require a module <code>modname</code> and
7969<code>package.loaded[modname]</code> is not false,
7970<a href="#pdf-require"><code>require</code></a> simply returns the value stored there.
7971
7972
7973<p>
7974This variable is only a reference to the real table;
7975assignments to this variable do not change the
7976table used by <a href="#pdf-require"><code>require</code></a>.
7977
7978
7979
7980
7981<p>
7982<hr><h3><a name="pdf-package.loadlib"><code>package.loadlib (libname, funcname)</code></a></h3>
7983
7984
7985<p>
7986Dynamically links the host program with the C&nbsp;library <code>libname</code>.
7987
7988
7989<p>
7990If <code>funcname</code> is "<code>*</code>",
7991then it only links with the library,
7992making the symbols exported by the library
7993available to other dynamically linked libraries.
7994Otherwise,
7995it looks for a function <code>funcname</code> inside the library
7996and returns this function as a C&nbsp;function.
7997So, <code>funcname</code> must follow the <a href="#lua_CFunction"><code>lua_CFunction</code></a> prototype
7998(see <a href="#lua_CFunction"><code>lua_CFunction</code></a>).
7999
8000
8001<p>
8002This is a low-level function.
8003It completely bypasses the package and module system.
8004Unlike <a href="#pdf-require"><code>require</code></a>,
8005it does not perform any path searching and
8006does not automatically adds extensions.
8007<code>libname</code> must be the complete file name of the C&nbsp;library,
8008including if necessary a path and an extension.
8009<code>funcname</code> must be the exact name exported by the C&nbsp;library
8010(which may depend on the C&nbsp;compiler and linker used).
8011
8012
8013<p>
8014This function is not supported by Standard&nbsp;C.
8015As such, it is only available on some platforms
8016(Windows, Linux, Mac OS X, Solaris, BSD,
8017plus other Unix systems that support the <code>dlfcn</code> standard).
8018
8019
8020
8021
8022<p>
8023<hr><h3><a name="pdf-package.path"><code>package.path</code></a></h3>
8024
8025
8026<p>
8027The path used by <a href="#pdf-require"><code>require</code></a> to search for a Lua loader.
8028
8029
8030<p>
8031At start-up, Lua initializes this variable with
8032the value of the environment variable <a name="pdf-LUA_PATH_5_3"><code>LUA_PATH_5_3</code></a> or
8033the environment variable <a name="pdf-LUA_PATH"><code>LUA_PATH</code></a> or
8034with a default path defined in <code>luaconf.h</code>,
8035if those environment variables are not defined.
8036Any "<code>;;</code>" in the value of the environment variable
8037is replaced by the default path.
8038
8039
8040
8041
8042<p>
8043<hr><h3><a name="pdf-package.preload"><code>package.preload</code></a></h3>
8044
8045
8046<p>
8047A table to store loaders for specific modules
8048(see <a href="#pdf-require"><code>require</code></a>).
8049
8050
8051<p>
8052This variable is only a reference to the real table;
8053assignments to this variable do not change the
8054table used by <a href="#pdf-require"><code>require</code></a>.
8055
8056
8057
8058
8059<p>
8060<hr><h3><a name="pdf-package.searchers"><code>package.searchers</code></a></h3>
8061
8062
8063<p>
8064A table used by <a href="#pdf-require"><code>require</code></a> to control how to load modules.
8065
8066
8067<p>
8068Each entry in this table is a <em>searcher function</em>.
8069When looking for a module,
8070<a href="#pdf-require"><code>require</code></a> calls each of these searchers in ascending order,
8071with the module name (the argument given to <a href="#pdf-require"><code>require</code></a>) as its
8072sole parameter.
8073The function can return another function (the module <em>loader</em>)
8074plus an extra value that will be passed to that loader,
8075or a string explaining why it did not find that module
8076(or <b>nil</b> if it has nothing to say).
8077
8078
8079<p>
8080Lua initializes this table with four searcher functions.
8081
8082
8083<p>
8084The first searcher simply looks for a loader in the
8085<a href="#pdf-package.preload"><code>package.preload</code></a> table.
8086
8087
8088<p>
8089The second searcher looks for a loader as a Lua library,
8090using the path stored at <a href="#pdf-package.path"><code>package.path</code></a>.
8091The search is done as described in function <a href="#pdf-package.searchpath"><code>package.searchpath</code></a>.
8092
8093
8094<p>
8095The third searcher looks for a loader as a C&nbsp;library,
8096using the path given by the variable <a href="#pdf-package.cpath"><code>package.cpath</code></a>.
8097Again,
8098the search is done as described in function <a href="#pdf-package.searchpath"><code>package.searchpath</code></a>.
8099For instance,
8100if the C&nbsp;path is the string
8101
8102<pre>
8103     "./?.so;./?.dll;/usr/local/?/init.so"
8104</pre><p>
8105the searcher for module <code>foo</code>
8106will try to open the files <code>./foo.so</code>, <code>./foo.dll</code>,
8107and <code>/usr/local/foo/init.so</code>, in that order.
8108Once it finds a C&nbsp;library,
8109this searcher first uses a dynamic link facility to link the
8110application with the library.
8111Then it tries to find a C&nbsp;function inside the library to
8112be used as the loader.
8113The name of this C&nbsp;function is the string "<code>luaopen_</code>"
8114concatenated with a copy of the module name where each dot
8115is replaced by an underscore.
8116Moreover, if the module name has a hyphen,
8117its suffix after (and including) the first hyphen is removed.
8118For instance, if the module name is <code>a.b.c-v2.1</code>,
8119the function name will be <code>luaopen_a_b_c</code>.
8120
8121
8122<p>
8123The fourth searcher tries an <em>all-in-one loader</em>.
8124It searches the C&nbsp;path for a library for
8125the root name of the given module.
8126For instance, when requiring <code>a.b.c</code>,
8127it will search for a C&nbsp;library for <code>a</code>.
8128If found, it looks into it for an open function for
8129the submodule;
8130in our example, that would be <code>luaopen_a_b_c</code>.
8131With this facility, a package can pack several C&nbsp;submodules
8132into one single library,
8133with each submodule keeping its original open function.
8134
8135
8136<p>
8137All searchers except the first one (preload) return as the extra value
8138the file name where the module was found,
8139as returned by <a href="#pdf-package.searchpath"><code>package.searchpath</code></a>.
8140The first searcher returns no extra value.
8141
8142
8143
8144
8145<p>
8146<hr><h3><a name="pdf-package.searchpath"><code>package.searchpath (name, path [, sep [, rep]])</code></a></h3>
8147
8148
8149<p>
8150Searches for the given <code>name</code> in the given <code>path</code>.
8151
8152
8153<p>
8154A path is a string containing a sequence of
8155<em>templates</em> separated by semicolons.
8156For each template,
8157the function replaces each interrogation mark (if any)
8158in the template with a copy of <code>name</code>
8159wherein all occurrences of <code>sep</code>
8160(a dot, by default)
8161were replaced by <code>rep</code>
8162(the system's directory separator, by default),
8163and then tries to open the resulting file name.
8164
8165
8166<p>
8167For instance, if the path is the string
8168
8169<pre>
8170     "./?.lua;./?.lc;/usr/local/?/init.lua"
8171</pre><p>
8172the search for the name <code>foo.a</code>
8173will try to open the files
8174<code>./foo/a.lua</code>, <code>./foo/a.lc</code>, and
8175<code>/usr/local/foo/a/init.lua</code>, in that order.
8176
8177
8178<p>
8179Returns the resulting name of the first file that it can
8180open in read mode (after closing the file),
8181or <b>nil</b> plus an error message if none succeeds.
8182(This error message lists all file names it tried to open.)
8183
8184
8185
8186
8187
8188
8189
8190<h2>6.4 &ndash; <a name="6.4">String Manipulation</a></h2>
8191
8192<p>
8193This library provides generic functions for string manipulation,
8194such as finding and extracting substrings, and pattern matching.
8195When indexing a string in Lua, the first character is at position&nbsp;1
8196(not at&nbsp;0, as in C).
8197Indices are allowed to be negative and are interpreted as indexing backwards,
8198from the end of the string.
8199Thus, the last character is at position -1, and so on.
8200
8201
8202<p>
8203The string library provides all its functions inside the table
8204<a name="pdf-string"><code>string</code></a>.
8205It also sets a metatable for strings
8206where the <code>__index</code> field points to the <code>string</code> table.
8207Therefore, you can use the string functions in object-oriented style.
8208For instance, <code>string.byte(s,i)</code>
8209can be written as <code>s:byte(i)</code>.
8210
8211
8212<p>
8213The string library assumes one-byte character encodings.
8214
8215
8216<p>
8217<hr><h3><a name="pdf-string.byte"><code>string.byte (s [, i [, j]])</code></a></h3>
8218Returns the internal numeric codes of the characters <code>s[i]</code>,
8219<code>s[i+1]</code>, ..., <code>s[j]</code>.
8220The default value for <code>i</code> is&nbsp;1;
8221the default value for <code>j</code> is&nbsp;<code>i</code>.
8222These indices are corrected
8223following the same rules of function <a href="#pdf-string.sub"><code>string.sub</code></a>.
8224
8225
8226<p>
8227Numeric codes are not necessarily portable across platforms.
8228
8229
8230
8231
8232<p>
8233<hr><h3><a name="pdf-string.char"><code>string.char (&middot;&middot;&middot;)</code></a></h3>
8234Receives zero or more integers.
8235Returns a string with length equal to the number of arguments,
8236in which each character has the internal numeric code equal
8237to its corresponding argument.
8238
8239
8240<p>
8241Numeric codes are not necessarily portable across platforms.
8242
8243
8244
8245
8246<p>
8247<hr><h3><a name="pdf-string.dump"><code>string.dump (function [, strip])</code></a></h3>
8248
8249
8250<p>
8251Returns a string containing a binary representation
8252(a <em>binary chunk</em>)
8253of the given function,
8254so that a later <a href="#pdf-load"><code>load</code></a> on this string returns
8255a copy of the function (but with new upvalues).
8256If <code>strip</code> is a true value,
8257the binary representation may not include all debug information
8258about the function,
8259to save space.
8260
8261
8262<p>
8263Functions with upvalues have only their number of upvalues saved.
8264When (re)loaded,
8265those upvalues receive fresh instances containing <b>nil</b>.
8266(You can use the debug library to serialize
8267and reload the upvalues of a function
8268in a way adequate to your needs.)
8269
8270
8271
8272
8273<p>
8274<hr><h3><a name="pdf-string.find"><code>string.find (s, pattern [, init [, plain]])</code></a></h3>
8275
8276
8277<p>
8278Looks for the first match of
8279<code>pattern</code> (see <a href="#6.4.1">&sect;6.4.1</a>) in the string <code>s</code>.
8280If it finds a match, then <code>find</code> returns the indices of&nbsp;<code>s</code>
8281where this occurrence starts and ends;
8282otherwise, it returns <b>nil</b>.
8283A third, optional numeric argument <code>init</code> specifies
8284where to start the search;
8285its default value is&nbsp;1 and can be negative.
8286A value of <b>true</b> as a fourth, optional argument <code>plain</code>
8287turns off the pattern matching facilities,
8288so the function does a plain "find substring" operation,
8289with no characters in <code>pattern</code> being considered magic.
8290Note that if <code>plain</code> is given, then <code>init</code> must be given as well.
8291
8292
8293<p>
8294If the pattern has captures,
8295then in a successful match
8296the captured values are also returned,
8297after the two indices.
8298
8299
8300
8301
8302<p>
8303<hr><h3><a name="pdf-string.format"><code>string.format (formatstring, &middot;&middot;&middot;)</code></a></h3>
8304
8305
8306<p>
8307Returns a formatted version of its variable number of arguments
8308following the description given in its first argument (which must be a string).
8309The format string follows the same rules as the ISO&nbsp;C function <code>sprintf</code>.
8310The only differences are that the options/modifiers
8311<code>*</code>, <code>h</code>, <code>L</code>, <code>l</code>, <code>n</code>,
8312and <code>p</code> are not supported
8313and that there is an extra option, <code>q</code>.
8314
8315
8316<p>
8317The <code>q</code> option formats a string between double quotes,
8318using escape sequences when necessary to ensure that
8319it can safely be read back by the Lua interpreter.
8320For instance, the call
8321
8322<pre>
8323     string.format('%q', 'a string with "quotes" and \n new line')
8324</pre><p>
8325may produce the string:
8326
8327<pre>
8328     "a string with \"quotes\" and \
8329      new line"
8330</pre>
8331
8332<p>
8333Options
8334<code>A</code>, <code>a</code>, <code>E</code>, <code>e</code>, <code>f</code>,
8335<code>G</code>, and <code>g</code> all expect a number as argument.
8336Options <code>c</code>, <code>d</code>,
8337<code>i</code>, <code>o</code>, <code>u</code>, <code>X</code>, and <code>x</code>
8338expect an integer.
