xref: /freebsd/contrib/ntp/ntpd/ntp_control.c (revision b0b1dbdd)
1 /*
2  * ntp_control.c - respond to mode 6 control messages and send async
3  *		   traps.  Provides service to ntpq and others.
4  */
5 
6 #ifdef HAVE_CONFIG_H
7 # include <config.h>
8 #endif
9 
10 #include <stdio.h>
11 #include <ctype.h>
12 #include <signal.h>
13 #include <sys/stat.h>
14 #ifdef HAVE_NETINET_IN_H
15 # include <netinet/in.h>
16 #endif
17 #include <arpa/inet.h>
18 
19 #include "ntpd.h"
20 #include "ntp_io.h"
21 #include "ntp_refclock.h"
22 #include "ntp_control.h"
23 #include "ntp_unixtime.h"
24 #include "ntp_stdlib.h"
25 #include "ntp_config.h"
26 #include "ntp_crypto.h"
27 #include "ntp_assert.h"
28 #include "ntp_leapsec.h"
29 #include "ntp_md5.h"	/* provides OpenSSL digest API */
30 #include "lib_strbuf.h"
31 #include <rc_cmdlength.h>
32 #ifdef KERNEL_PLL
33 # include "ntp_syscall.h"
34 #endif
35 
36 #include "libssl_compat.h"
37 
38 /*
39  * Structure to hold request procedure information
40  */
41 
42 struct ctl_proc {
43 	short control_code;		/* defined request code */
44 #define NO_REQUEST	(-1)
45 	u_short flags;			/* flags word */
46 	/* Only one flag.  Authentication required or not. */
47 #define NOAUTH	0
48 #define AUTH	1
49 	void (*handler) (struct recvbuf *, int); /* handle request */
50 };
51 
52 
53 /*
54  * Request processing routines
55  */
56 static	void	ctl_error	(u_char);
57 #ifdef REFCLOCK
58 static	u_short ctlclkstatus	(struct refclockstat *);
59 #endif
60 static	void	ctl_flushpkt	(u_char);
61 static	void	ctl_putdata	(const char *, unsigned int, int);
62 static	void	ctl_putstr	(const char *, const char *, size_t);
63 static	void	ctl_putdblf	(const char *, int, int, double);
64 #define	ctl_putdbl(tag, d)	ctl_putdblf(tag, 1, 3, d)
65 #define	ctl_putdbl6(tag, d)	ctl_putdblf(tag, 1, 6, d)
66 #define	ctl_putsfp(tag, sfp)	ctl_putdblf(tag, 0, -1, \
67 					    FPTOD(sfp))
68 static	void	ctl_putuint	(const char *, u_long);
69 static	void	ctl_puthex	(const char *, u_long);
70 static	void	ctl_putint	(const char *, long);
71 static	void	ctl_putts	(const char *, l_fp *);
72 static	void	ctl_putadr	(const char *, u_int32,
73 				 sockaddr_u *);
74 static	void	ctl_putrefid	(const char *, u_int32);
75 static	void	ctl_putarray	(const char *, double *, int);
76 static	void	ctl_putsys	(int);
77 static	void	ctl_putpeer	(int, struct peer *);
78 static	void	ctl_putfs	(const char *, tstamp_t);
79 static	void	ctl_printf	(const char *, ...) NTP_PRINTF(1, 2);
80 #ifdef REFCLOCK
81 static	void	ctl_putclock	(int, struct refclockstat *, int);
82 #endif	/* REFCLOCK */
83 static	const struct ctl_var *ctl_getitem(const struct ctl_var *,
84 					  char **);
85 static	u_short	count_var	(const struct ctl_var *);
86 static	void	control_unspec	(struct recvbuf *, int);
87 static	void	read_status	(struct recvbuf *, int);
88 static	void	read_sysvars	(void);
89 static	void	read_peervars	(void);
90 static	void	read_variables	(struct recvbuf *, int);
91 static	void	write_variables (struct recvbuf *, int);
92 static	void	read_clockstatus(struct recvbuf *, int);
93 static	void	write_clockstatus(struct recvbuf *, int);
94 static	void	set_trap	(struct recvbuf *, int);
95 static	void	save_config	(struct recvbuf *, int);
96 static	void	configure	(struct recvbuf *, int);
97 static	void	send_mru_entry	(mon_entry *, int);
98 static	void	send_random_tag_value(int);
99 static	void	read_mru_list	(struct recvbuf *, int);
100 static	void	send_ifstats_entry(endpt *, u_int);
101 static	void	read_ifstats	(struct recvbuf *);
102 static	void	sockaddrs_from_restrict_u(sockaddr_u *,	sockaddr_u *,
103 					  restrict_u *, int);
104 static	void	send_restrict_entry(restrict_u *, int, u_int);
105 static	void	send_restrict_list(restrict_u *, int, u_int *);
106 static	void	read_addr_restrictions(struct recvbuf *);
107 static	void	read_ordlist	(struct recvbuf *, int);
108 static	u_int32	derive_nonce	(sockaddr_u *, u_int32, u_int32);
109 static	void	generate_nonce	(struct recvbuf *, char *, size_t);
110 static	int	validate_nonce	(const char *, struct recvbuf *);
111 static	void	req_nonce	(struct recvbuf *, int);
112 static	void	unset_trap	(struct recvbuf *, int);
113 static	struct ctl_trap *ctlfindtrap(sockaddr_u *,
114 				     struct interface *);
115 
116 int/*BOOL*/ is_safe_filename(const char * name);
117 
118 static const struct ctl_proc control_codes[] = {
119 	{ CTL_OP_UNSPEC,		NOAUTH,	control_unspec },
120 	{ CTL_OP_READSTAT,		NOAUTH,	read_status },
121 	{ CTL_OP_READVAR,		NOAUTH,	read_variables },
122 	{ CTL_OP_WRITEVAR,		AUTH,	write_variables },
123 	{ CTL_OP_READCLOCK,		NOAUTH,	read_clockstatus },
124 	{ CTL_OP_WRITECLOCK,		AUTH,	write_clockstatus },
125 	{ CTL_OP_SETTRAP,		AUTH,	set_trap },
126 	{ CTL_OP_CONFIGURE,		AUTH,	configure },
127 	{ CTL_OP_SAVECONFIG,		AUTH,	save_config },
128 	{ CTL_OP_READ_MRU,		NOAUTH,	read_mru_list },
129 	{ CTL_OP_READ_ORDLIST_A,	AUTH,	read_ordlist },
130 	{ CTL_OP_REQ_NONCE,		NOAUTH,	req_nonce },
131 	{ CTL_OP_UNSETTRAP,		AUTH,	unset_trap },
132 	{ NO_REQUEST,			0,	NULL }
133 };
134 
135 /*
136  * System variables we understand
137  */
138 #define	CS_LEAP			1
139 #define	CS_STRATUM		2
140 #define	CS_PRECISION		3
141 #define	CS_ROOTDELAY		4
142 #define	CS_ROOTDISPERSION	5
143 #define	CS_REFID		6
144 #define	CS_REFTIME		7
145 #define	CS_POLL			8
146 #define	CS_PEERID		9
147 #define	CS_OFFSET		10
148 #define	CS_DRIFT		11
149 #define	CS_JITTER		12
150 #define	CS_ERROR		13
151 #define	CS_CLOCK		14
152 #define	CS_PROCESSOR		15
153 #define	CS_SYSTEM		16
154 #define	CS_VERSION		17
155 #define	CS_STABIL		18
156 #define	CS_VARLIST		19
157 #define	CS_TAI			20
158 #define	CS_LEAPTAB		21
159 #define	CS_LEAPEND		22
160 #define	CS_RATE			23
161 #define	CS_MRU_ENABLED		24
162 #define	CS_MRU_DEPTH		25
163 #define	CS_MRU_DEEPEST		26
164 #define	CS_MRU_MINDEPTH		27
165 #define	CS_MRU_MAXAGE		28
166 #define	CS_MRU_MAXDEPTH		29
167 #define	CS_MRU_MEM		30
168 #define	CS_MRU_MAXMEM		31
169 #define	CS_SS_UPTIME		32
170 #define	CS_SS_RESET		33
171 #define	CS_SS_RECEIVED		34
172 #define	CS_SS_THISVER		35
173 #define	CS_SS_OLDVER		36
174 #define	CS_SS_BADFORMAT		37
175 #define	CS_SS_BADAUTH		38
176 #define	CS_SS_DECLINED		39
177 #define	CS_SS_RESTRICTED	40
178 #define	CS_SS_LIMITED		41
179 #define	CS_SS_KODSENT		42
180 #define	CS_SS_PROCESSED		43
181 #define	CS_PEERADR		44
182 #define	CS_PEERMODE		45
183 #define	CS_BCASTDELAY		46
184 #define	CS_AUTHDELAY		47
185 #define	CS_AUTHKEYS		48
186 #define	CS_AUTHFREEK		49
187 #define	CS_AUTHKLOOKUPS		50
188 #define	CS_AUTHKNOTFOUND	51
189 #define	CS_AUTHKUNCACHED	52
190 #define	CS_AUTHKEXPIRED		53
191 #define	CS_AUTHENCRYPTS		54
192 #define	CS_AUTHDECRYPTS		55
193 #define	CS_AUTHRESET		56
194 #define	CS_K_OFFSET		57
195 #define	CS_K_FREQ		58
196 #define	CS_K_MAXERR		59
197 #define	CS_K_ESTERR		60
198 #define	CS_K_STFLAGS		61
199 #define	CS_K_TIMECONST		62
200 #define	CS_K_PRECISION		63
201 #define	CS_K_FREQTOL		64
202 #define	CS_K_PPS_FREQ		65
203 #define	CS_K_PPS_STABIL		66
204 #define	CS_K_PPS_JITTER		67
205 #define	CS_K_PPS_CALIBDUR	68
206 #define	CS_K_PPS_CALIBS		69
207 #define	CS_K_PPS_CALIBERRS	70
208 #define	CS_K_PPS_JITEXC		71
209 #define	CS_K_PPS_STBEXC		72
210 #define	CS_KERN_FIRST		CS_K_OFFSET
211 #define	CS_KERN_LAST		CS_K_PPS_STBEXC
212 #define	CS_IOSTATS_RESET	73
213 #define	CS_TOTAL_RBUF		74
214 #define	CS_FREE_RBUF		75
215 #define	CS_USED_RBUF		76
216 #define	CS_RBUF_LOWATER		77
217 #define	CS_IO_DROPPED		78
218 #define	CS_IO_IGNORED		79
219 #define	CS_IO_RECEIVED		80
220 #define	CS_IO_SENT		81
221 #define	CS_IO_SENDFAILED	82
222 #define	CS_IO_WAKEUPS		83
223 #define	CS_IO_GOODWAKEUPS	84
224 #define	CS_TIMERSTATS_RESET	85
225 #define	CS_TIMER_OVERRUNS	86
226 #define	CS_TIMER_XMTS		87
227 #define	CS_FUZZ			88
228 #define	CS_WANDER_THRESH	89
229 #define	CS_LEAPSMEARINTV	90
230 #define	CS_LEAPSMEAROFFS	91
231 #define	CS_MAX_NOAUTOKEY	CS_LEAPSMEAROFFS
232 #ifdef AUTOKEY
233 #define	CS_FLAGS		(1 + CS_MAX_NOAUTOKEY)
234 #define	CS_HOST			(2 + CS_MAX_NOAUTOKEY)
235 #define	CS_PUBLIC		(3 + CS_MAX_NOAUTOKEY)
236 #define	CS_CERTIF		(4 + CS_MAX_NOAUTOKEY)
237 #define	CS_SIGNATURE		(5 + CS_MAX_NOAUTOKEY)
238 #define	CS_REVTIME		(6 + CS_MAX_NOAUTOKEY)
239 #define	CS_IDENT		(7 + CS_MAX_NOAUTOKEY)
240 #define	CS_DIGEST		(8 + CS_MAX_NOAUTOKEY)
241 #define	CS_MAXCODE		CS_DIGEST
242 #else	/* !AUTOKEY follows */
243 #define	CS_MAXCODE		CS_MAX_NOAUTOKEY
244 #endif	/* !AUTOKEY */
245 
246 /*
247  * Peer variables we understand
248  */
249 #define	CP_CONFIG		1
250 #define	CP_AUTHENABLE		2
251 #define	CP_AUTHENTIC		3
252 #define	CP_SRCADR		4
253 #define	CP_SRCPORT		5
254 #define	CP_DSTADR		6
255 #define	CP_DSTPORT		7
256 #define	CP_LEAP			8
257 #define	CP_HMODE		9
258 #define	CP_STRATUM		10
259 #define	CP_PPOLL		11
260 #define	CP_HPOLL		12
261 #define	CP_PRECISION		13
262 #define	CP_ROOTDELAY		14
263 #define	CP_ROOTDISPERSION	15
264 #define	CP_REFID		16
265 #define	CP_REFTIME		17
266 #define	CP_ORG			18
267 #define	CP_REC			19
268 #define	CP_XMT			20
269 #define	CP_REACH		21
270 #define	CP_UNREACH		22
271 #define	CP_TIMER		23
272 #define	CP_DELAY		24
273 #define	CP_OFFSET		25
274 #define	CP_JITTER		26
275 #define	CP_DISPERSION		27
276 #define	CP_KEYID		28
277 #define	CP_FILTDELAY		29
278 #define	CP_FILTOFFSET		30
279 #define	CP_PMODE		31
280 #define	CP_RECEIVED		32
281 #define	CP_SENT			33
282 #define	CP_FILTERROR		34
283 #define	CP_FLASH		35
284 #define	CP_TTL			36
285 #define	CP_VARLIST		37
286 #define	CP_IN			38
287 #define	CP_OUT			39
288 #define	CP_RATE			40
289 #define	CP_BIAS			41
290 #define	CP_SRCHOST		42
291 #define	CP_TIMEREC		43
292 #define	CP_TIMEREACH		44
293 #define	CP_BADAUTH		45
294 #define	CP_BOGUSORG		46
295 #define	CP_OLDPKT		47
296 #define	CP_SELDISP		48
297 #define	CP_SELBROKEN		49
298 #define	CP_CANDIDATE		50
299 #define	CP_MAX_NOAUTOKEY	CP_CANDIDATE
300 #ifdef AUTOKEY
301 #define	CP_FLAGS		(1 + CP_MAX_NOAUTOKEY)
302 #define	CP_HOST			(2 + CP_MAX_NOAUTOKEY)
303 #define	CP_VALID		(3 + CP_MAX_NOAUTOKEY)
304 #define	CP_INITSEQ		(4 + CP_MAX_NOAUTOKEY)
305 #define	CP_INITKEY		(5 + CP_MAX_NOAUTOKEY)
306 #define	CP_INITTSP		(6 + CP_MAX_NOAUTOKEY)
307 #define	CP_SIGNATURE		(7 + CP_MAX_NOAUTOKEY)
308 #define	CP_IDENT		(8 + CP_MAX_NOAUTOKEY)
309 #define	CP_MAXCODE		CP_IDENT
310 #else	/* !AUTOKEY follows */
311 #define	CP_MAXCODE		CP_MAX_NOAUTOKEY
312 #endif	/* !AUTOKEY */
313 
314 /*
315  * Clock variables we understand
316  */
317 #define	CC_TYPE		1
318 #define	CC_TIMECODE	2
319 #define	CC_POLL		3
320 #define	CC_NOREPLY	4
321 #define	CC_BADFORMAT	5
322 #define	CC_BADDATA	6
323 #define	CC_FUDGETIME1	7
324 #define	CC_FUDGETIME2	8
325 #define	CC_FUDGEVAL1	9
326 #define	CC_FUDGEVAL2	10
327 #define	CC_FLAGS	11
328 #define	CC_DEVICE	12
329 #define	CC_VARLIST	13
330 #define	CC_MAXCODE	CC_VARLIST
331 
332 /*
333  * System variable values. The array can be indexed by the variable
334  * index to find the textual name.
335  */
336 static const struct ctl_var sys_var[] = {
337 	{ 0,		PADDING, "" },		/* 0 */
338 	{ CS_LEAP,	RW, "leap" },		/* 1 */
339 	{ CS_STRATUM,	RO, "stratum" },	/* 2 */
340 	{ CS_PRECISION, RO, "precision" },	/* 3 */
341 	{ CS_ROOTDELAY, RO, "rootdelay" },	/* 4 */
342 	{ CS_ROOTDISPERSION, RO, "rootdisp" },	/* 5 */
343 	{ CS_REFID,	RO, "refid" },		/* 6 */
344 	{ CS_REFTIME,	RO, "reftime" },	/* 7 */
345 	{ CS_POLL,	RO, "tc" },		/* 8 */
346 	{ CS_PEERID,	RO, "peer" },		/* 9 */
347 	{ CS_OFFSET,	RO, "offset" },		/* 10 */
348 	{ CS_DRIFT,	RO, "frequency" },	/* 11 */
349 	{ CS_JITTER,	RO, "sys_jitter" },	/* 12 */
350 	{ CS_ERROR,	RO, "clk_jitter" },	/* 13 */
351 	{ CS_CLOCK,	RO, "clock" },		/* 14 */
352 	{ CS_PROCESSOR, RO, "processor" },	/* 15 */
353 	{ CS_SYSTEM,	RO, "system" },		/* 16 */
354 	{ CS_VERSION,	RO, "version" },	/* 17 */
355 	{ CS_STABIL,	RO, "clk_wander" },	/* 18 */
356 	{ CS_VARLIST,	RO, "sys_var_list" },	/* 19 */
357 	{ CS_TAI,	RO, "tai" },		/* 20 */
358 	{ CS_LEAPTAB,	RO, "leapsec" },	/* 21 */
359 	{ CS_LEAPEND,	RO, "expire" },		/* 22 */
360 	{ CS_RATE,	RO, "mintc" },		/* 23 */
361 	{ CS_MRU_ENABLED,	RO, "mru_enabled" },	/* 24 */
362 	{ CS_MRU_DEPTH,		RO, "mru_depth" },	/* 25 */
363 	{ CS_MRU_DEEPEST,	RO, "mru_deepest" },	/* 26 */
364 	{ CS_MRU_MINDEPTH,	RO, "mru_mindepth" },	/* 27 */
365 	{ CS_MRU_MAXAGE,	RO, "mru_maxage" },	/* 28 */
366 	{ CS_MRU_MAXDEPTH,	RO, "mru_maxdepth" },	/* 29 */
367 	{ CS_MRU_MEM,		RO, "mru_mem" },	/* 30 */
368 	{ CS_MRU_MAXMEM,	RO, "mru_maxmem" },	/* 31 */
369 	{ CS_SS_UPTIME,		RO, "ss_uptime" },	/* 32 */
370 	{ CS_SS_RESET,		RO, "ss_reset" },	/* 33 */
371 	{ CS_SS_RECEIVED,	RO, "ss_received" },	/* 34 */
372 	{ CS_SS_THISVER,	RO, "ss_thisver" },	/* 35 */
373 	{ CS_SS_OLDVER,		RO, "ss_oldver" },	/* 36 */
374 	{ CS_SS_BADFORMAT,	RO, "ss_badformat" },	/* 37 */
375 	{ CS_SS_BADAUTH,	RO, "ss_badauth" },	/* 38 */
376 	{ CS_SS_DECLINED,	RO, "ss_declined" },	/* 39 */
377 	{ CS_SS_RESTRICTED,	RO, "ss_restricted" },	/* 40 */
378 	{ CS_SS_LIMITED,	RO, "ss_limited" },	/* 41 */
379 	{ CS_SS_KODSENT,	RO, "ss_kodsent" },	/* 42 */
380 	{ CS_SS_PROCESSED,	RO, "ss_processed" },	/* 43 */
381 	{ CS_PEERADR,		RO, "peeradr" },	/* 44 */
382 	{ CS_PEERMODE,		RO, "peermode" },	/* 45 */
383 	{ CS_BCASTDELAY,	RO, "bcastdelay" },	/* 46 */
384 	{ CS_AUTHDELAY,		RO, "authdelay" },	/* 47 */
385 	{ CS_AUTHKEYS,		RO, "authkeys" },	/* 48 */
386 	{ CS_AUTHFREEK,		RO, "authfreek" },	/* 49 */
387 	{ CS_AUTHKLOOKUPS,	RO, "authklookups" },	/* 50 */
388 	{ CS_AUTHKNOTFOUND,	RO, "authknotfound" },	/* 51 */
389 	{ CS_AUTHKUNCACHED,	RO, "authkuncached" },	/* 52 */
390 	{ CS_AUTHKEXPIRED,	RO, "authkexpired" },	/* 53 */
391 	{ CS_AUTHENCRYPTS,	RO, "authencrypts" },	/* 54 */
392 	{ CS_AUTHDECRYPTS,	RO, "authdecrypts" },	/* 55 */
393 	{ CS_AUTHRESET,		RO, "authreset" },	/* 56 */
394 	{ CS_K_OFFSET,		RO, "koffset" },	/* 57 */
395 	{ CS_K_FREQ,		RO, "kfreq" },		/* 58 */
396 	{ CS_K_MAXERR,		RO, "kmaxerr" },	/* 59 */
397 	{ CS_K_ESTERR,		RO, "kesterr" },	/* 60 */
398 	{ CS_K_STFLAGS,		RO, "kstflags" },	/* 61 */
399 	{ CS_K_TIMECONST,	RO, "ktimeconst" },	/* 62 */
400 	{ CS_K_PRECISION,	RO, "kprecis" },	/* 63 */
401 	{ CS_K_FREQTOL,		RO, "kfreqtol" },	/* 64 */
402 	{ CS_K_PPS_FREQ,	RO, "kppsfreq" },	/* 65 */
403 	{ CS_K_PPS_STABIL,	RO, "kppsstab" },	/* 66 */
404 	{ CS_K_PPS_JITTER,	RO, "kppsjitter" },	/* 67 */
405 	{ CS_K_PPS_CALIBDUR,	RO, "kppscalibdur" },	/* 68 */
406 	{ CS_K_PPS_CALIBS,	RO, "kppscalibs" },	/* 69 */
407 	{ CS_K_PPS_CALIBERRS,	RO, "kppscaliberrs" },	/* 70 */
408 	{ CS_K_PPS_JITEXC,	RO, "kppsjitexc" },	/* 71 */
409 	{ CS_K_PPS_STBEXC,	RO, "kppsstbexc" },	/* 72 */
410 	{ CS_IOSTATS_RESET,	RO, "iostats_reset" },	/* 73 */
411 	{ CS_TOTAL_RBUF,	RO, "total_rbuf" },	/* 74 */
412 	{ CS_FREE_RBUF,		RO, "free_rbuf" },	/* 75 */
413 	{ CS_USED_RBUF,		RO, "used_rbuf" },	/* 76 */
414 	{ CS_RBUF_LOWATER,	RO, "rbuf_lowater" },	/* 77 */
415 	{ CS_IO_DROPPED,	RO, "io_dropped" },	/* 78 */
416 	{ CS_IO_IGNORED,	RO, "io_ignored" },	/* 79 */
417 	{ CS_IO_RECEIVED,	RO, "io_received" },	/* 80 */
418 	{ CS_IO_SENT,		RO, "io_sent" },	/* 81 */
419 	{ CS_IO_SENDFAILED,	RO, "io_sendfailed" },	/* 82 */
420 	{ CS_IO_WAKEUPS,	RO, "io_wakeups" },	/* 83 */
421 	{ CS_IO_GOODWAKEUPS,	RO, "io_goodwakeups" },	/* 84 */
422 	{ CS_TIMERSTATS_RESET,	RO, "timerstats_reset" },/* 85 */
423 	{ CS_TIMER_OVERRUNS,	RO, "timer_overruns" },	/* 86 */
424 	{ CS_TIMER_XMTS,	RO, "timer_xmts" },	/* 87 */
425 	{ CS_FUZZ,		RO, "fuzz" },		/* 88 */
426 	{ CS_WANDER_THRESH,	RO, "clk_wander_threshold" }, /* 89 */
427 
428 	{ CS_LEAPSMEARINTV,	RO, "leapsmearinterval" },    /* 90 */
429 	{ CS_LEAPSMEAROFFS,	RO, "leapsmearoffset" },      /* 91 */
430 
431 #ifdef AUTOKEY
432 	{ CS_FLAGS,	RO, "flags" },		/* 1 + CS_MAX_NOAUTOKEY */
433 	{ CS_HOST,	RO, "host" },		/* 2 + CS_MAX_NOAUTOKEY */
434 	{ CS_PUBLIC,	RO, "update" },		/* 3 + CS_MAX_NOAUTOKEY */
435 	{ CS_CERTIF,	RO, "cert" },		/* 4 + CS_MAX_NOAUTOKEY */
436 	{ CS_SIGNATURE,	RO, "signature" },	/* 5 + CS_MAX_NOAUTOKEY */
437 	{ CS_REVTIME,	RO, "until" },		/* 6 + CS_MAX_NOAUTOKEY */
438 	{ CS_IDENT,	RO, "ident" },		/* 7 + CS_MAX_NOAUTOKEY */
439 	{ CS_DIGEST,	RO, "digest" },		/* 8 + CS_MAX_NOAUTOKEY */
440 #endif	/* AUTOKEY */
441 	{ 0,		EOV, "" }		/* 87/95 */
442 };
443 
444 static struct ctl_var *ext_sys_var = NULL;
445 
446 /*
447  * System variables we print by default (in fuzzball order,
448  * more-or-less)
449  */
450 static const u_char def_sys_var[] = {
451 	CS_VERSION,
452 	CS_PROCESSOR,
453 	CS_SYSTEM,
454 	CS_LEAP,
455 	CS_STRATUM,
456 	CS_PRECISION,
457 	CS_ROOTDELAY,
458 	CS_ROOTDISPERSION,
459 	CS_REFID,
460 	CS_REFTIME,
461 	CS_CLOCK,
462 	CS_PEERID,
463 	CS_POLL,
464 	CS_RATE,
465 	CS_OFFSET,
466 	CS_DRIFT,
467 	CS_JITTER,
468 	CS_ERROR,
469 	CS_STABIL,
