xref: /freebsd/contrib/ntp/ntpd/ntp_crypto.c (revision aa0a1e58)
1 /*
2  * ntp_crypto.c - NTP version 4 public key routines
3  */
4 #ifdef HAVE_CONFIG_H
5 #include <config.h>
6 #endif
7 
8 #ifdef OPENSSL
9 #include <stdio.h>
10 #include <sys/types.h>
11 #include <sys/param.h>
12 #include <unistd.h>
13 #include <fcntl.h>
14 
15 #include "ntpd.h"
16 #include "ntp_stdlib.h"
17 #include "ntp_unixtime.h"
18 #include "ntp_string.h"
19 #include <ntp_random.h>
20 
21 #include "openssl/asn1_mac.h"
22 #include "openssl/bn.h"
23 #include "openssl/err.h"
24 #include "openssl/evp.h"
25 #include "openssl/pem.h"
26 #include "openssl/rand.h"
27 #include "openssl/x509v3.h"
28 
29 #ifdef KERNEL_PLL
30 #include "ntp_syscall.h"
31 #endif /* KERNEL_PLL */
32 
33 /*
34  * Extension field message format
35  *
36  * These are always signed and saved before sending in network byte
37  * order. They must be converted to and from host byte order for
38  * processing.
39  *
40  * +-------+-------+
41  * |   op  |  len  | <- extension pointer
42  * +-------+-------+
43  * |    assocID    |
44  * +---------------+
45  * |   timestamp   | <- value pointer
46  * +---------------+
47  * |   filestamp   |
48  * +---------------+
49  * |   value len   |
50  * +---------------+
51  * |               |
52  * =     value     =
53  * |               |
54  * +---------------+
55  * | signature len |
56  * +---------------+
57  * |               |
58  * =   signature   =
59  * |               |
60  * +---------------+
61  *
62  * The CRYPTO_RESP bit is set to 0 for requests, 1 for responses.
63  * Requests carry the association ID of the receiver; responses carry
64  * the association ID of the sender. Some messages include only the
65  * operation/length and association ID words and so have length 8
66  * octets. Ohers include the value structure and associated value and
67  * signature fields. These messages include the timestamp, filestamp,
68  * value and signature words and so have length at least 24 octets. The
69  * signature and/or value fields can be empty, in which case the
70  * respective length words are zero. An empty value with nonempty
71  * signature is syntactically valid, but semantically questionable.
72  *
73  * The filestamp represents the time when a cryptographic data file such
74  * as a public/private key pair is created. It follows every reference
75  * depending on that file and serves as a means to obsolete earlier data
76  * of the same type. The timestamp represents the time when the
77  * cryptographic data of the message were last signed. Creation of a
78  * cryptographic data file or signing a message can occur only when the
79  * creator or signor is synchronized to an authoritative source and
80  * proventicated to a trusted authority.
81  *
82  * Note there are four conditions required for server trust. First, the
83  * public key on the certificate must be verified, which involves a
84  * number of format, content and consistency checks. Next, the server
85  * identity must be confirmed by one of four schemes: private
86  * certificate, IFF scheme, GQ scheme or certificate trail hike to a
87  * self signed trusted certificate. Finally, the server signature must
88  * be verified.
89  */
90 /*
91  * Cryptodefines
92  */
93 #define TAI_1972	10	/* initial TAI offset (s) */
94 #define MAX_LEAP	100	/* max UTC leapseconds (s) */
95 #define VALUE_LEN	(6 * 4) /* min response field length */
96 #define YEAR		(60 * 60 * 24 * 365) /* seconds in year */
97 
98 /*
99  * Global cryptodata in host byte order
100  */
101 u_int32	crypto_flags = 0x0;	/* status word */
102 
103 /*
104  * Global cryptodata in network byte order
105  */
106 struct cert_info *cinfo = NULL;	/* certificate info/value */
107 struct value hostval;		/* host value */
108 struct value pubkey;		/* public key */
109 struct value tai_leap;		/* leapseconds table */
110 EVP_PKEY *iffpar_pkey = NULL;	/* IFF parameters */
111 EVP_PKEY *gqpar_pkey = NULL;	/* GQ parameters */
112 EVP_PKEY *mvpar_pkey = NULL;	/* MV parameters */
113 char	*iffpar_file = NULL; /* IFF parameters file */
114 char	*gqpar_file = NULL;	/* GQ parameters file */
115 char	*mvpar_file = NULL;	/* MV parameters file */
116 
117 /*
118  * Private cryptodata in host byte order
119  */
120 static char *passwd = NULL;	/* private key password */
121 static EVP_PKEY *host_pkey = NULL; /* host key */
122 static EVP_PKEY *sign_pkey = NULL; /* sign key */
123 static const EVP_MD *sign_digest = NULL; /* sign digest */
124 static u_int sign_siglen;	/* sign key length */
125 static char *rand_file = NULL;	/* random seed file */
126 static char *host_file = NULL;	/* host key file */
127 static char *sign_file = NULL;	/* sign key file */
128 static char *cert_file = NULL;	/* certificate file */
129 static char *leap_file = NULL;	/* leapseconds file */
130 static tstamp_t if_fstamp = 0;	/* IFF filestamp */
131 static tstamp_t gq_fstamp = 0;	/* GQ file stamp */
132 static tstamp_t mv_fstamp = 0;	/* MV filestamp */
133 static u_int ident_scheme = 0;	/* server identity scheme */
134 
135 /*
136  * Cryptotypes
137  */
138 static	int	crypto_verify	P((struct exten *, struct value *,
139 				    struct peer *));
140 static	int	crypto_encrypt	P((struct exten *, struct value *,
141 				    keyid_t *));
142 static	int	crypto_alice	P((struct peer *, struct value *));
143 static	int	crypto_alice2	P((struct peer *, struct value *));
144 static	int	crypto_alice3	P((struct peer *, struct value *));
145 static	int	crypto_bob	P((struct exten *, struct value *));
146 static	int	crypto_bob2	P((struct exten *, struct value *));
147 static	int	crypto_bob3	P((struct exten *, struct value *));
148 static	int	crypto_iff	P((struct exten *, struct peer *));
149 static	int	crypto_gq	P((struct exten *, struct peer *));
150 static	int	crypto_mv	P((struct exten *, struct peer *));
151 static	u_int	crypto_send	P((struct exten *, struct value *));
152 static	tstamp_t crypto_time	P((void));
153 static	u_long	asn2ntp		P((ASN1_TIME *));
154 static	struct cert_info *cert_parse P((u_char *, u_int, tstamp_t));
155 static	int	cert_sign	P((struct exten *, struct value *));
156 static	int	cert_valid	P((struct cert_info *, EVP_PKEY *));
157 static	int	cert_install	P((struct exten *, struct peer *));
158 static	void	cert_free	P((struct cert_info *));
159 static	EVP_PKEY *crypto_key	P((char *, tstamp_t *));
160 static	int	bighash		P((BIGNUM *, BIGNUM *));
161 static	struct cert_info *crypto_cert P((char *));
162 static	void	crypto_tai	P((char *));
163 
164 #ifdef SYS_WINNT
165 int
166 readlink(char * link, char * file, int len) {
167 	return (-1);
168 }
169 #endif
170 
171 /*
172  * session_key - generate session key
173  *
174  * This routine generates a session key from the source address,
175  * destination address, key ID and private value. The value of the
176  * session key is the MD5 hash of these values, while the next key ID is
177  * the first four octets of the hash.
178  *
179  * Returns the next key ID
180  */
181 keyid_t
182 session_key(
183 	struct sockaddr_storage *srcadr, /* source address */
184 	struct sockaddr_storage *dstadr, /* destination address */
185 	keyid_t	keyno,		/* key ID */
186 	keyid_t	private,	/* private value */
187 	u_long	lifetime 	/* key lifetime */
188 	)
189 {
190 	EVP_MD_CTX ctx;		/* message digest context */
191 	u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */
192 	keyid_t	keyid;		/* key identifer */
193 	u_int32	header[10];	/* data in network byte order */
194 	u_int	hdlen, len;
195 
196 	if (!dstadr)
197 		return 0;
198 
199 	/*
200 	 * Generate the session key and key ID. If the lifetime is
201 	 * greater than zero, install the key and call it trusted.
202 	 */
203 	hdlen = 0;
204 	switch(srcadr->ss_family) {
205 	case AF_INET:
206 		header[0] = ((struct sockaddr_in *)srcadr)->sin_addr.s_addr;
207 		header[1] = ((struct sockaddr_in *)dstadr)->sin_addr.s_addr;
208 		header[2] = htonl(keyno);
209 		header[3] = htonl(private);
210 		hdlen = 4 * sizeof(u_int32);
211 		break;
212 
213 	case AF_INET6:
214 		memcpy(&header[0], &GET_INADDR6(*srcadr),
215 		    sizeof(struct in6_addr));
216 		memcpy(&header[4], &GET_INADDR6(*dstadr),
217 		    sizeof(struct in6_addr));
218 		header[8] = htonl(keyno);
219 		header[9] = htonl(private);
220 		hdlen = 10 * sizeof(u_int32);
221 		break;
222 	}
223 	EVP_DigestInit(&ctx, EVP_md5());
224 	EVP_DigestUpdate(&ctx, (u_char *)header, hdlen);
225 	EVP_DigestFinal(&ctx, dgst, &len);
226 	memcpy(&keyid, dgst, 4);
227 	keyid = ntohl(keyid);
228 	if (lifetime != 0) {
229 		MD5auth_setkey(keyno, dgst, len);
230 		authtrust(keyno, lifetime);
231 	}
232 #ifdef DEBUG
233 	if (debug > 1)
234 		printf(
235 		    "session_key: %s > %s %08x %08x hash %08x life %lu\n",
236 		    stoa(srcadr), stoa(dstadr), keyno,
237 		    private, keyid, lifetime);
238 #endif
239 	return (keyid);
240 }
241 
242 
243 /*
244  * make_keylist - generate key list
245  *
246  * Returns
247  * XEVNT_OK	success
248  * XEVNT_PER	host certificate expired
249  *
250  * This routine constructs a pseudo-random sequence by repeatedly
251  * hashing the session key starting from a given source address,
252  * destination address, private value and the next key ID of the
253  * preceeding session key. The last entry on the list is saved along
254  * with its sequence number and public signature.
255  */
256 int
257 make_keylist(
258 	struct peer *peer,	/* peer structure pointer */
259 	struct interface *dstadr /* interface */
260 	)
261 {
262 	EVP_MD_CTX ctx;		/* signature context */
263 	tstamp_t tstamp;	/* NTP timestamp */
264 	struct autokey *ap;	/* autokey pointer */
265 	struct value *vp;	/* value pointer */
266 	keyid_t	keyid = 0;	/* next key ID */
267 	keyid_t	cookie;		/* private value */
268 	u_long	lifetime;
269 	u_int	len, mpoll;
270 	int	i;
271 
272 	if (!dstadr)
273 		return XEVNT_OK;
274 
275 	/*
276 	 * Allocate the key list if necessary.
277 	 */
278 	tstamp = crypto_time();
279 	if (peer->keylist == NULL)
280 		peer->keylist = emalloc(sizeof(keyid_t) *
281 		    NTP_MAXSESSION);
282 
283 	/*
284 	 * Generate an initial key ID which is unique and greater than
285 	 * NTP_MAXKEY.
286 	 */
287 	while (1) {
288 		keyid = (ntp_random() + NTP_MAXKEY + 1) & ((1 <<
289 		    sizeof(keyid_t)) - 1);
290 		if (authhavekey(keyid))
291 			continue;
292 		break;
293 	}
294 
295 	/*
296 	 * Generate up to NTP_MAXSESSION session keys. Stop if the
297 	 * next one would not be unique or not a session key ID or if
298 	 * it would expire before the next poll. The private value
299 	 * included in the hash is zero if broadcast mode, the peer
300 	 * cookie if client mode or the host cookie if symmetric modes.
301 	 */
302 	mpoll = 1 << min(peer->ppoll, peer->hpoll);
303 	lifetime = min(sys_automax, NTP_MAXSESSION * mpoll);
304 	if (peer->hmode == MODE_BROADCAST)
305 		cookie = 0;
306 	else
307 		cookie = peer->pcookie;
308 	for (i = 0; i < NTP_MAXSESSION; i++) {
309 		peer->keylist[i] = keyid;
310 		peer->keynumber = i;
311 		keyid = session_key(&dstadr->sin, &peer->srcadr, keyid,
312 		    cookie, lifetime);
313 		lifetime -= mpoll;
314 		if (auth_havekey(keyid) || keyid <= NTP_MAXKEY ||
315 		    lifetime <= mpoll)
316 			break;
317 	}
318 
319 	/*
320 	 * Save the last session key ID, sequence number and timestamp,
321 	 * then sign these values for later retrieval by the clients. Be
322 	 * careful not to use invalid key media. Use the public values
323 	 * timestamp as filestamp.
324 	 */
325 	vp = &peer->sndval;
326 	if (vp->ptr == NULL)
327 		vp->ptr = emalloc(sizeof(struct autokey));
328 	ap = (struct autokey *)vp->ptr;
329 	ap->seq = htonl(peer->keynumber);
330 	ap->key = htonl(keyid);
331 	vp->tstamp = htonl(tstamp);
332 	vp->fstamp = hostval.tstamp;
333 	vp->vallen = htonl(sizeof(struct autokey));
334 	vp->siglen = 0;
335 	if (tstamp != 0) {
336 		if (tstamp < cinfo->first || tstamp > cinfo->last)
337 			return (XEVNT_PER);
338 
339 		if (vp->sig == NULL)
340 			vp->sig = emalloc(sign_siglen);
341 		EVP_SignInit(&ctx, sign_digest);
342 		EVP_SignUpdate(&ctx, (u_char *)vp, 12);
343 		EVP_SignUpdate(&ctx, vp->ptr, sizeof(struct autokey));
344 		if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
345 			vp->siglen = htonl(len);
346 		else
347 			msyslog(LOG_ERR, "make_keys %s\n",
348 			    ERR_error_string(ERR_get_error(), NULL));
349 		peer->flags |= FLAG_ASSOC;
350 	}
351 #ifdef DEBUG
352 	if (debug)
353 		printf("make_keys: %d %08x %08x ts %u fs %u poll %d\n",
354 		    ntohl(ap->seq), ntohl(ap->key), cookie,
355 		    ntohl(vp->tstamp), ntohl(vp->fstamp), peer->hpoll);
356 #endif
357 	return (XEVNT_OK);
358 }
359 
360 
361 /*
362  * crypto_recv - parse extension fields
363  *
364  * This routine is called when the packet has been matched to an
365  * association and passed sanity, format and MAC checks. We believe the
366  * extension field values only if the field has proper format and
367  * length, the timestamp and filestamp are valid and the signature has
368  * valid length and is verified. There are a few cases where some values
369  * are believed even if the signature fails, but only if the proventic
370  * bit is not set.
371  */
372 int
373 crypto_recv(
374 	struct peer *peer,	/* peer structure pointer */
375 	struct recvbuf *rbufp	/* packet buffer pointer */
376 	)
377 {
378 	const EVP_MD *dp;	/* message digest algorithm */
379 	u_int32	*pkt;		/* receive packet pointer */
380 	struct autokey *ap, *bp; /* autokey pointer */
381 	struct exten *ep, *fp;	/* extension pointers */
382 	int	has_mac;	/* length of MAC field */
383 	int	authlen;	/* offset of MAC field */
384 	associd_t associd;	/* association ID */
385 	tstamp_t tstamp = 0;	/* timestamp */
386 	tstamp_t fstamp = 0;	/* filestamp */
387 	u_int	len;		/* extension field length */
388 	u_int	code;		/* extension field opcode */
389 	u_int	vallen = 0;	/* value length */
390 	X509	*cert;		/* X509 certificate */
391 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
392 	keyid_t	cookie;		/* crumbles */
393 	int	hismode;	/* packet mode */
394 	int	rval = XEVNT_OK;
395 	u_char	*ptr;
396 	u_int32 temp32;
397 
398 	/*
399 	 * Initialize. Note that the packet has already been checked for
400 	 * valid format and extension field lengths. First extract the
401 	 * field length, command code and association ID in host byte
402 	 * order. These are used with all commands and modes. Then check
403 	 * the version number, which must be 2, and length, which must
404 	 * be at least 8 for requests and VALUE_LEN (24) for responses.
405 	 * Packets that fail either test sink without a trace. The
406 	 * association ID is saved only if nonzero.
407 	 */
408 	authlen = LEN_PKT_NOMAC;
409 	hismode = (int)PKT_MODE((&rbufp->recv_pkt)->li_vn_mode);
410 	while ((has_mac = rbufp->recv_length - authlen) > MAX_MAC_LEN) {
411 		pkt = (u_int32 *)&rbufp->recv_pkt + authlen / 4;
412 		ep = (struct exten *)pkt;
413 		code = ntohl(ep->opcode) & 0xffff0000;
414 		len = ntohl(ep->opcode) & 0x0000ffff;
415 		associd = (associd_t) ntohl(pkt[1]);
416 		rval = XEVNT_OK;
417 #ifdef DEBUG
418 		if (debug)
419 			printf(
420 			    "crypto_recv: flags 0x%x ext offset %d len %u code 0x%x assocID %d\n",
421 			    peer->crypto, authlen, len, code >> 16,
422 			    associd);
423 #endif
424 
425 		/*
426 		 * Check version number and field length. If bad,
427 		 * quietly ignore the packet.
428 		 */
429 		if (((code >> 24) & 0x3f) != CRYPTO_VN || len < 8) {
430 			sys_unknownversion++;
431 			code |= CRYPTO_ERROR;
432 		}
433 
434 		/*
435 		 * Little vulnerability bandage here. If a perp tosses a
436 		 * fake association ID over the fence, we better toss it
437 		 * out. Only the first one counts.
438 		 */
439 		if (code & CRYPTO_RESP) {
440 			if (peer->assoc == 0)
441 				peer->assoc = associd;
442 			else if (peer->assoc != associd)
443 				code |= CRYPTO_ERROR;
444 		}
445 		if (len >= VALUE_LEN) {
446 			tstamp = ntohl(ep->tstamp);
447 			fstamp = ntohl(ep->fstamp);
448 			vallen = ntohl(ep->vallen);
449 		}
450 		switch (code) {
451 
452 		/*
453 		 * Install status word, host name, signature scheme and
454 		 * association ID. In OpenSSL the signature algorithm is
455 		 * bound to the digest algorithm, so the NID completely
456 		 * defines the signature scheme. Note the request and
457 		 * response are identical, but neither is validated by
458 		 * signature. The request is processed here only in
459 		 * symmetric modes. The server name field might be
460 		 * useful to implement access controls in future.
461 		 */
462 		case CRYPTO_ASSOC:
463 
464 			/*
465 			 * If the machine is running when this message
466 			 * arrives, the other fellow has reset and so
467 			 * must we. Otherwise, pass the extension field
468 			 * to the transmit side.
469 			 */
470 			if (peer->crypto) {
471 				rval = XEVNT_ERR;
472 				break;
473 			}
474 			fp = emalloc(len);
475 			memcpy(fp, ep, len);
476 			temp32 = CRYPTO_RESP;
477 			fp->opcode |= htonl(temp32);
478 			peer->cmmd = fp;
479 			/* fall through */
480 
481 		case CRYPTO_ASSOC | CRYPTO_RESP:
482 
483 			/*
484 			 * Discard the message if it has already been
485 			 * stored or the message has been amputated.
486 			 */
487 			if (peer->crypto)
488 				break;
489 
490 			if (vallen == 0 || vallen > MAXHOSTNAME ||
491 			    len < VALUE_LEN + vallen) {
492 				rval = XEVNT_LEN;
493 				break;
494 			}
495 
496 			/*
497 			 * Check the identity schemes are compatible. If
498 			 * the client has PC, the server must have PC,
499 			 * in which case the server public key and
500 			 * identity are presumed valid, so we skip the
501 			 * certificate and identity exchanges and move
502 			 * immediately to the cookie exchange which
503 			 * confirms the server signature.
504 			 */
505 #ifdef DEBUG
506 			if (debug)
507 				printf(
508 				    "crypto_recv: ident host 0x%x server 0x%x\n",
509 				    crypto_flags, fstamp);
510 #endif
511 			temp32 = (crypto_flags | ident_scheme) &
512 			    fstamp & CRYPTO_FLAG_MASK;
513 			if (crypto_flags & CRYPTO_FLAG_PRIV) {
514 				if (!(fstamp & CRYPTO_FLAG_PRIV)) {
515 					rval = XEVNT_KEY;
516 					break;
517 
518 				} else {
519 					fstamp |= CRYPTO_FLAG_VALID |
520 					    CRYPTO_FLAG_VRFY |
521 					    CRYPTO_FLAG_SIGN;
522 				}
523 			/*
524 			 * In symmetric modes it is an error if either
525 			 * peer requests identity and the other peer
526 			 * does not support it.