8339When Lua is compiled with a C89 compiler,
8340options <code>A</code> and <code>a</code> (hexadecimal floats)
8341do not support any modifier (flags, width, length).
8342
8343
8344<p>
8345Option <code>s</code> expects a string;
8346if its argument is not a string,
8347it is converted to one following the same rules of <a href="#pdf-tostring"><code>tostring</code></a>.
8348If the option has any modifier (flags, width, length),
8349the string argument should not contain embedded zeros.
8350
8351
8352
8353
8354<p>
8355<hr><h3><a name="pdf-string.gmatch"><code>string.gmatch (s, pattern)</code></a></h3>
8356Returns an iterator function that,
8357each time it is called,
8358returns the next captures from <code>pattern</code> (see <a href="#6.4.1">&sect;6.4.1</a>)
8359over the string <code>s</code>.
8360If <code>pattern</code> specifies no captures,
8361then the whole match is produced in each call.
8362
8363
8364<p>
8365As an example, the following loop
8366will iterate over all the words from string <code>s</code>,
8367printing one per line:
8368
8369<pre>
8370     s = "hello world from Lua"
8371     for w in string.gmatch(s, "%a+") do
8372       print(w)
8373     end
8374</pre><p>
8375The next example collects all pairs <code>key=value</code> from the
8376given string into a table:
8377
8378<pre>
8379     t = {}
8380     s = "from=world, to=Lua"
8381     for k, v in string.gmatch(s, "(%w+)=(%w+)") do
8382       t[k] = v
8383     end
8384</pre>
8385
8386<p>
8387For this function, a caret '<code>^</code>' at the start of a pattern does not
8388work as an anchor, as this would prevent the iteration.
8389
8390
8391
8392
8393<p>
8394<hr><h3><a name="pdf-string.gsub"><code>string.gsub (s, pattern, repl [, n])</code></a></h3>
8395Returns a copy of <code>s</code>
8396in which all (or the first <code>n</code>, if given)
8397occurrences of the <code>pattern</code> (see <a href="#6.4.1">&sect;6.4.1</a>) have been
8398replaced by a replacement string specified by <code>repl</code>,
8399which can be a string, a table, or a function.
8400<code>gsub</code> also returns, as its second value,
8401the total number of matches that occurred.
8402The name <code>gsub</code> comes from <em>Global SUBstitution</em>.
8403
8404
8405<p>
8406If <code>repl</code> is a string, then its value is used for replacement.
8407The character&nbsp;<code>%</code> works as an escape character:
8408any sequence in <code>repl</code> of the form <code>%<em>d</em></code>,
8409with <em>d</em> between 1 and 9,
8410stands for the value of the <em>d</em>-th captured substring.
8411The sequence <code>%0</code> stands for the whole match.
8412The sequence <code>%%</code> stands for a single&nbsp;<code>%</code>.
8413
8414
8415<p>
8416If <code>repl</code> is a table, then the table is queried for every match,
8417using the first capture as the key.
8418
8419
8420<p>
8421If <code>repl</code> is a function, then this function is called every time a
8422match occurs, with all captured substrings passed as arguments,
8423in order.
8424
8425
8426<p>
8427In any case,
8428if the pattern specifies no captures,
8429then it behaves as if the whole pattern was inside a capture.
8430
8431
8432<p>
8433If the value returned by the table query or by the function call
8434is a string or a number,
8435then it is used as the replacement string;
8436otherwise, if it is <b>false</b> or <b>nil</b>,
8437then there is no replacement
8438(that is, the original match is kept in the string).
8439
8440
8441<p>
8442Here are some examples:
8443
8444<pre>
8445     x = string.gsub("hello world", "(%w+)", "%1 %1")
8446     --&gt; x="hello hello world world"
8447
8448     x = string.gsub("hello world", "%w+", "%0 %0", 1)
8449     --&gt; x="hello hello world"
8450
8451     x = string.gsub("hello world from Lua", "(%w+)%s*(%w+)", "%2 %1")
8452     --&gt; x="world hello Lua from"
8453
8454     x = string.gsub("home = $HOME, user = $USER", "%$(%w+)", os.getenv)
8455     --&gt; x="home = /home/roberto, user = roberto"
8456
8457     x = string.gsub("4+5 = $return 4+5$", "%$(.-)%$", function (s)
8458           return load(s)()
8459         end)
8460     --&gt; x="4+5 = 9"
8461
8462     local t = {name="lua", version="5.3"}
8463     x = string.gsub("$name-$version.tar.gz", "%$(%w+)", t)
8464     --&gt; x="lua-5.3.tar.gz"
8465</pre>
8466
8467
8468
8469<p>
8470<hr><h3><a name="pdf-string.len"><code>string.len (s)</code></a></h3>
8471Receives a string and returns its length.
8472The empty string <code>""</code> has length 0.
8473Embedded zeros are counted,
8474so <code>"a\000bc\000"</code> has length 5.
8475
8476
8477
8478
8479<p>
8480<hr><h3><a name="pdf-string.lower"><code>string.lower (s)</code></a></h3>
8481Receives a string and returns a copy of this string with all
8482uppercase letters changed to lowercase.
8483All other characters are left unchanged.
8484The definition of what an uppercase letter is depends on the current locale.
8485
8486
8487
8488
8489<p>
8490<hr><h3><a name="pdf-string.match"><code>string.match (s, pattern [, init])</code></a></h3>
8491Looks for the first <em>match</em> of
8492<code>pattern</code> (see <a href="#6.4.1">&sect;6.4.1</a>) in the string <code>s</code>.
8493If it finds one, then <code>match</code> returns
8494the captures from the pattern;
8495otherwise it returns <b>nil</b>.
8496If <code>pattern</code> specifies no captures,
8497then the whole match is returned.
8498A third, optional numeric argument <code>init</code> specifies
8499where to start the search;
8500its default value is&nbsp;1 and can be negative.
8501
8502
8503
8504
8505<p>
8506<hr><h3><a name="pdf-string.pack"><code>string.pack (fmt, v1, v2, &middot;&middot;&middot;)</code></a></h3>
8507
8508
8509<p>
8510Returns a binary string containing the values <code>v1</code>, <code>v2</code>, etc.
8511packed (that is, serialized in binary form)
8512according to the format string <code>fmt</code> (see <a href="#6.4.2">&sect;6.4.2</a>).
8513
8514
8515
8516
8517<p>
8518<hr><h3><a name="pdf-string.packsize"><code>string.packsize (fmt)</code></a></h3>
8519
8520
8521<p>
8522Returns the size of a string resulting from <a href="#pdf-string.pack"><code>string.pack</code></a>
8523with the given format.
8524The format string cannot have the variable-length options
8525'<code>s</code>' or '<code>z</code>' (see <a href="#6.4.2">&sect;6.4.2</a>).
8526
8527
8528
8529
8530<p>
8531<hr><h3><a name="pdf-string.rep"><code>string.rep (s, n [, sep])</code></a></h3>
8532Returns a string that is the concatenation of <code>n</code> copies of
8533the string <code>s</code> separated by the string <code>sep</code>.
8534The default value for <code>sep</code> is the empty string
8535(that is, no separator).
8536Returns the empty string if <code>n</code> is not positive.
8537
8538
8539<p>
8540(Note that it is very easy to exhaust the memory of your machine
8541with a single call to this function.)
8542
8543
8544
8545
8546<p>
8547<hr><h3><a name="pdf-string.reverse"><code>string.reverse (s)</code></a></h3>
8548Returns a string that is the string <code>s</code> reversed.
8549
8550
8551
8552
8553<p>
8554<hr><h3><a name="pdf-string.sub"><code>string.sub (s, i [, j])</code></a></h3>
8555Returns the substring of <code>s</code> that
8556starts at <code>i</code>  and continues until <code>j</code>;
8557<code>i</code> and <code>j</code> can be negative.
8558If <code>j</code> is absent, then it is assumed to be equal to -1
8559(which is the same as the string length).
8560In particular,
8561the call <code>string.sub(s,1,j)</code> returns a prefix of <code>s</code>
8562with length <code>j</code>,
8563and <code>string.sub(s, -i)</code> (for a positive <code>i</code>)
8564returns a suffix of <code>s</code>
8565with length <code>i</code>.
8566
8567
8568<p>
8569If, after the translation of negative indices,
8570<code>i</code> is less than 1,
8571it is corrected to 1.
8572If <code>j</code> is greater than the string length,
8573it is corrected to that length.
8574If, after these corrections,
8575<code>i</code> is greater than <code>j</code>,
8576the function returns the empty string.
8577
8578
8579
8580
8581<p>
8582<hr><h3><a name="pdf-string.unpack"><code>string.unpack (fmt, s [, pos])</code></a></h3>
8583
8584
8585<p>
8586Returns the values packed in string <code>s</code> (see <a href="#pdf-string.pack"><code>string.pack</code></a>)
8587according to the format string <code>fmt</code> (see <a href="#6.4.2">&sect;6.4.2</a>).
8588An optional <code>pos</code> marks where
8589to start reading in <code>s</code> (default is 1).
8590After the read values,
8591this function also returns the index of the first unread byte in <code>s</code>.
8592
8593
8594
8595
8596<p>
8597<hr><h3><a name="pdf-string.upper"><code>string.upper (s)</code></a></h3>
8598Receives a string and returns a copy of this string with all
8599lowercase letters changed to uppercase.
8600All other characters are left unchanged.
8601The definition of what a lowercase letter is depends on the current locale.
8602
8603
8604
8605
8606
8607<h3>6.4.1 &ndash; <a name="6.4.1">Patterns</a></h3>
8608
8609<p>
8610Patterns in Lua are described by regular strings,
8611which are interpreted as patterns by the pattern-matching functions
8612<a href="#pdf-string.find"><code>string.find</code></a>,
8613<a href="#pdf-string.gmatch"><code>string.gmatch</code></a>,
8614<a href="#pdf-string.gsub"><code>string.gsub</code></a>,
8615and <a href="#pdf-string.match"><code>string.match</code></a>.
8616This section describes the syntax and the meaning
8617(that is, what they match) of these strings.
8618
8619
8620
8621<h4>Character Class:</h4><p>
8622A <em>character class</em> is used to represent a set of characters.
8623The following combinations are allowed in describing a character class:
8624
8625<ul>
8626
8627<li><b><em>x</em>: </b>
8628(where <em>x</em> is not one of the <em>magic characters</em>
8629<code>^$()%.[]*+-?</code>)
8630represents the character <em>x</em> itself.
8631</li>
8632
8633<li><b><code>.</code>: </b> (a dot) represents all characters.</li>
8634
8635<li><b><code>%a</code>: </b> represents all letters.</li>
8636
8637<li><b><code>%c</code>: </b> represents all control characters.</li>
8638
8639<li><b><code>%d</code>: </b> represents all digits.</li>
8640
8641<li><b><code>%g</code>: </b> represents all printable characters except space.</li>
8642
8643<li><b><code>%l</code>: </b> represents all lowercase letters.</li>
8644
8645<li><b><code>%p</code>: </b> represents all punctuation characters.</li>
8646
8647<li><b><code>%s</code>: </b> represents all space characters.</li>
8648
8649<li><b><code>%u</code>: </b> represents all uppercase letters.</li>
8650
8651<li><b><code>%w</code>: </b> represents all alphanumeric characters.</li>
8652
8653<li><b><code>%x</code>: </b> represents all hexadecimal digits.</li>
8654
8655<li><b><code>%<em>x</em></code>: </b> (where <em>x</em> is any non-alphanumeric character)
8656represents the character <em>x</em>.
8657This is the standard way to escape the magic characters.
8658Any non-alphanumeric character
8659(including all punctuation characters, even the non-magical)
8660can be preceded by a '<code>%</code>'
8661when used to represent itself in a pattern.
8662</li>
8663
8664<li><b><code>[<em>set</em>]</code>: </b>
8665represents the class which is the union of all
8666characters in <em>set</em>.
8667A range of characters can be specified by
8668separating the end characters of the range,
8669in ascending order, with a '<code>-</code>'.
8670All classes <code>%</code><em>x</em> described above can also be used as
8671components in <em>set</em>.
8672All other characters in <em>set</em> represent themselves.
8673For example, <code>[%w_]</code> (or <code>[_%w]</code>)
8674represents all alphanumeric characters plus the underscore,
8675<code>[0-7]</code> represents the octal digits,
8676and <code>[0-7%l%-]</code> represents the octal digits plus
8677the lowercase letters plus the '<code>-</code>' character.
8678
8679
8680<p>
8681You can put a closing square bracket in a set
8682by positioning it as the first character in the set.
8683You can put an hyphen in a set
8684by positioning it as the first or the last character in the set.
8685(You can also use an escape for both cases.)
8686
8687
8688<p>
8689The interaction between ranges and classes is not defined.
8690Therefore, patterns like <code>[%a-z]</code> or <code>[a-%%]</code>
8691have no meaning.
8692</li>
8693
8694<li><b><code>[^<em>set</em>]</code>: </b>
8695represents the complement of <em>set</em>,
8696where <em>set</em> is interpreted as above.
