xref: /freebsd/contrib/ntp/ntpd/ntp_crypto.c (revision 780fb4a2)
1 /*
2  * ntp_crypto.c - NTP version 4 public key routines
3  */
4 #ifdef HAVE_CONFIG_H
5 #include <config.h>
6 #endif
7 
8 #ifdef AUTOKEY
9 #include <stdio.h>
10 #include <stdlib.h>	/* strtoul */
11 #include <sys/types.h>
12 #include <sys/param.h>
13 #include <unistd.h>
14 #include <fcntl.h>
15 
16 #include "ntpd.h"
17 #include "ntp_stdlib.h"
18 #include "ntp_unixtime.h"
19 #include "ntp_string.h"
20 #include "ntp_random.h"
21 #include "ntp_assert.h"
22 #include "ntp_calendar.h"
23 #include "ntp_leapsec.h"
24 
25 #include "openssl/asn1.h"
26 #include "openssl/bn.h"
27 #include "openssl/crypto.h"
28 #include "openssl/err.h"
29 #include "openssl/evp.h"
30 #include "openssl/opensslv.h"
31 #include "openssl/pem.h"
32 #include "openssl/rand.h"
33 #include "openssl/x509.h"
34 #include "openssl/x509v3.h"
35 #include "libssl_compat.h"
36 
37 #ifdef KERNEL_PLL
38 #include "ntp_syscall.h"
39 #endif /* KERNEL_PLL */
40 
41 /*
42  * calcomp - compare two calendar structures, ignoring yearday and weekday; like strcmp
43  * No, it's not a plotter.  If you don't understand that, you're too young.
44  */
45 static int calcomp(struct calendar *pjd1, struct calendar *pjd2)
46 {
47 	int32_t diff;	/* large enough to hold the signed difference between two uint16_t values */
48 
49 	diff = pjd1->year - pjd2->year;
50 	if (diff < 0) return -1; else if (diff > 0) return 1;
51 	/* same year; compare months */
52 	diff = pjd1->month - pjd2->month;
53 	if (diff < 0) return -1; else if (diff > 0) return 1;
54 	/* same year and month; compare monthday */
55 	diff = pjd1->monthday - pjd2->monthday;
56 	if (diff < 0) return -1; else if (diff > 0) return 1;
57 	/* same year and month and monthday; compare time */
58 	diff = pjd1->hour - pjd2->hour;
59 	if (diff < 0) return -1; else if (diff > 0) return 1;
60 	diff = pjd1->minute - pjd2->minute;
61 	if (diff < 0) return -1; else if (diff > 0) return 1;
62 	diff = pjd1->second - pjd2->second;
63 	if (diff < 0) return -1; else if (diff > 0) return 1;
64 	/* identical */
65 	return 0;
66 }
67 
68 /*
69  * Extension field message format
70  *
71  * These are always signed and saved before sending in network byte
72  * order. They must be converted to and from host byte order for
73  * processing.
74  *
75  * +-------+-------+
76  * |   op  |  len  | <- extension pointer
77  * +-------+-------+
78  * |    associd    |
79  * +---------------+
80  * |   timestamp   | <- value pointer
81  * +---------------+
82  * |   filestamp   |
83  * +---------------+
84  * |   value len   |
85  * +---------------+
86  * |               |
87  * =     value     =
88  * |               |
89  * +---------------+
90  * | signature len |
91  * +---------------+
92  * |               |
93  * =   signature   =
94  * |               |
95  * +---------------+
96  *
97  * The CRYPTO_RESP bit is set to 0 for requests, 1 for responses.
98  * Requests carry the association ID of the receiver; responses carry
99  * the association ID of the sender. Some messages include only the
100  * operation/length and association ID words and so have length 8
101  * octets. Ohers include the value structure and associated value and
102  * signature fields. These messages include the timestamp, filestamp,
103  * value and signature words and so have length at least 24 octets. The
104  * signature and/or value fields can be empty, in which case the
105  * respective length words are zero. An empty value with nonempty
106  * signature is syntactically valid, but semantically questionable.
107  *
108  * The filestamp represents the time when a cryptographic data file such
109  * as a public/private key pair is created. It follows every reference
110  * depending on that file and serves as a means to obsolete earlier data
111  * of the same type. The timestamp represents the time when the
112  * cryptographic data of the message were last signed. Creation of a
113  * cryptographic data file or signing a message can occur only when the
114  * creator or signor is synchronized to an authoritative source and
115  * proventicated to a trusted authority.
116  *
117  * Note there are several conditions required for server trust. First,
118  * the public key on the server certificate must be verified, which can
119  * involve a hike along the certificate trail to a trusted host. Next,
120  * the server trust must be confirmed by one of several identity
121  * schemes. Valid cryptographic values are signed with attached
122  * timestamp and filestamp. Individual packet trust is confirmed
123  * relative to these values by a message digest with keys generated by a
124  * reverse-order pseudorandom hash.
125  *
126  * State decomposition. These flags are lit in the order given. They are
127  * dim only when the association is demobilized.
128  *
129  * CRYPTO_FLAG_ENAB	Lit upon acceptance of a CRYPTO_ASSOC message
130  * CRYPTO_FLAG_CERT	Lit when a self-digned trusted certificate is
131  *			accepted.
132  * CRYPTO_FLAG_VRFY	Lit when identity is confirmed.
133  * CRYPTO_FLAG_PROV	Lit when the first signature is verified.
134  * CRYPTO_FLAG_COOK	Lit when a valid cookie is accepted.
135  * CRYPTO_FLAG_AUTO	Lit when valid autokey values are accepted.
136  * CRYPTO_FLAG_SIGN	Lit when the server signed certificate is
137  *			accepted.
138  * CRYPTO_FLAG_LEAP	Lit when the leapsecond values are accepted.
139  */
140 /*
141  * Cryptodefines
142  */
143 #define TAI_1972	10	/* initial TAI offset (s) */
144 #define MAX_LEAP	100	/* max UTC leapseconds (s) */
145 #define VALUE_LEN	(6 * 4) /* min response field length */
146 #define MAX_VALLEN	(65535 - VALUE_LEN)
147 #define YEAR		(60 * 60 * 24 * 365) /* seconds in year */
148 
149 /*
150  * Global cryptodata in host byte order
151  */
152 u_int32	crypto_flags = 0x0;	/* status word */
153 int	crypto_nid = KEY_TYPE_MD5; /* digest nid */
154 char	*sys_hostname = NULL;
155 char	*sys_groupname = NULL;
156 static char *host_filename = NULL;	/* host file name */
157 static char *ident_filename = NULL;	/* group file name */
158 
159 /*
160  * Global cryptodata in network byte order
161  */
162 struct cert_info *cinfo = NULL;	/* certificate info/value cache */
163 struct cert_info *cert_host = NULL; /* host certificate */
164 struct pkey_info *pkinfo = NULL; /* key info/value cache */
165 struct value hostval;		/* host value */
166 struct value pubkey;		/* public key */
167 struct value tai_leap;		/* leapseconds values */
168 struct pkey_info *iffkey_info = NULL; /* IFF keys */
169 struct pkey_info *gqkey_info = NULL; /* GQ keys */
170 struct pkey_info *mvkey_info = NULL; /* MV keys */
171 
172 /*
173  * Private cryptodata in host byte order
174  */
175 static char *passwd = NULL;	/* private key password */
176 static EVP_PKEY *host_pkey = NULL; /* host key */
177 static EVP_PKEY *sign_pkey = NULL; /* sign key */
178 static const EVP_MD *sign_digest = NULL; /* sign digest */
179 static u_int sign_siglen;	/* sign key length */
180 static char *rand_file = NULL;	/* random seed file */
181 
182 /*
183  * Cryptotypes
184  */
185 static	int	crypto_verify	(struct exten *, struct value *,
186 				    struct peer *);
187 static	int	crypto_encrypt	(const u_char *, u_int, keyid_t *,
188 				    struct value *);
189 static	int	crypto_alice	(struct peer *, struct value *);
190 static	int	crypto_alice2	(struct peer *, struct value *);
191 static	int	crypto_alice3	(struct peer *, struct value *);
192 static	int	crypto_bob	(struct exten *, struct value *);
193 static	int	crypto_bob2	(struct exten *, struct value *);
194 static	int	crypto_bob3	(struct exten *, struct value *);
195 static	int	crypto_iff	(struct exten *, struct peer *);
196 static	int	crypto_gq	(struct exten *, struct peer *);
197 static	int	crypto_mv	(struct exten *, struct peer *);
198 static	int	crypto_send	(struct exten *, struct value *, int);
199 static	tstamp_t crypto_time	(void);
200 static	void	asn_to_calendar		(const ASN1_TIME *, struct calendar*);
201 static	struct cert_info *cert_parse (const u_char *, long, tstamp_t);
202 static	int	cert_sign	(struct exten *, struct value *);
203 static	struct cert_info *cert_install (struct exten *, struct peer *);
204 static	int	cert_hike	(struct peer *, struct cert_info *);
205 static	void	cert_free	(struct cert_info *);
206 static	struct pkey_info *crypto_key (char *, char *, sockaddr_u *);
207 static	void	bighash		(BIGNUM *, BIGNUM *);
208 static	struct cert_info *crypto_cert (char *);
209 static	u_int	exten_payload_size(const struct exten *);
210 
211 #ifdef SYS_WINNT
212 int
213 readlink(char * link, char * file, int len) {
214 	return (-1);
215 }
216 #endif
217 
218 /*
219  * session_key - generate session key
220  *
221  * This routine generates a session key from the source address,
222  * destination address, key ID and private value. The value of the
223  * session key is the MD5 hash of these values, while the next key ID is
224  * the first four octets of the hash.
225  *
226  * Returns the next key ID or 0 if there is no destination address.
227  */
228 keyid_t
229 session_key(
230 	sockaddr_u *srcadr, 	/* source address */
231 	sockaddr_u *dstadr, 	/* destination address */
232 	keyid_t	keyno,		/* key ID */
233 	keyid_t	private,	/* private value */
234 	u_long	lifetime 	/* key lifetime */
235 	)
236 {
237 	EVP_MD_CTX *ctx;	/* message digest context */
238 	u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */
239 	keyid_t	keyid;		/* key identifer */
240 	u_int32	header[10];	/* data in network byte order */
241 	u_int	hdlen, len;
242 
243 	if (!dstadr)
244 		return 0;
245 
246 	/*
247 	 * Generate the session key and key ID. If the lifetime is
248 	 * greater than zero, install the key and call it trusted.
249 	 */
250 	hdlen = 0;
251 	switch(AF(srcadr)) {
252 	case AF_INET:
253 		header[0] = NSRCADR(srcadr);
254 		header[1] = NSRCADR(dstadr);
255 		header[2] = htonl(keyno);
256 		header[3] = htonl(private);
257 		hdlen = 4 * sizeof(u_int32);
258 		break;
259 
260 	case AF_INET6:
261 		memcpy(&header[0], PSOCK_ADDR6(srcadr),
262 		    sizeof(struct in6_addr));
263 		memcpy(&header[4], PSOCK_ADDR6(dstadr),
264 		    sizeof(struct in6_addr));
265 		header[8] = htonl(keyno);
266 		header[9] = htonl(private);
267 		hdlen = 10 * sizeof(u_int32);
268 		break;
269 	}
270 	ctx = EVP_MD_CTX_new();
271 #   if defined(OPENSSL) && defined(EVP_MD_CTX_FLAG_NON_FIPS_ALLOW)
272 	/* [Bug 3457] set flags and don't kill them again */
273 	EVP_MD_CTX_set_flags(ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
274 	EVP_DigestInit_ex(ctx, EVP_get_digestbynid(crypto_nid), NULL);
275 #   else
276 	EVP_DigestInit(ctx, EVP_get_digestbynid(crypto_nid));
277 #   endif
278 	EVP_DigestUpdate(ctx, (u_char *)header, hdlen);
279 	EVP_DigestFinal(ctx, dgst, &len);
280 	EVP_MD_CTX_free(ctx);
281 	memcpy(&keyid, dgst, 4);
282 	keyid = ntohl(keyid);
283 	if (lifetime != 0) {
284 		MD5auth_setkey(keyno, crypto_nid, dgst, len, NULL);
285 		authtrust(keyno, lifetime);
286 	}
287 	DPRINTF(2, ("session_key: %s > %s %08x %08x hash %08x life %lu\n",
288 		    stoa(srcadr), stoa(dstadr), keyno,
289 		    private, keyid, lifetime));
290 
291 	return (keyid);
292 }
293 
294 
295 /*
296  * make_keylist - generate key list
297  *
298  * Returns
299  * XEVNT_OK	success
300  * XEVNT_ERR	protocol error
301  *
302  * This routine constructs a pseudo-random sequence by repeatedly
303  * hashing the session key starting from a given source address,
304  * destination address, private value and the next key ID of the
305  * preceeding session key. The last entry on the list is saved along
306  * with its sequence number and public signature.
307  */
308 int
309 make_keylist(
310 	struct peer *peer,	/* peer structure pointer */
311 	struct interface *dstadr /* interface */
312 	)
313 {
314 	EVP_MD_CTX *ctx;	/* signature context */
315 	tstamp_t tstamp;	/* NTP timestamp */
316 	struct autokey *ap;	/* autokey pointer */
317 	struct value *vp;	/* value pointer */
318 	keyid_t	keyid = 0;	/* next key ID */
319 	keyid_t	cookie;		/* private value */
320 	long	lifetime;
321 	u_int	len, mpoll;
322 	int	i;
323 
324 	if (!dstadr)
325 		return XEVNT_ERR;
326 
327 	/*
328 	 * Allocate the key list if necessary.
329 	 */
330 	tstamp = crypto_time();
331 	if (peer->keylist == NULL)
332 		peer->keylist = eallocarray(NTP_MAXSESSION,
333 					    sizeof(keyid_t));
334 
335 	/*
336 	 * Generate an initial key ID which is unique and greater than
337 	 * NTP_MAXKEY.
338 	 */
339 	while (1) {
340 		keyid = ntp_random() & 0xffffffff;
341 		if (keyid <= NTP_MAXKEY)
342 			continue;
343 
344 		if (authhavekey(keyid))
345 			continue;
346 		break;
347 	}
348 
349 	/*
350 	 * Generate up to NTP_MAXSESSION session keys. Stop if the
351 	 * next one would not be unique or not a session key ID or if
352 	 * it would expire before the next poll. The private value
353 	 * included in the hash is zero if broadcast mode, the peer
354 	 * cookie if client mode or the host cookie if symmetric modes.
355 	 */
356 	mpoll = 1 << min(peer->ppoll, peer->hpoll);
357 	lifetime = min(1U << sys_automax, NTP_MAXSESSION * mpoll);
358 	if (peer->hmode == MODE_BROADCAST)
359 		cookie = 0;
360 	else
361 		cookie = peer->pcookie;
362 	for (i = 0; i < NTP_MAXSESSION; i++) {
363 		peer->keylist[i] = keyid;
364 		peer->keynumber = i;
365 		keyid = session_key(&dstadr->sin, &peer->srcadr, keyid,
366 		    cookie, lifetime + mpoll);
367 		lifetime -= mpoll;
368 		if (auth_havekey(keyid) || keyid <= NTP_MAXKEY ||
369 		    lifetime < 0 || tstamp == 0)
370 			break;
371 	}
372 
373 	/*
374 	 * Save the last session key ID, sequence number and timestamp,
375 	 * then sign these values for later retrieval by the clients. Be
376 	 * careful not to use invalid key media. Use the public values
377 	 * timestamp as filestamp.
378 	 */
379 	vp = &peer->sndval;
380 	if (vp->ptr == NULL)
381 		vp->ptr = emalloc(sizeof(struct autokey));
382 	ap = (struct autokey *)vp->ptr;
383 	ap->seq = htonl(peer->keynumber);
384 	ap->key = htonl(keyid);
385 	vp->tstamp = htonl(tstamp);
386 	vp->fstamp = hostval.tstamp;
387 	vp->vallen = htonl(sizeof(struct autokey));
388 	vp->siglen = 0;
389 	if (tstamp != 0) {
390 		if (vp->sig == NULL)
391 			vp->sig = emalloc(sign_siglen);
392 		ctx = EVP_MD_CTX_new();
393 		EVP_SignInit(ctx, sign_digest);
394 		EVP_SignUpdate(ctx, (u_char *)vp, 12);
395 		EVP_SignUpdate(ctx, vp->ptr, sizeof(struct autokey));
396 		if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
397 			INSIST(len <= sign_siglen);
398 			vp->siglen = htonl(len);
399 			peer->flags |= FLAG_ASSOC;
400 		}
401 		EVP_MD_CTX_free(ctx);
402 	}
403 	DPRINTF(1, ("make_keys: %d %08x %08x ts %u fs %u poll %d\n",
404 		    peer->keynumber, keyid, cookie, ntohl(vp->tstamp),
405 		    ntohl(vp->fstamp), peer->hpoll));
406 	return (XEVNT_OK);
407 }
408 
409 
410 /*
411  * crypto_recv - parse extension fields
412  *
413  * This routine is called when the packet has been matched to an
414  * association and passed sanity, format and MAC checks. We believe the
415  * extension field values only if the field has proper format and
416  * length, the timestamp and filestamp are valid and the signature has
417  * valid length and is verified. There are a few cases where some values
418  * are believed even if the signature fails, but only if the proventic
419  * bit is not set.
420  *
421  * Returns
422  * XEVNT_OK	success
423  * XEVNT_ERR	protocol error
424  * XEVNT_LEN	bad field format or length
425  */
426 int
427 crypto_recv(
428 	struct peer *peer,	/* peer structure pointer */
429 	struct recvbuf *rbufp	/* packet buffer pointer */
430 	)
431 {
432 	const EVP_MD *dp;	/* message digest algorithm */
433 	u_int32	*pkt;		/* receive packet pointer */
434 	struct autokey *ap, *bp; /* autokey pointer */
435 	struct exten *ep, *fp;	/* extension pointers */
436 	struct cert_info *xinfo; /* certificate info pointer */
437 	int	macbytes;	/* length of MAC field, signed by intention */
438 	int	authlen;	/* offset of MAC field */
439 	associd_t associd;	/* association ID */
440 	tstamp_t fstamp = 0;	/* filestamp */
441 	u_int	len;		/* extension field length */
442 	u_int	code;		/* extension field opcode */
443 	u_int	vallen = 0;	/* value length */
444 	X509	*cert;		/* X509 certificate */
445 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
446 	keyid_t	cookie;		/* crumbles */
447 	int	hismode;	/* packet mode */
448 	int	rval = XEVNT_OK;
449 	const u_char *puch;
450 	u_int32 temp32;
451 
452 	/*
453 	 * Initialize. Note that the packet has already been checked for
454 	 * valid format and extension field lengths. First extract the
455 	 * field length, command code and association ID in host byte
456 	 * order. These are used with all commands and modes. Then check
457 	 * the version number, which must be 2, and length, which must
458 	 * be at least 8 for requests and VALUE_LEN (24) for responses.
459 	 * Packets that fail either test sink without a trace. The
460 	 * association ID is saved only if nonzero.
461 	 */
462 	authlen = LEN_PKT_NOMAC;
463 	hismode = (int)PKT_MODE((&rbufp->recv_pkt)->li_vn_mode);
464 	while ((macbytes = rbufp->recv_length - authlen) > (int)MAX_MAC_LEN) {
465 		/* We can be reasonably sure that we can read at least
466 		 * the opcode and the size field here. More stringent
467 		 * checks follow up shortly.
468 		 */
469 		pkt = (u_int32 *)&rbufp->recv_pkt + authlen / 4;
470 		ep = (struct exten *)pkt;
471 		code = ntohl(ep->opcode) & 0xffff0000;
472 		len = ntohl(ep->opcode) & 0x0000ffff;
473 		// HMS: Why pkt[1] instead of ep->associd ?
474 		associd = (associd_t)ntohl(pkt[1]);
475 		rval = XEVNT_OK;
476 		DPRINTF(1, ("crypto_recv: flags 0x%x ext offset %d len %u code 0x%x associd %d\n",
477 			    peer->crypto, authlen, len, code >> 16,
478 			    associd));
479 
480 		/*
481 		 * Check version number and field length. If bad,
482 		 * quietly ignore the packet.
483 		 */
484 		if (((code >> 24) & 0x3f) != CRYPTO_VN || len < 8) {
485 			sys_badlength++;
486 			code |= CRYPTO_ERROR;
487 		}
488 
489 		/* Check if the declared size fits into the remaining
490 		 * buffer. We *know* 'macbytes' > 0 here!
491 		 */
492 		if (len > (u_int)macbytes) {
493 			DPRINTF(1, ("crypto_recv: possible attack detected, associd %d\n",
494 				    associd));
495 			return XEVNT_LEN;
496 		}
497 
498 		/* Check if the paylod of the extension fits into the
499 		 * declared frame.
500 		 */
501 		if (len >= VALUE_LEN) {
502 			fstamp = ntohl(ep->fstamp);
503 			vallen = ntohl(ep->vallen);
504 			/*
505 			 * Bug 2761: I hope this isn't too early...