527 			 */
528 			} else if ((hismode == MODE_ACTIVE || hismode ==
529 			    MODE_PASSIVE) && ((crypto_flags | fstamp) &
530 			    CRYPTO_FLAG_MASK) && !temp32) {
531 				rval = XEVNT_KEY;
532 				break;
533 			/*
534 			 * It is an error if the client requests
535 			 * identity and the server does not support it.
536 			 */
537 			} else if (hismode == MODE_CLIENT && (fstamp &
538 			    CRYPTO_FLAG_MASK) && !temp32) {
539 				rval = XEVNT_KEY;
540 				break;
541 			}
542 
543 			/*
544 			 * Otherwise, the identity scheme(s) are those
545 			 * that both client and server support.
546 			 */
547 			fstamp = temp32 | (fstamp & ~CRYPTO_FLAG_MASK);
548 
549 			/*
550 			 * Discard the message if the signature digest
551 			 * NID is not supported.
552 			 */
553 			temp32 = (fstamp >> 16) & 0xffff;
554 			dp =
555 			    (const EVP_MD *)EVP_get_digestbynid(temp32);
556 			if (dp == NULL) {
557 				rval = XEVNT_MD;
558 				break;
559 			}
560 
561 			/*
562 			 * Save status word, host name and message
563 			 * digest/signature type.
564 			 */
565 			peer->crypto = fstamp;
566 			peer->digest = dp;
567 			peer->subject = emalloc(vallen + 1);
568 			memcpy(peer->subject, ep->pkt, vallen);
569 			peer->subject[vallen] = '\0';
570 			peer->issuer = emalloc(vallen + 1);
571 			strcpy(peer->issuer, peer->subject);
572 			temp32 = (fstamp >> 16) & 0xffff;
573 			snprintf(statstr, NTP_MAXSTRLEN,
574 			    "flags 0x%x host %s signature %s", fstamp,
575 			    peer->subject, OBJ_nid2ln(temp32));
576 			record_crypto_stats(&peer->srcadr, statstr);
577 #ifdef DEBUG
578 			if (debug)
579 				printf("crypto_recv: %s\n", statstr);
580 #endif
581 			break;
582 
583 		/*
584 		 * Decode X509 certificate in ASN.1 format and extract
585 		 * the data containing, among other things, subject
586 		 * name and public key. In the default identification
587 		 * scheme, the certificate trail is followed to a self
588 		 * signed trusted certificate.
589 		 */
590 		case CRYPTO_CERT | CRYPTO_RESP:
591 
592 			/*
593 			 * Discard the message if invalid.
594 			 */
595 			if ((rval = crypto_verify(ep, NULL, peer)) !=
596 			    XEVNT_OK)
597 				break;
598 
599 			/*
600 			 * Scan the certificate list to delete old
601 			 * versions and link the newest version first on
602 			 * the list.
603 			 */
604 			if ((rval = cert_install(ep, peer)) != XEVNT_OK)
605 				break;
606 
607 			/*
608 			 * If we snatch the certificate before the
609 			 * server certificate has been signed by its
610 			 * server, it will be self signed. When it is,
611 			 * we chase the certificate issuer, which the
612 			 * server has, and keep going until a self
613 			 * signed trusted certificate is found. Be sure
614 			 * to update the issuer field, since it may
615 			 * change.
616 			 */
617 			if (peer->issuer != NULL)
618 				free(peer->issuer);
619 			peer->issuer = emalloc(strlen(cinfo->issuer) +
620 			    1);
621 			strcpy(peer->issuer, cinfo->issuer);
622 
623 			/*
624 			 * We plug in the public key and lifetime from
625 			 * the first certificate received. However, note
626 			 * that this certificate might not be signed by
627 			 * the server, so we can't check the
628 			 * signature/digest NID.
629 			 */
630 			if (peer->pkey == NULL) {
631 				ptr = (u_char *)cinfo->cert.ptr;
632 				cert = d2i_X509(NULL, &ptr,
633 				    ntohl(cinfo->cert.vallen));
634 				peer->pkey = X509_get_pubkey(cert);
635 				X509_free(cert);
636 			}
637 			peer->flash &= ~TEST8;
638 			temp32 = cinfo->nid;
639 			snprintf(statstr, NTP_MAXSTRLEN,
640 			    "cert %s 0x%x %s (%u) fs %u",
641 			    cinfo->subject, cinfo->flags,
642 			    OBJ_nid2ln(temp32), temp32,
643 			    ntohl(ep->fstamp));
644 			record_crypto_stats(&peer->srcadr, statstr);
645 #ifdef DEBUG
646 			if (debug)
647 				printf("crypto_recv: %s\n", statstr);
648 #endif
649 			break;
650 
651 		/*
652 		 * Schnorr (IFF)identity scheme. This scheme is designed
653 		 * for use with shared secret group keys and where the
654 		 * certificate may be generated by a third party. The
655 		 * client sends a challenge to the server, which
656 		 * performs a calculation and returns the result. A
657 		 * positive result is possible only if both client and
658 		 * server contain the same secret group key.
659 		 */
660 		case CRYPTO_IFF | CRYPTO_RESP:
661 
662 			/*
663 			 * Discard the message if invalid or certificate
664 			 * trail not trusted.
665 			 */
666 			if (!(peer->crypto & CRYPTO_FLAG_VALID)) {
667 				rval = XEVNT_ERR;
668 				break;
669 			}
670 			if ((rval = crypto_verify(ep, NULL, peer)) !=
671 			    XEVNT_OK)
672 				break;
673 
674 			/*
675 			 * If the the challenge matches the response,
676 			 * the certificate public key, as well as the
677 			 * server public key, signatyre and identity are
678 			 * all verified at the same time. The server is
679 			 * declared trusted, so we skip further
680 			 * certificate stages and move immediately to
681 			 * the cookie stage.
682 			 */
683 			if ((rval = crypto_iff(ep, peer)) != XEVNT_OK)
684 				break;
685 
686 			peer->crypto |= CRYPTO_FLAG_VRFY |
687 			    CRYPTO_FLAG_PROV;
688 			peer->flash &= ~TEST8;
689 			snprintf(statstr, NTP_MAXSTRLEN, "iff fs %u",
690 			    ntohl(ep->fstamp));
691 			record_crypto_stats(&peer->srcadr, statstr);
692 #ifdef DEBUG
693 			if (debug)
694 				printf("crypto_recv: %s\n", statstr);
695 #endif
696 			break;
697 
698 		/*
699 		 * Guillou-Quisquater (GQ) identity scheme. This scheme
700 		 * is designed for use with public certificates carrying
701 		 * the GQ public key in an extension field. The client
702 		 * sends a challenge to the server, which performs a
703 		 * calculation and returns the result. A positive result
704 		 * is possible only if both client and server contain
705 		 * the same group key and the server has the matching GQ
706 		 * private key.
707 		 */
708 		case CRYPTO_GQ | CRYPTO_RESP:
709 
710 			/*
711 			 * Discard the message if invalid or certificate
712 			 * trail not trusted.
713 			 */
714 			if (!(peer->crypto & CRYPTO_FLAG_VALID)) {
715 				rval = XEVNT_ERR;
716 				break;
717 			}
718 			if ((rval = crypto_verify(ep, NULL, peer)) !=
719 			    XEVNT_OK)
720 				break;
721 
722 			/*
723 			 * If the the challenge matches the response,
724 			 * the certificate public key, as well as the
725 			 * server public key, signatyre and identity are
726 			 * all verified at the same time. The server is
727 			 * declared trusted, so we skip further
728 			 * certificate stages and move immediately to
729 			 * the cookie stage.
730 			 */
731 			if ((rval = crypto_gq(ep, peer)) != XEVNT_OK)
732 				break;
733 
734 			peer->crypto |= CRYPTO_FLAG_VRFY |
735 			    CRYPTO_FLAG_PROV;
736 			peer->flash &= ~TEST8;
737 			snprintf(statstr, NTP_MAXSTRLEN, "gq fs %u",
738 			    ntohl(ep->fstamp));
739 			record_crypto_stats(&peer->srcadr, statstr);
740 #ifdef DEBUG
741 			if (debug)
742 				printf("crypto_recv: %s\n", statstr);
743 #endif
744 			break;
745 
746 		/*
747 		 * MV
748 		 */
749 		case CRYPTO_MV | CRYPTO_RESP:
750 
751 			/*
752 			 * Discard the message if invalid or certificate
753 			 * trail not trusted.
754 			 */
755 			if (!(peer->crypto & CRYPTO_FLAG_VALID)) {
756 				rval = XEVNT_ERR;
757 				break;
758 			}
759 			if ((rval = crypto_verify(ep, NULL, peer)) !=
760 			    XEVNT_OK)
761 				break;
762 
763 			/*
764 			 * If the the challenge matches the response,
765 			 * the certificate public key, as well as the
766 			 * server public key, signatyre and identity are
767 			 * all verified at the same time. The server is
768 			 * declared trusted, so we skip further
769 			 * certificate stages and move immediately to
770 			 * the cookie stage.
771 			 */
772 			if ((rval = crypto_mv(ep, peer)) != XEVNT_OK)
773 				break;
774 
775 			peer->crypto |= CRYPTO_FLAG_VRFY |
776 			    CRYPTO_FLAG_PROV;
777 			peer->flash &= ~TEST8;
778 			snprintf(statstr, NTP_MAXSTRLEN, "mv fs %u",
779 			    ntohl(ep->fstamp));
780 			record_crypto_stats(&peer->srcadr, statstr);
781 #ifdef DEBUG
782 			if (debug)
783 				printf("crypto_recv: %s\n", statstr);
784 #endif
785 			break;
786 
787 		/*
788 		 * Cookie request in symmetric modes. Roll a random
789 		 * cookie and install in symmetric mode. Encrypt for the
790 		 * response, which is transmitted later.
791 		 */
792 		case CRYPTO_COOK:
793 
794 			/*
795 			 * Discard the message if invalid or certificate
796 			 * trail not trusted.
797 			 */
798 			if (!(peer->crypto & CRYPTO_FLAG_VALID)) {
799 				rval = XEVNT_ERR;
800 				break;
801 			}
802 			if ((rval = crypto_verify(ep, NULL, peer)) !=
803 			    XEVNT_OK)
804 				break;
805 
806 			/*
807 			 * Pass the extension field to the transmit
808 			 * side. If already agreed, walk away.
809 			 */
810 			fp = emalloc(len);
811 			memcpy(fp, ep, len);
812 			temp32 = CRYPTO_RESP;
813 			fp->opcode |= htonl(temp32);
814 			peer->cmmd = fp;
815 			if (peer->crypto & CRYPTO_FLAG_AGREE) {
816 				peer->flash &= ~TEST8;
817 				break;
818 			}
819 
820 			/*
821 			 * Install cookie values and light the cookie
822 			 * bit. The transmit side will pick up and
823 			 * encrypt it for the response.
824 			 */
825 			key_expire(peer);
826 			peer->cookval.tstamp = ep->tstamp;
827 			peer->cookval.fstamp = ep->fstamp;
828 			RAND_bytes((u_char *)&peer->pcookie, 4);
829 			peer->crypto &= ~CRYPTO_FLAG_AUTO;
830 			peer->crypto |= CRYPTO_FLAG_AGREE;
831 			peer->flash &= ~TEST8;
832 			snprintf(statstr, NTP_MAXSTRLEN, "cook %x ts %u fs %u",
833 			    peer->pcookie, ntohl(ep->tstamp),
834 			    ntohl(ep->fstamp));
835 			record_crypto_stats(&peer->srcadr, statstr);
836 #ifdef DEBUG
837 			if (debug)
838 				printf("crypto_recv: %s\n", statstr);
839 #endif
840 			break;
841 
842 		/*
843 		 * Cookie response in client and symmetric modes. If the
844 		 * cookie bit is set, the working cookie is the EXOR of
845 		 * the current and new values.
846 		 */
847 		case CRYPTO_COOK | CRYPTO_RESP:
848 
849 			/*
850 			 * Discard the message if invalid or identity
851 			 * not confirmed or signature not verified with
852 			 * respect to the cookie values.
853 			 */
854 			if (!(peer->crypto & CRYPTO_FLAG_VRFY)) {
855 				rval = XEVNT_ERR;
856 				break;
857 			}
858 			if ((rval = crypto_verify(ep, &peer->cookval,
859 			    peer)) != XEVNT_OK)
860 				break;
861 
862 			/*
863 			 * Decrypt the cookie, hunting all the time for
864 			 * errors.
865 			 */
866 			if (vallen == (u_int) EVP_PKEY_size(host_pkey)) {
867 				RSA_private_decrypt(vallen,
868 				    (u_char *)ep->pkt,
869 				    (u_char *)&temp32,
870 				    host_pkey->pkey.rsa,
871 				    RSA_PKCS1_OAEP_PADDING);
872 				cookie = ntohl(temp32);
873 			} else {
874 				rval = XEVNT_CKY;
875 				break;
876 			}
877 
878 			/*
879 			 * Install cookie values and light the cookie
880 			 * bit. If this is not broadcast client mode, we
881 			 * are done here.
882 			 */
883 			key_expire(peer);
884 			peer->cookval.tstamp = ep->tstamp;
885 			peer->cookval.fstamp = ep->fstamp;
886 			if (peer->crypto & CRYPTO_FLAG_AGREE)
887 				peer->pcookie ^= cookie;
888 			else
889 				peer->pcookie = cookie;
890 			if (peer->hmode == MODE_CLIENT &&
891 			    !(peer->cast_flags & MDF_BCLNT))
892 				peer->crypto |= CRYPTO_FLAG_AUTO;
893 			else
894 				peer->crypto &= ~CRYPTO_FLAG_AUTO;
895 			peer->crypto |= CRYPTO_FLAG_AGREE;
896 			peer->flash &= ~TEST8;
897 			snprintf(statstr, NTP_MAXSTRLEN, "cook %x ts %u fs %u",
898 			    peer->pcookie, ntohl(ep->tstamp),
899 			    ntohl(ep->fstamp));
900 			record_crypto_stats(&peer->srcadr, statstr);
901 #ifdef DEBUG
902 			if (debug)
903 				printf("crypto_recv: %s\n", statstr);
904 #endif
905 			break;
906 
907 		/*
908 		 * Install autokey values in broadcast client and
909 		 * symmetric modes. We have to do this every time the
910 		 * sever/peer cookie changes or a new keylist is
911 		 * rolled. Ordinarily, this is automatic as this message
912 		 * is piggybacked on the first NTP packet sent upon
913 		 * either of these events. Note that a broadcast client
914 		 * or symmetric peer can receive this response without a
915 		 * matching request.
916 		 */
917 		case CRYPTO_AUTO | CRYPTO_RESP:
918 
919 			/*
920 			 * Discard the message if invalid or identity
921 			 * not confirmed or signature not verified with
922 			 * respect to the receive autokey values.
923 			 */
924 			if (!(peer->crypto & CRYPTO_FLAG_VRFY)) {
925 				rval = XEVNT_ERR;
926 				break;
927 			}
928 			if ((rval = crypto_verify(ep, &peer->recval,
929 			    peer)) != XEVNT_OK)
930 				break;
931 
932 			/*
933 			 * Install autokey values and light the
934 			 * autokey bit. This is not hard.
935 			 */
936 			if (peer->recval.ptr == NULL)
937 				peer->recval.ptr =
938 				    emalloc(sizeof(struct autokey));
939 			bp = (struct autokey *)peer->recval.ptr;
940 			peer->recval.tstamp = ep->tstamp;
941 			peer->recval.fstamp = ep->fstamp;
942 			ap = (struct autokey *)ep->pkt;
943 			bp->seq = ntohl(ap->seq);
944 			bp->key = ntohl(ap->key);
945 			peer->pkeyid = bp->key;
946 			peer->crypto |= CRYPTO_FLAG_AUTO;
947 			peer->flash &= ~TEST8;
948 			snprintf(statstr, NTP_MAXSTRLEN,
949 			    "auto seq %d key %x ts %u fs %u", bp->seq,
950 			    bp->key, ntohl(ep->tstamp),
951 			    ntohl(ep->fstamp));
952 			record_crypto_stats(&peer->srcadr, statstr);
953 #ifdef DEBUG
954 			if (debug)
955 				printf("crypto_recv: %s\n", statstr);
956 #endif
957 			break;
958 
959 		/*
960 		 * X509 certificate sign response. Validate the
961 		 * certificate signed by the server and install. Later
962 		 * this can be provided to clients of this server in
963 		 * lieu of the self signed certificate in order to
964 		 * validate the public key.
965 		 */
966 		case CRYPTO_SIGN | CRYPTO_RESP:
967 
968 			/*
969 			 * Discard the message if invalid or not
970 			 * proventic.
971 			 */
972 			if (!(peer->crypto & CRYPTO_FLAG_PROV)) {
973 				rval = XEVNT_ERR;
974 				break;
975 			}
976 			if ((rval = crypto_verify(ep, NULL, peer)) !=
977 			    XEVNT_OK)
978 				break;
979 
980 			/*
981 			 * Scan the certificate list to delete old
982 			 * versions and link the newest version first on
983 			 * the list.
984 			 */
985 			if ((rval = cert_install(ep, peer)) != XEVNT_OK)
986 				break;
987 
988 			peer->crypto |= CRYPTO_FLAG_SIGN;
989 			peer->flash &= ~TEST8;
990 			temp32 = cinfo->nid;
991 			snprintf(statstr, NTP_MAXSTRLEN,
992 			    "sign %s 0x%x %s (%u) fs %u",
993 			    cinfo->issuer, cinfo->flags,
994 			    OBJ_nid2ln(temp32), temp32,
995 			    ntohl(ep->fstamp));
996 			record_crypto_stats(&peer->srcadr, statstr);
997 #ifdef DEBUG
998 			if (debug)
999 				printf("crypto_recv: %s\n", statstr);
1000 #endif
1001 			break;
1002 
1003 		/*
1004 		 * Install leapseconds table in symmetric modes. This
1005 		 * table is proventicated to the NIST primary servers,
1006 		 * either by copying the file containing the table from
1007 		 * a NIST server to a trusted server or directly using
1008 		 * this protocol. While the entire table is installed at
1009 		 * the server, presently only the current TAI offset is
1010 		 * provided via the kernel to other applications.
1011 		 */
1012 		case CRYPTO_TAI:
1013 
1014 			/*
1015 			 * Discard the message if invalid.
1016 			 */
1017 			if ((rval = crypto_verify(ep, NULL, peer)) !=
1018 			    XEVNT_OK)
1019 				break;
1020 
1021 			/*
1022 			 * Pass the extension field to the transmit
1023 			 * side. Continue below if a leapseconds table
1024 			 * accompanies the message.
1025 			 */
1026 			fp = emalloc(len);
1027 			memcpy(fp, ep, len);
1028 			temp32 = CRYPTO_RESP;
1029 			fp->opcode |= htonl(temp32);
1030 			peer->cmmd = fp;
1031 			if (len <= VALUE_LEN) {
1032 				peer->flash &= ~TEST8;
1033 				break;
1034 			}
1035 			/* fall through */
1036 
1037 		case CRYPTO_TAI | CRYPTO_RESP:
1038 
1039 			/*
1040 			 * If this is a response, discard the message if
1041 			 * signature not verified with respect to the
1042 			 * leapsecond table values.
1043 			 */
1044 			if (peer->cmmd == NULL) {
1045 				if ((rval = crypto_verify(ep,
1046 				    &peer->tai_leap, peer)) != XEVNT_OK)
1047 					break;
1048 			}
1049 
1050 			/*
1051 			 * Initialize peer variables with latest update.
1052 			 */
1053 			peer->tai_leap.tstamp = ep->tstamp;
1054 			peer->tai_leap.fstamp = ep->fstamp;
1055 			peer->tai_leap.vallen = ep->vallen;
1056 
1057 			/*
1058 			 * Install the new table if there is no stored
1059 			 * table or the new table is more recent than
1060 			 * the stored table. Since a filestamp may have
1061 			 * changed, recompute the signatures.