470 	CS_TAI,
471 	CS_LEAPTAB,
472 	CS_LEAPEND,
473 	CS_LEAPSMEARINTV,
474 	CS_LEAPSMEAROFFS,
475 #ifdef AUTOKEY
476 	CS_HOST,
477 	CS_IDENT,
478 	CS_FLAGS,
479 	CS_DIGEST,
480 	CS_SIGNATURE,
481 	CS_PUBLIC,
482 	CS_CERTIF,
483 #endif	/* AUTOKEY */
484 	0
485 };
486 
487 
488 /*
489  * Peer variable list
490  */
491 static const struct ctl_var peer_var[] = {
492 	{ 0,		PADDING, "" },		/* 0 */
493 	{ CP_CONFIG,	RO, "config" },		/* 1 */
494 	{ CP_AUTHENABLE, RO,	"authenable" },	/* 2 */
495 	{ CP_AUTHENTIC, RO, "authentic" },	/* 3 */
496 	{ CP_SRCADR,	RO, "srcadr" },		/* 4 */
497 	{ CP_SRCPORT,	RO, "srcport" },	/* 5 */
498 	{ CP_DSTADR,	RO, "dstadr" },		/* 6 */
499 	{ CP_DSTPORT,	RO, "dstport" },	/* 7 */
500 	{ CP_LEAP,	RO, "leap" },		/* 8 */
501 	{ CP_HMODE,	RO, "hmode" },		/* 9 */
502 	{ CP_STRATUM,	RO, "stratum" },	/* 10 */
503 	{ CP_PPOLL,	RO, "ppoll" },		/* 11 */
504 	{ CP_HPOLL,	RO, "hpoll" },		/* 12 */
505 	{ CP_PRECISION,	RO, "precision" },	/* 13 */
506 	{ CP_ROOTDELAY,	RO, "rootdelay" },	/* 14 */
507 	{ CP_ROOTDISPERSION, RO, "rootdisp" },	/* 15 */
508 	{ CP_REFID,	RO, "refid" },		/* 16 */
509 	{ CP_REFTIME,	RO, "reftime" },	/* 17 */
510 	{ CP_ORG,	RO, "org" },		/* 18 */
511 	{ CP_REC,	RO, "rec" },		/* 19 */
512 	{ CP_XMT,	RO, "xleave" },		/* 20 */
513 	{ CP_REACH,	RO, "reach" },		/* 21 */
514 	{ CP_UNREACH,	RO, "unreach" },	/* 22 */
515 	{ CP_TIMER,	RO, "timer" },		/* 23 */
516 	{ CP_DELAY,	RO, "delay" },		/* 24 */
517 	{ CP_OFFSET,	RO, "offset" },		/* 25 */
518 	{ CP_JITTER,	RO, "jitter" },		/* 26 */
519 	{ CP_DISPERSION, RO, "dispersion" },	/* 27 */
520 	{ CP_KEYID,	RO, "keyid" },		/* 28 */
521 	{ CP_FILTDELAY,	RO, "filtdelay" },	/* 29 */
522 	{ CP_FILTOFFSET, RO, "filtoffset" },	/* 30 */
523 	{ CP_PMODE,	RO, "pmode" },		/* 31 */
524 	{ CP_RECEIVED,	RO, "received"},	/* 32 */
525 	{ CP_SENT,	RO, "sent" },		/* 33 */
526 	{ CP_FILTERROR,	RO, "filtdisp" },	/* 34 */
527 	{ CP_FLASH,	RO, "flash" },		/* 35 */
528 	{ CP_TTL,	RO, "ttl" },		/* 36 */
529 	{ CP_VARLIST,	RO, "peer_var_list" },	/* 37 */
530 	{ CP_IN,	RO, "in" },		/* 38 */
531 	{ CP_OUT,	RO, "out" },		/* 39 */
532 	{ CP_RATE,	RO, "headway" },	/* 40 */
533 	{ CP_BIAS,	RO, "bias" },		/* 41 */
534 	{ CP_SRCHOST,	RO, "srchost" },	/* 42 */
535 	{ CP_TIMEREC,	RO, "timerec" },	/* 43 */
536 	{ CP_TIMEREACH,	RO, "timereach" },	/* 44 */
537 	{ CP_BADAUTH,	RO, "badauth" },	/* 45 */
538 	{ CP_BOGUSORG,	RO, "bogusorg" },	/* 46 */
539 	{ CP_OLDPKT,	RO, "oldpkt" },		/* 47 */
540 	{ CP_SELDISP,	RO, "seldisp" },	/* 48 */
541 	{ CP_SELBROKEN,	RO, "selbroken" },	/* 49 */
542 	{ CP_CANDIDATE, RO, "candidate" },	/* 50 */
543 #ifdef AUTOKEY
544 	{ CP_FLAGS,	RO, "flags" },		/* 1 + CP_MAX_NOAUTOKEY */
545 	{ CP_HOST,	RO, "host" },		/* 2 + CP_MAX_NOAUTOKEY */
546 	{ CP_VALID,	RO, "valid" },		/* 3 + CP_MAX_NOAUTOKEY */
547 	{ CP_INITSEQ,	RO, "initsequence" },	/* 4 + CP_MAX_NOAUTOKEY */
548 	{ CP_INITKEY,	RO, "initkey" },	/* 5 + CP_MAX_NOAUTOKEY */
549 	{ CP_INITTSP,	RO, "timestamp" },	/* 6 + CP_MAX_NOAUTOKEY */
550 	{ CP_SIGNATURE,	RO, "signature" },	/* 7 + CP_MAX_NOAUTOKEY */
551 	{ CP_IDENT,	RO, "ident" },		/* 8 + CP_MAX_NOAUTOKEY */
552 #endif	/* AUTOKEY */
553 	{ 0,		EOV, "" }		/* 50/58 */
554 };
555 
556 
557 /*
558  * Peer variables we print by default
559  */
560 static const u_char def_peer_var[] = {
561 	CP_SRCADR,
562 	CP_SRCPORT,
563 	CP_SRCHOST,
564 	CP_DSTADR,
565 	CP_DSTPORT,
566 	CP_OUT,
567 	CP_IN,
568 	CP_LEAP,
569 	CP_STRATUM,
570 	CP_PRECISION,
571 	CP_ROOTDELAY,
572 	CP_ROOTDISPERSION,
573 	CP_REFID,
574 	CP_REFTIME,
575 	CP_REC,
576 	CP_REACH,
577 	CP_UNREACH,
578 	CP_HMODE,
579 	CP_PMODE,
580 	CP_HPOLL,
581 	CP_PPOLL,
582 	CP_RATE,
583 	CP_FLASH,
584 	CP_KEYID,
585 	CP_TTL,
586 	CP_OFFSET,
587 	CP_DELAY,
588 	CP_DISPERSION,
589 	CP_JITTER,
590 	CP_XMT,
591 	CP_BIAS,
592 	CP_FILTDELAY,
593 	CP_FILTOFFSET,
594 	CP_FILTERROR,
595 #ifdef AUTOKEY
596 	CP_HOST,
597 	CP_FLAGS,
598 	CP_SIGNATURE,
599 	CP_VALID,
600 	CP_INITSEQ,
601 	CP_IDENT,
602 #endif	/* AUTOKEY */
603 	0
604 };
605 
606 
607 #ifdef REFCLOCK
608 /*
609  * Clock variable list
610  */
611 static const struct ctl_var clock_var[] = {
612 	{ 0,		PADDING, "" },		/* 0 */
613 	{ CC_TYPE,	RO, "type" },		/* 1 */
614 	{ CC_TIMECODE,	RO, "timecode" },	/* 2 */
615 	{ CC_POLL,	RO, "poll" },		/* 3 */
616 	{ CC_NOREPLY,	RO, "noreply" },	/* 4 */
617 	{ CC_BADFORMAT, RO, "badformat" },	/* 5 */
618 	{ CC_BADDATA,	RO, "baddata" },	/* 6 */
619 	{ CC_FUDGETIME1, RO, "fudgetime1" },	/* 7 */
620 	{ CC_FUDGETIME2, RO, "fudgetime2" },	/* 8 */
621 	{ CC_FUDGEVAL1, RO, "stratum" },	/* 9 */
622 	{ CC_FUDGEVAL2, RO, "refid" },		/* 10 */
623 	{ CC_FLAGS,	RO, "flags" },		/* 11 */
624 	{ CC_DEVICE,	RO, "device" },		/* 12 */
625 	{ CC_VARLIST,	RO, "clock_var_list" },	/* 13 */
626 	{ 0,		EOV, ""  }		/* 14 */
627 };
628 
629 
630 /*
631  * Clock variables printed by default
632  */
633 static const u_char def_clock_var[] = {
634 	CC_DEVICE,
635 	CC_TYPE,	/* won't be output if device = known */
636 	CC_TIMECODE,
637 	CC_POLL,
638 	CC_NOREPLY,
639 	CC_BADFORMAT,
640 	CC_BADDATA,
641 	CC_FUDGETIME1,
642 	CC_FUDGETIME2,
643 	CC_FUDGEVAL1,
644 	CC_FUDGEVAL2,
645 	CC_FLAGS,
646 	0
647 };
648 #endif
649 
650 /*
651  * MRU string constants shared by send_mru_entry() and read_mru_list().
652  */
653 static const char addr_fmt[] =		"addr.%d";
654 static const char last_fmt[] =		"last.%d";
655 
656 /*
657  * System and processor definitions.
658  */
659 #ifndef HAVE_UNAME
660 # ifndef STR_SYSTEM
661 #  define		STR_SYSTEM	"UNIX"
662 # endif
663 # ifndef STR_PROCESSOR
664 #  define		STR_PROCESSOR	"unknown"
665 # endif
666 
667 static const char str_system[] = STR_SYSTEM;
668 static const char str_processor[] = STR_PROCESSOR;
669 #else
670 # include <sys/utsname.h>
671 static struct utsname utsnamebuf;
672 #endif /* HAVE_UNAME */
673 
674 /*
675  * Trap structures. We only allow a few of these, and send a copy of
676  * each async message to each live one. Traps time out after an hour, it
677  * is up to the trap receipient to keep resetting it to avoid being
678  * timed out.
679  */
680 /* ntp_request.c */
681 struct ctl_trap ctl_traps[CTL_MAXTRAPS];
682 int num_ctl_traps;
683 
684 /*
685  * Type bits, for ctlsettrap() call.
686  */
687 #define TRAP_TYPE_CONFIG	0	/* used by configuration code */
688 #define TRAP_TYPE_PRIO		1	/* priority trap */
689 #define TRAP_TYPE_NONPRIO	2	/* nonpriority trap */
690 
691 
692 /*
693  * List relating reference clock types to control message time sources.
694  * Index by the reference clock type. This list will only be used iff
695  * the reference clock driver doesn't set peer->sstclktype to something
696  * different than CTL_SST_TS_UNSPEC.
697  */
698 #ifdef REFCLOCK
699 static const u_char clocktypes[] = {
700 	CTL_SST_TS_NTP,		/* REFCLK_NONE (0) */
701 	CTL_SST_TS_LOCAL,	/* REFCLK_LOCALCLOCK (1) */
702 	CTL_SST_TS_UHF,		/* deprecated REFCLK_GPS_TRAK (2) */
703 	CTL_SST_TS_HF,		/* REFCLK_WWV_PST (3) */
704 	CTL_SST_TS_LF,		/* REFCLK_WWVB_SPECTRACOM (4) */
705 	CTL_SST_TS_UHF,		/* REFCLK_TRUETIME (5) */
706 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_AUDIO (6) */
707 	CTL_SST_TS_HF,		/* REFCLK_CHU (7) */
708 	CTL_SST_TS_LF,		/* REFCLOCK_PARSE (default) (8) */
709 	CTL_SST_TS_LF,		/* REFCLK_GPS_MX4200 (9) */
710 	CTL_SST_TS_UHF,		/* REFCLK_GPS_AS2201 (10) */
711 	CTL_SST_TS_UHF,		/* REFCLK_GPS_ARBITER (11) */
712 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_TPRO (12) */
713 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_LEITCH (13) */
714 	CTL_SST_TS_LF,		/* deprecated REFCLK_MSF_EES (14) */
715 	CTL_SST_TS_NTP,		/* not used (15) */
716 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_BANCOMM (16) */
717 	CTL_SST_TS_UHF,		/* REFCLK_GPS_DATU (17) */
718 	CTL_SST_TS_TELEPHONE,	/* REFCLK_NIST_ACTS (18) */
719 	CTL_SST_TS_HF,		/* REFCLK_WWV_HEATH (19) */
720 	CTL_SST_TS_UHF,		/* REFCLK_GPS_NMEA (20) */
721 	CTL_SST_TS_UHF,		/* REFCLK_GPS_VME (21) */
722 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_PPS (22) */
723 	CTL_SST_TS_NTP,		/* not used (23) */
724 	CTL_SST_TS_NTP,		/* not used (24) */
725 	CTL_SST_TS_NTP,		/* not used (25) */
726 	CTL_SST_TS_UHF,		/* REFCLK_GPS_HP (26) */
727 	CTL_SST_TS_LF,		/* REFCLK_ARCRON_MSF (27) */
728 	CTL_SST_TS_UHF,		/* REFCLK_SHM (28) */
729 	CTL_SST_TS_UHF,		/* REFCLK_PALISADE (29) */
730 	CTL_SST_TS_UHF,		/* REFCLK_ONCORE (30) */
731 	CTL_SST_TS_UHF,		/* REFCLK_JUPITER (31) */
732 	CTL_SST_TS_LF,		/* REFCLK_CHRONOLOG (32) */
733 	CTL_SST_TS_LF,		/* REFCLK_DUMBCLOCK (33) */
734 	CTL_SST_TS_LF,		/* REFCLK_ULINK (34) */
735 	CTL_SST_TS_LF,		/* REFCLK_PCF (35) */
736 	CTL_SST_TS_HF,		/* REFCLK_WWV (36) */
737 	CTL_SST_TS_LF,		/* REFCLK_FG (37) */
738 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_SERIAL (38) */
739 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_PCI (39) */
740 	CTL_SST_TS_LF,		/* REFCLK_JJY (40) */
741 	CTL_SST_TS_UHF,		/* REFCLK_TT560 (41) */
742 	CTL_SST_TS_UHF,		/* REFCLK_ZYFER (42) */
743 	CTL_SST_TS_UHF,		/* REFCLK_RIPENCC (43) */
744 	CTL_SST_TS_UHF,		/* REFCLK_NEOCLOCK4X (44) */
745 	CTL_SST_TS_UHF,		/* REFCLK_TSYNCPCI (45) */
746 	CTL_SST_TS_UHF		/* REFCLK_GPSDJSON (46) */
747 };
748 #endif  /* REFCLOCK */
749 
750 
751 /*
752  * Keyid used for authenticating write requests.
753  */
754 keyid_t ctl_auth_keyid;
755 
756 /*
757  * We keep track of the last error reported by the system internally
758  */
759 static	u_char ctl_sys_last_event;
760 static	u_char ctl_sys_num_events;
761 
762 
763 /*
764  * Statistic counters to keep track of requests and responses.
765  */
766 u_long ctltimereset;		/* time stats reset */
767 u_long numctlreq;		/* number of requests we've received */
768 u_long numctlbadpkts;		/* number of bad control packets */
769 u_long numctlresponses;		/* number of resp packets sent with data */
770 u_long numctlfrags;		/* number of fragments sent */
771 u_long numctlerrors;		/* number of error responses sent */
772 u_long numctltooshort;		/* number of too short input packets */
773 u_long numctlinputresp;		/* number of responses on input */
774 u_long numctlinputfrag;		/* number of fragments on input */
775 u_long numctlinputerr;		/* number of input pkts with err bit set */
776 u_long numctlbadoffset;		/* number of input pkts with nonzero offset */
777 u_long numctlbadversion;	/* number of input pkts with unknown version */
778 u_long numctldatatooshort;	/* data too short for count */
779 u_long numctlbadop;		/* bad op code found in packet */
780 u_long numasyncmsgs;		/* number of async messages we've sent */
781 
782 /*
783  * Response packet used by these routines. Also some state information
784  * so that we can handle packet formatting within a common set of
785  * subroutines.  Note we try to enter data in place whenever possible,
786  * but the need to set the more bit correctly means we occasionally
787  * use the extra buffer and copy.
788  */
789 static struct ntp_control rpkt;
790 static u_char	res_version;
791 static u_char	res_opcode;
792 static associd_t res_associd;
793 static u_short	res_frags;	/* datagrams in this response */
794 static int	res_offset;	/* offset of payload in response */
795 static u_char * datapt;
796 static u_char * dataend;
797 static int	datalinelen;
798 static int	datasent;	/* flag to avoid initial ", " */
799 static int	datanotbinflag;
800 static sockaddr_u *rmt_addr;
801 static struct interface *lcl_inter;
802 
803 static u_char	res_authenticate;
804 static u_char	res_authokay;
805 static keyid_t	res_keyid;
806 
807 #define MAXDATALINELEN	(72)
808 
809 static u_char	res_async;	/* sending async trap response? */
810 
811 /*
812  * Pointers for saving state when decoding request packets
813  */
814 static	char *reqpt;
815 static	char *reqend;
816 
817 #ifndef MIN
818 #define MIN(a, b) (((a) <= (b)) ? (a) : (b))
819 #endif
820 
821 /*
822  * init_control - initialize request data
823  */
824 void
825 init_control(void)
826 {
827 	size_t i;
828 
829 #ifdef HAVE_UNAME
830 	uname(&utsnamebuf);
831 #endif /* HAVE_UNAME */
832 
833 	ctl_clr_stats();
834 
835 	ctl_auth_keyid = 0;
836 	ctl_sys_last_event = EVNT_UNSPEC;
837 	ctl_sys_num_events = 0;
838 
839 	num_ctl_traps = 0;
840 	for (i = 0; i < COUNTOF(ctl_traps); i++)
841 		ctl_traps[i].tr_flags = 0;
842 }
843 
844 
845 /*
846  * ctl_error - send an error response for the current request
847  */
848 static void
849 ctl_error(
850 	u_char errcode
851 	)
852 {
853 	size_t		maclen;
854 
855 	numctlerrors++;
856 	DPRINTF(3, ("sending control error %u\n", errcode));
857 
858 	/*
859 	 * Fill in the fields. We assume rpkt.sequence and rpkt.associd
860 	 * have already been filled in.
861 	 */
862 	rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
863 			(res_opcode & CTL_OP_MASK);
864 	rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
865 	rpkt.count = 0;
866 
867 	/*
868 	 * send packet and bump counters
869 	 */
870 	if (res_authenticate && sys_authenticate) {
871 		maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
872 				     CTL_HEADER_LEN);
873 		sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
874 			CTL_HEADER_LEN + maclen);
875 	} else
876 		sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
877 			CTL_HEADER_LEN);
878 }
879 
880 int/*BOOL*/
881 is_safe_filename(const char * name)
882 {
883 	/* We need a strict validation of filenames we should write: The
884 	 * daemon might run with special permissions and is remote
885 	 * controllable, so we better take care what we allow as file
886 	 * name!
887 	 *
888 	 * The first character must be digit or a letter from the ASCII
889 	 * base plane or a '_' ([_A-Za-z0-9]), the following characters
890 	 * must be from [-._+A-Za-z0-9].
891 	 *
892 	 * We do not trust the character classification much here: Since
893 	 * the NTP protocol makes no provisions for UTF-8 or local code
894 	 * pages, we strictly require the 7bit ASCII code page.
895 	 *
896 	 * The following table is a packed bit field of 128 two-bit
897 	 * groups. The LSB in each group tells us if a character is
898 	 * acceptable at the first position, the MSB if the character is
899 	 * accepted at any other position.
900 	 *
901 	 * This does not ensure that the file name is syntactically
902 	 * correct (multiple dots will not work with VMS...) but it will
903 	 * exclude potential globbing bombs and directory traversal. It
904 	 * also rules out drive selection. (For systems that have this
905 	 * notion, like Windows or VMS.)
906 	 */
907 	static const uint32_t chclass[8] = {
908 		0x00000000, 0x00000000,
909 		0x28800000, 0x000FFFFF,
910 		0xFFFFFFFC, 0xC03FFFFF,
911 		0xFFFFFFFC, 0x003FFFFF
912 	};
913 
914 	u_int widx, bidx, mask;
915 	if ( ! (name && *name))
916 		return FALSE;
917 
918 	mask = 1u;
919 	while (0 != (widx = (u_char)*name++)) {
920 		bidx = (widx & 15) << 1;
921 		widx = widx >> 4;
922 		if (widx >= sizeof(chclass)/sizeof(chclass[0]))
923 			return FALSE;
924 		if (0 == ((chclass[widx] >> bidx) & mask))
925 			return FALSE;
926 		mask = 2u;
927 	}
928 	return TRUE;
929 }
930 
931 
932 /*
933  * save_config - Implements ntpq -c "saveconfig <filename>"
934  *		 Writes current configuration including any runtime
935  *		 changes by ntpq's :config or config-from-file
936  *
937  * Note: There should be no buffer overflow or truncation in the
938  * processing of file names -- both cause security problems. This is bit
939  * painful to code but essential here.
940  */
941 void
942 save_config(
943 	struct recvbuf *rbufp,
944 	int restrict_mask
945 	)
946 {
947 	/* block directory traversal by searching for characters that
948 	 * indicate directory components in a file path.
949 	 *
950 	 * Conceptually we should be searching for DIRSEP in filename,
951 	 * however Windows actually recognizes both forward and
952 	 * backslashes as equivalent directory separators at the API
953 	 * level.  On POSIX systems we could allow '\\' but such
954 	 * filenames are tricky to manipulate from a shell, so just
955 	 * reject both types of slashes on all platforms.
956 	 */
957 	/* TALOS-CAN-0062: block directory traversal for VMS, too */
958 	static const char * illegal_in_filename =
959 #if defined(VMS)
960 	    ":[]"	/* do not allow drive and path components here */
961 #elif defined(SYS_WINNT)
962 	    ":\\/"	/* path and drive separators */
963 #else
964 	    "\\/"	/* separator and critical char for POSIX */
965 #endif
966 	    ;
967 	char reply[128];
968 #ifdef SAVECONFIG
969 	static const char savedconfig_eq[] = "savedconfig=";
970 
971 	/* Build a safe open mode from the available mode flags. We want
972 	 * to create a new file and write it in text mode (when
973 	 * applicable -- only Windows does this...)
