xref: /freebsd/contrib/lua/src/lcode.c (revision c1d255d3)
1 /*
2 ** $Id: lcode.c $
3 ** Code generator for Lua
4 ** See Copyright Notice in lua.h
5 */
6 
7 #define lcode_c
8 #define LUA_CORE
9 
10 #include "lprefix.h"
11 
12 
13 #include <limits.h>
14 #include <math.h>
15 #include <stdlib.h>
16 
17 #include "lua.h"
18 
19 #include "lcode.h"
20 #include "ldebug.h"
21 #include "ldo.h"
22 #include "lgc.h"
23 #include "llex.h"
24 #include "lmem.h"
25 #include "lobject.h"
26 #include "lopcodes.h"
27 #include "lparser.h"
28 #include "lstring.h"
29 #include "ltable.h"
30 #include "lvm.h"
31 
32 
33 /* Maximum number of registers in a Lua function (must fit in 8 bits) */
34 #define MAXREGS		255
35 
36 
37 #define hasjumps(e)	((e)->t != (e)->f)
38 
39 
40 static int codesJ (FuncState *fs, OpCode o, int sj, int k);
41 
42 
43 
44 /* semantic error */
45 l_noret luaK_semerror (LexState *ls, const char *msg) {
46   ls->t.token = 0;  /* remove "near <token>" from final message */
47   luaX_syntaxerror(ls, msg);
48 }
49 
50 
51 /*
52 ** If expression is a numeric constant, fills 'v' with its value
53 ** and returns 1. Otherwise, returns 0.
54 */
55 static int tonumeral (const expdesc *e, TValue *v) {
56   if (hasjumps(e))
57     return 0;  /* not a numeral */
58   switch (e->k) {
59     case VKINT:
60       if (v) setivalue(v, e->u.ival);
61       return 1;
62     case VKFLT:
63       if (v) setfltvalue(v, e->u.nval);
64       return 1;
65     default: return 0;
66   }
67 }
68 
69 
70 /*
71 ** Get the constant value from a constant expression
72 */
73 static TValue *const2val (FuncState *fs, const expdesc *e) {
74   lua_assert(e->k == VCONST);
75   return &fs->ls->dyd->actvar.arr[e->u.info].k;
76 }
77 
78 
79 /*
80 ** If expression is a constant, fills 'v' with its value
81 ** and returns 1. Otherwise, returns 0.
82 */
83 int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) {
84   if (hasjumps(e))
85     return 0;  /* not a constant */
86   switch (e->k) {
87     case VFALSE:
88       setbfvalue(v);
89       return 1;
90     case VTRUE:
91       setbtvalue(v);
92       return 1;
93     case VNIL:
94       setnilvalue(v);
95       return 1;
96     case VKSTR: {
97       setsvalue(fs->ls->L, v, e->u.strval);
98       return 1;
99     }
100     case VCONST: {
101       setobj(fs->ls->L, v, const2val(fs, e));
102       return 1;
103     }
104     default: return tonumeral(e, v);
105   }
106 }
107 
108 
109 /*
110 ** Return the previous instruction of the current code. If there
111 ** may be a jump target between the current instruction and the
112 ** previous one, return an invalid instruction (to avoid wrong
113 ** optimizations).
114 */
115 static Instruction *previousinstruction (FuncState *fs) {
116   static const Instruction invalidinstruction = ~(Instruction)0;
117   if (fs->pc > fs->lasttarget)
118     return &fs->f->code[fs->pc - 1];  /* previous instruction */
119   else
120     return cast(Instruction*, &invalidinstruction);
121 }
122 
123 
124 /*
125 ** Create a OP_LOADNIL instruction, but try to optimize: if the previous
126 ** instruction is also OP_LOADNIL and ranges are compatible, adjust
127 ** range of previous instruction instead of emitting a new one. (For
128 ** instance, 'local a; local b' will generate a single opcode.)
129 */
130 void luaK_nil (FuncState *fs, int from, int n) {
131   int l = from + n - 1;  /* last register to set nil */
132   Instruction *previous = previousinstruction(fs);
133   if (GET_OPCODE(*previous) == OP_LOADNIL) {  /* previous is LOADNIL? */
134     int pfrom = GETARG_A(*previous);  /* get previous range */
135     int pl = pfrom + GETARG_B(*previous);
136     if ((pfrom <= from && from <= pl + 1) ||
137         (from <= pfrom && pfrom <= l + 1)) {  /* can connect both? */
138       if (pfrom < from) from = pfrom;  /* from = min(from, pfrom) */
139       if (pl > l) l = pl;  /* l = max(l, pl) */
140       SETARG_A(*previous, from);
141       SETARG_B(*previous, l - from);
142       return;
143     }  /* else go through */
144   }
145   luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0);  /* else no optimization */
146 }
147 
148 
149 /*
150 ** Gets the destination address of a jump instruction. Used to traverse
151 ** a list of jumps.
152 */
153 static int getjump (FuncState *fs, int pc) {
154   int offset = GETARG_sJ(fs->f->code[pc]);
155   if (offset == NO_JUMP)  /* point to itself represents end of list */
156     return NO_JUMP;  /* end of list */
157   else
158     return (pc+1)+offset;  /* turn offset into absolute position */
159 }
160 
161 
162 /*
163 ** Fix jump instruction at position 'pc' to jump to 'dest'.
164 ** (Jump addresses are relative in Lua)
165 */
166 static void fixjump (FuncState *fs, int pc, int dest) {
167   Instruction *jmp = &fs->f->code[pc];
168   int offset = dest - (pc + 1);
169   lua_assert(dest != NO_JUMP);
170   if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ))
171     luaX_syntaxerror(fs->ls, "control structure too long");
172   lua_assert(GET_OPCODE(*jmp) == OP_JMP);
173   SETARG_sJ(*jmp, offset);
174 }
175 
176 
177 /*
178 ** Concatenate jump-list 'l2' into jump-list 'l1'
179 */
180 void luaK_concat (FuncState *fs, int *l1, int l2) {
181   if (l2 == NO_JUMP) return;  /* nothing to concatenate? */
182   else if (*l1 == NO_JUMP)  /* no original list? */
183     *l1 = l2;  /* 'l1' points to 'l2' */
184   else {
185     int list = *l1;
186     int next;
187     while ((next = getjump(fs, list)) != NO_JUMP)  /* find last element */
188       list = next;
189     fixjump(fs, list, l2);  /* last element links to 'l2' */
190   }
191 }
192 
193 
194 /*
195 ** Create a jump instruction and return its position, so its destination
196 ** can be fixed later (with 'fixjump').
197 */
198 int luaK_jump (FuncState *fs) {
199   return codesJ(fs, OP_JMP, NO_JUMP, 0);
200 }
201 
202 
203 /*
204 ** Code a 'return' instruction
205 */
206 void luaK_ret (FuncState *fs, int first, int nret) {
207   OpCode op;
208   switch (nret) {
209     case 0: op = OP_RETURN0; break;
210     case 1: op = OP_RETURN1; break;
211     default: op = OP_RETURN; break;
212   }
213   luaK_codeABC(fs, op, first, nret + 1, 0);
214 }
215 
216 
217 /*
218 ** Code a "conditional jump", that is, a test or comparison opcode
219 ** followed by a jump. Return jump position.
220 */
221 static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) {
222   luaK_codeABCk(fs, op, A, B, C, k);
223   return luaK_jump(fs);
224 }
225 
226 
227 /*
228 ** returns current 'pc' and marks it as a jump target (to avoid wrong
229 ** optimizations with consecutive instructions not in the same basic block).
230 */
231 int luaK_getlabel (FuncState *fs) {
232   fs->lasttarget = fs->pc;
233   return fs->pc;
234 }
235 
236 
237 /*
238 ** Returns the position of the instruction "controlling" a given
239 ** jump (that is, its condition), or the jump itself if it is
240 ** unconditional.