1062 			 */
1063 			if (ntohl(peer->tai_leap.fstamp) >
1064 			    ntohl(tai_leap.fstamp)) {
1065 				tai_leap.fstamp = ep->fstamp;
1066 				tai_leap.vallen = ep->vallen;
1067 				if (tai_leap.ptr != NULL)
1068 					free(tai_leap.ptr);
1069 				tai_leap.ptr = emalloc(vallen);
1070 				memcpy(tai_leap.ptr, ep->pkt, vallen);
1071 				crypto_update();
1072 			}
1073 			crypto_flags |= CRYPTO_FLAG_TAI;
1074 			peer->crypto |= CRYPTO_FLAG_LEAP;
1075 			peer->flash &= ~TEST8;
1076 			snprintf(statstr, NTP_MAXSTRLEN,
1077 			    "leap %u ts %u fs %u", vallen,
1078 			    ntohl(ep->tstamp), ntohl(ep->fstamp));
1079 			record_crypto_stats(&peer->srcadr, statstr);
1080 #ifdef DEBUG
1081 			if (debug)
1082 				printf("crypto_recv: %s\n", statstr);
1083 #endif
1084 			break;
1085 
1086 		/*
1087 		 * We come here in symmetric modes for miscellaneous
1088 		 * commands that have value fields but are processed on
1089 		 * the transmit side. All we need do here is check for
1090 		 * valid field length. Remaining checks are below and on
1091 		 * the transmit side.
1092 		 */
1093 		case CRYPTO_CERT:
1094 		case CRYPTO_IFF:
1095 		case CRYPTO_GQ:
1096 		case CRYPTO_MV:
1097 		case CRYPTO_SIGN:
1098 			if (len < VALUE_LEN) {
1099 				rval = XEVNT_LEN;
1100 				break;
1101 			}
1102 			/* fall through */
1103 
1104 		/*
1105 		 * We come here for miscellaneous requests and unknown
1106 		 * requests and responses. If an unknown response or
1107 		 * error, forget it. If a request, save the extension
1108 		 * field for later. Unknown requests will be caught on
1109 		 * the transmit side.
1110 		 */
1111 		default:
1112 			if (code & (CRYPTO_RESP | CRYPTO_ERROR)) {
1113 				rval = XEVNT_ERR;
1114 			} else if ((rval = crypto_verify(ep, NULL,
1115 			    peer)) == XEVNT_OK) {
1116 				fp = emalloc(len);
1117 				memcpy(fp, ep, len);
1118 				temp32 = CRYPTO_RESP;
1119 				fp->opcode |= htonl(temp32);
1120 				peer->cmmd = fp;
1121 			}
1122 		}
1123 
1124 		/*
1125 		 * We don't log length/format/timestamp errors and
1126 		 * duplicates, which are log clogging vulnerabilities.
1127 		 * The first error found terminates the extension field
1128 		 * scan and we return the laundry to the caller. A
1129 		 * length/format/timestamp error on transmit is
1130 		 * cheerfully ignored, as the message is not sent.
1131 		 */
1132 		if (rval > XEVNT_TSP) {
1133 			snprintf(statstr, NTP_MAXSTRLEN,
1134 			    "error %x opcode %x ts %u fs %u", rval,
1135 			    code, tstamp, fstamp);
1136 			record_crypto_stats(&peer->srcadr, statstr);
1137 			report_event(rval, peer);
1138 #ifdef DEBUG
1139 			if (debug)
1140 				printf("crypto_recv: %s\n", statstr);
1141 #endif
1142 			break;
1143 
1144 		} else if (rval > XEVNT_OK && (code & CRYPTO_RESP)) {
1145 			rval = XEVNT_OK;
1146 		}
1147 		authlen += len;
1148 	}
1149 	return (rval);
1150 }
1151 
1152 
1153 /*
1154  * crypto_xmit - construct extension fields
1155  *
1156  * This routine is called both when an association is configured and
1157  * when one is not. The only case where this matters is to retrieve the
1158  * autokey information, in which case the caller has to provide the
1159  * association ID to match the association.
1160  *
1161  * Returns length of extension field.
1162  */
1163 int
1164 crypto_xmit(
1165 	struct pkt *xpkt,	/* transmit packet pointer */
1166 	struct sockaddr_storage *srcadr_sin,	/* active runway */
1167 	int	start,		/* offset to extension field */
1168 	struct exten *ep,	/* extension pointer */
1169 	keyid_t cookie		/* session cookie */
1170 	)
1171 {
1172 	u_int32	*pkt;		/* packet pointer */
1173 	struct peer *peer;	/* peer structure pointer */
1174 	u_int	opcode;		/* extension field opcode */
1175 	struct exten *fp;	/* extension pointers */
1176 	struct cert_info *cp, *xp; /* certificate info/value pointer */
1177 	char	certname[MAXHOSTNAME + 1]; /* subject name buffer */
1178 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
1179 	tstamp_t tstamp;
1180 	u_int	vallen;
1181 	u_int	len;
1182 	struct value vtemp;
1183 	associd_t associd;
1184 	int	rval;
1185 	keyid_t tcookie;
1186 
1187 	/*
1188 	 * Generate the requested extension field request code, length
1189 	 * and association ID. If this is a response and the host is not
1190 	 * synchronized, light the error bit and go home.
1191 	 */
1192 	pkt = (u_int32 *)xpkt + start / 4;
1193 	fp = (struct exten *)pkt;
1194 	opcode = ntohl(ep->opcode);
1195 	associd = (associd_t) ntohl(ep->associd);
1196 	fp->associd = htonl(associd);
1197 	len = 8;
1198 	rval = XEVNT_OK;
1199 	tstamp = crypto_time();
1200 	switch (opcode & 0xffff0000) {
1201 
1202 	/*
1203 	 * Send association request and response with status word and
1204 	 * host name. Note, this message is not signed and the filestamp
1205 	 * contains only the status word.
1206 	 */
1207 	case CRYPTO_ASSOC | CRYPTO_RESP:
1208 		len += crypto_send(fp, &hostval);
1209 		fp->fstamp = htonl(crypto_flags);
1210 		break;
1211 
1212 	case CRYPTO_ASSOC:
1213 		len += crypto_send(fp, &hostval);
1214 		fp->fstamp = htonl(crypto_flags | ident_scheme);
1215 		break;
1216 
1217 	/*
1218 	 * Send certificate request. Use the values from the extension
1219 	 * field.
1220 	 */
1221 	case CRYPTO_CERT:
1222 		memset(&vtemp, 0, sizeof(vtemp));
1223 		vtemp.tstamp = ep->tstamp;
1224 		vtemp.fstamp = ep->fstamp;
1225 		vtemp.vallen = ep->vallen;
1226 		vtemp.ptr = (u_char *)ep->pkt;
1227 		len += crypto_send(fp, &vtemp);
1228 		break;
1229 
1230 	/*
1231 	 * Send certificate response or sign request. Use the values
1232 	 * from the certificate cache. If the request contains no
1233 	 * subject name, assume the name of this host. This is for
1234 	 * backwards compatibility. Private certificates are never sent.
1235 	 */
1236 	case CRYPTO_SIGN:
1237 	case CRYPTO_CERT | CRYPTO_RESP:
1238 		vallen = ntohl(ep->vallen);
1239 		if (vallen == 8) {
1240 			strcpy(certname, sys_hostname);
1241 		} else if (vallen == 0 || vallen > MAXHOSTNAME) {
1242 			rval = XEVNT_LEN;
1243 			break;
1244 
1245 		} else {
1246 			memcpy(certname, ep->pkt, vallen);
1247 			certname[vallen] = '\0';
1248 		}
1249 
1250 		/*
1251 		 * Find all certificates with matching subject. If a
1252 		 * self-signed, trusted certificate is found, use that.
1253 		 * If not, use the first one with matching subject. A
1254 		 * private certificate is never divulged or signed.
1255 		 */
1256 		xp = NULL;
1257 		for (cp = cinfo; cp != NULL; cp = cp->link) {
1258 			if (cp->flags & CERT_PRIV)
1259 				continue;
1260 
1261 			if (strcmp(certname, cp->subject) == 0) {
1262 				if (xp == NULL)
1263 					xp = cp;
1264 				if (strcmp(certname, cp->issuer) ==
1265 				    0 && cp->flags & CERT_TRUST) {
1266 					xp = cp;
1267 					break;
1268 				}
1269 			}
1270 		}
1271 
1272 		/*
1273 		 * Be careful who you trust. If not yet synchronized,
1274 		 * give back an empty response. If certificate not found
1275 		 * or beyond the lifetime, return an error. This is to
1276 		 * avoid a bad dude trying to get an expired certificate
1277 		 * re-signed. Otherwise, send it.
1278 		 *
1279 		 * Note the timestamp and filestamp are taken from the
1280 		 * certificate value structure. For all certificates the
1281 		 * timestamp is the latest signature update time. For
1282 		 * host and imported certificates the filestamp is the
1283 		 * creation epoch. For signed certificates the filestamp
1284 		 * is the creation epoch of the trusted certificate at
1285 		 * the base of the certificate trail. In principle, this
1286 		 * allows strong checking for signature masquerade.
1287 		 */
1288 		if (tstamp == 0)
1289 			break;
1290 
1291 		if (xp == NULL)
1292 			rval = XEVNT_CRT;
1293 		else if (tstamp < xp->first || tstamp > xp->last)
1294 			rval = XEVNT_SRV;
1295 		else
1296 			len += crypto_send(fp, &xp->cert);
1297 		break;
1298 
1299 	/*
1300 	 * Send challenge in Schnorr (IFF) identity scheme.
1301 	 */
1302 	case CRYPTO_IFF:
1303 		if ((peer = findpeerbyassoc(ep->pkt[0])) == NULL) {
1304 			rval = XEVNT_ERR;
1305 			break;
1306 		}
1307 		if ((rval = crypto_alice(peer, &vtemp)) == XEVNT_OK) {
1308 			len += crypto_send(fp, &vtemp);
1309 			value_free(&vtemp);
1310 		}
1311 		break;
1312 
1313 	/*
1314 	 * Send response in Schnorr (IFF) identity scheme.
1315 	 */
1316 	case CRYPTO_IFF | CRYPTO_RESP:
1317 		if ((rval = crypto_bob(ep, &vtemp)) == XEVNT_OK) {
1318 			len += crypto_send(fp, &vtemp);
1319 			value_free(&vtemp);
1320 		}
1321 		break;
1322 
1323 	/*
1324 	 * Send challenge in Guillou-Quisquater (GQ) identity scheme.
1325 	 */
1326 	case CRYPTO_GQ:
1327 		if ((peer = findpeerbyassoc(ep->pkt[0])) == NULL) {
1328 			rval = XEVNT_ERR;
1329 			break;
1330 		}
1331 		if ((rval = crypto_alice2(peer, &vtemp)) == XEVNT_OK) {
1332 			len += crypto_send(fp, &vtemp);
1333 			value_free(&vtemp);
1334 		}
1335 		break;
1336 
1337 	/*
1338 	 * Send response in Guillou-Quisquater (GQ) identity scheme.
1339 	 */
1340 	case CRYPTO_GQ | CRYPTO_RESP:
1341 		if ((rval = crypto_bob2(ep, &vtemp)) == XEVNT_OK) {
1342 			len += crypto_send(fp, &vtemp);
1343 			value_free(&vtemp);
1344 		}
1345 		break;
1346 
1347 	/*
1348 	 * Send challenge in MV identity scheme.
1349 	 */
1350 	case CRYPTO_MV:
1351 		if ((peer = findpeerbyassoc(ep->pkt[0])) == NULL) {
1352 			rval = XEVNT_ERR;
1353 			break;
1354 		}
1355 		if ((rval = crypto_alice3(peer, &vtemp)) == XEVNT_OK) {
1356 			len += crypto_send(fp, &vtemp);
1357 			value_free(&vtemp);
1358 		}
1359 		break;
1360 
1361 	/*
1362 	 * Send response in MV identity scheme.
1363 	 */
1364 	case CRYPTO_MV | CRYPTO_RESP:
1365 		if ((rval = crypto_bob3(ep, &vtemp)) == XEVNT_OK) {
1366 			len += crypto_send(fp, &vtemp);
1367 			value_free(&vtemp);
1368 		}
1369 		break;
1370 
1371 	/*
1372 	 * Send certificate sign response. The integrity of the request
1373 	 * certificate has already been verified on the receive side.
1374 	 * Sign the response using the local server key. Use the
1375 	 * filestamp from the request and use the timestamp as the
1376 	 * current time. Light the error bit if the certificate is
1377 	 * invalid or contains an unverified signature.
1378 	 */
1379 	case CRYPTO_SIGN | CRYPTO_RESP:
1380 		if ((rval = cert_sign(ep, &vtemp)) == XEVNT_OK)
1381 			len += crypto_send(fp, &vtemp);
1382 		value_free(&vtemp);
1383 		break;
1384 
1385 	/*
1386 	 * Send public key and signature. Use the values from the public
1387 	 * key.
1388 	 */
1389 	case CRYPTO_COOK:
1390 		len += crypto_send(fp, &pubkey);
1391 		break;
1392 
1393 	/*
1394 	 * Encrypt and send cookie and signature. Light the error bit if
1395 	 * anything goes wrong.
1396 	 */
1397 	case CRYPTO_COOK | CRYPTO_RESP:
1398 		if ((opcode & 0xffff) < VALUE_LEN) {
1399 			rval = XEVNT_LEN;
1400 			break;
1401 		}
1402 		if (PKT_MODE(xpkt->li_vn_mode) == MODE_SERVER) {
1403 			tcookie = cookie;
1404 		} else {
1405 			if ((peer = findpeerbyassoc(associd)) == NULL) {
1406 				rval = XEVNT_ERR;
1407 				break;
1408 			}
1409 			tcookie = peer->pcookie;
1410 		}
1411 		if ((rval = crypto_encrypt(ep, &vtemp, &tcookie)) ==
1412 		    XEVNT_OK)
1413 			len += crypto_send(fp, &vtemp);
1414 		value_free(&vtemp);
1415 		break;
1416 
1417 	/*
1418 	 * Find peer and send autokey data and signature in broadcast
1419 	 * server and symmetric modes. Use the values in the autokey
1420 	 * structure. If no association is found, either the server has
1421 	 * restarted with new associations or some perp has replayed an
1422 	 * old message, in which case light the error bit.
1423 	 */
1424 	case CRYPTO_AUTO | CRYPTO_RESP:
1425 		if ((peer = findpeerbyassoc(associd)) == NULL) {
1426 			rval = XEVNT_ERR;
1427 			break;
1428 		}
1429 		peer->flags &= ~FLAG_ASSOC;
1430 		len += crypto_send(fp, &peer->sndval);
1431 		break;
1432 
1433 	/*
1434 	 * Send leapseconds table and signature. Use the values from the
1435 	 * tai structure. If no table has been loaded, just send an
1436 	 * empty request.
1437 	 */
1438 	case CRYPTO_TAI:
1439 	case CRYPTO_TAI | CRYPTO_RESP:
1440 		if (crypto_flags & CRYPTO_FLAG_TAI)
1441 			len += crypto_send(fp, &tai_leap);
1442 		break;
1443 
1444 	/*
1445 	 * Default - Fall through for requests; for unknown responses,
1446 	 * flag as error.
1447 	 */
1448 	default:
1449 		if (opcode & CRYPTO_RESP)
1450 			rval = XEVNT_ERR;
1451 	}
1452 
1453 	/*
1454 	 * In case of error, flame the log. If a request, toss the
1455 	 * puppy; if a response, return so the sender can flame, too.
1456 	 */
1457 	if (rval != XEVNT_OK) {
1458 		opcode |= CRYPTO_ERROR;
1459 		snprintf(statstr, NTP_MAXSTRLEN,
1460 		    "error %x opcode %x", rval, opcode);
1461 		record_crypto_stats(srcadr_sin, statstr);
1462 		report_event(rval, NULL);
1463 #ifdef DEBUG
1464 		if (debug)
1465 			printf("crypto_xmit: %s\n", statstr);
1466 #endif
1467 		if (!(opcode & CRYPTO_RESP))
1468 			return (0);
1469 	}
1470 
1471 	/*
1472 	 * Round up the field length to a multiple of 8 bytes and save
1473 	 * the request code and length.
1474 	 */
1475 	len = ((len + 7) / 8) * 8;
1476 	fp->opcode = htonl((opcode & 0xffff0000) | len);
1477 #ifdef DEBUG
1478 	if (debug)
1479 		printf(
1480 		    "crypto_xmit: flags 0x%x ext offset %d len %u code 0x%x assocID %d\n",
1481 		    crypto_flags, start, len, opcode >> 16, associd);
1482 #endif
1483 	return (len);
1484 }
1485 
1486 
1487 /*
1488  * crypto_verify - parse and verify the extension field and value
1489  *
1490  * Returns
1491  * XEVNT_OK	success
1492  * XEVNT_LEN	bad field format or length
1493  * XEVNT_TSP	bad timestamp
1494  * XEVNT_FSP	bad filestamp
1495  * XEVNT_PUB	bad or missing public key
1496  * XEVNT_SGL	bad signature length
1497  * XEVNT_SIG	signature not verified
1498  * XEVNT_ERR	protocol error
1499  */
1500 static int
1501 crypto_verify(
1502 	struct exten *ep,	/* extension pointer */
1503 	struct value *vp,	/* value pointer */
1504 	struct peer *peer	/* peer structure pointer */
1505 	)
1506 {
1507 	EVP_PKEY *pkey;		/* server public key */
1508 	EVP_MD_CTX ctx;		/* signature context */
1509 	tstamp_t tstamp, tstamp1 = 0; /* timestamp */
1510 	tstamp_t fstamp, fstamp1 = 0; /* filestamp */
1511 	u_int	vallen;		/* value length */
1512 	u_int	siglen;		/* signature length */
1513 	u_int	opcode, len;
1514 	int	i;
1515 
1516 	/*
1517 	 * We require valid opcode and field lengths, timestamp,
1518 	 * filestamp, public key, digest, signature length and
1519 	 * signature, where relevant. Note that preliminary length
1520 	 * checks are done in the main loop.
1521 	 */
1522 	len = ntohl(ep->opcode) & 0x0000ffff;
1523 	opcode = ntohl(ep->opcode) & 0xffff0000;
1524 
1525 	/*
1526 	 * Check for valid operation code and protocol. The opcode must
1527 	 * not have the error bit set. If a response, it must have a
1528 	 * value header. If a request and does not contain a value
1529 	 * header, no need for further checking.
1530 	 */
1531 	if (opcode & CRYPTO_ERROR)
1532 		return (XEVNT_ERR);
1533 
1534  	if (opcode & CRYPTO_RESP) {
1535  		if (len < VALUE_LEN)
1536 			return (XEVNT_LEN);
1537 	} else {
1538  		if (len < VALUE_LEN)
1539 			return (XEVNT_OK);
1540 	}
1541 
1542 	/*
1543 	 * We have a value header. Check for valid field lengths. The
1544 	 * field length must be long enough to contain the value header,
1545 	 * value and signature. Note both the value and signature fields
1546 	 * are rounded up to the next word.
1547 	 */
1548 	vallen = ntohl(ep->vallen);
1549 	i = (vallen + 3) / 4;
1550 	siglen = ntohl(ep->pkt[i++]);
1551 	if (len < VALUE_LEN + ((vallen + 3) / 4) * 4 + ((siglen + 3) /
1552 	    4) * 4)
1553 		return (XEVNT_LEN);
1554 
1555 	/*
1556 	 * Punt if this is a response with no data. Punt if this is a
1557 	 * request and a previous response is pending.
1558 	 */
1559 	if (opcode & CRYPTO_RESP) {
1560 		if (vallen == 0)
1561 			return (XEVNT_LEN);
1562 	} else {
1563 		if (peer->cmmd != NULL)
1564 			return (XEVNT_LEN);
1565 	}
1566 
1567 	/*
1568 	 * Check for valid timestamp and filestamp. If the timestamp is
1569 	 * zero, the sender is not synchronized and signatures are
1570 	 * disregarded. If not, the timestamp must not precede the
1571 	 * filestamp. The timestamp and filestamp must not precede the
1572 	 * corresponding values in the value structure, if present. Once
1573 	 * the autokey values have been installed, the timestamp must
1574 	 * always be later than the corresponding value in the value
1575 	 * structure. Duplicate timestamps are illegal once the cookie
1576 	 * has been validated.
1577 	 */
1578 	tstamp = ntohl(ep->tstamp);
1579 	fstamp = ntohl(ep->fstamp);
1580 	if (tstamp == 0)
1581 		return (XEVNT_OK);
1582 
1583 	if (tstamp < fstamp)
1584 		return (XEVNT_TSP);
1585 
1586 	if (vp != NULL) {
1587 		tstamp1 = ntohl(vp->tstamp);
1588 		fstamp1 = ntohl(vp->fstamp);
1589 		if ((tstamp < tstamp1 || (tstamp == tstamp1 &&
1590 		    (peer->crypto & CRYPTO_FLAG_AUTO))))
1591 			return (XEVNT_TSP);
1592 
1593 		if ((tstamp < fstamp1 || fstamp < fstamp1))
1594 			return (XEVNT_FSP);
1595 	}
1596 
1597 	/*
1598 	 * Check for valid signature length, public key and digest
1599 	 * algorithm.