506 			 */
507 			if (   vallen == 0
508 			    || len - VALUE_LEN < vallen)
509 				return XEVNT_LEN;
510 		}
511 		switch (code) {
512 
513 		/*
514 		 * Install status word, host name, signature scheme and
515 		 * association ID. In OpenSSL the signature algorithm is
516 		 * bound to the digest algorithm, so the NID completely
517 		 * defines the signature scheme. Note the request and
518 		 * response are identical, but neither is validated by
519 		 * signature. The request is processed here only in
520 		 * symmetric modes. The server name field might be
521 		 * useful to implement access controls in future.
522 		 */
523 		case CRYPTO_ASSOC:
524 
525 			/*
526 			 * If our state machine is running when this
527 			 * message arrives, the other fellow might have
528 			 * restarted. However, this could be an
529 			 * intruder, so just clamp the poll interval and
530 			 * find out for ourselves. Otherwise, pass the
531 			 * extension field to the transmit side.
532 			 */
533 			if (peer->crypto & CRYPTO_FLAG_CERT) {
534 				rval = XEVNT_ERR;
535 				break;
536 			}
537 			if (peer->cmmd) {
538 				if (peer->assoc != associd) {
539 					rval = XEVNT_ERR;
540 					break;
541 				}
542 				free(peer->cmmd); /* will be set again! */
543 			}
544 			fp = emalloc(len);
545 			memcpy(fp, ep, len);
546 			fp->associd = htonl(peer->associd);
547 			peer->cmmd = fp;
548 			/* fall through */
549 
550 		case CRYPTO_ASSOC | CRYPTO_RESP:
551 
552 			/*
553 			 * Discard the message if it has already been
554 			 * stored or the message has been amputated.
555 			 */
556 			if (peer->crypto) {
557 				if (peer->assoc != associd)
558 					rval = XEVNT_ERR;
559 				break;
560 			}
561 			INSIST(len >= VALUE_LEN);
562 			if (vallen == 0 || vallen > MAXHOSTNAME ||
563 			    len - VALUE_LEN < vallen) {
564 				rval = XEVNT_LEN;
565 				break;
566 			}
567 			DPRINTF(1, ("crypto_recv: ident host 0x%x %d server 0x%x %d\n",
568 				    crypto_flags, peer->associd, fstamp,
569 				    peer->assoc));
570 			temp32 = crypto_flags & CRYPTO_FLAG_MASK;
571 
572 			/*
573 			 * If the client scheme is PC, the server scheme
574 			 * must be PC. The public key and identity are
575 			 * presumed valid, so we skip the certificate
576 			 * and identity exchanges and move immediately
577 			 * to the cookie exchange which confirms the
578 			 * server signature.
579 			 */
580 			if (crypto_flags & CRYPTO_FLAG_PRIV) {
581 				if (!(fstamp & CRYPTO_FLAG_PRIV)) {
582 					rval = XEVNT_KEY;
583 					break;
584 				}
585 				fstamp |= CRYPTO_FLAG_CERT |
586 				    CRYPTO_FLAG_VRFY | CRYPTO_FLAG_SIGN;
587 
588 			/*
589 			 * It is an error if either peer supports
590 			 * identity, but the other does not.
591 			 */
592 			} else if (hismode == MODE_ACTIVE || hismode ==
593 			    MODE_PASSIVE) {
594 				if ((temp32 && !(fstamp &
595 				    CRYPTO_FLAG_MASK)) ||
596 				    (!temp32 && (fstamp &
597 				    CRYPTO_FLAG_MASK))) {
598 					rval = XEVNT_KEY;
599 					break;
600 				}
601 			}
602 
603 			/*
604 			 * Discard the message if the signature digest
605 			 * NID is not supported.
606 			 */
607 			temp32 = (fstamp >> 16) & 0xffff;
608 			dp =
609 			    (const EVP_MD *)EVP_get_digestbynid(temp32);
610 			if (dp == NULL) {
611 				rval = XEVNT_MD;
612 				break;
613 			}
614 
615 			/*
616 			 * Save status word, host name and message
617 			 * digest/signature type. If this is from a
618 			 * broadcast and the association ID has changed,
619 			 * request the autokey values.
620 			 */
621 			peer->assoc = associd;
622 			if (hismode == MODE_SERVER)
623 				fstamp |= CRYPTO_FLAG_AUTO;
624 			if (!(fstamp & CRYPTO_FLAG_TAI))
625 				fstamp |= CRYPTO_FLAG_LEAP;
626 			RAND_bytes((u_char *)&peer->hcookie, 4);
627 			peer->crypto = fstamp;
628 			peer->digest = dp;
629 			if (peer->subject != NULL)
630 				free(peer->subject);
631 			peer->subject = emalloc(vallen + 1);
632 			memcpy(peer->subject, ep->pkt, vallen);
633 			peer->subject[vallen] = '\0';
634 			if (peer->issuer != NULL)
635 				free(peer->issuer);
636 			peer->issuer = estrdup(peer->subject);
637 			snprintf(statstr, sizeof(statstr),
638 			    "assoc %d %d host %s %s", peer->associd,
639 			    peer->assoc, peer->subject,
640 			    OBJ_nid2ln(temp32));
641 			record_crypto_stats(&peer->srcadr, statstr);
642 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
643 			break;
644 
645 		/*
646 		 * Decode X509 certificate in ASN.1 format and extract
647 		 * the data containing, among other things, subject
648 		 * name and public key. In the default identification
649 		 * scheme, the certificate trail is followed to a self
650 		 * signed trusted certificate.
651 		 */
652 		case CRYPTO_CERT | CRYPTO_RESP:
653 
654 			/*
655 			 * Discard the message if empty or invalid.
656 			 */
657 			if (len < VALUE_LEN)
658 				break;
659 
660 			if ((rval = crypto_verify(ep, NULL, peer)) !=
661 			    XEVNT_OK)
662 				break;
663 
664 			/*
665 			 * Scan the certificate list to delete old
666 			 * versions and link the newest version first on
667 			 * the list. Then, verify the signature. If the
668 			 * certificate is bad or missing, just ignore
669 			 * it.
670 			 */
671 			if ((xinfo = cert_install(ep, peer)) == NULL) {
672 				rval = XEVNT_CRT;
673 				break;
674 			}
675 			if ((rval = cert_hike(peer, xinfo)) != XEVNT_OK)
676 				break;
677 
678 			/*
679 			 * We plug in the public key and lifetime from
680 			 * the first certificate received. However, note
681 			 * that this certificate might not be signed by
682 			 * the server, so we can't check the
683 			 * signature/digest NID.
684 			 */
685 			if (peer->pkey == NULL) {
686 				puch = xinfo->cert.ptr;
687 				cert = d2i_X509(NULL, &puch,
688 				    ntohl(xinfo->cert.vallen));
689 				peer->pkey = X509_get_pubkey(cert);
690 				X509_free(cert);
691 			}
692 			peer->flash &= ~TEST8;
693 			temp32 = xinfo->nid;
694 			snprintf(statstr, sizeof(statstr),
695 			    "cert %s %s 0x%x %s (%u) fs %u",
696 			    xinfo->subject, xinfo->issuer, xinfo->flags,
697 			    OBJ_nid2ln(temp32), temp32,
698 			    ntohl(ep->fstamp));
699 			record_crypto_stats(&peer->srcadr, statstr);
700 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
701 			break;
702 
703 		/*
704 		 * Schnorr (IFF) identity scheme. This scheme is
705 		 * designed for use with shared secret server group keys
706 		 * and where the certificate may be generated by a third
707 		 * party. The client sends a challenge to the server,
708 		 * which performs a calculation and returns the result.
709 		 * A positive result is possible only if both client and
710 		 * server contain the same secret group key.
711 		 */
712 		case CRYPTO_IFF | CRYPTO_RESP:
713 
714 			/*
715 			 * Discard the message if invalid.
716 			 */
717 			if ((rval = crypto_verify(ep, NULL, peer)) !=
718 			    XEVNT_OK)
719 				break;
720 
721 			/*
722 			 * If the challenge matches the response, the
723 			 * server public key, signature and identity are
724 			 * all verified at the same time. The server is
725 			 * declared trusted, so we skip further
726 			 * certificate exchanges and move immediately to
727 			 * the cookie exchange.
728 			 */
729 			if ((rval = crypto_iff(ep, peer)) != XEVNT_OK)
730 				break;
731 
732 			peer->crypto |= CRYPTO_FLAG_VRFY;
733 			peer->flash &= ~TEST8;
734 			snprintf(statstr, sizeof(statstr), "iff %s fs %u",
735 			    peer->issuer, ntohl(ep->fstamp));
736 			record_crypto_stats(&peer->srcadr, statstr);
737 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
738 			break;
739 
740 		/*
741 		 * Guillou-Quisquater (GQ) identity scheme. This scheme
742 		 * is designed for use with public certificates carrying
743 		 * the GQ public key in an extension field. The client
744 		 * sends a challenge to the server, which performs a
745 		 * calculation and returns the result. A positive result
746 		 * is possible only if both client and server contain
747 		 * the same group key and the server has the matching GQ
748 		 * private key.
749 		 */
750 		case CRYPTO_GQ | CRYPTO_RESP:
751 
752 			/*
753 			 * Discard the message if invalid
754 			 */
755 			if ((rval = crypto_verify(ep, NULL, peer)) !=
756 			    XEVNT_OK)
757 				break;
758 
759 			/*
760 			 * If the challenge matches the response, the
761 			 * server public key, signature and identity are
762 			 * all verified at the same time. The server is
763 			 * declared trusted, so we skip further
764 			 * certificate exchanges and move immediately to
765 			 * the cookie exchange.
766 			 */
767 			if ((rval = crypto_gq(ep, peer)) != XEVNT_OK)
768 				break;
769 
770 			peer->crypto |= CRYPTO_FLAG_VRFY;
771 			peer->flash &= ~TEST8;
772 			snprintf(statstr, sizeof(statstr), "gq %s fs %u",
773 			    peer->issuer, ntohl(ep->fstamp));
774 			record_crypto_stats(&peer->srcadr, statstr);
775 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
776 			break;
777 
778 		/*
779 		 * Mu-Varadharajan (MV) identity scheme. This scheme is
780 		 * designed for use with three levels of trust, trusted
781 		 * host, server and client. The trusted host key is
782 		 * opaque to servers and clients; the server keys are
783 		 * opaque to clients and each client key is different.
784 		 * Client keys can be revoked without requiring new key
785 		 * generations.
786 		 */
787 		case CRYPTO_MV | CRYPTO_RESP:
788 
789 			/*
790 			 * Discard the message if invalid.
791 			 */
792 			if ((rval = crypto_verify(ep, NULL, peer)) !=
793 			    XEVNT_OK)
794 				break;
795 
796 			/*
797 			 * If the challenge matches the response, the
798 			 * server public key, signature and identity are
799 			 * all verified at the same time. The server is
800 			 * declared trusted, so we skip further
801 			 * certificate exchanges and move immediately to
802 			 * the cookie exchange.
803 			 */
804 			if ((rval = crypto_mv(ep, peer)) != XEVNT_OK)
805 				break;
806 
807 			peer->crypto |= CRYPTO_FLAG_VRFY;
808 			peer->flash &= ~TEST8;
809 			snprintf(statstr, sizeof(statstr), "mv %s fs %u",
810 			    peer->issuer, ntohl(ep->fstamp));
811 			record_crypto_stats(&peer->srcadr, statstr);
812 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
813 			break;
814 
815 
816 		/*
817 		 * Cookie response in client and symmetric modes. If the
818 		 * cookie bit is set, the working cookie is the EXOR of
819 		 * the current and new values.
820 		 */
821 		case CRYPTO_COOK | CRYPTO_RESP:
822 
823 			/*
824 			 * Discard the message if invalid or signature
825 			 * not verified with respect to the cookie
826 			 * values.
827 			 */
828 			if ((rval = crypto_verify(ep, &peer->cookval,
829 			    peer)) != XEVNT_OK)
830 				break;
831 
832 			/*
833 			 * Decrypt the cookie, hunting all the time for
834 			 * errors.
835 			 */
836 			if (vallen == (u_int)EVP_PKEY_size(host_pkey)) {
837 				RSA *rsa = EVP_PKEY_get0_RSA(host_pkey);
838 				u_int32 *cookiebuf = malloc(RSA_size(rsa));
839 				if (!cookiebuf) {
840 					rval = XEVNT_CKY;
841 					break;
842 				}
843 
844 				if (RSA_private_decrypt(vallen,
845 				    (u_char *)ep->pkt,
846 				    (u_char *)cookiebuf,
847 				    rsa,
848 				    RSA_PKCS1_OAEP_PADDING) != 4) {
849 					rval = XEVNT_CKY;
850 					free(cookiebuf);
851 					break;
852 				} else {
853 					cookie = ntohl(*cookiebuf);
854 					free(cookiebuf);
855 				}
856 			} else {
857 				rval = XEVNT_CKY;
858 				break;
859 			}
860 
861 			/*
862 			 * Install cookie values and light the cookie
863 			 * bit. If this is not broadcast client mode, we
864 			 * are done here.
865 			 */
866 			key_expire(peer);
867 			if (hismode == MODE_ACTIVE || hismode ==
868 			    MODE_PASSIVE)
869 				peer->pcookie = peer->hcookie ^ cookie;
870 			else
871 				peer->pcookie = cookie;
872 			peer->crypto |= CRYPTO_FLAG_COOK;
873 			peer->flash &= ~TEST8;
874 			snprintf(statstr, sizeof(statstr),
875 			    "cook %x ts %u fs %u", peer->pcookie,
876 			    ntohl(ep->tstamp), ntohl(ep->fstamp));
877 			record_crypto_stats(&peer->srcadr, statstr);
878 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
879 			break;
880 
881 		/*
882 		 * Install autokey values in broadcast client and
883 		 * symmetric modes. We have to do this every time the
884 		 * sever/peer cookie changes or a new keylist is
885 		 * rolled. Ordinarily, this is automatic as this message
886 		 * is piggybacked on the first NTP packet sent upon
887 		 * either of these events. Note that a broadcast client
888 		 * or symmetric peer can receive this response without a
889 		 * matching request.
890 		 */
891 		case CRYPTO_AUTO | CRYPTO_RESP:
892 
893 			/*
894 			 * Discard the message if invalid or signature
895 			 * not verified with respect to the receive
896 			 * autokey values.
897 			 */
898 			if ((rval = crypto_verify(ep, &peer->recval,
899 			    peer)) != XEVNT_OK)
900 				break;
901 
902 			/*
903 			 * Discard the message if a broadcast client and
904 			 * the association ID does not match. This might
905 			 * happen if a broacast server restarts the
906 			 * protocol. A protocol restart will occur at
907 			 * the next ASSOC message.
908 			 */
909 			if ((peer->cast_flags & MDF_BCLNT) &&
910 			    peer->assoc != associd)
911 				break;
912 
913 			/*
914 			 * Install autokey values and light the
915 			 * autokey bit. This is not hard.
916 			 */
917 			if (ep->tstamp == 0)
918 				break;
919 
920 			if (peer->recval.ptr == NULL)
921 				peer->recval.ptr =
922 				    emalloc(sizeof(struct autokey));
923 			bp = (struct autokey *)peer->recval.ptr;
924 			peer->recval.tstamp = ep->tstamp;
925 			peer->recval.fstamp = ep->fstamp;
926 			ap = (struct autokey *)ep->pkt;
927 			bp->seq = ntohl(ap->seq);
928 			bp->key = ntohl(ap->key);
929 			peer->pkeyid = bp->key;
930 			peer->crypto |= CRYPTO_FLAG_AUTO;
931 			peer->flash &= ~TEST8;
932 			snprintf(statstr, sizeof(statstr),
933 			    "auto seq %d key %x ts %u fs %u", bp->seq,
934 			    bp->key, ntohl(ep->tstamp),
935 			    ntohl(ep->fstamp));
936 			record_crypto_stats(&peer->srcadr, statstr);
937 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
938 			break;
939 
940 		/*
941 		 * X509 certificate sign response. Validate the
942 		 * certificate signed by the server and install. Later
943 		 * this can be provided to clients of this server in
944 		 * lieu of the self signed certificate in order to
945 		 * validate the public key.
946 		 */
947 		case CRYPTO_SIGN | CRYPTO_RESP:
948 
949 			/*
950 			 * Discard the message if invalid.
951 			 */
952 			if ((rval = crypto_verify(ep, NULL, peer)) !=
953 			    XEVNT_OK)
954 				break;
955 
956 			/*
957 			 * Scan the certificate list to delete old
958 			 * versions and link the newest version first on
959 			 * the list.
960 			 */
961 			if ((xinfo = cert_install(ep, peer)) == NULL) {
962 				rval = XEVNT_CRT;
963 				break;
964 			}
965 			peer->crypto |= CRYPTO_FLAG_SIGN;
966 			peer->flash &= ~TEST8;
967 			temp32 = xinfo->nid;
968 			snprintf(statstr, sizeof(statstr),
969 			    "sign %s %s 0x%x %s (%u) fs %u",
970 			    xinfo->subject, xinfo->issuer, xinfo->flags,
971 			    OBJ_nid2ln(temp32), temp32,
972 			    ntohl(ep->fstamp));
973 			record_crypto_stats(&peer->srcadr, statstr);
974 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
975 			break;
976 
977 		/*
978 		 * Install leapseconds values. While the leapsecond
979 		 * values epoch, TAI offset and values expiration epoch
980 		 * are retained, only the current TAI offset is provided
981 		 * via the kernel to other applications.
982 		 */
983 		case CRYPTO_LEAP | CRYPTO_RESP:
984 			/*
985 			 * Discard the message if invalid. We can't
986 			 * compare the value timestamps here, as they
987 			 * can be updated by different servers.
988 			 */
989 			rval = crypto_verify(ep, NULL, peer);
990 			if ((rval   != XEVNT_OK          ) ||
991 			    (vallen != 3*sizeof(uint32_t))  )
992 				break;
993 
994 			/* Check if we can update the basic TAI offset
995 			 * for our current leap frame. This is a hack
996 			 * and ignores the time stamps in the autokey
997 			 * message.
998 			 */
999 			if (sys_leap != LEAP_NOTINSYNC)
1000 				leapsec_autokey_tai(ntohl(ep->pkt[0]),
1001 						    rbufp->recv_time.l_ui, NULL);
1002 			tai_leap.tstamp = ep->tstamp;
1003 			tai_leap.fstamp = ep->fstamp;
1004 			crypto_update();
1005 			mprintf_event(EVNT_TAI, peer,
1006 				      "%d seconds", ntohl(ep->pkt[0]));
1007 			peer->crypto |= CRYPTO_FLAG_LEAP;
1008 			peer->flash &= ~TEST8;
1009 			snprintf(statstr, sizeof(statstr),
1010 				 "leap TAI offset %d at %u expire %u fs %u",
1011 				 ntohl(ep->pkt[0]), ntohl(ep->pkt[1]),
1012 				 ntohl(ep->pkt[2]), ntohl(ep->fstamp));
1013 			record_crypto_stats(&peer->srcadr, statstr);
1014 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
1015 			break;
1016 
1017 		/*
1018 		 * We come here in symmetric modes for miscellaneous
1019 		 * commands that have value fields but are processed on
1020 		 * the transmit side. All we need do here is check for
1021 		 * valid field length. Note that ASSOC is handled
1022 		 * separately.
1023 		 */
1024 		case CRYPTO_CERT:
1025 		case CRYPTO_IFF:
1026 		case CRYPTO_GQ:
1027 		case CRYPTO_MV:
1028 		case CRYPTO_COOK:
1029 		case CRYPTO_SIGN:
1030 			if (len < VALUE_LEN) {
1031 				rval = XEVNT_LEN;
1032 				break;
1033 			}
1034 			/* fall through */
1035 
1036 		/*
1037 		 * We come here in symmetric modes for requests
1038 		 * requiring a response (above plus AUTO and LEAP) and
1039 		 * for responses. If a request, save the extension field
1040 		 * for later; invalid requests will be caught on the
1041 		 * transmit side. If an error or invalid response,
1042 		 * declare a protocol error.
1043 		 */
1044 		default:
1045 			if (code & (CRYPTO_RESP | CRYPTO_ERROR)) {
1046 				rval = XEVNT_ERR;
1047 			} else if (peer->cmmd == NULL) {
1048 				fp = emalloc(len);
1049 				memcpy(fp, ep, len);
1050 				peer->cmmd = fp;
1051 			}
1052 		}
1053 
1054 		/*
1055 		 * The first error found terminates the extension field
1056 		 * scan and we return the laundry to the caller.
1057 		 */
1058 		if (rval != XEVNT_OK) {
1059 			snprintf(statstr, sizeof(statstr),
1060 			    "%04x %d %02x %s", htonl(ep->opcode),
1061 			    associd, rval, eventstr(rval));
1062 			record_crypto_stats(&peer->srcadr, statstr);
1063 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
1064 			return (rval);
1065 		}
1066 		authlen += (len + 3) / 4 * 4;
1067 	}
1068 	return (rval);
1069 }
1070 
1071 
1072 /*
1073  * crypto_xmit - construct extension fields
1074  *
1075  * This routine is called both when an association is configured and
1076  * when one is not. The only case where this matters is to retrieve the
1077  * autokey information, in which case the caller has to provide the
1078  * association ID to match the association.