241 */
242 static Instruction *getjumpcontrol (FuncState *fs, int pc) {
243   Instruction *pi = &fs->f->code[pc];
244   if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
245     return pi-1;
246   else
247     return pi;
248 }
249 
250 
251 /*
252 ** Patch destination register for a TESTSET instruction.
253 ** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
254 ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
255 ** register. Otherwise, change instruction to a simple 'TEST' (produces
256 ** no register value)
257 */
258 static int patchtestreg (FuncState *fs, int node, int reg) {
259   Instruction *i = getjumpcontrol(fs, node);
260   if (GET_OPCODE(*i) != OP_TESTSET)
261     return 0;  /* cannot patch other instructions */
262   if (reg != NO_REG && reg != GETARG_B(*i))
263     SETARG_A(*i, reg);
264   else {
265      /* no register to put value or register already has the value;
266         change instruction to simple test */
267     *i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i));
268   }
269   return 1;
270 }
271 
272 
273 /*
274 ** Traverse a list of tests ensuring no one produces a value
275 */
276 static void removevalues (FuncState *fs, int list) {
277   for (; list != NO_JUMP; list = getjump(fs, list))
278       patchtestreg(fs, list, NO_REG);
279 }
280 
281 
282 /*
283 ** Traverse a list of tests, patching their destination address and
284 ** registers: tests producing values jump to 'vtarget' (and put their
285 ** values in 'reg'), other tests jump to 'dtarget'.
286 */
287 static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
288                           int dtarget) {
289   while (list != NO_JUMP) {
290     int next = getjump(fs, list);
291     if (patchtestreg(fs, list, reg))
292       fixjump(fs, list, vtarget);
293     else
294       fixjump(fs, list, dtarget);  /* jump to default target */
295     list = next;
296   }
297 }
298 
299 
300 /*
301 ** Path all jumps in 'list' to jump to 'target'.
302 ** (The assert means that we cannot fix a jump to a forward address
303 ** because we only know addresses once code is generated.)
304 */
305 void luaK_patchlist (FuncState *fs, int list, int target) {
306   lua_assert(target <= fs->pc);
307   patchlistaux(fs, list, target, NO_REG, target);
308 }
309 
310 
311 void luaK_patchtohere (FuncState *fs, int list) {
312   int hr = luaK_getlabel(fs);  /* mark "here" as a jump target */
313   luaK_patchlist(fs, list, hr);
314 }
315 
316 
317 /*
318 ** MAXimum number of successive Instructions WiTHout ABSolute line
319 ** information.
320 */
321 #if !defined(MAXIWTHABS)
322 #define MAXIWTHABS	120
323 #endif
324 
325 
326 /* limit for difference between lines in relative line info. */
327 #define LIMLINEDIFF	0x80
328 
329 
330 /*
331 ** Save line info for a new instruction. If difference from last line
332 ** does not fit in a byte, of after that many instructions, save a new
333 ** absolute line info; (in that case, the special value 'ABSLINEINFO'
334 ** in 'lineinfo' signals the existence of this absolute information.)
335 ** Otherwise, store the difference from last line in 'lineinfo'.
336 */
337 static void savelineinfo (FuncState *fs, Proto *f, int line) {
338   int linedif = line - fs->previousline;
339   int pc = fs->pc - 1;  /* last instruction coded */
340   if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ > MAXIWTHABS) {
341     luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo,
342                     f->sizeabslineinfo, AbsLineInfo, MAX_INT, "lines");
343     f->abslineinfo[fs->nabslineinfo].pc = pc;
344     f->abslineinfo[fs->nabslineinfo++].line = line;
345     linedif = ABSLINEINFO;  /* signal that there is absolute information */
346     fs->iwthabs = 0;  /* restart counter */
347   }
348   luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte,
349                   MAX_INT, "opcodes");
350   f->lineinfo[pc] = linedif;
351   fs->previousline = line;  /* last line saved */
352 }
353 
354 
355 /*
356 ** Remove line information from the last instruction.
357 ** If line information for that instruction is absolute, set 'iwthabs'
358 ** above its max to force the new (replacing) instruction to have
359 ** absolute line info, too.
360 */
361 static void removelastlineinfo (FuncState *fs) {
362   Proto *f = fs->f;
363   int pc = fs->pc - 1;  /* last instruction coded */
364   if (f->lineinfo[pc] != ABSLINEINFO) {  /* relative line info? */
365     fs->previousline -= f->lineinfo[pc];  /* correct last line saved */
366     fs->iwthabs--;  /* undo previous increment */
367   }
368   else {  /* absolute line information */
369     lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc);
370     fs->nabslineinfo--;  /* remove it */
371     fs->iwthabs = MAXIWTHABS + 1;  /* force next line info to be absolute */
372   }
373 }
374 
375 
376 /*
377 ** Remove the last instruction created, correcting line information
378 ** accordingly.
379 */
380 static void removelastinstruction (FuncState *fs) {
381   removelastlineinfo(fs);
382   fs->pc--;
383 }
384 
385 
386 /*
387 ** Emit instruction 'i', checking for array sizes and saving also its
388 ** line information. Return 'i' position.
389 */
390 int luaK_code (FuncState *fs, Instruction i) {
391   Proto *f = fs->f;
392   /* put new instruction in code array */
393   luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
394                   MAX_INT, "opcodes");
395   f->code[fs->pc++] = i;
396   savelineinfo(fs, f, fs->ls->lastline);
397   return fs->pc - 1;  /* index of new instruction */
398 }
399 
400 
401 /*
402 ** Format and emit an 'iABC' instruction. (Assertions check consistency
403 ** of parameters versus opcode.)
404 */
405 int luaK_codeABCk (FuncState *fs, OpCode o, int a, int b, int c, int k) {
406   lua_assert(getOpMode(o) == iABC);
407   lua_assert(a <= MAXARG_A && b <= MAXARG_B &&
408              c <= MAXARG_C && (k & ~1) == 0);
409   return luaK_code(fs, CREATE_ABCk(o, a, b, c, k));
410 }
411 
412 
413 /*
414 ** Format and emit an 'iABx' instruction.
415 */
416 int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
417   lua_assert(getOpMode(o) == iABx);
418   lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx);
419   return luaK_code(fs, CREATE_ABx(o, a, bc));
420 }
421 
422 
423 /*
424 ** Format and emit an 'iAsBx' instruction.
425 */
426 int luaK_codeAsBx (FuncState *fs, OpCode o, int a, int bc) {
427   unsigned int b = bc + OFFSET_sBx;
428   lua_assert(getOpMode(o) == iAsBx);
429   lua_assert(a <= MAXARG_A && b <= MAXARG_Bx);
430   return luaK_code(fs, CREATE_ABx(o, a, b));
431 }
432 
433 
434 /*
435 ** Format and emit an 'isJ' instruction.
436 */
437 static int codesJ (FuncState *fs, OpCode o, int sj, int k) {
438   unsigned int j = sj + OFFSET_sJ;
439   lua_assert(getOpMode(o) == isJ);
440   lua_assert(j <= MAXARG_sJ && (k & ~1) == 0);
441   return luaK_code(fs, CREATE_sJ(o, j, k));
442 }
443 
444 
445 /*
446 ** Emit an "extra argument" instruction (format 'iAx')
447 */
448 static int codeextraarg (FuncState *fs, int a) {
449   lua_assert(a <= MAXARG_Ax);
450   return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a));
451 }
452 
453 
454 /*
455 ** Emit a "load constant" instruction, using either 'OP_LOADK'
456 ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
457 ** instruction with "extra argument".