1600 	 */
1601 	if (crypto_flags & peer->crypto & CRYPTO_FLAG_PRIV)
1602 		pkey = sign_pkey;
1603 	else
1604 		pkey = peer->pkey;
1605 	if (siglen == 0 || pkey == NULL || peer->digest == NULL)
1606 		return (XEVNT_OK);
1607 
1608 	if (siglen != (u_int)EVP_PKEY_size(pkey))
1609 		return (XEVNT_SGL);
1610 
1611 	/*
1612 	 * Darn, I thought we would never get here. Verify the
1613 	 * signature. If the identity exchange is verified, light the
1614 	 * proventic bit. If no client identity scheme is specified,
1615 	 * avoid doing the sign exchange.
1616 	 */
1617 	EVP_VerifyInit(&ctx, peer->digest);
1618 	EVP_VerifyUpdate(&ctx, (u_char *)&ep->tstamp, vallen + 12);
1619 	if (EVP_VerifyFinal(&ctx, (u_char *)&ep->pkt[i], siglen, pkey) <= 0)
1620 		return (XEVNT_SIG);
1621 
1622 	if (peer->crypto & CRYPTO_FLAG_VRFY) {
1623 		peer->crypto |= CRYPTO_FLAG_PROV;
1624 		if (!(crypto_flags & CRYPTO_FLAG_MASK))
1625 			peer->crypto |= CRYPTO_FLAG_SIGN;
1626 	}
1627 	return (XEVNT_OK);
1628 }
1629 
1630 
1631 /*
1632  * crypto_encrypt - construct encrypted cookie and signature from
1633  * extension field and cookie
1634  *
1635  * Returns
1636  * XEVNT_OK	success
1637  * XEVNT_PUB	bad or missing public key
1638  * XEVNT_CKY	bad or missing cookie
1639  * XEVNT_PER	host certificate expired
1640  */
1641 static int
1642 crypto_encrypt(
1643 	struct exten *ep,	/* extension pointer */
1644 	struct value *vp,	/* value pointer */
1645 	keyid_t	*cookie		/* server cookie */
1646 	)
1647 {
1648 	EVP_PKEY *pkey;		/* public key */
1649 	EVP_MD_CTX ctx;		/* signature context */
1650 	tstamp_t tstamp;	/* NTP timestamp */
1651 	u_int32	temp32;
1652 	u_int	len;
1653 	u_char	*ptr;
1654 
1655 	/*
1656 	 * Extract the public key from the request.
1657 	 */
1658 	len = ntohl(ep->vallen);
1659 	ptr = (u_char *)ep->pkt;
1660 	pkey = d2i_PublicKey(EVP_PKEY_RSA, NULL, &ptr, len);
1661 	if (pkey == NULL) {
1662 		msyslog(LOG_ERR, "crypto_encrypt %s\n",
1663 		    ERR_error_string(ERR_get_error(), NULL));
1664 		return (XEVNT_PUB);
1665 	}
1666 
1667 	/*
1668 	 * Encrypt the cookie, encode in ASN.1 and sign.
1669 	 */
1670 	tstamp = crypto_time();
1671 	memset(vp, 0, sizeof(struct value));
1672 	vp->tstamp = htonl(tstamp);
1673 	vp->fstamp = hostval.tstamp;
1674 	len = EVP_PKEY_size(pkey);
1675 	vp->vallen = htonl(len);
1676 	vp->ptr = emalloc(len);
1677 	temp32 = htonl(*cookie);
1678 	if (!RSA_public_encrypt(4, (u_char *)&temp32, vp->ptr,
1679 	    pkey->pkey.rsa, RSA_PKCS1_OAEP_PADDING)) {
1680 		msyslog(LOG_ERR, "crypto_encrypt %s\n",
1681 		    ERR_error_string(ERR_get_error(), NULL));
1682 		EVP_PKEY_free(pkey);
1683 		return (XEVNT_CKY);
1684 	}
1685 	EVP_PKEY_free(pkey);
1686 	vp->siglen = 0;
1687 	if (tstamp == 0)
1688 		return (XEVNT_OK);
1689 
1690 	if (tstamp < cinfo->first || tstamp > cinfo->last)
1691 		return (XEVNT_PER);
1692 
1693 	vp->sig = emalloc(sign_siglen);
1694 	EVP_SignInit(&ctx, sign_digest);
1695 	EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
1696 	EVP_SignUpdate(&ctx, vp->ptr, len);
1697 	if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
1698 		vp->siglen = htonl(len);
1699 	return (XEVNT_OK);
1700 }
1701 
1702 
1703 /*
1704  * crypto_ident - construct extension field for identity scheme
1705  *
1706  * This routine determines which identity scheme is in use and
1707  * constructs an extension field for that scheme.
1708  */
1709 u_int
1710 crypto_ident(
1711 	struct peer *peer	/* peer structure pointer */
1712 	)
1713 {
1714 	char	filename[MAXFILENAME + 1];
1715 
1716 	/*
1717 	 * If the server identity has already been verified, no further
1718 	 * action is necessary. Otherwise, try to load the identity file
1719 	 * of the certificate issuer. If the issuer file is not found,
1720 	 * try the host file. If nothing found, declare a cryptobust.
1721 	 * Note we can't get here unless the trusted certificate has
1722 	 * been found and the CRYPTO_FLAG_VALID bit is set, so the
1723 	 * certificate issuer is valid.
1724 	 */
1725 	if (peer->ident_pkey != NULL)
1726 		EVP_PKEY_free(peer->ident_pkey);
1727 	if (peer->crypto & CRYPTO_FLAG_GQ) {
1728 		snprintf(filename, MAXFILENAME, "ntpkey_gq_%s",
1729 		    peer->issuer);
1730 		peer->ident_pkey = crypto_key(filename, &peer->fstamp);
1731 		if (peer->ident_pkey != NULL)
1732 			return (CRYPTO_GQ);
1733 
1734 		snprintf(filename, MAXFILENAME, "ntpkey_gq_%s",
1735 		    sys_hostname);
1736 		peer->ident_pkey = crypto_key(filename, &peer->fstamp);
1737 		if (peer->ident_pkey != NULL)
1738 			return (CRYPTO_GQ);
1739 	}
1740 	if (peer->crypto & CRYPTO_FLAG_IFF) {
1741 		snprintf(filename, MAXFILENAME, "ntpkey_iff_%s",
1742 		    peer->issuer);
1743 		peer->ident_pkey = crypto_key(filename, &peer->fstamp);
1744 		if (peer->ident_pkey != NULL)
1745 			return (CRYPTO_IFF);
1746 
1747 		snprintf(filename, MAXFILENAME, "ntpkey_iff_%s",
1748 		    sys_hostname);
1749 		peer->ident_pkey = crypto_key(filename, &peer->fstamp);
1750 		if (peer->ident_pkey != NULL)
1751 			return (CRYPTO_IFF);
1752 	}
1753 	if (peer->crypto & CRYPTO_FLAG_MV) {
1754 		snprintf(filename, MAXFILENAME, "ntpkey_mv_%s",
1755 		    peer->issuer);
1756 		peer->ident_pkey = crypto_key(filename, &peer->fstamp);
1757 		if (peer->ident_pkey != NULL)
1758 			return (CRYPTO_MV);
1759 
1760 		snprintf(filename, MAXFILENAME, "ntpkey_mv_%s",
1761 		    sys_hostname);
1762 		peer->ident_pkey = crypto_key(filename, &peer->fstamp);
1763 		if (peer->ident_pkey != NULL)
1764 			return (CRYPTO_MV);
1765 	}
1766 
1767 	/*
1768 	 * No compatible identity scheme is available. Life is hard.
1769 	 */
1770 	msyslog(LOG_INFO,
1771 	    "crypto_ident: no compatible identity scheme found");
1772 	return (0);
1773 }
1774 
1775 
1776 /*
1777  * crypto_args - construct extension field from arguments
1778  *
1779  * This routine creates an extension field with current timestamps and
1780  * specified opcode, association ID and optional string. Note that the
1781  * extension field is created here, but freed after the crypto_xmit()
1782  * call in the protocol module.
1783  *
1784  * Returns extension field pointer (no errors).
1785  */
1786 struct exten *
1787 crypto_args(
1788 	struct peer *peer,	/* peer structure pointer */
1789 	u_int	opcode,		/* operation code */
1790 	char	*str		/* argument string */
1791 	)
1792 {
1793 	tstamp_t tstamp;	/* NTP timestamp */
1794 	struct exten *ep;	/* extension field pointer */
1795 	u_int	len;		/* extension field length */
1796 
1797 	tstamp = crypto_time();
1798 	len = sizeof(struct exten);
1799 	if (str != NULL)
1800 		len += strlen(str);
1801 	ep = emalloc(len);
1802 	memset(ep, 0, len);
1803 	if (opcode == 0)
1804 		return (ep);
1805 
1806 	ep->opcode = htonl(opcode + len);
1807 
1808 	/*
1809 	 * If a response, send our ID; if a request, send the
1810 	 * responder's ID.
1811 	 */
1812 	if (opcode & CRYPTO_RESP)
1813 		ep->associd = htonl(peer->associd);
1814 	else
1815 		ep->associd = htonl(peer->assoc);
1816 	ep->tstamp = htonl(tstamp);
1817 	ep->fstamp = hostval.tstamp;
1818 	ep->vallen = 0;
1819 	if (str != NULL) {
1820 		ep->vallen = htonl(strlen(str));
1821 		memcpy((char *)ep->pkt, str, strlen(str));
1822 	} else {
1823 		ep->pkt[0] = peer->associd;
1824 	}
1825 	return (ep);
1826 }
1827 
1828 
1829 /*
1830  * crypto_send - construct extension field from value components
1831  *
1832  * Returns extension field length. Note: it is not polite to send a
1833  * nonempty signature with zero timestamp or a nonzero timestamp with
1834  * empty signature, but these rules are not enforced here.
1835  */
1836 u_int
1837 crypto_send(
1838 	struct exten *ep,	/* extension field pointer */
1839 	struct value *vp	/* value pointer */
1840 	)
1841 {
1842 	u_int	len, temp32;
1843 	int	i;
1844 
1845 	/*
1846 	 * Copy data. If the data field is empty or zero length, encode
1847 	 * an empty value with length zero.
1848 	 */
1849 	ep->tstamp = vp->tstamp;
1850 	ep->fstamp = vp->fstamp;
1851 	ep->vallen = vp->vallen;
1852 	len = 12;
1853 	temp32 = ntohl(vp->vallen);
1854 	if (temp32 > 0 && vp->ptr != NULL)
1855 		memcpy(ep->pkt, vp->ptr, temp32);
1856 
1857 	/*
1858 	 * Copy signature. If the signature field is empty or zero
1859 	 * length, encode an empty signature with length zero.
1860 	 */
1861 	i = (temp32 + 3) / 4;
1862 	len += i * 4 + 4;
1863 	ep->pkt[i++] = vp->siglen;
1864 	temp32 = ntohl(vp->siglen);
1865 	if (temp32 > 0 && vp->sig != NULL)
1866 		memcpy(&ep->pkt[i], vp->sig, temp32);
1867 	len += temp32;
1868 	return (len);
1869 }
1870 
1871 
1872 /*
1873  * crypto_update - compute new public value and sign extension fields
1874  *
1875  * This routine runs periodically, like once a day, and when something
1876  * changes. It updates the timestamps on three value structures and one
1877  * value structure list, then signs all the structures:
1878  *
1879  * hostval	host name (not signed)
1880  * pubkey	public key
1881  * cinfo	certificate info/value list
1882  * tai_leap	leapseconds file
1883  *
1884  * Filestamps are proventicated data, so this routine is run only when
1885  * the host has been synchronized to a proventicated source. Thus, the
1886  * timestamp is proventicated, too, and can be used to deflect
1887  * clogging attacks and even cook breakfast.
1888  *
1889  * Returns void (no errors)
1890  */
1891 void
1892 crypto_update(void)
1893 {
1894 	EVP_MD_CTX ctx;		/* message digest context */
1895 	struct cert_info *cp, *cpn; /* certificate info/value */
1896 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
1897 	tstamp_t tstamp;	/* NTP timestamp */
1898 	u_int	len;
1899 
1900 	if ((tstamp = crypto_time()) == 0)
1901 		return;
1902 
1903 	hostval.tstamp = htonl(tstamp);
1904 
1905 	/*
1906 	 * Sign public key and timestamps. The filestamp is derived from
1907 	 * the host key file extension from wherever the file was
1908 	 * generated.
1909 	 */
1910 	if (pubkey.vallen != 0) {
1911 		pubkey.tstamp = hostval.tstamp;
1912 		pubkey.siglen = 0;
1913 		if (pubkey.sig == NULL)
1914 			pubkey.sig = emalloc(sign_siglen);
1915 		EVP_SignInit(&ctx, sign_digest);
1916 		EVP_SignUpdate(&ctx, (u_char *)&pubkey, 12);
1917 		EVP_SignUpdate(&ctx, pubkey.ptr, ntohl(pubkey.vallen));
1918 		if (EVP_SignFinal(&ctx, pubkey.sig, &len, sign_pkey))
1919 			pubkey.siglen = htonl(len);
1920 	}
1921 
1922 	/*
1923 	 * Sign certificates and timestamps. The filestamp is derived
1924 	 * from the certificate file extension from wherever the file
1925 	 * was generated. Note we do not throw expired certificates
1926 	 * away; they may have signed younger ones.
1927 	 */
1928 	for (cp = cinfo; cp != NULL; cp = cpn) {
1929 		cpn = cp->link;
1930 		cp->cert.tstamp = hostval.tstamp;
1931 		cp->cert.siglen = 0;
1932 		if (cp->cert.sig == NULL)
1933 			cp->cert.sig = emalloc(sign_siglen);
1934 		EVP_SignInit(&ctx, sign_digest);
1935 		EVP_SignUpdate(&ctx, (u_char *)&cp->cert, 12);
1936 		EVP_SignUpdate(&ctx, cp->cert.ptr,
1937 		    ntohl(cp->cert.vallen));
1938 		if (EVP_SignFinal(&ctx, cp->cert.sig, &len, sign_pkey))
1939 			cp->cert.siglen = htonl(len);
1940 	}
1941 
1942 	/*
1943 	 * Sign leapseconds table and timestamps. The filestamp is
1944 	 * derived from the leapsecond file extension from wherever the
1945 	 * file was generated.
1946 	 */
1947 	if (tai_leap.vallen != 0) {
1948 		tai_leap.tstamp = hostval.tstamp;
1949 		tai_leap.siglen = 0;
1950 		if (tai_leap.sig == NULL)
1951 			tai_leap.sig = emalloc(sign_siglen);
1952 		EVP_SignInit(&ctx, sign_digest);
1953 		EVP_SignUpdate(&ctx, (u_char *)&tai_leap, 12);
1954 		EVP_SignUpdate(&ctx, tai_leap.ptr,
1955 		    ntohl(tai_leap.vallen));
1956 		if (EVP_SignFinal(&ctx, tai_leap.sig, &len, sign_pkey))
1957 			tai_leap.siglen = htonl(len);
1958 	}
1959 	snprintf(statstr, NTP_MAXSTRLEN,
1960 	    "update ts %u", ntohl(hostval.tstamp));
1961 	record_crypto_stats(NULL, statstr);
1962 #ifdef DEBUG
1963 	if (debug)
1964 		printf("crypto_update: %s\n", statstr);
1965 #endif
1966 }
1967 
1968 
1969 /*
1970  * value_free - free value structure components.
1971  *
1972  * Returns void (no errors)
1973  */
1974 void
1975 value_free(
1976 	struct value *vp	/* value structure */
1977 	)
1978 {
1979 	if (vp->ptr != NULL)
1980 		free(vp->ptr);
1981 	if (vp->sig != NULL)
1982 		free(vp->sig);
1983 	memset(vp, 0, sizeof(struct value));
1984 }
1985 
1986 
1987 /*
1988  * crypto_time - returns current NTP time in seconds.
1989  */
1990 tstamp_t
1991 crypto_time()
1992 {
1993 	l_fp	tstamp;		/* NTP time */	L_CLR(&tstamp);
1994 
1995 	L_CLR(&tstamp);
1996 	if (sys_leap != LEAP_NOTINSYNC)
1997 		get_systime(&tstamp);
1998 	return (tstamp.l_ui);
1999 }
2000 
2001 
2002 /*
2003  * asn2ntp - convert ASN1_TIME time structure to NTP time in seconds.
2004  */
2005 u_long
2006 asn2ntp	(
2007 	ASN1_TIME *asn1time	/* pointer to ASN1_TIME structure */
2008 	)
2009 {
2010 	char	*v;		/* pointer to ASN1_TIME string */
2011 	struct	tm tm;		/* used to convert to NTP time */
2012 
2013 	/*
2014 	 * Extract time string YYMMDDHHMMSSZ from ASN1 time structure.
2015 	 * Note that the YY, MM, DD fields start with one, the HH, MM,
2016 	 * SS fiels start with zero and the Z character should be 'Z'
2017 	 * for UTC. Also note that years less than 50 map to years
2018 	 * greater than 100. Dontcha love ASN.1? Better than MIL-188.
2019 	 */
2020 	if (asn1time->length > 13)
2021 		return ((u_long)(~0));	/* We can't use -1 here. It's invalid */
2022 
2023 	v = (char *)asn1time->data;
2024 	tm.tm_year = (v[0] - '0') * 10 + v[1] - '0';
2025 	if (tm.tm_year < 50)
2026 		tm.tm_year += 100;
2027 	tm.tm_mon = (v[2] - '0') * 10 + v[3] - '0' - 1;
2028 	tm.tm_mday = (v[4] - '0') * 10 + v[5] - '0';
2029 	tm.tm_hour = (v[6] - '0') * 10 + v[7] - '0';
2030 	tm.tm_min = (v[8] - '0') * 10 + v[9] - '0';
2031 	tm.tm_sec = (v[10] - '0') * 10 + v[11] - '0';
2032 	tm.tm_wday = 0;
2033 	tm.tm_yday = 0;
2034 	tm.tm_isdst = 0;
2035 	return (timegm(&tm) + JAN_1970);
2036 }
2037 
2038 
2039 /*
2040  * bigdig() - compute a BIGNUM MD5 hash of a BIGNUM number.
2041  */
2042 static int
2043 bighash(
2044 	BIGNUM	*bn,		/* BIGNUM * from */
2045 	BIGNUM	*bk		/* BIGNUM * to */
2046 	)
2047 {
2048 	EVP_MD_CTX ctx;		/* message digest context */
2049 	u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */
2050 	u_char	*ptr;		/* a BIGNUM as binary string */
2051 	u_int	len;
2052 
2053 	len = BN_num_bytes(bn);
2054 	ptr = emalloc(len);
2055 	BN_bn2bin(bn, ptr);
2056 	EVP_DigestInit(&ctx, EVP_md5());
2057 	EVP_DigestUpdate(&ctx, ptr, len);
2058 	EVP_DigestFinal(&ctx, dgst, &len);
2059 	BN_bin2bn(dgst, len, bk);
2060 
2061 	/* XXX MEMLEAK? free ptr? */
2062 
2063 	return (1);
2064 }
2065 
2066 
2067 /*
2068  ***********************************************************************
2069  *								       *
2070  * The following routines implement the Schnorr (IFF) identity scheme  *
2071  *								       *
2072  ***********************************************************************
2073  *
2074  * The Schnorr (IFF) identity scheme is intended for use when
2075  * the ntp-genkeys program does not generate the certificates used in
2076  * the protocol and the group key cannot be conveyed in the certificate
2077  * itself. For this purpose, new generations of IFF values must be
2078  * securely transmitted to all members of the group before use. The
2079  * scheme is self contained and independent of new generations of host
2080  * keys, sign keys and certificates.
2081  *
2082  * The IFF identity scheme is based on DSA cryptography and algorithms
2083  * described in Stinson p. 285. The IFF values hide in a DSA cuckoo
2084  * structure, but only the primes and generator are used. The p is a
2085  * 512-bit prime, q a 160-bit prime that divides p - 1 and is a qth root
2086  * of 1 mod p; that is, g^q = 1 mod p. The TA rolls primvate random
2087  * group key b disguised as a DSA structure member, then computes public
2088  * key g^(q - b). These values are shared only among group members and
2089  * never revealed in messages. Alice challenges Bob to confirm identity
2090  * using the protocol described below.