1079  *
1080  * Side effect: update the packet offset.
1081  *
1082  * Errors
1083  * XEVNT_OK	success
1084  * XEVNT_CRT	bad or missing certificate
1085  * XEVNT_ERR	protocol error
1086  * XEVNT_LEN	bad field format or length
1087  * XEVNT_PER	host certificate expired
1088  */
1089 int
1090 crypto_xmit(
1091 	struct peer *peer,	/* peer structure pointer */
1092 	struct pkt *xpkt,	/* transmit packet pointer */
1093 	struct recvbuf *rbufp,	/* receive buffer pointer */
1094 	int	start,		/* offset to extension field */
1095 	struct exten *ep,	/* extension pointer */
1096 	keyid_t cookie		/* session cookie */
1097 	)
1098 {
1099 	struct exten *fp;	/* extension pointers */
1100 	struct cert_info *cp, *xp, *yp; /* cert info/value pointer */
1101 	sockaddr_u *srcadr_sin; /* source address */
1102 	u_int32	*pkt;		/* packet pointer */
1103 	u_int	opcode;		/* extension field opcode */
1104 	char	certname[MAXHOSTNAME + 1]; /* subject name buffer */
1105 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
1106 	tstamp_t tstamp;
1107 	struct calendar tscal;
1108 	u_int	vallen;
1109 	struct value vtemp;
1110 	associd_t associd;
1111 	int	rval;
1112 	int	len;
1113 	keyid_t tcookie;
1114 
1115 	/*
1116 	 * Generate the requested extension field request code, length
1117 	 * and association ID. If this is a response and the host is not
1118 	 * synchronized, light the error bit and go home.
1119 	 */
1120 	pkt = (u_int32 *)xpkt + start / 4;
1121 	fp = (struct exten *)pkt;
1122 	opcode = ntohl(ep->opcode);
1123 	if (peer != NULL) {
1124 		srcadr_sin = &peer->srcadr;
1125 		if (!(opcode & CRYPTO_RESP))
1126 			peer->opcode = ep->opcode;
1127 	} else {
1128 		srcadr_sin = &rbufp->recv_srcadr;
1129 	}
1130 	associd = (associd_t) ntohl(ep->associd);
1131 	len = 8;
1132 	fp->opcode = htonl((opcode & 0xffff0000) | len);
1133 	fp->associd = ep->associd;
1134 	rval = XEVNT_OK;
1135 	tstamp = crypto_time();
1136 	switch (opcode & 0xffff0000) {
1137 
1138 	/*
1139 	 * Send association request and response with status word and
1140 	 * host name. Note, this message is not signed and the filestamp
1141 	 * contains only the status word.
1142 	 */
1143 	case CRYPTO_ASSOC:
1144 	case CRYPTO_ASSOC | CRYPTO_RESP:
1145 		len = crypto_send(fp, &hostval, start);
1146 		fp->fstamp = htonl(crypto_flags);
1147 		break;
1148 
1149 	/*
1150 	 * Send certificate request. Use the values from the extension
1151 	 * field.
1152 	 */
1153 	case CRYPTO_CERT:
1154 		memset(&vtemp, 0, sizeof(vtemp));
1155 		vtemp.tstamp = ep->tstamp;
1156 		vtemp.fstamp = ep->fstamp;
1157 		vtemp.vallen = ep->vallen;
1158 		vtemp.ptr = (u_char *)ep->pkt;
1159 		len = crypto_send(fp, &vtemp, start);
1160 		break;
1161 
1162 	/*
1163 	 * Send sign request. Use the host certificate, which is self-
1164 	 * signed and may or may not be trusted.
1165 	 */
1166 	case CRYPTO_SIGN:
1167 		(void)ntpcal_ntp_to_date(&tscal, tstamp, NULL);
1168 		if ((calcomp(&tscal, &(cert_host->first)) < 0)
1169 		|| (calcomp(&tscal, &(cert_host->last)) > 0))
1170 			rval = XEVNT_PER;
1171 		else
1172 			len = crypto_send(fp, &cert_host->cert, start);
1173 		break;
1174 
1175 	/*
1176 	 * Send certificate response. Use the name in the extension
1177 	 * field to find the certificate in the cache. If the request
1178 	 * contains no subject name, assume the name of this host. This
1179 	 * is for backwards compatibility. Private certificates are
1180 	 * never sent.
1181 	 *
1182 	 * There may be several certificates matching the request. First
1183 	 * choice is a self-signed trusted certificate; second choice is
1184 	 * any certificate signed by another host. There is no third
1185 	 * choice.
1186 	 */
1187 	case CRYPTO_CERT | CRYPTO_RESP:
1188 		vallen = exten_payload_size(ep); /* Must be <64k */
1189 		if (vallen == 0 || vallen >= sizeof(certname) ) {
1190 			rval = XEVNT_LEN;
1191 			break;
1192 		}
1193 
1194 		/*
1195 		 * Find all public valid certificates with matching
1196 		 * subject. If a self-signed, trusted certificate is
1197 		 * found, use that certificate. If not, use the last non
1198 		 * self-signed certificate.
1199 		 */
1200 		memcpy(certname, ep->pkt, vallen);
1201 		certname[vallen] = '\0';
1202 		xp = yp = NULL;
1203 		for (cp = cinfo; cp != NULL; cp = cp->link) {
1204 			if (cp->flags & (CERT_PRIV | CERT_ERROR))
1205 				continue;
1206 
1207 			if (strcmp(certname, cp->subject) != 0)
1208 				continue;
1209 
1210 			if (strcmp(certname, cp->issuer) != 0)
1211 				yp = cp;
1212 			else if (cp ->flags & CERT_TRUST)
1213 				xp = cp;
1214 			continue;
1215 		}
1216 
1217 		/*
1218 		 * Be careful who you trust. If the certificate is not
1219 		 * found, return an empty response. Note that we dont
1220 		 * enforce lifetimes here.
1221 		 *
1222 		 * The timestamp and filestamp are taken from the
1223 		 * certificate value structure. For all certificates the
1224 		 * timestamp is the latest signature update time. For
1225 		 * host and imported certificates the filestamp is the
1226 		 * creation epoch. For signed certificates the filestamp
1227 		 * is the creation epoch of the trusted certificate at
1228 		 * the root of the certificate trail. In principle, this
1229 		 * allows strong checking for signature masquerade.
1230 		 */
1231 		if (xp == NULL)
1232 			xp = yp;
1233 		if (xp == NULL)
1234 			break;
1235 
1236 		if (tstamp == 0)
1237 			break;
1238 
1239 		len = crypto_send(fp, &xp->cert, start);
1240 		break;
1241 
1242 	/*
1243 	 * Send challenge in Schnorr (IFF) identity scheme.
1244 	 */
1245 	case CRYPTO_IFF:
1246 		if (peer == NULL)
1247 			break;		/* hack attack */
1248 
1249 		if ((rval = crypto_alice(peer, &vtemp)) == XEVNT_OK) {
1250 			len = crypto_send(fp, &vtemp, start);
1251 			value_free(&vtemp);
1252 		}
1253 		break;
1254 
1255 	/*
1256 	 * Send response in Schnorr (IFF) identity scheme.
1257 	 */
1258 	case CRYPTO_IFF | CRYPTO_RESP:
1259 		if ((rval = crypto_bob(ep, &vtemp)) == XEVNT_OK) {
1260 			len = crypto_send(fp, &vtemp, start);
1261 			value_free(&vtemp);
1262 		}
1263 		break;
1264 
1265 	/*
1266 	 * Send challenge in Guillou-Quisquater (GQ) identity scheme.
1267 	 */
1268 	case CRYPTO_GQ:
1269 		if (peer == NULL)
1270 			break;		/* hack attack */
1271 
1272 		if ((rval = crypto_alice2(peer, &vtemp)) == XEVNT_OK) {
1273 			len = crypto_send(fp, &vtemp, start);
1274 			value_free(&vtemp);
1275 		}
1276 		break;
1277 
1278 	/*
1279 	 * Send response in Guillou-Quisquater (GQ) identity scheme.
1280 	 */
1281 	case CRYPTO_GQ | CRYPTO_RESP:
1282 		if ((rval = crypto_bob2(ep, &vtemp)) == XEVNT_OK) {
1283 			len = crypto_send(fp, &vtemp, start);
1284 			value_free(&vtemp);
1285 		}
1286 		break;
1287 
1288 	/*
1289 	 * Send challenge in MV identity scheme.
1290 	 */
1291 	case CRYPTO_MV:
1292 		if (peer == NULL)
1293 			break;		/* hack attack */
1294 
1295 		if ((rval = crypto_alice3(peer, &vtemp)) == XEVNT_OK) {
1296 			len = crypto_send(fp, &vtemp, start);
1297 			value_free(&vtemp);
1298 		}
1299 		break;
1300 
1301 	/*
1302 	 * Send response in MV identity scheme.
1303 	 */
1304 	case CRYPTO_MV | CRYPTO_RESP:
1305 		if ((rval = crypto_bob3(ep, &vtemp)) == XEVNT_OK) {
1306 			len = crypto_send(fp, &vtemp, start);
1307 			value_free(&vtemp);
1308 		}
1309 		break;
1310 
1311 	/*
1312 	 * Send certificate sign response. The integrity of the request
1313 	 * certificate has already been verified on the receive side.
1314 	 * Sign the response using the local server key. Use the
1315 	 * filestamp from the request and use the timestamp as the
1316 	 * current time. Light the error bit if the certificate is
1317 	 * invalid or contains an unverified signature.
1318 	 */
1319 	case CRYPTO_SIGN | CRYPTO_RESP:
1320 		if ((rval = cert_sign(ep, &vtemp)) == XEVNT_OK) {
1321 			len = crypto_send(fp, &vtemp, start);
1322 			value_free(&vtemp);
1323 		}
1324 		break;
1325 
1326 	/*
1327 	 * Send public key and signature. Use the values from the public
1328 	 * key.
1329 	 */
1330 	case CRYPTO_COOK:
1331 		len = crypto_send(fp, &pubkey, start);
1332 		break;
1333 
1334 	/*
1335 	 * Encrypt and send cookie and signature. Light the error bit if
1336 	 * anything goes wrong.
1337 	 */
1338 	case CRYPTO_COOK | CRYPTO_RESP:
1339 		vallen = ntohl(ep->vallen);	/* Must be <64k */
1340 		if (   vallen == 0
1341 		    || (vallen >= MAX_VALLEN)
1342 		    || (opcode & 0x0000ffff)  < VALUE_LEN + vallen) {
1343 			rval = XEVNT_LEN;
1344 			break;
1345 		}
1346 		if (peer == NULL)
1347 			tcookie = cookie;
1348 		else
1349 			tcookie = peer->hcookie;
1350 		if ((rval = crypto_encrypt((const u_char *)ep->pkt, vallen, &tcookie, &vtemp))
1351 		    == XEVNT_OK) {
1352 			len = crypto_send(fp, &vtemp, start);
1353 			value_free(&vtemp);
1354 		}
1355 		break;
1356 
1357 	/*
1358 	 * Find peer and send autokey data and signature in broadcast
1359 	 * server and symmetric modes. Use the values in the autokey
1360 	 * structure. If no association is found, either the server has
1361 	 * restarted with new associations or some perp has replayed an
1362 	 * old message, in which case light the error bit.
1363 	 */
1364 	case CRYPTO_AUTO | CRYPTO_RESP:
1365 		if (peer == NULL) {
1366 			if ((peer = findpeerbyassoc(associd)) == NULL) {
1367 				rval = XEVNT_ERR;
1368 				break;
1369 			}
1370 		}
1371 		peer->flags &= ~FLAG_ASSOC;
1372 		len = crypto_send(fp, &peer->sndval, start);
1373 		break;
1374 
1375 	/*
1376 	 * Send leapseconds values and signature. Use the values from
1377 	 * the tai structure. If no table has been loaded, just send an
1378 	 * empty request.
1379 	 */
1380 	case CRYPTO_LEAP | CRYPTO_RESP:
1381 		len = crypto_send(fp, &tai_leap, start);
1382 		break;
1383 
1384 	/*
1385 	 * Default - Send a valid command for unknown requests; send
1386 	 * an error response for unknown resonses.
1387 	 */
1388 	default:
1389 		if (opcode & CRYPTO_RESP)
1390 			rval = XEVNT_ERR;
1391 	}
1392 
1393 	/*
1394 	 * In case of error, flame the log. If a request, toss the
1395 	 * puppy; if a response, return so the sender can flame, too.
1396 	 */
1397 	if (rval != XEVNT_OK) {
1398 		u_int32	uint32;
1399 
1400 		uint32 = CRYPTO_ERROR;
1401 		opcode |= uint32;
1402 		fp->opcode |= htonl(uint32);
1403 		snprintf(statstr, sizeof(statstr),
1404 		    "%04x %d %02x %s", opcode, associd, rval,
1405 		    eventstr(rval));
1406 		record_crypto_stats(srcadr_sin, statstr);
1407 		DPRINTF(1, ("crypto_xmit: %s\n", statstr));
1408 		if (!(opcode & CRYPTO_RESP))
1409 			return (0);
1410 	}
1411 	DPRINTF(1, ("crypto_xmit: flags 0x%x offset %d len %d code 0x%x associd %d\n",
1412 		    crypto_flags, start, len, opcode >> 16, associd));
1413 	return (len);
1414 }
1415 
1416 
1417 /*
1418  * crypto_verify - verify the extension field value and signature
1419  *
1420  * Returns
1421  * XEVNT_OK	success
1422  * XEVNT_ERR	protocol error
1423  * XEVNT_FSP	bad filestamp
1424  * XEVNT_LEN	bad field format or length
1425  * XEVNT_PUB	bad or missing public key
1426  * XEVNT_SGL	bad signature length
1427  * XEVNT_SIG	signature not verified
1428  * XEVNT_TSP	bad timestamp
1429  */
1430 static int
1431 crypto_verify(
1432 	struct exten *ep,	/* extension pointer */
1433 	struct value *vp,	/* value pointer */
1434 	struct peer *peer	/* peer structure pointer */
1435 	)
1436 {
1437 	EVP_PKEY *pkey;		/* server public key */
1438 	EVP_MD_CTX *ctx;	/* signature context */
1439 	tstamp_t tstamp, tstamp1 = 0; /* timestamp */
1440 	tstamp_t fstamp, fstamp1 = 0; /* filestamp */
1441 	u_int	vallen;		/* value length */
1442 	u_int	siglen;		/* signature length */
1443 	u_int	opcode, len;
1444 	int	i;
1445 
1446 	/*
1447 	 * We are extremely parannoyed. We require valid opcode, length,
1448 	 * association ID, timestamp, filestamp, public key, digest,
1449 	 * signature length and signature, where relevant. Note that
1450 	 * preliminary length checks are done in the main loop.
1451 	 */
1452 	len = ntohl(ep->opcode) & 0x0000ffff;
1453 	opcode = ntohl(ep->opcode) & 0xffff0000;
1454 
1455 	/*
1456 	 * Check for valid value header, association ID and extension
1457 	 * field length. Remember, it is not an error to receive an
1458 	 * unsolicited response; however, the response ID must match
1459 	 * the association ID.
1460 	 */
1461 	if (opcode & CRYPTO_ERROR)
1462 		return (XEVNT_ERR);
1463 
1464  	if (len < VALUE_LEN)
1465 		return (XEVNT_LEN);
1466 
1467 	if (opcode == (CRYPTO_AUTO | CRYPTO_RESP) && (peer->pmode ==
1468 	    MODE_BROADCAST || (peer->cast_flags & MDF_BCLNT))) {
1469 		if (ntohl(ep->associd) != peer->assoc)
1470 			return (XEVNT_ERR);
1471 	} else {
1472 		if (ntohl(ep->associd) != peer->associd)
1473 			return (XEVNT_ERR);
1474 	}
1475 
1476 	/*
1477 	 * We have a valid value header. Check for valid value and
1478 	 * signature field lengths. The extension field length must be
1479 	 * long enough to contain the value header, value and signature.
1480 	 * Note both the value and signature field lengths are rounded
1481 	 * up to the next word (4 octets).
1482 	 */
1483 	vallen = ntohl(ep->vallen);
1484 	if (   vallen == 0
1485 	    || vallen > MAX_VALLEN)
1486 		return (XEVNT_LEN);
1487 
1488 	i = (vallen + 3) / 4;
1489 	siglen = ntohl(ep->pkt[i++]);
1490 	if (   siglen > MAX_VALLEN
1491 	    || len - VALUE_LEN < ((vallen + 3) / 4) * 4
1492 	    || len - VALUE_LEN - ((vallen + 3) / 4) * 4
1493 	      < ((siglen + 3) / 4) * 4)
1494 		return (XEVNT_LEN);
1495 
1496 	/*
1497 	 * Check for valid timestamp and filestamp. If the timestamp is
1498 	 * zero, the sender is not synchronized and signatures are
1499 	 * not possible. If nonzero the timestamp must not precede the
1500 	 * filestamp. The timestamp and filestamp must not precede the
1501 	 * corresponding values in the value structure, if present.
1502  	 */
1503 	tstamp = ntohl(ep->tstamp);
1504 	fstamp = ntohl(ep->fstamp);
1505 	if (tstamp == 0)
1506 		return (XEVNT_TSP);
1507 
1508 	if (tstamp < fstamp)
1509 		return (XEVNT_TSP);
1510 
1511 	if (vp != NULL) {
1512 		tstamp1 = ntohl(vp->tstamp);
1513 		fstamp1 = ntohl(vp->fstamp);
1514 		if (tstamp1 != 0 && fstamp1 != 0) {
1515 			if (tstamp < tstamp1)
1516 				return (XEVNT_TSP);
1517 
1518 			if ((tstamp < fstamp1 || fstamp < fstamp1))
1519 				return (XEVNT_FSP);
1520 		}
1521 	}
1522 
1523 	/*
1524 	 * At the time the certificate message is validated, the public
1525 	 * key in the message is not available. Thus, don't try to
1526 	 * verify the signature.
1527 	 */
1528 	if (opcode == (CRYPTO_CERT | CRYPTO_RESP))
1529 		return (XEVNT_OK);
1530 
1531 	/*
1532 	 * Check for valid signature length, public key and digest
1533 	 * algorithm.
1534 	 */
1535 	if (crypto_flags & peer->crypto & CRYPTO_FLAG_PRIV)
1536 		pkey = sign_pkey;
1537 	else
1538 		pkey = peer->pkey;
1539 	if (siglen == 0 || pkey == NULL || peer->digest == NULL)
1540 		return (XEVNT_ERR);
1541 
1542 	if (siglen != (u_int)EVP_PKEY_size(pkey))
1543 		return (XEVNT_SGL);
1544 
1545 	/*
1546 	 * Darn, I thought we would never get here. Verify the
1547 	 * signature. If the identity exchange is verified, light the
1548 	 * proventic bit. What a relief.
1549 	 */
1550 	ctx = EVP_MD_CTX_new();
1551 	EVP_VerifyInit(ctx, peer->digest);
1552 	/* XXX: the "+ 12" needs to be at least documented... */
1553 	EVP_VerifyUpdate(ctx, (u_char *)&ep->tstamp, vallen + 12);
1554 	if (EVP_VerifyFinal(ctx, (u_char *)&ep->pkt[i], siglen,
1555 	    pkey) <= 0) {
1556 		EVP_MD_CTX_free(ctx);
1557 		return (XEVNT_SIG);
1558 	}
1559 	EVP_MD_CTX_free(ctx);
1560 
1561 	if (peer->crypto & CRYPTO_FLAG_VRFY)
1562 		peer->crypto |= CRYPTO_FLAG_PROV;
1563 	return (XEVNT_OK);
1564 }
1565 
1566 
1567 /*
1568  * crypto_encrypt - construct vp (encrypted cookie and signature) from
1569  * the public key and cookie.
1570  *
1571  * Returns:
1572  * XEVNT_OK	success
1573  * XEVNT_CKY	bad or missing cookie
1574  * XEVNT_PUB	bad or missing public key
1575  */
1576 static int
1577 crypto_encrypt(
1578 	const u_char *ptr,	/* Public Key */
1579 	u_int	vallen,		/* Length of Public Key */
1580 	keyid_t	*cookie,	/* server cookie */
1581 	struct value *vp	/* value pointer */
1582 	)
1583 {
1584 	EVP_PKEY *pkey;		/* public key */
1585 	EVP_MD_CTX *ctx;	/* signature context */
1586 	tstamp_t tstamp;	/* NTP timestamp */
1587 	u_int32	temp32;
1588 	u_char *puch;
1589 
1590 	/*
1591 	 * Extract the public key from the request.
1592 	 */
1593 	pkey = d2i_PublicKey(EVP_PKEY_RSA, NULL, &ptr, vallen);
1594 	if (pkey == NULL) {
1595 		msyslog(LOG_ERR, "crypto_encrypt: %s",
1596 		    ERR_error_string(ERR_get_error(), NULL));
1597 		return (XEVNT_PUB);
1598 	}
1599 
1600 	/*
1601 	 * Encrypt the cookie, encode in ASN.1 and sign.