8697</li>
8698
8699</ul><p>
8700For all classes represented by single letters (<code>%a</code>, <code>%c</code>, etc.),
8701the corresponding uppercase letter represents the complement of the class.
8702For instance, <code>%S</code> represents all non-space characters.
8703
8704
8705<p>
8706The definitions of letter, space, and other character groups
8707depend on the current locale.
8708In particular, the class <code>[a-z]</code> may not be equivalent to <code>%l</code>.
8709
8710
8711
8712
8713
8714<h4>Pattern Item:</h4><p>
8715A <em>pattern item</em> can be
8716
8717<ul>
8718
8719<li>
8720a single character class,
8721which matches any single character in the class;
8722</li>
8723
8724<li>
8725a single character class followed by '<code>*</code>',
8726which matches zero or more repetitions of characters in the class.
8727These repetition items will always match the longest possible sequence;
8728</li>
8729
8730<li>
8731a single character class followed by '<code>+</code>',
8732which matches one or more repetitions of characters in the class.
8733These repetition items will always match the longest possible sequence;
8734</li>
8735
8736<li>
8737a single character class followed by '<code>-</code>',
8738which also matches zero or more repetitions of characters in the class.
8739Unlike '<code>*</code>',
8740these repetition items will always match the shortest possible sequence;
8741</li>
8742
8743<li>
8744a single character class followed by '<code>?</code>',
8745which matches zero or one occurrence of a character in the class.
8746It always matches one occurrence if possible;
8747</li>
8748
8749<li>
8750<code>%<em>n</em></code>, for <em>n</em> between 1 and 9;
8751such item matches a substring equal to the <em>n</em>-th captured string
8752(see below);
8753</li>
8754
8755<li>
8756<code>%b<em>xy</em></code>, where <em>x</em> and <em>y</em> are two distinct characters;
8757such item matches strings that start with&nbsp;<em>x</em>, end with&nbsp;<em>y</em>,
8758and where the <em>x</em> and <em>y</em> are <em>balanced</em>.
8759This means that, if one reads the string from left to right,
8760counting <em>+1</em> for an <em>x</em> and <em>-1</em> for a <em>y</em>,
8761the ending <em>y</em> is the first <em>y</em> where the count reaches 0.
8762For instance, the item <code>%b()</code> matches expressions with
8763balanced parentheses.
8764</li>
8765
8766<li>
8767<code>%f[<em>set</em>]</code>, a <em>frontier pattern</em>;
8768such item matches an empty string at any position such that
8769the next character belongs to <em>set</em>
8770and the previous character does not belong to <em>set</em>.
8771The set <em>set</em> is interpreted as previously described.
8772The beginning and the end of the subject are handled as if
8773they were the character '<code>\0</code>'.
8774</li>
8775
8776</ul>
8777
8778
8779
8780
8781<h4>Pattern:</h4><p>
8782A <em>pattern</em> is a sequence of pattern items.
8783A caret '<code>^</code>' at the beginning of a pattern anchors the match at the
8784beginning of the subject string.
8785A '<code>$</code>' at the end of a pattern anchors the match at the
8786end of the subject string.
8787At other positions,
8788'<code>^</code>' and '<code>$</code>' have no special meaning and represent themselves.
8789
8790
8791
8792
8793
8794<h4>Captures:</h4><p>
8795A pattern can contain sub-patterns enclosed in parentheses;
8796they describe <em>captures</em>.
8797When a match succeeds, the substrings of the subject string
8798that match captures are stored (<em>captured</em>) for future use.
8799Captures are numbered according to their left parentheses.
8800For instance, in the pattern <code>"(a*(.)%w(%s*))"</code>,
8801the part of the string matching <code>"a*(.)%w(%s*)"</code> is
8802stored as the first capture (and therefore has number&nbsp;1);
8803the character matching "<code>.</code>" is captured with number&nbsp;2,
8804and the part matching "<code>%s*</code>" has number&nbsp;3.
8805
8806
8807<p>
8808As a special case, the empty capture <code>()</code> captures
8809the current string position (a number).
8810For instance, if we apply the pattern <code>"()aa()"</code> on the
8811string <code>"flaaap"</code>, there will be two captures: 3&nbsp;and&nbsp;5.
8812
8813
8814
8815
8816
8817
8818
8819<h3>6.4.2 &ndash; <a name="6.4.2">Format Strings for Pack and Unpack</a></h3>
8820
8821<p>
8822The first argument to <a href="#pdf-string.pack"><code>string.pack</code></a>,
8823<a href="#pdf-string.packsize"><code>string.packsize</code></a>, and <a href="#pdf-string.unpack"><code>string.unpack</code></a>
8824is a format string,
8825which describes the layout of the structure being created or read.
8826
8827
8828<p>
8829A format string is a sequence of conversion options.
8830The conversion options are as follows:
8831
8832<ul>
8833<li><b><code>&lt;</code>: </b>sets little endian</li>
8834<li><b><code>&gt;</code>: </b>sets big endian</li>
8835<li><b><code>=</code>: </b>sets native endian</li>
8836<li><b><code>![<em>n</em>]</code>: </b>sets maximum alignment to <code>n</code>
8837(default is native alignment)</li>
8838<li><b><code>b</code>: </b>a signed byte (<code>char</code>)</li>
8839<li><b><code>B</code>: </b>an unsigned byte (<code>char</code>)</li>
8840<li><b><code>h</code>: </b>a signed <code>short</code> (native size)</li>
8841<li><b><code>H</code>: </b>an unsigned <code>short</code> (native size)</li>
8842<li><b><code>l</code>: </b>a signed <code>long</code> (native size)</li>
8843<li><b><code>L</code>: </b>an unsigned <code>long</code> (native size)</li>
8844<li><b><code>j</code>: </b>a <code>lua_Integer</code></li>
8845<li><b><code>J</code>: </b>a <code>lua_Unsigned</code></li>
8846<li><b><code>T</code>: </b>a <code>size_t</code> (native size)</li>
8847<li><b><code>i[<em>n</em>]</code>: </b>a signed <code>int</code> with <code>n</code> bytes
8848(default is native size)</li>
8849<li><b><code>I[<em>n</em>]</code>: </b>an unsigned <code>int</code> with <code>n</code> bytes
8850(default is native size)</li>
8851<li><b><code>f</code>: </b>a <code>float</code> (native size)</li>
8852<li><b><code>d</code>: </b>a <code>double</code> (native size)</li>
8853<li><b><code>n</code>: </b>a <code>lua_Number</code></li>
8854<li><b><code>c<em>n</em></code>: </b>a fixed-sized string with <code>n</code> bytes</li>
8855<li><b><code>z</code>: </b>a zero-terminated string</li>
8856<li><b><code>s[<em>n</em>]</code>: </b>a string preceded by its length
8857coded as an unsigned integer with <code>n</code> bytes
8858(default is a <code>size_t</code>)</li>
8859<li><b><code>x</code>: </b>one byte of padding</li>
8860<li><b><code>X<em>op</em></code>: </b>an empty item that aligns
8861according to option <code>op</code>
8862(which is otherwise ignored)</li>
8863<li><b>'<code> </code>': </b>(empty space) ignored</li>
8864</ul><p>
8865(A "<code>[<em>n</em>]</code>" means an optional integral numeral.)
8866Except for padding, spaces, and configurations
8867(options "<code>xX &lt;=&gt;!</code>"),
8868each option corresponds to an argument (in <a href="#pdf-string.pack"><code>string.pack</code></a>)
8869or a result (in <a href="#pdf-string.unpack"><code>string.unpack</code></a>).
8870
8871
8872<p>
8873For options "<code>!<em>n</em></code>", "<code>s<em>n</em></code>", "<code>i<em>n</em></code>", and "<code>I<em>n</em></code>",
8874<code>n</code> can be any integer between 1 and 16.
8875All integral options check overflows;
8876<a href="#pdf-string.pack"><code>string.pack</code></a> checks whether the given value fits in the given size;
8877<a href="#pdf-string.unpack"><code>string.unpack</code></a> checks whether the read value fits in a Lua integer.
8878
8879
8880<p>
8881Any format string starts as if prefixed by "<code>!1=</code>",
8882that is,
8883with maximum alignment of 1 (no alignment)
8884and native endianness.
8885
8886
8887<p>
8888Alignment works as follows:
8889For each option,
8890the format gets extra padding until the data starts
8891at an offset that is a multiple of the minimum between the
8892option size and the maximum alignment;
8893this minimum must be a power of 2.
8894Options "<code>c</code>" and "<code>z</code>" are not aligned;
8895option "<code>s</code>" follows the alignment of its starting integer.
8896
8897
8898<p>
8899All padding is filled with zeros by <a href="#pdf-string.pack"><code>string.pack</code></a>
8900(and ignored by <a href="#pdf-string.unpack"><code>string.unpack</code></a>).
8901
8902
8903
8904
8905
8906
8907
8908<h2>6.5 &ndash; <a name="6.5">UTF-8 Support</a></h2>
8909
8910<p>
8911This library provides basic support for UTF-8 encoding.
8912It provides all its functions inside the table <a name="pdf-utf8"><code>utf8</code></a>.
8913This library does not provide any support for Unicode other
8914than the handling of the encoding.
8915Any operation that needs the meaning of a character,
8916such as character classification, is outside its scope.
8917
8918
8919<p>
8920Unless stated otherwise,
8921all functions that expect a byte position as a parameter
8922assume that the given position is either the start of a byte sequence
8923or one plus the length of the subject string.
8924As in the string library,
8925negative indices count from the end of the string.
8926
8927
8928<p>
8929<hr><h3><a name="pdf-utf8.char"><code>utf8.char (&middot;&middot;&middot;)</code></a></h3>
8930Receives zero or more integers,
8931converts each one to its corresponding UTF-8 byte sequence
8932and returns a string with the concatenation of all these sequences.
8933
8934
8935
8936
8937<p>
8938<hr><h3><a name="pdf-utf8.charpattern"><code>utf8.charpattern</code></a></h3>
8939The pattern (a string, not a function) "<code>[\0-\x7F\xC2-\xF4][\x80-\xBF]*</code>"
8940(see <a href="#6.4.1">&sect;6.4.1</a>),
8941which matches exactly one UTF-8 byte sequence,
8942assuming that the subject is a valid UTF-8 string.
8943
8944
8945
8946
8947<p>
8948<hr><h3><a name="pdf-utf8.codes"><code>utf8.codes (s)</code></a></h3>
8949
8950
8951<p>
8952Returns values so that the construction
8953
8954<pre>
8955     for p, c in utf8.codes(s) do <em>body</em> end
8956</pre><p>
8957will iterate over all characters in string <code>s</code>,
8958with <code>p</code> being the position (in bytes) and <code>c</code> the code point
8959of each character.
8960It raises an error if it meets any invalid byte sequence.
8961
8962
8963
8964
8965<p>
8966<hr><h3><a name="pdf-utf8.codepoint"><code>utf8.codepoint (s [, i [, j]])</code></a></h3>
8967Returns the codepoints (as integers) from all characters in <code>s</code>
8968that start between byte position <code>i</code> and <code>j</code> (both included).
8969The default for <code>i</code> is 1 and for <code>j</code> is <code>i</code>.
8970It raises an error if it meets any invalid byte sequence.
8971
8972
8973
8974
8975<p>
8976<hr><h3><a name="pdf-utf8.len"><code>utf8.len (s [, i [, j]])</code></a></h3>
8977Returns the number of UTF-8 characters in string <code>s</code>
8978that start between positions <code>i</code> and <code>j</code> (both inclusive).
8979The default for <code>i</code> is 1 and for <code>j</code> is -1.
8980If it finds any invalid byte sequence,
8981returns a false value plus the position of the first invalid byte.
8982
8983
8984
8985
8986<p>
8987<hr><h3><a name="pdf-utf8.offset"><code>utf8.offset (s, n [, i])</code></a></h3>
8988Returns the position (in bytes) where the encoding of the
8989<code>n</code>-th character of <code>s</code>
8990(counting from position <code>i</code>) starts.
8991A negative <code>n</code> gets characters before position <code>i</code>.
8992The default for <code>i</code> is 1 when <code>n</code> is non-negative
8993and <code>#s + 1</code> otherwise,
8994so that <code>utf8.offset(s, -n)</code> gets the offset of the
8995<code>n</code>-th character from the end of the string.
8996If the specified character is neither in the subject
8997nor right after its end,
8998the function returns <b>nil</b>.
8999
9000
9001<p>
9002As a special case,
9003when <code>n</code> is 0 the function returns the start of the encoding
9004of the character that contains the <code>i</code>-th byte of <code>s</code>.
9005
9006
9007<p>
9008This function assumes that <code>s</code> is a valid UTF-8 string.
9009
9010
9011
9012
9013
9014
9015
9016<h2>6.6 &ndash; <a name="6.6">Table Manipulation</a></h2>
9017
9018<p>
9019This library provides generic functions for table manipulation.