2091  *
2092  * How it works
2093  *
2094  * The scheme goes like this. Both Alice and Bob have the public primes
2095  * p, q and generator g. The TA gives private key b to Bob and public
2096  * key v = g^(q - a) mod p to Alice.
2097  *
2098  * Alice rolls new random challenge r and sends to Bob in the IFF
2099  * request message. Bob rolls new random k, then computes y = k + b r
2100  * mod q and x = g^k mod p and sends (y, hash(x)) to Alice in the
2101  * response message. Besides making the response shorter, the hash makes
2102  * it effectivey impossible for an intruder to solve for b by observing
2103  * a number of these messages.
2104  *
2105  * Alice receives the response and computes g^y v^r mod p. After a bit
2106  * of algebra, this simplifies to g^k. If the hash of this result
2107  * matches hash(x), Alice knows that Bob has the group key b. The signed
2108  * response binds this knowledge to Bob's private key and the public key
2109  * previously received in his certificate.
2110  *
2111  * crypto_alice - construct Alice's challenge in IFF scheme
2112  *
2113  * Returns
2114  * XEVNT_OK	success
2115  * XEVNT_PUB	bad or missing public key
2116  * XEVNT_ID	bad or missing group key
2117  */
2118 static int
2119 crypto_alice(
2120 	struct peer *peer,	/* peer pointer */
2121 	struct value *vp	/* value pointer */
2122 	)
2123 {
2124 	DSA	*dsa;		/* IFF parameters */
2125 	BN_CTX	*bctx;		/* BIGNUM context */
2126 	EVP_MD_CTX ctx;		/* signature context */
2127 	tstamp_t tstamp;
2128 	u_int	len;
2129 
2130 	/*
2131 	 * The identity parameters must have correct format and content.
2132 	 */
2133 	if (peer->ident_pkey == NULL)
2134 		return (XEVNT_ID);
2135 
2136 	if ((dsa = peer->ident_pkey->pkey.dsa) == NULL) {
2137 		msyslog(LOG_INFO, "crypto_alice: defective key");
2138 		return (XEVNT_PUB);
2139 	}
2140 
2141 	/*
2142 	 * Roll new random r (0 < r < q). The OpenSSL library has a bug
2143 	 * omitting BN_rand_range, so we have to do it the hard way.
2144 	 */
2145 	bctx = BN_CTX_new();
2146 	len = BN_num_bytes(dsa->q);
2147 	if (peer->iffval != NULL)
2148 		BN_free(peer->iffval);
2149 	peer->iffval = BN_new();
2150 	BN_rand(peer->iffval, len * 8, -1, 1);	/* r */
2151 	BN_mod(peer->iffval, peer->iffval, dsa->q, bctx);
2152 	BN_CTX_free(bctx);
2153 
2154 	/*
2155 	 * Sign and send to Bob. The filestamp is from the local file.
2156 	 */
2157 	tstamp = crypto_time();
2158 	memset(vp, 0, sizeof(struct value));
2159 	vp->tstamp = htonl(tstamp);
2160 	vp->fstamp = htonl(peer->fstamp);
2161 	vp->vallen = htonl(len);
2162 	vp->ptr = emalloc(len);
2163 	BN_bn2bin(peer->iffval, vp->ptr);
2164 	vp->siglen = 0;
2165 	if (tstamp == 0)
2166 		return (XEVNT_OK);
2167 
2168 	if (tstamp < cinfo->first || tstamp > cinfo->last)
2169 		return (XEVNT_PER);
2170 
2171 	vp->sig = emalloc(sign_siglen);
2172 	EVP_SignInit(&ctx, sign_digest);
2173 	EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
2174 	EVP_SignUpdate(&ctx, vp->ptr, len);
2175 	if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
2176 		vp->siglen = htonl(len);
2177 	return (XEVNT_OK);
2178 }
2179 
2180 
2181 /*
2182  * crypto_bob - construct Bob's response to Alice's challenge
2183  *
2184  * Returns
2185  * XEVNT_OK	success
2186  * XEVNT_ID	bad or missing group key
2187  * XEVNT_ERR	protocol error
2188  * XEVNT_PER	host expired certificate
2189  */
2190 static int
2191 crypto_bob(
2192 	struct exten *ep,	/* extension pointer */
2193 	struct value *vp	/* value pointer */
2194 	)
2195 {
2196 	DSA	*dsa;		/* IFF parameters */
2197 	DSA_SIG	*sdsa;		/* DSA signature context fake */
2198 	BN_CTX	*bctx;		/* BIGNUM context */
2199 	EVP_MD_CTX ctx;		/* signature context */
2200 	tstamp_t tstamp;	/* NTP timestamp */
2201 	BIGNUM	*bn, *bk, *r;
2202 	u_char	*ptr;
2203 	u_int	len;
2204 
2205 	/*
2206 	 * If the IFF parameters are not valid, something awful
2207 	 * happened or we are being tormented.
2208 	 */
2209 	if (iffpar_pkey == NULL) {
2210 		msyslog(LOG_INFO, "crypto_bob: scheme unavailable");
2211 		return (XEVNT_ID);
2212 	}
2213 	dsa = iffpar_pkey->pkey.dsa;
2214 
2215 	/*
2216 	 * Extract r from the challenge.
2217 	 */
2218 	len = ntohl(ep->vallen);
2219 	if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2220 		msyslog(LOG_ERR, "crypto_bob %s\n",
2221 		    ERR_error_string(ERR_get_error(), NULL));
2222 		return (XEVNT_ERR);
2223 	}
2224 
2225 	/*
2226 	 * Bob rolls random k (0 < k < q), computes y = k + b r mod q
2227 	 * and x = g^k mod p, then sends (y, hash(x)) to Alice.
2228 	 */
2229 	bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new();
2230 	sdsa = DSA_SIG_new();
2231 	BN_rand(bk, len * 8, -1, 1);		/* k */
2232 	BN_mod_mul(bn, dsa->priv_key, r, dsa->q, bctx); /* b r mod q */
2233 	BN_add(bn, bn, bk);
2234 	BN_mod(bn, bn, dsa->q, bctx);		/* k + b r mod q */
2235 	sdsa->r = BN_dup(bn);
2236 	BN_mod_exp(bk, dsa->g, bk, dsa->p, bctx); /* g^k mod p */
2237 	bighash(bk, bk);
2238 	sdsa->s = BN_dup(bk);
2239 	BN_CTX_free(bctx);
2240 	BN_free(r); BN_free(bn); BN_free(bk);
2241 
2242 	/*
2243 	 * Encode the values in ASN.1 and sign.
2244 	 */
2245 	tstamp = crypto_time();
2246 	memset(vp, 0, sizeof(struct value));
2247 	vp->tstamp = htonl(tstamp);
2248 	vp->fstamp = htonl(if_fstamp);
2249 	len = i2d_DSA_SIG(sdsa, NULL);
2250 	if (len <= 0) {
2251 		msyslog(LOG_ERR, "crypto_bob %s\n",
2252 		    ERR_error_string(ERR_get_error(), NULL));
2253 		DSA_SIG_free(sdsa);
2254 		return (XEVNT_ERR);
2255 	}
2256 	vp->vallen = htonl(len);
2257 	ptr = emalloc(len);
2258 	vp->ptr = ptr;
2259 	i2d_DSA_SIG(sdsa, &ptr);
2260 	DSA_SIG_free(sdsa);
2261 	vp->siglen = 0;
2262 	if (tstamp == 0)
2263 		return (XEVNT_OK);
2264 
2265 	if (tstamp < cinfo->first || tstamp > cinfo->last)
2266 		return (XEVNT_PER);
2267 
2268 	vp->sig = emalloc(sign_siglen);
2269 	EVP_SignInit(&ctx, sign_digest);
2270 	EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
2271 	EVP_SignUpdate(&ctx, vp->ptr, len);
2272 	if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
2273 		vp->siglen = htonl(len);
2274 	return (XEVNT_OK);
2275 }
2276 
2277 
2278 /*
2279  * crypto_iff - verify Bob's response to Alice's challenge
2280  *
2281  * Returns
2282  * XEVNT_OK	success
2283  * XEVNT_PUB	bad or missing public key
2284  * XEVNT_ID	bad or missing group key
2285  * XEVNT_FSP	bad filestamp
2286  */
2287 int
2288 crypto_iff(
2289 	struct exten *ep,	/* extension pointer */
2290 	struct peer *peer	/* peer structure pointer */
2291 	)
2292 {
2293 	DSA	*dsa;		/* IFF parameters */
2294 	BN_CTX	*bctx;		/* BIGNUM context */
2295 	DSA_SIG	*sdsa;		/* DSA parameters */
2296 	BIGNUM	*bn, *bk;
2297 	u_int	len;
2298 	const u_char	*ptr;
2299 	int	temp;
2300 
2301 	/*
2302 	 * If the IFF parameters are not valid or no challenge was sent,
2303 	 * something awful happened or we are being tormented.
2304 	 */
2305 	if (peer->ident_pkey == NULL) {
2306 		msyslog(LOG_INFO, "crypto_iff: scheme unavailable");
2307 		return (XEVNT_ID);
2308 	}
2309 	if (ntohl(ep->fstamp) != peer->fstamp) {
2310 		msyslog(LOG_INFO, "crypto_iff: invalid filestamp %u",
2311 		    ntohl(ep->fstamp));
2312 		return (XEVNT_FSP);
2313 	}
2314 	if ((dsa = peer->ident_pkey->pkey.dsa) == NULL) {
2315 		msyslog(LOG_INFO, "crypto_iff: defective key");
2316 		return (XEVNT_PUB);
2317 	}
2318 	if (peer->iffval == NULL) {
2319 		msyslog(LOG_INFO, "crypto_iff: missing challenge");
2320 		return (XEVNT_ID);
2321 	}
2322 
2323 	/*
2324 	 * Extract the k + b r and g^k values from the response.
2325 	 */
2326 	bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new();
2327 	len = ntohl(ep->vallen);
2328 	ptr = (const u_char *)ep->pkt;
2329 	if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) {
2330 		msyslog(LOG_ERR, "crypto_iff %s\n",
2331 		    ERR_error_string(ERR_get_error(), NULL));
2332 		return (XEVNT_ERR);
2333 	}
2334 
2335 	/*
2336 	 * Compute g^(k + b r) g^(q - b)r mod p.
2337 	 */
2338 	BN_mod_exp(bn, dsa->pub_key, peer->iffval, dsa->p, bctx);
2339 	BN_mod_exp(bk, dsa->g, sdsa->r, dsa->p, bctx);
2340 	BN_mod_mul(bn, bn, bk, dsa->p, bctx);
2341 
2342 	/*
2343 	 * Verify the hash of the result matches hash(x).
2344 	 */
2345 	bighash(bn, bn);
2346 	temp = BN_cmp(bn, sdsa->s);
2347 	BN_free(bn); BN_free(bk); BN_CTX_free(bctx);
2348 	BN_free(peer->iffval);
2349 	peer->iffval = NULL;
2350 	DSA_SIG_free(sdsa);
2351 	if (temp == 0)
2352 		return (XEVNT_OK);
2353 
2354 	else
2355 		return (XEVNT_ID);
2356 }
2357 
2358 
2359 /*
2360  ***********************************************************************
2361  *								       *
2362  * The following routines implement the Guillou-Quisquater (GQ)        *
2363  * identity scheme                                                     *
2364  *								       *
2365  ***********************************************************************
2366  *
2367  * The Guillou-Quisquater (GQ) identity scheme is intended for use when
2368  * the ntp-genkeys program generates the certificates used in the
2369  * protocol and the group key can be conveyed in a certificate extension
2370  * field. The scheme is self contained and independent of new
2371  * generations of host keys, sign keys and certificates.
2372  *
2373  * The GQ identity scheme is based on RSA cryptography and algorithms
2374  * described in Stinson p. 300 (with errors). The GQ values hide in a
2375  * RSA cuckoo structure, but only the modulus is used. The 512-bit
2376  * public modulus is n = p q, where p and q are secret large primes. The
2377  * TA rolls random group key b disguised as a RSA structure member.
2378  * Except for the public key, these values are shared only among group
2379  * members and never revealed in messages.
2380  *
2381  * When rolling new certificates, Bob recomputes the private and
2382  * public keys. The private key u is a random roll, while the public key
2383  * is the inverse obscured by the group key v = (u^-1)^b. These values
2384  * replace the private and public keys normally generated by the RSA
2385  * scheme. Alice challenges Bob to confirm identity using the protocol
2386  * described below.
2387  *
2388  * How it works
2389  *
2390  * The scheme goes like this. Both Alice and Bob have the same modulus n
2391  * and some random b as the group key. These values are computed and
2392  * distributed in advance via secret means, although only the group key
2393  * b is truly secret. Each has a private random private key u and public
2394  * key (u^-1)^b, although not necessarily the same ones. Bob and Alice
2395  * can regenerate the key pair from time to time without affecting
2396  * operations. The public key is conveyed on the certificate in an
2397  * extension field; the private key is never revealed.
2398  *
2399  * Alice rolls new random challenge r and sends to Bob in the GQ
2400  * request message. Bob rolls new random k, then computes y = k u^r mod
2401  * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response
2402  * message. Besides making the response shorter, the hash makes it
2403  * effectivey impossible for an intruder to solve for b by observing
2404  * a number of these messages.
2405  *
2406  * Alice receives the response and computes y^b v^r mod n. After a bit
2407  * of algebra, this simplifies to k^b. If the hash of this result
2408  * matches hash(x), Alice knows that Bob has the group key b. The signed
2409  * response binds this knowledge to Bob's private key and the public key
2410  * previously received in his certificate.
2411  *
2412  * crypto_alice2 - construct Alice's challenge in GQ scheme
2413  *
2414  * Returns
2415  * XEVNT_OK	success
2416  * XEVNT_PUB	bad or missing public key
2417  * XEVNT_ID	bad or missing group key
2418  * XEVNT_PER	host certificate expired
2419  */
2420 static int
2421 crypto_alice2(
2422 	struct peer *peer,	/* peer pointer */
2423 	struct value *vp	/* value pointer */
2424 	)
2425 {
2426 	RSA	*rsa;		/* GQ parameters */
2427 	BN_CTX	*bctx;		/* BIGNUM context */
2428 	EVP_MD_CTX ctx;		/* signature context */
2429 	tstamp_t tstamp;
2430 	u_int	len;
2431 
2432 	/*
2433 	 * The identity parameters must have correct format and content.
2434 	 */
2435 	if (peer->ident_pkey == NULL)
2436 		return (XEVNT_ID);
2437 
2438 	if ((rsa = peer->ident_pkey->pkey.rsa) == NULL) {
2439 		msyslog(LOG_INFO, "crypto_alice2: defective key");
2440 		return (XEVNT_PUB);
2441 	}
2442 
2443 	/*
2444 	 * Roll new random r (0 < r < n). The OpenSSL library has a bug
2445 	 * omitting BN_rand_range, so we have to do it the hard way.
2446 	 */
2447 	bctx = BN_CTX_new();
2448 	len = BN_num_bytes(rsa->n);
2449 	if (peer->iffval != NULL)
2450 		BN_free(peer->iffval);
2451 	peer->iffval = BN_new();
2452 	BN_rand(peer->iffval, len * 8, -1, 1);	/* r mod n */
2453 	BN_mod(peer->iffval, peer->iffval, rsa->n, bctx);
2454 	BN_CTX_free(bctx);
2455 
2456 	/*
2457 	 * Sign and send to Bob. The filestamp is from the local file.
2458 	 */
2459 	tstamp = crypto_time();
2460 	memset(vp, 0, sizeof(struct value));
2461 	vp->tstamp = htonl(tstamp);
2462 	vp->fstamp = htonl(peer->fstamp);
2463 	vp->vallen = htonl(len);
2464 	vp->ptr = emalloc(len);
2465 	BN_bn2bin(peer->iffval, vp->ptr);
2466 	vp->siglen = 0;
2467 	if (tstamp == 0)
2468 		return (XEVNT_OK);
2469 
2470 	if (tstamp < cinfo->first || tstamp > cinfo->last)
2471 		return (XEVNT_PER);
2472 
2473 	vp->sig = emalloc(sign_siglen);
2474 	EVP_SignInit(&ctx, sign_digest);
2475 	EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
2476 	EVP_SignUpdate(&ctx, vp->ptr, len);
2477 	if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
2478 		vp->siglen = htonl(len);
2479 	return (XEVNT_OK);
2480 }
2481 
2482 
2483 /*
2484  * crypto_bob2 - construct Bob's response to Alice's challenge
2485  *
2486  * Returns
2487  * XEVNT_OK	success
2488  * XEVNT_ID	bad or missing group key
2489  * XEVNT_ERR	protocol error
2490  * XEVNT_PER	host certificate expired
2491  */
2492 static int
2493 crypto_bob2(
2494 	struct exten *ep,	/* extension pointer */
2495 	struct value *vp	/* value pointer */
2496 	)
2497 {
2498 	RSA	*rsa;		/* GQ parameters */
2499 	DSA_SIG	*sdsa;		/* DSA parameters */
2500 	BN_CTX	*bctx;		/* BIGNUM context */
2501 	EVP_MD_CTX ctx;		/* signature context */
2502 	tstamp_t tstamp;	/* NTP timestamp */
2503 	BIGNUM	*r, *k, *g, *y;
2504 	u_char	*ptr;
2505 	u_int	len;
2506 
2507 	/*
2508 	 * If the GQ parameters are not valid, something awful
2509 	 * happened or we are being tormented.
2510 	 */
2511 	if (gqpar_pkey == NULL) {
2512 		msyslog(LOG_INFO, "crypto_bob2: scheme unavailable");
2513 		return (XEVNT_ID);
2514 	}
2515 	rsa = gqpar_pkey->pkey.rsa;
2516 
2517 	/*
2518 	 * Extract r from the challenge.
2519 	 */
2520 	len = ntohl(ep->vallen);
2521 	if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2522 		msyslog(LOG_ERR, "crypto_bob2 %s\n",
2523 		    ERR_error_string(ERR_get_error(), NULL));
2524 		return (XEVNT_ERR);
2525 	}
2526 
2527 	/*
2528 	 * Bob rolls random k (0 < k < n), computes y = k u^r mod n and
2529 	 * x = k^b mod n, then sends (y, hash(x)) to Alice.
2530 	 */
2531 	bctx = BN_CTX_new(); k = BN_new(); g = BN_new(); y = BN_new();
2532 	sdsa = DSA_SIG_new();
2533 	BN_rand(k, len * 8, -1, 1);		/* k */
2534 	BN_mod(k, k, rsa->n, bctx);
2535 	BN_mod_exp(y, rsa->p, r, rsa->n, bctx); /* u^r mod n */
2536 	BN_mod_mul(y, k, y, rsa->n, bctx);	/* k u^r mod n */
2537 	sdsa->r = BN_dup(y);
2538 	BN_mod_exp(g, k, rsa->e, rsa->n, bctx); /* k^b mod n */
2539 	bighash(g, g);
2540 	sdsa->s = BN_dup(g);
2541 	BN_CTX_free(bctx);
2542 	BN_free(r); BN_free(k); BN_free(g); BN_free(y);
2543 
2544 	/*
2545 	 * Encode the values in ASN.1 and sign.
2546 	 */
2547 	tstamp = crypto_time();
2548 	memset(vp, 0, sizeof(struct value));
2549 	vp->tstamp = htonl(tstamp);
2550 	vp->fstamp = htonl(gq_fstamp);
2551 	len = i2d_DSA_SIG(sdsa, NULL);
2552 	if (len <= 0) {
2553 		msyslog(LOG_ERR, "crypto_bob2 %s\n",
2554 		    ERR_error_string(ERR_get_error(), NULL));
2555 		DSA_SIG_free(sdsa);
2556 		return (XEVNT_ERR);
2557 	}
2558 	vp->vallen = htonl(len);
2559 	ptr = emalloc(len);
2560 	vp->ptr = ptr;
2561 	i2d_DSA_SIG(sdsa, &ptr);
2562 	DSA_SIG_free(sdsa);
2563 	vp->siglen = 0;
2564 	if (tstamp == 0)
2565 		return (XEVNT_OK);
2566 
2567 	if (tstamp < cinfo->first || tstamp > cinfo->last)
2568 		return (XEVNT_PER);
2569 
2570 	vp->sig = emalloc(sign_siglen);
2571 	EVP_SignInit(&ctx, sign_digest);
2572 	EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
2573 	EVP_SignUpdate(&ctx, vp->ptr, len);
2574 	if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
2575 		vp->siglen = htonl(len);
2576 	return (XEVNT_OK);
2577 }
2578 
2579 
2580 /*
2581  * crypto_gq - verify Bob's response to Alice's challenge
2582  *
2583  * Returns
2584  * XEVNT_OK	success
2585  * XEVNT_PUB	bad or missing public key
2586  * XEVNT_ID	bad or missing group keys
2587  * XEVNT_ERR	protocol error
2588  * XEVNT_FSP	bad filestamp
2589  */
2590 int
2591 crypto_gq(
2592 	struct exten *ep,	/* extension pointer */
2593 	struct peer *peer	/* peer structure pointer */
2594 	)
2595 {
2596 	RSA	*rsa;		/* GQ parameters */
2597 	BN_CTX	*bctx;		/* BIGNUM context */
2598 	DSA_SIG	*sdsa;		/* RSA signature context fake */
2599 	BIGNUM	*y, *v;
2600 	const u_char	*ptr;
2601 	u_int	len;
2602 	int	temp;
2603 
2604 	/*
2605 	 * If the GQ parameters are not valid or no challenge was sent,
2606 	 * something awful happened or we are being tormented.