1602 	 */
1603 	memset(vp, 0, sizeof(struct value));
1604 	tstamp = crypto_time();
1605 	vp->tstamp = htonl(tstamp);
1606 	vp->fstamp = hostval.tstamp;
1607 	vallen = EVP_PKEY_size(pkey);
1608 	vp->vallen = htonl(vallen);
1609 	vp->ptr = emalloc(vallen);
1610 	puch = vp->ptr;
1611 	temp32 = htonl(*cookie);
1612 	if (RSA_public_encrypt(4, (u_char *)&temp32, puch,
1613 	    EVP_PKEY_get0_RSA(pkey), RSA_PKCS1_OAEP_PADDING) <= 0) {
1614 		msyslog(LOG_ERR, "crypto_encrypt: %s",
1615 		    ERR_error_string(ERR_get_error(), NULL));
1616 		free(vp->ptr);
1617 		EVP_PKEY_free(pkey);
1618 		return (XEVNT_CKY);
1619 	}
1620 	EVP_PKEY_free(pkey);
1621 	if (tstamp == 0)
1622 		return (XEVNT_OK);
1623 
1624 	vp->sig = emalloc(sign_siglen);
1625 	ctx = EVP_MD_CTX_new();
1626 	EVP_SignInit(ctx, sign_digest);
1627 	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
1628 	EVP_SignUpdate(ctx, vp->ptr, vallen);
1629 	if (EVP_SignFinal(ctx, vp->sig, &vallen, sign_pkey)) {
1630 		INSIST(vallen <= sign_siglen);
1631 		vp->siglen = htonl(vallen);
1632 	}
1633 	EVP_MD_CTX_free(ctx);
1634 	return (XEVNT_OK);
1635 }
1636 
1637 
1638 /*
1639  * crypto_ident - construct extension field for identity scheme
1640  *
1641  * This routine determines which identity scheme is in use and
1642  * constructs an extension field for that scheme.
1643  *
1644  * Returns
1645  * CRYTPO_IFF	IFF scheme
1646  * CRYPTO_GQ	GQ scheme
1647  * CRYPTO_MV	MV scheme
1648  * CRYPTO_NULL	no available scheme
1649  */
1650 u_int
1651 crypto_ident(
1652 	struct peer *peer	/* peer structure pointer */
1653 	)
1654 {
1655 	char		filename[MAXFILENAME];
1656 	const char *	scheme_name;
1657 	u_int		scheme_id;
1658 
1659 	/*
1660 	 * We come here after the group trusted host has been found; its
1661 	 * name defines the group name. Search the key cache for all
1662 	 * keys matching the same group name in order IFF, GQ and MV.
1663 	 * Use the first one available.
1664 	 */
1665 	scheme_name = NULL;
1666 	if (peer->crypto & CRYPTO_FLAG_IFF) {
1667 		scheme_name = "iff";
1668 		scheme_id = CRYPTO_IFF;
1669 	} else if (peer->crypto & CRYPTO_FLAG_GQ) {
1670 		scheme_name = "gq";
1671 		scheme_id = CRYPTO_GQ;
1672 	} else if (peer->crypto & CRYPTO_FLAG_MV) {
1673 		scheme_name = "mv";
1674 		scheme_id = CRYPTO_MV;
1675 	}
1676 
1677 	if (scheme_name != NULL) {
1678 		snprintf(filename, sizeof(filename), "ntpkey_%spar_%s",
1679 		    scheme_name, peer->ident);
1680 		peer->ident_pkey = crypto_key(filename, NULL,
1681 		    &peer->srcadr);
1682 		if (peer->ident_pkey != NULL)
1683 			return scheme_id;
1684 	}
1685 
1686 	msyslog(LOG_NOTICE,
1687 	    "crypto_ident: no identity parameters found for group %s",
1688 	    peer->ident);
1689 
1690 	return CRYPTO_NULL;
1691 }
1692 
1693 
1694 /*
1695  * crypto_args - construct extension field from arguments
1696  *
1697  * This routine creates an extension field with current timestamps and
1698  * specified opcode, association ID and optional string. Note that the
1699  * extension field is created here, but freed after the crypto_xmit()
1700  * call in the protocol module.
1701  *
1702  * Returns extension field pointer (no errors)
1703  *
1704  * XXX: opcode and len should really be 32-bit quantities and
1705  * we should make sure that str is not too big.
1706  */
1707 struct exten *
1708 crypto_args(
1709 	struct peer *peer,	/* peer structure pointer */
1710 	u_int	opcode,		/* operation code */
1711 	associd_t associd,	/* association ID */
1712 	char	*str		/* argument string */
1713 	)
1714 {
1715 	tstamp_t tstamp;	/* NTP timestamp */
1716 	struct exten *ep;	/* extension field pointer */
1717 	u_int	len;		/* extension field length */
1718 	size_t	slen = 0;
1719 
1720 	tstamp = crypto_time();
1721 	len = sizeof(struct exten);
1722 	if (str != NULL) {
1723 		slen = strlen(str);
1724 		INSIST(slen < MAX_VALLEN);
1725 		len += slen;
1726 	}
1727 	ep = emalloc_zero(len);
1728 	if (opcode == 0)
1729 		return (ep);
1730 
1731 	REQUIRE(0 == (len    & ~0x0000ffff));
1732 	REQUIRE(0 == (opcode & ~0xffff0000));
1733 
1734 	ep->opcode = htonl(opcode + len);
1735 	ep->associd = htonl(associd);
1736 	ep->tstamp = htonl(tstamp);
1737 	ep->fstamp = hostval.tstamp;
1738 	ep->vallen = 0;
1739 	if (str != NULL) {
1740 		ep->vallen = htonl(slen);
1741 		memcpy((char *)ep->pkt, str, slen);
1742 	}
1743 	return (ep);
1744 }
1745 
1746 
1747 /*
1748  * crypto_send - construct extension field from value components
1749  *
1750  * The value and signature fields are zero-padded to a word boundary.
1751  * Note: it is not polite to send a nonempty signature with zero
1752  * timestamp or a nonzero timestamp with an empty signature, but those
1753  * rules are not enforced here.
1754  *
1755  * XXX This code won't work on a box with 16-bit ints.
1756  */
1757 int
1758 crypto_send(
1759 	struct exten *ep,	/* extension field pointer */
1760 	struct value *vp,	/* value pointer */
1761 	int	start		/* buffer offset */
1762 	)
1763 {
1764 	u_int	len, vallen, siglen, opcode;
1765 	u_int	i, j;
1766 
1767 	/*
1768 	 * Calculate extension field length and check for buffer
1769 	 * overflow. Leave room for the MAC.
1770 	 */
1771 	len = 16;				/* XXX Document! */
1772 	vallen = ntohl(vp->vallen);
1773 	INSIST(vallen <= MAX_VALLEN);
1774 	len += ((vallen + 3) / 4 + 1) * 4;
1775 	siglen = ntohl(vp->siglen);
1776 	len += ((siglen + 3) / 4 + 1) * 4;
1777 	if (start + len > sizeof(struct pkt) - MAX_MAC_LEN)
1778 		return (0);
1779 
1780 	/*
1781 	 * Copy timestamps.
1782 	 */
1783 	ep->tstamp = vp->tstamp;
1784 	ep->fstamp = vp->fstamp;
1785 	ep->vallen = vp->vallen;
1786 
1787 	/*
1788 	 * Copy value. If the data field is empty or zero length,
1789 	 * encode an empty value with length zero.
1790 	 */
1791 	i = 0;
1792 	if (vallen > 0 && vp->ptr != NULL) {
1793 		j = vallen / 4;
1794 		if (j * 4 < vallen)
1795 			ep->pkt[i + j++] = 0;
1796 		memcpy(&ep->pkt[i], vp->ptr, vallen);
1797 		i += j;
1798 	}
1799 
1800 	/*
1801 	 * Copy signature. If the signature field is empty or zero
1802 	 * length, encode an empty signature with length zero.
1803 	 */
1804 	ep->pkt[i++] = vp->siglen;
1805 	if (siglen > 0 && vp->sig != NULL) {
1806 		j = siglen / 4;
1807 		if (j * 4 < siglen)
1808 			ep->pkt[i + j++] = 0;
1809 		memcpy(&ep->pkt[i], vp->sig, siglen);
1810 		/* i += j; */	/* We don't use i after this */
1811 	}
1812 	opcode = ntohl(ep->opcode);
1813 	ep->opcode = htonl((opcode & 0xffff0000) | len);
1814 	ENSURE(len <= MAX_VALLEN);
1815 	return (len);
1816 }
1817 
1818 
1819 /*
1820  * crypto_update - compute new public value and sign extension fields
1821  *
1822  * This routine runs periodically, like once a day, and when something
1823  * changes. It updates the timestamps on three value structures and one
1824  * value structure list, then signs all the structures:
1825  *
1826  * hostval	host name (not signed)
1827  * pubkey	public key
1828  * cinfo	certificate info/value list
1829  * tai_leap	leap values
1830  *
1831  * Filestamps are proventic data, so this routine runs only when the
1832  * host is synchronized to a proventicated source. Thus, the timestamp
1833  * is proventic and can be used to deflect clogging attacks.
1834  *
1835  * Returns void (no errors)
1836  */
1837 void
1838 crypto_update(void)
1839 {
1840 	EVP_MD_CTX *ctx;	/* message digest context */
1841 	struct cert_info *cp;	/* certificate info/value */
1842 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
1843 	u_int32	*ptr;
1844 	u_int	len;
1845 	leap_result_t leap_data;
1846 
1847 	hostval.tstamp = htonl(crypto_time());
1848 	if (hostval.tstamp == 0)
1849 		return;
1850 
1851 	ctx = EVP_MD_CTX_new();
1852 
1853 	/*
1854 	 * Sign public key and timestamps. The filestamp is derived from
1855 	 * the host key file extension from wherever the file was
1856 	 * generated.
1857 	 */
1858 	if (pubkey.vallen != 0) {
1859 		pubkey.tstamp = hostval.tstamp;
1860 		pubkey.siglen = 0;
1861 		if (pubkey.sig == NULL)
1862 			pubkey.sig = emalloc(sign_siglen);
1863 		EVP_SignInit(ctx, sign_digest);
1864 		EVP_SignUpdate(ctx, (u_char *)&pubkey, 12);
1865 		EVP_SignUpdate(ctx, pubkey.ptr, ntohl(pubkey.vallen));
1866 		if (EVP_SignFinal(ctx, pubkey.sig, &len, sign_pkey)) {
1867 			INSIST(len <= sign_siglen);
1868 			pubkey.siglen = htonl(len);
1869 		}
1870 	}
1871 
1872 	/*
1873 	 * Sign certificates and timestamps. The filestamp is derived
1874 	 * from the certificate file extension from wherever the file
1875 	 * was generated. Note we do not throw expired certificates
1876 	 * away; they may have signed younger ones.
1877 	 */
1878 	for (cp = cinfo; cp != NULL; cp = cp->link) {
1879 		cp->cert.tstamp = hostval.tstamp;
1880 		cp->cert.siglen = 0;
1881 		if (cp->cert.sig == NULL)
1882 			cp->cert.sig = emalloc(sign_siglen);
1883 		EVP_SignInit(ctx, sign_digest);
1884 		EVP_SignUpdate(ctx, (u_char *)&cp->cert, 12);
1885 		EVP_SignUpdate(ctx, cp->cert.ptr,
1886 		    ntohl(cp->cert.vallen));
1887 		if (EVP_SignFinal(ctx, cp->cert.sig, &len, sign_pkey)) {
1888 			INSIST(len <= sign_siglen);
1889 			cp->cert.siglen = htonl(len);
1890 		}
1891 	}
1892 
1893 	/*
1894 	 * Sign leapseconds values and timestamps. Note it is not an
1895 	 * error to return null values.
1896 	 */
1897 	tai_leap.tstamp = hostval.tstamp;
1898 	tai_leap.fstamp = hostval.fstamp;
1899 
1900 	/* Get the leap second era. We might need a full lookup early
1901 	 * after start, when the cache is not yet loaded.
1902 	 */
1903 	leapsec_frame(&leap_data);
1904 	if ( ! memcmp(&leap_data.ebase, &leap_data.ttime, sizeof(vint64))) {
1905 		time_t   now    = time(NULL);
1906 		uint32_t nowntp = (uint32_t)now + JAN_1970;
1907 		leapsec_query(&leap_data, nowntp, &now);
1908 	}
1909 
1910 	/* Create the data block. The protocol does not work without. */
1911 	len = 3 * sizeof(u_int32);
1912 	if (tai_leap.ptr == NULL || ntohl(tai_leap.vallen) != len) {
1913 		free(tai_leap.ptr);
1914 		tai_leap.ptr = emalloc(len);
1915 		tai_leap.vallen = htonl(len);
1916 	}
1917 	ptr = (u_int32 *)tai_leap.ptr;
1918 	if (leap_data.tai_offs > 10) {
1919 		/* create a TAI / leap era block. The end time is a
1920 		 * fake -- maybe we can do better.
1921 		 */
1922 		ptr[0] = htonl(leap_data.tai_offs);
1923 		ptr[1] = htonl(leap_data.ebase.d_s.lo);
1924 		if (leap_data.ttime.d_s.hi >= 0)
1925 			ptr[2] = htonl(leap_data.ttime.D_s.lo +  7*86400);
1926 		else
1927 			ptr[2] = htonl(leap_data.ebase.D_s.lo + 25*86400);
1928 	} else {
1929 		/* no leap era available */
1930 		memset(ptr, 0, len);
1931 	}
1932 	if (tai_leap.sig == NULL)
1933 		tai_leap.sig = emalloc(sign_siglen);
1934 	EVP_SignInit(ctx, sign_digest);
1935 	EVP_SignUpdate(ctx, (u_char *)&tai_leap, 12);
1936 	EVP_SignUpdate(ctx, tai_leap.ptr, len);
1937 	if (EVP_SignFinal(ctx, tai_leap.sig, &len, sign_pkey)) {
1938 		INSIST(len <= sign_siglen);
1939 		tai_leap.siglen = htonl(len);
1940 	}
1941 	crypto_flags |= CRYPTO_FLAG_TAI;
1942 
1943 	snprintf(statstr, sizeof(statstr), "signature update ts %u",
1944 	    ntohl(hostval.tstamp));
1945 	record_crypto_stats(NULL, statstr);
1946 	DPRINTF(1, ("crypto_update: %s\n", statstr));
1947 	EVP_MD_CTX_free(ctx);
1948 }
1949 
1950 /*
1951  * crypto_update_taichange - eventually trigger crypto_update
1952  *
1953  * This is called when a change in 'sys_tai' is detected. This will
1954  * happen shortly after a leap second is detected, but unhappily also
1955  * early after system start; also, the crypto stuff might be unused and
1956  * an unguarded call to crypto_update() causes a crash.
1957  *
1958  * This function makes sure that there already *is* a valid crypto block
1959  * for the use with autokey, and only calls 'crypto_update()' if it can
1960  * succeed.
1961  *
1962  * Returns void (no errors)
1963  */
1964 void
1965 crypto_update_taichange(void)
1966 {
1967 	static const u_int len = 3 * sizeof(u_int32);
1968 
1969 	/* check if the signing digest algo is available */
1970 	if (sign_digest == NULL || sign_pkey == NULL)
1971 		return;
1972 
1973 	/* check size of TAI extension block */
1974 	if (tai_leap.ptr == NULL || ntohl(tai_leap.vallen) != len)
1975 		return;
1976 
1977 	/* crypto_update should at least not crash here! */
1978 	crypto_update();
1979 }
1980 
1981 /*
1982  * value_free - free value structure components.
1983  *
1984  * Returns void (no errors)
1985  */
1986 void
1987 value_free(
1988 	struct value *vp	/* value structure */
1989 	)
1990 {
1991 	if (vp->ptr != NULL)
1992 		free(vp->ptr);
1993 	if (vp->sig != NULL)
1994 		free(vp->sig);
1995 	memset(vp, 0, sizeof(struct value));
1996 }
1997 
1998 
1999 /*
2000  * crypto_time - returns current NTP time.
2001  *
2002  * Returns NTP seconds if in synch, 0 otherwise
2003  */
2004 tstamp_t
2005 crypto_time()
2006 {
2007 	l_fp	tstamp;		/* NTP time */
2008 
2009 	L_CLR(&tstamp);
2010 	if (sys_leap != LEAP_NOTINSYNC)
2011 		get_systime(&tstamp);
2012 	return (tstamp.l_ui);
2013 }
2014 
2015 
2016 /*
2017  * asn_to_calendar - convert ASN1_TIME time structure to struct calendar.
2018  *
2019  */
2020 static
2021 void
2022 asn_to_calendar	(
2023 	const ASN1_TIME *asn1time,	/* pointer to ASN1_TIME structure */
2024 	struct calendar *pjd	/* pointer to result */
2025 	)
2026 {
2027 	size_t	len;		/* length of ASN1_TIME string */
2028 	char	v[24];		/* writable copy of ASN1_TIME string */
2029 	unsigned long	temp;	/* result from strtoul */
2030 
2031 	/*
2032 	 * Extract time string YYMMDDHHMMSSZ from ASN1 time structure.
2033 	 * Or YYYYMMDDHHMMSSZ.
2034 	 * Note that the YY, MM, DD fields start with one, the HH, MM,
2035 	 * SS fields start with zero and the Z character is ignored.
2036 	 * Also note that two-digit years less than 50 map to years greater than
2037 	 * 100. Dontcha love ASN.1? Better than MIL-188.
2038 	 */
2039 	len = asn1time->length;
2040 	REQUIRE(len < sizeof(v));
2041 	(void)strncpy(v, (char *)(asn1time->data), len);
2042 	REQUIRE(len >= 13);
2043 	temp = strtoul(v+len-3, NULL, 10);
2044 	pjd->second = temp;
2045 	v[len-3] = '\0';
2046 
2047 	temp = strtoul(v+len-5, NULL, 10);
2048 	pjd->minute = temp;
2049 	v[len-5] = '\0';
2050 
2051 	temp = strtoul(v+len-7, NULL, 10);
2052 	pjd->hour = temp;
2053 	v[len-7] = '\0';
2054 
2055 	temp = strtoul(v+len-9, NULL, 10);
2056 	pjd->monthday = temp;
2057 	v[len-9] = '\0';
2058 
2059 	temp = strtoul(v+len-11, NULL, 10);
2060 	pjd->month = temp;
2061 	v[len-11] = '\0';
2062 
2063 	temp = strtoul(v, NULL, 10);
2064 	/* handle two-digit years */
2065 	if (temp < 50UL)
2066 	    temp += 100UL;
2067 	if (temp < 150UL)
2068 	    temp += 1900UL;
2069 	pjd->year = temp;
2070 
2071 	pjd->yearday = pjd->weekday = 0;
2072 	return;
2073 }
2074 
2075 
2076 /*
2077  * bigdig() - compute a BIGNUM MD5 hash of a BIGNUM number.
2078  *
2079  * Returns void (no errors)
2080  */
2081 static void
2082 bighash(
2083 	BIGNUM	*bn,		/* BIGNUM * from */
2084 	BIGNUM	*bk		/* BIGNUM * to */
2085 	)
2086 {
2087 	EVP_MD_CTX *ctx;	/* message digest context */
2088 	u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */
2089 	u_char	*ptr;		/* a BIGNUM as binary string */
2090 	u_int	len;
2091 
2092 	len = BN_num_bytes(bn);
2093 	ptr = emalloc(len);
2094 	BN_bn2bin(bn, ptr);
2095 	ctx = EVP_MD_CTX_new();
2096 #   if defined(OPENSSL) && defined(EVP_MD_CTX_FLAG_NON_FIPS_ALLOW)
2097 	/* [Bug 3457] set flags and don't kill them again */
2098 	EVP_MD_CTX_set_flags(ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
2099 	EVP_DigestInit_ex(ctx, EVP_md5(), NULL);
2100 #   else
2101 	EVP_DigestInit(ctx, EVP_md5());
2102 #   endif
2103 	EVP_DigestUpdate(ctx, ptr, len);
2104 	EVP_DigestFinal(ctx, dgst, &len);
2105 	EVP_MD_CTX_free(ctx);
2106 	BN_bin2bn(dgst, len, bk);
2107 	free(ptr);
2108 }
2109 
2110 
2111 /*
2112  ***********************************************************************
2113  *								       *
2114  * The following routines implement the Schnorr (IFF) identity scheme  *
2115  *								       *
2116  ***********************************************************************
2117  *
2118  * The Schnorr (IFF) identity scheme is intended for use when
2119  * certificates are generated by some other trusted certificate
2120  * authority and the certificate cannot be used to convey public
2121  * parameters. There are two kinds of files: encrypted server files that
2122  * contain private and public values and nonencrypted client files that
2123  * contain only public values. New generations of server files must be
2124  * securely transmitted to all servers of the group; client files can be
2125  * distributed by any means. The scheme is self contained and
2126  * independent of new generations of host keys, sign keys and
2127  * certificates.