9020It provides all its functions inside the table <a name="pdf-table"><code>table</code></a>.
9021
9022
9023<p>
9024Remember that, whenever an operation needs the length of a table,
9025all caveats about the length operator apply (see <a href="#3.4.7">&sect;3.4.7</a>).
9026All functions ignore non-numeric keys
9027in the tables given as arguments.
9028
9029
9030<p>
9031<hr><h3><a name="pdf-table.concat"><code>table.concat (list [, sep [, i [, j]]])</code></a></h3>
9032
9033
9034<p>
9035Given a list where all elements are strings or numbers,
9036returns the string <code>list[i]..sep..list[i+1] &middot;&middot;&middot; sep..list[j]</code>.
9037The default value for <code>sep</code> is the empty string,
9038the default for <code>i</code> is 1,
9039and the default for <code>j</code> is <code>#list</code>.
9040If <code>i</code> is greater than <code>j</code>, returns the empty string.
9041
9042
9043
9044
9045<p>
9046<hr><h3><a name="pdf-table.insert"><code>table.insert (list, [pos,] value)</code></a></h3>
9047
9048
9049<p>
9050Inserts element <code>value</code> at position <code>pos</code> in <code>list</code>,
9051shifting up the elements
9052<code>list[pos], list[pos+1], &middot;&middot;&middot;, list[#list]</code>.
9053The default value for <code>pos</code> is <code>#list+1</code>,
9054so that a call <code>table.insert(t,x)</code> inserts <code>x</code> at the end
9055of list <code>t</code>.
9056
9057
9058
9059
9060<p>
9061<hr><h3><a name="pdf-table.move"><code>table.move (a1, f, e, t [,a2])</code></a></h3>
9062
9063
9064<p>
9065Moves elements from table <code>a1</code> to table <code>a2</code>,
9066performing the equivalent to the following
9067multiple assignment:
9068<code>a2[t],&middot;&middot;&middot; = a1[f],&middot;&middot;&middot;,a1[e]</code>.
9069The default for <code>a2</code> is <code>a1</code>.
9070The destination range can overlap with the source range.
9071The number of elements to be moved must fit in a Lua integer.
9072
9073
9074<p>
9075Returns the destination table <code>a2</code>.
9076
9077
9078
9079
9080<p>
9081<hr><h3><a name="pdf-table.pack"><code>table.pack (&middot;&middot;&middot;)</code></a></h3>
9082
9083
9084<p>
9085Returns a new table with all parameters stored into keys 1, 2, etc.
9086and with a field "<code>n</code>" with the total number of parameters.
9087Note that the resulting table may not be a sequence.
9088
9089
9090
9091
9092<p>
9093<hr><h3><a name="pdf-table.remove"><code>table.remove (list [, pos])</code></a></h3>
9094
9095
9096<p>
9097Removes from <code>list</code> the element at position <code>pos</code>,
9098returning the value of the removed element.
9099When <code>pos</code> is an integer between 1 and <code>#list</code>,
9100it shifts down the elements
9101<code>list[pos+1], list[pos+2], &middot;&middot;&middot;, list[#list]</code>
9102and erases element <code>list[#list]</code>;
9103The index <code>pos</code> can also be 0 when <code>#list</code> is 0,
9104or <code>#list + 1</code>;
9105in those cases, the function erases the element <code>list[pos]</code>.
9106
9107
9108<p>
9109The default value for <code>pos</code> is <code>#list</code>,
9110so that a call <code>table.remove(l)</code> removes the last element
9111of list <code>l</code>.
9112
9113
9114
9115
9116<p>
9117<hr><h3><a name="pdf-table.sort"><code>table.sort (list [, comp])</code></a></h3>
9118
9119
9120<p>
9121Sorts list elements in a given order, <em>in-place</em>,
9122from <code>list[1]</code> to <code>list[#list]</code>.
9123If <code>comp</code> is given,
9124then it must be a function that receives two list elements
9125and returns true when the first element must come
9126before the second in the final order
9127(so that, after the sort,
9128<code>i &lt; j</code> implies <code>not comp(list[j],list[i])</code>).
9129If <code>comp</code> is not given,
9130then the standard Lua operator <code>&lt;</code> is used instead.
9131
9132
9133<p>
9134Note that the <code>comp</code> function must define
9135a strict partial order over the elements in the list;
9136that is, it must be asymmetric and transitive.
9137Otherwise, no valid sort may be possible.
9138
9139
9140<p>
9141The sort algorithm is not stable:
9142elements considered equal by the given order
9143may have their relative positions changed by the sort.
9144
9145
9146
9147
9148<p>
9149<hr><h3><a name="pdf-table.unpack"><code>table.unpack (list [, i [, j]])</code></a></h3>
9150
9151
9152<p>
9153Returns the elements from the given list.
9154This function is equivalent to
9155
9156<pre>
9157     return list[i], list[i+1], &middot;&middot;&middot;, list[j]
9158</pre><p>
9159By default, <code>i</code> is&nbsp;1 and <code>j</code> is <code>#list</code>.
9160
9161
9162
9163
9164
9165
9166
9167<h2>6.7 &ndash; <a name="6.7">Mathematical Functions</a></h2>
9168
9169<p>
9170This library provides basic mathematical functions.
9171It provides all its functions and constants inside the table <a name="pdf-math"><code>math</code></a>.
9172Functions with the annotation "<code>integer/float</code>" give
9173integer results for integer arguments
9174and float results for float (or mixed) arguments.
9175Rounding functions
9176(<a href="#pdf-math.ceil"><code>math.ceil</code></a>, <a href="#pdf-math.floor"><code>math.floor</code></a>, and <a href="#pdf-math.modf"><code>math.modf</code></a>)
9177return an integer when the result fits in the range of an integer,
9178or a float otherwise.
9179
9180
9181<p>
9182<hr><h3><a name="pdf-math.abs"><code>math.abs (x)</code></a></h3>
9183
9184
9185<p>
9186Returns the absolute value of <code>x</code>. (integer/float)
9187
9188
9189
9190
9191<p>
9192<hr><h3><a name="pdf-math.acos"><code>math.acos (x)</code></a></h3>
9193
9194
9195<p>
9196Returns the arc cosine of <code>x</code> (in radians).
9197
9198
9199
9200
9201<p>
9202<hr><h3><a name="pdf-math.asin"><code>math.asin (x)</code></a></h3>
9203
9204
9205<p>
9206Returns the arc sine of <code>x</code> (in radians).
9207
9208
9209
9210
9211<p>
9212<hr><h3><a name="pdf-math.atan"><code>math.atan (y [, x])</code></a></h3>
9213
9214
9215<p>
9216
9217Returns the arc tangent of <code>y/x</code> (in radians),
9218but uses the signs of both parameters to find the
9219quadrant of the result.
9220(It also handles correctly the case of <code>x</code> being zero.)
9221
9222
9223<p>
9224The default value for <code>x</code> is 1,
9225so that the call <code>math.atan(y)</code>
9226returns the arc tangent of <code>y</code>.
9227
9228
9229
9230
9231<p>
9232<hr><h3><a name="pdf-math.ceil"><code>math.ceil (x)</code></a></h3>
9233
9234
9235<p>
9236Returns the smallest integral value larger than or equal to <code>x</code>.
9237
9238
9239
9240
9241<p>
9242<hr><h3><a name="pdf-math.cos"><code>math.cos (x)</code></a></h3>
9243
9244
9245<p>
9246Returns the cosine of <code>x</code> (assumed to be in radians).
9247
9248
9249
9250
9251<p>
9252<hr><h3><a name="pdf-math.deg"><code>math.deg (x)</code></a></h3>
9253
9254
9255<p>
9256Converts the angle <code>x</code> from radians to degrees.
9257
9258
9259
9260
9261<p>
9262<hr><h3><a name="pdf-math.exp"><code>math.exp (x)</code></a></h3>
9263
9264
9265<p>
9266Returns the value <em>e<sup>x</sup></em>
9267(where <code>e</code> is the base of natural logarithms).
9268
9269
9270
9271
9272<p>
9273<hr><h3><a name="pdf-math.floor"><code>math.floor (x)</code></a></h3>
9274
9275
9276<p>
9277Returns the largest integral value smaller than or equal to <code>x</code>.
9278
9279
9280
9281
9282<p>
9283<hr><h3><a name="pdf-math.fmod"><code>math.fmod (x, y)</code></a></h3>
9284
9285
9286<p>
9287Returns the remainder of the division of <code>x</code> by <code>y</code>
9288that rounds the quotient towards zero. (integer/float)
9289
9290
9291
9292
9293<p>
9294<hr><h3><a name="pdf-math.huge"><code>math.huge</code></a></h3>
9295
9296
9297<p>
9298The float value <code>HUGE_VAL</code>,
9299a value larger than any other numeric value.
9300
9301
9302
9303
9304<p>
9305<hr><h3><a name="pdf-math.log"><code>math.log (x [, base])</code></a></h3>
9306
9307
9308<p>
9309Returns the logarithm of <code>x</code> in the given base.
9310The default for <code>base</code> is <em>e</em>
9311(so that the function returns the natural logarithm of <code>x</code>).
9312
9313
9314
9315
9316<p>
9317<hr><h3><a name="pdf-math.max"><code>math.max (x, &middot;&middot;&middot;)</code></a></h3>
9318
9319
9320<p>
9321Returns the argument with the maximum value,
9322according to the Lua operator <code>&lt;</code>. (integer/float)
9323
9324
9325
9326
9327<p>
9328<hr><h3><a name="pdf-math.maxinteger"><code>math.maxinteger</code></a></h3>
9329An integer with the maximum value for an integer.
9330
9331
9332
9333
9334<p>
9335<hr><h3><a name="pdf-math.min"><code>math.min (x, &middot;&middot;&middot;)</code></a></h3>
9336
9337
9338<p>
9339Returns the argument with the minimum value,
9340according to the Lua operator <code>&lt;</code>. (integer/float)
9341
9342
9343
9344
9345<p>
9346<hr><h3><a name="pdf-math.mininteger"><code>math.mininteger</code></a></h3>
9347An integer with the minimum value for an integer.
9348
9349
9350
9351
9352<p>
9353<hr><h3><a name="pdf-math.modf"><code>math.modf (x)</code></a></h3>
9354
9355
9356<p>
9357Returns the integral part of <code>x</code> and the fractional part of <code>x</code>.
9358Its second result is always a float.
9359
9360
9361
9362
9363<p>
9364<hr><h3><a name="pdf-math.pi"><code>math.pi</code></a></h3>
9365
9366
9367<p>
9368The value of <em>&pi;</em>.
9369
9370
9371
9372
9373<p>
9374<hr><h3><a name="pdf-math.rad"><code>math.rad (x)</code></a></h3>
9375
9376
9377<p>
9378Converts the angle <code>x</code> from degrees to radians.
9379
9380
9381
9382
9383<p>
9384<hr><h3><a name="pdf-math.random"><code>math.random ([m [, n]])</code></a></h3>
9385
9386
9387<p>
9388When called without arguments,
9389returns a pseudo-random float with uniform distribution
9390in the range  <em>[0,1)</em>.
9391When called with two integers <code>m</code> and <code>n</code>,
9392<code>math.random</code> returns a pseudo-random integer
9393with uniform distribution in the range <em>[m, n]</em>.
9394(The value <em>n-m</em> cannot be negative and must fit in a Lua integer.)
9395The call <code>math.random(n)</code> is equivalent to <code>math.random(1,n)</code>.
9396
9397
9398<p>
9399This function is an interface to the underling
9400pseudo-random generator function provided by C.
9401
9402
9403
9404
9405<p>
9406<hr><h3><a name="pdf-math.randomseed"><code>math.randomseed (x)</code></a></h3>
9407
9408
9409<p>
9410Sets <code>x</code> as the "seed"
9411for the pseudo-random generator:
9412equal seeds produce equal sequences of numbers.
9413
9414
9415
9416
9417<p>
9418<hr><h3><a name="pdf-math.sin"><code>math.sin (x)</code></a></h3>
9419
9420
9421<p>
9422Returns the sine of <code>x</code> (assumed to be in radians).
9423
9424
9425
9426
9427<p>
9428<hr><h3><a name="pdf-math.sqrt"><code>math.sqrt (x)</code></a></h3>
9429
9430
9431<p>
9432Returns the square root of <code>x</code>.
9433(You can also use the expression <code>x^0.5</code> to compute this value.)
9434
9435
9436
9437
9438<p>
9439<hr><h3><a name="pdf-math.tan"><code>math.tan (x)</code></a></h3>
9440
9441
9442<p>
9443Returns the tangent of <code>x</code> (assumed to be in radians).
9444
9445
9446
9447
9448<p>
9449<hr><h3><a name="pdf-math.tointeger"><code>math.tointeger (x)</code></a></h3>
9450
9451
9452<p>
9453If the value <code>x</code> is convertible to an integer,
9454returns that integer.
9455Otherwise, returns <b>nil</b>.