458 */
459 static int luaK_codek (FuncState *fs, int reg, int k) {
460   if (k <= MAXARG_Bx)
461     return luaK_codeABx(fs, OP_LOADK, reg, k);
462   else {
463     int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
464     codeextraarg(fs, k);
465     return p;
466   }
467 }
468 
469 
470 /*
471 ** Check register-stack level, keeping track of its maximum size
472 ** in field 'maxstacksize'
473 */
474 void luaK_checkstack (FuncState *fs, int n) {
475   int newstack = fs->freereg + n;
476   if (newstack > fs->f->maxstacksize) {
477     if (newstack >= MAXREGS)
478       luaX_syntaxerror(fs->ls,
479         "function or expression needs too many registers");
480     fs->f->maxstacksize = cast_byte(newstack);
481   }
482 }
483 
484 
485 /*
486 ** Reserve 'n' registers in register stack
487 */
488 void luaK_reserveregs (FuncState *fs, int n) {
489   luaK_checkstack(fs, n);
490   fs->freereg += n;
491 }
492 
493 
494 /*
495 ** Free register 'reg', if it is neither a constant index nor
496 ** a local variable.
497 )
498 */
499 static void freereg (FuncState *fs, int reg) {
500   if (reg >= luaY_nvarstack(fs)) {
501     fs->freereg--;
502     lua_assert(reg == fs->freereg);
503   }
504 }
505 
506 
507 /*
508 ** Free two registers in proper order
509 */
510 static void freeregs (FuncState *fs, int r1, int r2) {
511   if (r1 > r2) {
512     freereg(fs, r1);
513     freereg(fs, r2);
514   }
515   else {
516     freereg(fs, r2);
517     freereg(fs, r1);
518   }
519 }
520 
521 
522 /*
523 ** Free register used by expression 'e' (if any)
524 */
525 static void freeexp (FuncState *fs, expdesc *e) {
526   if (e->k == VNONRELOC)
527     freereg(fs, e->u.info);
528 }
529 
530 
531 /*
532 ** Free registers used by expressions 'e1' and 'e2' (if any) in proper
533 ** order.
534 */
535 static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
536   int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
537   int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
538   freeregs(fs, r1, r2);
539 }
540 
541 
542 /*
543 ** Add constant 'v' to prototype's list of constants (field 'k').
544 ** Use scanner's table to cache position of constants in constant list
545 ** and try to reuse constants. Because some values should not be used
546 ** as keys (nil cannot be a key, integer keys can collapse with float
547 ** keys), the caller must provide a useful 'key' for indexing the cache.
548 */
549 static int addk (FuncState *fs, TValue *key, TValue *v) {
550   lua_State *L = fs->ls->L;
551   Proto *f = fs->f;
552   TValue *idx = luaH_set(L, fs->ls->h, key);  /* index scanner table */
553   int k, oldsize;
554   if (ttisinteger(idx)) {  /* is there an index there? */
555     k = cast_int(ivalue(idx));
556     /* correct value? (warning: must distinguish floats from integers!) */
557     if (k < fs->nk && ttypetag(&f->k[k]) == ttypetag(v) &&
558                       luaV_rawequalobj(&f->k[k], v))
559       return k;  /* reuse index */
560   }
561   /* constant not found; create a new entry */
562   oldsize = f->sizek;
563   k = fs->nk;
564   /* numerical value does not need GC barrier;
565      table has no metatable, so it does not need to invalidate cache */
566   setivalue(idx, k);
567   luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
568   while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
569   setobj(L, &f->k[k], v);
570   fs->nk++;
571   luaC_barrier(L, f, v);
572   return k;
573 }
574 
575 
576 /*
577 ** Add a string to list of constants and return its index.
578 */
579 static int stringK (FuncState *fs, TString *s) {
580   TValue o;
581   setsvalue(fs->ls->L, &o, s);
582   return addk(fs, &o, &o);  /* use string itself as key */
583 }
584 
585 
586 /*
587 ** Add an integer to list of constants and return its index.
588 ** Integers use userdata as keys to avoid collision with floats with
589 ** same value; conversion to 'void*' is used only for hashing, so there
590 ** are no "precision" problems.
591 */
592 static int luaK_intK (FuncState *fs, lua_Integer n) {
593   TValue k, o;
594   setpvalue(&k, cast_voidp(cast_sizet(n)));
595   setivalue(&o, n);
596   return addk(fs, &k, &o);
597 }
598 
599 /*
600 ** Add a float to list of constants and return its index.
601 */
602 static int luaK_numberK (FuncState *fs, lua_Number r) {
603   TValue o;
604   setfltvalue(&o, r);
605   return addk(fs, &o, &o);  /* use number itself as key */
606 }
607 
608 
609 /*
610 ** Add a false to list of constants and return its index.
611 */
612 static int boolF (FuncState *fs) {
613   TValue o;
614   setbfvalue(&o);
615   return addk(fs, &o, &o);  /* use boolean itself as key */
616 }
617 
618 
619 /*
620 ** Add a true to list of constants and return its index.
621 */
622 static int boolT (FuncState *fs) {
623   TValue o;
624   setbtvalue(&o);
625   return addk(fs, &o, &o);  /* use boolean itself as key */
626 }
627 
628 
629 /*
630 ** Add nil to list of constants and return its index.
631 */
632 static int nilK (FuncState *fs) {
633   TValue k, v;
634   setnilvalue(&v);
635   /* cannot use nil as key; instead use table itself to represent nil */
636   sethvalue(fs->ls->L, &k, fs->ls->h);
637   return addk(fs, &k, &v);
638 }
639 
640 
641 /*
642 ** Check whether 'i' can be stored in an 'sC' operand. Equivalent to
643 ** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of
644 ** overflows in the hidden addition inside 'int2sC'.
645 */
646 static int fitsC (lua_Integer i) {
647   return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C));
648 }
649 
650 
651 /*
652 ** Check whether 'i' can be stored in an 'sBx' operand.
653 */
654 static int fitsBx (lua_Integer i) {
655   return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx);
656 }
657 
658 
659 void luaK_int (FuncState *fs, int reg, lua_Integer i) {
660   if (fitsBx(i))
661     luaK_codeAsBx(fs, OP_LOADI, reg, cast_int(i));
662   else
663     luaK_codek(fs, reg, luaK_intK(fs, i));
664 }
665 
666 
667 static void luaK_float (FuncState *fs, int reg, lua_Number f) {
668   lua_Integer fi;
669   if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi))
670     luaK_codeAsBx(fs, OP_LOADF, reg, cast_int(fi));
671   else
672     luaK_codek(fs, reg, luaK_numberK(fs, f));
673 }
674 
675 
676 /*
677 ** Convert a constant in 'v' into an expression description 'e'
678 */
679 static void const2exp (TValue *v, expdesc *e) {
680   switch (ttypetag(v)) {
681     case LUA_VNUMINT:
682       e->k = VKINT; e->u.ival = ivalue(v);
683       break;
684     case LUA_VNUMFLT:
685       e->k = VKFLT; e->u.nval = fltvalue(v);
686       break;
687     case LUA_VFALSE:
688       e->k = VFALSE;
689       break;
690     case LUA_VTRUE:
691       e->k = VTRUE;
692       break;
693     case LUA_VNIL:
694       e->k = VNIL;
695       break;
696     case LUA_VSHRSTR:  case LUA_VLNGSTR:
697       e->k = VKSTR; e->u.strval = tsvalue(v);
698       break;
699     default: lua_assert(0);
700   }
701 }
702 
703 
704 /*
705 ** Fix an expression to return the number of results 'nresults'.
706 ** 'e' must be a multi-ret expression (function call or vararg).
707 */
708 void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
709   Instruction *pc = &getinstruction(fs, e);
710   if (e->k == VCALL)  /* expression is an open function call? */
711     SETARG_C(*pc, nresults + 1);
712   else {
713     lua_assert(e->k == VVARARG);
714     SETARG_C(*pc, nresults + 1);
715     SETARG_A(*pc, fs->freereg);
716     luaK_reserveregs(fs, 1);
717   }
718 }
719 
720 
721 /*
722 ** Convert a VKSTR to a VK
723 */
724 static void str2K (FuncState *fs, expdesc *e) {
725   lua_assert(e->k == VKSTR);
726   e->u.info = stringK(fs, e->u.strval);
727   e->k = VK;
728 }
729 
730 
731 /*
732 ** Fix an expression to return one result.