974 	 */
975 	static const int openmode = O_CREAT | O_TRUNC | O_WRONLY
976 #  if defined(O_EXCL)		/* posix, vms */
977 	    | O_EXCL
978 #  elif defined(_O_EXCL)	/* windows is alway very special... */
979 	    | _O_EXCL
980 #  endif
981 #  if defined(_O_TEXT)		/* windows, again */
982 	    | _O_TEXT
983 #endif
984 	    ;
985 
986 	char filespec[128];
987 	char filename[128];
988 	char fullpath[512];
989 	char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
990 	time_t now;
991 	int fd;
992 	FILE *fptr;
993 	int prc;
994 	size_t reqlen;
995 #endif
996 
997 	if (RES_NOMODIFY & restrict_mask) {
998 		ctl_printf("%s", "saveconfig prohibited by restrict ... nomodify");
999 		ctl_flushpkt(0);
1000 		NLOG(NLOG_SYSINFO)
1001 			msyslog(LOG_NOTICE,
1002 				"saveconfig from %s rejected due to nomodify restriction",
1003 				stoa(&rbufp->recv_srcadr));
1004 		sys_restricted++;
1005 		return;
1006 	}
1007 
1008 #ifdef SAVECONFIG
1009 	if (NULL == saveconfigdir) {
1010 		ctl_printf("%s", "saveconfig prohibited, no saveconfigdir configured");
1011 		ctl_flushpkt(0);
1012 		NLOG(NLOG_SYSINFO)
1013 			msyslog(LOG_NOTICE,
1014 				"saveconfig from %s rejected, no saveconfigdir",
1015 				stoa(&rbufp->recv_srcadr));
1016 		return;
1017 	}
1018 
1019 	/* The length checking stuff gets serious. Do not assume a NUL
1020 	 * byte can be found, but if so, use it to calculate the needed
1021 	 * buffer size. If the available buffer is too short, bail out;
1022 	 * likewise if there is no file spec. (The latter will not
1023 	 * happen when using NTPQ, but there are other ways to craft a
1024 	 * network packet!)
1025 	 */
1026 	reqlen = (size_t)(reqend - reqpt);
1027 	if (0 != reqlen) {
1028 		char * nulpos = (char*)memchr(reqpt, 0, reqlen);
1029 		if (NULL != nulpos)
1030 			reqlen = (size_t)(nulpos - reqpt);
1031 	}
1032 	if (0 == reqlen)
1033 		return;
1034 	if (reqlen >= sizeof(filespec)) {
1035 		ctl_printf("saveconfig exceeded maximum raw name length (%u)",
1036 			   (u_int)sizeof(filespec));
1037 		ctl_flushpkt(0);
1038 		msyslog(LOG_NOTICE,
1039 			"saveconfig exceeded maximum raw name length from %s",
1040 			stoa(&rbufp->recv_srcadr));
1041 		return;
1042 	}
1043 
1044 	/* copy data directly as we exactly know the size */
1045 	memcpy(filespec, reqpt, reqlen);
1046 	filespec[reqlen] = '\0';
1047 
1048 	/*
1049 	 * allow timestamping of the saved config filename with
1050 	 * strftime() format such as:
1051 	 *   ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
1052 	 * XXX: Nice feature, but not too safe.
1053 	 * YYY: The check for permitted characters in file names should
1054 	 *      weed out the worst. Let's hope 'strftime()' does not
1055 	 *      develop pathological problems.
1056 	 */
1057 	time(&now);
1058 	if (0 == strftime(filename, sizeof(filename), filespec,
1059 			  localtime(&now)))
1060 	{
1061 		/*
1062 		 * If we arrive here, 'strftime()' balked; most likely
1063 		 * the buffer was too short. (Or it encounterd an empty
1064 		 * format, or just a format that expands to an empty
1065 		 * string.) We try to use the original name, though this
1066 		 * is very likely to fail later if there are format
1067 		 * specs in the string. Note that truncation cannot
1068 		 * happen here as long as both buffers have the same
1069 		 * size!
1070 		 */
1071 		strlcpy(filename, filespec, sizeof(filename));
1072 	}
1073 
1074 	/*
1075 	 * Check the file name for sanity. This might/will rule out file
1076 	 * names that would be legal but problematic, and it blocks
1077 	 * directory traversal.
1078 	 */
1079 	if (!is_safe_filename(filename)) {
1080 		ctl_printf("saveconfig rejects unsafe file name '%s'",
1081 			   filename);
1082 		ctl_flushpkt(0);
1083 		msyslog(LOG_NOTICE,
1084 			"saveconfig rejects unsafe file name from %s",
1085 			stoa(&rbufp->recv_srcadr));
1086 		return;
1087 	}
1088 
1089 	/*
1090 	 * XXX: This next test may not be needed with is_safe_filename()
1091 	 */
1092 
1093 	/* block directory/drive traversal */
1094 	/* TALOS-CAN-0062: block directory traversal for VMS, too */
1095 	if (NULL != strpbrk(filename, illegal_in_filename)) {
1096 		snprintf(reply, sizeof(reply),
1097 			 "saveconfig does not allow directory in filename");
1098 		ctl_putdata(reply, strlen(reply), 0);
1099 		ctl_flushpkt(0);
1100 		msyslog(LOG_NOTICE,
1101 			"saveconfig rejects unsafe file name from %s",
1102 			stoa(&rbufp->recv_srcadr));
1103 		return;
1104 	}
1105 
1106 	/* concatenation of directory and path can cause another
1107 	 * truncation...
1108 	 */
1109 	prc = snprintf(fullpath, sizeof(fullpath), "%s%s",
1110 		       saveconfigdir, filename);
1111 	if (prc < 0 || prc >= sizeof(fullpath)) {
1112 		ctl_printf("saveconfig exceeded maximum path length (%u)",
1113 			   (u_int)sizeof(fullpath));
1114 		ctl_flushpkt(0);
1115 		msyslog(LOG_NOTICE,
1116 			"saveconfig exceeded maximum path length from %s",
1117 			stoa(&rbufp->recv_srcadr));
1118 		return;
1119 	}
1120 
1121 	fd = open(fullpath, openmode, S_IRUSR | S_IWUSR);
1122 	if (-1 == fd)
1123 		fptr = NULL;
1124 	else
1125 		fptr = fdopen(fd, "w");
1126 
1127 	if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
1128 		ctl_printf("Unable to save configuration to file '%s': %m",
1129 			   filename);
1130 		msyslog(LOG_ERR,
1131 			"saveconfig %s from %s failed", filename,
1132 			stoa(&rbufp->recv_srcadr));
1133 	} else {
1134 		ctl_printf("Configuration saved to '%s'", filename);
1135 		msyslog(LOG_NOTICE,
1136 			"Configuration saved to '%s' (requested by %s)",
1137 			fullpath, stoa(&rbufp->recv_srcadr));
1138 		/*
1139 		 * save the output filename in system variable
1140 		 * savedconfig, retrieved with:
1141 		 *   ntpq -c "rv 0 savedconfig"
1142 		 * Note: the way 'savedconfig' is defined makes overflow
1143 		 * checks unnecessary here.
1144 		 */
1145 		snprintf(savedconfig, sizeof(savedconfig), "%s%s",
1146 			 savedconfig_eq, filename);
1147 		set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
1148 	}
1149 
1150 	if (NULL != fptr)
1151 		fclose(fptr);
1152 #else	/* !SAVECONFIG follows */
1153 	ctl_printf("%s",
1154 		   "saveconfig unavailable, configured with --disable-saveconfig");
1155 #endif
1156 	ctl_flushpkt(0);
1157 }
1158 
1159 
1160 /*
1161  * process_control - process an incoming control message
1162  */
1163 void
1164 process_control(
1165 	struct recvbuf *rbufp,
1166 	int restrict_mask
1167 	)
1168 {
1169 	struct ntp_control *pkt;
1170 	int req_count;
1171 	int req_data;
1172 	const struct ctl_proc *cc;
1173 	keyid_t *pkid;
1174 	int properlen;
1175 	size_t maclen;
1176 
1177 	DPRINTF(3, ("in process_control()\n"));
1178 
1179 	/*
1180 	 * Save the addresses for error responses
1181 	 */
1182 	numctlreq++;
1183 	rmt_addr = &rbufp->recv_srcadr;
1184 	lcl_inter = rbufp->dstadr;
1185 	pkt = (struct ntp_control *)&rbufp->recv_pkt;
1186 
1187 	/*
1188 	 * If the length is less than required for the header, or
1189 	 * it is a response or a fragment, ignore this.
1190 	 */
1191 	if (rbufp->recv_length < (int)CTL_HEADER_LEN
1192 	    || (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
1193 	    || pkt->offset != 0) {
1194 		DPRINTF(1, ("invalid format in control packet\n"));
1195 		if (rbufp->recv_length < (int)CTL_HEADER_LEN)
1196 			numctltooshort++;
1197 		if (CTL_RESPONSE & pkt->r_m_e_op)
1198 			numctlinputresp++;
1199 		if (CTL_MORE & pkt->r_m_e_op)
1200 			numctlinputfrag++;
1201 		if (CTL_ERROR & pkt->r_m_e_op)
1202 			numctlinputerr++;
1203 		if (pkt->offset != 0)
1204 			numctlbadoffset++;
1205 		return;
1206 	}
1207 	res_version = PKT_VERSION(pkt->li_vn_mode);
1208 	if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
1209 		DPRINTF(1, ("unknown version %d in control packet\n",
1210 			    res_version));
1211 		numctlbadversion++;
1212 		return;
1213 	}
1214 
1215 	/*
1216 	 * Pull enough data from the packet to make intelligent
1217 	 * responses
1218 	 */
1219 	rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
1220 					 MODE_CONTROL);
1221 	res_opcode = pkt->r_m_e_op;
1222 	rpkt.sequence = pkt->sequence;
1223 	rpkt.associd = pkt->associd;
1224 	rpkt.status = 0;
1225 	res_frags = 1;
1226 	res_offset = 0;
1227 	res_associd = htons(pkt->associd);
1228 	res_async = FALSE;
1229 	res_authenticate = FALSE;
1230 	res_keyid = 0;
1231 	res_authokay = FALSE;
1232 	req_count = (int)ntohs(pkt->count);
1233 	datanotbinflag = FALSE;
1234 	datalinelen = 0;
1235 	datasent = 0;
1236 	datapt = rpkt.u.data;
1237 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
1238 
1239 	if ((rbufp->recv_length & 0x3) != 0)
1240 		DPRINTF(3, ("Control packet length %d unrounded\n",
1241 			    rbufp->recv_length));
1242 
1243 	/*
1244 	 * We're set up now. Make sure we've got at least enough
1245 	 * incoming data space to match the count.
1246 	 */
1247 	req_data = rbufp->recv_length - CTL_HEADER_LEN;
1248 	if (req_data < req_count || rbufp->recv_length & 0x3) {
1249 		ctl_error(CERR_BADFMT);
1250 		numctldatatooshort++;
1251 		return;
1252 	}
1253 
1254 	properlen = req_count + CTL_HEADER_LEN;
1255 	/* round up proper len to a 8 octet boundary */
1256 
1257 	properlen = (properlen + 7) & ~7;
1258 	maclen = rbufp->recv_length - properlen;
1259 	if ((rbufp->recv_length & 3) == 0 &&
1260 	    maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
1261 	    sys_authenticate) {
1262 		res_authenticate = TRUE;
1263 		pkid = (void *)((char *)pkt + properlen);
1264 		res_keyid = ntohl(*pkid);
1265 		DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
1266 			    rbufp->recv_length, properlen, res_keyid,
1267 			    maclen));
1268 
1269 		if (!authistrusted(res_keyid))
1270 			DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
1271 		else if (authdecrypt(res_keyid, (u_int32 *)pkt,
1272 				     rbufp->recv_length - maclen,
1273 				     maclen)) {
1274 			res_authokay = TRUE;
1275 			DPRINTF(3, ("authenticated okay\n"));
1276 		} else {
1277 			res_keyid = 0;
1278 			DPRINTF(3, ("authentication failed\n"));
1279 		}
1280 	}
1281 
1282 	/*
1283 	 * Set up translate pointers
1284 	 */
1285 	reqpt = (char *)pkt->u.data;
1286 	reqend = reqpt + req_count;
1287 
1288 	/*
1289 	 * Look for the opcode processor
1290 	 */
1291 	for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
1292 		if (cc->control_code == res_opcode) {
1293 			DPRINTF(3, ("opcode %d, found command handler\n",
1294 				    res_opcode));
1295 			if (cc->flags == AUTH
1296 			    && (!res_authokay
1297 				|| res_keyid != ctl_auth_keyid)) {
1298 				ctl_error(CERR_PERMISSION);
1299 				return;
1300 			}
1301 			(cc->handler)(rbufp, restrict_mask);
1302 			return;
1303 		}
1304 	}
1305 
1306 	/*
1307 	 * Can't find this one, return an error.
1308 	 */
1309 	numctlbadop++;
1310 	ctl_error(CERR_BADOP);
1311 	return;
1312 }
1313 
1314 
1315 /*
1316  * ctlpeerstatus - return a status word for this peer
1317  */
1318 u_short
1319 ctlpeerstatus(
1320 	register struct peer *p
1321 	)
1322 {
1323 	u_short status;
1324 
1325 	status = p->status;
1326 	if (FLAG_CONFIG & p->flags)
1327 		status |= CTL_PST_CONFIG;
1328 	if (p->keyid)
1329 		status |= CTL_PST_AUTHENABLE;
1330 	if (FLAG_AUTHENTIC & p->flags)
1331 		status |= CTL_PST_AUTHENTIC;
1332 	if (p->reach)
1333 		status |= CTL_PST_REACH;
1334 	if (MDF_TXONLY_MASK & p->cast_flags)
1335 		status |= CTL_PST_BCAST;
1336 
1337 	return CTL_PEER_STATUS(status, p->num_events, p->last_event);
1338 }
1339 
1340 
1341 /*
1342  * ctlclkstatus - return a status word for this clock
1343  */
1344 #ifdef REFCLOCK
1345 static u_short
1346 ctlclkstatus(
1347 	struct refclockstat *pcs
1348 	)
1349 {
1350 	return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
1351 }
1352 #endif
1353 
1354 
1355 /*
1356  * ctlsysstatus - return the system status word
1357  */
1358 u_short
1359 ctlsysstatus(void)
1360 {
1361 	register u_char this_clock;
1362 
1363 	this_clock = CTL_SST_TS_UNSPEC;
1364 #ifdef REFCLOCK
1365 	if (sys_peer != NULL) {
1366 		if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
1367 			this_clock = sys_peer->sstclktype;
1368 		else if (sys_peer->refclktype < COUNTOF(clocktypes))
1369 			this_clock = clocktypes[sys_peer->refclktype];
1370 	}
1371 #else /* REFCLOCK */
1372 	if (sys_peer != 0)
1373 		this_clock = CTL_SST_TS_NTP;
1374 #endif /* REFCLOCK */
1375 	return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
1376 			      ctl_sys_last_event);
1377 }
1378 
1379 
1380 /*
1381  * ctl_flushpkt - write out the current packet and prepare
1382  *		  another if necessary.
1383  */
1384 static void
1385 ctl_flushpkt(
1386 	u_char more
1387 	)
1388 {
1389 	size_t i;
1390 	size_t dlen;
1391 	size_t sendlen;
1392 	size_t maclen;
1393 	size_t totlen;
1394 	keyid_t keyid;
1395 
1396 	dlen = datapt - rpkt.u.data;
1397 	if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
1398 		/*
1399 		 * Big hack, output a trailing \r\n
1400 		 */
1401 		*datapt++ = '\r';
1402 		*datapt++ = '\n';
1403 		dlen += 2;
1404 	}
1405 	sendlen = dlen + CTL_HEADER_LEN;
1406 
1407 	/*
1408 	 * Pad to a multiple of 32 bits
1409 	 */
1410 	while (sendlen & 0x3) {
1411 		*datapt++ = '\0';
1412 		sendlen++;
1413 	}
1414 
1415 	/*
1416 	 * Fill in the packet with the current info
1417 	 */
1418 	rpkt.r_m_e_op = CTL_RESPONSE | more |
1419 			(res_opcode & CTL_OP_MASK);
1420 	rpkt.count = htons((u_short)dlen);
1421 	rpkt.offset = htons((u_short)res_offset);
1422 	if (res_async) {
1423 		for (i = 0; i < COUNTOF(ctl_traps); i++) {
1424 			if (TRAP_INUSE & ctl_traps[i].tr_flags) {
1425 				rpkt.li_vn_mode =
1426 				    PKT_LI_VN_MODE(
1427 					sys_leap,
1428 					ctl_traps[i].tr_version,
1429 					MODE_CONTROL);
1430 				rpkt.sequence =
1431 				    htons(ctl_traps[i].tr_sequence);
1432 				sendpkt(&ctl_traps[i].tr_addr,
1433 					ctl_traps[i].tr_localaddr, -4,
1434 					(struct pkt *)&rpkt, sendlen);
1435 				if (!more)
1436 					ctl_traps[i].tr_sequence++;
1437 				numasyncmsgs++;
1438 			}
1439 		}
1440 	} else {
1441 		if (res_authenticate && sys_authenticate) {
1442 			totlen = sendlen;
1443 			/*
1444 			 * If we are going to authenticate, then there
1445 			 * is an additional requirement that the MAC
1446 			 * begin on a 64 bit boundary.
1447 			 */
1448 			while (totlen & 7) {
1449 				*datapt++ = '\0';
1450 				totlen++;
1451 			}
1452 			keyid = htonl(res_keyid);
1453 			memcpy(datapt, &keyid, sizeof(keyid));
1454 			maclen = authencrypt(res_keyid,
1455 					     (u_int32 *)&rpkt, totlen);
1456 			sendpkt(rmt_addr, lcl_inter, -5,
1457 				(struct pkt *)&rpkt, totlen + maclen);
1458 		} else {
1459 			sendpkt(rmt_addr, lcl_inter, -6,
1460 				(struct pkt *)&rpkt, sendlen);
1461 		}
1462 		if (more)
1463 			numctlfrags++;
1464 		else
1465 			numctlresponses++;
1466 	}
1467 
1468 	/*
1469 	 * Set us up for another go around.
1470 	 */
1471 	res_frags++;
1472 	res_offset += dlen;
1473 	datapt = rpkt.u.data;
1474 }
1475 
1476 
1477 /*
1478  * ctl_putdata - write data into the packet, fragmenting and starting
1479  * another if this one is full.
1480  */
1481 static void
1482 ctl_putdata(
1483 	const char *dp,
1484 	unsigned int dlen,
1485 	int bin			/* set to 1 when data is binary */
1486 	)
1487 {
1488 	int overhead;
1489 	unsigned int currentlen;
1490 
1491 	overhead = 0;
1492 	if (!bin) {
1493 		datanotbinflag = TRUE;
1494 		overhead = 3;
1495 		if (datasent) {
1496 			*datapt++ = ',';
1497 			datalinelen++;
1498 			if ((dlen + datalinelen + 1) >= MAXDATALINELEN) {
1499 				*datapt++ = '\r';
1500 				*datapt++ = '\n';
1501 				datalinelen = 0;
1502 			} else {
1503 				*datapt++ = ' ';
1504 				datalinelen++;
1505 			}
1506 		}
1507 	}
1508 
1509 	/*
1510 	 * Save room for trailing junk
1511 	 */
1512 	while (dlen + overhead + datapt > dataend) {
1513 		/*
1514 		 * Not enough room in this one, flush it out.
1515 		 */
1516 		currentlen = MIN(dlen, (unsigned int)(dataend - datapt));
1517 
1518 		memcpy(datapt, dp, currentlen);
1519 
1520 		datapt += currentlen;
1521 		dp += currentlen;
1522 		dlen -= currentlen;
1523 		datalinelen += currentlen;
1524 
1525 		ctl_flushpkt(CTL_MORE);
1526 	}
1527 
1528 	memcpy(datapt, dp, dlen);
1529 	datapt += dlen;
1530 	datalinelen += dlen;
1531 	datasent = TRUE;
1532 }
1533 
1534 
1535 /*
1536  * ctl_putstr - write a tagged string into the response packet
1537  *		in the form:
1538  *
1539  *		tag="data"
1540  *
1541  *		len is the data length excluding the NUL terminator,
1542  *		as in ctl_putstr("var", "value", strlen("value"));
1543  */
1544 static void
1545 ctl_putstr(
1546 	const char *	tag,
1547 	const char *	data,
1548 	size_t		len
1549 	)
1550 {
1551 	char buffer[512];
1552 	char *cp;
1553 	size_t tl;
1554 
1555 	tl = strlen(tag);
1556 	memcpy(buffer, tag, tl);
1557 	cp = buffer + tl;
1558 	if (len > 0) {
1559 		INSIST(tl + 3 + len <= sizeof(buffer));
1560 		*cp++ = '=';
1561 		*cp++ = '"';
1562 		memcpy(cp, data, len);
1563 		cp += len;
1564 		*cp++ = '"';
1565 	}
1566 	ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1567 }
1568 
1569 
1570 /*
1571  * ctl_putunqstr - write a tagged string into the response packet
1572  *		   in the form:
1573  *
1574  *		   tag=data
1575  *
1576  *	len is the data length excluding the NUL terminator.
1577  *	data must not contain a comma or whitespace.