9456
9457
9458
9459
9460<p>
9461<hr><h3><a name="pdf-math.type"><code>math.type (x)</code></a></h3>
9462
9463
9464<p>
9465Returns "<code>integer</code>" if <code>x</code> is an integer,
9466"<code>float</code>" if it is a float,
9467or <b>nil</b> if <code>x</code> is not a number.
9468
9469
9470
9471
9472<p>
9473<hr><h3><a name="pdf-math.ult"><code>math.ult (m, n)</code></a></h3>
9474
9475
9476<p>
9477Returns a boolean,
9478true if and only if integer <code>m</code> is below integer <code>n</code> when
9479they are compared as unsigned integers.
9480
9481
9482
9483
9484
9485
9486
9487<h2>6.8 &ndash; <a name="6.8">Input and Output Facilities</a></h2>
9488
9489<p>
9490The I/O library provides two different styles for file manipulation.
9491The first one uses implicit file handles;
9492that is, there are operations to set a default input file and a
9493default output file,
9494and all input/output operations are over these default files.
9495The second style uses explicit file handles.
9496
9497
9498<p>
9499When using implicit file handles,
9500all operations are supplied by table <a name="pdf-io"><code>io</code></a>.
9501When using explicit file handles,
9502the operation <a href="#pdf-io.open"><code>io.open</code></a> returns a file handle
9503and then all operations are supplied as methods of the file handle.
9504
9505
9506<p>
9507The table <code>io</code> also provides
9508three predefined file handles with their usual meanings from C:
9509<a name="pdf-io.stdin"><code>io.stdin</code></a>, <a name="pdf-io.stdout"><code>io.stdout</code></a>, and <a name="pdf-io.stderr"><code>io.stderr</code></a>.
9510The I/O library never closes these files.
9511
9512
9513<p>
9514Unless otherwise stated,
9515all I/O functions return <b>nil</b> on failure
9516(plus an error message as a second result and
9517a system-dependent error code as a third result)
9518and some value different from <b>nil</b> on success.
9519On non-POSIX systems,
9520the computation of the error message and error code
9521in case of errors
9522may be not thread safe,
9523because they rely on the global C variable <code>errno</code>.
9524
9525
9526<p>
9527<hr><h3><a name="pdf-io.close"><code>io.close ([file])</code></a></h3>
9528
9529
9530<p>
9531Equivalent to <code>file:close()</code>.
9532Without a <code>file</code>, closes the default output file.
9533
9534
9535
9536
9537<p>
9538<hr><h3><a name="pdf-io.flush"><code>io.flush ()</code></a></h3>
9539
9540
9541<p>
9542Equivalent to <code>io.output():flush()</code>.
9543
9544
9545
9546
9547<p>
9548<hr><h3><a name="pdf-io.input"><code>io.input ([file])</code></a></h3>
9549
9550
9551<p>
9552When called with a file name, it opens the named file (in text mode),
9553and sets its handle as the default input file.
9554When called with a file handle,
9555it simply sets this file handle as the default input file.
9556When called without parameters,
9557it returns the current default input file.
9558
9559
9560<p>
9561In case of errors this function raises the error,
9562instead of returning an error code.
9563
9564
9565
9566
9567<p>
9568<hr><h3><a name="pdf-io.lines"><code>io.lines ([filename, &middot;&middot;&middot;])</code></a></h3>
9569
9570
9571<p>
9572Opens the given file name in read mode
9573and returns an iterator function that
9574works like <code>file:lines(&middot;&middot;&middot;)</code> over the opened file.
9575When the iterator function detects the end of file,
9576it returns no values (to finish the loop) and automatically closes the file.
9577
9578
9579<p>
9580The call <code>io.lines()</code> (with no file name) is equivalent
9581to <code>io.input():lines("*l")</code>;
9582that is, it iterates over the lines of the default input file.
9583In this case it does not close the file when the loop ends.
9584
9585
9586<p>
9587In case of errors this function raises the error,
9588instead of returning an error code.
9589
9590
9591
9592
9593<p>
9594<hr><h3><a name="pdf-io.open"><code>io.open (filename [, mode])</code></a></h3>
9595
9596
9597<p>
9598This function opens a file,
9599in the mode specified in the string <code>mode</code>.
9600In case of success,
9601it returns a new file handle.
9602
9603
9604<p>
9605The <code>mode</code> string can be any of the following:
9606
9607<ul>
9608<li><b>"<code>r</code>": </b> read mode (the default);</li>
9609<li><b>"<code>w</code>": </b> write mode;</li>
9610<li><b>"<code>a</code>": </b> append mode;</li>
9611<li><b>"<code>r+</code>": </b> update mode, all previous data is preserved;</li>
9612<li><b>"<code>w+</code>": </b> update mode, all previous data is erased;</li>
9613<li><b>"<code>a+</code>": </b> append update mode, previous data is preserved,
9614  writing is only allowed at the end of file.</li>
9615</ul><p>
9616The <code>mode</code> string can also have a '<code>b</code>' at the end,
9617which is needed in some systems to open the file in binary mode.
9618
9619
9620
9621
9622<p>
9623<hr><h3><a name="pdf-io.output"><code>io.output ([file])</code></a></h3>
9624
9625
9626<p>
9627Similar to <a href="#pdf-io.input"><code>io.input</code></a>, but operates over the default output file.
9628
9629
9630
9631
9632<p>
9633<hr><h3><a name="pdf-io.popen"><code>io.popen (prog [, mode])</code></a></h3>
9634
9635
9636<p>
9637This function is system dependent and is not available
9638on all platforms.
9639
9640
9641<p>
9642Starts program <code>prog</code> in a separated process and returns
9643a file handle that you can use to read data from this program
9644(if <code>mode</code> is <code>"r"</code>, the default)
9645or to write data to this program
9646(if <code>mode</code> is <code>"w"</code>).
9647
9648
9649
9650
9651<p>
9652<hr><h3><a name="pdf-io.read"><code>io.read (&middot;&middot;&middot;)</code></a></h3>
9653
9654
9655<p>
9656Equivalent to <code>io.input():read(&middot;&middot;&middot;)</code>.
9657
9658
9659
9660
9661<p>
9662<hr><h3><a name="pdf-io.tmpfile"><code>io.tmpfile ()</code></a></h3>
9663
9664
9665<p>
9666In case of success,
9667returns a handle for a temporary file.
9668This file is opened in update mode
9669and it is automatically removed when the program ends.
9670
9671
9672
9673
9674<p>
9675<hr><h3><a name="pdf-io.type"><code>io.type (obj)</code></a></h3>
9676
9677
9678<p>
9679Checks whether <code>obj</code> is a valid file handle.
9680Returns the string <code>"file"</code> if <code>obj</code> is an open file handle,
9681<code>"closed file"</code> if <code>obj</code> is a closed file handle,
9682or <b>nil</b> if <code>obj</code> is not a file handle.
9683
9684
9685
9686
9687<p>
9688<hr><h3><a name="pdf-io.write"><code>io.write (&middot;&middot;&middot;)</code></a></h3>
9689
9690
9691<p>
9692Equivalent to <code>io.output():write(&middot;&middot;&middot;)</code>.
9693
9694
9695
9696
9697<p>
9698<hr><h3><a name="pdf-file:close"><code>file:close ()</code></a></h3>
9699
9700
9701<p>
9702Closes <code>file</code>.
9703Note that files are automatically closed when
9704their handles are garbage collected,
9705but that takes an unpredictable amount of time to happen.
9706
9707
9708<p>
9709When closing a file handle created with <a href="#pdf-io.popen"><code>io.popen</code></a>,
9710<a href="#pdf-file:close"><code>file:close</code></a> returns the same values
9711returned by <a href="#pdf-os.execute"><code>os.execute</code></a>.
9712
9713
9714
9715
9716<p>
9717<hr><h3><a name="pdf-file:flush"><code>file:flush ()</code></a></h3>
9718
9719
9720<p>
9721Saves any written data to <code>file</code>.
9722
9723
9724
9725
9726<p>
9727<hr><h3><a name="pdf-file:lines"><code>file:lines (&middot;&middot;&middot;)</code></a></h3>
9728
9729
9730<p>
9731Returns an iterator function that,
9732each time it is called,
9733reads the file according to the given formats.
9734When no format is given,
9735uses "<code>l</code>" as a default.
9736As an example, the construction
9737
9738<pre>
9739     for c in file:lines(1) do <em>body</em> end
9740</pre><p>
9741will iterate over all characters of the file,
9742starting at the current position.
9743Unlike <a href="#pdf-io.lines"><code>io.lines</code></a>, this function does not close the file
9744when the loop ends.
9745
9746
9747<p>
9748In case of errors this function raises the error,
9749instead of returning an error code.
9750
9751
9752
9753
9754<p>
9755<hr><h3><a name="pdf-file:read"><code>file:read (&middot;&middot;&middot;)</code></a></h3>
9756
9757
9758<p>
9759Reads the file <code>file</code>,
9760according to the given formats, which specify what to read.
9761For each format,
9762the function returns a string or a number with the characters read,
9763or <b>nil</b> if it cannot read data with the specified format.
9764(In this latter case,
9765the function does not read subsequent formats.)
9766When called without formats,
9767it uses a default format that reads the next line
9768(see below).
9769
9770
9771<p>
9772The available formats are
9773
9774<ul>
9775
9776<li><b>"<code>n</code>": </b>
9777reads a numeral and returns it as a float or an integer,
9778following the lexical conventions of Lua.
9779(The numeral may have leading spaces and a sign.)
9780This format always reads the longest input sequence that
9781is a valid prefix for a numeral;
9782if that prefix does not form a valid numeral
9783(e.g., an empty string, "<code>0x</code>", or "<code>3.4e-</code>"),
9784it is discarded and the function returns <b>nil</b>.
9785</li>
9786
9787<li><b>"<code>a</code>": </b>
9788reads the whole file, starting at the current position.
9789On end of file, it returns the empty string.
9790</li>
9791
9792<li><b>"<code>l</code>": </b>
9793reads the next line skipping the end of line,
9794returning <b>nil</b> on end of file.
9795This is the default format.
9796</li>
9797
9798<li><b>"<code>L</code>": </b>
9799reads the next line keeping the end-of-line character (if present),
9800returning <b>nil</b> on end of file.
9801</li>
9802
9803<li><b><em>number</em>: </b>
9804reads a string with up to this number of bytes,
9805returning <b>nil</b> on end of file.
9806If <code>number</code> is zero,
9807it reads nothing and returns an empty string,
9808or <b>nil</b> on end of file.
9809</li>
9810
9811</ul><p>
9812The formats "<code>l</code>" and "<code>L</code>" should be used only for text files.
9813
9814
9815
9816
9817<p>
9818<hr><h3><a name="pdf-file:seek"><code>file:seek ([whence [, offset]])</code></a></h3>
9819
9820
9821<p>
9822Sets and gets the file position,
9823measured from the beginning of the file,
9824to the position given by <code>offset</code> plus a base
9825specified by the string <code>whence</code>, as follows:
9826
9827<ul>
9828<li><b>"<code>set</code>": </b> base is position 0 (beginning of the file);</li>
9829<li><b>"<code>cur</code>": </b> base is current position;</li>
9830<li><b>"<code>end</code>": </b> base is end of file;</li>
9831</ul><p>
9832In case of success, <code>seek</code> returns the final file position,
9833measured in bytes from the beginning of the file.
9834If <code>seek</code> fails, it returns <b>nil</b>,
9835plus a string describing the error.
9836
9837
9838<p>
9839The default value for <code>whence</code> is <code>"cur"</code>,
9840and for <code>offset</code> is 0.
9841Therefore, the call <code>file:seek()</code> returns the current
9842file position, without changing it;
9843the call <code>file:seek("set")</code> sets the position to the
9844beginning of the file (and returns 0);
9845and the call <code>file:seek("end")</code> sets the position to the
9846end of the file, and returns its size.
9847
9848
9849
9850
9851<p>
9852<hr><h3><a name="pdf-file:setvbuf"><code>file:setvbuf (mode [, size])</code></a></h3>
9853
9854
9855<p>
9856Sets the buffering mode for an output file.
9857There are three available modes:
9858
9859<ul>
9860
9861<li><b>"<code>no</code>": </b>
9862no buffering; the result of any output operation appears immediately.
9863</li>
9864
9865<li><b>"<code>full</code>": </b>
9866full buffering; output operation is performed only
9867when the buffer is full or when
9868you explicitly <code>flush</code> the file (see <a href="#pdf-io.flush"><code>io.flush</code></a>).
9869</li>
9870
9871<li><b>"<code>line</code>": </b>
9872line buffering; output is buffered until a newline is output
9873or there is any input from some special files
9874(such as a terminal device).
9875</li>
9876
9877</ul><p>
9878For the last two cases, <code>size</code>
9879specifies the size of the buffer, in bytes.
9880The default is an appropriate size.