2128  *
2129  * The IFF values hide in a DSA cuckoo structure which uses the same
2130  * parameters. The values are used by an identity scheme based on DSA
2131  * cryptography and described in Stimson p. 285. The p is a 512-bit
2132  * prime, g a generator of Zp* and q a 160-bit prime that divides p - 1
2133  * and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a
2134  * private random group key b (0 < b < q) and public key v = g^b, then
2135  * sends (p, q, g, b) to the servers and (p, q, g, v) to the clients.
2136  * Alice challenges Bob to confirm identity using the protocol described
2137  * below.
2138  *
2139  * How it works
2140  *
2141  * The scheme goes like this. Both Alice and Bob have the public primes
2142  * p, q and generator g. The TA gives private key b to Bob and public
2143  * key v to Alice.
2144  *
2145  * Alice rolls new random challenge r (o < r < q) and sends to Bob in
2146  * the IFF request message. Bob rolls new random k (0 < k < q), then
2147  * computes y = k + b r mod q and x = g^k mod p and sends (y, hash(x))
2148  * to Alice in the response message. Besides making the response
2149  * shorter, the hash makes it effectivey impossible for an intruder to
2150  * solve for b by observing a number of these messages.
2151  *
2152  * Alice receives the response and computes g^y v^r mod p. After a bit
2153  * of algebra, this simplifies to g^k. If the hash of this result
2154  * matches hash(x), Alice knows that Bob has the group key b. The signed
2155  * response binds this knowledge to Bob's private key and the public key
2156  * previously received in his certificate.
2157  *
2158  * crypto_alice - construct Alice's challenge in IFF scheme
2159  *
2160  * Returns
2161  * XEVNT_OK	success
2162  * XEVNT_ID	bad or missing group key
2163  * XEVNT_PUB	bad or missing public key
2164  */
2165 static int
2166 crypto_alice(
2167 	struct peer *peer,	/* peer pointer */
2168 	struct value *vp	/* value pointer */
2169 	)
2170 {
2171 	DSA	*dsa;		/* IFF parameters */
2172 	BN_CTX	*bctx;		/* BIGNUM context */
2173 	EVP_MD_CTX *ctx;	/* signature context */
2174 	tstamp_t tstamp;
2175 	u_int	len;
2176 	const BIGNUM *q;
2177 
2178 	/*
2179 	 * The identity parameters must have correct format and content.
2180 	 */
2181 	if (peer->ident_pkey == NULL) {
2182 		msyslog(LOG_NOTICE, "crypto_alice: scheme unavailable");
2183 		return (XEVNT_ID);
2184 	}
2185 
2186 	if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) {
2187 		msyslog(LOG_NOTICE, "crypto_alice: defective key");
2188 		return (XEVNT_PUB);
2189 	}
2190 
2191 	/*
2192 	 * Roll new random r (0 < r < q).
2193 	 */
2194 	if (peer->iffval != NULL)
2195 		BN_free(peer->iffval);
2196 	peer->iffval = BN_new();
2197 	DSA_get0_pqg(dsa, NULL, &q, NULL);
2198 	len = BN_num_bytes(q);
2199 	BN_rand(peer->iffval, len * 8, -1, 1);	/* r mod q*/
2200 	bctx = BN_CTX_new();
2201 	BN_mod(peer->iffval, peer->iffval, q, bctx);
2202 	BN_CTX_free(bctx);
2203 
2204 	/*
2205 	 * Sign and send to Bob. The filestamp is from the local file.
2206 	 */
2207 	memset(vp, 0, sizeof(struct value));
2208 	tstamp = crypto_time();
2209 	vp->tstamp = htonl(tstamp);
2210 	vp->fstamp = htonl(peer->ident_pkey->fstamp);
2211 	vp->vallen = htonl(len);
2212 	vp->ptr = emalloc(len);
2213 	BN_bn2bin(peer->iffval, vp->ptr);
2214 	if (tstamp == 0)
2215 		return (XEVNT_OK);
2216 
2217 	vp->sig = emalloc(sign_siglen);
2218 	ctx = EVP_MD_CTX_new();
2219 	EVP_SignInit(ctx, sign_digest);
2220 	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2221 	EVP_SignUpdate(ctx, vp->ptr, len);
2222 	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2223 		INSIST(len <= sign_siglen);
2224 		vp->siglen = htonl(len);
2225 	}
2226 	EVP_MD_CTX_free(ctx);
2227 	return (XEVNT_OK);
2228 }
2229 
2230 
2231 /*
2232  * crypto_bob - construct Bob's response to Alice's challenge
2233  *
2234  * Returns
2235  * XEVNT_OK	success
2236  * XEVNT_ERR	protocol error
2237  * XEVNT_ID	bad or missing group key
2238  */
2239 static int
2240 crypto_bob(
2241 	struct exten *ep,	/* extension pointer */
2242 	struct value *vp	/* value pointer */
2243 	)
2244 {
2245 	DSA	*dsa;		/* IFF parameters */
2246 	DSA_SIG	*sdsa;		/* DSA signature context fake */
2247 	BN_CTX	*bctx;		/* BIGNUM context */
2248 	EVP_MD_CTX *ctx;	/* signature context */
2249 	tstamp_t tstamp;	/* NTP timestamp */
2250 	BIGNUM	*bn, *bk, *r;
2251 	u_char	*ptr;
2252 	u_int	len;		/* extension field value length */
2253 	const BIGNUM *p, *q, *g;
2254 	const BIGNUM *priv_key;
2255 
2256 	/*
2257 	 * If the IFF parameters are not valid, something awful
2258 	 * happened or we are being tormented.
2259 	 */
2260 	if (iffkey_info == NULL) {
2261 		msyslog(LOG_NOTICE, "crypto_bob: scheme unavailable");
2262 		return (XEVNT_ID);
2263 	}
2264 	dsa = EVP_PKEY_get0_DSA(iffkey_info->pkey);
2265 	DSA_get0_pqg(dsa, &p, &q, &g);
2266 	DSA_get0_key(dsa, NULL, &priv_key);
2267 
2268 	/*
2269 	 * Extract r from the challenge.
2270 	 */
2271 	len = exten_payload_size(ep);
2272 	if (len == 0 || len > MAX_VALLEN)
2273 		return (XEVNT_LEN);
2274 	if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2275 		msyslog(LOG_ERR, "crypto_bob: %s",
2276 		    ERR_error_string(ERR_get_error(), NULL));
2277 		return (XEVNT_ERR);
2278 	}
2279 
2280 	/*
2281 	 * Bob rolls random k (0 < k < q), computes y = k + b r mod q
2282 	 * and x = g^k mod p, then sends (y, hash(x)) to Alice.
2283 	 */
2284 	bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new();
2285 	sdsa = DSA_SIG_new();
2286 	BN_rand(bk, len * 8, -1, 1);		/* k */
2287 	BN_mod_mul(bn, priv_key, r, q, bctx); /* b r mod q */
2288 	BN_add(bn, bn, bk);
2289 	BN_mod(bn, bn, q, bctx);		/* k + b r mod q */
2290 	BN_mod_exp(bk, g, bk, p, bctx); /* g^k mod p */
2291 	bighash(bk, bk);
2292 	DSA_SIG_set0(sdsa, bn, bk);
2293 	BN_CTX_free(bctx);
2294 	BN_free(r);
2295 #ifdef DEBUG
2296 	if (debug > 1)
2297 		DSA_print_fp(stdout, dsa, 0);
2298 #endif
2299 
2300 	/*
2301 	 * Encode the values in ASN.1 and sign. The filestamp is from
2302 	 * the local file.
2303 	 */
2304 	len = i2d_DSA_SIG(sdsa, NULL);
2305 	if (len == 0) {
2306 		msyslog(LOG_ERR, "crypto_bob: %s",
2307 		    ERR_error_string(ERR_get_error(), NULL));
2308 		DSA_SIG_free(sdsa);
2309 		return (XEVNT_ERR);
2310 	}
2311 	if (len > MAX_VALLEN) {
2312 		msyslog(LOG_ERR, "crypto_bob: signature is too big: %u",
2313 		    len);
2314 		DSA_SIG_free(sdsa);
2315 		return (XEVNT_LEN);
2316 	}
2317 	memset(vp, 0, sizeof(struct value));
2318 	tstamp = crypto_time();
2319 	vp->tstamp = htonl(tstamp);
2320 	vp->fstamp = htonl(iffkey_info->fstamp);
2321 	vp->vallen = htonl(len);
2322 	ptr = emalloc(len);
2323 	vp->ptr = ptr;
2324 	i2d_DSA_SIG(sdsa, &ptr);
2325 	DSA_SIG_free(sdsa);
2326 	if (tstamp == 0)
2327 		return (XEVNT_OK);
2328 
2329 	/* XXX: more validation to make sure the sign fits... */
2330 	vp->sig = emalloc(sign_siglen);
2331 	ctx = EVP_MD_CTX_new();
2332 	EVP_SignInit(ctx, sign_digest);
2333 	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2334 	EVP_SignUpdate(ctx, vp->ptr, len);
2335 	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2336 		INSIST(len <= sign_siglen);
2337 		vp->siglen = htonl(len);
2338 	}
2339 	EVP_MD_CTX_free(ctx);
2340 	return (XEVNT_OK);
2341 }
2342 
2343 
2344 /*
2345  * crypto_iff - verify Bob's response to Alice's challenge
2346  *
2347  * Returns
2348  * XEVNT_OK	success
2349  * XEVNT_FSP	bad filestamp
2350  * XEVNT_ID	bad or missing group key
2351  * XEVNT_PUB	bad or missing public key
2352  */
2353 int
2354 crypto_iff(
2355 	struct exten *ep,	/* extension pointer */
2356 	struct peer *peer	/* peer structure pointer */
2357 	)
2358 {
2359 	DSA	*dsa;		/* IFF parameters */
2360 	BN_CTX	*bctx;		/* BIGNUM context */
2361 	DSA_SIG	*sdsa;		/* DSA parameters */
2362 	BIGNUM	*bn, *bk;
2363 	u_int	len;
2364 	const u_char *ptr;
2365 	int	temp;
2366 	const BIGNUM *p, *g;
2367 	const BIGNUM *r, *s;
2368 	const BIGNUM *pub_key;
2369 
2370 	/*
2371 	 * If the IFF parameters are not valid or no challenge was sent,
2372 	 * something awful happened or we are being tormented.
2373 	 */
2374 	if (peer->ident_pkey == NULL) {
2375 		msyslog(LOG_NOTICE, "crypto_iff: scheme unavailable");
2376 		return (XEVNT_ID);
2377 	}
2378 	if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) {
2379 		msyslog(LOG_NOTICE, "crypto_iff: invalid filestamp %u",
2380 		    ntohl(ep->fstamp));
2381 		return (XEVNT_FSP);
2382 	}
2383 	if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) {
2384 		msyslog(LOG_NOTICE, "crypto_iff: defective key");
2385 		return (XEVNT_PUB);
2386 	}
2387 	if (peer->iffval == NULL) {
2388 		msyslog(LOG_NOTICE, "crypto_iff: missing challenge");
2389 		return (XEVNT_ID);
2390 	}
2391 
2392 	/*
2393 	 * Extract the k + b r and g^k values from the response.
2394 	 */
2395 	bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new();
2396 	len = ntohl(ep->vallen);
2397 	ptr = (u_char *)ep->pkt;
2398 	if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) {
2399 		BN_free(bn); BN_free(bk); BN_CTX_free(bctx);
2400 		msyslog(LOG_ERR, "crypto_iff: %s",
2401 		    ERR_error_string(ERR_get_error(), NULL));
2402 		return (XEVNT_ERR);
2403 	}
2404 
2405 	/*
2406 	 * Compute g^(k + b r) g^(q - b)r mod p.
2407 	 */
2408 	DSA_get0_key(dsa, &pub_key, NULL);
2409 	DSA_get0_pqg(dsa, &p, NULL, &g);
2410 	DSA_SIG_get0(sdsa, &r, &s);
2411 	BN_mod_exp(bn, pub_key, peer->iffval, p, bctx);
2412 	BN_mod_exp(bk, g, r, p, bctx);
2413 	BN_mod_mul(bn, bn, bk, p, bctx);
2414 
2415 	/*
2416 	 * Verify the hash of the result matches hash(x).
2417 	 */
2418 	bighash(bn, bn);
2419 	temp = BN_cmp(bn, s);
2420 	BN_free(bn); BN_free(bk); BN_CTX_free(bctx);
2421 	BN_free(peer->iffval);
2422 	peer->iffval = NULL;
2423 	DSA_SIG_free(sdsa);
2424 	if (temp == 0)
2425 		return (XEVNT_OK);
2426 
2427 	msyslog(LOG_NOTICE, "crypto_iff: identity not verified");
2428 	return (XEVNT_ID);
2429 }
2430 
2431 
2432 /*
2433  ***********************************************************************
2434  *								       *
2435  * The following routines implement the Guillou-Quisquater (GQ)        *
2436  * identity scheme                                                     *
2437  *								       *
2438  ***********************************************************************
2439  *
2440  * The Guillou-Quisquater (GQ) identity scheme is intended for use when
2441  * the certificate can be used to convey public parameters. The scheme
2442  * uses a X509v3 certificate extension field do convey the public key of
2443  * a private key known only to servers. There are two kinds of files:
2444  * encrypted server files that contain private and public values and
2445  * nonencrypted client files that contain only public values. New
2446  * generations of server files must be securely transmitted to all
2447  * servers of the group; client files can be distributed by any means.
2448  * The scheme is self contained and independent of new generations of
2449  * host keys and sign keys. The scheme is self contained and independent
2450  * of new generations of host keys and sign keys.
2451  *
2452  * The GQ parameters hide in a RSA cuckoo structure which uses the same
2453  * parameters. The values are used by an identity scheme based on RSA
2454  * cryptography and described in Stimson p. 300 (with errors). The 512-
2455  * bit public modulus is n = p q, where p and q are secret large primes.
2456  * The TA rolls private random group key b as RSA exponent. These values
2457  * are known to all group members.
2458  *
2459  * When rolling new certificates, a server recomputes the private and
2460  * public keys. The private key u is a random roll, while the public key
2461  * is the inverse obscured by the group key v = (u^-1)^b. These values
2462  * replace the private and public keys normally generated by the RSA
2463  * scheme. Alice challenges Bob to confirm identity using the protocol
2464  * described below.
2465  *
2466  * How it works
2467  *
2468  * The scheme goes like this. Both Alice and Bob have the same modulus n
2469  * and some random b as the group key. These values are computed and
2470  * distributed in advance via secret means, although only the group key
2471  * b is truly secret. Each has a private random private key u and public
2472  * key (u^-1)^b, although not necessarily the same ones. Bob and Alice
2473  * can regenerate the key pair from time to time without affecting
2474  * operations. The public key is conveyed on the certificate in an
2475  * extension field; the private key is never revealed.
2476  *
2477  * Alice rolls new random challenge r and sends to Bob in the GQ
2478  * request message. Bob rolls new random k, then computes y = k u^r mod
2479  * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response
2480  * message. Besides making the response shorter, the hash makes it
2481  * effectivey impossible for an intruder to solve for b by observing
2482  * a number of these messages.
2483  *
2484  * Alice receives the response and computes y^b v^r mod n. After a bit
2485  * of algebra, this simplifies to k^b. If the hash of this result
2486  * matches hash(x), Alice knows that Bob has the group key b. The signed
2487  * response binds this knowledge to Bob's private key and the public key
2488  * previously received in his certificate.
2489  *
2490  * crypto_alice2 - construct Alice's challenge in GQ scheme
2491  *
2492  * Returns
2493  * XEVNT_OK	success
2494  * XEVNT_ID	bad or missing group key
2495  * XEVNT_PUB	bad or missing public key
2496  */
2497 static int
2498 crypto_alice2(
2499 	struct peer *peer,	/* peer pointer */
2500 	struct value *vp	/* value pointer */
2501 	)
2502 {
2503 	RSA	*rsa;		/* GQ parameters */
2504 	BN_CTX	*bctx;		/* BIGNUM context */
2505 	EVP_MD_CTX *ctx;	/* signature context */
2506 	tstamp_t tstamp;
2507 	u_int	len;
2508 	const BIGNUM *n;
2509 
2510 	/*
2511 	 * The identity parameters must have correct format and content.
2512 	 */
2513 	if (peer->ident_pkey == NULL)
2514 		return (XEVNT_ID);
2515 
2516 	if ((rsa = EVP_PKEY_get0_RSA(peer->ident_pkey->pkey)) == NULL) {
2517 		msyslog(LOG_NOTICE, "crypto_alice2: defective key");
2518 		return (XEVNT_PUB);
2519 	}
2520 
2521 	/*
2522 	 * Roll new random r (0 < r < n).
2523 	 */
2524 	if (peer->iffval != NULL)
2525 		BN_free(peer->iffval);
2526 	peer->iffval = BN_new();
2527 	RSA_get0_key(rsa, &n, NULL, NULL);
2528 	len = BN_num_bytes(n);
2529 	BN_rand(peer->iffval, len * 8, -1, 1);	/* r mod n */
2530 	bctx = BN_CTX_new();
2531 	BN_mod(peer->iffval, peer->iffval, n, bctx);
2532 	BN_CTX_free(bctx);
2533 
2534 	/*
2535 	 * Sign and send to Bob. The filestamp is from the local file.
2536 	 */
2537 	memset(vp, 0, sizeof(struct value));
2538 	tstamp = crypto_time();
2539 	vp->tstamp = htonl(tstamp);
2540 	vp->fstamp = htonl(peer->ident_pkey->fstamp);
2541 	vp->vallen = htonl(len);
2542 	vp->ptr = emalloc(len);
2543 	BN_bn2bin(peer->iffval, vp->ptr);
2544 	if (tstamp == 0)
2545 		return (XEVNT_OK);
2546 
2547 	vp->sig = emalloc(sign_siglen);
2548 	ctx = EVP_MD_CTX_new();
2549 	EVP_SignInit(ctx, sign_digest);
2550 	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2551 	EVP_SignUpdate(ctx, vp->ptr, len);
2552 	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2553 		INSIST(len <= sign_siglen);
2554 		vp->siglen = htonl(len);
2555 	}
2556 	EVP_MD_CTX_free(ctx);
2557 	return (XEVNT_OK);
2558 }
2559 
2560 
2561 /*
2562  * crypto_bob2 - construct Bob's response to Alice's challenge
2563  *
2564  * Returns
2565  * XEVNT_OK	success
2566  * XEVNT_ERR	protocol error
2567  * XEVNT_ID	bad or missing group key
2568  */
2569 static int
2570 crypto_bob2(
2571 	struct exten *ep,	/* extension pointer */
2572 	struct value *vp	/* value pointer */
2573 	)
2574 {
2575 	RSA	*rsa;		/* GQ parameters */
2576 	DSA_SIG	*sdsa;		/* DSA parameters */
2577 	BN_CTX	*bctx;		/* BIGNUM context */
2578 	EVP_MD_CTX *ctx;	/* signature context */
2579 	tstamp_t tstamp;	/* NTP timestamp */
2580 	BIGNUM	*r, *k, *g, *y;
2581 	u_char	*ptr;
2582 	u_int	len;
2583 	int	s_len;
2584 	const BIGNUM *n, *p, *e;
2585 
2586 	/*
2587 	 * If the GQ parameters are not valid, something awful
2588 	 * happened or we are being tormented.
2589 	 */
2590 	if (gqkey_info == NULL) {
2591 		msyslog(LOG_NOTICE, "crypto_bob2: scheme unavailable");
2592 		return (XEVNT_ID);
2593 	}
2594 	rsa = EVP_PKEY_get0_RSA(gqkey_info->pkey);
2595 	RSA_get0_key(rsa, &n, &p, &e);
2596 
2597 	/*
2598 	 * Extract r from the challenge.
2599 	 */
2600 	len = exten_payload_size(ep);
2601 	if (len == 0 || len > MAX_VALLEN)
2602 		return (XEVNT_LEN);
2603 	if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2604 		msyslog(LOG_ERR, "crypto_bob2: %s",
2605 		    ERR_error_string(ERR_get_error(), NULL));
2606 		return (XEVNT_ERR);
2607 	}
2608 
2609 	/*
2610 	 * Bob rolls random k (0 < k < n), computes y = k u^r mod n and
2611 	 * x = k^b mod n, then sends (y, hash(x)) to Alice.
2612 	 */
2613 	bctx = BN_CTX_new(); k = BN_new(); g = BN_new(); y = BN_new();
2614 	sdsa = DSA_SIG_new();
2615 	BN_rand(k, len * 8, -1, 1);		/* k */
2616 	BN_mod(k, k, n, bctx);
2617 	BN_mod_exp(y, p, r, n, bctx); /* u^r mod n */
2618 	BN_mod_mul(y, k, y, n, bctx);	/* k u^r mod n */
2619 	BN_mod_exp(g, k, e, n, bctx); /* k^b mod n */
2620 	bighash(g, g);
2621 	DSA_SIG_set0(sdsa, y, g);
2622 	BN_CTX_free(bctx);
2623 	BN_free(r); BN_free(k);
2624 #ifdef DEBUG
2625 	if (debug > 1)
2626 		RSA_print_fp(stdout, rsa, 0);
2627 #endif
2628 
2629 	/*
2630 	 * Encode the values in ASN.1 and sign. The filestamp is from
2631 	 * the local file.