1578  */
1579 static void
1580 ctl_putunqstr(
1581 	const char *	tag,
1582 	const char *	data,
1583 	size_t		len
1584 	)
1585 {
1586 	char buffer[512];
1587 	char *cp;
1588 	size_t tl;
1589 
1590 	tl = strlen(tag);
1591 	memcpy(buffer, tag, tl);
1592 	cp = buffer + tl;
1593 	if (len > 0) {
1594 		INSIST(tl + 1 + len <= sizeof(buffer));
1595 		*cp++ = '=';
1596 		memcpy(cp, data, len);
1597 		cp += len;
1598 	}
1599 	ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1600 }
1601 
1602 
1603 /*
1604  * ctl_putdblf - write a tagged, signed double into the response packet
1605  */
1606 static void
1607 ctl_putdblf(
1608 	const char *	tag,
1609 	int		use_f,
1610 	int		precision,
1611 	double		d
1612 	)
1613 {
1614 	char *cp;
1615 	const char *cq;
1616 	char buffer[200];
1617 
1618 	cp = buffer;
1619 	cq = tag;
1620 	while (*cq != '\0')
1621 		*cp++ = *cq++;
1622 	*cp++ = '=';
1623 	INSIST((size_t)(cp - buffer) < sizeof(buffer));
1624 	snprintf(cp, sizeof(buffer) - (cp - buffer), use_f ? "%.*f" : "%.*g",
1625 	    precision, d);
1626 	cp += strlen(cp);
1627 	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1628 }
1629 
1630 /*
1631  * ctl_putuint - write a tagged unsigned integer into the response
1632  */
1633 static void
1634 ctl_putuint(
1635 	const char *tag,
1636 	u_long uval
1637 	)
1638 {
1639 	register char *cp;
1640 	register const char *cq;
1641 	char buffer[200];
1642 
1643 	cp = buffer;
1644 	cq = tag;
1645 	while (*cq != '\0')
1646 		*cp++ = *cq++;
1647 
1648 	*cp++ = '=';
1649 	INSIST((cp - buffer) < (int)sizeof(buffer));
1650 	snprintf(cp, sizeof(buffer) - (cp - buffer), "%lu", uval);
1651 	cp += strlen(cp);
1652 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1653 }
1654 
1655 /*
1656  * ctl_putcal - write a decoded calendar data into the response
1657  */
1658 static void
1659 ctl_putcal(
1660 	const char *tag,
1661 	const struct calendar *pcal
1662 	)
1663 {
1664 	char buffer[100];
1665 	unsigned numch;
1666 
1667 	numch = snprintf(buffer, sizeof(buffer),
1668 			"%s=%04d%02d%02d%02d%02d",
1669 			tag,
1670 			pcal->year,
1671 			pcal->month,
1672 			pcal->monthday,
1673 			pcal->hour,
1674 			pcal->minute
1675 			);
1676 	INSIST(numch < sizeof(buffer));
1677 	ctl_putdata(buffer, numch, 0);
1678 
1679 	return;
1680 }
1681 
1682 /*
1683  * ctl_putfs - write a decoded filestamp into the response
1684  */
1685 static void
1686 ctl_putfs(
1687 	const char *tag,
1688 	tstamp_t uval
1689 	)
1690 {
1691 	register char *cp;
1692 	register const char *cq;
1693 	char buffer[200];
1694 	struct tm *tm = NULL;
1695 	time_t fstamp;
1696 
1697 	cp = buffer;
1698 	cq = tag;
1699 	while (*cq != '\0')
1700 		*cp++ = *cq++;
1701 
1702 	*cp++ = '=';
1703 	fstamp = uval - JAN_1970;
1704 	tm = gmtime(&fstamp);
1705 	if (NULL ==  tm)
1706 		return;
1707 	INSIST((cp - buffer) < (int)sizeof(buffer));
1708 	snprintf(cp, sizeof(buffer) - (cp - buffer),
1709 		 "%04d%02d%02d%02d%02d", tm->tm_year + 1900,
1710 		 tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min);
1711 	cp += strlen(cp);
1712 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1713 }
1714 
1715 
1716 /*
1717  * ctl_puthex - write a tagged unsigned integer, in hex, into the
1718  * response
1719  */
1720 static void
1721 ctl_puthex(
1722 	const char *tag,
1723 	u_long uval
1724 	)
1725 {
1726 	register char *cp;
1727 	register const char *cq;
1728 	char buffer[200];
1729 
1730 	cp = buffer;
1731 	cq = tag;
1732 	while (*cq != '\0')
1733 		*cp++ = *cq++;
1734 
1735 	*cp++ = '=';
1736 	INSIST((cp - buffer) < (int)sizeof(buffer));
1737 	snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%lx", uval);
1738 	cp += strlen(cp);
1739 	ctl_putdata(buffer,(unsigned)( cp - buffer ), 0);
1740 }
1741 
1742 
1743 /*
1744  * ctl_putint - write a tagged signed integer into the response
1745  */
1746 static void
1747 ctl_putint(
1748 	const char *tag,
1749 	long ival
1750 	)
1751 {
1752 	register char *cp;
1753 	register const char *cq;
1754 	char buffer[200];
1755 
1756 	cp = buffer;
1757 	cq = tag;
1758 	while (*cq != '\0')
1759 		*cp++ = *cq++;
1760 
1761 	*cp++ = '=';
1762 	INSIST((cp - buffer) < (int)sizeof(buffer));
1763 	snprintf(cp, sizeof(buffer) - (cp - buffer), "%ld", ival);
1764 	cp += strlen(cp);
1765 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1766 }
1767 
1768 
1769 /*
1770  * ctl_putts - write a tagged timestamp, in hex, into the response
1771  */
1772 static void
1773 ctl_putts(
1774 	const char *tag,
1775 	l_fp *ts
1776 	)
1777 {
1778 	register char *cp;
1779 	register const char *cq;
1780 	char buffer[200];
1781 
1782 	cp = buffer;
1783 	cq = tag;
1784 	while (*cq != '\0')
1785 		*cp++ = *cq++;
1786 
1787 	*cp++ = '=';
1788 	INSIST((size_t)(cp - buffer) < sizeof(buffer));
1789 	snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%08x.%08x",
1790 		 (u_int)ts->l_ui, (u_int)ts->l_uf);
1791 	cp += strlen(cp);
1792 	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1793 }
1794 
1795 
1796 /*
1797  * ctl_putadr - write an IP address into the response
1798  */
1799 static void
1800 ctl_putadr(
1801 	const char *tag,
1802 	u_int32 addr32,
1803 	sockaddr_u *addr
1804 	)
1805 {
1806 	register char *cp;
1807 	register const char *cq;
1808 	char buffer[200];
1809 
1810 	cp = buffer;
1811 	cq = tag;
1812 	while (*cq != '\0')
1813 		*cp++ = *cq++;
1814 
1815 	*cp++ = '=';
1816 	if (NULL == addr)
1817 		cq = numtoa(addr32);
1818 	else
1819 		cq = stoa(addr);
1820 	INSIST((cp - buffer) < (int)sizeof(buffer));
1821 	snprintf(cp, sizeof(buffer) - (cp - buffer), "%s", cq);
1822 	cp += strlen(cp);
1823 	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1824 }
1825 
1826 
1827 /*
1828  * ctl_putrefid - send a u_int32 refid as printable text
1829  */
1830 static void
1831 ctl_putrefid(
1832 	const char *	tag,
1833 	u_int32		refid
1834 	)
1835 {
1836 	char	output[16];
1837 	char *	optr;
1838 	char *	oplim;
1839 	char *	iptr;
1840 	char *	iplim;
1841 	char *	past_eq;
1842 
1843 	optr = output;
1844 	oplim = output + sizeof(output);
1845 	while (optr < oplim && '\0' != *tag)
1846 		*optr++ = *tag++;
1847 	if (optr < oplim) {
1848 		*optr++ = '=';
1849 		past_eq = optr;
1850 	}
1851 	if (!(optr < oplim))
1852 		return;
1853 	iptr = (char *)&refid;
1854 	iplim = iptr + sizeof(refid);
1855 	for ( ; optr < oplim && iptr < iplim && '\0' != *iptr;
1856 	     iptr++, optr++)
1857 		if (isprint((int)*iptr))
1858 			*optr = *iptr;
1859 		else
1860 			*optr = '.';
1861 	if (!(optr <= oplim))
1862 		optr = past_eq;
1863 	ctl_putdata(output, (u_int)(optr - output), FALSE);
1864 }
1865 
1866 
1867 /*
1868  * ctl_putarray - write a tagged eight element double array into the response
1869  */
1870 static void
1871 ctl_putarray(
1872 	const char *tag,
1873 	double *arr,
1874 	int start
1875 	)
1876 {
1877 	register char *cp;
1878 	register const char *cq;
1879 	char buffer[200];
1880 	int i;
1881 	cp = buffer;
1882 	cq = tag;
1883 	while (*cq != '\0')
1884 		*cp++ = *cq++;
1885 	*cp++ = '=';
1886 	i = start;
1887 	do {
1888 		if (i == 0)
1889 			i = NTP_SHIFT;
1890 		i--;
1891 		INSIST((cp - buffer) < (int)sizeof(buffer));
1892 		snprintf(cp, sizeof(buffer) - (cp - buffer),
1893 			 " %.2f", arr[i] * 1e3);
1894 		cp += strlen(cp);
1895 	} while (i != start);
1896 	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1897 }
1898 
1899 /*
1900  * ctl_printf - put a formatted string into the data buffer
1901  */
1902 static void
1903 ctl_printf(
1904 	const char * fmt,
1905 	...
1906 	)
1907 {
1908 	static const char * ellipsis = "[...]";
1909 	va_list va;
1910 	char    fmtbuf[128];
1911 	int     rc;
1912 
1913 	va_start(va, fmt);
1914 	rc = vsnprintf(fmtbuf, sizeof(fmtbuf), fmt, va);
1915 	va_end(va);
1916 	if (rc < 0 || rc >= sizeof(fmtbuf))
1917 		strcpy(fmtbuf + sizeof(fmtbuf) - strlen(ellipsis) - 1,
1918 		       ellipsis);
1919 	ctl_putdata(fmtbuf, strlen(fmtbuf), 0);
1920 }
1921 
1922 
1923 /*
1924  * ctl_putsys - output a system variable
1925  */
1926 static void
1927 ctl_putsys(
1928 	int varid
1929 	)
1930 {
1931 	l_fp tmp;
1932 	char str[256];
1933 	u_int u;
1934 	double kb;
1935 	double dtemp;
1936 	const char *ss;
1937 #ifdef AUTOKEY
1938 	struct cert_info *cp;
1939 #endif	/* AUTOKEY */
1940 #ifdef KERNEL_PLL
1941 	static struct timex ntx;
1942 	static u_long ntp_adjtime_time;
1943 
1944 	static const double to_ms =
1945 # ifdef STA_NANO
1946 		1.0e-6; /* nsec to msec */
1947 # else
1948 		1.0e-3; /* usec to msec */
1949 # endif
1950 
1951 	/*
1952 	 * CS_K_* variables depend on up-to-date output of ntp_adjtime()
1953 	 */
1954 	if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
1955 	    current_time != ntp_adjtime_time) {
1956 		ZERO(ntx);
1957 		if (ntp_adjtime(&ntx) < 0)
1958 			msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
1959 		else
1960 			ntp_adjtime_time = current_time;
1961 	}
1962 #endif	/* KERNEL_PLL */
1963 
1964 	switch (varid) {
1965 
1966 	case CS_LEAP:
1967 		ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
1968 		break;
1969 
1970 	case CS_STRATUM:
1971 		ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
1972 		break;
1973 
1974 	case CS_PRECISION:
1975 		ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
1976 		break;
1977 
1978 	case CS_ROOTDELAY:
1979 		ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1980 			   1e3);
1981 		break;
1982 
1983 	case CS_ROOTDISPERSION:
1984 		ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
1985 			   sys_rootdisp * 1e3);
1986 		break;
1987 
1988 	case CS_REFID:
1989 		if (sys_stratum > 1 && sys_stratum < STRATUM_UNSPEC)
1990 			ctl_putadr(sys_var[varid].text, sys_refid, NULL);
1991 		else
1992 			ctl_putrefid(sys_var[varid].text, sys_refid);
1993 		break;
1994 
1995 	case CS_REFTIME:
1996 		ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
1997 		break;
1998 
1999 	case CS_POLL:
2000 		ctl_putuint(sys_var[CS_POLL].text, sys_poll);
2001 		break;
2002 
2003 	case CS_PEERID:
2004 		if (sys_peer == NULL)
2005 			ctl_putuint(sys_var[CS_PEERID].text, 0);
2006 		else
2007 			ctl_putuint(sys_var[CS_PEERID].text,
2008 				    sys_peer->associd);
2009 		break;
2010 
2011 	case CS_PEERADR:
2012 		if (sys_peer != NULL && sys_peer->dstadr != NULL)
2013 			ss = sptoa(&sys_peer->srcadr);
2014 		else
2015 			ss = "0.0.0.0:0";
2016 		ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
2017 		break;
2018 
2019 	case CS_PEERMODE:
2020 		u = (sys_peer != NULL)
2021 			? sys_peer->hmode
2022 			: MODE_UNSPEC;
2023 		ctl_putuint(sys_var[CS_PEERMODE].text, u);
2024 		break;
2025 
2026 	case CS_OFFSET:
2027 		ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
2028 		break;
2029 
2030 	case CS_DRIFT:
2031 		ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
2032 		break;
2033 
2034 	case CS_JITTER:
2035 		ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
2036 		break;
2037 
2038 	case CS_ERROR:
2039 		ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
2040 		break;
2041 
2042 	case CS_CLOCK:
2043 		get_systime(&tmp);
2044 		ctl_putts(sys_var[CS_CLOCK].text, &tmp);
2045 		break;
2046 
2047 	case CS_PROCESSOR:
2048 #ifndef HAVE_UNAME
2049 		ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
2050 			   sizeof(str_processor) - 1);
2051 #else
2052 		ctl_putstr(sys_var[CS_PROCESSOR].text,
2053 			   utsnamebuf.machine, strlen(utsnamebuf.machine));
2054 #endif /* HAVE_UNAME */
2055 		break;
2056 
2057 	case CS_SYSTEM:
2058 #ifndef HAVE_UNAME
2059 		ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
2060 			   sizeof(str_system) - 1);
2061 #else
2062 		snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
2063 			 utsnamebuf.release);
2064 		ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
2065 #endif /* HAVE_UNAME */
2066 		break;
2067 
2068 	case CS_VERSION:
2069 		ctl_putstr(sys_var[CS_VERSION].text, Version,
2070 			   strlen(Version));
2071 		break;
2072 
2073 	case CS_STABIL:
2074 		ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
2075 			   1e6);
2076 		break;
2077 
2078 	case CS_VARLIST:
2079 	{
2080 		char buf[CTL_MAX_DATA_LEN];
2081 		//buffPointer, firstElementPointer, buffEndPointer
2082 		char *buffp, *buffend;
2083 		int firstVarName;
2084 		const char *ss1;
2085 		int len;
2086 		const struct ctl_var *k;
2087 
2088 		buffp = buf;
2089 		buffend = buf + sizeof(buf);
2090 		if (buffp + strlen(sys_var[CS_VARLIST].text) + 4 > buffend)
2091 			break;	/* really long var name */
2092 
2093 		snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
2094 		buffp += strlen(buffp);
2095 		firstVarName = TRUE;
2096 		for (k = sys_var; !(k->flags & EOV); k++) {
2097 			if (k->flags & PADDING)
2098 				continue;
2099 			len = strlen(k->text);
2100 			if (buffp + len + 1 >= buffend)
2101 				break;
2102 			if (!firstVarName)
2103 				*buffp++ = ',';
2104 			else
2105 				firstVarName = FALSE;
2106 			memcpy(buffp, k->text, len);
2107 			buffp += len;
2108 		}
2109 
2110 		for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
2111 			if (k->flags & PADDING)
2112 				continue;
2113 			if (NULL == k->text)
2114 				continue;
2115 			ss1 = strchr(k->text, '=');
2116 			if (NULL == ss1)
2117 				len = strlen(k->text);
2118 			else
2119 				len = ss1 - k->text;
2120 			if (buffp + len + 1 >= buffend)
2121 				break;
2122 			if (firstVarName) {
2123 				*buffp++ = ',';
2124 				firstVarName = FALSE;
2125 			}
2126 			memcpy(buffp, k->text,(unsigned)len);
2127 			buffp += len;
2128 		}
2129 		if (buffp + 2 >= buffend)
2130 			break;
2131 
2132 		*buffp++ = '"';
2133 		*buffp = '\0';
2134 
2135 		ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
2136 		break;
2137 	}
2138 
2139 	case CS_TAI:
2140 		if (sys_tai > 0)
2141 			ctl_putuint(sys_var[CS_TAI].text, sys_tai);
2142 		break;
2143 
2144 	case CS_LEAPTAB:
2145 	{
2146 		leap_signature_t lsig;
2147 		leapsec_getsig(&lsig);
2148 		if (lsig.ttime > 0)
2149 			ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
2150 		break;
2151 	}
2152 
2153 	case CS_LEAPEND:
2154 	{
2155 		leap_signature_t lsig;
2156 		leapsec_getsig(&lsig);
2157 		if (lsig.etime > 0)
2158 			ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
2159 		break;
2160 	}
2161 
2162 #ifdef LEAP_SMEAR
2163 	case CS_LEAPSMEARINTV:
2164 		if (leap_smear_intv > 0)
2165 			ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv);
2166 		break;
2167 
2168 	case CS_LEAPSMEAROFFS:
2169 		if (leap_smear_intv > 0)
2170 			ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text,
2171 				   leap_smear.doffset * 1e3);
2172 		break;
2173 #endif	/* LEAP_SMEAR */
2174 
2175 	case CS_RATE:
2176 		ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
2177 		break;
2178 
2179 	case CS_MRU_ENABLED:
2180 		ctl_puthex(sys_var[varid].text, mon_enabled);
2181 		break;
2182 
2183 	case CS_MRU_DEPTH:
2184 		ctl_putuint(sys_var[varid].text, mru_entries);
2185 		break;
2186 
2187 	case CS_MRU_MEM:
2188 		kb = mru_entries * (sizeof(mon_entry) / 1024.);
2189 		u = (u_int)kb;
2190 		if (kb - u >= 0.5)
2191 			u++;
2192 		ctl_putuint(sys_var[varid].text, u);
2193 		break;
2194 
2195 	case CS_MRU_DEEPEST:
2196 		ctl_putuint(sys_var[varid].text, mru_peakentries);
2197 		break;
2198 
2199 	case CS_MRU_MINDEPTH:
2200 		ctl_putuint(sys_var[varid].text, mru_mindepth);
2201 		break;
2202 
2203 	case CS_MRU_MAXAGE:
2204 		ctl_putint(sys_var[varid].text, mru_maxage);
2205 		break;
2206 
2207 	case CS_MRU_MAXDEPTH:
2208 		ctl_putuint(sys_var[varid].text, mru_maxdepth);
2209 		break;
2210 
2211 	case CS_MRU_MAXMEM:
2212 		kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
2213 		u = (u_int)kb;
2214 		if (kb - u >= 0.5)
2215 			u++;
2216 		ctl_putuint(sys_var[varid].text, u);
2217 		break;
2218 
2219 	case CS_SS_UPTIME:
2220 		ctl_putuint(sys_var[varid].text, current_time);
2221 		break;
2222 
2223 	case CS_SS_RESET:
2224 		ctl_putuint(sys_var[varid].text,
2225 			    current_time - sys_stattime);
2226 		break;
2227 
2228 	case CS_SS_RECEIVED:
2229 		ctl_putuint(sys_var[varid].text, sys_received);
2230 		break;
2231 
2232 	case CS_SS_THISVER:
2233 		ctl_putuint(sys_var[varid].text, sys_newversion);
2234 		break;
2235 
2236 	case CS_SS_OLDVER:
2237 		ctl_putuint(sys_var[varid].text, sys_oldversion);
2238 		break;
2239 
2240 	case CS_SS_BADFORMAT:
2241 		ctl_putuint(sys_var[varid].text, sys_badlength);
2242 		break;
2243 
2244 	case CS_SS_BADAUTH:
2245 		ctl_putuint(sys_var[varid].text, sys_badauth);
2246 		break;
2247 
2248 	case CS_SS_DECLINED:
2249 		ctl_putuint(sys_var[varid].text, sys_declined);
2250 		break;
2251 
2252 	case CS_SS_RESTRICTED:
2253 		ctl_putuint(sys_var[varid].text, sys_restricted);
2254 		break;
2255 
2256 	case CS_SS_LIMITED:
2257 		ctl_putuint(sys_var[varid].text, sys_limitrejected);
2258 		break;
2259 
2260 	case CS_SS_KODSENT:
2261 		ctl_putuint(sys_var[varid].text, sys_kodsent);
2262 		break;
2263 
2264 	case CS_SS_PROCESSED:
2265 		ctl_putuint(sys_var[varid].text, sys_processed);
2266 		break;
2267 
2268 	case CS_BCASTDELAY:
2269 		ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
2270 		break;
2271 
2272 	case CS_AUTHDELAY:
2273 		LFPTOD(&sys_authdelay, dtemp);
2274 		ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
2275 		break;
2276 
2277 	case CS_AUTHKEYS:
2278 		ctl_putuint(sys_var[varid].text, authnumkeys);
2279 		break;
2280 
2281 	case CS_AUTHFREEK:
2282 		ctl_putuint(sys_var[varid].text, authnumfreekeys);
2283 		break;
2284 
2285 	case CS_AUTHKLOOKUPS:
2286 		ctl_putuint(sys_var[varid].text, authkeylookups);
2287 		break;
2288 
2289 	case CS_AUTHKNOTFOUND:
2290 		ctl_putuint(sys_var[varid].text, authkeynotfound);
2291 		break;
2292 
2293 	case CS_AUTHKUNCACHED:
2294 		ctl_putuint(sys_var[varid].text, authkeyuncached);
2295 		break;
2296 
2297 	case CS_AUTHKEXPIRED:
2298 		ctl_putuint(sys_var[varid].text, authkeyexpired);
2299 		break;
2300 
2301 	case CS_AUTHENCRYPTS:
2302 		ctl_putuint(sys_var[varid].text, authencryptions);
2303 		break;
2304 
2305 	case CS_AUTHDECRYPTS:
2306 		ctl_putuint(sys_var[varid].text, authdecryptions);
2307 		break;
2308 
2309 	case CS_AUTHRESET:
2310 		ctl_putuint(sys_var[varid].text,
2311 			    current_time - auth_timereset);
2312 		break;
2313 
2314 		/*
2315 		 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is
2316 		 * unavailable, otherwise calls putfunc with args.
2317 		 */
2318 #ifndef KERNEL_PLL
2319 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2320 		ctl_putint(sys_var[varid].text, 0)
2321 #else
2322 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2323 		putfunc args
2324 #endif
2325 
2326 		/*
2327 		 * CTL_IF_KERNPPS() puts a zero if either the kernel
2328 		 * loop is unavailable, or kernel hard PPS is not
2329 		 * active, otherwise calls putfunc with args.