9881
9882
9883
9884
9885<p>
9886<hr><h3><a name="pdf-file:write"><code>file:write (&middot;&middot;&middot;)</code></a></h3>
9887
9888
9889<p>
9890Writes the value of each of its arguments to <code>file</code>.
9891The arguments must be strings or numbers.
9892
9893
9894<p>
9895In case of success, this function returns <code>file</code>.
9896Otherwise it returns <b>nil</b> plus a string describing the error.
9897
9898
9899
9900
9901
9902
9903
9904<h2>6.9 &ndash; <a name="6.9">Operating System Facilities</a></h2>
9905
9906<p>
9907This library is implemented through table <a name="pdf-os"><code>os</code></a>.
9908
9909
9910<p>
9911<hr><h3><a name="pdf-os.clock"><code>os.clock ()</code></a></h3>
9912
9913
9914<p>
9915Returns an approximation of the amount in seconds of CPU time
9916used by the program.
9917
9918
9919
9920
9921<p>
9922<hr><h3><a name="pdf-os.date"><code>os.date ([format [, time]])</code></a></h3>
9923
9924
9925<p>
9926Returns a string or a table containing date and time,
9927formatted according to the given string <code>format</code>.
9928
9929
9930<p>
9931If the <code>time</code> argument is present,
9932this is the time to be formatted
9933(see the <a href="#pdf-os.time"><code>os.time</code></a> function for a description of this value).
9934Otherwise, <code>date</code> formats the current time.
9935
9936
9937<p>
9938If <code>format</code> starts with '<code>!</code>',
9939then the date is formatted in Coordinated Universal Time.
9940After this optional character,
9941if <code>format</code> is the string "<code>*t</code>",
9942then <code>date</code> returns a table with the following fields:
9943<code>year</code>, <code>month</code> (1&ndash;12), <code>day</code> (1&ndash;31),
9944<code>hour</code> (0&ndash;23), <code>min</code> (0&ndash;59), <code>sec</code> (0&ndash;61),
9945<code>wday</code> (weekday, 1&ndash;7, Sunday is&nbsp;1),
9946<code>yday</code> (day of the year, 1&ndash;366),
9947and <code>isdst</code> (daylight saving flag, a boolean).
9948This last field may be absent
9949if the information is not available.
9950
9951
9952<p>
9953If <code>format</code> is not "<code>*t</code>",
9954then <code>date</code> returns the date as a string,
9955formatted according to the same rules as the ISO&nbsp;C function <code>strftime</code>.
9956
9957
9958<p>
9959When called without arguments,
9960<code>date</code> returns a reasonable date and time representation that depends on
9961the host system and on the current locale.
9962(More specifically, <code>os.date()</code> is equivalent to <code>os.date("%c")</code>.)
9963
9964
9965<p>
9966On non-POSIX systems,
9967this function may be not thread safe
9968because of its reliance on C&nbsp;function <code>gmtime</code> and C&nbsp;function <code>localtime</code>.
9969
9970
9971
9972
9973<p>
9974<hr><h3><a name="pdf-os.difftime"><code>os.difftime (t2, t1)</code></a></h3>
9975
9976
9977<p>
9978Returns the difference, in seconds,
9979from time <code>t1</code> to time <code>t2</code>
9980(where the times are values returned by <a href="#pdf-os.time"><code>os.time</code></a>).
9981In POSIX, Windows, and some other systems,
9982this value is exactly <code>t2</code><em>-</em><code>t1</code>.
9983
9984
9985
9986
9987<p>
9988<hr><h3><a name="pdf-os.execute"><code>os.execute ([command])</code></a></h3>
9989
9990
9991<p>
9992This function is equivalent to the ISO&nbsp;C function <code>system</code>.
9993It passes <code>command</code> to be executed by an operating system shell.
9994Its first result is <b>true</b>
9995if the command terminated successfully,
9996or <b>nil</b> otherwise.
9997After this first result
9998the function returns a string plus a number,
9999as follows:
10000
10001<ul>
10002
10003<li><b>"<code>exit</code>": </b>
10004the command terminated normally;
10005the following number is the exit status of the command.
10006</li>
10007
10008<li><b>"<code>signal</code>": </b>
10009the command was terminated by a signal;
10010the following number is the signal that terminated the command.
10011</li>
10012
10013</ul>
10014
10015<p>
10016When called without a <code>command</code>,
10017<code>os.execute</code> returns a boolean that is true if a shell is available.
10018
10019
10020
10021
10022<p>
10023<hr><h3><a name="pdf-os.exit"><code>os.exit ([code [, close]])</code></a></h3>
10024
10025
10026<p>
10027Calls the ISO&nbsp;C function <code>exit</code> to terminate the host program.
10028If <code>code</code> is <b>true</b>,
10029the returned status is <code>EXIT_SUCCESS</code>;
10030if <code>code</code> is <b>false</b>,
10031the returned status is <code>EXIT_FAILURE</code>;
10032if <code>code</code> is a number,
10033the returned status is this number.
10034The default value for <code>code</code> is <b>true</b>.
10035
10036
10037<p>
10038If the optional second argument <code>close</code> is true,
10039closes the Lua state before exiting.
10040
10041
10042
10043
10044<p>
10045<hr><h3><a name="pdf-os.getenv"><code>os.getenv (varname)</code></a></h3>
10046
10047
10048<p>
10049Returns the value of the process environment variable <code>varname</code>,
10050or <b>nil</b> if the variable is not defined.
10051
10052
10053
10054
10055<p>
10056<hr><h3><a name="pdf-os.remove"><code>os.remove (filename)</code></a></h3>
10057
10058
10059<p>
10060Deletes the file (or empty directory, on POSIX systems)
10061with the given name.
10062If this function fails, it returns <b>nil</b>,
10063plus a string describing the error and the error code.
10064Otherwise, it returns true.
10065
10066
10067
10068
10069<p>
10070<hr><h3><a name="pdf-os.rename"><code>os.rename (oldname, newname)</code></a></h3>
10071
10072
10073<p>
10074Renames the file or directory named <code>oldname</code> to <code>newname</code>.
10075If this function fails, it returns <b>nil</b>,
10076plus a string describing the error and the error code.
10077Otherwise, it returns true.
10078
10079
10080
10081
10082<p>
10083<hr><h3><a name="pdf-os.setlocale"><code>os.setlocale (locale [, category])</code></a></h3>
10084
10085
10086<p>
10087Sets the current locale of the program.
10088<code>locale</code> is a system-dependent string specifying a locale;
10089<code>category</code> is an optional string describing which category to change:
10090<code>"all"</code>, <code>"collate"</code>, <code>"ctype"</code>,
10091<code>"monetary"</code>, <code>"numeric"</code>, or <code>"time"</code>;
10092the default category is <code>"all"</code>.
10093The function returns the name of the new locale,
10094or <b>nil</b> if the request cannot be honored.
10095
10096
10097<p>
10098If <code>locale</code> is the empty string,
10099the current locale is set to an implementation-defined native locale.
10100If <code>locale</code> is the string "<code>C</code>",
10101the current locale is set to the standard C locale.
10102
10103
10104<p>
10105When called with <b>nil</b> as the first argument,
10106this function only returns the name of the current locale
10107for the given category.
10108
10109
10110<p>
10111This function may be not thread safe
10112because of its reliance on C&nbsp;function <code>setlocale</code>.
10113
10114
10115
10116
10117<p>
10118<hr><h3><a name="pdf-os.time"><code>os.time ([table])</code></a></h3>
10119
10120
10121<p>
10122Returns the current time when called without arguments,
10123or a time representing the local date and time specified by the given table.
10124This table must have fields <code>year</code>, <code>month</code>, and <code>day</code>,
10125and may have fields
10126<code>hour</code> (default is 12),
10127<code>min</code> (default is 0),
10128<code>sec</code> (default is 0),
10129and <code>isdst</code> (default is <b>nil</b>).
10130Other fields are ignored.
10131For a description of these fields, see the <a href="#pdf-os.date"><code>os.date</code></a> function.
10132
10133
10134<p>
10135The values in these fields do not need to be inside their valid ranges.
10136For instance, if <code>sec</code> is -10,
10137it means -10 seconds from the time specified by the other fields;
10138if <code>hour</code> is 1000,
10139it means +1000 hours from the time specified by the other fields.
10140
10141
10142<p>
10143The returned value is a number, whose meaning depends on your system.
10144In POSIX, Windows, and some other systems,
10145this number counts the number
10146of seconds since some given start time (the "epoch").
10147In other systems, the meaning is not specified,
10148and the number returned by <code>time</code> can be used only as an argument to
10149<a href="#pdf-os.date"><code>os.date</code></a> and <a href="#pdf-os.difftime"><code>os.difftime</code></a>.
10150
10151
10152
10153
10154<p>
10155<hr><h3><a name="pdf-os.tmpname"><code>os.tmpname ()</code></a></h3>
10156
10157
10158<p>
10159Returns a string with a file name that can
10160be used for a temporary file.
10161The file must be explicitly opened before its use
10162and explicitly removed when no longer needed.
10163
10164
10165<p>
10166On POSIX systems,
10167this function also creates a file with that name,
10168to avoid security risks.
10169(Someone else might create the file with wrong permissions
10170in the time between getting the name and creating the file.)
10171You still have to open the file to use it
10172and to remove it (even if you do not use it).
10173
10174
10175<p>
10176When possible,
10177you may prefer to use <a href="#pdf-io.tmpfile"><code>io.tmpfile</code></a>,
10178which automatically removes the file when the program ends.
10179
10180
10181
10182
10183
10184
10185
10186<h2>6.10 &ndash; <a name="6.10">The Debug Library</a></h2>
10187
10188<p>
10189This library provides
10190the functionality of the debug interface (<a href="#4.9">&sect;4.9</a>) to Lua programs.
10191You should exert care when using this library.
10192Several of its functions
10193violate basic assumptions about Lua code
10194(e.g., that variables local to a function
10195cannot be accessed from outside;
10196that userdata metatables cannot be changed by Lua code;
10197that Lua programs do not crash)
10198and therefore can compromise otherwise secure code.
10199Moreover, some functions in this library may be slow.
10200
10201
10202<p>
10203All functions in this library are provided
10204inside the <a name="pdf-debug"><code>debug</code></a> table.
10205All functions that operate over a thread
10206have an optional first argument which is the
10207thread to operate over.
10208The default is always the current thread.
10209
10210
10211<p>
10212<hr><h3><a name="pdf-debug.debug"><code>debug.debug ()</code></a></h3>
10213
10214
10215<p>
10216Enters an interactive mode with the user,
10217running each string that the user enters.
10218Using simple commands and other debug facilities,
10219the user can inspect global and local variables,
10220change their values, evaluate expressions, and so on.
10221A line containing only the word <code>cont</code> finishes this function,
10222so that the caller continues its execution.
10223
10224
10225<p>
10226Note that commands for <code>debug.debug</code> are not lexically nested
10227within any function and so have no direct access to local variables.
10228
10229
10230
10231
10232<p>
10233<hr><h3><a name="pdf-debug.gethook"><code>debug.gethook ([thread])</code></a></h3>
10234
10235
10236<p>
10237Returns the current hook settings of the thread, as three values:
10238the current hook function, the current hook mask,
10239and the current hook count
10240(as set by the <a href="#pdf-debug.sethook"><code>debug.sethook</code></a> function).
10241
10242
10243
10244
10245<p>
10246<hr><h3><a name="pdf-debug.getinfo"><code>debug.getinfo ([thread,] f [, what])</code></a></h3>
10247
10248
10249<p>
10250Returns a table with information about a function.
10251You can give the function directly
10252or you can give a number as the value of <code>f</code>,
10253which means the function running at level <code>f</code> of the call stack
10254of the given thread:
10255level&nbsp;0 is the current function (<code>getinfo</code> itself);
10256level&nbsp;1 is the function that called <code>getinfo</code>
10257(except for tail calls, which do not count on the stack);
10258and so on.
10259If <code>f</code> is a number larger than the number of active functions,
10260then <code>getinfo</code> returns <b>nil</b>.
10261
10262
10263<p>
10264The returned table can contain all the fields returned by <a href="#lua_getinfo"><code>lua_getinfo</code></a>,
10265with the string <code>what</code> describing which fields to fill in.
10266The default for <code>what</code> is to get all information available,
10267except the table of valid lines.
10268If present,
10269the option '<code>f</code>'
10270adds a field named <code>func</code> with the function itself.
10271If present,
10272the option '<code>L</code>'
10273adds a field named <code>activelines</code> with the table of
10274valid lines.
10275
10276
10277<p>
10278For instance, the expression <code>debug.getinfo(1,"n").name</code> returns
10279a name for the current function,
10280if a reasonable name can be found,
10281and the expression <code>debug.getinfo(print)</code>
10282returns a table with all available information
10283about the <a href="#pdf-print"><code>print</code></a> function.
10284
10285
10286
10287
10288<p>
10289<hr><h3><a name="pdf-debug.getlocal"><code>debug.getlocal ([thread,] f, local)</code></a></h3>
10290
10291
10292<p>
10293This function returns the name and the value of the local variable
10294with index <code>local</code> of the function at level <code>f</code> of the stack.