2607 	 */
2608 	if (peer->ident_pkey == NULL) {
2609 		msyslog(LOG_INFO, "crypto_gq: scheme unavailable");
2610 		return (XEVNT_ID);
2611 	}
2612 	if (ntohl(ep->fstamp) != peer->fstamp) {
2613 		msyslog(LOG_INFO, "crypto_gq: invalid filestamp %u",
2614 		    ntohl(ep->fstamp));
2615 		return (XEVNT_FSP);
2616 	}
2617 	if ((rsa = peer->ident_pkey->pkey.rsa) == NULL) {
2618 		msyslog(LOG_INFO, "crypto_gq: defective key");
2619 		return (XEVNT_PUB);
2620 	}
2621 	if (peer->iffval == NULL) {
2622 		msyslog(LOG_INFO, "crypto_gq: missing challenge");
2623 		return (XEVNT_ID);
2624 	}
2625 
2626 	/*
2627 	 * Extract the y = k u^r and hash(x = k^b) values from the
2628 	 * response.
2629 	 */
2630 	bctx = BN_CTX_new(); y = BN_new(); v = BN_new();
2631 	len = ntohl(ep->vallen);
2632 	ptr = (const u_char *)ep->pkt;
2633 	if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) {
2634 		msyslog(LOG_ERR, "crypto_gq %s\n",
2635 		    ERR_error_string(ERR_get_error(), NULL));
2636 		return (XEVNT_ERR);
2637 	}
2638 
2639 	/*
2640 	 * Compute v^r y^b mod n.
2641 	 */
2642 	BN_mod_exp(v, peer->grpkey, peer->iffval, rsa->n, bctx);
2643 						/* v^r mod n */
2644 	BN_mod_exp(y, sdsa->r, rsa->e, rsa->n, bctx); /* y^b mod n */
2645 	BN_mod_mul(y, v, y, rsa->n, bctx);	/* v^r y^b mod n */
2646 
2647 	/*
2648 	 * Verify the hash of the result matches hash(x).
2649 	 */
2650 	bighash(y, y);
2651 	temp = BN_cmp(y, sdsa->s);
2652 	BN_CTX_free(bctx); BN_free(y); BN_free(v);
2653 	BN_free(peer->iffval);
2654 	peer->iffval = NULL;
2655 	DSA_SIG_free(sdsa);
2656 	if (temp == 0)
2657 		return (XEVNT_OK);
2658 
2659 	else
2660 		return (XEVNT_ID);
2661 }
2662 
2663 
2664 /*
2665  ***********************************************************************
2666  *								       *
2667  * The following routines implement the Mu-Varadharajan (MV) identity  *
2668  * scheme                                                              *
2669  *								       *
2670  ***********************************************************************
2671  */
2672 /*
2673  * The Mu-Varadharajan (MV) cryptosystem was originally intended when
2674  * servers broadcast messages to clients, but clients never send
2675  * messages to servers. There is one encryption key for the server and a
2676  * separate decryption key for each client. It operated something like a
2677  * pay-per-view satellite broadcasting system where the session key is
2678  * encrypted by the broadcaster and the decryption keys are held in a
2679  * tamperproof set-top box.
2680  *
2681  * The MV parameters and private encryption key hide in a DSA cuckoo
2682  * structure which uses the same parameters, but generated in a
2683  * different way. The values are used in an encryption scheme similar to
2684  * El Gamal cryptography and a polynomial formed from the expansion of
2685  * product terms (x - x[j]), as described in Mu, Y., and V.
2686  * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001,
2687  * 223-231. The paper has significant errors and serious omissions.
2688  *
2689  * Let q be the product of n distinct primes s'[j] (j = 1...n), where
2690  * each s'[j] has m significant bits. Let p be a prime p = 2 * q + 1, so
2691  * that q and each s'[j] divide p - 1 and p has M = n * m + 1
2692  * significant bits. The elements x mod q of Zq with the elements 2 and
2693  * the primes removed form a field Zq* valid for polynomial arithetic.
2694  * Let g be a generator of Zp; that is, gcd(g, p - 1) = 1 and g^q = 1
2695  * mod p. We expect M to be in the 500-bit range and n relatively small,
2696  * like 25, so the likelihood of a randomly generated element of x mod q
2697  * of Zq colliding with a factor of p - 1 is very small and can be
2698  * avoided. Associated with each s'[j] is an element s[j] such that s[j]
2699  * s'[j] = s'[j] mod q. We find s[j] as the quotient (q + s'[j]) /
2700  * s'[j]. These are the parameters of the scheme and they are expensive
2701  * to compute.
2702  *
2703  * We set up an instance of the scheme as follows. A set of random
2704  * values x[j] mod q (j = 1...n), are generated as the zeros of a
2705  * polynomial of order n. The product terms (x - x[j]) are expanded to
2706  * form coefficients a[i] mod q (i = 0...n) in powers of x. These are
2707  * used as exponents of the generator g mod p to generate the private
2708  * encryption key A. The pair (gbar, ghat) of public server keys and the
2709  * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used
2710  * to construct the decryption keys. The devil is in the details.
2711  *
2712  * The distinguishing characteristic of this scheme is the capability to
2713  * revoke keys. Included in the calculation of E, gbar and ghat is the
2714  * product s = prod(s'[j]) (j = 1...n) above. If the factor s'[j] is
2715  * subsequently removed from the product and E, gbar and ghat
2716  * recomputed, the jth client will no longer be able to compute E^-1 and
2717  * thus unable to decrypt the block.
2718  *
2719  * How it works
2720  *
2721  * The scheme goes like this. Bob has the server values (p, A, q, gbar,
2722  * ghat) and Alice the client values (p, xbar, xhat).
2723  *
2724  * Alice rolls new random challenge r (0 < r < p) and sends to Bob in
2725  * the MV request message. Bob rolls new random k (0 < k < q), encrypts
2726  * y = A^k mod p (a permutation) and sends (hash(y), gbar^k, ghat^k) to
2727  * Alice.
2728  *
2729  * Alice receives the response and computes the decryption key (the
2730  * inverse permutation) from previously obtained (xbar, xhat) and
2731  * (gbar^k, ghat^k) in the message. She computes the inverse, which is
2732  * unique by reasons explained in the ntp-keygen.c program sources. If
2733  * the hash of this result matches hash(y), Alice knows that Bob has the
2734  * group key b. The signed response binds this knowledge to Bob's
2735  * private key and the public key previously received in his
2736  * certificate.
2737  *
2738  * crypto_alice3 - construct Alice's challenge in MV scheme
2739  *
2740  * Returns
2741  * XEVNT_OK	success
2742  * XEVNT_PUB	bad or missing public key
2743  * XEVNT_ID	bad or missing group key
2744  * XEVNT_PER	host certificate expired
2745  */
2746 static int
2747 crypto_alice3(
2748 	struct peer *peer,	/* peer pointer */
2749 	struct value *vp	/* value pointer */
2750 	)
2751 {
2752 	DSA	*dsa;		/* MV parameters */
2753 	BN_CTX	*bctx;		/* BIGNUM context */
2754 	EVP_MD_CTX ctx;		/* signature context */
2755 	tstamp_t tstamp;
2756 	u_int	len;
2757 
2758 	/*
2759 	 * The identity parameters must have correct format and content.
2760 	 */
2761 	if (peer->ident_pkey == NULL)
2762 		return (XEVNT_ID);
2763 
2764 	if ((dsa = peer->ident_pkey->pkey.dsa) == NULL) {
2765 		msyslog(LOG_INFO, "crypto_alice3: defective key");
2766 		return (XEVNT_PUB);
2767 	}
2768 
2769 	/*
2770 	 * Roll new random r (0 < r < q). The OpenSSL library has a bug
2771 	 * omitting BN_rand_range, so we have to do it the hard way.
2772 	 */
2773 	bctx = BN_CTX_new();
2774 	len = BN_num_bytes(dsa->p);
2775 	if (peer->iffval != NULL)
2776 		BN_free(peer->iffval);
2777 	peer->iffval = BN_new();
2778 	BN_rand(peer->iffval, len * 8, -1, 1);	/* r */
2779 	BN_mod(peer->iffval, peer->iffval, dsa->p, bctx);
2780 	BN_CTX_free(bctx);
2781 
2782 	/*
2783 	 * Sign and send to Bob. The filestamp is from the local file.
2784 	 */
2785 	tstamp = crypto_time();
2786 	memset(vp, 0, sizeof(struct value));
2787 	vp->tstamp = htonl(tstamp);
2788 	vp->fstamp = htonl(peer->fstamp);
2789 	vp->vallen = htonl(len);
2790 	vp->ptr = emalloc(len);
2791 	BN_bn2bin(peer->iffval, vp->ptr);
2792 	vp->siglen = 0;
2793 	if (tstamp == 0)
2794 		return (XEVNT_OK);
2795 
2796 	if (tstamp < cinfo->first || tstamp > cinfo->last)
2797 		return (XEVNT_PER);
2798 
2799 	vp->sig = emalloc(sign_siglen);
2800 	EVP_SignInit(&ctx, sign_digest);
2801 	EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
2802 	EVP_SignUpdate(&ctx, vp->ptr, len);
2803 	if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
2804 		vp->siglen = htonl(len);
2805 	return (XEVNT_OK);
2806 }
2807 
2808 
2809 /*
2810  * crypto_bob3 - construct Bob's response to Alice's challenge
2811  *
2812  * Returns
2813  * XEVNT_OK	success
2814  * XEVNT_ERR	protocol error
2815  * XEVNT_PER	host certificate expired
2816  */
2817 static int
2818 crypto_bob3(
2819 	struct exten *ep,	/* extension pointer */
2820 	struct value *vp	/* value pointer */
2821 	)
2822 {
2823 	DSA	*dsa;		/* MV parameters */
2824 	DSA	*sdsa;		/* DSA signature context fake */
2825 	BN_CTX	*bctx;		/* BIGNUM context */
2826 	EVP_MD_CTX ctx;		/* signature context */
2827 	tstamp_t tstamp;	/* NTP timestamp */
2828 	BIGNUM	*r, *k, *u;
2829 	u_char	*ptr;
2830 	u_int	len;
2831 
2832 	/*
2833 	 * If the MV parameters are not valid, something awful
2834 	 * happened or we are being tormented.
2835 	 */
2836 	if (mvpar_pkey == NULL) {
2837 		msyslog(LOG_INFO, "crypto_bob3: scheme unavailable");
2838 		return (XEVNT_ID);
2839 	}
2840 	dsa = mvpar_pkey->pkey.dsa;
2841 
2842 	/*
2843 	 * Extract r from the challenge.
2844 	 */
2845 	len = ntohl(ep->vallen);
2846 	if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2847 		msyslog(LOG_ERR, "crypto_bob3 %s\n",
2848 		    ERR_error_string(ERR_get_error(), NULL));
2849 		return (XEVNT_ERR);
2850 	}
2851 
2852 	/*
2853 	 * Bob rolls random k (0 < k < q), making sure it is not a
2854 	 * factor of q. He then computes y = A^k r and sends (hash(y),
2855 	 * gbar^k, ghat^k) to Alice.
2856 	 */
2857 	bctx = BN_CTX_new(); k = BN_new(); u = BN_new();
2858 	sdsa = DSA_new();
2859 	sdsa->p = BN_new(); sdsa->q = BN_new(); sdsa->g = BN_new();
2860 	while (1) {
2861 		BN_rand(k, BN_num_bits(dsa->q), 0, 0);
2862 		BN_mod(k, k, dsa->q, bctx);
2863 		BN_gcd(u, k, dsa->q, bctx);
2864 		if (BN_is_one(u))
2865 			break;
2866 	}
2867 	BN_mod_exp(u, dsa->g, k, dsa->p, bctx); /* A r */
2868 	BN_mod_mul(u, u, r, dsa->p, bctx);
2869 	bighash(u, sdsa->p);
2870 	BN_mod_exp(sdsa->q, dsa->priv_key, k, dsa->p, bctx); /* gbar */
2871 	BN_mod_exp(sdsa->g, dsa->pub_key, k, dsa->p, bctx); /* ghat */
2872 	BN_CTX_free(bctx); BN_free(k); BN_free(r); BN_free(u);
2873 
2874 	/*
2875 	 * Encode the values in ASN.1 and sign.
2876 	 */
2877 	tstamp = crypto_time();
2878 	memset(vp, 0, sizeof(struct value));
2879 	vp->tstamp = htonl(tstamp);
2880 	vp->fstamp = htonl(mv_fstamp);
2881 	len = i2d_DSAparams(sdsa, NULL);
2882 	if (len <= 0) {
2883 		msyslog(LOG_ERR, "crypto_bob3 %s\n",
2884 		    ERR_error_string(ERR_get_error(), NULL));
2885 		DSA_free(sdsa);
2886 		return (XEVNT_ERR);
2887 	}
2888 	vp->vallen = htonl(len);
2889 	ptr = emalloc(len);
2890 	vp->ptr = ptr;
2891 	i2d_DSAparams(sdsa, &ptr);
2892 	DSA_free(sdsa);
2893 	vp->siglen = 0;
2894 	if (tstamp == 0)
2895 		return (XEVNT_OK);
2896 
2897 	if (tstamp < cinfo->first || tstamp > cinfo->last)
2898 		return (XEVNT_PER);
2899 
2900 	vp->sig = emalloc(sign_siglen);
2901 	EVP_SignInit(&ctx, sign_digest);
2902 	EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
2903 	EVP_SignUpdate(&ctx, vp->ptr, len);
2904 	if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
2905 		vp->siglen = htonl(len);
2906 	return (XEVNT_OK);
2907 }
2908 
2909 
2910 /*
2911  * crypto_mv - verify Bob's response to Alice's challenge
2912  *
2913  * Returns
2914  * XEVNT_OK	success
2915  * XEVNT_PUB	bad or missing public key
2916  * XEVNT_ID	bad or missing group key
2917  * XEVNT_ERR	protocol error
2918  * XEVNT_FSP	bad filestamp
2919  */
2920 int
2921 crypto_mv(
2922 	struct exten *ep,	/* extension pointer */
2923 	struct peer *peer	/* peer structure pointer */
2924 	)
2925 {
2926 	DSA	*dsa;		/* MV parameters */
2927 	DSA	*sdsa;		/* DSA parameters */
2928 	BN_CTX	*bctx;		/* BIGNUM context */
2929 	BIGNUM	*k, *u, *v;
2930 	u_int	len;
2931 	const u_char	*ptr;
2932 	int	temp;
2933 
2934 	/*
2935 	 * If the MV parameters are not valid or no challenge was sent,
2936 	 * something awful happened or we are being tormented.
2937 	 */
2938 	if (peer->ident_pkey == NULL) {
2939 		msyslog(LOG_INFO, "crypto_mv: scheme unavailable");
2940 		return (XEVNT_ID);
2941 	}
2942 	if (ntohl(ep->fstamp) != peer->fstamp) {
2943 		msyslog(LOG_INFO, "crypto_mv: invalid filestamp %u",
2944 		    ntohl(ep->fstamp));
2945 		return (XEVNT_FSP);
2946 	}
2947 	if ((dsa = peer->ident_pkey->pkey.dsa) == NULL) {
2948 		msyslog(LOG_INFO, "crypto_mv: defective key");
2949 		return (XEVNT_PUB);
2950 	}
2951 	if (peer->iffval == NULL) {
2952 		msyslog(LOG_INFO, "crypto_mv: missing challenge");
2953 		return (XEVNT_ID);
2954 	}
2955 
2956 	/*
2957 	 * Extract the (hash(y), gbar, ghat) values from the response.
2958 	 */
2959 	bctx = BN_CTX_new(); k = BN_new(); u = BN_new(); v = BN_new();
2960 	len = ntohl(ep->vallen);
2961 	ptr = (const u_char *)ep->pkt;
2962 	if ((sdsa = d2i_DSAparams(NULL, &ptr, len)) == NULL) {
2963 		msyslog(LOG_ERR, "crypto_mv %s\n",
2964 		    ERR_error_string(ERR_get_error(), NULL));
2965 		return (XEVNT_ERR);
2966 	}
2967 
2968 	/*
2969 	 * Compute (gbar^xhat ghat^xbar)^-1 mod p.
2970 	 */
2971 	BN_mod_exp(u, sdsa->q, dsa->pub_key, dsa->p, bctx);
2972 	BN_mod_exp(v, sdsa->g, dsa->priv_key, dsa->p, bctx);
2973 	BN_mod_mul(u, u, v, dsa->p, bctx);
2974 	BN_mod_inverse(u, u, dsa->p, bctx);
2975 	BN_mod_mul(v, u, peer->iffval, dsa->p, bctx);
2976 
2977 	/*
2978 	 * The result should match the hash of r mod p.
2979 	 */
2980 	bighash(v, v);
2981 	temp = BN_cmp(v, sdsa->p);
2982 	BN_CTX_free(bctx); BN_free(k); BN_free(u); BN_free(v);
2983 	BN_free(peer->iffval);
2984 	peer->iffval = NULL;
2985 	DSA_free(sdsa);
2986 	if (temp == 0)
2987 		return (XEVNT_OK);
2988 
2989 	else
2990 		return (XEVNT_ID);
2991 }
2992 
2993 
2994 /*
2995  ***********************************************************************
2996  *								       *
2997  * The following routines are used to manipulate certificates          *
2998  *								       *
2999  ***********************************************************************
3000  */
3001 /*
3002  * cert_parse - parse x509 certificate and create info/value structures.
3003  *
3004  * The server certificate includes the version number, issuer name,
3005  * subject name, public key and valid date interval. If the issuer name
3006  * is the same as the subject name, the certificate is self signed and
3007  * valid only if the server is configured as trustable. If the names are
3008  * different, another issuer has signed the server certificate and
3009  * vouched for it. In this case the server certificate is valid if
3010  * verified by the issuer public key.
3011  *
3012  * Returns certificate info/value pointer if valid, NULL if not.
3013  */
3014 struct cert_info *		/* certificate information structure */
3015 cert_parse(
3016 	u_char	*asn1cert,	/* X509 certificate */
3017 	u_int	len,		/* certificate length */
3018 	tstamp_t fstamp		/* filestamp */
3019 	)
3020 {
3021 	X509	*cert;		/* X509 certificate */
3022 	X509_EXTENSION *ext;	/* X509v3 extension */
3023 	struct cert_info *ret;	/* certificate info/value */
3024 	BIO	*bp;
3025 	X509V3_EXT_METHOD *method;
3026 	char	pathbuf[MAXFILENAME];
3027 	u_char	*uptr;
3028 	char	*ptr;
3029 	int	temp, cnt, i;
3030 
3031 	/*
3032 	 * Decode ASN.1 objects and construct certificate structure.
3033 	 */
3034 	uptr = asn1cert;
3035 	if ((cert = d2i_X509(NULL, &uptr, len)) == NULL) {
3036 		msyslog(LOG_ERR, "cert_parse %s\n",
3037 		    ERR_error_string(ERR_get_error(), NULL));
3038 		return (NULL);
3039 	}
3040 
3041 	/*
3042 	 * Extract version, subject name and public key.
3043 	 */
3044 	ret = emalloc(sizeof(struct cert_info));
3045 	memset(ret, 0, sizeof(struct cert_info));
3046 	if ((ret->pkey = X509_get_pubkey(cert)) == NULL) {
3047 		msyslog(LOG_ERR, "cert_parse %s\n",
3048 		    ERR_error_string(ERR_get_error(), NULL));
3049 		cert_free(ret);
3050 		X509_free(cert);
3051 		return (NULL);
3052 	}
3053 	ret->version = X509_get_version(cert);
3054 	X509_NAME_oneline(X509_get_subject_name(cert), pathbuf,
3055 	    MAXFILENAME - 1);
3056 	ptr = strstr(pathbuf, "CN=");
3057 	if (ptr == NULL) {
3058 		msyslog(LOG_INFO, "cert_parse: invalid subject %s",
3059 		    pathbuf);
3060 		cert_free(ret);
3061 		X509_free(cert);
3062 		return (NULL);
3063 	}
3064 	ret->subject = emalloc(strlen(ptr) + 1);
3065 	strcpy(ret->subject, ptr + 3);
3066 
3067 	/*
3068 	 * Extract remaining objects. Note that the NTP serial number is
3069 	 * the NTP seconds at the time of signing, but this might not be
3070 	 * the case for other authority. We don't bother to check the
3071 	 * objects at this time, since the real crunch can happen only
3072 	 * when the time is valid but not yet certificated.