733 ** If expression is not a multi-ret expression (function call or
734 ** vararg), it already returns one result, so nothing needs to be done.
735 ** Function calls become VNONRELOC expressions (as its result comes
736 ** fixed in the base register of the call), while vararg expressions
737 ** become VRELOC (as OP_VARARG puts its results where it wants).
738 ** (Calls are created returning one result, so that does not need
739 ** to be fixed.)
740 */
741 void luaK_setoneret (FuncState *fs, expdesc *e) {
742   if (e->k == VCALL) {  /* expression is an open function call? */
743     /* already returns 1 value */
744     lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
745     e->k = VNONRELOC;  /* result has fixed position */
746     e->u.info = GETARG_A(getinstruction(fs, e));
747   }
748   else if (e->k == VVARARG) {
749     SETARG_C(getinstruction(fs, e), 2);
750     e->k = VRELOC;  /* can relocate its simple result */
751   }
752 }
753 
754 
755 /*
756 ** Ensure that expression 'e' is not a variable (nor a <const>).
757 ** (Expression still may have jump lists.)
758 */
759 void luaK_dischargevars (FuncState *fs, expdesc *e) {
760   switch (e->k) {
761     case VCONST: {
762       const2exp(const2val(fs, e), e);
763       break;
764     }
765     case VLOCAL: {  /* already in a register */
766       e->u.info = e->u.var.sidx;
767       e->k = VNONRELOC;  /* becomes a non-relocatable value */
768       break;
769     }
770     case VUPVAL: {  /* move value to some (pending) register */
771       e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
772       e->k = VRELOC;
773       break;
774     }
775     case VINDEXUP: {
776       e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx);
777       e->k = VRELOC;
778       break;
779     }
780     case VINDEXI: {
781       freereg(fs, e->u.ind.t);
782       e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx);
783       e->k = VRELOC;
784       break;
785     }
786     case VINDEXSTR: {
787       freereg(fs, e->u.ind.t);
788       e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx);
789       e->k = VRELOC;
790       break;
791     }
792     case VINDEXED: {
793       freeregs(fs, e->u.ind.t, e->u.ind.idx);
794       e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx);
795       e->k = VRELOC;
796       break;
797     }
798     case VVARARG: case VCALL: {
799       luaK_setoneret(fs, e);
800       break;
801     }
802     default: break;  /* there is one value available (somewhere) */
803   }
804 }
805 
806 
807 /*
808 ** Ensure expression value is in register 'reg', making 'e' a
809 ** non-relocatable expression.
810 ** (Expression still may have jump lists.)
811 */
812 static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
813   luaK_dischargevars(fs, e);
814   switch (e->k) {
815     case VNIL: {
816       luaK_nil(fs, reg, 1);
817       break;
818     }
819     case VFALSE: {
820       luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0);
821       break;
822     }
823     case VTRUE: {
824       luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0);
825       break;
826     }
827     case VKSTR: {
828       str2K(fs, e);
829     }  /* FALLTHROUGH */
830     case VK: {
831       luaK_codek(fs, reg, e->u.info);
832       break;
833     }
834     case VKFLT: {
835       luaK_float(fs, reg, e->u.nval);
836       break;
837     }
838     case VKINT: {
839       luaK_int(fs, reg, e->u.ival);
840       break;
841     }
842     case VRELOC: {
843       Instruction *pc = &getinstruction(fs, e);
844       SETARG_A(*pc, reg);  /* instruction will put result in 'reg' */
845       break;
846     }
847     case VNONRELOC: {
848       if (reg != e->u.info)
849         luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
850       break;
851     }
852     default: {
853       lua_assert(e->k == VJMP);
854       return;  /* nothing to do... */
855     }
856   }
857   e->u.info = reg;
858   e->k = VNONRELOC;
859 }
860 
861 
862 /*
863 ** Ensure expression value is in a register, making 'e' a
864 ** non-relocatable expression.
865 ** (Expression still may have jump lists.)
866 */
867 static void discharge2anyreg (FuncState *fs, expdesc *e) {
868   if (e->k != VNONRELOC) {  /* no fixed register yet? */
869     luaK_reserveregs(fs, 1);  /* get a register */
870     discharge2reg(fs, e, fs->freereg-1);  /* put value there */
871   }
872 }
873 
874 
875 static int code_loadbool (FuncState *fs, int A, OpCode op) {
876   luaK_getlabel(fs);  /* those instructions may be jump targets */
877   return luaK_codeABC(fs, op, A, 0, 0);
878 }
879 
880 
881 /*
882 ** check whether list has any jump that do not produce a value
883 ** or produce an inverted value
884 */
885 static int need_value (FuncState *fs, int list) {
886   for (; list != NO_JUMP; list = getjump(fs, list)) {
887     Instruction i = *getjumpcontrol(fs, list);
888     if (GET_OPCODE(i) != OP_TESTSET) return 1;
889   }
890   return 0;  /* not found */
891 }
892 
893 
894 /*
895 ** Ensures final expression result (which includes results from its
896 ** jump lists) is in register 'reg'.
897 ** If expression has jumps, need to patch these jumps either to
898 ** its final position or to "load" instructions (for those tests
899 ** that do not produce values).
900 */
901 static void exp2reg (FuncState *fs, expdesc *e, int reg) {
902   discharge2reg(fs, e, reg);
903   if (e->k == VJMP)  /* expression itself is a test? */
904     luaK_concat(fs, &e->t, e->u.info);  /* put this jump in 't' list */
905   if (hasjumps(e)) {
906     int final;  /* position after whole expression */
907     int p_f = NO_JUMP;  /* position of an eventual LOAD false */
908     int p_t = NO_JUMP;  /* position of an eventual LOAD true */
909     if (need_value(fs, e->t) || need_value(fs, e->f)) {
910       int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
911       p_f = code_loadbool(fs, reg, OP_LFALSESKIP);  /* skip next inst. */
912       p_t = code_loadbool(fs, reg, OP_LOADTRUE);
913       /* jump around these booleans if 'e' is not a test */
914       luaK_patchtohere(fs, fj);
915     }
916     final = luaK_getlabel(fs);
917     patchlistaux(fs, e->f, final, reg, p_f);
918     patchlistaux(fs, e->t, final, reg, p_t);
919   }
920   e->f = e->t = NO_JUMP;
921   e->u.info = reg;
922   e->k = VNONRELOC;
923 }
924 
925 
926 /*
927 ** Ensures final expression result is in next available register.
928 */
929 void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
930   luaK_dischargevars(fs, e);
931   freeexp(fs, e);
932   luaK_reserveregs(fs, 1);
933   exp2reg(fs, e, fs->freereg - 1);
934 }
935 
936 
937 /*
938 ** Ensures final expression result is in some (any) register
939 ** and return that register.
940 */
941 int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
942   luaK_dischargevars(fs, e);
943   if (e->k == VNONRELOC) {  /* expression already has a register? */
944     if (!hasjumps(e))  /* no jumps? */
945       return e->u.info;  /* result is already in a register */
946     if (e->u.info >= luaY_nvarstack(fs)) {  /* reg. is not a local? */
947       exp2reg(fs, e, e->u.info);  /* put final result in it */
948       return e->u.info;
949     }
950     /* else expression has jumps and cannot change its register
951        to hold the jump values, because it is a local variable.
952        Go through to the default case. */
953   }
954   luaK_exp2nextreg(fs, e);  /* default: use next available register */
955   return e->u.info;
956 }
957 
958 
959 /*
960 ** Ensures final expression result is either in a register
961 ** or in an upvalue.
962 */
963 void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
964   if (e->k != VUPVAL || hasjumps(e))
965     luaK_exp2anyreg(fs, e);
966 }
967 
968 
969 /*
970 ** Ensures final expression result is either in a register
971 ** or it is a constant.