10295This function accesses not only explicit local variables,
10296but also parameters, temporaries, etc.
10297
10298
10299<p>
10300The first parameter or local variable has index&nbsp;1, and so on,
10301following the order that they are declared in the code,
10302counting only the variables that are active
10303in the current scope of the function.
10304Negative indices refer to vararg parameters;
10305-1 is the first vararg parameter.
10306The function returns <b>nil</b> if there is no variable with the given index,
10307and raises an error when called with a level out of range.
10308(You can call <a href="#pdf-debug.getinfo"><code>debug.getinfo</code></a> to check whether the level is valid.)
10309
10310
10311<p>
10312Variable names starting with '<code>(</code>' (open parenthesis)
10313represent variables with no known names
10314(internal variables such as loop control variables,
10315and variables from chunks saved without debug information).
10316
10317
10318<p>
10319The parameter <code>f</code> may also be a function.
10320In that case, <code>getlocal</code> returns only the name of function parameters.
10321
10322
10323
10324
10325<p>
10326<hr><h3><a name="pdf-debug.getmetatable"><code>debug.getmetatable (value)</code></a></h3>
10327
10328
10329<p>
10330Returns the metatable of the given <code>value</code>
10331or <b>nil</b> if it does not have a metatable.
10332
10333
10334
10335
10336<p>
10337<hr><h3><a name="pdf-debug.getregistry"><code>debug.getregistry ()</code></a></h3>
10338
10339
10340<p>
10341Returns the registry table (see <a href="#4.5">&sect;4.5</a>).
10342
10343
10344
10345
10346<p>
10347<hr><h3><a name="pdf-debug.getupvalue"><code>debug.getupvalue (f, up)</code></a></h3>
10348
10349
10350<p>
10351This function returns the name and the value of the upvalue
10352with index <code>up</code> of the function <code>f</code>.
10353The function returns <b>nil</b> if there is no upvalue with the given index.
10354
10355
10356<p>
10357Variable names starting with '<code>(</code>' (open parenthesis)
10358represent variables with no known names
10359(variables from chunks saved without debug information).
10360
10361
10362
10363
10364<p>
10365<hr><h3><a name="pdf-debug.getuservalue"><code>debug.getuservalue (u)</code></a></h3>
10366
10367
10368<p>
10369Returns the Lua value associated to <code>u</code>.
10370If <code>u</code> is not a full userdata,
10371returns <b>nil</b>.
10372
10373
10374
10375
10376<p>
10377<hr><h3><a name="pdf-debug.sethook"><code>debug.sethook ([thread,] hook, mask [, count])</code></a></h3>
10378
10379
10380<p>
10381Sets the given function as a hook.
10382The string <code>mask</code> and the number <code>count</code> describe
10383when the hook will be called.
10384The string mask may have any combination of the following characters,
10385with the given meaning:
10386
10387<ul>
10388<li><b>'<code>c</code>': </b> the hook is called every time Lua calls a function;</li>
10389<li><b>'<code>r</code>': </b> the hook is called every time Lua returns from a function;</li>
10390<li><b>'<code>l</code>': </b> the hook is called every time Lua enters a new line of code.</li>
10391</ul><p>
10392Moreover,
10393with a <code>count</code> different from zero,
10394the hook is called also after every <code>count</code> instructions.
10395
10396
10397<p>
10398When called without arguments,
10399<a href="#pdf-debug.sethook"><code>debug.sethook</code></a> turns off the hook.
10400
10401
10402<p>
10403When the hook is called, its first parameter is a string
10404describing the event that has triggered its call:
10405<code>"call"</code> (or <code>"tail call"</code>),
10406<code>"return"</code>,
10407<code>"line"</code>, and <code>"count"</code>.
10408For line events,
10409the hook also gets the new line number as its second parameter.
10410Inside a hook,
10411you can call <code>getinfo</code> with level&nbsp;2 to get more information about
10412the running function
10413(level&nbsp;0 is the <code>getinfo</code> function,
10414and level&nbsp;1 is the hook function).
10415
10416
10417
10418
10419<p>
10420<hr><h3><a name="pdf-debug.setlocal"><code>debug.setlocal ([thread,] level, local, value)</code></a></h3>
10421
10422
10423<p>
10424This function assigns the value <code>value</code> to the local variable
10425with index <code>local</code> of the function at level <code>level</code> of the stack.
10426The function returns <b>nil</b> if there is no local
10427variable with the given index,
10428and raises an error when called with a <code>level</code> out of range.
10429(You can call <code>getinfo</code> to check whether the level is valid.)
10430Otherwise, it returns the name of the local variable.
10431
10432
10433<p>
10434See <a href="#pdf-debug.getlocal"><code>debug.getlocal</code></a> for more information about
10435variable indices and names.
10436
10437
10438
10439
10440<p>
10441<hr><h3><a name="pdf-debug.setmetatable"><code>debug.setmetatable (value, table)</code></a></h3>
10442
10443
10444<p>
10445Sets the metatable for the given <code>value</code> to the given <code>table</code>
10446(which can be <b>nil</b>).
10447Returns <code>value</code>.
10448
10449
10450
10451
10452<p>
10453<hr><h3><a name="pdf-debug.setupvalue"><code>debug.setupvalue (f, up, value)</code></a></h3>
10454
10455
10456<p>
10457This function assigns the value <code>value</code> to the upvalue
10458with index <code>up</code> of the function <code>f</code>.
10459The function returns <b>nil</b> if there is no upvalue
10460with the given index.
10461Otherwise, it returns the name of the upvalue.
10462
10463
10464
10465
10466<p>
10467<hr><h3><a name="pdf-debug.setuservalue"><code>debug.setuservalue (udata, value)</code></a></h3>
10468
10469
10470<p>
10471Sets the given <code>value</code> as
10472the Lua value associated to the given <code>udata</code>.
10473<code>udata</code> must be a full userdata.
10474
10475
10476<p>
10477Returns <code>udata</code>.
10478
10479
10480
10481
10482<p>
10483<hr><h3><a name="pdf-debug.traceback"><code>debug.traceback ([thread,] [message [, level]])</code></a></h3>
10484
10485
10486<p>
10487If <code>message</code> is present but is neither a string nor <b>nil</b>,
10488this function returns <code>message</code> without further processing.
10489Otherwise,
10490it returns a string with a traceback of the call stack.
10491The optional <code>message</code> string is appended
10492at the beginning of the traceback.
10493An optional <code>level</code> number tells at which level
10494to start the traceback
10495(default is 1, the function calling <code>traceback</code>).
10496
10497
10498
10499
10500<p>
10501<hr><h3><a name="pdf-debug.upvalueid"><code>debug.upvalueid (f, n)</code></a></h3>
10502
10503
10504<p>
10505Returns a unique identifier (as a light userdata)
10506for the upvalue numbered <code>n</code>
10507from the given function.
10508
10509
10510<p>
10511These unique identifiers allow a program to check whether different
10512closures share upvalues.
10513Lua closures that share an upvalue
10514(that is, that access a same external local variable)
10515will return identical ids for those upvalue indices.
10516
10517
10518
10519
10520<p>
10521<hr><h3><a name="pdf-debug.upvaluejoin"><code>debug.upvaluejoin (f1, n1, f2, n2)</code></a></h3>
10522
10523
10524<p>
10525Make the <code>n1</code>-th upvalue of the Lua closure <code>f1</code>
10526refer to the <code>n2</code>-th upvalue of the Lua closure <code>f2</code>.
10527
10528
10529
10530
10531
10532
10533
10534<h1>7 &ndash; <a name="7">Lua Standalone</a></h1>
10535
10536<p>
10537Although Lua has been designed as an extension language,
10538to be embedded in a host C&nbsp;program,
10539it is also frequently used as a standalone language.
10540An interpreter for Lua as a standalone language,
10541called simply <code>lua</code>,
10542is provided with the standard distribution.
10543The standalone interpreter includes
10544all standard libraries, including the debug library.
10545Its usage is:
10546
10547<pre>
10548     lua [options] [script [args]]
10549</pre><p>
10550The options are:
10551
10552<ul>
10553<li><b><code>-e <em>stat</em></code>: </b> executes string <em>stat</em>;</li>
10554<li><b><code>-l <em>mod</em></code>: </b> "requires" <em>mod</em>;</li>
10555<li><b><code>-i</code>: </b> enters interactive mode after running <em>script</em>;</li>
10556<li><b><code>-v</code>: </b> prints version information;</li>
10557<li><b><code>-E</code>: </b> ignores environment variables;</li>
10558<li><b><code>--</code>: </b> stops handling options;</li>
10559<li><b><code>-</code>: </b> executes <code>stdin</code> as a file and stops handling options.</li>
10560</ul><p>
10561After handling its options, <code>lua</code> runs the given <em>script</em>.
10562When called without arguments,
10563<code>lua</code> behaves as <code>lua -v -i</code>
10564when the standard input (<code>stdin</code>) is a terminal,
10565and as <code>lua -</code> otherwise.
10566
10567
10568<p>
10569When called without option <code>-E</code>,
10570the interpreter checks for an environment variable <a name="pdf-LUA_INIT_5_3"><code>LUA_INIT_5_3</code></a>
10571(or <a name="pdf-LUA_INIT"><code>LUA_INIT</code></a> if the versioned name is not defined)
10572before running any argument.
10573If the variable content has the format <code>@<em>filename</em></code>,
10574then <code>lua</code> executes the file.
10575Otherwise, <code>lua</code> executes the string itself.
10576
10577
10578<p>
10579When called with option <code>-E</code>,
10580besides ignoring <code>LUA_INIT</code>,
10581Lua also ignores
10582the values of <code>LUA_PATH</code> and <code>LUA_CPATH</code>,
10583setting the values of
10584<a href="#pdf-package.path"><code>package.path</code></a> and <a href="#pdf-package.cpath"><code>package.cpath</code></a>
10585with the default paths defined in <code>luaconf.h</code>.
10586
10587
10588<p>
10589All options are handled in order, except <code>-i</code> and <code>-E</code>.
10590For instance, an invocation like
10591
10592<pre>
10593     $ lua -e'a=1' -e 'print(a)' script.lua
10594</pre><p>
10595will first set <code>a</code> to 1, then print the value of <code>a</code>,
10596and finally run the file <code>script.lua</code> with no arguments.
10597(Here <code>$</code> is the shell prompt. Your prompt may be different.)
10598
10599
10600<p>
10601Before running any code,
10602<code>lua</code> collects all command-line arguments
10603in a global table called <code>arg</code>.
10604The script name goes to index 0,
10605the first argument after the script name goes to index 1,
10606and so on.
10607Any arguments before the script name
10608(that is, the interpreter name plus its options)
10609go to negative indices.
10610For instance, in the call
10611
10612<pre>
10613     $ lua -la b.lua t1 t2
10614</pre><p>
10615the table is like this:
10616
10617<pre>
10618     arg = { [-2] = "lua", [-1] = "-la",
10619             [0] = "b.lua",
10620             [1] = "t1", [2] = "t2" }
10621</pre><p>
10622If there is no script in the call,
10623the interpreter name goes to index 0,
10624followed by the other arguments.
10625For instance, the call
10626
10627<pre>
10628     $ lua -e "print(arg[1])"
10629</pre><p>
10630will print "<code>-e</code>".
10631If there is a script,
10632the script is called with parameters
10633<code>arg[1]</code>, &middot;&middot;&middot;, <code>arg[#arg]</code>.
10634(Like all chunks in Lua,
10635the script is compiled as a vararg function.)
10636
10637
10638<p>
10639In interactive mode,
10640Lua repeatedly prompts and waits for a line.
10641After reading a line,
10642Lua first try to interpret the line as an expression.
10643If it succeeds, it prints its value.
10644Otherwise, it interprets the line as a statement.
10645If you write an incomplete statement,
10646the interpreter waits for its completion
10647by issuing a different prompt.
10648
10649
10650<p>
10651If the global variable <a name="pdf-_PROMPT"><code>_PROMPT</code></a> contains a string,
10652then its value is used as the prompt.
10653Similarly, if the global variable <a name="pdf-_PROMPT2"><code>_PROMPT2</code></a> contains a string,
10654its value is used as the secondary prompt
10655(issued during incomplete statements).
10656
10657
10658<p>
10659In case of unprotected errors in the script,
10660the interpreter reports the error to the standard error stream.
10661If the error object is not a string but
10662has a metamethod <code>__tostring</code>,
10663the interpreter calls this metamethod to produce the final message.
10664Otherwise, the interpreter converts the error object to a string
10665and adds a stack traceback to it.
10666
10667
10668<p>
10669When finishing normally,
10670the interpreter closes its main Lua state
10671(see <a href="#lua_close"><code>lua_close</code></a>).
10672The script can avoid this step by
10673calling <a href="#pdf-os.exit"><code>os.exit</code></a> to terminate.