2632 	 */
2633 	len = s_len = i2d_DSA_SIG(sdsa, NULL);
2634 	if (s_len <= 0) {
2635 		msyslog(LOG_ERR, "crypto_bob2: %s",
2636 		    ERR_error_string(ERR_get_error(), NULL));
2637 		DSA_SIG_free(sdsa);
2638 		return (XEVNT_ERR);
2639 	}
2640 	memset(vp, 0, sizeof(struct value));
2641 	tstamp = crypto_time();
2642 	vp->tstamp = htonl(tstamp);
2643 	vp->fstamp = htonl(gqkey_info->fstamp);
2644 	vp->vallen = htonl(len);
2645 	ptr = emalloc(len);
2646 	vp->ptr = ptr;
2647 	i2d_DSA_SIG(sdsa, &ptr);
2648 	DSA_SIG_free(sdsa);
2649 	if (tstamp == 0)
2650 		return (XEVNT_OK);
2651 
2652 	vp->sig = emalloc(sign_siglen);
2653 	ctx = EVP_MD_CTX_new();
2654 	EVP_SignInit(ctx, sign_digest);
2655 	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2656 	EVP_SignUpdate(ctx, vp->ptr, len);
2657 	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2658 		INSIST(len <= sign_siglen);
2659 		vp->siglen = htonl(len);
2660 	}
2661 	EVP_MD_CTX_free(ctx);
2662 	return (XEVNT_OK);
2663 }
2664 
2665 
2666 /*
2667  * crypto_gq - verify Bob's response to Alice's challenge
2668  *
2669  * Returns
2670  * XEVNT_OK	success
2671  * XEVNT_ERR	protocol error
2672  * XEVNT_FSP	bad filestamp
2673  * XEVNT_ID	bad or missing group keys
2674  * XEVNT_PUB	bad or missing public key
2675  */
2676 int
2677 crypto_gq(
2678 	struct exten *ep,	/* extension pointer */
2679 	struct peer *peer	/* peer structure pointer */
2680 	)
2681 {
2682 	RSA	*rsa;		/* GQ parameters */
2683 	BN_CTX	*bctx;		/* BIGNUM context */
2684 	DSA_SIG	*sdsa;		/* RSA signature context fake */
2685 	BIGNUM	*y, *v;
2686 	const u_char *ptr;
2687 	long	len;
2688 	u_int	temp;
2689 	const BIGNUM *n, *e;
2690 	const BIGNUM *r, *s;
2691 
2692 	/*
2693 	 * If the GQ parameters are not valid or no challenge was sent,
2694 	 * something awful happened or we are being tormented. Note that
2695 	 * the filestamp on the local key file can be greater than on
2696 	 * the remote parameter file if the keys have been refreshed.
2697 	 */
2698 	if (peer->ident_pkey == NULL) {
2699 		msyslog(LOG_NOTICE, "crypto_gq: scheme unavailable");
2700 		return (XEVNT_ID);
2701 	}
2702 	if (ntohl(ep->fstamp) < peer->ident_pkey->fstamp) {
2703 		msyslog(LOG_NOTICE, "crypto_gq: invalid filestamp %u",
2704 		    ntohl(ep->fstamp));
2705 		return (XEVNT_FSP);
2706 	}
2707 	if ((rsa = EVP_PKEY_get0_RSA(peer->ident_pkey->pkey)) == NULL) {
2708 		msyslog(LOG_NOTICE, "crypto_gq: defective key");
2709 		return (XEVNT_PUB);
2710 	}
2711 	RSA_get0_key(rsa, &n, NULL, &e);
2712 	if (peer->iffval == NULL) {
2713 		msyslog(LOG_NOTICE, "crypto_gq: missing challenge");
2714 		return (XEVNT_ID);
2715 	}
2716 
2717 	/*
2718 	 * Extract the y = k u^r and hash(x = k^b) values from the
2719 	 * response.
2720 	 */
2721 	bctx = BN_CTX_new(); y = BN_new(); v = BN_new();
2722 	len = ntohl(ep->vallen);
2723 	ptr = (u_char *)ep->pkt;
2724 	if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) {
2725 		BN_CTX_free(bctx); BN_free(y); BN_free(v);
2726 		msyslog(LOG_ERR, "crypto_gq: %s",
2727 		    ERR_error_string(ERR_get_error(), NULL));
2728 		return (XEVNT_ERR);
2729 	}
2730 	DSA_SIG_get0(sdsa, &r, &s);
2731 
2732 	/*
2733 	 * Compute v^r y^b mod n.
2734 	 */
2735 	if (peer->grpkey == NULL) {
2736 		msyslog(LOG_NOTICE, "crypto_gq: missing group key");
2737 		return (XEVNT_ID);
2738 	}
2739 	BN_mod_exp(v, peer->grpkey, peer->iffval, n, bctx);
2740 						/* v^r mod n */
2741 	BN_mod_exp(y, r, e, n, bctx); /* y^b mod n */
2742 	BN_mod_mul(y, v, y, n, bctx);	/* v^r y^b mod n */
2743 
2744 	/*
2745 	 * Verify the hash of the result matches hash(x).
2746 	 */
2747 	bighash(y, y);
2748 	temp = BN_cmp(y, s);
2749 	BN_CTX_free(bctx); BN_free(y); BN_free(v);
2750 	BN_free(peer->iffval);
2751 	peer->iffval = NULL;
2752 	DSA_SIG_free(sdsa);
2753 	if (temp == 0)
2754 		return (XEVNT_OK);
2755 
2756 	msyslog(LOG_NOTICE, "crypto_gq: identity not verified");
2757 	return (XEVNT_ID);
2758 }
2759 
2760 
2761 /*
2762  ***********************************************************************
2763  *								       *
2764  * The following routines implement the Mu-Varadharajan (MV) identity  *
2765  * scheme                                                              *
2766  *								       *
2767  ***********************************************************************
2768  *
2769  * The Mu-Varadharajan (MV) cryptosystem was originally intended when
2770  * servers broadcast messages to clients, but clients never send
2771  * messages to servers. There is one encryption key for the server and a
2772  * separate decryption key for each client. It operated something like a
2773  * pay-per-view satellite broadcasting system where the session key is
2774  * encrypted by the broadcaster and the decryption keys are held in a
2775  * tamperproof set-top box.
2776  *
2777  * The MV parameters and private encryption key hide in a DSA cuckoo
2778  * structure which uses the same parameters, but generated in a
2779  * different way. The values are used in an encryption scheme similar to
2780  * El Gamal cryptography and a polynomial formed from the expansion of
2781  * product terms (x - x[j]), as described in Mu, Y., and V.
2782  * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001,
2783  * 223-231. The paper has significant errors and serious omissions.
2784  *
2785  * Let q be the product of n distinct primes s1[j] (j = 1...n), where
2786  * each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so
2787  * that q and each s1[j] divide p - 1 and p has M = n * m + 1
2788  * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1)
2789  * = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then
2790  * project into Zp* as exponents of g. Sometimes we have to compute an
2791  * inverse b^-1 of random b in Zq, but for that purpose we require
2792  * gcd(b, q) = 1. We expect M to be in the 500-bit range and n
2793  * relatively small, like 30. These are the parameters of the scheme and
2794  * they are expensive to compute.
2795  *
2796  * We set up an instance of the scheme as follows. A set of random
2797  * values x[j] mod q (j = 1...n), are generated as the zeros of a
2798  * polynomial of order n. The product terms (x - x[j]) are expanded to
2799  * form coefficients a[i] mod q (i = 0...n) in powers of x. These are
2800  * used as exponents of the generator g mod p to generate the private
2801  * encryption key A. The pair (gbar, ghat) of public server keys and the
2802  * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used
2803  * to construct the decryption keys. The devil is in the details.
2804  *
2805  * This routine generates a private server encryption file including the
2806  * private encryption key E and partial decryption keys gbar and ghat.
2807  * It then generates public client decryption files including the public
2808  * keys xbar[j] and xhat[j] for each client j. The partial decryption
2809  * files are used to compute the inverse of E. These values are suitably
2810  * blinded so secrets are not revealed.
2811  *
2812  * The distinguishing characteristic of this scheme is the capability to
2813  * revoke keys. Included in the calculation of E, gbar and ghat is the
2814  * product s = prod(s1[j]) (j = 1...n) above. If the factor s1[j] is
2815  * subsequently removed from the product and E, gbar and ghat
2816  * recomputed, the jth client will no longer be able to compute E^-1 and
2817  * thus unable to decrypt the messageblock.
2818  *
2819  * How it works
2820  *
2821  * The scheme goes like this. Bob has the server values (p, E, q, gbar,
2822  * ghat) and Alice has the client values (p, xbar, xhat).
2823  *
2824  * Alice rolls new random nonce r mod p and sends to Bob in the MV
2825  * request message. Bob rolls random nonce k mod q, encrypts y = r E^k
2826  * mod p and sends (y, gbar^k, ghat^k) to Alice.
2827  *
2828  * Alice receives the response and computes the inverse (E^k)^-1 from
2829  * the partial decryption keys gbar^k, ghat^k, xbar and xhat. She then
2830  * decrypts y and verifies it matches the original r. The signed
2831  * response binds this knowledge to Bob's private key and the public key
2832  * previously received in his certificate.
2833  *
2834  * crypto_alice3 - construct Alice's challenge in MV scheme
2835  *
2836  * Returns
2837  * XEVNT_OK	success
2838  * XEVNT_ID	bad or missing group key
2839  * XEVNT_PUB	bad or missing public key
2840  */
2841 static int
2842 crypto_alice3(
2843 	struct peer *peer,	/* peer pointer */
2844 	struct value *vp	/* value pointer */
2845 	)
2846 {
2847 	DSA	*dsa;		/* MV parameters */
2848 	BN_CTX	*bctx;		/* BIGNUM context */
2849 	EVP_MD_CTX *ctx;	/* signature context */
2850 	tstamp_t tstamp;
2851 	u_int	len;
2852 	const BIGNUM *p;
2853 
2854 	/*
2855 	 * The identity parameters must have correct format and content.
2856 	 */
2857 	if (peer->ident_pkey == NULL)
2858 		return (XEVNT_ID);
2859 
2860 	if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) {
2861 		msyslog(LOG_NOTICE, "crypto_alice3: defective key");
2862 		return (XEVNT_PUB);
2863 	}
2864 	DSA_get0_pqg(dsa, &p, NULL, NULL);
2865 
2866 	/*
2867 	 * Roll new random r (0 < r < q).
2868 	 */
2869 	if (peer->iffval != NULL)
2870 		BN_free(peer->iffval);
2871 	peer->iffval = BN_new();
2872 	len = BN_num_bytes(p);
2873 	BN_rand(peer->iffval, len * 8, -1, 1);	/* r mod p */
2874 	bctx = BN_CTX_new();
2875 	BN_mod(peer->iffval, peer->iffval, p, bctx);
2876 	BN_CTX_free(bctx);
2877 
2878 	/*
2879 	 * Sign and send to Bob. The filestamp is from the local file.
2880 	 */
2881 	memset(vp, 0, sizeof(struct value));
2882 	tstamp = crypto_time();
2883 	vp->tstamp = htonl(tstamp);
2884 	vp->fstamp = htonl(peer->ident_pkey->fstamp);
2885 	vp->vallen = htonl(len);
2886 	vp->ptr = emalloc(len);
2887 	BN_bn2bin(peer->iffval, vp->ptr);
2888 	if (tstamp == 0)
2889 		return (XEVNT_OK);
2890 
2891 	vp->sig = emalloc(sign_siglen);
2892 	ctx = EVP_MD_CTX_new();
2893 	EVP_SignInit(ctx, sign_digest);
2894 	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2895 	EVP_SignUpdate(ctx, vp->ptr, len);
2896 	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2897 		INSIST(len <= sign_siglen);
2898 		vp->siglen = htonl(len);
2899 	}
2900 	EVP_MD_CTX_free(ctx);
2901 	return (XEVNT_OK);
2902 }
2903 
2904 
2905 /*
2906  * crypto_bob3 - construct Bob's response to Alice's challenge
2907  *
2908  * Returns
2909  * XEVNT_OK	success
2910  * XEVNT_ERR	protocol error
2911  */
2912 static int
2913 crypto_bob3(
2914 	struct exten *ep,	/* extension pointer */
2915 	struct value *vp	/* value pointer */
2916 	)
2917 {
2918 	DSA	*dsa;		/* MV parameters */
2919 	DSA	*sdsa;		/* DSA signature context fake */
2920 	BN_CTX	*bctx;		/* BIGNUM context */
2921 	EVP_MD_CTX *ctx;	/* signature context */
2922 	tstamp_t tstamp;	/* NTP timestamp */
2923 	BIGNUM	*r, *k, *u;
2924 	u_char	*ptr;
2925 	u_int	len;
2926 	const BIGNUM *p, *q, *g;
2927 	const BIGNUM *pub_key, *priv_key;
2928 	BIGNUM *sp, *sq, *sg;
2929 
2930 	/*
2931 	 * If the MV parameters are not valid, something awful
2932 	 * happened or we are being tormented.
2933 	 */
2934 	if (mvkey_info == NULL) {
2935 		msyslog(LOG_NOTICE, "crypto_bob3: scheme unavailable");
2936 		return (XEVNT_ID);
2937 	}
2938 	dsa = EVP_PKEY_get0_DSA(mvkey_info->pkey);
2939 	DSA_get0_pqg(dsa, &p, &q, &g);
2940 	DSA_get0_key(dsa, &pub_key, &priv_key);
2941 
2942 	/*
2943 	 * Extract r from the challenge.
2944 	 */
2945 	len = exten_payload_size(ep);
2946 	if (len == 0 || len > MAX_VALLEN)
2947 		return (XEVNT_LEN);
2948 	if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2949 		msyslog(LOG_ERR, "crypto_bob3: %s",
2950 		    ERR_error_string(ERR_get_error(), NULL));
2951 		return (XEVNT_ERR);
2952 	}
2953 
2954 	/*
2955 	 * Bob rolls random k (0 < k < q), making sure it is not a
2956 	 * factor of q. He then computes y = r A^k and sends (y, gbar^k,
2957 	 * and ghat^k) to Alice.
2958 	 */
2959 	bctx = BN_CTX_new(); k = BN_new(); u = BN_new();
2960 	sdsa = DSA_new();
2961 	sp = BN_new(); sq = BN_new(); sg = BN_new();
2962 	while (1) {
2963 		BN_rand(k, BN_num_bits(q), 0, 0);
2964 		BN_mod(k, k, q, bctx);
2965 		BN_gcd(u, k, q, bctx);
2966 		if (BN_is_one(u))
2967 			break;
2968 	}
2969 	BN_mod_exp(u, g, k, p, bctx); /* A^k r */
2970 	BN_mod_mul(sp, u, r, p, bctx);
2971 	BN_mod_exp(sq, priv_key, k, p, bctx); /* gbar */
2972 	BN_mod_exp(sg, pub_key, k, p, bctx); /* ghat */
2973 	DSA_set0_key(sdsa, BN_dup(pub_key), NULL);
2974 	DSA_set0_pqg(sdsa, sp, sq, sg);
2975 	BN_CTX_free(bctx); BN_free(k); BN_free(r); BN_free(u);
2976 #ifdef DEBUG
2977 	if (debug > 1)
2978 		DSA_print_fp(stdout, sdsa, 0);
2979 #endif
2980 
2981 	/*
2982 	 * Encode the values in ASN.1 and sign. The filestamp is from
2983 	 * the local file.
2984 	 */
2985 	memset(vp, 0, sizeof(struct value));
2986 	tstamp = crypto_time();
2987 	vp->tstamp = htonl(tstamp);
2988 	vp->fstamp = htonl(mvkey_info->fstamp);
2989 	len = i2d_DSAparams(sdsa, NULL);
2990 	if (len == 0) {
2991 		msyslog(LOG_ERR, "crypto_bob3: %s",
2992 		    ERR_error_string(ERR_get_error(), NULL));
2993 		DSA_free(sdsa);
2994 		return (XEVNT_ERR);
2995 	}
2996 	vp->vallen = htonl(len);
2997 	ptr = emalloc(len);
2998 	vp->ptr = ptr;
2999 	i2d_DSAparams(sdsa, &ptr);
3000 	DSA_free(sdsa);
3001 	if (tstamp == 0)
3002 		return (XEVNT_OK);
3003 
3004 	vp->sig = emalloc(sign_siglen);
3005 	ctx = EVP_MD_CTX_new();
3006 	EVP_SignInit(ctx, sign_digest);
3007 	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
3008 	EVP_SignUpdate(ctx, vp->ptr, len);
3009 	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
3010 		INSIST(len <= sign_siglen);
3011 		vp->siglen = htonl(len);
3012 	}
3013 	EVP_MD_CTX_free(ctx);
3014 	return (XEVNT_OK);
3015 }
3016 
3017 
3018 /*
3019  * crypto_mv - verify Bob's response to Alice's challenge
3020  *
3021  * Returns
3022  * XEVNT_OK	success
3023  * XEVNT_ERR	protocol error
3024  * XEVNT_FSP	bad filestamp
3025  * XEVNT_ID	bad or missing group key
3026  * XEVNT_PUB	bad or missing public key
3027  */
3028 int
3029 crypto_mv(
3030 	struct exten *ep,	/* extension pointer */
3031 	struct peer *peer	/* peer structure pointer */
3032 	)
3033 {
3034 	DSA	*dsa;		/* MV parameters */
3035 	DSA	*sdsa;		/* DSA parameters */
3036 	BN_CTX	*bctx;		/* BIGNUM context */
3037 	BIGNUM	*k, *u, *v;
3038 	u_int	len;
3039 	const u_char *ptr;
3040 	int	temp;
3041 	const BIGNUM *p;
3042 	const BIGNUM *pub_key, *priv_key;
3043 	const BIGNUM *sp, *sq, *sg;
3044 
3045 	/*
3046 	 * If the MV parameters are not valid or no challenge was sent,
3047 	 * something awful happened or we are being tormented.
3048 	 */
3049 	if (peer->ident_pkey == NULL) {
3050 		msyslog(LOG_NOTICE, "crypto_mv: scheme unavailable");
3051 		return (XEVNT_ID);
3052 	}
3053 	if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) {
3054 		msyslog(LOG_NOTICE, "crypto_mv: invalid filestamp %u",
3055 		    ntohl(ep->fstamp));
3056 		return (XEVNT_FSP);
3057 	}
3058 	if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) {
3059 		msyslog(LOG_NOTICE, "crypto_mv: defective key");
3060 		return (XEVNT_PUB);
3061 	}
3062 	DSA_get0_pqg(dsa, &p, NULL, NULL);
3063 	DSA_get0_key(dsa, &pub_key, &priv_key);
3064 	if (peer->iffval == NULL) {
3065 		msyslog(LOG_NOTICE, "crypto_mv: missing challenge");
3066 		return (XEVNT_ID);
3067 	}
3068 
3069 	/*
3070 	 * Extract the y, gbar and ghat values from the response.
3071 	 */
3072 	bctx = BN_CTX_new(); k = BN_new(); u = BN_new(); v = BN_new();
3073 	len = ntohl(ep->vallen);
3074 	ptr = (u_char *)ep->pkt;
3075 	if ((sdsa = d2i_DSAparams(NULL, &ptr, len)) == NULL) {
3076 		msyslog(LOG_ERR, "crypto_mv: %s",
3077 		    ERR_error_string(ERR_get_error(), NULL));
3078 		return (XEVNT_ERR);
3079 	}
3080 	DSA_get0_pqg(sdsa, &sp, &sq, &sg);
3081 
3082 	/*
3083 	 * Compute (gbar^xhat ghat^xbar) mod p.
3084 	 */
3085 	BN_mod_exp(u, sq, pub_key, p, bctx);
3086 	BN_mod_exp(v, sg, priv_key, p, bctx);
3087 	BN_mod_mul(u, u, v, p, bctx);
3088 	BN_mod_mul(u, u, sp, p, bctx);
3089 
3090 	/*
3091 	 * The result should match r.
3092 	 */
3093 	temp = BN_cmp(u, peer->iffval);
3094 	BN_CTX_free(bctx); BN_free(k); BN_free(u); BN_free(v);
3095 	BN_free(peer->iffval);
3096 	peer->iffval = NULL;
3097 	DSA_free(sdsa);
3098 	if (temp == 0)
3099 		return (XEVNT_OK);
3100 
3101 	msyslog(LOG_NOTICE, "crypto_mv: identity not verified");
3102 	return (XEVNT_ID);
3103 }
3104 
3105 
3106 /*
3107  ***********************************************************************
3108  *								       *
3109  * The following routines are used to manipulate certificates          *
3110  *								       *
3111  ***********************************************************************
3112  */
3113 /*
3114  * cert_sign - sign x509 certificate equest and update value structure.
3115  *
3116  * The certificate request includes a copy of the host certificate,
3117  * which includes the version number, subject name and public key of the
3118  * host. The resulting certificate includes these values plus the
3119  * serial number, issuer name and valid interval of the server. The
3120  * valid interval extends from the current time to the same time one
3121  * year hence. This may extend the life of the signed certificate beyond
3122  * that of the signer certificate.