972 */
973 void luaK_exp2val (FuncState *fs, expdesc *e) {
974   if (hasjumps(e))
975     luaK_exp2anyreg(fs, e);
976   else
977     luaK_dischargevars(fs, e);
978 }
979 
980 
981 /*
982 ** Try to make 'e' a K expression with an index in the range of R/K
983 ** indices. Return true iff succeeded.
984 */
985 static int luaK_exp2K (FuncState *fs, expdesc *e) {
986   if (!hasjumps(e)) {
987     int info;
988     switch (e->k) {  /* move constants to 'k' */
989       case VTRUE: info = boolT(fs); break;
990       case VFALSE: info = boolF(fs); break;
991       case VNIL: info = nilK(fs); break;
992       case VKINT: info = luaK_intK(fs, e->u.ival); break;
993       case VKFLT: info = luaK_numberK(fs, e->u.nval); break;
994       case VKSTR: info = stringK(fs, e->u.strval); break;
995       case VK: info = e->u.info; break;
996       default: return 0;  /* not a constant */
997     }
998     if (info <= MAXINDEXRK) {  /* does constant fit in 'argC'? */
999       e->k = VK;  /* make expression a 'K' expression */
1000       e->u.info = info;
1001       return 1;
1002     }
1003   }
1004   /* else, expression doesn't fit; leave it unchanged */
1005   return 0;
1006 }
1007 
1008 
1009 /*
1010 ** Ensures final expression result is in a valid R/K index
1011 ** (that is, it is either in a register or in 'k' with an index
1012 ** in the range of R/K indices).
1013 ** Returns 1 iff expression is K.
1014 */
1015 int luaK_exp2RK (FuncState *fs, expdesc *e) {
1016   if (luaK_exp2K(fs, e))
1017     return 1;
1018   else {  /* not a constant in the right range: put it in a register */
1019     luaK_exp2anyreg(fs, e);
1020     return 0;
1021   }
1022 }
1023 
1024 
1025 static void codeABRK (FuncState *fs, OpCode o, int a, int b,
1026                       expdesc *ec) {
1027   int k = luaK_exp2RK(fs, ec);
1028   luaK_codeABCk(fs, o, a, b, ec->u.info, k);
1029 }
1030 
1031 
1032 /*
1033 ** Generate code to store result of expression 'ex' into variable 'var'.
1034 */
1035 void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
1036   switch (var->k) {
1037     case VLOCAL: {
1038       freeexp(fs, ex);
1039       exp2reg(fs, ex, var->u.var.sidx);  /* compute 'ex' into proper place */
1040       return;
1041     }
1042     case VUPVAL: {
1043       int e = luaK_exp2anyreg(fs, ex);
1044       luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
1045       break;
1046     }
1047     case VINDEXUP: {
1048       codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex);
1049       break;
1050     }
1051     case VINDEXI: {
1052       codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex);
1053       break;
1054     }
1055     case VINDEXSTR: {
1056       codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex);
1057       break;
1058     }
1059     case VINDEXED: {
1060       codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex);
1061       break;
1062     }
1063     default: lua_assert(0);  /* invalid var kind to store */
1064   }
1065   freeexp(fs, ex);
1066 }
1067 
1068 
1069 /*
1070 ** Emit SELF instruction (convert expression 'e' into 'e:key(e,').
1071 */
1072 void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
1073   int ereg;
1074   luaK_exp2anyreg(fs, e);
1075   ereg = e->u.info;  /* register where 'e' was placed */
1076   freeexp(fs, e);
1077   e->u.info = fs->freereg;  /* base register for op_self */
1078   e->k = VNONRELOC;  /* self expression has a fixed register */
1079   luaK_reserveregs(fs, 2);  /* function and 'self' produced by op_self */
1080   codeABRK(fs, OP_SELF, e->u.info, ereg, key);
1081   freeexp(fs, key);
1082 }
1083 
1084 
1085 /*
1086 ** Negate condition 'e' (where 'e' is a comparison).
1087 */
1088 static void negatecondition (FuncState *fs, expdesc *e) {
1089   Instruction *pc = getjumpcontrol(fs, e->u.info);
1090   lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
1091                                            GET_OPCODE(*pc) != OP_TEST);
1092   SETARG_k(*pc, (GETARG_k(*pc) ^ 1));
1093 }
1094 
1095 
1096 /*
1097 ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
1098 ** is true, code will jump if 'e' is true.) Return jump position.
1099 ** Optimize when 'e' is 'not' something, inverting the condition
1100 ** and removing the 'not'.
1101 */
1102 static int jumponcond (FuncState *fs, expdesc *e, int cond) {
1103   if (e->k == VRELOC) {
1104     Instruction ie = getinstruction(fs, e);
1105     if (GET_OPCODE(ie) == OP_NOT) {
1106       removelastinstruction(fs);  /* remove previous OP_NOT */
1107       return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond);
1108     }
1109     /* else go through */
1110   }
1111   discharge2anyreg(fs, e);
1112   freeexp(fs, e);
1113   return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond);
1114 }
1115 
1116 
1117 /*
1118 ** Emit code to go through if 'e' is true, jump otherwise.
1119 */
1120 void luaK_goiftrue (FuncState *fs, expdesc *e) {
1121   int pc;  /* pc of new jump */
1122   luaK_dischargevars(fs, e);
1123   switch (e->k) {
1124     case VJMP: {  /* condition? */
1125       negatecondition(fs, e);  /* jump when it is false */
1126       pc = e->u.info;  /* save jump position */
1127       break;
1128     }
1129     case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
1130       pc = NO_JUMP;  /* always true; do nothing */
1131       break;
1132     }
1133     default: {
1134       pc = jumponcond(fs, e, 0);  /* jump when false */
1135       break;
1136     }
1137   }
1138   luaK_concat(fs, &e->f, pc);  /* insert new jump in false list */
1139   luaK_patchtohere(fs, e->t);  /* true list jumps to here (to go through) */
1140   e->t = NO_JUMP;
1141 }
1142 
1143 
1144 /*
1145 ** Emit code to go through if 'e' is false, jump otherwise.
1146 */
1147 void luaK_goiffalse (FuncState *fs, expdesc *e) {
1148   int pc;  /* pc of new jump */
1149   luaK_dischargevars(fs, e);
1150   switch (e->k) {
1151     case VJMP: {
1152       pc = e->u.info;  /* already jump if true */
1153       break;
1154     }
1155     case VNIL: case VFALSE: {
1156       pc = NO_JUMP;  /* always false; do nothing */
1157       break;
1158     }
1159     default: {
1160       pc = jumponcond(fs, e, 1);  /* jump if true */
1161       break;
1162     }
1163   }
1164   luaK_concat(fs, &e->t, pc);  /* insert new jump in 't' list */
1165   luaK_patchtohere(fs, e->f);  /* false list jumps to here (to go through) */
1166   e->f = NO_JUMP;
1167 }
1168 
1169 
1170 /*
1171 ** Code 'not e', doing constant folding.
1172 */
1173 static void codenot (FuncState *fs, expdesc *e) {
1174   switch (e->k) {
1175     case VNIL: case VFALSE: {
1176       e->k = VTRUE;  /* true == not nil == not false */
1177       break;
1178     }
1179     case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
1180       e->k = VFALSE;  /* false == not "x" == not 0.5 == not 1 == not true */
1181       break;
1182     }
1183     case VJMP: {
1184       negatecondition(fs, e);
1185       break;
1186     }
1187     case VRELOC:
1188     case VNONRELOC: {
1189       discharge2anyreg(fs, e);
1190       freeexp(fs, e);
1191       e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
1192       e->k = VRELOC;
1193       break;
1194     }
1195     default: lua_assert(0);  /* cannot happen */
1196   }
1197   /* interchange true and false lists */
1198   { int temp = e->f; e->f = e->t; e->t = temp; }
1199   removevalues(fs, e->f);  /* values are useless when negated */
1200   removevalues(fs, e->t);
1201 }
1202 
1203 
1204 /*
1205 ** Check whether expression 'e' is a small literal string
1206 */
1207 static int isKstr (FuncState *fs, expdesc *e) {
1208   return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B &&
1209           ttisshrstring(&fs->f->k[e->u.info]));
1210 }
1211 
1212 /*
1213 ** Check whether expression 'e' is a literal integer.