2330 		 */
2331 #ifndef KERNEL_PLL
2332 # define	CTL_IF_KERNPPS(putfunc, args)	\
2333 		ctl_putint(sys_var[varid].text, 0)
2334 #else
2335 # define	CTL_IF_KERNPPS(putfunc, args)			\
2336 		if (0 == ntx.shift)				\
2337 			ctl_putint(sys_var[varid].text, 0);	\
2338 		else						\
2339 			putfunc args	/* no trailing ; */
2340 #endif
2341 
2342 	case CS_K_OFFSET:
2343 		CTL_IF_KERNLOOP(
2344 			ctl_putdblf,
2345 			(sys_var[varid].text, 0, -1, to_ms * ntx.offset)
2346 		);
2347 		break;
2348 
2349 	case CS_K_FREQ:
2350 		CTL_IF_KERNLOOP(
2351 			ctl_putsfp,
2352 			(sys_var[varid].text, ntx.freq)
2353 		);
2354 		break;
2355 
2356 	case CS_K_MAXERR:
2357 		CTL_IF_KERNLOOP(
2358 			ctl_putdblf,
2359 			(sys_var[varid].text, 0, 6,
2360 			 to_ms * ntx.maxerror)
2361 		);
2362 		break;
2363 
2364 	case CS_K_ESTERR:
2365 		CTL_IF_KERNLOOP(
2366 			ctl_putdblf,
2367 			(sys_var[varid].text, 0, 6,
2368 			 to_ms * ntx.esterror)
2369 		);
2370 		break;
2371 
2372 	case CS_K_STFLAGS:
2373 #ifndef KERNEL_PLL
2374 		ss = "";
2375 #else
2376 		ss = k_st_flags(ntx.status);
2377 #endif
2378 		ctl_putstr(sys_var[varid].text, ss, strlen(ss));
2379 		break;
2380 
2381 	case CS_K_TIMECONST:
2382 		CTL_IF_KERNLOOP(
2383 			ctl_putint,
2384 			(sys_var[varid].text, ntx.constant)
2385 		);
2386 		break;
2387 
2388 	case CS_K_PRECISION:
2389 		CTL_IF_KERNLOOP(
2390 			ctl_putdblf,
2391 			(sys_var[varid].text, 0, 6,
2392 			    to_ms * ntx.precision)
2393 		);
2394 		break;
2395 
2396 	case CS_K_FREQTOL:
2397 		CTL_IF_KERNLOOP(
2398 			ctl_putsfp,
2399 			(sys_var[varid].text, ntx.tolerance)
2400 		);
2401 		break;
2402 
2403 	case CS_K_PPS_FREQ:
2404 		CTL_IF_KERNPPS(
2405 			ctl_putsfp,
2406 			(sys_var[varid].text, ntx.ppsfreq)
2407 		);
2408 		break;
2409 
2410 	case CS_K_PPS_STABIL:
2411 		CTL_IF_KERNPPS(
2412 			ctl_putsfp,
2413 			(sys_var[varid].text, ntx.stabil)
2414 		);
2415 		break;
2416 
2417 	case CS_K_PPS_JITTER:
2418 		CTL_IF_KERNPPS(
2419 			ctl_putdbl,
2420 			(sys_var[varid].text, to_ms * ntx.jitter)
2421 		);
2422 		break;
2423 
2424 	case CS_K_PPS_CALIBDUR:
2425 		CTL_IF_KERNPPS(
2426 			ctl_putint,
2427 			(sys_var[varid].text, 1 << ntx.shift)
2428 		);
2429 		break;
2430 
2431 	case CS_K_PPS_CALIBS:
2432 		CTL_IF_KERNPPS(
2433 			ctl_putint,
2434 			(sys_var[varid].text, ntx.calcnt)
2435 		);
2436 		break;
2437 
2438 	case CS_K_PPS_CALIBERRS:
2439 		CTL_IF_KERNPPS(
2440 			ctl_putint,
2441 			(sys_var[varid].text, ntx.errcnt)
2442 		);
2443 		break;
2444 
2445 	case CS_K_PPS_JITEXC:
2446 		CTL_IF_KERNPPS(
2447 			ctl_putint,
2448 			(sys_var[varid].text, ntx.jitcnt)
2449 		);
2450 		break;
2451 
2452 	case CS_K_PPS_STBEXC:
2453 		CTL_IF_KERNPPS(
2454 			ctl_putint,
2455 			(sys_var[varid].text, ntx.stbcnt)
2456 		);
2457 		break;
2458 
2459 	case CS_IOSTATS_RESET:
2460 		ctl_putuint(sys_var[varid].text,
2461 			    current_time - io_timereset);
2462 		break;
2463 
2464 	case CS_TOTAL_RBUF:
2465 		ctl_putuint(sys_var[varid].text, total_recvbuffs());
2466 		break;
2467 
2468 	case CS_FREE_RBUF:
2469 		ctl_putuint(sys_var[varid].text, free_recvbuffs());
2470 		break;
2471 
2472 	case CS_USED_RBUF:
2473 		ctl_putuint(sys_var[varid].text, full_recvbuffs());
2474 		break;
2475 
2476 	case CS_RBUF_LOWATER:
2477 		ctl_putuint(sys_var[varid].text, lowater_additions());
2478 		break;
2479 
2480 	case CS_IO_DROPPED:
2481 		ctl_putuint(sys_var[varid].text, packets_dropped);
2482 		break;
2483 
2484 	case CS_IO_IGNORED:
2485 		ctl_putuint(sys_var[varid].text, packets_ignored);
2486 		break;
2487 
2488 	case CS_IO_RECEIVED:
2489 		ctl_putuint(sys_var[varid].text, packets_received);
2490 		break;
2491 
2492 	case CS_IO_SENT:
2493 		ctl_putuint(sys_var[varid].text, packets_sent);
2494 		break;
2495 
2496 	case CS_IO_SENDFAILED:
2497 		ctl_putuint(sys_var[varid].text, packets_notsent);
2498 		break;
2499 
2500 	case CS_IO_WAKEUPS:
2501 		ctl_putuint(sys_var[varid].text, handler_calls);
2502 		break;
2503 
2504 	case CS_IO_GOODWAKEUPS:
2505 		ctl_putuint(sys_var[varid].text, handler_pkts);
2506 		break;
2507 
2508 	case CS_TIMERSTATS_RESET:
2509 		ctl_putuint(sys_var[varid].text,
2510 			    current_time - timer_timereset);
2511 		break;
2512 
2513 	case CS_TIMER_OVERRUNS:
2514 		ctl_putuint(sys_var[varid].text, alarm_overflow);
2515 		break;
2516 
2517 	case CS_TIMER_XMTS:
2518 		ctl_putuint(sys_var[varid].text, timer_xmtcalls);
2519 		break;
2520 
2521 	case CS_FUZZ:
2522 		ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
2523 		break;
2524 	case CS_WANDER_THRESH:
2525 		ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6);
2526 		break;
2527 #ifdef AUTOKEY
2528 	case CS_FLAGS:
2529 		if (crypto_flags)
2530 			ctl_puthex(sys_var[CS_FLAGS].text,
2531 			    crypto_flags);
2532 		break;
2533 
2534 	case CS_DIGEST:
2535 		if (crypto_flags) {
2536 			strlcpy(str, OBJ_nid2ln(crypto_nid),
2537 			    COUNTOF(str));
2538 			ctl_putstr(sys_var[CS_DIGEST].text, str,
2539 			    strlen(str));
2540 		}
2541 		break;
2542 
2543 	case CS_SIGNATURE:
2544 		if (crypto_flags) {
2545 			const EVP_MD *dp;
2546 
2547 			dp = EVP_get_digestbynid(crypto_flags >> 16);
2548 			strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
2549 			    COUNTOF(str));
2550 			ctl_putstr(sys_var[CS_SIGNATURE].text, str,
2551 			    strlen(str));
2552 		}
2553 		break;
2554 
2555 	case CS_HOST:
2556 		if (hostval.ptr != NULL)
2557 			ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
2558 			    strlen(hostval.ptr));
2559 		break;
2560 
2561 	case CS_IDENT:
2562 		if (sys_ident != NULL)
2563 			ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
2564 			    strlen(sys_ident));
2565 		break;
2566 
2567 	case CS_CERTIF:
2568 		for (cp = cinfo; cp != NULL; cp = cp->link) {
2569 			snprintf(str, sizeof(str), "%s %s 0x%x",
2570 			    cp->subject, cp->issuer, cp->flags);
2571 			ctl_putstr(sys_var[CS_CERTIF].text, str,
2572 			    strlen(str));
2573 			ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
2574 		}
2575 		break;
2576 
2577 	case CS_PUBLIC:
2578 		if (hostval.tstamp != 0)
2579 			ctl_putfs(sys_var[CS_PUBLIC].text,
2580 			    ntohl(hostval.tstamp));
2581 		break;
2582 #endif	/* AUTOKEY */
2583 
2584 	default:
2585 		break;
2586 	}
2587 }
2588 
2589 
2590 /*
2591  * ctl_putpeer - output a peer variable
2592  */
2593 static void
2594 ctl_putpeer(
2595 	int id,
2596 	struct peer *p
2597 	)
2598 {
2599 	char buf[CTL_MAX_DATA_LEN];
2600 	char *s;
2601 	char *t;
2602 	char *be;
2603 	int i;
2604 	const struct ctl_var *k;
2605 #ifdef AUTOKEY
2606 	struct autokey *ap;
2607 	const EVP_MD *dp;
2608 	const char *str;
2609 #endif	/* AUTOKEY */
2610 
2611 	switch (id) {
2612 
2613 	case CP_CONFIG:
2614 		ctl_putuint(peer_var[id].text,
2615 			    !(FLAG_PREEMPT & p->flags));
2616 		break;
2617 
2618 	case CP_AUTHENABLE:
2619 		ctl_putuint(peer_var[id].text, !(p->keyid));
2620 		break;
2621 
2622 	case CP_AUTHENTIC:
2623 		ctl_putuint(peer_var[id].text,
2624 			    !!(FLAG_AUTHENTIC & p->flags));
2625 		break;
2626 
2627 	case CP_SRCADR:
2628 		ctl_putadr(peer_var[id].text, 0, &p->srcadr);
2629 		break;
2630 
2631 	case CP_SRCPORT:
2632 		ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
2633 		break;
2634 
2635 	case CP_SRCHOST:
2636 		if (p->hostname != NULL)
2637 			ctl_putstr(peer_var[id].text, p->hostname,
2638 				   strlen(p->hostname));
2639 		break;
2640 
2641 	case CP_DSTADR:
2642 		ctl_putadr(peer_var[id].text, 0,
2643 			   (p->dstadr != NULL)
2644 				? &p->dstadr->sin
2645 				: NULL);
2646 		break;
2647 
2648 	case CP_DSTPORT:
2649 		ctl_putuint(peer_var[id].text,
2650 			    (p->dstadr != NULL)
2651 				? SRCPORT(&p->dstadr->sin)
2652 				: 0);
2653 		break;
2654 
2655 	case CP_IN:
2656 		if (p->r21 > 0.)
2657 			ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
2658 		break;
2659 
2660 	case CP_OUT:
2661 		if (p->r34 > 0.)
2662 			ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
2663 		break;
2664 
2665 	case CP_RATE:
2666 		ctl_putuint(peer_var[id].text, p->throttle);
2667 		break;
2668 
2669 	case CP_LEAP:
2670 		ctl_putuint(peer_var[id].text, p->leap);
2671 		break;
2672 
2673 	case CP_HMODE:
2674 		ctl_putuint(peer_var[id].text, p->hmode);
2675 		break;
2676 
2677 	case CP_STRATUM:
2678 		ctl_putuint(peer_var[id].text, p->stratum);
2679 		break;
2680 
2681 	case CP_PPOLL:
2682 		ctl_putuint(peer_var[id].text, p->ppoll);
2683 		break;
2684 
2685 	case CP_HPOLL:
2686 		ctl_putuint(peer_var[id].text, p->hpoll);
2687 		break;
2688 
2689 	case CP_PRECISION:
2690 		ctl_putint(peer_var[id].text, p->precision);
2691 		break;
2692 
2693 	case CP_ROOTDELAY:
2694 		ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
2695 		break;
2696 
2697 	case CP_ROOTDISPERSION:
2698 		ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
2699 		break;
2700 
2701 	case CP_REFID:
2702 #ifdef REFCLOCK
2703 		if (p->flags & FLAG_REFCLOCK) {
2704 			ctl_putrefid(peer_var[id].text, p->refid);
2705 			break;
2706 		}
2707 #endif
2708 		if (p->stratum > 1 && p->stratum < STRATUM_UNSPEC)
2709 			ctl_putadr(peer_var[id].text, p->refid,
2710 				   NULL);
2711 		else
2712 			ctl_putrefid(peer_var[id].text, p->refid);
2713 		break;
2714 
2715 	case CP_REFTIME:
2716 		ctl_putts(peer_var[id].text, &p->reftime);
2717 		break;
2718 
2719 	case CP_ORG:
2720 		ctl_putts(peer_var[id].text, &p->aorg);
2721 		break;
2722 
2723 	case CP_REC:
2724 		ctl_putts(peer_var[id].text, &p->dst);
2725 		break;
2726 
2727 	case CP_XMT:
2728 		if (p->xleave)
2729 			ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
2730 		break;
2731 
2732 	case CP_BIAS:
2733 		if (p->bias != 0.)
2734 			ctl_putdbl(peer_var[id].text, p->bias * 1e3);
2735 		break;
2736 
2737 	case CP_REACH:
2738 		ctl_puthex(peer_var[id].text, p->reach);
2739 		break;
2740 
2741 	case CP_FLASH:
2742 		ctl_puthex(peer_var[id].text, p->flash);
2743 		break;
2744 
2745 	case CP_TTL:
2746 #ifdef REFCLOCK
2747 		if (p->flags & FLAG_REFCLOCK) {
2748 			ctl_putuint(peer_var[id].text, p->ttl);
2749 			break;
2750 		}
2751 #endif
2752 		if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
2753 			ctl_putint(peer_var[id].text,
2754 				   sys_ttl[p->ttl]);
2755 		break;
2756 
2757 	case CP_UNREACH:
2758 		ctl_putuint(peer_var[id].text, p->unreach);
2759 		break;
2760 
2761 	case CP_TIMER:
2762 		ctl_putuint(peer_var[id].text,
2763 			    p->nextdate - current_time);
2764 		break;
2765 
2766 	case CP_DELAY:
2767 		ctl_putdbl(peer_var[id].text, p->delay * 1e3);
2768 		break;
2769 
2770 	case CP_OFFSET:
2771 		ctl_putdbl(peer_var[id].text, p->offset * 1e3);
2772 		break;
2773 
2774 	case CP_JITTER:
2775 		ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
2776 		break;
2777 
2778 	case CP_DISPERSION:
2779 		ctl_putdbl(peer_var[id].text, p->disp * 1e3);
2780 		break;
2781 
2782 	case CP_KEYID:
2783 		if (p->keyid > NTP_MAXKEY)
2784 			ctl_puthex(peer_var[id].text, p->keyid);
2785 		else
2786 			ctl_putuint(peer_var[id].text, p->keyid);
2787 		break;
2788 
2789 	case CP_FILTDELAY:
2790 		ctl_putarray(peer_var[id].text, p->filter_delay,
2791 			     p->filter_nextpt);
2792 		break;
2793 
2794 	case CP_FILTOFFSET:
2795 		ctl_putarray(peer_var[id].text, p->filter_offset,
2796 			     p->filter_nextpt);
2797 		break;
2798 
2799 	case CP_FILTERROR:
2800 		ctl_putarray(peer_var[id].text, p->filter_disp,
2801 			     p->filter_nextpt);
2802 		break;
2803 
2804 	case CP_PMODE:
2805 		ctl_putuint(peer_var[id].text, p->pmode);
2806 		break;
2807 
2808 	case CP_RECEIVED:
2809 		ctl_putuint(peer_var[id].text, p->received);
2810 		break;
2811 
2812 	case CP_SENT:
2813 		ctl_putuint(peer_var[id].text, p->sent);
2814 		break;
2815 
2816 	case CP_VARLIST:
2817 		s = buf;
2818 		be = buf + sizeof(buf);
2819 		if (strlen(peer_var[id].text) + 4 > sizeof(buf))
2820 			break;	/* really long var name */
2821 
2822 		snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
2823 		s += strlen(s);
2824 		t = s;
2825 		for (k = peer_var; !(EOV & k->flags); k++) {
2826 			if (PADDING & k->flags)
2827 				continue;
2828 			i = strlen(k->text);
2829 			if (s + i + 1 >= be)
2830 				break;
2831 			if (s != t)
2832 				*s++ = ',';
2833 			memcpy(s, k->text, i);
2834 			s += i;
2835 		}
2836 		if (s + 2 < be) {
2837 			*s++ = '"';
2838 			*s = '\0';
2839 			ctl_putdata(buf, (u_int)(s - buf), 0);
2840 		}
2841 		break;
2842 
2843 	case CP_TIMEREC:
2844 		ctl_putuint(peer_var[id].text,
2845 			    current_time - p->timereceived);
2846 		break;
2847 
2848 	case CP_TIMEREACH:
2849 		ctl_putuint(peer_var[id].text,
2850 			    current_time - p->timereachable);
2851 		break;
2852 
2853 	case CP_BADAUTH:
2854 		ctl_putuint(peer_var[id].text, p->badauth);
2855 		break;
2856 
2857 	case CP_BOGUSORG:
2858 		ctl_putuint(peer_var[id].text, p->bogusorg);
2859 		break;
2860 
2861 	case CP_OLDPKT:
2862 		ctl_putuint(peer_var[id].text, p->oldpkt);
2863 		break;
2864 
2865 	case CP_SELDISP:
2866 		ctl_putuint(peer_var[id].text, p->seldisptoolarge);
2867 		break;
2868 
2869 	case CP_SELBROKEN:
2870 		ctl_putuint(peer_var[id].text, p->selbroken);
2871 		break;
2872 
2873 	case CP_CANDIDATE:
2874 		ctl_putuint(peer_var[id].text, p->status);
2875 		break;
2876 #ifdef AUTOKEY
2877 	case CP_FLAGS:
2878 		if (p->crypto)
2879 			ctl_puthex(peer_var[id].text, p->crypto);
2880 		break;
2881 
2882 	case CP_SIGNATURE:
2883 		if (p->crypto) {
2884 			dp = EVP_get_digestbynid(p->crypto >> 16);
2885 			str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
2886 			ctl_putstr(peer_var[id].text, str, strlen(str));
2887 		}
2888 		break;
2889 
2890 	case CP_HOST:
2891 		if (p->subject != NULL)
2892 			ctl_putstr(peer_var[id].text, p->subject,
2893 			    strlen(p->subject));
2894 		break;
2895 
2896 	case CP_VALID:		/* not used */
2897 		break;
2898 
2899 	case CP_INITSEQ:
2900 		if (NULL == (ap = p->recval.ptr))
2901 			break;
2902 
2903 		ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
2904 		ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
2905 		ctl_putfs(peer_var[CP_INITTSP].text,
2906 			  ntohl(p->recval.tstamp));
2907 		break;
2908 
2909 	case CP_IDENT:
2910 		if (p->ident != NULL)
2911 			ctl_putstr(peer_var[id].text, p->ident,
2912 			    strlen(p->ident));
2913 		break;
2914 
2915 
2916 #endif	/* AUTOKEY */
2917 	}
2918 }
2919 
2920 
2921 #ifdef REFCLOCK
2922 /*
2923  * ctl_putclock - output clock variables
2924  */
2925 static void
2926 ctl_putclock(
2927 	int id,
2928 	struct refclockstat *pcs,
2929 	int mustput
2930 	)
2931 {
2932 	char buf[CTL_MAX_DATA_LEN];
2933 	char *s, *t, *be;
2934 	const char *ss;
2935 	int i;
2936 	const struct ctl_var *k;
2937 
2938 	switch (id) {
2939 
2940 	case CC_TYPE:
2941 		if (mustput || pcs->clockdesc == NULL
2942 		    || *(pcs->clockdesc) == '\0') {
2943 			ctl_putuint(clock_var[id].text, pcs->type);
2944 		}
2945 		break;
2946 	case CC_TIMECODE:
2947 		ctl_putstr(clock_var[id].text,
2948 			   pcs->p_lastcode,
2949 			   (unsigned)pcs->lencode);
2950 		break;
2951 
2952 	case CC_POLL:
2953 		ctl_putuint(clock_var[id].text, pcs->polls);
2954 		break;
2955 
2956 	case CC_NOREPLY:
2957 		ctl_putuint(clock_var[id].text,
2958 			    pcs->noresponse);
2959 		break;
2960 
2961 	case CC_BADFORMAT:
2962 		ctl_putuint(clock_var[id].text,
2963 			    pcs->badformat);
2964 		break;
2965 
2966 	case CC_BADDATA:
2967 		ctl_putuint(clock_var[id].text,
2968 			    pcs->baddata);
2969 		break;
2970 
2971 	case CC_FUDGETIME1:
2972 		if (mustput || (pcs->haveflags & CLK_HAVETIME1))
2973 			ctl_putdbl(clock_var[id].text,
2974 				   pcs->fudgetime1 * 1e3);
2975 		break;
2976 
2977 	case CC_FUDGETIME2:
2978 		if (mustput || (pcs->haveflags & CLK_HAVETIME2))
2979 			ctl_putdbl(clock_var[id].text,
2980 				   pcs->fudgetime2 * 1e3);
2981 		break;
2982 
2983 	case CC_FUDGEVAL1:
2984 		if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
2985 			ctl_putint(clock_var[id].text,
2986 				   pcs->fudgeval1);
2987 		break;
2988 
2989 	case CC_FUDGEVAL2:
2990 		if (mustput || (pcs->haveflags & CLK_HAVEVAL2)) {
2991 			if (pcs->fudgeval1 > 1)
2992 				ctl_putadr(clock_var[id].text,
2993 					   pcs->fudgeval2, NULL);
2994 			else
2995 				ctl_putrefid(clock_var[id].text,
2996 					     pcs->fudgeval2);
2997 		}
2998 		break;
2999 
3000 	case CC_FLAGS:
3001 		ctl_putuint(clock_var[id].text, pcs->flags);
3002 		break;
3003 
3004 	case CC_DEVICE:
3005 		if (pcs->clockdesc == NULL ||
3006 		    *(pcs->clockdesc) == '\0') {
3007 			if (mustput)
3008 				ctl_putstr(clock_var[id].text,
3009 					   "", 0);
3010 		} else {
3011 			ctl_putstr(clock_var[id].text,
3012 				   pcs->clockdesc,
3013 				   strlen(pcs->clockdesc));
3014 		}
3015 		break;
3016 
3017 	case CC_VARLIST:
3018 		s = buf;
3019 		be = buf + sizeof(buf);
3020 		if (strlen(clock_var[CC_VARLIST].text) + 4 >
3021 		    sizeof(buf))
3022 			break;	/* really long var name */
3023 
3024 		snprintf(s, sizeof(buf), "%s=\"",
3025 			 clock_var[CC_VARLIST].text);
3026 		s += strlen(s);
3027 		t = s;
3028 
3029 		for (k = clock_var; !(EOV & k->flags); k++) {
3030 			if (PADDING & k->flags)
3031 				continue;
3032 
3033 			i = strlen(k->text);
3034 			if (s + i + 1 >= be)
3035 				break;
3036 
3037 			if (s != t)
3038 				*s++ = ',';
3039 			memcpy(s, k->text, i);
3040 			s += i;
3041 		}
3042 
3043 		for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
3044 			if (PADDING & k->flags)
3045 				continue;
3046 
3047 			ss = k->text;
3048 			if (NULL == ss)
3049 				continue;
3050 
3051 			while (*ss && *ss != '=')
3052 				ss++;
3053 			i = ss - k->text;
3054 			if (s + i + 1 >= be)
3055 				break;
3056 
3057 			if (s != t)
3058 				*s++ = ',';
3059 			memcpy(s, k->text, (unsigned)i);
3060 			s += i;
3061 			*s = '\0';
3062 		}
3063 		if (s + 2 >= be)
3064 			break;
3065 
3066 		*s++ = '"';
3067 		*s = '\0';
3068 		ctl_putdata(buf, (unsigned)(s - buf), 0);
3069 		break;
3070 	}
3071 }
3072 #endif
3073 
3074 
3075 
3076 /*
3077  * ctl_getitem - get the next data item from the incoming packet
3078  */
3079 static const struct ctl_var *
3080 ctl_getitem(
3081 	const struct ctl_var *var_list,
3082 	char **data
3083 	)
3084 {
3085 	/* [Bug 3008] First check the packet data sanity, then search
3086 	 * the key. This improves the consistency of result values: If
3087 	 * the result is NULL once, it will never be EOV again for this
3088 	 * packet; If it's EOV, it will never be NULL again until the
3089 	 * variable is found and processed in a given 'var_list'. (That
3090 	 * is, a result is returned that is neither NULL nor EOV).
3091 	 */
3092 	static const struct ctl_var eol = { 0, EOV, NULL };
3093 	static char buf[128];
3094 	static u_long quiet_until;
3095 	const struct ctl_var *v;
3096 	char *cp;
3097 	char *tp;
3098 
3099 	/*
3100 	 * Part One: Validate the packet state
3101 	 */
3102 
3103 	/* Delete leading commas and white space */
3104 	while (reqpt < reqend && (*reqpt == ',' ||
3105 				  isspace((unsigned char)*reqpt)))
3106 		reqpt++;
3107 	if (reqpt >= reqend)
3108 		return NULL;
3109 
3110 	/* Scan the string in the packet until we hit comma or
3111 	 * EoB. Register position of first '=' on the fly. */
3112 	for (tp = NULL, cp = reqpt; cp != reqend; ++cp) {
3113 		if (*cp == '=' && tp == NULL)
3114 			tp = cp;
3115 		if (*cp == ',')
3116 			break;
3117 	}
3118 
3119 	/* Process payload, if any. */
3120 	*data = NULL;
3121 	if (NULL != tp) {
3122 		/* eventually strip white space from argument. */
3123 		const char *plhead = tp + 1; /* skip the '=' */
3124 		const char *pltail = cp;
3125 		size_t      plsize;
3126 
3127 		while (plhead != pltail && isspace((u_char)plhead[0]))
3128 			++plhead;
3129 		while (plhead != pltail && isspace((u_char)pltail[-1]))
3130 			--pltail;
3131 
3132 		/* check payload size, terminate packet on overflow */
3133 		plsize = (size_t)(pltail - plhead);
3134 		if (plsize >= sizeof(buf))
3135 			goto badpacket;
3136 
3137 		/* copy data, NUL terminate, and set result data ptr */
3138 		memcpy(buf, plhead, plsize);
3139 		buf[plsize] = '\0';
3140 		*data = buf;
3141 	} else {
3142 		/* no payload, current end --> current name termination */
3143 		tp = cp;
3144 	}
3145 
3146 	/* Part Two
3147 	 *
3148 	 * Now we're sure that the packet data itself is sane. Scan the
3149 	 * list now. Make sure a NULL list is properly treated by
3150 	 * returning a synthetic End-Of-Values record. We must not
3151 	 * return NULL pointers after this point, or the behaviour would
3152 	 * become inconsistent if called several times with different
3153 	 * variable lists after an EoV was returned.  (Such a behavior
3154 	 * actually caused Bug 3008.)
3155 	 */
3156 
3157 	if (NULL == var_list)
3158 		return &eol;
3159 
3160 	for (v = var_list; !(EOV & v->flags); ++v)
3161 		if (!(PADDING & v->flags)) {
3162 			/* Check if the var name matches the buffer. The
3163 			 * name is bracketed by [reqpt..tp] and not NUL
3164 			 * terminated, and it contains no '=' char. The
3165 			 * lookup value IS NUL-terminated but might
3166 			 * include a '='... We have to look out for
3167 			 * that!
3168 			 */
3169 			const char *sp1 = reqpt;
3170 			const char *sp2 = v->text;
3171 
3172 			while ((sp1 != tp) && (*sp1 == *sp2)) {
3173 				++sp1;
3174 				++sp2;
3175 			}
3176 			if (sp1 == tp && (*sp2 == '\0' || *sp2 == '='))
3177 				break;
3178 		}
3179 
3180 	/* See if we have found a valid entry or not. If found, advance
3181 	 * the request pointer for the next round; if not, clear the
3182 	 * data pointer so we have no dangling garbage here.