3123  *
3124  * It is convenient to use the NTP seconds of the current time as the
3125  * serial number. In the value structure the timestamp is the current
3126  * time and the filestamp is taken from the extension field. Note this
3127  * routine is called only when the client clock is synchronized to a
3128  * proventic source, so timestamp comparisons are valid.
3129  *
3130  * The host certificate is valid from the time it was generated for a
3131  * period of one year. A signed certificate is valid from the time of
3132  * signature for a period of one year, but only the host certificate (or
3133  * sign certificate if used) is actually used to encrypt and decrypt
3134  * signatures. The signature trail is built from the client via the
3135  * intermediate servers to the trusted server. Each signature on the
3136  * trail must be valid at the time of signature, but it could happen
3137  * that a signer certificate expire before the signed certificate, which
3138  * remains valid until its expiration.
3139  *
3140  * Returns
3141  * XEVNT_OK	success
3142  * XEVNT_CRT	bad or missing certificate
3143  * XEVNT_PER	host certificate expired
3144  * XEVNT_PUB	bad or missing public key
3145  * XEVNT_VFY	certificate not verified
3146  */
3147 static int
3148 cert_sign(
3149 	struct exten *ep,	/* extension field pointer */
3150 	struct value *vp	/* value pointer */
3151 	)
3152 {
3153 	X509	*req;		/* X509 certificate request */
3154 	X509	*cert;		/* X509 certificate */
3155 	X509_EXTENSION *ext;	/* certificate extension */
3156 	ASN1_INTEGER *serial;	/* serial number */
3157 	X509_NAME *subj;	/* distinguished (common) name */
3158 	EVP_PKEY *pkey;		/* public key */
3159 	EVP_MD_CTX *ctx;	/* message digest context */
3160 	tstamp_t tstamp;	/* NTP timestamp */
3161 	struct calendar tscal;
3162 	u_int	len;
3163 	const u_char *cptr;
3164 	u_char *ptr;
3165 	int	i, temp;
3166 
3167 	/*
3168 	 * Decode ASN.1 objects and construct certificate structure.
3169 	 * Make sure the system clock is synchronized to a proventic
3170 	 * source.
3171 	 */
3172 	tstamp = crypto_time();
3173 	if (tstamp == 0)
3174 		return (XEVNT_TSP);
3175 
3176 	len = exten_payload_size(ep);
3177 	if (len == 0 || len > MAX_VALLEN)
3178 		return (XEVNT_LEN);
3179 	cptr = (void *)ep->pkt;
3180 	if ((req = d2i_X509(NULL, &cptr, len)) == NULL) {
3181 		msyslog(LOG_ERR, "cert_sign: %s",
3182 		    ERR_error_string(ERR_get_error(), NULL));
3183 		return (XEVNT_CRT);
3184 	}
3185 	/*
3186 	 * Extract public key and check for errors.
3187 	 */
3188 	if ((pkey = X509_get_pubkey(req)) == NULL) {
3189 		msyslog(LOG_ERR, "cert_sign: %s",
3190 		    ERR_error_string(ERR_get_error(), NULL));
3191 		X509_free(req);
3192 		return (XEVNT_PUB);
3193 	}
3194 
3195 	/*
3196 	 * Generate X509 certificate signed by this server. If this is a
3197 	 * trusted host, the issuer name is the group name; otherwise,
3198 	 * it is the host name. Also copy any extensions that might be
3199 	 * present.
3200 	 */
3201 	cert = X509_new();
3202 	X509_set_version(cert, X509_get_version(req));
3203 	serial = ASN1_INTEGER_new();
3204 	ASN1_INTEGER_set(serial, tstamp);
3205 	X509_set_serialNumber(cert, serial);
3206 	X509_gmtime_adj(X509_getm_notBefore(cert), 0L);
3207 	X509_gmtime_adj(X509_getm_notAfter(cert), YEAR);
3208 	subj = X509_get_issuer_name(cert);
3209 	X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
3210 	    hostval.ptr, strlen((const char *)hostval.ptr), -1, 0);
3211 	subj = X509_get_subject_name(req);
3212 	X509_set_subject_name(cert, subj);
3213 	X509_set_pubkey(cert, pkey);
3214 	temp = X509_get_ext_count(req);
3215 	for (i = 0; i < temp; i++) {
3216 		ext = X509_get_ext(req, i);
3217 		INSIST(X509_add_ext(cert, ext, -1));
3218 	}
3219 	X509_free(req);
3220 
3221 	/*
3222 	 * Sign and verify the client certificate, but only if the host
3223 	 * certificate has not expired.
3224 	 */
3225 	(void)ntpcal_ntp_to_date(&tscal, tstamp, NULL);
3226 	if ((calcomp(&tscal, &(cert_host->first)) < 0)
3227 	|| (calcomp(&tscal, &(cert_host->last)) > 0)) {
3228 		X509_free(cert);
3229 		return (XEVNT_PER);
3230 	}
3231 	X509_sign(cert, sign_pkey, sign_digest);
3232 	if (X509_verify(cert, sign_pkey) <= 0) {
3233 		msyslog(LOG_ERR, "cert_sign: %s",
3234 		    ERR_error_string(ERR_get_error(), NULL));
3235 		X509_free(cert);
3236 		return (XEVNT_VFY);
3237 	}
3238 	len = i2d_X509(cert, NULL);
3239 
3240 	/*
3241 	 * Build and sign the value structure. We have to sign it here,
3242 	 * since the response has to be returned right away. This is a
3243 	 * clogging hazard.
3244 	 */
3245 	memset(vp, 0, sizeof(struct value));
3246 	vp->tstamp = htonl(tstamp);
3247 	vp->fstamp = ep->fstamp;
3248 	vp->vallen = htonl(len);
3249 	vp->ptr = emalloc(len);
3250 	ptr = vp->ptr;
3251 	i2d_X509(cert, (unsigned char **)(intptr_t)&ptr);
3252 	vp->siglen = 0;
3253 	if (tstamp != 0) {
3254 		vp->sig = emalloc(sign_siglen);
3255 		ctx = EVP_MD_CTX_new();
3256 		EVP_SignInit(ctx, sign_digest);
3257 		EVP_SignUpdate(ctx, (u_char *)vp, 12);
3258 		EVP_SignUpdate(ctx, vp->ptr, len);
3259 		if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
3260 			INSIST(len <= sign_siglen);
3261 			vp->siglen = htonl(len);
3262 		}
3263 		EVP_MD_CTX_free(ctx);
3264 	}
3265 #ifdef DEBUG
3266 	if (debug > 1)
3267 		X509_print_fp(stdout, cert);
3268 #endif
3269 	X509_free(cert);
3270 	return (XEVNT_OK);
3271 }
3272 
3273 
3274 /*
3275  * cert_install - install certificate in certificate cache
3276  *
3277  * This routine encodes an extension field into a certificate info/value
3278  * structure. It searches the certificate list for duplicates and
3279  * expunges whichever is older. Finally, it inserts this certificate
3280  * first on the list.
3281  *
3282  * Returns certificate info pointer if valid, NULL if not.
3283  */
3284 struct cert_info *
3285 cert_install(
3286 	struct exten *ep,	/* cert info/value */
3287 	struct peer *peer	/* peer structure */
3288 	)
3289 {
3290 	struct cert_info *cp, *xp, **zp;
3291 
3292 	/*
3293 	 * Parse and validate the signed certificate. If valid,
3294 	 * construct the info/value structure; otherwise, scamper home
3295 	 * empty handed.
3296 	 */
3297 	if ((cp = cert_parse((u_char *)ep->pkt, (long)ntohl(ep->vallen),
3298 	    (tstamp_t)ntohl(ep->fstamp))) == NULL)
3299 		return (NULL);
3300 
3301 	/*
3302 	 * Scan certificate list looking for another certificate with
3303 	 * the same subject and issuer. If another is found with the
3304 	 * same or older filestamp, unlink it and return the goodies to
3305 	 * the heap. If another is found with a later filestamp, discard
3306 	 * the new one and leave the building with the old one.
3307 	 *
3308 	 * Make a note to study this issue again. An earlier certificate
3309 	 * with a long lifetime might be overtaken by a later
3310 	 * certificate with a short lifetime, thus invalidating the
3311 	 * earlier signature. However, we gotta find a way to leak old
3312 	 * stuff from the cache, so we do it anyway.
3313 	 */
3314 	zp = &cinfo;
3315 	for (xp = cinfo; xp != NULL; xp = xp->link) {
3316 		if (strcmp(cp->subject, xp->subject) == 0 &&
3317 		    strcmp(cp->issuer, xp->issuer) == 0) {
3318 			if (ntohl(cp->cert.fstamp) <=
3319 			    ntohl(xp->cert.fstamp)) {
3320 				cert_free(cp);
3321 				cp = xp;
3322 			} else {
3323 				*zp = xp->link;
3324 				cert_free(xp);
3325 				xp = NULL;
3326 			}
3327 			break;
3328 		}
3329 		zp = &xp->link;
3330 	}
3331 	if (xp == NULL) {
3332 		cp->link = cinfo;
3333 		cinfo = cp;
3334 	}
3335 	cp->flags |= CERT_VALID;
3336 	crypto_update();
3337 	return (cp);
3338 }
3339 
3340 
3341 /*
3342  * cert_hike - verify the signature using the issuer public key
3343  *
3344  * Returns
3345  * XEVNT_OK	success
3346  * XEVNT_CRT	bad or missing certificate
3347  * XEVNT_PER	host certificate expired
3348  * XEVNT_VFY	certificate not verified
3349  */
3350 int
3351 cert_hike(
3352 	struct peer *peer,	/* peer structure pointer */
3353 	struct cert_info *yp	/* issuer certificate */
3354 	)
3355 {
3356 	struct cert_info *xp;	/* subject certificate */
3357 	X509	*cert;		/* X509 certificate */
3358 	const u_char *ptr;
3359 
3360 	/*
3361 	 * Save the issuer on the new certificate, but remember the old
3362 	 * one.
3363 	 */
3364 	if (peer->issuer != NULL)
3365 		free(peer->issuer);
3366 	peer->issuer = estrdup(yp->issuer);
3367 	xp = peer->xinfo;
3368 	peer->xinfo = yp;
3369 
3370 	/*
3371 	 * If subject Y matches issuer Y, then the certificate trail is
3372 	 * complete. If Y is not trusted, the server certificate has yet
3373 	 * been signed, so keep trying. Otherwise, save the group key
3374 	 * and light the valid bit. If the host certificate is trusted,
3375 	 * do not execute a sign exchange. If no identity scheme is in
3376 	 * use, light the identity and proventic bits.
3377 	 */
3378 	if (strcmp(yp->subject, yp->issuer) == 0) {
3379 		if (!(yp->flags & CERT_TRUST))
3380 			return (XEVNT_OK);
3381 
3382 		/*
3383 		 * If the server has an an identity scheme, fetch the
3384 		 * identity credentials. If not, the identity is
3385 		 * verified only by the trusted certificate. The next
3386 		 * signature will set the server proventic.
3387 		 */
3388 		peer->crypto |= CRYPTO_FLAG_CERT;
3389 		peer->grpkey = yp->grpkey;
3390 		if (peer->ident == NULL || !(peer->crypto &
3391 		    CRYPTO_FLAG_MASK))
3392 			peer->crypto |= CRYPTO_FLAG_VRFY;
3393 	}
3394 
3395 	/*
3396 	 * If X exists, verify signature X using public key Y.
3397 	 */
3398 	if (xp == NULL)
3399 		return (XEVNT_OK);
3400 
3401 	ptr = (u_char *)xp->cert.ptr;
3402 	cert = d2i_X509(NULL, &ptr, ntohl(xp->cert.vallen));
3403 	if (cert == NULL) {
3404 		xp->flags |= CERT_ERROR;
3405 		return (XEVNT_CRT);
3406 	}
3407 	if (X509_verify(cert, yp->pkey) <= 0) {
3408 		X509_free(cert);
3409 		xp->flags |= CERT_ERROR;
3410 		return (XEVNT_VFY);
3411 	}
3412 	X509_free(cert);
3413 
3414 	/*
3415 	 * Signature X is valid only if it begins during the
3416 	 * lifetime of Y.
3417 	 */
3418 	if ((calcomp(&(xp->first), &(yp->first)) < 0)
3419 	|| (calcomp(&(xp->first), &(yp->last)) > 0)) {
3420 		xp->flags |= CERT_ERROR;
3421 		return (XEVNT_PER);
3422 	}
3423 	xp->flags |= CERT_SIGN;
3424 	return (XEVNT_OK);
3425 }
3426 
3427 
3428 /*
3429  * cert_parse - parse x509 certificate and create info/value structures.
3430  *
3431  * The server certificate includes the version number, issuer name,
3432  * subject name, public key and valid date interval. If the issuer name
3433  * is the same as the subject name, the certificate is self signed and
3434  * valid only if the server is configured as trustable. If the names are
3435  * different, another issuer has signed the server certificate and
3436  * vouched for it. In this case the server certificate is valid if
3437  * verified by the issuer public key.
3438  *
3439  * Returns certificate info/value pointer if valid, NULL if not.
3440  */
3441 struct cert_info *		/* certificate information structure */
3442 cert_parse(
3443 	const u_char *asn1cert,	/* X509 certificate */
3444 	long	len,		/* certificate length */
3445 	tstamp_t fstamp		/* filestamp */
3446 	)
3447 {
3448 	X509	*cert;		/* X509 certificate */
3449 	struct cert_info *ret;	/* certificate info/value */
3450 	BIO	*bp;
3451 	char	pathbuf[MAXFILENAME];
3452 	const u_char *ptr;
3453 	char	*pch;
3454 	int	cnt, i;
3455 	struct calendar fscal;
3456 
3457 	/*
3458 	 * Decode ASN.1 objects and construct certificate structure.
3459 	 */
3460 	ptr = asn1cert;
3461 	if ((cert = d2i_X509(NULL, &ptr, len)) == NULL) {
3462 		msyslog(LOG_ERR, "cert_parse: %s",
3463 		    ERR_error_string(ERR_get_error(), NULL));
3464 		return (NULL);
3465 	}
3466 #ifdef DEBUG
3467 	if (debug > 1)
3468 		X509_print_fp(stdout, cert);
3469 #endif
3470 
3471 	/*
3472 	 * Extract version, subject name and public key.
3473 	 */
3474 	ret = emalloc_zero(sizeof(*ret));
3475 	if ((ret->pkey = X509_get_pubkey(cert)) == NULL) {
3476 		msyslog(LOG_ERR, "cert_parse: %s",
3477 		    ERR_error_string(ERR_get_error(), NULL));
3478 		cert_free(ret);
3479 		X509_free(cert);
3480 		return (NULL);
3481 	}
3482 	ret->version = X509_get_version(cert);
3483 	X509_NAME_oneline(X509_get_subject_name(cert), pathbuf,
3484 	    sizeof(pathbuf));
3485 	pch = strstr(pathbuf, "CN=");
3486 	if (NULL == pch) {
3487 		msyslog(LOG_NOTICE, "cert_parse: invalid subject %s",
3488 		    pathbuf);
3489 		cert_free(ret);
3490 		X509_free(cert);
3491 		return (NULL);
3492 	}
3493 	ret->subject = estrdup(pch + 3);
3494 
3495 	/*
3496 	 * Extract remaining objects. Note that the NTP serial number is
3497 	 * the NTP seconds at the time of signing, but this might not be
3498 	 * the case for other authority. We don't bother to check the
3499 	 * objects at this time, since the real crunch can happen only
3500 	 * when the time is valid but not yet certificated.
3501 	 */
3502 	ret->nid = X509_get_signature_nid(cert);
3503 	ret->digest = (const EVP_MD *)EVP_get_digestbynid(ret->nid);
3504 	ret->serial =
3505 	    (u_long)ASN1_INTEGER_get(X509_get_serialNumber(cert));
3506 	X509_NAME_oneline(X509_get_issuer_name(cert), pathbuf,
3507 	    sizeof(pathbuf));
3508 	if ((pch = strstr(pathbuf, "CN=")) == NULL) {
3509 		msyslog(LOG_NOTICE, "cert_parse: invalid issuer %s",
3510 		    pathbuf);
3511 		cert_free(ret);
3512 		X509_free(cert);
3513 		return (NULL);
3514 	}
3515 	ret->issuer = estrdup(pch + 3);
3516 	asn_to_calendar(X509_get0_notBefore(cert), &(ret->first));
3517 	asn_to_calendar(X509_get0_notAfter(cert), &(ret->last));
3518 
3519 	/*
3520 	 * Extract extension fields. These are ad hoc ripoffs of
3521 	 * currently assigned functions and will certainly be changed
3522 	 * before prime time.
3523 	 */
3524 	cnt = X509_get_ext_count(cert);
3525 	for (i = 0; i < cnt; i++) {
3526 		X509_EXTENSION *ext;
3527 		ASN1_OBJECT *obj;
3528 		int nid;
3529 		ASN1_OCTET_STRING *data;
3530 
3531 		ext = X509_get_ext(cert, i);
3532 		obj = X509_EXTENSION_get_object(ext);
3533 		nid = OBJ_obj2nid(obj);
3534 
3535 		switch (nid) {
3536 
3537 		/*
3538 		 * If a key_usage field is present, we decode whether
3539 		 * this is a trusted or private certificate. This is
3540 		 * dorky; all we want is to compare NIDs, but OpenSSL
3541 		 * insists on BIO text strings.
3542 		 */
3543 		case NID_ext_key_usage:
3544 			bp = BIO_new(BIO_s_mem());
3545 			X509V3_EXT_print(bp, ext, 0, 0);
3546 			BIO_gets(bp, pathbuf, sizeof(pathbuf));
3547 			BIO_free(bp);
3548 			if (strcmp(pathbuf, "Trust Root") == 0)
3549 				ret->flags |= CERT_TRUST;
3550 			else if (strcmp(pathbuf, "Private") == 0)
3551 				ret->flags |= CERT_PRIV;
3552 			DPRINTF(1, ("cert_parse: %s: %s\n",
3553 				    OBJ_nid2ln(nid), pathbuf));
3554 			break;
3555 
3556 		/*
3557 		 * If a NID_subject_key_identifier field is present, it
3558 		 * contains the GQ public key.
3559 		 */
3560 		case NID_subject_key_identifier:
3561 			data = X509_EXTENSION_get_data(ext);
3562 			ret->grpkey = BN_bin2bn(&data->data[2],
3563 			    data->length - 2, NULL);
3564 			/* fall through */
3565 		default:
3566 			DPRINTF(1, ("cert_parse: %s\n",
3567 				    OBJ_nid2ln(nid)));
3568 			break;
3569 		}
3570 	}
3571 	if (strcmp(ret->subject, ret->issuer) == 0) {
3572 
3573 		/*
3574 		 * If certificate is self signed, verify signature.
3575 		 */
3576 		if (X509_verify(cert, ret->pkey) <= 0) {
3577 			msyslog(LOG_NOTICE,
3578 			    "cert_parse: signature not verified %s",
3579 			    ret->subject);
3580 			cert_free(ret);
3581 			X509_free(cert);
3582 			return (NULL);
3583 		}
3584 	} else {
3585 
3586 		/*
3587 		 * Check for a certificate loop.
3588 		 */
3589 		if (strcmp((const char *)hostval.ptr, ret->issuer) == 0) {
3590 			msyslog(LOG_NOTICE,
3591 			    "cert_parse: certificate trail loop %s",
3592 			    ret->subject);
3593 			cert_free(ret);
3594 			X509_free(cert);
3595 			return (NULL);
3596 		}
3597 	}
3598 
3599 	/*
3600 	 * Verify certificate valid times. Note that certificates cannot
3601 	 * be retroactive.
3602 	 */
3603 	(void)ntpcal_ntp_to_date(&fscal, fstamp, NULL);
3604 	if ((calcomp(&(ret->first), &(ret->last)) > 0)
3605 	|| (calcomp(&(ret->first), &fscal) < 0)) {
3606 		msyslog(LOG_NOTICE,
3607 		    "cert_parse: invalid times %s first %u-%02u-%02uT%02u:%02u:%02u last %u-%02u-%02uT%02u:%02u:%02u fstamp %u-%02u-%02uT%02u:%02u:%02u",
3608 		    ret->subject,
3609 		    ret->first.year, ret->first.month, ret->first.monthday,
3610 		    ret->first.hour, ret->first.minute, ret->first.second,
3611 		    ret->last.year, ret->last.month, ret->last.monthday,
3612 		    ret->last.hour, ret->last.minute, ret->last.second,
3613 		    fscal.year, fscal.month, fscal.monthday,
3614 		    fscal.hour, fscal.minute, fscal.second);
3615 		cert_free(ret);
3616 		X509_free(cert);
3617 		return (NULL);
3618 	}
3619 
3620 	/*
3621 	 * Build the value structure to sign and send later.