1214 */
1215 int luaK_isKint (expdesc *e) {
1216   return (e->k == VKINT && !hasjumps(e));
1217 }
1218 
1219 
1220 /*
1221 ** Check whether expression 'e' is a literal integer in
1222 ** proper range to fit in register C
1223 */
1224 static int isCint (expdesc *e) {
1225   return luaK_isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C));
1226 }
1227 
1228 
1229 /*
1230 ** Check whether expression 'e' is a literal integer in
1231 ** proper range to fit in register sC
1232 */
1233 static int isSCint (expdesc *e) {
1234   return luaK_isKint(e) && fitsC(e->u.ival);
1235 }
1236 
1237 
1238 /*
1239 ** Check whether expression 'e' is a literal integer or float in
1240 ** proper range to fit in a register (sB or sC).
1241 */
1242 static int isSCnumber (expdesc *e, int *pi, int *isfloat) {
1243   lua_Integer i;
1244   if (e->k == VKINT)
1245     i = e->u.ival;
1246   else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq))
1247     *isfloat = 1;
1248   else
1249     return 0;  /* not a number */
1250   if (!hasjumps(e) && fitsC(i)) {
1251     *pi = int2sC(cast_int(i));
1252     return 1;
1253   }
1254   else
1255     return 0;
1256 }
1257 
1258 
1259 /*
1260 ** Create expression 't[k]'. 't' must have its final result already in a
1261 ** register or upvalue. Upvalues can only be indexed by literal strings.
1262 ** Keys can be literal strings in the constant table or arbitrary
1263 ** values in registers.
1264 */
1265 void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
1266   if (k->k == VKSTR)
1267     str2K(fs, k);
1268   lua_assert(!hasjumps(t) &&
1269              (t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL));
1270   if (t->k == VUPVAL && !isKstr(fs, k))  /* upvalue indexed by non 'Kstr'? */
1271     luaK_exp2anyreg(fs, t);  /* put it in a register */
1272   if (t->k == VUPVAL) {
1273     t->u.ind.t = t->u.info;  /* upvalue index */
1274     t->u.ind.idx = k->u.info;  /* literal string */
1275     t->k = VINDEXUP;
1276   }
1277   else {
1278     /* register index of the table */
1279     t->u.ind.t = (t->k == VLOCAL) ? t->u.var.sidx: t->u.info;
1280     if (isKstr(fs, k)) {
1281       t->u.ind.idx = k->u.info;  /* literal string */
1282       t->k = VINDEXSTR;
1283     }
1284     else if (isCint(k)) {
1285       t->u.ind.idx = cast_int(k->u.ival);  /* int. constant in proper range */
1286       t->k = VINDEXI;
1287     }
1288     else {
1289       t->u.ind.idx = luaK_exp2anyreg(fs, k);  /* register */
1290       t->k = VINDEXED;
1291     }
1292   }
1293 }
1294 
1295 
1296 /*
1297 ** Return false if folding can raise an error.
1298 ** Bitwise operations need operands convertible to integers; division
1299 ** operations cannot have 0 as divisor.
1300 */
1301 static int validop (int op, TValue *v1, TValue *v2) {
1302   switch (op) {
1303     case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
1304     case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: {  /* conversion errors */
1305       lua_Integer i;
1306       return (tointegerns(v1, &i) && tointegerns(v2, &i));
1307     }
1308     case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD:  /* division by 0 */
1309       return (nvalue(v2) != 0);
1310     default: return 1;  /* everything else is valid */
1311   }
1312 }
1313 
1314 
1315 /*
1316 ** Try to "constant-fold" an operation; return 1 iff successful.
1317 ** (In this case, 'e1' has the final result.)
1318 */
1319 static int constfolding (FuncState *fs, int op, expdesc *e1,
1320                                         const expdesc *e2) {
1321   TValue v1, v2, res;
1322   if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
1323     return 0;  /* non-numeric operands or not safe to fold */
1324   luaO_rawarith(fs->ls->L, op, &v1, &v2, &res);  /* does operation */
1325   if (ttisinteger(&res)) {
1326     e1->k = VKINT;
1327     e1->u.ival = ivalue(&res);
1328   }
1329   else {  /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
1330     lua_Number n = fltvalue(&res);
1331     if (luai_numisnan(n) || n == 0)
1332       return 0;
1333     e1->k = VKFLT;
1334     e1->u.nval = n;
1335   }
1336   return 1;
1337 }
1338 
1339 
1340 /*
1341 ** Emit code for unary expressions that "produce values"
1342 ** (everything but 'not').
1343 ** Expression to produce final result will be encoded in 'e'.
1344 */
1345 static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
1346   int r = luaK_exp2anyreg(fs, e);  /* opcodes operate only on registers */
1347   freeexp(fs, e);
1348   e->u.info = luaK_codeABC(fs, op, 0, r, 0);  /* generate opcode */
1349   e->k = VRELOC;  /* all those operations are relocatable */
1350   luaK_fixline(fs, line);
1351 }
1352 
1353 
1354 /*
1355 ** Emit code for binary expressions that "produce values"
1356 ** (everything but logical operators 'and'/'or' and comparison
1357 ** operators).
1358 ** Expression to produce final result will be encoded in 'e1'.
1359 */
1360 static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2,
1361                              OpCode op, int v2, int flip, int line,
1362                              OpCode mmop, TMS event) {
1363   int v1 = luaK_exp2anyreg(fs, e1);
1364   int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0);
1365   freeexps(fs, e1, e2);
1366   e1->u.info = pc;
1367   e1->k = VRELOC;  /* all those operations are relocatable */
1368   luaK_fixline(fs, line);
1369   luaK_codeABCk(fs, mmop, v1, v2, event, flip);  /* to call metamethod */
1370   luaK_fixline(fs, line);
1371 }
1372 
1373 
1374 /*
1375 ** Emit code for binary expressions that "produce values" over
1376 ** two registers.
1377 */
1378 static void codebinexpval (FuncState *fs, OpCode op,
1379                            expdesc *e1, expdesc *e2, int line) {
1380   int v2 = luaK_exp2anyreg(fs, e2);  /* both operands are in registers */
1381   lua_assert(OP_ADD <= op && op <= OP_SHR);
1382   finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN,
1383                   cast(TMS, (op - OP_ADD) + TM_ADD));
1384 }
1385 
1386 
1387 /*
1388 ** Code binary operators with immediate operands.
1389 */
1390 static void codebini (FuncState *fs, OpCode op,
1391                        expdesc *e1, expdesc *e2, int flip, int line,
1392                        TMS event) {
1393   int v2 = int2sC(cast_int(e2->u.ival));  /* immediate operand */
1394   lua_assert(e2->k == VKINT);
1395   finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event);
1396 }
1397 
1398 
1399 /* Try to code a binary operator negating its second operand.
1400 ** For the metamethod, 2nd operand must keep its original value.
1401 */
1402 static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2,
1403                              OpCode op, int line, TMS event) {
1404   if (!luaK_isKint(e2))
1405     return 0;  /* not an integer constant */
1406   else {
1407     lua_Integer i2 = e2->u.ival;
1408     if (!(fitsC(i2) && fitsC(-i2)))
1409       return 0;  /* not in the proper range */
1410     else {  /* operating a small integer constant */
1411       int v2 = cast_int(i2);
1412       finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event);
1413       /* correct metamethod argument */
1414       SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2));
1415       return 1;  /* successfully coded */
1416     }
1417   }
1418 }
1419 
1420 
1421 static void swapexps (expdesc *e1, expdesc *e2) {
1422   expdesc temp = *e1; *e1 = *e2; *e2 = temp;  /* swap 'e1' and 'e2' */
1423 }
1424 
1425 
1426 /*
1427 ** Code arithmetic operators ('+', '-', ...). If second operand is a
1428 ** constant in the proper range, use variant opcodes with K operands.