3183 	 */
3184 	if (EOV & v->flags)
3185 		*data = NULL;
3186 	else
3187 		reqpt = cp + (cp != reqend);
3188 	return v;
3189 
3190   badpacket:
3191 	/*TODO? somehow indicate this packet was bad, apart from syslog? */
3192 	numctlbadpkts++;
3193 	NLOG(NLOG_SYSEVENT)
3194 	    if (quiet_until <= current_time) {
3195 		    quiet_until = current_time + 300;
3196 		    msyslog(LOG_WARNING,
3197 			    "Possible 'ntpdx' exploit from %s#%u (possibly spoofed)",
3198 			    stoa(rmt_addr), SRCPORT(rmt_addr));
3199 	    }
3200 	reqpt = reqend; /* never again for this packet! */
3201 	return NULL;
3202 }
3203 
3204 
3205 /*
3206  * control_unspec - response to an unspecified op-code
3207  */
3208 /*ARGSUSED*/
3209 static void
3210 control_unspec(
3211 	struct recvbuf *rbufp,
3212 	int restrict_mask
3213 	)
3214 {
3215 	struct peer *peer;
3216 
3217 	/*
3218 	 * What is an appropriate response to an unspecified op-code?
3219 	 * I return no errors and no data, unless a specified assocation
3220 	 * doesn't exist.
3221 	 */
3222 	if (res_associd) {
3223 		peer = findpeerbyassoc(res_associd);
3224 		if (NULL == peer) {
3225 			ctl_error(CERR_BADASSOC);
3226 			return;
3227 		}
3228 		rpkt.status = htons(ctlpeerstatus(peer));
3229 	} else
3230 		rpkt.status = htons(ctlsysstatus());
3231 	ctl_flushpkt(0);
3232 }
3233 
3234 
3235 /*
3236  * read_status - return either a list of associd's, or a particular
3237  * peer's status.
3238  */
3239 /*ARGSUSED*/
3240 static void
3241 read_status(
3242 	struct recvbuf *rbufp,
3243 	int restrict_mask
3244 	)
3245 {
3246 	struct peer *peer;
3247 	const u_char *cp;
3248 	size_t n;
3249 	/* a_st holds association ID, status pairs alternating */
3250 	u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
3251 
3252 #ifdef DEBUG
3253 	if (debug > 2)
3254 		printf("read_status: ID %d\n", res_associd);
3255 #endif
3256 	/*
3257 	 * Two choices here. If the specified association ID is
3258 	 * zero we return all known assocation ID's.  Otherwise
3259 	 * we return a bunch of stuff about the particular peer.
3260 	 */
3261 	if (res_associd) {
3262 		peer = findpeerbyassoc(res_associd);
3263 		if (NULL == peer) {
3264 			ctl_error(CERR_BADASSOC);
3265 			return;
3266 		}
3267 		rpkt.status = htons(ctlpeerstatus(peer));
3268 		if (res_authokay)
3269 			peer->num_events = 0;
3270 		/*
3271 		 * For now, output everything we know about the
3272 		 * peer. May be more selective later.
3273 		 */
3274 		for (cp = def_peer_var; *cp != 0; cp++)
3275 			ctl_putpeer((int)*cp, peer);
3276 		ctl_flushpkt(0);
3277 		return;
3278 	}
3279 	n = 0;
3280 	rpkt.status = htons(ctlsysstatus());
3281 	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3282 		a_st[n++] = htons(peer->associd);
3283 		a_st[n++] = htons(ctlpeerstatus(peer));
3284 		/* two entries each loop iteration, so n + 1 */
3285 		if (n + 1 >= COUNTOF(a_st)) {
3286 			ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
3287 				    1);
3288 			n = 0;
3289 		}
3290 	}
3291 	if (n)
3292 		ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
3293 	ctl_flushpkt(0);
3294 }
3295 
3296 
3297 /*
3298  * read_peervars - half of read_variables() implementation
3299  */
3300 static void
3301 read_peervars(void)
3302 {
3303 	const struct ctl_var *v;
3304 	struct peer *peer;
3305 	const u_char *cp;
3306 	size_t i;
3307 	char *	valuep;
3308 	u_char	wants[CP_MAXCODE + 1];
3309 	u_int	gotvar;
3310 
3311 	/*
3312 	 * Wants info for a particular peer. See if we know
3313 	 * the guy.
3314 	 */
3315 	peer = findpeerbyassoc(res_associd);
3316 	if (NULL == peer) {
3317 		ctl_error(CERR_BADASSOC);
3318 		return;
3319 	}
3320 	rpkt.status = htons(ctlpeerstatus(peer));
3321 	if (res_authokay)
3322 		peer->num_events = 0;
3323 	ZERO(wants);
3324 	gotvar = 0;
3325 	while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
3326 		if (v->flags & EOV) {
3327 			ctl_error(CERR_UNKNOWNVAR);
3328 			return;
3329 		}
3330 		INSIST(v->code < COUNTOF(wants));
3331 		wants[v->code] = 1;
3332 		gotvar = 1;
3333 	}
3334 	if (gotvar) {
3335 		for (i = 1; i < COUNTOF(wants); i++)
3336 			if (wants[i])
3337 				ctl_putpeer(i, peer);
3338 	} else
3339 		for (cp = def_peer_var; *cp != 0; cp++)
3340 			ctl_putpeer((int)*cp, peer);
3341 	ctl_flushpkt(0);
3342 }
3343 
3344 
3345 /*
3346  * read_sysvars - half of read_variables() implementation
3347  */
3348 static void
3349 read_sysvars(void)
3350 {
3351 	const struct ctl_var *v;
3352 	struct ctl_var *kv;
3353 	u_int	n;
3354 	u_int	gotvar;
3355 	const u_char *cs;
3356 	char *	valuep;
3357 	const char * pch;
3358 	u_char *wants;
3359 	size_t	wants_count;
3360 
3361 	/*
3362 	 * Wants system variables. Figure out which he wants
3363 	 * and give them to him.
3364 	 */
3365 	rpkt.status = htons(ctlsysstatus());
3366 	if (res_authokay)
3367 		ctl_sys_num_events = 0;
3368 	wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
3369 	wants = emalloc_zero(wants_count);
3370 	gotvar = 0;
3371 	while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
3372 		if (!(EOV & v->flags)) {
3373 			INSIST(v->code < wants_count);
3374 			wants[v->code] = 1;
3375 			gotvar = 1;
3376 		} else {
3377 			v = ctl_getitem(ext_sys_var, &valuep);
3378 			if (NULL == v) {
3379 				ctl_error(CERR_BADVALUE);
3380 				free(wants);
3381 				return;
3382 			}
3383 			if (EOV & v->flags) {
3384 				ctl_error(CERR_UNKNOWNVAR);
3385 				free(wants);
3386 				return;
3387 			}
3388 			n = v->code + CS_MAXCODE + 1;
3389 			INSIST(n < wants_count);
3390 			wants[n] = 1;
3391 			gotvar = 1;
3392 		}
3393 	}
3394 	if (gotvar) {
3395 		for (n = 1; n <= CS_MAXCODE; n++)
3396 			if (wants[n])
3397 				ctl_putsys(n);
3398 		for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
3399 			if (wants[n + CS_MAXCODE + 1]) {
3400 				pch = ext_sys_var[n].text;
3401 				ctl_putdata(pch, strlen(pch), 0);
3402 			}
3403 	} else {
3404 		for (cs = def_sys_var; *cs != 0; cs++)
3405 			ctl_putsys((int)*cs);
3406 		for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
3407 			if (DEF & kv->flags)
3408 				ctl_putdata(kv->text, strlen(kv->text),
3409 					    0);
3410 	}
3411 	free(wants);
3412 	ctl_flushpkt(0);
3413 }
3414 
3415 
3416 /*
3417  * read_variables - return the variables the caller asks for
3418  */
3419 /*ARGSUSED*/
3420 static void
3421 read_variables(
3422 	struct recvbuf *rbufp,
3423 	int restrict_mask
3424 	)
3425 {
3426 	if (res_associd)
3427 		read_peervars();
3428 	else
3429 		read_sysvars();
3430 }
3431 
3432 
3433 /*
3434  * write_variables - write into variables. We only allow leap bit
3435  * writing this way.
3436  */
3437 /*ARGSUSED*/
3438 static void
3439 write_variables(
3440 	struct recvbuf *rbufp,
3441 	int restrict_mask
3442 	)
3443 {
3444 	const struct ctl_var *v;
3445 	int ext_var;
3446 	char *valuep;
3447 	long val;
3448 	size_t octets;
3449 	char *vareqv;
3450 	const char *t;
3451 	char *tt;
3452 
3453 	val = 0;
3454 	/*
3455 	 * If he's trying to write into a peer tell him no way
3456 	 */
3457 	if (res_associd != 0) {
3458 		ctl_error(CERR_PERMISSION);
3459 		return;
3460 	}
3461 
3462 	/*
3463 	 * Set status
3464 	 */
3465 	rpkt.status = htons(ctlsysstatus());
3466 
3467 	/*
3468 	 * Look through the variables. Dump out at the first sign of
3469 	 * trouble.
3470 	 */
3471 	while ((v = ctl_getitem(sys_var, &valuep)) != 0) {
3472 		ext_var = 0;
3473 		if (v->flags & EOV) {
3474 			if ((v = ctl_getitem(ext_sys_var, &valuep)) !=
3475 			    0) {
3476 				if (v->flags & EOV) {
3477 					ctl_error(CERR_UNKNOWNVAR);
3478 					return;
3479 				}
3480 				ext_var = 1;
3481 			} else {
3482 				break;
3483 			}
3484 		}
3485 		if (!(v->flags & CAN_WRITE)) {
3486 			ctl_error(CERR_PERMISSION);
3487 			return;
3488 		}
3489 		if (!ext_var && (*valuep == '\0' || !atoint(valuep,
3490 							    &val))) {
3491 			ctl_error(CERR_BADFMT);
3492 			return;
3493 		}
3494 		if (!ext_var && (val & ~LEAP_NOTINSYNC) != 0) {
3495 			ctl_error(CERR_BADVALUE);
3496 			return;
3497 		}
3498 
3499 		if (ext_var) {
3500 			octets = strlen(v->text) + strlen(valuep) + 2;
3501 			vareqv = emalloc(octets);
3502 			tt = vareqv;
3503 			t = v->text;
3504 			while (*t && *t != '=')
3505 				*tt++ = *t++;
3506 			*tt++ = '=';
3507 			memcpy(tt, valuep, 1 + strlen(valuep));
3508 			set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
3509 			free(vareqv);
3510 		} else {
3511 			ctl_error(CERR_UNSPEC); /* really */
3512 			return;
3513 		}
3514 	}
3515 
3516 	/*
3517 	 * If we got anything, do it. xxx nothing to do ***
3518 	 */
3519 	/*
3520 	  if (leapind != ~0 || leapwarn != ~0) {
3521 	  if (!leap_setleap((int)leapind, (int)leapwarn)) {
3522 	  ctl_error(CERR_PERMISSION);
3523 	  return;
3524 	  }
3525 	  }
3526 	*/
3527 	ctl_flushpkt(0);
3528 }
3529 
3530 
3531 /*
3532  * configure() processes ntpq :config/config-from-file, allowing
3533  *		generic runtime reconfiguration.
3534  */
3535 static void configure(
3536 	struct recvbuf *rbufp,
3537 	int restrict_mask
3538 	)
3539 {
3540 	size_t data_count;
3541 	int retval;
3542 
3543 	/* I haven't yet implemented changes to an existing association.
3544 	 * Hence check if the association id is 0
3545 	 */
3546 	if (res_associd != 0) {
3547 		ctl_error(CERR_BADVALUE);
3548 		return;
3549 	}
3550 
3551 	if (RES_NOMODIFY & restrict_mask) {
3552 		snprintf(remote_config.err_msg,
3553 			 sizeof(remote_config.err_msg),
3554 			 "runtime configuration prohibited by restrict ... nomodify");
3555 		ctl_putdata(remote_config.err_msg,
3556 			    strlen(remote_config.err_msg), 0);
3557 		ctl_flushpkt(0);
3558 		NLOG(NLOG_SYSINFO)
3559 			msyslog(LOG_NOTICE,
3560 				"runtime config from %s rejected due to nomodify restriction",
3561 				stoa(&rbufp->recv_srcadr));
3562 		sys_restricted++;
3563 		return;
3564 	}
3565 
3566 	/* Initialize the remote config buffer */
3567 	data_count = remoteconfig_cmdlength(reqpt, reqend);
3568 
3569 	if (data_count > sizeof(remote_config.buffer) - 2) {
3570 		snprintf(remote_config.err_msg,
3571 			 sizeof(remote_config.err_msg),
3572 			 "runtime configuration failed: request too long");
3573 		ctl_putdata(remote_config.err_msg,
3574 			    strlen(remote_config.err_msg), 0);
3575 		ctl_flushpkt(0);
3576 		msyslog(LOG_NOTICE,
3577 			"runtime config from %s rejected: request too long",
3578 			stoa(&rbufp->recv_srcadr));
3579 		return;
3580 	}
3581 	/* Bug 2853 -- check if all characters were acceptable */
3582 	if (data_count != (size_t)(reqend - reqpt)) {
3583 		snprintf(remote_config.err_msg,
3584 			 sizeof(remote_config.err_msg),
3585 			 "runtime configuration failed: request contains an unprintable character");
3586 		ctl_putdata(remote_config.err_msg,
3587 			    strlen(remote_config.err_msg), 0);
3588 		ctl_flushpkt(0);
3589 		msyslog(LOG_NOTICE,
3590 			"runtime config from %s rejected: request contains an unprintable character: %0x",
3591 			stoa(&rbufp->recv_srcadr),
3592 			reqpt[data_count]);
3593 		return;
3594 	}
3595 
3596 	memcpy(remote_config.buffer, reqpt, data_count);
3597 	/* The buffer has no trailing linefeed or NUL right now. For
3598 	 * logging, we do not want a newline, so we do that first after
3599 	 * adding the necessary NUL byte.
3600 	 */
3601 	remote_config.buffer[data_count] = '\0';
3602 	DPRINTF(1, ("Got Remote Configuration Command: %s\n",
3603 		remote_config.buffer));
3604 	msyslog(LOG_NOTICE, "%s config: %s",
3605 		stoa(&rbufp->recv_srcadr),
3606 		remote_config.buffer);
3607 
3608 	/* Now we have to make sure there is a NL/NUL sequence at the
3609 	 * end of the buffer before we parse it.
3610 	 */
3611 	remote_config.buffer[data_count++] = '\n';
3612 	remote_config.buffer[data_count] = '\0';
3613 	remote_config.pos = 0;
3614 	remote_config.err_pos = 0;
3615 	remote_config.no_errors = 0;
3616 	config_remotely(&rbufp->recv_srcadr);
3617 
3618 	/*
3619 	 * Check if errors were reported. If not, output 'Config
3620 	 * Succeeded'.  Else output the error count.  It would be nice
3621 	 * to output any parser error messages.
3622 	 */
3623 	if (0 == remote_config.no_errors) {
3624 		retval = snprintf(remote_config.err_msg,
3625 				  sizeof(remote_config.err_msg),
3626 				  "Config Succeeded");
3627 		if (retval > 0)
3628 			remote_config.err_pos += retval;
3629 	}
3630 
3631 	ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
3632 	ctl_flushpkt(0);
3633 
3634 	DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
3635 
3636 	if (remote_config.no_errors > 0)
3637 		msyslog(LOG_NOTICE, "%d error in %s config",
3638 			remote_config.no_errors,
3639 			stoa(&rbufp->recv_srcadr));
3640 }
3641 
3642 
3643 /*
3644  * derive_nonce - generate client-address-specific nonce value
3645  *		  associated with a given timestamp.
3646  */
3647 static u_int32 derive_nonce(
3648 	sockaddr_u *	addr,
3649 	u_int32		ts_i,
3650 	u_int32		ts_f
3651 	)
3652 {
3653 	static u_int32	salt[4];
3654 	static u_long	last_salt_update;
3655 	union d_tag {
3656 		u_char	digest[EVP_MAX_MD_SIZE];
3657 		u_int32 extract;
3658 	}		d;
3659 	EVP_MD_CTX	*ctx;
3660 	u_int		len;
3661 
3662 	while (!salt[0] || current_time - last_salt_update >= 3600) {
3663 		salt[0] = ntp_random();
3664 		salt[1] = ntp_random();
3665 		salt[2] = ntp_random();
3666 		salt[3] = ntp_random();
3667 		last_salt_update = current_time;
3668 	}
3669 
3670 	ctx = EVP_MD_CTX_new();
3671 	EVP_DigestInit(ctx, EVP_get_digestbynid(NID_md5));
3672 	EVP_DigestUpdate(ctx, salt, sizeof(salt));
3673 	EVP_DigestUpdate(ctx, &ts_i, sizeof(ts_i));
3674 	EVP_DigestUpdate(ctx, &ts_f, sizeof(ts_f));
3675 	if (IS_IPV4(addr))
3676 		EVP_DigestUpdate(ctx, &SOCK_ADDR4(addr),
3677 			         sizeof(SOCK_ADDR4(addr)));
3678 	else
3679 		EVP_DigestUpdate(ctx, &SOCK_ADDR6(addr),
3680 			         sizeof(SOCK_ADDR6(addr)));
3681 	EVP_DigestUpdate(ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr)));
3682 	EVP_DigestUpdate(ctx, salt, sizeof(salt));
3683 	EVP_DigestFinal(ctx, d.digest, &len);
3684 	EVP_MD_CTX_free(ctx);
3685 
3686 	return d.extract;
3687 }
3688 
3689 
3690 /*
3691  * generate_nonce - generate client-address-specific nonce string.
3692  */
3693 static void generate_nonce(
3694 	struct recvbuf *	rbufp,
3695 	char *			nonce,
3696 	size_t			nonce_octets
3697 	)
3698 {
3699 	u_int32 derived;
3700 
3701 	derived = derive_nonce(&rbufp->recv_srcadr,
3702 			       rbufp->recv_time.l_ui,
3703 			       rbufp->recv_time.l_uf);
3704 	snprintf(nonce, nonce_octets, "%08x%08x%08x",
3705 		 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
3706 }
3707 
3708 
3709 /*
3710  * validate_nonce - validate client-address-specific nonce string.
3711  *
3712  * Returns TRUE if the local calculation of the nonce matches the
3713  * client-provided value and the timestamp is recent enough.
3714  */
3715 static int validate_nonce(
3716 	const char *		pnonce,
3717 	struct recvbuf *	rbufp
3718 	)
3719 {
3720 	u_int	ts_i;
3721 	u_int	ts_f;
3722 	l_fp	ts;
3723 	l_fp	now_delta;
3724 	u_int	supposed;
3725 	u_int	derived;
3726 
3727 	if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
3728 		return FALSE;
3729 
3730 	ts.l_ui = (u_int32)ts_i;
3731 	ts.l_uf = (u_int32)ts_f;
3732 	derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
3733 	get_systime(&now_delta);
3734 	L_SUB(&now_delta, &ts);
3735 
3736 	return (supposed == derived && now_delta.l_ui < 16);
3737 }
3738 
3739 
3740 /*
3741  * send_random_tag_value - send a randomly-generated three character
3742  *			   tag prefix, a '.', an index, a '=' and a
3743  *			   random integer value.
3744  *
3745  * To try to force clients to ignore unrecognized tags in mrulist,
3746  * reslist, and ifstats responses, the first and last rows are spiced
3747  * with randomly-generated tag names with correct .# index.  Make it
3748  * three characters knowing that none of the currently-used subscripted
3749  * tags have that length, avoiding the need to test for
3750  * tag collision.
3751  */
3752 static void
3753 send_random_tag_value(
3754 	int	indx
3755 	)
3756 {
3757 	int	noise;
3758 	char	buf[32];
3759 
3760 	noise = rand() ^ (rand() << 16);
3761 	buf[0] = 'a' + noise % 26;
3762 	noise >>= 5;
3763 	buf[1] = 'a' + noise % 26;
3764 	noise >>= 5;
3765 	buf[2] = 'a' + noise % 26;
3766 	noise >>= 5;
3767 	buf[3] = '.';
3768 	snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
3769 	ctl_putuint(buf, noise);
3770 }
3771 
3772 
3773 /*
3774  * Send a MRU list entry in response to a "ntpq -c mrulist" operation.
3775  *
3776  * To keep clients honest about not depending on the order of values,
3777  * and thereby avoid being locked into ugly workarounds to maintain
3778  * backward compatibility later as new fields are added to the response,
3779  * the order is random.
3780  */
3781 static void
3782 send_mru_entry(
3783 	mon_entry *	mon,
3784 	int		count
3785 	)
3786 {
3787 	const char first_fmt[] =	"first.%d";
3788 	const char ct_fmt[] =		"ct.%d";
3789 	const char mv_fmt[] =		"mv.%d";
3790 	const char rs_fmt[] =		"rs.%d";
3791 	char	tag[32];
3792 	u_char	sent[6]; /* 6 tag=value pairs */
3793 	u_int32 noise;
3794 	u_int	which;
3795 	u_int	remaining;
3796 	const char * pch;
3797 
3798 	remaining = COUNTOF(sent);
3799 	ZERO(sent);
3800 	noise = (u_int32)(rand() ^ (rand() << 16));
3801 	while (remaining > 0) {
3802 		which = (noise & 7) % COUNTOF(sent);
3803 		noise >>= 3;
3804 		while (sent[which])
3805 			which = (which + 1) % COUNTOF(sent);
3806 
3807 		switch (which) {
3808 
3809 		case 0:
3810 			snprintf(tag, sizeof(tag), addr_fmt, count);
3811 			pch = sptoa(&mon->rmtadr);
3812 			ctl_putunqstr(tag, pch, strlen(pch));
3813 			break;
3814 
3815 		case 1:
3816 			snprintf(tag, sizeof(tag), last_fmt, count);
3817 			ctl_putts(tag, &mon->last);
3818 			break;
3819 
3820 		case 2:
3821 			snprintf(tag, sizeof(tag), first_fmt, count);
3822 			ctl_putts(tag, &mon->first);
3823 			break;
3824 
3825 		case 3:
3826 			snprintf(tag, sizeof(tag), ct_fmt, count);
3827 			ctl_putint(tag, mon->count);
3828 			break;
3829 
3830 		case 4:
3831 			snprintf(tag, sizeof(tag), mv_fmt, count);
3832 			ctl_putuint(tag, mon->vn_mode);
3833 			break;
3834 
3835 		case 5:
3836 			snprintf(tag, sizeof(tag), rs_fmt, count);
3837 			ctl_puthex(tag, mon->flags);
3838 			break;
3839 		}
3840 		sent[which] = TRUE;
3841 		remaining--;
3842 	}
3843 }
3844 
3845 
3846 /*
3847  * read_mru_list - supports ntpq's mrulist command.
3848  *
3849  * The challenge here is to match ntpdc's monlist functionality without
3850  * being limited to hundreds of entries returned total, and without
3851  * requiring state on the server.  If state were required, ntpq's
3852  * mrulist command would require authentication.
3853  *
3854  * The approach was suggested by Ry Jones.  A finite and variable number
3855  * of entries are retrieved per request, to avoid having responses with
3856  * such large numbers of packets that socket buffers are overflowed and
3857  * packets lost.  The entries are retrieved oldest-first, taking into
3858  * account that the MRU list will be changing between each request.  We
3859  * can expect to see duplicate entries for addresses updated in the MRU
3860  * list during the fetch operation.  In the end, the client can assemble
3861  * a close approximation of the MRU list at the point in time the last
3862  * response was sent by ntpd.  The only difference is it may be longer,
3863  * containing some number of oldest entries which have since been
3864  * reclaimed.  If necessary, the protocol could be extended to zap those
3865  * from the client snapshot at the end, but so far that doesn't seem
3866  * useful.
3867  *
3868  * To accomodate the changing MRU list, the starting point for requests
3869  * after the first request is supplied as a series of last seen
3870  * timestamps and associated addresses, the newest ones the client has
3871  * received.  As long as at least one of those entries hasn't been
3872  * bumped to the head of the MRU list, ntpd can pick up at that point.
3873  * Otherwise, the request is failed and it is up to ntpq to back up and
3874  * provide the next newest entry's timestamps and addresses, conceivably
3875  * backing up all the way to the starting point.
3876  *
3877  * input parameters:
3878  *	nonce=		Regurgitated nonce retrieved by the client
3879  *			previously using CTL_OP_REQ_NONCE, demonstrating
3880  *			ability to receive traffic sent to its address.
3881  *	frags=		Limit on datagrams (fragments) in response.  Used
3882  *			by newer ntpq versions instead of limit= when
3883  *			retrieving multiple entries.