10674
10675
10676<p>
10677To allow the use of Lua as a
10678script interpreter in Unix systems,
10679the standalone interpreter skips
10680the first line of a chunk if it starts with <code>#</code>.
10681Therefore, Lua scripts can be made into executable programs
10682by using <code>chmod +x</code> and the&nbsp;<code>#!</code> form,
10683as in
10684
10685<pre>
10686     #!/usr/local/bin/lua
10687</pre><p>
10688(Of course,
10689the location of the Lua interpreter may be different in your machine.
10690If <code>lua</code> is in your <code>PATH</code>,
10691then
10692
10693<pre>
10694     #!/usr/bin/env lua
10695</pre><p>
10696is a more portable solution.)
10697
10698
10699
10700<h1>8 &ndash; <a name="8">Incompatibilities with the Previous Version</a></h1>
10701
10702<p>
10703Here we list the incompatibilities that you may find when moving a program
10704from Lua&nbsp;5.2 to Lua&nbsp;5.3.
10705You can avoid some incompatibilities by compiling Lua with
10706appropriate options (see file <code>luaconf.h</code>).
10707However,
10708all these compatibility options will be removed in the future.
10709
10710
10711<p>
10712Lua versions can always change the C API in ways that
10713do not imply source-code changes in a program,
10714such as the numeric values for constants
10715or the implementation of functions as macros.
10716Therefore,
10717you should not assume that binaries are compatible between
10718different Lua versions.
10719Always recompile clients of the Lua API when
10720using a new version.
10721
10722
10723<p>
10724Similarly, Lua versions can always change the internal representation
10725of precompiled chunks;
10726precompiled chunks are not compatible between different Lua versions.
10727
10728
10729<p>
10730The standard paths in the official distribution may
10731change between versions.
10732
10733
10734
10735<h2>8.1 &ndash; <a name="8.1">Changes in the Language</a></h2>
10736<ul>
10737
10738<li>
10739The main difference between Lua&nbsp;5.2 and Lua&nbsp;5.3 is the
10740introduction of an integer subtype for numbers.
10741Although this change should not affect "normal" computations,
10742some computations
10743(mainly those that involve some kind of overflow)
10744can give different results.
10745
10746
10747<p>
10748You can fix these differences by forcing a number to be a float
10749(in Lua&nbsp;5.2 all numbers were float),
10750in particular writing constants with an ending <code>.0</code>
10751or using <code>x = x + 0.0</code> to convert a variable.
10752(This recommendation is only for a quick fix
10753for an occasional incompatibility;
10754it is not a general guideline for good programming.
10755For good programming,
10756use floats where you need floats
10757and integers where you need integers.)
10758</li>
10759
10760<li>
10761The conversion of a float to a string now adds a <code>.0</code> suffix
10762to the result if it looks like an integer.
10763(For instance, the float 2.0 will be printed as <code>2.0</code>,
10764not as <code>2</code>.)
10765You should always use an explicit format
10766when you need a specific format for numbers.
10767
10768
10769<p>
10770(Formally this is not an incompatibility,
10771because Lua does not specify how numbers are formatted as strings,
10772but some programs assumed a specific format.)
10773</li>
10774
10775<li>
10776The generational mode for the garbage collector was removed.
10777(It was an experimental feature in Lua&nbsp;5.2.)
10778</li>
10779
10780</ul>
10781
10782
10783
10784
10785<h2>8.2 &ndash; <a name="8.2">Changes in the Libraries</a></h2>
10786<ul>
10787
10788<li>
10789The <code>bit32</code> library has been deprecated.
10790It is easy to require a compatible external library or,
10791better yet, to replace its functions with appropriate bitwise operations.
10792(Keep in mind that <code>bit32</code> operates on 32-bit integers,
10793while the bitwise operators in Lua&nbsp;5.3 operate on Lua integers,
10794which by default have 64&nbsp;bits.)
10795</li>
10796
10797<li>
10798The Table library now respects metamethods
10799for setting and getting elements.
10800</li>
10801
10802<li>
10803The <a href="#pdf-ipairs"><code>ipairs</code></a> iterator now respects metamethods and
10804its <code>__ipairs</code> metamethod has been deprecated.
10805</li>
10806
10807<li>
10808Option names in <a href="#pdf-io.read"><code>io.read</code></a> do not have a starting '<code>*</code>' anymore.
10809For compatibility, Lua will continue to accept (and ignore) this character.
10810</li>
10811
10812<li>
10813The following functions were deprecated in the mathematical library:
10814<code>atan2</code>, <code>cosh</code>, <code>sinh</code>, <code>tanh</code>, <code>pow</code>,
10815<code>frexp</code>, and <code>ldexp</code>.
10816You can replace <code>math.pow(x,y)</code> with <code>x^y</code>;
10817you can replace <code>math.atan2</code> with <code>math.atan</code>,
10818which now accepts one or two parameters;
10819you can replace <code>math.ldexp(x,exp)</code> with <code>x * 2.0^exp</code>.
10820For the other operations,
10821you can either use an external library or
10822implement them in Lua.
10823</li>
10824
10825<li>
10826The searcher for C loaders used by <a href="#pdf-require"><code>require</code></a>
10827changed the way it handles versioned names.
10828Now, the version should come after the module name
10829(as is usual in most other tools).
10830For compatibility, that searcher still tries the old format
10831if it cannot find an open function according to the new style.
10832(Lua&nbsp;5.2 already worked that way,
10833but it did not document the change.)
10834</li>
10835
10836<li>
10837The call <code>collectgarbage("count")</code> now returns only one result.
10838(You can compute that second result from the fractional part
10839of the first result.)
10840</li>
10841
10842</ul>
10843
10844
10845
10846
10847<h2>8.3 &ndash; <a name="8.3">Changes in the API</a></h2>
10848
10849
10850<ul>
10851
10852<li>
10853Continuation functions now receive as parameters what they needed
10854to get through <code>lua_getctx</code>,
10855so <code>lua_getctx</code> has been removed.
10856Adapt your code accordingly.
10857</li>
10858
10859<li>
10860Function <a href="#lua_dump"><code>lua_dump</code></a> has an extra parameter, <code>strip</code>.
10861Use 0 as the value of this parameter to get the old behavior.
10862</li>
10863
10864<li>
10865Functions to inject/project unsigned integers
10866(<code>lua_pushunsigned</code>, <code>lua_tounsigned</code>, <code>lua_tounsignedx</code>,
10867<code>luaL_checkunsigned</code>, <code>luaL_optunsigned</code>)
10868were deprecated.
10869Use their signed equivalents with a type cast.
10870</li>
10871
10872<li>
10873Macros to project non-default integer types
10874(<code>luaL_checkint</code>, <code>luaL_optint</code>, <code>luaL_checklong</code>, <code>luaL_optlong</code>)
10875were deprecated.
10876Use their equivalent over <a href="#lua_Integer"><code>lua_Integer</code></a> with a type cast
10877(or, when possible, use <a href="#lua_Integer"><code>lua_Integer</code></a> in your code).
10878</li>
10879
10880</ul>
10881
10882
10883
10884
10885<h1>9 &ndash; <a name="9">The Complete Syntax of Lua</a></h1>
10886
10887<p>
10888Here is the complete syntax of Lua in extended BNF.
10889As usual in extended BNF,
10890{A} means 0 or more As,
10891and [A] means an optional A.
10892(For operator precedences, see <a href="#3.4.8">&sect;3.4.8</a>;
10893for a description of the terminals
10894Name, Numeral,
10895and LiteralString, see <a href="#3.1">&sect;3.1</a>.)
10896
10897
10898
10899
10900<pre>
10901
10902	chunk ::= block
10903
10904	block ::= {stat} [retstat]
10905
10906	stat ::=  &lsquo;<b>;</b>&rsquo; |
10907		 varlist &lsquo;<b>=</b>&rsquo; explist |
10908		 functioncall |
10909		 label |
10910		 <b>break</b> |
10911		 <b>goto</b> Name |
10912		 <b>do</b> block <b>end</b> |
10913		 <b>while</b> exp <b>do</b> block <b>end</b> |
10914		 <b>repeat</b> block <b>until</b> exp |
10915		 <b>if</b> exp <b>then</b> block {<b>elseif</b> exp <b>then</b> block} [<b>else</b> block] <b>end</b> |
10916		 <b>for</b> Name &lsquo;<b>=</b>&rsquo; exp &lsquo;<b>,</b>&rsquo; exp [&lsquo;<b>,</b>&rsquo; exp] <b>do</b> block <b>end</b> |
10917		 <b>for</b> namelist <b>in</b> explist <b>do</b> block <b>end</b> |
10918		 <b>function</b> funcname funcbody |
10919		 <b>local</b> <b>function</b> Name funcbody |
10920		 <b>local</b> namelist [&lsquo;<b>=</b>&rsquo; explist]
10921
10922	retstat ::= <b>return</b> [explist] [&lsquo;<b>;</b>&rsquo;]
10923
10924	label ::= &lsquo;<b>::</b>&rsquo; Name &lsquo;<b>::</b>&rsquo;
10925
10926	funcname ::= Name {&lsquo;<b>.</b>&rsquo; Name} [&lsquo;<b>:</b>&rsquo; Name]
10927
10928	varlist ::= var {&lsquo;<b>,</b>&rsquo; var}
10929
10930	var ::=  Name | prefixexp &lsquo;<b>[</b>&rsquo; exp &lsquo;<b>]</b>&rsquo; | prefixexp &lsquo;<b>.</b>&rsquo; Name
10931
10932	namelist ::= Name {&lsquo;<b>,</b>&rsquo; Name}
10933
10934	explist ::= exp {&lsquo;<b>,</b>&rsquo; exp}
10935
10936	exp ::=  <b>nil</b> | <b>false</b> | <b>true</b> | Numeral | LiteralString | &lsquo;<b>...</b>&rsquo; | functiondef |
10937		 prefixexp | tableconstructor | exp binop exp | unop exp
10938
10939	prefixexp ::= var | functioncall | &lsquo;<b>(</b>&rsquo; exp &lsquo;<b>)</b>&rsquo;
10940
10941	functioncall ::=  prefixexp args | prefixexp &lsquo;<b>:</b>&rsquo; Name args
10942
10943	args ::=  &lsquo;<b>(</b>&rsquo; [explist] &lsquo;<b>)</b>&rsquo; | tableconstructor | LiteralString
10944
10945	functiondef ::= <b>function</b> funcbody
10946
10947	funcbody ::= &lsquo;<b>(</b>&rsquo; [parlist] &lsquo;<b>)</b>&rsquo; block <b>end</b>
10948
10949	parlist ::= namelist [&lsquo;<b>,</b>&rsquo; &lsquo;<b>...</b>&rsquo;] | &lsquo;<b>...</b>&rsquo;
10950
10951	tableconstructor ::= &lsquo;<b>{</b>&rsquo; [fieldlist] &lsquo;<b>}</b>&rsquo;
10952
10953	fieldlist ::= field {fieldsep field} [fieldsep]
10954
10955	field ::= &lsquo;<b>[</b>&rsquo; exp &lsquo;<b>]</b>&rsquo; &lsquo;<b>=</b>&rsquo; exp | Name &lsquo;<b>=</b>&rsquo; exp | exp
10956
10957	fieldsep ::= &lsquo;<b>,</b>&rsquo; | &lsquo;<b>;</b>&rsquo;
10958
10959	binop ::=  &lsquo;<b>+</b>&rsquo; | &lsquo;<b>-</b>&rsquo; | &lsquo;<b>*</b>&rsquo; | &lsquo;<b>/</b>&rsquo; | &lsquo;<b>//</b>&rsquo; | &lsquo;<b>^</b>&rsquo; | &lsquo;<b>%</b>&rsquo; |
10960		 &lsquo;<b>&amp;</b>&rsquo; | &lsquo;<b>~</b>&rsquo; | &lsquo;<b>|</b>&rsquo; | &lsquo;<b>&gt;&gt;</b>&rsquo; | &lsquo;<b>&lt;&lt;</b>&rsquo; | &lsquo;<b>..</b>&rsquo; |
10961		 &lsquo;<b>&lt;</b>&rsquo; | &lsquo;<b>&lt;=</b>&rsquo; | &lsquo;<b>&gt;</b>&rsquo; | &lsquo;<b>&gt;=</b>&rsquo; | &lsquo;<b>==</b>&rsquo; | &lsquo;<b>~=</b>&rsquo; |
10962		 <b>and</b> | <b>or</b>
10963
10964	unop ::= &lsquo;<b>-</b>&rsquo; | <b>not</b> | &lsquo;<b>#</b>&rsquo; | &lsquo;<b>~</b>&rsquo;
10965
10966</pre>
10967
10968<p>
10969
10970
10971
10972
10973
10974
10975
10976<P CLASS="footer">
10977Last update:
10978Mon Jan  9 13:30:53 BRST 2017
10979</P>
10980<!--
10981Last change: revised for Lua 5.3.4
10982-->
10983
10984</body></html>
10985
10986