1429 */
1430 static void codearith (FuncState *fs, BinOpr opr,
1431                        expdesc *e1, expdesc *e2, int flip, int line) {
1432   TMS event = cast(TMS, opr + TM_ADD);
1433   if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2)) {  /* K operand? */
1434     int v2 = e2->u.info;  /* K index */
1435     OpCode op = cast(OpCode, opr + OP_ADDK);
1436     finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event);
1437   }
1438   else {  /* 'e2' is neither an immediate nor a K operand */
1439     OpCode op = cast(OpCode, opr + OP_ADD);
1440     if (flip)
1441       swapexps(e1, e2);  /* back to original order */
1442     codebinexpval(fs, op, e1, e2, line);  /* use standard operators */
1443   }
1444 }
1445 
1446 
1447 /*
1448 ** Code commutative operators ('+', '*'). If first operand is a
1449 ** numeric constant, change order of operands to try to use an
1450 ** immediate or K operator.
1451 */
1452 static void codecommutative (FuncState *fs, BinOpr op,
1453                              expdesc *e1, expdesc *e2, int line) {
1454   int flip = 0;
1455   if (tonumeral(e1, NULL)) {  /* is first operand a numeric constant? */
1456     swapexps(e1, e2);  /* change order */
1457     flip = 1;
1458   }
1459   if (op == OPR_ADD && isSCint(e2))  /* immediate operand? */
1460     codebini(fs, cast(OpCode, OP_ADDI), e1, e2, flip, line, TM_ADD);
1461   else
1462     codearith(fs, op, e1, e2, flip, line);
1463 }
1464 
1465 
1466 /*
1467 ** Code bitwise operations; they are all associative, so the function
1468 ** tries to put an integer constant as the 2nd operand (a K operand).
1469 */
1470 static void codebitwise (FuncState *fs, BinOpr opr,
1471                          expdesc *e1, expdesc *e2, int line) {
1472   int flip = 0;
1473   int v2;
1474   OpCode op;
1475   if (e1->k == VKINT && luaK_exp2RK(fs, e1)) {
1476     swapexps(e1, e2);  /* 'e2' will be the constant operand */
1477     flip = 1;
1478   }
1479   else if (!(e2->k == VKINT && luaK_exp2RK(fs, e2))) {  /* no constants? */
1480     op = cast(OpCode, opr + OP_ADD);
1481     codebinexpval(fs, op, e1, e2, line);  /* all-register opcodes */
1482     return;
1483   }
1484   v2 = e2->u.info;  /* index in K array */
1485   op = cast(OpCode, opr + OP_ADDK);
1486   lua_assert(ttisinteger(&fs->f->k[v2]));
1487   finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK,
1488                   cast(TMS, opr + TM_ADD));
1489 }
1490 
1491 
1492 /*
1493 ** Emit code for order comparisons. When using an immediate operand,
1494 ** 'isfloat' tells whether the original value was a float.
1495 */
1496 static void codeorder (FuncState *fs, OpCode op, expdesc *e1, expdesc *e2) {
1497   int r1, r2;
1498   int im;
1499   int isfloat = 0;
1500   if (isSCnumber(e2, &im, &isfloat)) {
1501     /* use immediate operand */
1502     r1 = luaK_exp2anyreg(fs, e1);
1503     r2 = im;
1504     op = cast(OpCode, (op - OP_LT) + OP_LTI);
1505   }
1506   else if (isSCnumber(e1, &im, &isfloat)) {
1507     /* transform (A < B) to (B > A) and (A <= B) to (B >= A) */
1508     r1 = luaK_exp2anyreg(fs, e2);
1509     r2 = im;
1510     op = (op == OP_LT) ? OP_GTI : OP_GEI;
1511   }
1512   else {  /* regular case, compare two registers */
1513     r1 = luaK_exp2anyreg(fs, e1);
1514     r2 = luaK_exp2anyreg(fs, e2);
1515   }
1516   freeexps(fs, e1, e2);
1517   e1->u.info = condjump(fs, op, r1, r2, isfloat, 1);
1518   e1->k = VJMP;
1519 }
1520 
1521 
1522 /*
1523 ** Emit code for equality comparisons ('==', '~=').
1524 ** 'e1' was already put as RK by 'luaK_infix'.
1525 */
1526 static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
1527   int r1, r2;
1528   int im;
1529   int isfloat = 0;  /* not needed here, but kept for symmetry */
1530   OpCode op;
1531   if (e1->k != VNONRELOC) {
1532     lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT);
1533     swapexps(e1, e2);
1534   }
1535   r1 = luaK_exp2anyreg(fs, e1);  /* 1st expression must be in register */
1536   if (isSCnumber(e2, &im, &isfloat)) {
1537     op = OP_EQI;
1538     r2 = im;  /* immediate operand */
1539   }
1540   else if (luaK_exp2RK(fs, e2)) {  /* 1st expression is constant? */
1541     op = OP_EQK;
1542     r2 = e2->u.info;  /* constant index */
1543   }
1544   else {
1545     op = OP_EQ;  /* will compare two registers */
1546     r2 = luaK_exp2anyreg(fs, e2);
1547   }
1548   freeexps(fs, e1, e2);
1549   e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ));
1550   e1->k = VJMP;
1551 }
1552 
1553 
1554 /*
1555 ** Apply prefix operation 'op' to expression 'e'.
1556 */
1557 void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e, int line) {
1558   static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
1559   luaK_dischargevars(fs, e);
1560   switch (op) {
1561     case OPR_MINUS: case OPR_BNOT:  /* use 'ef' as fake 2nd operand */
1562       if (constfolding(fs, op + LUA_OPUNM, e, &ef))
1563         break;
1564       /* else */ /* FALLTHROUGH */
1565     case OPR_LEN:
1566       codeunexpval(fs, cast(OpCode, op + OP_UNM), e, line);
1567       break;
1568     case OPR_NOT: codenot(fs, e); break;
1569     default: lua_assert(0);
1570   }
1571 }
1572 
1573 
1574 /*
1575 ** Process 1st operand 'v' of binary operation 'op' before reading
1576 ** 2nd operand.
1577 */
1578 void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
1579   luaK_dischargevars(fs, v);
1580   switch (op) {
1581     case OPR_AND: {
1582       luaK_goiftrue(fs, v);  /* go ahead only if 'v' is true */
1583       break;
1584     }
1585     case OPR_OR: {
1586       luaK_goiffalse(fs, v);  /* go ahead only if 'v' is false */
1587       break;
1588     }
1589     case OPR_CONCAT: {
1590       luaK_exp2nextreg(fs, v);  /* operand must be on the stack */
1591       break;
1592     }
1593     case OPR_ADD: case OPR_SUB:
1594     case OPR_MUL: case OPR_DIV: case OPR_IDIV:
1595     case OPR_MOD: case OPR_POW:
1596     case OPR_BAND: case OPR_BOR: case OPR_BXOR:
1597     case OPR_SHL: case OPR_SHR: {
1598       if (!tonumeral(v, NULL))
1599         luaK_exp2anyreg(fs, v);
1600       /* else keep numeral, which may be folded with 2nd operand */
1601       break;
1602     }
1603     case OPR_EQ: case OPR_NE: {
1604       if (!tonumeral(v, NULL))
1605         luaK_exp2RK(fs, v);
1606       /* else keep numeral, which may be an immediate operand */
1607       break;
1608     }
1609     case OPR_LT: case OPR_LE:
1610     case OPR_GT: case OPR_GE: {
1611       int dummy, dummy2;
1612       if (!isSCnumber(v, &dummy, &dummy2))
1613         luaK_exp2anyreg(fs, v);
1614       /* else keep numeral, which may be an immediate operand */
1615       break;
1616     }
1617     default: lua_assert(0);
1618   }
1619 }
1620 
1621 /*
1622 ** Create code for '(e1 .. e2)'.