3073 	 */
3074 	ret->nid = OBJ_obj2nid(cert->cert_info->signature->algorithm);
3075 	ret->digest = (const EVP_MD *)EVP_get_digestbynid(ret->nid);
3076 	ret->serial =
3077 	    (u_long)ASN1_INTEGER_get(X509_get_serialNumber(cert));
3078 	X509_NAME_oneline(X509_get_issuer_name(cert), pathbuf,
3079 	    MAXFILENAME);
3080 	if ((ptr = strstr(pathbuf, "CN=")) == NULL) {
3081 		msyslog(LOG_INFO, "cert_parse: invalid issuer %s",
3082 		    pathbuf);
3083 		cert_free(ret);
3084 		X509_free(cert);
3085 		return (NULL);
3086 	}
3087 	ret->issuer = emalloc(strlen(ptr) + 1);
3088 	strcpy(ret->issuer, ptr + 3);
3089 	ret->first = asn2ntp(X509_get_notBefore(cert));
3090 	ret->last = asn2ntp(X509_get_notAfter(cert));
3091 
3092 	/*
3093 	 * Extract extension fields. These are ad hoc ripoffs of
3094 	 * currently assigned functions and will certainly be changed
3095 	 * before prime time.
3096 	 */
3097 	cnt = X509_get_ext_count(cert);
3098 	for (i = 0; i < cnt; i++) {
3099 		ext = X509_get_ext(cert, i);
3100 		method = X509V3_EXT_get(ext);
3101 		temp = OBJ_obj2nid(ext->object);
3102 		switch (temp) {
3103 
3104 		/*
3105 		 * If a key_usage field is present, we decode whether
3106 		 * this is a trusted or private certificate. This is
3107 		 * dorky; all we want is to compare NIDs, but OpenSSL
3108 		 * insists on BIO text strings.
3109 		 */
3110 		case NID_ext_key_usage:
3111 			bp = BIO_new(BIO_s_mem());
3112 			X509V3_EXT_print(bp, ext, 0, 0);
3113 			BIO_gets(bp, pathbuf, MAXFILENAME);
3114 			BIO_free(bp);
3115 #if DEBUG
3116 			if (debug)
3117 				printf("cert_parse: %s: %s\n",
3118 				    OBJ_nid2ln(temp), pathbuf);
3119 #endif
3120 			if (strcmp(pathbuf, "Trust Root") == 0)
3121 				ret->flags |= CERT_TRUST;
3122 			else if (strcmp(pathbuf, "Private") == 0)
3123 				ret->flags |= CERT_PRIV;
3124 			break;
3125 
3126 		/*
3127 		 * If a NID_subject_key_identifier field is present, it
3128 		 * contains the GQ public key.
3129 		 */
3130 		case NID_subject_key_identifier:
3131 			ret->grplen = ext->value->length - 2;
3132 			ret->grpkey = emalloc(ret->grplen);
3133 			memcpy(ret->grpkey, &ext->value->data[2],
3134 			    ret->grplen);
3135 			break;
3136 		}
3137 	}
3138 
3139 	/*
3140 	 * If certificate is self signed, verify signature.
3141 	 */
3142 	if (strcmp(ret->subject, ret->issuer) == 0) {
3143 		if (!X509_verify(cert, ret->pkey)) {
3144 			msyslog(LOG_INFO,
3145 			    "cert_parse: signature not verified %s",
3146 			    pathbuf);
3147 			cert_free(ret);
3148 			X509_free(cert);
3149 			return (NULL);
3150 		}
3151 	}
3152 
3153 	/*
3154 	 * Verify certificate valid times. Note that certificates cannot
3155 	 * be retroactive.
3156 	 */
3157 	if (ret->first > ret->last || ret->first < fstamp) {
3158 		msyslog(LOG_INFO,
3159 		    "cert_parse: invalid certificate %s first %u last %u fstamp %u",
3160 		    ret->subject, ret->first, ret->last, fstamp);
3161 		cert_free(ret);
3162 		X509_free(cert);
3163 		return (NULL);
3164 	}
3165 
3166 	/*
3167 	 * Build the value structure to sign and send later.
3168 	 */
3169 	ret->cert.fstamp = htonl(fstamp);
3170 	ret->cert.vallen = htonl(len);
3171 	ret->cert.ptr = emalloc(len);
3172 	memcpy(ret->cert.ptr, asn1cert, len);
3173 #ifdef DEBUG
3174 	if (debug > 1)
3175 		X509_print_fp(stdout, cert);
3176 #endif
3177 	X509_free(cert);
3178 	return (ret);
3179 }
3180 
3181 
3182 /*
3183  * cert_sign - sign x509 certificate equest and update value structure.
3184  *
3185  * The certificate request includes a copy of the host certificate,
3186  * which includes the version number, subject name and public key of the
3187  * host. The resulting certificate includes these values plus the
3188  * serial number, issuer name and valid interval of the server. The
3189  * valid interval extends from the current time to the same time one
3190  * year hence. This may extend the life of the signed certificate beyond
3191  * that of the signer certificate.
3192  *
3193  * It is convenient to use the NTP seconds of the current time as the
3194  * serial number. In the value structure the timestamp is the current
3195  * time and the filestamp is taken from the extension field. Note this
3196  * routine is called only when the client clock is synchronized to a
3197  * proventic source, so timestamp comparisons are valid.
3198  *
3199  * The host certificate is valid from the time it was generated for a
3200  * period of one year. A signed certificate is valid from the time of
3201  * signature for a period of one year, but only the host certificate (or
3202  * sign certificate if used) is actually used to encrypt and decrypt
3203  * signatures. The signature trail is built from the client via the
3204  * intermediate servers to the trusted server. Each signature on the
3205  * trail must be valid at the time of signature, but it could happen
3206  * that a signer certificate expire before the signed certificate, which
3207  * remains valid until its expiration.
3208  *
3209  * Returns
3210  * XEVNT_OK	success
3211  * XEVNT_PUB	bad or missing public key
3212  * XEVNT_CRT	bad or missing certificate
3213  * XEVNT_VFY	certificate not verified
3214  * XEVNT_PER	host certificate expired
3215  */
3216 static int
3217 cert_sign(
3218 	struct exten *ep,	/* extension field pointer */
3219 	struct value *vp	/* value pointer */
3220 	)
3221 {
3222 	X509	*req;		/* X509 certificate request */
3223 	X509	*cert;		/* X509 certificate */
3224 	X509_EXTENSION *ext;	/* certificate extension */
3225 	ASN1_INTEGER *serial;	/* serial number */
3226 	X509_NAME *subj;	/* distinguished (common) name */
3227 	EVP_PKEY *pkey;		/* public key */
3228 	EVP_MD_CTX ctx;		/* message digest context */
3229 	tstamp_t tstamp;	/* NTP timestamp */
3230 	u_int	len;
3231 	u_char	*ptr;
3232 	int	i, temp;
3233 
3234 	/*
3235 	 * Decode ASN.1 objects and construct certificate structure.
3236 	 * Make sure the system clock is synchronized to a proventic
3237 	 * source.
3238 	 */
3239 	tstamp = crypto_time();
3240 	if (tstamp == 0)
3241 		return (XEVNT_TSP);
3242 
3243 	if (tstamp < cinfo->first || tstamp > cinfo->last)
3244 		return (XEVNT_PER);
3245 
3246 	ptr = (u_char *)ep->pkt;
3247 	if ((req = d2i_X509(NULL, &ptr, ntohl(ep->vallen))) == NULL) {
3248 		msyslog(LOG_ERR, "cert_sign %s\n",
3249 		    ERR_error_string(ERR_get_error(), NULL));
3250 		return (XEVNT_CRT);
3251 	}
3252 	/*
3253 	 * Extract public key and check for errors.
3254 	 */
3255 	if ((pkey = X509_get_pubkey(req)) == NULL) {
3256 		msyslog(LOG_ERR, "cert_sign %s\n",
3257 		    ERR_error_string(ERR_get_error(), NULL));
3258 		X509_free(req);
3259 		return (XEVNT_PUB);
3260 	}
3261 
3262 	/*
3263 	 * Generate X509 certificate signed by this server. For this
3264 	 * purpose the issuer name is the server name. Also copy any
3265 	 * extensions that might be present.
3266 	 */
3267 	cert = X509_new();
3268 	X509_set_version(cert, X509_get_version(req));
3269 	serial = ASN1_INTEGER_new();
3270 	ASN1_INTEGER_set(serial, tstamp);
3271 	X509_set_serialNumber(cert, serial);
3272 	X509_gmtime_adj(X509_get_notBefore(cert), 0L);
3273 	X509_gmtime_adj(X509_get_notAfter(cert), YEAR);
3274 	subj = X509_get_issuer_name(cert);
3275 	X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
3276 	    (u_char *)sys_hostname, strlen(sys_hostname), -1, 0);
3277 	subj = X509_get_subject_name(req);
3278 	X509_set_subject_name(cert, subj);
3279 	X509_set_pubkey(cert, pkey);
3280 	ext = X509_get_ext(req, 0);
3281 	temp = X509_get_ext_count(req);
3282 	for (i = 0; i < temp; i++) {
3283 		ext = X509_get_ext(req, i);
3284 		X509_add_ext(cert, ext, -1);
3285 	}
3286 	X509_free(req);
3287 
3288 	/*
3289 	 * Sign and verify the certificate.
3290 	 */
3291 	X509_sign(cert, sign_pkey, sign_digest);
3292 	if (!X509_verify(cert, sign_pkey)) {
3293 		printf("cert_sign\n%s\n",
3294 		    ERR_error_string(ERR_get_error(), NULL));
3295 		X509_free(cert);
3296 		return (XEVNT_VFY);
3297 	}
3298 	len = i2d_X509(cert, NULL);
3299 
3300 	/*
3301 	 * Build and sign the value structure. We have to sign it here,
3302 	 * since the response has to be returned right away. This is a
3303 	 * clogging hazard.
3304 	 */
3305 	memset(vp, 0, sizeof(struct value));
3306 	vp->tstamp = htonl(tstamp);
3307 	vp->fstamp = ep->fstamp;
3308 	vp->vallen = htonl(len);
3309 	vp->ptr = emalloc(len);
3310 	ptr = vp->ptr;
3311 	i2d_X509(cert, &ptr);
3312 	vp->siglen = 0;
3313 	vp->sig = emalloc(sign_siglen);
3314 	EVP_SignInit(&ctx, sign_digest);
3315 	EVP_SignUpdate(&ctx, (u_char *)vp, 12);
3316 	EVP_SignUpdate(&ctx, vp->ptr, len);
3317 	if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
3318 		vp->siglen = htonl(len);
3319 #ifdef DEBUG
3320 	if (debug > 1)
3321 		X509_print_fp(stdout, cert);
3322 #endif
3323 	X509_free(cert);
3324 	return (XEVNT_OK);
3325 }
3326 
3327 
3328 /*
3329  * cert_valid - verify certificate with given public key
3330  *
3331  * This is pretty ugly, as the certificate has to be verified in the
3332  * OpenSSL X509 structure, not in the DER format in the info/value
3333  * structure.
3334  *
3335  * Returns
3336  * XEVNT_OK	success
3337  * XEVNT_VFY	certificate not verified
3338  */
3339 int
3340 cert_valid(
3341 	struct cert_info *cinf,	/* certificate information structure */
3342 	EVP_PKEY *pkey		/* public key */
3343 	)
3344 {
3345 	X509	*cert;		/* X509 certificate */
3346 	u_char	*ptr;
3347 
3348 	if (cinf->flags & CERT_SIGN)
3349 		return (XEVNT_OK);
3350 
3351 	ptr = (u_char *)cinf->cert.ptr;
3352 	cert = d2i_X509(NULL, &ptr, ntohl(cinf->cert.vallen));
3353 	if (cert == NULL || !X509_verify(cert, pkey))
3354 		return (XEVNT_VFY);
3355 
3356 	X509_free(cert);
3357 	return (XEVNT_OK);
3358 }
3359 
3360 
3361 /*
3362  * cert - install certificate in certificate list
3363  *
3364  * This routine encodes an extension field into a certificate info/value
3365  * structure. It searches the certificate list for duplicates and
3366  * expunges whichever is older. It then searches the list for other
3367  * certificates that might be verified by this latest one. Finally, it
3368  * inserts this certificate first on the list.
3369  *
3370  * Returns
3371  * XEVNT_OK	success
3372  * XEVNT_FSP	bad or missing filestamp
3373  * XEVNT_CRT	bad or missing certificate
3374  */
3375 int
3376 cert_install(
3377 	struct exten *ep,	/* cert info/value */
3378 	struct peer *peer	/* peer structure */
3379 	)
3380 {
3381 	struct cert_info *cp, *xp, *yp, **zp;
3382 
3383 	/*
3384 	 * Parse and validate the signed certificate. If valid,
3385 	 * construct the info/value structure; otherwise, scamper home.
3386 	 */
3387 	if ((cp = cert_parse((u_char *)ep->pkt, ntohl(ep->vallen),
3388 	    ntohl(ep->fstamp))) == NULL)
3389 		return (XEVNT_CRT);
3390 
3391 	/*
3392 	 * Scan certificate list looking for another certificate with
3393 	 * the same subject and issuer. If another is found with the
3394 	 * same or older filestamp, unlink it and return the goodies to
3395 	 * the heap. If another is found with a later filestamp, discard
3396 	 * the new one and leave the building.
3397 	 *
3398 	 * Make a note to study this issue again. An earlier certificate
3399 	 * with a long lifetime might be overtaken by a later
3400 	 * certificate with a short lifetime, thus invalidating the
3401 	 * earlier signature. However, we gotta find a way to leak old
3402 	 * stuff from the cache, so we do it anyway.
3403 	 */
3404 	yp = cp;
3405 	zp = &cinfo;
3406 	for (xp = cinfo; xp != NULL; xp = xp->link) {
3407 		if (strcmp(cp->subject, xp->subject) == 0 &&
3408 		    strcmp(cp->issuer, xp->issuer) == 0) {
3409 			if (ntohl(cp->cert.fstamp) <=
3410 			    ntohl(xp->cert.fstamp)) {
3411 				*zp = xp->link;;
3412 				cert_free(xp);
3413 			} else {
3414 				cert_free(cp);
3415 				return (XEVNT_FSP);
3416 			}
3417 			break;
3418 		}
3419 		zp = &xp->link;
3420 	}
3421 	yp->link = cinfo;
3422 	cinfo = yp;
3423 
3424 	/*
3425 	 * Scan the certificate list to see if Y is signed by X. This is
3426 	 * independent of order.
3427 	 */
3428 	for (yp = cinfo; yp != NULL; yp = yp->link) {
3429 		for (xp = cinfo; xp != NULL; xp = xp->link) {
3430 
3431 			/*
3432 			 * If the issuer of certificate Y matches the
3433 			 * subject of certificate X, verify the
3434 			 * signature of Y using the public key of X. If
3435 			 * so, X signs Y.
3436 			 */
3437 			if (strcmp(yp->issuer, xp->subject) != 0 ||
3438 				xp->flags & CERT_ERROR)
3439 				continue;
3440 
3441 			if (cert_valid(yp, xp->pkey) != XEVNT_OK) {
3442 				yp->flags |= CERT_ERROR;
3443 				continue;
3444 			}
3445 
3446 			/*
3447 			 * The signature Y is valid only if it begins
3448 			 * during the lifetime of X; however, it is not
3449 			 * necessarily an error, since some other
3450 			 * certificate might sign Y.
3451 			 */
3452 			if (yp->first < xp->first || yp->first >
3453 			    xp->last)
3454 				continue;
3455 
3456 			yp->flags |= CERT_SIGN;
3457 
3458 			/*
3459 			 * If X is trusted, then Y is trusted. Note that
3460 			 * we might stumble over a self-signed
3461 			 * certificate that is not trusted, at least
3462 			 * temporarily. This can happen when a dude
3463 			 * first comes up, but has not synchronized the
3464 			 * clock and had its certificate signed by its
3465 			 * server. In case of broken certificate trail,
3466 			 * this might result in a loop that could
3467 			 * persist until timeout.
3468 			 */
3469 			if (!(xp->flags & (CERT_TRUST | CERT_VALID)))
3470 				continue;
3471 
3472 			yp->flags |= CERT_VALID;
3473 
3474 			/*
3475 			 * If subject Y matches the server subject name,
3476 			 * then Y has completed the certificate trail.
3477 			 * Save the group key and light the valid bit.
3478 			 */
3479 			if (strcmp(yp->subject, peer->subject) != 0)
3480 				continue;
3481 
3482 			if (yp->grpkey != NULL) {
3483 				if (peer->grpkey != NULL)
3484 					BN_free(peer->grpkey);
3485 				peer->grpkey = BN_bin2bn(yp->grpkey,
3486 				     yp->grplen, NULL);
3487 			}
3488 			peer->crypto |= CRYPTO_FLAG_VALID;
3489 
3490 			/*
3491 			 * If the server has an an identity scheme,
3492 			 * fetch the identity credentials. If not, the
3493 			 * identity is verified only by the trusted
3494 			 * certificate. The next signature will set the
3495 			 * server proventic.
3496 			 */
3497 			if (peer->crypto & (CRYPTO_FLAG_GQ |
3498 			    CRYPTO_FLAG_IFF | CRYPTO_FLAG_MV))
3499 				continue;
3500 
3501 			peer->crypto |= CRYPTO_FLAG_VRFY;
3502 		}
3503 	}
3504 
3505 	/*
3506 	 * That was awesome. Now update the timestamps and signatures.
3507 	 */
3508 	crypto_update();
3509 	return (XEVNT_OK);
3510 }
3511 
3512 
3513 /*
3514  * cert_free - free certificate information structure
3515  */
3516 void
3517 cert_free(
3518 	struct cert_info *cinf	/* certificate info/value structure */
3519 	)
3520 {
3521 	if (cinf->pkey != NULL)
3522 		EVP_PKEY_free(cinf->pkey);
3523 	if (cinf->subject != NULL)
3524 		free(cinf->subject);
3525 	if (cinf->issuer != NULL)
3526 		free(cinf->issuer);
3527 	if (cinf->grpkey != NULL)
3528 		free(cinf->grpkey);
3529 	value_free(&cinf->cert);
3530 	free(cinf);
3531 }
3532 
3533 
3534 /*
3535  ***********************************************************************
3536  *								       *
3537  * The following routines are used only at initialization time         *
3538  *								       *
3539  ***********************************************************************
3540  */
3541 /*
3542  * crypto_key - load cryptographic parameters and keys from files
3543  *
3544  * This routine loads a PEM-encoded public/private key pair and extracts
3545  * the filestamp from the file name.
3546  *
3547  * Returns public key pointer if valid, NULL if not. Side effect updates
3548  * the filestamp if valid.
3549  */
3550 static EVP_PKEY *
3551 crypto_key(
3552 	char	*cp,		/* file name */
3553 	tstamp_t *fstamp	/* filestamp */
3554 	)
3555 {
3556 	FILE	*str;		/* file handle */
3557 	EVP_PKEY *pkey = NULL;	/* public/private key */
3558 	char	filename[MAXFILENAME]; /* name of key file */
3559 	char	linkname[MAXFILENAME]; /* filestamp buffer) */
3560 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3561 	char	*ptr;
3562 
3563 	/*
3564 	 * Open the key file. If the first character of the file name is
3565 	 * not '/', prepend the keys directory string. If something goes
3566 	 * wrong, abandon ship.
3567 	 */
3568 	if (*cp == '/')
3569 		strcpy(filename, cp);
3570 	else
3571 		snprintf(filename, MAXFILENAME, "%s/%s", keysdir, cp);
3572 	str = fopen(filename, "r");
3573 	if (str == NULL)
3574 		return (NULL);
3575 
3576 	/*
3577 	 * Read the filestamp, which is contained in the first line.