3884  *	limit=		Limit on MRU entries returned.  One of frags= or
3885  *			limit= must be provided.
3886  *			limit=1 is a special case:  Instead of fetching
3887  *			beginning with the supplied starting point's
3888  *			newer neighbor, fetch the supplied entry, and
3889  *			in that case the #.last timestamp can be zero.
3890  *			This enables fetching a single entry by IP
3891  *			address.  When limit is not one and frags= is
3892  *			provided, the fragment limit controls.
3893  *	mincount=	(decimal) Return entries with count >= mincount.
3894  *	laddr=		Return entries associated with the server's IP
3895  *			address given.  No port specification is needed,
3896  *			and any supplied is ignored.
3897  *	resall=		0x-prefixed hex restrict bits which must all be
3898  *			lit for an MRU entry to be included.
3899  *			Has precedence over any resany=.
3900  *	resany=		0x-prefixed hex restrict bits, at least one of
3901  *			which must be list for an MRU entry to be
3902  *			included.
3903  *	last.0=		0x-prefixed hex l_fp timestamp of newest entry
3904  *			which client previously received.
3905  *	addr.0=		text of newest entry's IP address and port,
3906  *			IPv6 addresses in bracketed form: [::]:123
3907  *	last.1=		timestamp of 2nd newest entry client has.
3908  *	addr.1=		address of 2nd newest entry.
3909  *	[...]
3910  *
3911  * ntpq provides as many last/addr pairs as will fit in a single request
3912  * packet, except for the first request in a MRU fetch operation.
3913  *
3914  * The response begins with a new nonce value to be used for any
3915  * followup request.  Following the nonce is the next newer entry than
3916  * referred to by last.0 and addr.0, if the "0" entry has not been
3917  * bumped to the front.  If it has, the first entry returned will be the
3918  * next entry newer than referred to by last.1 and addr.1, and so on.
3919  * If none of the referenced entries remain unchanged, the request fails
3920  * and ntpq backs up to the next earlier set of entries to resync.
3921  *
3922  * Except for the first response, the response begins with confirmation
3923  * of the entry that precedes the first additional entry provided:
3924  *
3925  *	last.older=	hex l_fp timestamp matching one of the input
3926  *			.last timestamps, which entry now precedes the
3927  *			response 0. entry in the MRU list.
3928  *	addr.older=	text of address corresponding to older.last.
3929  *
3930  * And in any case, a successful response contains sets of values
3931  * comprising entries, with the oldest numbered 0 and incrementing from
3932  * there:
3933  *
3934  *	addr.#		text of IPv4 or IPv6 address and port
3935  *	last.#		hex l_fp timestamp of last receipt
3936  *	first.#		hex l_fp timestamp of first receipt
3937  *	ct.#		count of packets received
3938  *	mv.#		mode and version
3939  *	rs.#		restriction mask (RES_* bits)
3940  *
3941  * Note the code currently assumes there are no valid three letter
3942  * tags sent with each row, and needs to be adjusted if that changes.
3943  *
3944  * The client should accept the values in any order, and ignore .#
3945  * values which it does not understand, to allow a smooth path to
3946  * future changes without requiring a new opcode.  Clients can rely
3947  * on all *.0 values preceding any *.1 values, that is all values for
3948  * a given index number are together in the response.
3949  *
3950  * The end of the response list is noted with one or two tag=value
3951  * pairs.  Unconditionally:
3952  *
3953  *	now=		0x-prefixed l_fp timestamp at the server marking
3954  *			the end of the operation.
3955  *
3956  * If any entries were returned, now= is followed by:
3957  *
3958  *	last.newest=	hex l_fp identical to last.# of the prior
3959  *			entry.
3960  */
3961 static void read_mru_list(
3962 	struct recvbuf *rbufp,
3963 	int restrict_mask
3964 	)
3965 {
3966 	static const char	nulltxt[1] = 		{ '\0' };
3967 	static const char	nonce_text[] =		"nonce";
3968 	static const char	frags_text[] =		"frags";
3969 	static const char	limit_text[] =		"limit";
3970 	static const char	mincount_text[] =	"mincount";
3971 	static const char	resall_text[] =		"resall";
3972 	static const char	resany_text[] =		"resany";
3973 	static const char	maxlstint_text[] =	"maxlstint";
3974 	static const char	laddr_text[] =		"laddr";
3975 	static const char	resaxx_fmt[] =		"0x%hx";
3976 
3977 	u_int			limit;
3978 	u_short			frags;
3979 	u_short			resall;
3980 	u_short			resany;
3981 	int			mincount;
3982 	u_int			maxlstint;
3983 	sockaddr_u		laddr;
3984 	struct interface *	lcladr;
3985 	u_int			count;
3986 	u_int			ui;
3987 	u_int			uf;
3988 	l_fp			last[16];
3989 	sockaddr_u		addr[COUNTOF(last)];
3990 	char			buf[128];
3991 	struct ctl_var *	in_parms;
3992 	const struct ctl_var *	v;
3993 	const char *		val;
3994 	const char *		pch;
3995 	char *			pnonce;
3996 	int			nonce_valid;
3997 	size_t			i;
3998 	int			priors;
3999 	u_short			hash;
4000 	mon_entry *		mon;
4001 	mon_entry *		prior_mon;
4002 	l_fp			now;
4003 
4004 	if (RES_NOMRULIST & restrict_mask) {
4005 		ctl_error(CERR_PERMISSION);
4006 		NLOG(NLOG_SYSINFO)
4007 			msyslog(LOG_NOTICE,
4008 				"mrulist from %s rejected due to nomrulist restriction",
4009 				stoa(&rbufp->recv_srcadr));
4010 		sys_restricted++;
4011 		return;
4012 	}
4013 	/*
4014 	 * fill in_parms var list with all possible input parameters.
4015 	 */
4016 	in_parms = NULL;
4017 	set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
4018 	set_var(&in_parms, frags_text, sizeof(frags_text), 0);
4019 	set_var(&in_parms, limit_text, sizeof(limit_text), 0);
4020 	set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
4021 	set_var(&in_parms, resall_text, sizeof(resall_text), 0);
4022 	set_var(&in_parms, resany_text, sizeof(resany_text), 0);
4023 	set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
4024 	set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
4025 	for (i = 0; i < COUNTOF(last); i++) {
4026 		snprintf(buf, sizeof(buf), last_fmt, (int)i);
4027 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4028 		snprintf(buf, sizeof(buf), addr_fmt, (int)i);
4029 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4030 	}
4031 
4032 	/* decode input parms */
4033 	pnonce = NULL;
4034 	frags = 0;
4035 	limit = 0;
4036 	mincount = 0;
4037 	resall = 0;
4038 	resany = 0;
4039 	maxlstint = 0;
4040 	lcladr = NULL;
4041 	priors = 0;
4042 	ZERO(last);
4043 	ZERO(addr);
4044 
4045 	/* have to go through '(void*)' to drop 'const' property from pointer.
4046 	 * ctl_getitem()' needs some cleanup, too.... perlinger@ntp.org
4047 	 */
4048 	while (NULL != (v = ctl_getitem(in_parms, (void*)&val)) &&
4049 	       !(EOV & v->flags)) {
4050 		int si;
4051 
4052 		if (NULL == val)
4053 			val = nulltxt;
4054 
4055 		if (!strcmp(nonce_text, v->text)) {
4056 			free(pnonce);
4057 			pnonce = (*val) ? estrdup(val) : NULL;
4058 		} else if (!strcmp(frags_text, v->text)) {
4059 			if (1 != sscanf(val, "%hu", &frags))
4060 				goto blooper;
4061 		} else if (!strcmp(limit_text, v->text)) {
4062 			if (1 != sscanf(val, "%u", &limit))
4063 				goto blooper;
4064 		} else if (!strcmp(mincount_text, v->text)) {
4065 			if (1 != sscanf(val, "%d", &mincount))
4066 				goto blooper;
4067 			if (mincount < 0)
4068 				mincount = 0;
4069 		} else if (!strcmp(resall_text, v->text)) {
4070 			if (1 != sscanf(val, resaxx_fmt, &resall))
4071 				goto blooper;
4072 		} else if (!strcmp(resany_text, v->text)) {
4073 			if (1 != sscanf(val, resaxx_fmt, &resany))
4074 				goto blooper;
4075 		} else if (!strcmp(maxlstint_text, v->text)) {
4076 			if (1 != sscanf(val, "%u", &maxlstint))
4077 				goto blooper;
4078 		} else if (!strcmp(laddr_text, v->text)) {
4079 			if (!decodenetnum(val, &laddr))
4080 				goto blooper;
4081 			lcladr = getinterface(&laddr, 0);
4082 		} else if (1 == sscanf(v->text, last_fmt, &si) &&
4083 			   (size_t)si < COUNTOF(last)) {
4084 			if (2 != sscanf(val, "0x%08x.%08x", &ui, &uf))
4085 				goto blooper;
4086 			last[si].l_ui = ui;
4087 			last[si].l_uf = uf;
4088 			if (!SOCK_UNSPEC(&addr[si]) && si == priors)
4089 				priors++;
4090 		} else if (1 == sscanf(v->text, addr_fmt, &si) &&
4091 			   (size_t)si < COUNTOF(addr)) {
4092 			if (!decodenetnum(val, &addr[si]))
4093 				goto blooper;
4094 			if (last[si].l_ui && last[si].l_uf && si == priors)
4095 				priors++;
4096 		} else {
4097 			DPRINTF(1, ("read_mru_list: invalid key item: '%s' (ignored)\n",
4098 				    v->text));
4099 			continue;
4100 
4101 		blooper:
4102 			DPRINTF(1, ("read_mru_list: invalid param for '%s': '%s' (bailing)\n",
4103 				    v->text, val));
4104 			free(pnonce);
4105 			pnonce = NULL;
4106 			break;
4107 		}
4108 	}
4109 	free_varlist(in_parms);
4110 	in_parms = NULL;
4111 
4112 	/* return no responses until the nonce is validated */
4113 	if (NULL == pnonce)
4114 		return;
4115 
4116 	nonce_valid = validate_nonce(pnonce, rbufp);
4117 	free(pnonce);
4118 	if (!nonce_valid)
4119 		return;
4120 
4121 	if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
4122 	    frags > MRU_FRAGS_LIMIT) {
4123 		ctl_error(CERR_BADVALUE);
4124 		return;
4125 	}
4126 
4127 	/*
4128 	 * If either frags or limit is not given, use the max.
4129 	 */
4130 	if (0 != frags && 0 == limit)
4131 		limit = UINT_MAX;
4132 	else if (0 != limit && 0 == frags)
4133 		frags = MRU_FRAGS_LIMIT;
4134 
4135 	/*
4136 	 * Find the starting point if one was provided.
4137 	 */
4138 	mon = NULL;
4139 	for (i = 0; i < (size_t)priors; i++) {
4140 		hash = MON_HASH(&addr[i]);
4141 		for (mon = mon_hash[hash];
4142 		     mon != NULL;
4143 		     mon = mon->hash_next)
4144 			if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
4145 				break;
4146 		if (mon != NULL) {
4147 			if (L_ISEQU(&mon->last, &last[i]))
4148 				break;
4149 			mon = NULL;
4150 		}
4151 	}
4152 
4153 	/* If a starting point was provided... */
4154 	if (priors) {
4155 		/* and none could be found unmodified... */
4156 		if (NULL == mon) {
4157 			/* tell ntpq to try again with older entries */
4158 			ctl_error(CERR_UNKNOWNVAR);
4159 			return;
4160 		}
4161 		/* confirm the prior entry used as starting point */
4162 		ctl_putts("last.older", &mon->last);
4163 		pch = sptoa(&mon->rmtadr);
4164 		ctl_putunqstr("addr.older", pch, strlen(pch));
4165 
4166 		/*
4167 		 * Move on to the first entry the client doesn't have,
4168 		 * except in the special case of a limit of one.  In
4169 		 * that case return the starting point entry.
4170 		 */
4171 		if (limit > 1)
4172 			mon = PREV_DLIST(mon_mru_list, mon, mru);
4173 	} else {	/* start with the oldest */
4174 		mon = TAIL_DLIST(mon_mru_list, mru);
4175 	}
4176 
4177 	/*
4178 	 * send up to limit= entries in up to frags= datagrams
4179 	 */
4180 	get_systime(&now);
4181 	generate_nonce(rbufp, buf, sizeof(buf));
4182 	ctl_putunqstr("nonce", buf, strlen(buf));
4183 	prior_mon = NULL;
4184 	for (count = 0;
4185 	     mon != NULL && res_frags < frags && count < limit;
4186 	     mon = PREV_DLIST(mon_mru_list, mon, mru)) {
4187 
4188 		if (mon->count < mincount)
4189 			continue;
4190 		if (resall && resall != (resall & mon->flags))
4191 			continue;
4192 		if (resany && !(resany & mon->flags))
4193 			continue;
4194 		if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
4195 		    maxlstint)
4196 			continue;
4197 		if (lcladr != NULL && mon->lcladr != lcladr)
4198 			continue;
4199 
4200 		send_mru_entry(mon, count);
4201 		if (!count)
4202 			send_random_tag_value(0);
4203 		count++;
4204 		prior_mon = mon;
4205 	}
4206 
4207 	/*
4208 	 * If this batch completes the MRU list, say so explicitly with
4209 	 * a now= l_fp timestamp.
4210 	 */
4211 	if (NULL == mon) {
4212 		if (count > 1)
4213 			send_random_tag_value(count - 1);
4214 		ctl_putts("now", &now);
4215 		/* if any entries were returned confirm the last */
4216 		if (prior_mon != NULL)
4217 			ctl_putts("last.newest", &prior_mon->last);
4218 	}
4219 	ctl_flushpkt(0);
4220 }
4221 
4222 
4223 /*
4224  * Send a ifstats entry in response to a "ntpq -c ifstats" request.
4225  *
4226  * To keep clients honest about not depending on the order of values,
4227  * and thereby avoid being locked into ugly workarounds to maintain
4228  * backward compatibility later as new fields are added to the response,
4229  * the order is random.
4230  */
4231 static void
4232 send_ifstats_entry(
4233 	endpt *	la,
4234 	u_int	ifnum
4235 	)
4236 {
4237 	const char addr_fmtu[] =	"addr.%u";
4238 	const char bcast_fmt[] =	"bcast.%u";
4239 	const char en_fmt[] =		"en.%u";	/* enabled */
4240 	const char name_fmt[] =		"name.%u";
4241 	const char flags_fmt[] =	"flags.%u";
4242 	const char tl_fmt[] =		"tl.%u";	/* ttl */
4243 	const char mc_fmt[] =		"mc.%u";	/* mcast count */
4244 	const char rx_fmt[] =		"rx.%u";
4245 	const char tx_fmt[] =		"tx.%u";
4246 	const char txerr_fmt[] =	"txerr.%u";
4247 	const char pc_fmt[] =		"pc.%u";	/* peer count */
4248 	const char up_fmt[] =		"up.%u";	/* uptime */
4249 	char	tag[32];
4250 	u_char	sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
4251 	int	noisebits;
4252 	u_int32 noise;
4253 	u_int	which;
4254 	u_int	remaining;
4255 	const char *pch;
4256 
4257 	remaining = COUNTOF(sent);
4258 	ZERO(sent);
4259 	noise = 0;
4260 	noisebits = 0;
4261 	while (remaining > 0) {
4262 		if (noisebits < 4) {
4263 			noise = rand() ^ (rand() << 16);
4264 			noisebits = 31;
4265 		}
4266 		which = (noise & 0xf) % COUNTOF(sent);
4267 		noise >>= 4;
4268 		noisebits -= 4;
4269 
4270 		while (sent[which])
4271 			which = (which + 1) % COUNTOF(sent);
4272 
4273 		switch (which) {
4274 
4275 		case 0:
4276 			snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
4277 			pch = sptoa(&la->sin);
4278 			ctl_putunqstr(tag, pch, strlen(pch));
4279 			break;
4280 
4281 		case 1:
4282 			snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
4283 			if (INT_BCASTOPEN & la->flags)
4284 				pch = sptoa(&la->bcast);
4285 			else
4286 				pch = "";
4287 			ctl_putunqstr(tag, pch, strlen(pch));
4288 			break;
4289 
4290 		case 2:
4291 			snprintf(tag, sizeof(tag), en_fmt, ifnum);
4292 			ctl_putint(tag, !la->ignore_packets);
4293 			break;
4294 
4295 		case 3:
4296 			snprintf(tag, sizeof(tag), name_fmt, ifnum);
4297 			ctl_putstr(tag, la->name, strlen(la->name));
4298 			break;
4299 
4300 		case 4:
4301 			snprintf(tag, sizeof(tag), flags_fmt, ifnum);
4302 			ctl_puthex(tag, (u_int)la->flags);
4303 			break;
4304 
4305 		case 5:
4306 			snprintf(tag, sizeof(tag), tl_fmt, ifnum);
4307 			ctl_putint(tag, la->last_ttl);
4308 			break;
4309 
4310 		case 6:
4311 			snprintf(tag, sizeof(tag), mc_fmt, ifnum);
4312 			ctl_putint(tag, la->num_mcast);
4313 			break;
4314 
4315 		case 7:
4316 			snprintf(tag, sizeof(tag), rx_fmt, ifnum);
4317 			ctl_putint(tag, la->received);
4318 			break;
4319 
4320 		case 8:
4321 			snprintf(tag, sizeof(tag), tx_fmt, ifnum);
4322 			ctl_putint(tag, la->sent);
4323 			break;
4324 
4325 		case 9:
4326 			snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
4327 			ctl_putint(tag, la->notsent);
4328 			break;
4329 
4330 		case 10:
4331 			snprintf(tag, sizeof(tag), pc_fmt, ifnum);
4332 			ctl_putuint(tag, la->peercnt);
4333 			break;
4334 
4335 		case 11:
4336 			snprintf(tag, sizeof(tag), up_fmt, ifnum);
4337 			ctl_putuint(tag, current_time - la->starttime);
4338 			break;
4339 		}
4340 		sent[which] = TRUE;
4341 		remaining--;
4342 	}
4343 	send_random_tag_value((int)ifnum);
4344 }
4345 
4346 
4347 /*
4348  * read_ifstats - send statistics for each local address, exposed by
4349  *		  ntpq -c ifstats
4350  */
4351 static void
4352 read_ifstats(
4353 	struct recvbuf *	rbufp
4354 	)
4355 {
4356 	u_int	ifidx;
4357 	endpt *	la;
4358 
4359 	/*
4360 	 * loop over [0..sys_ifnum] searching ep_list for each
4361 	 * ifnum in turn.
4362 	 */
4363 	for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
4364 		for (la = ep_list; la != NULL; la = la->elink)
4365 			if (ifidx == la->ifnum)
4366 				break;
4367 		if (NULL == la)
4368 			continue;
4369 		/* return stats for one local address */
4370 		send_ifstats_entry(la, ifidx);
4371 	}
4372 	ctl_flushpkt(0);
4373 }
4374 
4375 static void
4376 sockaddrs_from_restrict_u(
4377 	sockaddr_u *	psaA,
4378 	sockaddr_u *	psaM,
4379 	restrict_u *	pres,
4380 	int		ipv6
4381 	)
4382 {
4383 	ZERO(*psaA);
4384 	ZERO(*psaM);
4385 	if (!ipv6) {
4386 		psaA->sa.sa_family = AF_INET;
4387 		psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
4388 		psaM->sa.sa_family = AF_INET;
4389 		psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
4390 	} else {
4391 		psaA->sa.sa_family = AF_INET6;
4392 		memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
4393 		       sizeof(psaA->sa6.sin6_addr));
4394 		psaM->sa.sa_family = AF_INET6;
4395 		memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
4396 		       sizeof(psaA->sa6.sin6_addr));
4397 	}
4398 }
4399 
4400 
4401 /*
4402  * Send a restrict entry in response to a "ntpq -c reslist" request.
4403  *
4404  * To keep clients honest about not depending on the order of values,
4405  * and thereby avoid being locked into ugly workarounds to maintain
4406  * backward compatibility later as new fields are added to the response,
4407  * the order is random.
4408  */
4409 static void
4410 send_restrict_entry(
4411 	restrict_u *	pres,
4412 	int		ipv6,
4413 	u_int		idx
4414 	)
4415 {
4416 	const char addr_fmtu[] =	"addr.%u";
4417 	const char mask_fmtu[] =	"mask.%u";
4418 	const char hits_fmt[] =		"hits.%u";
4419 	const char flags_fmt[] =	"flags.%u";
4420 	char		tag[32];
4421 	u_char		sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
4422 	int		noisebits;
4423 	u_int32		noise;
4424 	u_int		which;
4425 	u_int		remaining;
4426 	sockaddr_u	addr;
4427 	sockaddr_u	mask;
4428 	const char *	pch;
4429 	char *		buf;
4430 	const char *	match_str;
4431 	const char *	access_str;
4432 
4433 	sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
4434 	remaining = COUNTOF(sent);
4435 	ZERO(sent);
4436 	noise = 0;
4437 	noisebits = 0;
4438 	while (remaining > 0) {
4439 		if (noisebits < 2) {
4440 			noise = rand() ^ (rand() << 16);
4441 			noisebits = 31;
4442 		}
4443 		which = (noise & 0x3) % COUNTOF(sent);
4444 		noise >>= 2;
4445 		noisebits -= 2;
4446 
4447 		while (sent[which])
4448 			which = (which + 1) % COUNTOF(sent);
4449 
4450 		switch (which) {
4451 
4452 		case 0:
4453 			snprintf(tag, sizeof(tag), addr_fmtu, idx);
4454 			pch = stoa(&addr);
4455 			ctl_putunqstr(tag, pch, strlen(pch));
4456 			break;
4457 
4458 		case 1:
4459 			snprintf(tag, sizeof(tag), mask_fmtu, idx);
4460 			pch = stoa(&mask);
4461 			ctl_putunqstr(tag, pch, strlen(pch));
4462 			break;
4463 
4464 		case 2:
4465 			snprintf(tag, sizeof(tag), hits_fmt, idx);
4466 			ctl_putuint(tag, pres->count);
4467 			break;
4468 
4469 		case 3:
4470 			snprintf(tag, sizeof(tag), flags_fmt, idx);
4471 			match_str = res_match_flags(pres->mflags);
4472 			access_str = res_access_flags(pres->flags);
4473 			if ('\0' == match_str[0]) {
4474 				pch = access_str;
4475 			} else {
4476 				LIB_GETBUF(buf);
4477 				snprintf(buf, LIB_BUFLENGTH, "%s %s",
4478 					 match_str, access_str);
4479 				pch = buf;
4480 			}
4481 			ctl_putunqstr(tag, pch, strlen(pch));
4482 			break;
4483 		}
4484 		sent[which] = TRUE;
4485 		remaining--;
4486 	}
4487 	send_random_tag_value((int)idx);
4488 }
4489 
4490 
4491 static void
4492 send_restrict_list(
4493 	restrict_u *	pres,
4494 	int		ipv6,
4495 	u_int *		pidx
4496 	)
4497 {
4498 	for ( ; pres != NULL; pres = pres->link) {
4499 		send_restrict_entry(pres, ipv6, *pidx);
4500 		(*pidx)++;
4501 	}
4502 }
4503 
4504 
4505 /*
4506  * read_addr_restrictions - returns IPv4 and IPv6 access control lists
4507  */
4508 static void
4509 read_addr_restrictions(
4510 	struct recvbuf *	rbufp
4511 )
4512 {
4513 	u_int idx;
4514 
4515 	idx = 0;
4516 	send_restrict_list(restrictlist4, FALSE, &idx);
4517 	send_restrict_list(restrictlist6, TRUE, &idx);
4518 	ctl_flushpkt(0);
4519 }
4520 
4521 
4522 /*
4523  * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
4524  */
4525 static void
4526 read_ordlist(
4527 	struct recvbuf *	rbufp,
4528 	int			restrict_mask
4529 	)
4530 {
4531 	const char ifstats_s[] = "ifstats";
4532 	const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
4533 	const char addr_rst_s[] = "addr_restrictions";
4534 	const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
4535 	struct ntp_control *	cpkt;
4536 	u_short			qdata_octets;
4537 
4538 	/*
4539 	 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
4540 	 * used only for ntpq -c ifstats.  With the addition of reslist
4541 	 * the same opcode was generalized to retrieve ordered lists
4542 	 * which require authentication.  The request data is empty or
4543 	 * contains "ifstats" (not null terminated) to retrieve local
4544 	 * addresses and associated stats.  It is "addr_restrictions"
4545 	 * to retrieve the IPv4 then IPv6 remote address restrictions,
4546 	 * which are access control lists.  Other request data return
4547 	 * CERR_UNKNOWNVAR.