1623 ** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))',
1624 ** because concatenation is right associative), merge both CONCATs.
1625 */
1626 static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) {
1627   Instruction *ie2 = previousinstruction(fs);
1628   if (GET_OPCODE(*ie2) == OP_CONCAT) {  /* is 'e2' a concatenation? */
1629     int n = GETARG_B(*ie2);  /* # of elements concatenated in 'e2' */
1630     lua_assert(e1->u.info + 1 == GETARG_A(*ie2));
1631     freeexp(fs, e2);
1632     SETARG_A(*ie2, e1->u.info);  /* correct first element ('e1') */
1633     SETARG_B(*ie2, n + 1);  /* will concatenate one more element */
1634   }
1635   else {  /* 'e2' is not a concatenation */
1636     luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0);  /* new concat opcode */
1637     freeexp(fs, e2);
1638     luaK_fixline(fs, line);
1639   }
1640 }
1641 
1642 
1643 /*
1644 ** Finalize code for binary operation, after reading 2nd operand.
1645 */
1646 void luaK_posfix (FuncState *fs, BinOpr opr,
1647                   expdesc *e1, expdesc *e2, int line) {
1648   luaK_dischargevars(fs, e2);
1649   if (foldbinop(opr) && constfolding(fs, opr + LUA_OPADD, e1, e2))
1650     return;  /* done by folding */
1651   switch (opr) {
1652     case OPR_AND: {
1653       lua_assert(e1->t == NO_JUMP);  /* list closed by 'luaK_infix' */
1654       luaK_concat(fs, &e2->f, e1->f);
1655       *e1 = *e2;
1656       break;
1657     }
1658     case OPR_OR: {
1659       lua_assert(e1->f == NO_JUMP);  /* list closed by 'luaK_infix' */
1660       luaK_concat(fs, &e2->t, e1->t);
1661       *e1 = *e2;
1662       break;
1663     }
1664     case OPR_CONCAT: {  /* e1 .. e2 */
1665       luaK_exp2nextreg(fs, e2);
1666       codeconcat(fs, e1, e2, line);
1667       break;
1668     }
1669     case OPR_ADD: case OPR_MUL: {
1670       codecommutative(fs, opr, e1, e2, line);
1671       break;
1672     }
1673     case OPR_SUB: {
1674       if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB))
1675         break; /* coded as (r1 + -I) */
1676       /* ELSE */
1677     }  /* FALLTHROUGH */
1678     case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: {
1679       codearith(fs, opr, e1, e2, 0, line);
1680       break;
1681     }
1682     case OPR_BAND: case OPR_BOR: case OPR_BXOR: {
1683       codebitwise(fs, opr, e1, e2, line);
1684       break;
1685     }
1686     case OPR_SHL: {
1687       if (isSCint(e1)) {
1688         swapexps(e1, e2);
1689         codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL);  /* I << r2 */
1690       }
1691       else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) {
1692         /* coded as (r1 >> -I) */;
1693       }
1694       else  /* regular case (two registers) */
1695        codebinexpval(fs, OP_SHL, e1, e2, line);
1696       break;
1697     }
1698     case OPR_SHR: {
1699       if (isSCint(e2))
1700         codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR);  /* r1 >> I */
1701       else  /* regular case (two registers) */
1702         codebinexpval(fs, OP_SHR, e1, e2, line);
1703       break;
1704     }
1705     case OPR_EQ: case OPR_NE: {
1706       codeeq(fs, opr, e1, e2);
1707       break;
1708     }
1709     case OPR_LT: case OPR_LE: {
1710       OpCode op = cast(OpCode, (opr - OPR_EQ) + OP_EQ);
1711       codeorder(fs, op, e1, e2);
1712       break;
1713     }
1714     case OPR_GT: case OPR_GE: {
1715       /* '(a > b)' <=> '(b < a)';  '(a >= b)' <=> '(b <= a)' */
1716       OpCode op = cast(OpCode, (opr - OPR_NE) + OP_EQ);
1717       swapexps(e1, e2);
1718       codeorder(fs, op, e1, e2);
1719       break;
1720     }
1721     default: lua_assert(0);
1722   }
1723 }
1724 
1725 
1726 /*
1727 ** Change line information associated with current position, by removing
1728 ** previous info and adding it again with new line.
1729 */
1730 void luaK_fixline (FuncState *fs, int line) {
1731   removelastlineinfo(fs);
1732   savelineinfo(fs, fs->f, line);
1733 }
1734 
1735 
1736 void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) {
1737   Instruction *inst = &fs->f->code[pc];
1738   int rb = (hsize != 0) ? luaO_ceillog2(hsize) + 1 : 0;  /* hash size */
1739   int extra = asize / (MAXARG_C + 1);  /* higher bits of array size */
1740   int rc = asize % (MAXARG_C + 1);  /* lower bits of array size */
1741   int k = (extra > 0);  /* true iff needs extra argument */
1742   *inst = CREATE_ABCk(OP_NEWTABLE, ra, rb, rc, k);
1743   *(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra);
1744 }
1745 
1746 
1747 /*
1748 ** Emit a SETLIST instruction.
1749 ** 'base' is register that keeps table;
1750 ** 'nelems' is #table plus those to be stored now;
1751 ** 'tostore' is number of values (in registers 'base + 1',...) to add to
1752 ** table (or LUA_MULTRET to add up to stack top).
1753 */
1754 void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
1755   lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH);
1756   if (tostore == LUA_MULTRET)
1757     tostore = 0;
1758   if (nelems <= MAXARG_C)
1759     luaK_codeABC(fs, OP_SETLIST, base, tostore, nelems);
1760   else {
1761     int extra = nelems / (MAXARG_C + 1);
1762     nelems %= (MAXARG_C + 1);
1763     luaK_codeABCk(fs, OP_SETLIST, base, tostore, nelems, 1);
1764     codeextraarg(fs, extra);
1765   }
1766   fs->freereg = base + 1;  /* free registers with list values */
1767 }
1768 
1769 
1770 /*
1771 ** return the final target of a jump (skipping jumps to jumps)
1772 */
1773 static int finaltarget (Instruction *code, int i) {
1774   int count;
1775   for (count = 0; count < 100; count++) {  /* avoid infinite loops */
1776     Instruction pc = code[i];
1777     if (GET_OPCODE(pc) != OP_JMP)
1778       break;
1779      else
1780        i += GETARG_sJ(pc) + 1;
1781   }
1782   return i;
1783 }
1784 
1785 
1786 /*
1787 ** Do a final pass over the code of a function, doing small peephole
1788 ** optimizations and adjustments.
1789 */
1790 void luaK_finish (FuncState *fs) {
1791   int i;
1792   Proto *p = fs->f;
1793   for (i = 0; i < fs->pc; i++) {
1794     Instruction *pc = &p->code[i];
1795     lua_assert(i == 0 || isOT(*(pc - 1)) == isIT(*pc));
1796     switch (GET_OPCODE(*pc)) {
1797       case OP_RETURN0: case OP_RETURN1: {
1798         if (!(fs->needclose || p->is_vararg))
1799           break;  /* no extra work */
1800         /* else use OP_RETURN to do the extra work */
1801         SET_OPCODE(*pc, OP_RETURN);
1802       }  /* FALLTHROUGH */
1803       case OP_RETURN: case OP_TAILCALL: {
1804         if (fs->needclose)
1805           SETARG_k(*pc, 1);  /* signal that it needs to close */
1806         if (p->is_vararg)
1807           SETARG_C(*pc, p->numparams + 1);  /* signal that it is vararg */
1808         break;
1809       }
1810       case OP_JMP: {
1811         int target = finaltarget(p->code, i);
1812         fixjump(fs, i, target);
1813         break;
1814       }
1815       default: break;
1816     }
1817   }
1818 }
1819