3622 	 */
3623 	ret->cert.fstamp = htonl(fstamp);
3624 	ret->cert.vallen = htonl(len);
3625 	ret->cert.ptr = emalloc(len);
3626 	memcpy(ret->cert.ptr, asn1cert, len);
3627 	X509_free(cert);
3628 	return (ret);
3629 }
3630 
3631 
3632 /*
3633  * cert_free - free certificate information structure
3634  */
3635 void
3636 cert_free(
3637 	struct cert_info *cinf	/* certificate info/value structure */
3638 	)
3639 {
3640 	if (cinf->pkey != NULL)
3641 		EVP_PKEY_free(cinf->pkey);
3642 	if (cinf->subject != NULL)
3643 		free(cinf->subject);
3644 	if (cinf->issuer != NULL)
3645 		free(cinf->issuer);
3646 	if (cinf->grpkey != NULL)
3647 		BN_free(cinf->grpkey);
3648 	value_free(&cinf->cert);
3649 	free(cinf);
3650 }
3651 
3652 
3653 /*
3654  * crypto_key - load cryptographic parameters and keys
3655  *
3656  * This routine searches the key cache for matching name in the form
3657  * ntpkey_<key>_<name>, where <key> is one of host, sign, iff, gq, mv,
3658  * and <name> is the host/group name. If not found, it tries to load a
3659  * PEM-encoded file of the same name and extracts the filestamp from
3660  * the first line of the file name. It returns the key pointer if valid,
3661  * NULL if not.
3662  */
3663 static struct pkey_info *
3664 crypto_key(
3665 	char	*cp,		/* file name */
3666 	char	*passwd1,	/* password */
3667 	sockaddr_u *addr 	/* IP address */
3668 	)
3669 {
3670 	FILE	*str;		/* file handle */
3671 	struct pkey_info *pkp;	/* generic key */
3672 	EVP_PKEY *pkey = NULL;	/* public/private key */
3673 	tstamp_t fstamp;
3674 	char	filename[MAXFILENAME]; /* name of key file */
3675 	char	linkname[MAXFILENAME]; /* filestamp buffer) */
3676 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3677 	char	*ptr;
3678 
3679 	/*
3680 	 * Search the key cache for matching key and name.
3681 	 */
3682 	for (pkp = pkinfo; pkp != NULL; pkp = pkp->link) {
3683 		if (strcmp(cp, pkp->name) == 0)
3684 			return (pkp);
3685 	}
3686 
3687 	/*
3688 	 * Open the key file. If the first character of the file name is
3689 	 * not '/', prepend the keys directory string. If something goes
3690 	 * wrong, abandon ship.
3691 	 */
3692 	if (*cp == '/')
3693 		strlcpy(filename, cp, sizeof(filename));
3694 	else
3695 		snprintf(filename, sizeof(filename), "%s/%s", keysdir,
3696 		    cp);
3697 	str = fopen(filename, "r");
3698 	if (str == NULL)
3699 		return (NULL);
3700 
3701 	/*
3702 	 * Read the filestamp, which is contained in the first line.
3703 	 */
3704 	if ((ptr = fgets(linkname, sizeof(linkname), str)) == NULL) {
3705 		msyslog(LOG_ERR, "crypto_key: empty file %s",
3706 		    filename);
3707 		fclose(str);
3708 		return (NULL);
3709 	}
3710 	if ((ptr = strrchr(ptr, '.')) == NULL) {
3711 		msyslog(LOG_ERR, "crypto_key: no filestamp %s",
3712 		    filename);
3713 		fclose(str);
3714 		return (NULL);
3715 	}
3716 	if (sscanf(++ptr, "%u", &fstamp) != 1) {
3717 		msyslog(LOG_ERR, "crypto_key: invalid filestamp %s",
3718 		    filename);
3719 		fclose(str);
3720 		return (NULL);
3721 	}
3722 
3723 	/*
3724 	 * Read and decrypt PEM-encoded private key. If it fails to
3725 	 * decrypt, game over.
3726 	 */
3727 	pkey = PEM_read_PrivateKey(str, NULL, NULL, passwd1);
3728 	fclose(str);
3729 	if (pkey == NULL) {
3730 		msyslog(LOG_ERR, "crypto_key: %s",
3731 		    ERR_error_string(ERR_get_error(), NULL));
3732 		exit (-1);
3733 	}
3734 
3735 	/*
3736 	 * Make a new entry in the key cache.
3737 	 */
3738 	pkp = emalloc(sizeof(struct pkey_info));
3739 	pkp->link = pkinfo;
3740 	pkinfo = pkp;
3741 	pkp->pkey = pkey;
3742 	pkp->name = estrdup(cp);
3743 	pkp->fstamp = fstamp;
3744 
3745 	/*
3746 	 * Leave tracks in the cryptostats.
3747 	 */
3748 	if ((ptr = strrchr(linkname, '\n')) != NULL)
3749 		*ptr = '\0';
3750 	snprintf(statstr, sizeof(statstr), "%s mod %d", &linkname[2],
3751 	    EVP_PKEY_size(pkey) * 8);
3752 	record_crypto_stats(addr, statstr);
3753 
3754 	DPRINTF(1, ("crypto_key: %s\n", statstr));
3755 #ifdef DEBUG
3756 	if (debug > 1) {
3757 		if (EVP_PKEY_base_id(pkey) == EVP_PKEY_DSA)
3758 			DSA_print_fp(stdout, EVP_PKEY_get0_DSA(pkey), 0);
3759 		else if (EVP_PKEY_base_id(pkey) == EVP_PKEY_RSA)
3760 			RSA_print_fp(stdout, EVP_PKEY_get0_RSA(pkey), 0);
3761 	}
3762 #endif
3763 	return (pkp);
3764 }
3765 
3766 
3767 /*
3768  ***********************************************************************
3769  *								       *
3770  * The following routines are used only at initialization time         *
3771  *								       *
3772  ***********************************************************************
3773  */
3774 /*
3775  * crypto_cert - load certificate from file
3776  *
3777  * This routine loads an X.509 RSA or DSA certificate from a file and
3778  * constructs a info/cert value structure for this machine. The
3779  * structure includes a filestamp extracted from the file name. Later
3780  * the certificate can be sent to another machine on request.
3781  *
3782  * Returns certificate info/value pointer if valid, NULL if not.
3783  */
3784 static struct cert_info *	/* certificate information */
3785 crypto_cert(
3786 	char	*cp		/* file name */
3787 	)
3788 {
3789 	struct cert_info *ret; /* certificate information */
3790 	FILE	*str;		/* file handle */
3791 	char	filename[MAXFILENAME]; /* name of certificate file */
3792 	char	linkname[MAXFILENAME]; /* filestamp buffer */
3793 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3794 	tstamp_t fstamp;	/* filestamp */
3795 	long	len;
3796 	char	*ptr;
3797 	char	*name, *header;
3798 	u_char	*data;
3799 
3800 	/*
3801 	 * Open the certificate file. If the first character of the file
3802 	 * name is not '/', prepend the keys directory string. If
3803 	 * something goes wrong, abandon ship.
3804 	 */
3805 	if (*cp == '/')
3806 		strlcpy(filename, cp, sizeof(filename));
3807 	else
3808 		snprintf(filename, sizeof(filename), "%s/%s", keysdir,
3809 		    cp);
3810 	str = fopen(filename, "r");
3811 	if (str == NULL)
3812 		return (NULL);
3813 
3814 	/*
3815 	 * Read the filestamp, which is contained in the first line.
3816 	 */
3817 	if ((ptr = fgets(linkname, sizeof(linkname), str)) == NULL) {
3818 		msyslog(LOG_ERR, "crypto_cert: empty file %s",
3819 		    filename);
3820 		fclose(str);
3821 		return (NULL);
3822 	}
3823 	if ((ptr = strrchr(ptr, '.')) == NULL) {
3824 		msyslog(LOG_ERR, "crypto_cert: no filestamp %s",
3825 		    filename);
3826 		fclose(str);
3827 		return (NULL);
3828 	}
3829 	if (sscanf(++ptr, "%u", &fstamp) != 1) {
3830 		msyslog(LOG_ERR, "crypto_cert: invalid filestamp %s",
3831 		    filename);
3832 		fclose(str);
3833 		return (NULL);
3834 	}
3835 
3836 	/*
3837 	 * Read PEM-encoded certificate and install.
3838 	 */
3839 	if (!PEM_read(str, &name, &header, &data, &len)) {
3840 		msyslog(LOG_ERR, "crypto_cert: %s",
3841 		    ERR_error_string(ERR_get_error(), NULL));
3842 		fclose(str);
3843 		return (NULL);
3844 	}
3845 	fclose(str);
3846 	free(header);
3847 	if (strcmp(name, "CERTIFICATE") != 0) {
3848 		msyslog(LOG_NOTICE, "crypto_cert: wrong PEM type %s",
3849 		    name);
3850 		free(name);
3851 		free(data);
3852 		return (NULL);
3853 	}
3854 	free(name);
3855 
3856 	/*
3857 	 * Parse certificate and generate info/value structure. The
3858 	 * pointer and copy nonsense is due something broken in Solaris.
3859 	 */
3860 	ret = cert_parse(data, len, fstamp);
3861 	free(data);
3862 	if (ret == NULL)
3863 		return (NULL);
3864 
3865 	if ((ptr = strrchr(linkname, '\n')) != NULL)
3866 		*ptr = '\0';
3867 	snprintf(statstr, sizeof(statstr), "%s 0x%x len %lu",
3868 	    &linkname[2], ret->flags, len);
3869 	record_crypto_stats(NULL, statstr);
3870 	DPRINTF(1, ("crypto_cert: %s\n", statstr));
3871 	return (ret);
3872 }
3873 
3874 
3875 /*
3876  * crypto_setup - load keys, certificate and identity parameters
3877  *
3878  * This routine loads the public/private host key and certificate. If
3879  * available, it loads the public/private sign key, which defaults to
3880  * the host key. The host key must be RSA, but the sign key can be
3881  * either RSA or DSA. If a trusted certificate, it loads the identity
3882  * parameters. In either case, the public key on the certificate must
3883  * agree with the sign key.
3884  *
3885  * Required but missing files and inconsistent data and errors are
3886  * fatal. Allowing configuration to continue would be hazardous and
3887  * require really messy error checks.
3888  */
3889 void
3890 crypto_setup(void)
3891 {
3892 	struct pkey_info *pinfo; /* private/public key */
3893 	char	filename[MAXFILENAME]; /* file name buffer */
3894 	char	hostname[MAXFILENAME]; /* host name buffer */
3895 	char	*randfile;
3896 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3897 	l_fp	seed;		/* crypto PRNG seed as NTP timestamp */
3898 	u_int	len;
3899 	int	bytes;
3900 	u_char	*ptr;
3901 
3902 	/*
3903 	 * Check for correct OpenSSL version and avoid initialization in
3904 	 * the case of multiple crypto commands.
3905 	 */
3906 	if (crypto_flags & CRYPTO_FLAG_ENAB) {
3907 		msyslog(LOG_NOTICE,
3908 		    "crypto_setup: spurious crypto command");
3909 		return;
3910 	}
3911 	ssl_check_version();
3912 
3913 	/*
3914 	 * Load required random seed file and seed the random number
3915 	 * generator. Be default, it is found as .rnd in the user home
3916 	 * directory. The root home directory may be / or /root,
3917 	 * depending on the system. Wiggle the contents a bit and write
3918 	 * it back so the sequence does not repeat when we next restart.
3919 	 */
3920 	if (!RAND_status()) {
3921 		if (rand_file == NULL) {
3922 			RAND_file_name(filename, sizeof(filename));
3923 			randfile = filename;
3924 		} else if (*rand_file != '/') {
3925 			snprintf(filename, sizeof(filename), "%s/%s",
3926 			    keysdir, rand_file);
3927 			randfile = filename;
3928 		} else
3929 			randfile = rand_file;
3930 
3931 		if ((bytes = RAND_load_file(randfile, -1)) == 0) {
3932 			msyslog(LOG_ERR,
3933 			    "crypto_setup: random seed file %s missing",
3934 			    randfile);
3935 			exit (-1);
3936 		}
3937 		arc4random_buf(&seed, sizeof(l_fp));
3938 		RAND_seed(&seed, sizeof(l_fp));
3939 		RAND_write_file(randfile);
3940 		DPRINTF(1, ("crypto_setup: OpenSSL version %lx random seed file %s bytes read %d\n",
3941 			    OpenSSL_version_num(), randfile, bytes));
3942 
3943 	}
3944 
3945 	/*
3946 	 * Initialize structures.
3947 	 */
3948 	gethostname(hostname, sizeof(hostname));
3949 	if (host_filename != NULL)
3950 		strlcpy(hostname, host_filename, sizeof(hostname));
3951 	if (passwd == NULL)
3952 		passwd = estrdup(hostname);
3953 	memset(&hostval, 0, sizeof(hostval));
3954 	memset(&pubkey, 0, sizeof(pubkey));
3955 	memset(&tai_leap, 0, sizeof(tai_leap));
3956 
3957 	/*
3958 	 * Load required host key from file "ntpkey_host_<hostname>". If
3959 	 * no host key file is not found or has invalid password, life
3960 	 * as we know it ends. The host key also becomes the default
3961 	 * sign key.
3962 	 */
3963 	snprintf(filename, sizeof(filename), "ntpkey_host_%s", hostname);
3964 	pinfo = crypto_key(filename, passwd, NULL);
3965 	if (pinfo == NULL) {
3966 		msyslog(LOG_ERR,
3967 		    "crypto_setup: host key file %s not found or corrupt",
3968 		    filename);
3969 		exit (-1);
3970 	}
3971 	if (EVP_PKEY_base_id(pinfo->pkey) != EVP_PKEY_RSA) {
3972 		msyslog(LOG_ERR,
3973 		    "crypto_setup: host key is not RSA key type");
3974 		exit (-1);
3975 	}
3976 	host_pkey = pinfo->pkey;
3977 	sign_pkey = host_pkey;
3978 	hostval.fstamp = htonl(pinfo->fstamp);
3979 
3980 	/*
3981 	 * Construct public key extension field for agreement scheme.
3982 	 */
3983 	len = i2d_PublicKey(host_pkey, NULL);
3984 	ptr = emalloc(len);
3985 	pubkey.ptr = ptr;
3986 	i2d_PublicKey(host_pkey, &ptr);
3987 	pubkey.fstamp = hostval.fstamp;
3988 	pubkey.vallen = htonl(len);
3989 
3990 	/*
3991 	 * Load optional sign key from file "ntpkey_sign_<hostname>". If
3992 	 * available, it becomes the sign key.
3993 	 */
3994 	snprintf(filename, sizeof(filename), "ntpkey_sign_%s", hostname);
3995 	pinfo = crypto_key(filename, passwd, NULL);
3996 	if (pinfo != NULL)
3997 		sign_pkey = pinfo->pkey;
3998 
3999 	/*
4000 	 * Load required certificate from file "ntpkey_cert_<hostname>".
4001 	 */
4002 	snprintf(filename, sizeof(filename), "ntpkey_cert_%s", hostname);
4003 	cinfo = crypto_cert(filename);
4004 	if (cinfo == NULL) {
4005 		msyslog(LOG_ERR,
4006 		    "crypto_setup: certificate file %s not found or corrupt",
4007 		    filename);
4008 		exit (-1);
4009 	}
4010 	cert_host = cinfo;
4011 	sign_digest = cinfo->digest;
4012 	sign_siglen = EVP_PKEY_size(sign_pkey);
4013 	if (cinfo->flags & CERT_PRIV)
4014 		crypto_flags |= CRYPTO_FLAG_PRIV;
4015 
4016 	/*
4017 	 * The certificate must be self-signed.
4018 	 */
4019 	if (strcmp(cinfo->subject, cinfo->issuer) != 0) {
4020 		msyslog(LOG_ERR,
4021 		    "crypto_setup: certificate %s is not self-signed",
4022 		    filename);
4023 		exit (-1);
4024 	}
4025 	hostval.ptr = estrdup(cinfo->subject);
4026 	hostval.vallen = htonl(strlen(cinfo->subject));
4027 	sys_hostname = hostval.ptr;
4028 	ptr = (u_char *)strchr(sys_hostname, '@');
4029 	if (ptr != NULL)
4030 		sys_groupname = estrdup((char *)++ptr);
4031 	if (ident_filename != NULL)
4032 		strlcpy(hostname, ident_filename, sizeof(hostname));
4033 
4034 	/*
4035 	 * Load optional IFF parameters from file
4036 	 * "ntpkey_iffkey_<hostname>".
4037 	 */
4038 	snprintf(filename, sizeof(filename), "ntpkey_iffkey_%s",
4039 	    hostname);
4040 	iffkey_info = crypto_key(filename, passwd, NULL);
4041 	if (iffkey_info != NULL)
4042 		crypto_flags |= CRYPTO_FLAG_IFF;
4043 
4044 	/*
4045 	 * Load optional GQ parameters from file
4046 	 * "ntpkey_gqkey_<hostname>".
4047 	 */
4048 	snprintf(filename, sizeof(filename), "ntpkey_gqkey_%s",
4049 	    hostname);
4050 	gqkey_info = crypto_key(filename, passwd, NULL);
4051 	if (gqkey_info != NULL)
4052 		crypto_flags |= CRYPTO_FLAG_GQ;
4053 
4054 	/*
4055 	 * Load optional MV parameters from file
4056 	 * "ntpkey_mvkey_<hostname>".
4057 	 */
4058 	snprintf(filename, sizeof(filename), "ntpkey_mvkey_%s",
4059 	    hostname);
4060 	mvkey_info = crypto_key(filename, passwd, NULL);
4061 	if (mvkey_info != NULL)
4062 		crypto_flags |= CRYPTO_FLAG_MV;
4063 
4064 	/*
4065 	 * We met the enemy and he is us. Now strike up the dance.
4066 	 */
4067 	crypto_flags |= CRYPTO_FLAG_ENAB | (cinfo->nid << 16);
4068 	snprintf(statstr, sizeof(statstr), "setup 0x%x host %s %s",
4069 	    crypto_flags, hostname, OBJ_nid2ln(cinfo->nid));
4070 	record_crypto_stats(NULL, statstr);
4071 	DPRINTF(1, ("crypto_setup: %s\n", statstr));
4072 }
4073 
4074 
4075 /*
4076  * crypto_config - configure data from the crypto command.
4077  */
4078 void
4079 crypto_config(
4080 	int	item,		/* configuration item */
4081 	char	*cp		/* item name */
4082 	)
4083 {
4084 	int	nid;
4085 
4086 	DPRINTF(1, ("crypto_config: item %d %s\n", item, cp));
4087 
4088 	switch (item) {
4089 
4090 	/*
4091 	 * Set host name (host).
4092 	 */
4093 	case CRYPTO_CONF_PRIV:
4094 		if (NULL != host_filename)
4095 			free(host_filename);
4096 		host_filename = estrdup(cp);
4097 		break;
4098 
4099 	/*
4100 	 * Set group name (ident).
4101 	 */
4102 	case CRYPTO_CONF_IDENT:
4103 		if (NULL != ident_filename)
4104 			free(ident_filename);
4105 		ident_filename = estrdup(cp);
4106 		break;
4107 
4108 	/*
4109 	 * Set private key password (pw).
4110 	 */
4111 	case CRYPTO_CONF_PW:
4112 		if (NULL != passwd)
4113 			free(passwd);
4114 		passwd = estrdup(cp);
4115 		break;
4116 
4117 	/*
4118 	 * Set random seed file name (randfile).
4119 	 */
4120 	case CRYPTO_CONF_RAND:
4121 		if (NULL != rand_file)
4122 			free(rand_file);
4123 		rand_file = estrdup(cp);
4124 		break;
4125 
4126 	/*
4127 	 * Set message digest NID.
4128 	 */
4129 	case CRYPTO_CONF_NID:
4130 		nid = OBJ_sn2nid(cp);
4131 		if (nid == 0)
4132 			msyslog(LOG_ERR,
4133 			    "crypto_config: invalid digest name %s", cp);
4134 		else
4135 			crypto_nid = nid;
4136 		break;
4137 	}
4138 }
4139 
4140 /*
4141  * Get the  payload size (internal value length) of an extension packet.
4142  * If the inner value size does not match the outer packet size (that
4143  * is, the value would end behind the frame given by the opcode/size
4144  * field) the function will effectively return UINT_MAX. If the frame is
4145  * too short to hold a variable-sized value, the return value is zero.
4146  */
4147 static u_int
4148 exten_payload_size(
4149 	const struct exten * ep)
4150 {
4151 	typedef const u_char *BPTR;
4152 
4153 	size_t extn_size;
4154 	size_t data_size;
4155 	size_t head_size;
4156 
4157 	data_size = 0;
4158 	if (NULL != ep) {
4159 		head_size = (BPTR)(&ep->vallen + 1) - (BPTR)ep;
4160 		extn_size = (uint16_t)(ntohl(ep->opcode) & 0x0000ffff);
4161 		if (extn_size >= head_size) {
4162 			data_size = (uint32_t)ntohl(ep->vallen);
4163 			if (data_size > extn_size - head_size)
4164 				data_size = ~(size_t)0u;
4165 		}
4166 	}
4167 	return (u_int)data_size;
4168 }
4169 # else	/* !AUTOKEY follows */
4170 int ntp_crypto_bs_pubkey;
4171 # endif	/* !AUTOKEY */
4172