4548 	 */
4549 	cpkt = (struct ntp_control *)&rbufp->recv_pkt;
4550 	qdata_octets = ntohs(cpkt->count);
4551 	if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
4552 	    !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
4553 		read_ifstats(rbufp);
4554 		return;
4555 	}
4556 	if (a_r_chars == qdata_octets &&
4557 	    !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
4558 		read_addr_restrictions(rbufp);
4559 		return;
4560 	}
4561 	ctl_error(CERR_UNKNOWNVAR);
4562 }
4563 
4564 
4565 /*
4566  * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
4567  */
4568 static void req_nonce(
4569 	struct recvbuf *	rbufp,
4570 	int			restrict_mask
4571 	)
4572 {
4573 	char	buf[64];
4574 
4575 	generate_nonce(rbufp, buf, sizeof(buf));
4576 	ctl_putunqstr("nonce", buf, strlen(buf));
4577 	ctl_flushpkt(0);
4578 }
4579 
4580 
4581 /*
4582  * read_clockstatus - return clock radio status
4583  */
4584 /*ARGSUSED*/
4585 static void
4586 read_clockstatus(
4587 	struct recvbuf *rbufp,
4588 	int restrict_mask
4589 	)
4590 {
4591 #ifndef REFCLOCK
4592 	/*
4593 	 * If no refclock support, no data to return
4594 	 */
4595 	ctl_error(CERR_BADASSOC);
4596 #else
4597 	const struct ctl_var *	v;
4598 	int			i;
4599 	struct peer *		peer;
4600 	char *			valuep;
4601 	u_char *		wants;
4602 	size_t			wants_alloc;
4603 	int			gotvar;
4604 	const u_char *		cc;
4605 	struct ctl_var *	kv;
4606 	struct refclockstat	cs;
4607 
4608 	if (res_associd != 0) {
4609 		peer = findpeerbyassoc(res_associd);
4610 	} else {
4611 		/*
4612 		 * Find a clock for this jerk.	If the system peer
4613 		 * is a clock use it, else search peer_list for one.
4614 		 */
4615 		if (sys_peer != NULL && (FLAG_REFCLOCK &
4616 		    sys_peer->flags))
4617 			peer = sys_peer;
4618 		else
4619 			for (peer = peer_list;
4620 			     peer != NULL;
4621 			     peer = peer->p_link)
4622 				if (FLAG_REFCLOCK & peer->flags)
4623 					break;
4624 	}
4625 	if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
4626 		ctl_error(CERR_BADASSOC);
4627 		return;
4628 	}
4629 	/*
4630 	 * If we got here we have a peer which is a clock. Get his
4631 	 * status.
4632 	 */
4633 	cs.kv_list = NULL;
4634 	refclock_control(&peer->srcadr, NULL, &cs);
4635 	kv = cs.kv_list;
4636 	/*
4637 	 * Look for variables in the packet.
4638 	 */
4639 	rpkt.status = htons(ctlclkstatus(&cs));
4640 	wants_alloc = CC_MAXCODE + 1 + count_var(kv);
4641 	wants = emalloc_zero(wants_alloc);
4642 	gotvar = FALSE;
4643 	while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
4644 		if (!(EOV & v->flags)) {
4645 			wants[v->code] = TRUE;
4646 			gotvar = TRUE;
4647 		} else {
4648 			v = ctl_getitem(kv, &valuep);
4649 			if (NULL == v) {
4650 				ctl_error(CERR_BADVALUE);
4651 				free(wants);
4652 				free_varlist(cs.kv_list);
4653 				return;
4654 			}
4655 			if (EOV & v->flags) {
4656 				ctl_error(CERR_UNKNOWNVAR);
4657 				free(wants);
4658 				free_varlist(cs.kv_list);
4659 				return;
4660 			}
4661 			wants[CC_MAXCODE + 1 + v->code] = TRUE;
4662 			gotvar = TRUE;
4663 		}
4664 	}
4665 
4666 	if (gotvar) {
4667 		for (i = 1; i <= CC_MAXCODE; i++)
4668 			if (wants[i])
4669 				ctl_putclock(i, &cs, TRUE);
4670 		if (kv != NULL)
4671 			for (i = 0; !(EOV & kv[i].flags); i++)
4672 				if (wants[i + CC_MAXCODE + 1])
4673 					ctl_putdata(kv[i].text,
4674 						    strlen(kv[i].text),
4675 						    FALSE);
4676 	} else {
4677 		for (cc = def_clock_var; *cc != 0; cc++)
4678 			ctl_putclock((int)*cc, &cs, FALSE);
4679 		for ( ; kv != NULL && !(EOV & kv->flags); kv++)
4680 			if (DEF & kv->flags)
4681 				ctl_putdata(kv->text, strlen(kv->text),
4682 					    FALSE);
4683 	}
4684 
4685 	free(wants);
4686 	free_varlist(cs.kv_list);
4687 
4688 	ctl_flushpkt(0);
4689 #endif
4690 }
4691 
4692 
4693 /*
4694  * write_clockstatus - we don't do this
4695  */
4696 /*ARGSUSED*/
4697 static void
4698 write_clockstatus(
4699 	struct recvbuf *rbufp,
4700 	int restrict_mask
4701 	)
4702 {
4703 	ctl_error(CERR_PERMISSION);
4704 }
4705 
4706 /*
4707  * Trap support from here on down. We send async trap messages when the
4708  * upper levels report trouble. Traps can by set either by control
4709  * messages or by configuration.
4710  */
4711 /*
4712  * set_trap - set a trap in response to a control message
4713  */
4714 static void
4715 set_trap(
4716 	struct recvbuf *rbufp,
4717 	int restrict_mask
4718 	)
4719 {
4720 	int traptype;
4721 
4722 	/*
4723 	 * See if this guy is allowed
4724 	 */
4725 	if (restrict_mask & RES_NOTRAP) {
4726 		ctl_error(CERR_PERMISSION);
4727 		return;
4728 	}
4729 
4730 	/*
4731 	 * Determine his allowed trap type.
4732 	 */
4733 	traptype = TRAP_TYPE_PRIO;
4734 	if (restrict_mask & RES_LPTRAP)
4735 		traptype = TRAP_TYPE_NONPRIO;
4736 
4737 	/*
4738 	 * Call ctlsettrap() to do the work.  Return
4739 	 * an error if it can't assign the trap.
4740 	 */
4741 	if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
4742 			(int)res_version))
4743 		ctl_error(CERR_NORESOURCE);
4744 	ctl_flushpkt(0);
4745 }
4746 
4747 
4748 /*
4749  * unset_trap - unset a trap in response to a control message
4750  */
4751 static void
4752 unset_trap(
4753 	struct recvbuf *rbufp,
4754 	int restrict_mask
4755 	)
4756 {
4757 	int traptype;
4758 
4759 	/*
4760 	 * We don't prevent anyone from removing his own trap unless the
4761 	 * trap is configured. Note we also must be aware of the
4762 	 * possibility that restriction flags were changed since this
4763 	 * guy last set his trap. Set the trap type based on this.
4764 	 */
4765 	traptype = TRAP_TYPE_PRIO;
4766 	if (restrict_mask & RES_LPTRAP)
4767 		traptype = TRAP_TYPE_NONPRIO;
4768 
4769 	/*
4770 	 * Call ctlclrtrap() to clear this out.
4771 	 */
4772 	if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
4773 		ctl_error(CERR_BADASSOC);
4774 	ctl_flushpkt(0);
4775 }
4776 
4777 
4778 /*
4779  * ctlsettrap - called to set a trap
4780  */
4781 int
4782 ctlsettrap(
4783 	sockaddr_u *raddr,
4784 	struct interface *linter,
4785 	int traptype,
4786 	int version
4787 	)
4788 {
4789 	size_t n;
4790 	struct ctl_trap *tp;
4791 	struct ctl_trap *tptouse;
4792 
4793 	/*
4794 	 * See if we can find this trap.  If so, we only need update
4795 	 * the flags and the time.
4796 	 */
4797 	if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
4798 		switch (traptype) {
4799 
4800 		case TRAP_TYPE_CONFIG:
4801 			tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
4802 			break;
4803 
4804 		case TRAP_TYPE_PRIO:
4805 			if (tp->tr_flags & TRAP_CONFIGURED)
4806 				return (1); /* don't change anything */
4807 			tp->tr_flags = TRAP_INUSE;
4808 			break;
4809 
4810 		case TRAP_TYPE_NONPRIO:
4811 			if (tp->tr_flags & TRAP_CONFIGURED)
4812 				return (1); /* don't change anything */
4813 			tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
4814 			break;
4815 		}
4816 		tp->tr_settime = current_time;
4817 		tp->tr_resets++;
4818 		return (1);
4819 	}
4820 
4821 	/*
4822 	 * First we heard of this guy.	Try to find a trap structure
4823 	 * for him to use, clearing out lesser priority guys if we
4824 	 * have to. Clear out anyone who's expired while we're at it.
4825 	 */
4826 	tptouse = NULL;
4827 	for (n = 0; n < COUNTOF(ctl_traps); n++) {
4828 		tp = &ctl_traps[n];
4829 		if ((TRAP_INUSE & tp->tr_flags) &&
4830 		    !(TRAP_CONFIGURED & tp->tr_flags) &&
4831 		    ((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
4832 			tp->tr_flags = 0;
4833 			num_ctl_traps--;
4834 		}
4835 		if (!(TRAP_INUSE & tp->tr_flags)) {
4836 			tptouse = tp;
4837 		} else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
4838 			switch (traptype) {
4839 
4840 			case TRAP_TYPE_CONFIG:
4841 				if (tptouse == NULL) {
4842 					tptouse = tp;
4843 					break;
4844 				}
4845 				if ((TRAP_NONPRIO & tptouse->tr_flags) &&
4846 				    !(TRAP_NONPRIO & tp->tr_flags))
4847 					break;
4848 
4849 				if (!(TRAP_NONPRIO & tptouse->tr_flags)
4850 				    && (TRAP_NONPRIO & tp->tr_flags)) {
4851 					tptouse = tp;
4852 					break;
4853 				}
4854 				if (tptouse->tr_origtime <
4855 				    tp->tr_origtime)
4856 					tptouse = tp;
4857 				break;
4858 
4859 			case TRAP_TYPE_PRIO:
4860 				if ( TRAP_NONPRIO & tp->tr_flags) {
4861 					if (tptouse == NULL ||
4862 					    ((TRAP_INUSE &
4863 					      tptouse->tr_flags) &&
4864 					     tptouse->tr_origtime <
4865 					     tp->tr_origtime))
4866 						tptouse = tp;
4867 				}
4868 				break;
4869 
4870 			case TRAP_TYPE_NONPRIO:
4871 				break;
4872 			}
4873 		}
4874 	}
4875 
4876 	/*
4877 	 * If we don't have room for him return an error.
4878 	 */
4879 	if (tptouse == NULL)
4880 		return (0);
4881 
4882 	/*
4883 	 * Set up this structure for him.
4884 	 */
4885 	tptouse->tr_settime = tptouse->tr_origtime = current_time;
4886 	tptouse->tr_count = tptouse->tr_resets = 0;
4887 	tptouse->tr_sequence = 1;
4888 	tptouse->tr_addr = *raddr;
4889 	tptouse->tr_localaddr = linter;
4890 	tptouse->tr_version = (u_char) version;
4891 	tptouse->tr_flags = TRAP_INUSE;
4892 	if (traptype == TRAP_TYPE_CONFIG)
4893 		tptouse->tr_flags |= TRAP_CONFIGURED;
4894 	else if (traptype == TRAP_TYPE_NONPRIO)
4895 		tptouse->tr_flags |= TRAP_NONPRIO;
4896 	num_ctl_traps++;
4897 	return (1);
4898 }
4899 
4900 
4901 /*
4902  * ctlclrtrap - called to clear a trap
4903  */
4904 int
4905 ctlclrtrap(
4906 	sockaddr_u *raddr,
4907 	struct interface *linter,
4908 	int traptype
4909 	)
4910 {
4911 	register struct ctl_trap *tp;
4912 
4913 	if ((tp = ctlfindtrap(raddr, linter)) == NULL)
4914 		return (0);
4915 
4916 	if (tp->tr_flags & TRAP_CONFIGURED
4917 	    && traptype != TRAP_TYPE_CONFIG)
4918 		return (0);
4919 
4920 	tp->tr_flags = 0;
4921 	num_ctl_traps--;
4922 	return (1);
4923 }
4924 
4925 
4926 /*
4927  * ctlfindtrap - find a trap given the remote and local addresses
4928  */
4929 static struct ctl_trap *
4930 ctlfindtrap(
4931 	sockaddr_u *raddr,
4932 	struct interface *linter
4933 	)
4934 {
4935 	size_t	n;
4936 
4937 	for (n = 0; n < COUNTOF(ctl_traps); n++)
4938 		if ((ctl_traps[n].tr_flags & TRAP_INUSE)
4939 		    && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
4940 		    && (linter == ctl_traps[n].tr_localaddr))
4941 			return &ctl_traps[n];
4942 
4943 	return NULL;
4944 }
4945 
4946 
4947 /*
4948  * report_event - report an event to the trappers
4949  */
4950 void
4951 report_event(
4952 	int	err,		/* error code */
4953 	struct peer *peer,	/* peer structure pointer */
4954 	const char *str		/* protostats string */
4955 	)
4956 {
4957 	char	statstr[NTP_MAXSTRLEN];
4958 	int	i;
4959 	size_t	len;
4960 
4961 	/*
4962 	 * Report the error to the protostats file, system log and
4963 	 * trappers.
4964 	 */
4965 	if (peer == NULL) {
4966 
4967 		/*
4968 		 * Discard a system report if the number of reports of
4969 		 * the same type exceeds the maximum.
4970 		 */
4971 		if (ctl_sys_last_event != (u_char)err)
4972 			ctl_sys_num_events= 0;
4973 		if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
4974 			return;
4975 
4976 		ctl_sys_last_event = (u_char)err;
4977 		ctl_sys_num_events++;
4978 		snprintf(statstr, sizeof(statstr),
4979 		    "0.0.0.0 %04x %02x %s",
4980 		    ctlsysstatus(), err, eventstr(err));
4981 		if (str != NULL) {
4982 			len = strlen(statstr);
4983 			snprintf(statstr + len, sizeof(statstr) - len,
4984 			    " %s", str);
4985 		}
4986 		NLOG(NLOG_SYSEVENT)
4987 			msyslog(LOG_INFO, "%s", statstr);
4988 	} else {
4989 
4990 		/*
4991 		 * Discard a peer report if the number of reports of
4992 		 * the same type exceeds the maximum for that peer.
4993 		 */
4994 		const char *	src;
4995 		u_char		errlast;
4996 
4997 		errlast = (u_char)err & ~PEER_EVENT;
4998 		if (peer->last_event == errlast)
4999 			peer->num_events = 0;
5000 		if (peer->num_events >= CTL_PEER_MAXEVENTS)
5001 			return;
5002 
5003 		peer->last_event = errlast;
5004 		peer->num_events++;
5005 		if (ISREFCLOCKADR(&peer->srcadr))
5006 			src = refnumtoa(&peer->srcadr);
5007 		else
5008 			src = stoa(&peer->srcadr);
5009 
5010 		snprintf(statstr, sizeof(statstr),
5011 		    "%s %04x %02x %s", src,
5012 		    ctlpeerstatus(peer), err, eventstr(err));
5013 		if (str != NULL) {
5014 			len = strlen(statstr);
5015 			snprintf(statstr + len, sizeof(statstr) - len,
5016 			    " %s", str);
5017 		}
5018 		NLOG(NLOG_PEEREVENT)
5019 			msyslog(LOG_INFO, "%s", statstr);
5020 	}
5021 	record_proto_stats(statstr);
5022 #if DEBUG
5023 	if (debug)
5024 		printf("event at %lu %s\n", current_time, statstr);
5025 #endif
5026 
5027 	/*
5028 	 * If no trappers, return.
5029 	 */
5030 	if (num_ctl_traps <= 0)
5031 		return;
5032 
5033 	/* [Bug 3119]
5034 	 * Peer Events should be associated with a peer -- hence the
5035 	 * name. But there are instances where this function is called
5036 	 * *without* a valid peer. This happens e.g. with an unsolicited
5037 	 * CryptoNAK, or when a leap second alarm is going off while
5038 	 * currently without a system peer.
5039 	 *
5040 	 * The most sensible approach to this seems to bail out here if
5041 	 * this happens. Avoiding to call this function would also
5042 	 * bypass the log reporting in the first part of this function,
5043 	 * and this is probably not the best of all options.
5044 	 *   -*-perlinger@ntp.org-*-
5045 	 */
5046 	if ((err & PEER_EVENT) && !peer)
5047 		return;
5048 
5049 	/*
5050 	 * Set up the outgoing packet variables
5051 	 */
5052 	res_opcode = CTL_OP_ASYNCMSG;
5053 	res_offset = 0;
5054 	res_async = TRUE;
5055 	res_authenticate = FALSE;
5056 	datapt = rpkt.u.data;
5057 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
5058 	if (!(err & PEER_EVENT)) {
5059 		rpkt.associd = 0;
5060 		rpkt.status = htons(ctlsysstatus());
5061 
5062 		/* Include the core system variables and the list. */
5063 		for (i = 1; i <= CS_VARLIST; i++)
5064 			ctl_putsys(i);
5065 	} else if (NULL != peer) { /* paranoia -- skip output */
5066 		rpkt.associd = htons(peer->associd);
5067 		rpkt.status = htons(ctlpeerstatus(peer));
5068 
5069 		/* Dump it all. Later, maybe less. */
5070 		for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
5071 			ctl_putpeer(i, peer);
5072 #	    ifdef REFCLOCK
5073 		/*
5074 		 * for clock exception events: add clock variables to
5075 		 * reflect info on exception
5076 		 */
5077 		if (err == PEVNT_CLOCK) {
5078 			struct refclockstat cs;
5079 			struct ctl_var *kv;
5080 
5081 			cs.kv_list = NULL;
5082 			refclock_control(&peer->srcadr, NULL, &cs);
5083 
5084 			ctl_puthex("refclockstatus",
5085 				   ctlclkstatus(&cs));
5086 
5087 			for (i = 1; i <= CC_MAXCODE; i++)
5088 				ctl_putclock(i, &cs, FALSE);
5089 			for (kv = cs.kv_list;
5090 			     kv != NULL && !(EOV & kv->flags);
5091 			     kv++)
5092 				if (DEF & kv->flags)
5093 					ctl_putdata(kv->text,
5094 						    strlen(kv->text),
5095 						    FALSE);
5096 			free_varlist(cs.kv_list);
5097 		}
5098 #	    endif /* REFCLOCK */
5099 	}
5100 
5101 	/*
5102 	 * We're done, return.
5103 	 */
5104 	ctl_flushpkt(0);
5105 }
5106 
5107 
5108 /*
5109  * mprintf_event - printf-style varargs variant of report_event()
5110  */
5111 int
5112 mprintf_event(
5113 	int		evcode,		/* event code */
5114 	struct peer *	p,		/* may be NULL */
5115 	const char *	fmt,		/* msnprintf format */
5116 	...
5117 	)
5118 {
5119 	va_list	ap;
5120 	int	rc;
5121 	char	msg[512];
5122 
5123 	va_start(ap, fmt);
5124 	rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
5125 	va_end(ap);
5126 	report_event(evcode, p, msg);
5127 
5128 	return rc;
5129 }
5130 
5131 
5132 /*
5133  * ctl_clr_stats - clear stat counters
5134  */
5135 void
5136 ctl_clr_stats(void)
5137 {
5138 	ctltimereset = current_time;
5139 	numctlreq = 0;
5140 	numctlbadpkts = 0;
5141 	numctlresponses = 0;
5142 	numctlfrags = 0;
5143 	numctlerrors = 0;
5144 	numctlfrags = 0;
5145 	numctltooshort = 0;
5146 	numctlinputresp = 0;
5147 	numctlinputfrag = 0;
5148 	numctlinputerr = 0;
5149 	numctlbadoffset = 0;
5150 	numctlbadversion = 0;
5151 	numctldatatooshort = 0;
5152 	numctlbadop = 0;
5153 	numasyncmsgs = 0;
5154 }
5155 
5156 static u_short
5157 count_var(
5158 	const struct ctl_var *k
5159 	)
5160 {
5161 	u_int c;
5162 
5163 	if (NULL == k)
5164 		return 0;
5165 
5166 	c = 0;
5167 	while (!(EOV & (k++)->flags))
5168 		c++;
5169 
5170 	ENSURE(c <= USHRT_MAX);
5171 	return (u_short)c;
5172 }
5173 
5174 
5175 char *
5176 add_var(
5177 	struct ctl_var **kv,
5178 	u_long size,
5179 	u_short def
5180 	)
5181 {
5182 	u_short		c;
5183 	struct ctl_var *k;
5184 	char *		buf;
5185 
5186 	c = count_var(*kv);
5187 	*kv  = erealloc(*kv, (c + 2) * sizeof(**kv));
5188 	k = *kv;
5189 	buf = emalloc(size);
5190 	k[c].code  = c;
5191 	k[c].text  = buf;
5192 	k[c].flags = def;
5193 	k[c + 1].code  = 0;
5194 	k[c + 1].text  = NULL;
5195 	k[c + 1].flags = EOV;
5196 
5197 	return buf;
5198 }
5199 
5200 
5201 void
5202 set_var(
5203 	struct ctl_var **kv,
5204 	const char *data,
5205 	u_long size,
5206 	u_short def
5207 	)
5208 {
5209 	struct ctl_var *k;
5210 	const char *s;
5211 	const char *t;
5212 	char *td;
5213 
5214 	if (NULL == data || !size)
5215 		return;
5216 
5217 	k = *kv;
5218 	if (k != NULL) {
5219 		while (!(EOV & k->flags)) {
5220 			if (NULL == k->text)	{
5221 				td = emalloc(size);
5222 				memcpy(td, data, size);
5223 				k->text = td;
5224 				k->flags = def;
5225 				return;
5226 			} else {
5227 				s = data;
5228 				t = k->text;
5229 				while (*t != '=' && *s == *t) {
5230 					s++;
5231 					t++;
5232 				}
5233 				if (*s == *t && ((*t == '=') || !*t)) {
5234 					td = erealloc((void *)(intptr_t)k->text, size);
5235 					memcpy(td, data, size);
5236 					k->text = td;
5237 					k->flags = def;
5238 					return;
5239 				}
5240 			}
5241 			k++;
5242 		}
5243 	}
5244 	td = add_var(kv, size, def);
5245 	memcpy(td, data, size);
5246 }
5247 
5248 
5249 void
5250 set_sys_var(
5251 	const char *data,
5252 	u_long size,
5253 	u_short def
5254 	)
5255 {
5256 	set_var(&ext_sys_var, data, size, def);
5257 }
5258 
5259 
5260 /*
5261  * get_ext_sys_var() retrieves the value of a user-defined variable or
5262  * NULL if the variable has not been setvar'd.
5263  */
5264 const char *
5265 get_ext_sys_var(const char *tag)
5266 {
5267 	struct ctl_var *	v;
5268 	size_t			c;
5269 	const char *		val;
5270 
5271 	val = NULL;
5272 	c = strlen(tag);
5273 	for (v = ext_sys_var; !(EOV & v->flags); v++) {
5274 		if (NULL != v->text && !memcmp(tag, v->text, c)) {
5275 			if ('=' == v->text[c]) {
5276 				val = v->text + c + 1;
5277 				break;
5278 			} else if ('\0' == v->text[c]) {
5279 				val = "";
5280 				break;
5281 			}
5282 		}
5283 	}
5284 
5285 	return val;
5286 }
5287 
5288 
5289 void
5290 free_varlist(
5291 	struct ctl_var *kv
5292 	)
5293 {
5294 	struct ctl_var *k;
5295 	if (kv) {
5296 		for (k = kv; !(k->flags & EOV); k++)
5297 			free((void *)(intptr_t)k->text);
5298 		free((void *)kv);
5299 	}
5300 }
5301