3578 	 */
3579 	if ((ptr = fgets(linkname, MAXFILENAME, str)) == NULL) {
3580 		msyslog(LOG_ERR, "crypto_key: no data %s\n",
3581 		    filename);
3582 		(void)fclose(str);
3583 		return (NULL);
3584 	}
3585 	if ((ptr = strrchr(ptr, '.')) == NULL) {
3586 		msyslog(LOG_ERR, "crypto_key: no filestamp %s\n",
3587 		    filename);
3588 		(void)fclose(str);
3589 		return (NULL);
3590 	}
3591 	if (sscanf(++ptr, "%u", fstamp) != 1) {
3592 		msyslog(LOG_ERR, "crypto_key: invalid timestamp %s\n",
3593 		    filename);
3594 		(void)fclose(str);
3595 		return (NULL);
3596 	}
3597 
3598 	/*
3599 	 * Read and decrypt PEM-encoded private key.
3600 	 */
3601 	pkey = PEM_read_PrivateKey(str, NULL, NULL, passwd);
3602 	fclose(str);
3603 	if (pkey == NULL) {
3604 		msyslog(LOG_ERR, "crypto_key %s\n",
3605 		    ERR_error_string(ERR_get_error(), NULL));
3606 		return (NULL);
3607 	}
3608 
3609 	/*
3610 	 * Leave tracks in the cryptostats.
3611 	 */
3612 	if ((ptr = strrchr(linkname, '\n')) != NULL)
3613 		*ptr = '\0';
3614 	snprintf(statstr, NTP_MAXSTRLEN, "%s mod %d", &linkname[2],
3615 	    EVP_PKEY_size(pkey) * 8);
3616 	record_crypto_stats(NULL, statstr);
3617 #ifdef DEBUG
3618 	if (debug)
3619 		printf("crypto_key: %s\n", statstr);
3620 	if (debug > 1) {
3621 		if (pkey->type == EVP_PKEY_DSA)
3622 			DSA_print_fp(stdout, pkey->pkey.dsa, 0);
3623 		else
3624 			RSA_print_fp(stdout, pkey->pkey.rsa, 0);
3625 	}
3626 #endif
3627 	return (pkey);
3628 }
3629 
3630 
3631 /*
3632  * crypto_cert - load certificate from file
3633  *
3634  * This routine loads a X.509 RSA or DSA certificate from a file and
3635  * constructs a info/cert value structure for this machine. The
3636  * structure includes a filestamp extracted from the file name. Later
3637  * the certificate can be sent to another machine by request.
3638  *
3639  * Returns certificate info/value pointer if valid, NULL if not.
3640  */
3641 static struct cert_info *	/* certificate information */
3642 crypto_cert(
3643 	char	*cp		/* file name */
3644 	)
3645 {
3646 	struct cert_info *ret; /* certificate information */
3647 	FILE	*str;		/* file handle */
3648 	char	filename[MAXFILENAME]; /* name of certificate file */
3649 	char	linkname[MAXFILENAME]; /* filestamp buffer */
3650 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3651 	tstamp_t fstamp;	/* filestamp */
3652 	long	len;
3653 	char	*ptr;
3654 	char	*name, *header;
3655 	u_char	*data;
3656 
3657 	/*
3658 	 * Open the certificate file. If the first character of the file
3659 	 * name is not '/', prepend the keys directory string. If
3660 	 * something goes wrong, abandon ship.
3661 	 */
3662 	if (*cp == '/')
3663 		strcpy(filename, cp);
3664 	else
3665 		snprintf(filename, MAXFILENAME, "%s/%s", keysdir, cp);
3666 	str = fopen(filename, "r");
3667 	if (str == NULL)
3668 		return (NULL);
3669 
3670 	/*
3671 	 * Read the filestamp, which is contained in the first line.
3672 	 */
3673 	if ((ptr = fgets(linkname, MAXFILENAME, str)) == NULL) {
3674 		msyslog(LOG_ERR, "crypto_cert: no data %s\n",
3675 		    filename);
3676 		(void)fclose(str);
3677 		return (NULL);
3678 	}
3679 	if ((ptr = strrchr(ptr, '.')) == NULL) {
3680 		msyslog(LOG_ERR, "crypto_cert: no filestamp %s\n",
3681 		    filename);
3682 		(void)fclose(str);
3683 		return (NULL);
3684 	}
3685 	if (sscanf(++ptr, "%u", &fstamp) != 1) {
3686 		msyslog(LOG_ERR, "crypto_cert: invalid filestamp %s\n",
3687 		    filename);
3688 		(void)fclose(str);
3689 		return (NULL);
3690 	}
3691 
3692 	/*
3693 	 * Read PEM-encoded certificate and install.
3694 	 */
3695 	if (!PEM_read(str, &name, &header, &data, &len)) {
3696 		msyslog(LOG_ERR, "crypto_cert %s\n",
3697 		    ERR_error_string(ERR_get_error(), NULL));
3698 		(void)fclose(str);
3699 		return (NULL);
3700 	}
3701 	free(header);
3702 	if (strcmp(name, "CERTIFICATE") !=0) {
3703 		msyslog(LOG_INFO, "crypto_cert: wrong PEM type %s",
3704 		    name);
3705 		free(name);
3706 		free(data);
3707 		(void)fclose(str);
3708 		return (NULL);
3709 	}
3710 	free(name);
3711 
3712 	/*
3713 	 * Parse certificate and generate info/value structure.
3714 	 */
3715 	ret = cert_parse(data, len, fstamp);
3716 	free(data);
3717 	(void)fclose(str);
3718 	if (ret == NULL)
3719 		return (NULL);
3720 
3721 	if ((ptr = strrchr(linkname, '\n')) != NULL)
3722 		*ptr = '\0';
3723 	snprintf(statstr, NTP_MAXSTRLEN,
3724 	    "%s 0x%x len %lu", &linkname[2], ret->flags, len);
3725 	record_crypto_stats(NULL, statstr);
3726 #ifdef DEBUG
3727 	if (debug)
3728 		printf("crypto_cert: %s\n", statstr);
3729 #endif
3730 	return (ret);
3731 }
3732 
3733 
3734 /*
3735  * crypto_tai - load leapseconds table from file
3736  *
3737  * This routine loads the ERTS leapsecond file in NIST text format,
3738  * converts to a value structure and extracts a filestamp from the file
3739  * name. The data are used to establish the TAI offset from UTC, which
3740  * is provided to the kernel if supported. Later the data can be sent to
3741  * another machine on request.
3742  */
3743 static void
3744 crypto_tai(
3745 	char	*cp		/* file name */
3746 	)
3747 {
3748 	FILE	*str;		/* file handle */
3749 	char	buf[NTP_MAXSTRLEN];	/* file line buffer */
3750 	u_int32	leapsec[MAX_LEAP]; /* NTP time at leaps */
3751 	int	offset;		/* offset at leap (s) */
3752 	char	filename[MAXFILENAME]; /* name of leapseconds file */
3753 	char	linkname[MAXFILENAME]; /* file link (for filestamp) */
3754 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3755 	tstamp_t fstamp;	/* filestamp */
3756 	u_int	len;
3757 	u_int32	*ptr;
3758 	char	*dp;
3759 	int	rval, i, j;
3760 
3761 	/*
3762 	 * Open the file and discard comment lines. If the first
3763 	 * character of the file name is not '/', prepend the keys
3764 	 * directory string. If the file is not found, not to worry; it
3765 	 * can be retrieved over the net. But, if it is found with
3766 	 * errors, we crash and burn.
3767 	 */
3768 	if (*cp == '/')
3769 		strcpy(filename, cp);
3770 	else
3771 		snprintf(filename, MAXFILENAME, "%s/%s", keysdir, cp);
3772 	if ((str = fopen(filename, "r")) == NULL)
3773 		return;
3774 
3775 	/*
3776 	 * Extract filestamp if present.
3777 	 */
3778 	rval = readlink(filename, linkname, MAXFILENAME - 1);
3779 	if (rval > 0) {
3780 		linkname[rval] = '\0';
3781 		dp = strrchr(linkname, '.');
3782 	} else {
3783 		dp = strrchr(filename, '.');
3784 	}
3785 	if (dp != NULL)
3786 		sscanf(++dp, "%u", &fstamp);
3787 	else
3788 		fstamp = 0;
3789 	tai_leap.fstamp = htonl(fstamp);
3790 
3791 	/*
3792 	 * We are rather paranoid here, since an intruder might cause a
3793 	 * coredump by infiltrating naughty values. Empty lines and
3794 	 * comments are ignored. Other lines must begin with two
3795 	 * integers followed by junk or comments. The first integer is
3796 	 * the NTP seconds of leap insertion, the second is the offset
3797 	 * of TAI relative to UTC after that insertion. The second word
3798 	 * must equal the initial insertion of ten seconds on 1 January
3799 	 * 1972 plus one second for each succeeding insertion.
3800 	 */
3801 	i = 0;
3802 	while (i < MAX_LEAP) {
3803 		dp = fgets(buf, NTP_MAXSTRLEN - 1, str);
3804 		if (dp == NULL)
3805 			break;
3806 
3807 		if (strlen(buf) < 1)
3808 			continue;
3809 
3810 		if (*buf == '#')
3811 			continue;
3812 
3813 		if (sscanf(buf, "%u %d", &leapsec[i], &offset) != 2)
3814 			continue;
3815 
3816 		if (i != offset - TAI_1972)
3817 			break;
3818 
3819 		i++;
3820 	}
3821 	fclose(str);
3822 	if (dp != NULL) {
3823 		msyslog(LOG_INFO,
3824 		    "crypto_tai: leapseconds file %s error %d", cp,
3825 		    rval);
3826 		exit (-1);
3827 	}
3828 
3829 	/*
3830 	 * The extension field table entries consists of the NTP seconds
3831 	 * of leap insertion in network byte order.
3832 	 */
3833 	len = i * sizeof(u_int32);
3834 	tai_leap.vallen = htonl(len);
3835 	ptr = emalloc(len);
3836 	tai_leap.ptr = (u_char *)ptr;
3837 	for (j = 0; j < i; j++)
3838 		*ptr++ = htonl(leapsec[j]);
3839 	crypto_flags |= CRYPTO_FLAG_TAI;
3840 	snprintf(statstr, NTP_MAXSTRLEN, "%s fs %u leap %u len %u", cp, fstamp,
3841 	   leapsec[--j], len);
3842 	record_crypto_stats(NULL, statstr);
3843 #ifdef DEBUG
3844 	if (debug)
3845 		printf("crypto_tai: %s\n", statstr);
3846 #endif
3847 }
3848 
3849 
3850 /*
3851  * crypto_setup - load keys, certificate and leapseconds table
3852  *
3853  * This routine loads the public/private host key and certificate. If
3854  * available, it loads the public/private sign key, which defaults to
3855  * the host key, and leapseconds table. The host key must be RSA, but
3856  * the sign key can be either RSA or DSA. In either case, the public key
3857  * on the certificate must agree with the sign key.
3858  */
3859 void
3860 crypto_setup(void)
3861 {
3862 	EVP_PKEY *pkey;		/* private/public key pair */
3863 	char	filename[MAXFILENAME]; /* file name buffer */
3864 	l_fp	seed;		/* crypto PRNG seed as NTP timestamp */
3865 	tstamp_t fstamp;	/* filestamp */
3866 	tstamp_t sstamp;	/* sign filestamp */
3867 	u_int	len, bytes;
3868 	u_char	*ptr;
3869 
3870 	/*
3871 	 * Initialize structures.
3872 	 */
3873 	if (!crypto_flags)
3874 		return;
3875 
3876 	gethostname(filename, MAXFILENAME);
3877 	bytes = strlen(filename) + 1;
3878 	sys_hostname = emalloc(bytes);
3879 	memcpy(sys_hostname, filename, bytes);
3880 	if (passwd == NULL)
3881 		passwd = sys_hostname;
3882 	memset(&hostval, 0, sizeof(hostval));
3883 	memset(&pubkey, 0, sizeof(pubkey));
3884 	memset(&tai_leap, 0, sizeof(tai_leap));
3885 
3886 	/*
3887 	 * Load required random seed file and seed the random number
3888 	 * generator. Be default, it is found in the user home
3889 	 * directory. The root home directory may be / or /root,
3890 	 * depending on the system. Wiggle the contents a bit and write
3891 	 * it back so the sequence does not repeat when we next restart.
3892 	 */
3893 	ERR_load_crypto_strings();
3894 	if (rand_file == NULL) {
3895 		if ((RAND_file_name(filename, MAXFILENAME)) != NULL) {
3896 			rand_file = emalloc(strlen(filename) + 1);
3897 			strcpy(rand_file, filename);
3898 		}
3899 	} else if (*rand_file != '/') {
3900 		snprintf(filename, MAXFILENAME, "%s/%s", keysdir,
3901 		    rand_file);
3902 		free(rand_file);
3903 		rand_file = emalloc(strlen(filename) + 1);
3904 		strcpy(rand_file, filename);
3905 	}
3906 	if (rand_file == NULL) {
3907 		msyslog(LOG_ERR,
3908 		    "crypto_setup: random seed file not specified");
3909 		exit (-1);
3910 	}
3911 	if ((bytes = RAND_load_file(rand_file, -1)) == 0) {
3912 		msyslog(LOG_ERR,
3913 		    "crypto_setup: random seed file %s not found\n",
3914 		    rand_file);
3915 		exit (-1);
3916 	}
3917 	get_systime(&seed);
3918 	RAND_seed(&seed, sizeof(l_fp));
3919 	RAND_write_file(rand_file);
3920 	OpenSSL_add_all_algorithms();
3921 #ifdef DEBUG
3922 	if (debug)
3923 		printf(
3924 		    "crypto_setup: OpenSSL version %lx random seed file %s bytes read %d\n",
3925 		    SSLeay(), rand_file, bytes);
3926 #endif
3927 
3928 	/*
3929 	 * Load required host key from file "ntpkey_host_<hostname>". It
3930 	 * also becomes the default sign key.
3931 	 */
3932 	if (host_file == NULL) {
3933 		snprintf(filename, MAXFILENAME, "ntpkey_host_%s",
3934 		    sys_hostname);
3935 		host_file = emalloc(strlen(filename) + 1);
3936 		strcpy(host_file, filename);
3937 	}
3938 	pkey = crypto_key(host_file, &fstamp);
3939 	if (pkey == NULL) {
3940 		msyslog(LOG_ERR,
3941 		    "crypto_setup: host key file %s not found or corrupt",
3942 		    host_file);
3943 		exit (-1);
3944 	}
3945 	host_pkey = pkey;
3946 	sign_pkey = pkey;
3947 	sstamp = fstamp;
3948 	hostval.fstamp = htonl(fstamp);
3949 	if (host_pkey->type != EVP_PKEY_RSA) {
3950 		msyslog(LOG_ERR,
3951 		    "crypto_setup: host key is not RSA key type");
3952 		exit (-1);
3953 	}
3954 	hostval.vallen = htonl(strlen(sys_hostname));
3955 	hostval.ptr = (u_char *)sys_hostname;
3956 
3957 	/*
3958 	 * Construct public key extension field for agreement scheme.
3959 	 */
3960 	len = i2d_PublicKey(host_pkey, NULL);
3961 	ptr = emalloc(len);
3962 	pubkey.ptr = ptr;
3963 	i2d_PublicKey(host_pkey, &ptr);
3964 	pubkey.vallen = htonl(len);
3965 	pubkey.fstamp = hostval.fstamp;
3966 
3967 	/*
3968 	 * Load optional sign key from file "ntpkey_sign_<hostname>". If
3969 	 * loaded, it becomes the sign key.
3970 	 */
3971 	if (sign_file == NULL) {
3972 		snprintf(filename, MAXFILENAME, "ntpkey_sign_%s",
3973 		    sys_hostname);
3974 		sign_file = emalloc(strlen(filename) + 1);
3975 		strcpy(sign_file, filename);
3976 	}
3977 	pkey = crypto_key(sign_file, &fstamp);
3978 	if (pkey != NULL) {
3979 		sign_pkey = pkey;
3980 		sstamp = fstamp;
3981 	}
3982 	sign_siglen = EVP_PKEY_size(sign_pkey);
3983 
3984 	/*
3985 	 * Load optional IFF parameters from file
3986 	 * "ntpkey_iff_<hostname>".
3987 	 */
3988 	if (iffpar_file == NULL) {
3989 		snprintf(filename, MAXFILENAME, "ntpkey_iff_%s",
3990 		    sys_hostname);
3991 		iffpar_file = emalloc(strlen(filename) + 1);
3992 		strcpy(iffpar_file, filename);
3993 	}
3994 	iffpar_pkey = crypto_key(iffpar_file, &if_fstamp);
3995 	if (iffpar_pkey != NULL)
3996 		crypto_flags |= CRYPTO_FLAG_IFF;
3997 
3998 	/*
3999 	 * Load optional GQ parameters from file "ntpkey_gq_<hostname>".
4000 	 */
4001 	if (gqpar_file == NULL) {
4002 		snprintf(filename, MAXFILENAME, "ntpkey_gq_%s",
4003 		    sys_hostname);
4004 		gqpar_file = emalloc(strlen(filename) + 1);
4005 		strcpy(gqpar_file, filename);
4006 	}
4007 	gqpar_pkey = crypto_key(gqpar_file, &gq_fstamp);
4008 	if (gqpar_pkey != NULL)
4009 		crypto_flags |= CRYPTO_FLAG_GQ;
4010 
4011 	/*
4012 	 * Load optional MV parameters from file "ntpkey_mv_<hostname>".
4013 	 */
4014 	if (mvpar_file == NULL) {
4015 		snprintf(filename, MAXFILENAME, "ntpkey_mv_%s",
4016 		    sys_hostname);
4017 		mvpar_file = emalloc(strlen(filename) + 1);
4018 		strcpy(mvpar_file, filename);
4019 	}
4020 	mvpar_pkey = crypto_key(mvpar_file, &mv_fstamp);
4021 	if (mvpar_pkey != NULL)
4022 		crypto_flags |= CRYPTO_FLAG_MV;
4023 
4024 	/*
4025 	 * Load required certificate from file "ntpkey_cert_<hostname>".
4026 	 */
4027 	if (cert_file == NULL) {
4028 		snprintf(filename, MAXFILENAME, "ntpkey_cert_%s",
4029 		    sys_hostname);
4030 		cert_file = emalloc(strlen(filename) + 1);
4031 		strcpy(cert_file, filename);
4032 	}
4033 	if ((cinfo = crypto_cert(cert_file)) == NULL) {
4034 		msyslog(LOG_ERR,
4035 		    "certificate file %s not found or corrupt",
4036 		    cert_file);
4037 		exit (-1);
4038 	}
4039 
4040 	/*
4041 	 * The subject name must be the same as the host name, unless
4042 	 * the certificate is private, in which case it may have come
4043 	 * from another host.
4044 	 */
4045 	if (!(cinfo->flags & CERT_PRIV) && strcmp(cinfo->subject,
4046 	    sys_hostname) != 0) {
4047 		msyslog(LOG_ERR,
4048 		    "crypto_setup: certificate %s not for this host",
4049 		    cert_file);
4050 		cert_free(cinfo);
4051 		exit (-1);
4052 	}
4053 
4054 	/*
4055 	 * It the certificate is trusted, the subject must be the same
4056 	 * as the issuer, in other words it must be self signed.
4057 	 */
4058 	if (cinfo->flags & CERT_TRUST && strcmp(cinfo->subject,
4059 	    cinfo->issuer) != 0) {
4060 		if (cert_valid(cinfo, sign_pkey) != XEVNT_OK) {
4061 			msyslog(LOG_ERR,
4062 			    "crypto_setup: certificate %s is trusted, but not self signed.",
4063 			    cert_file);
4064 			cert_free(cinfo);
4065 			exit (-1);
4066 		}
4067 	}
4068 	sign_digest = cinfo->digest;
4069 	if (cinfo->flags & CERT_PRIV)
4070 		crypto_flags |= CRYPTO_FLAG_PRIV;
4071 	crypto_flags |= cinfo->nid << 16;
4072 
4073 	/*
4074 	 * Load optional leapseconds table from file "ntpkey_leap". If
4075 	 * the file is missing or defective, the values can later be
4076 	 * retrieved from a server.
4077 	 */
4078 	if (leap_file == NULL)
4079 		leap_file = "ntpkey_leap";
4080 	crypto_tai(leap_file);
4081 #ifdef DEBUG
4082 	if (debug)
4083 		printf(
4084 		    "crypto_setup: flags 0x%x host %s signature %s\n",
4085 		    crypto_flags, sys_hostname, OBJ_nid2ln(cinfo->nid));
4086 #endif
4087 }
4088 
4089 
4090 /*
4091  * crypto_config - configure data from crypto configuration command.
4092  */
4093 void
4094 crypto_config(
4095 	int	item,		/* configuration item */
4096 	char	*cp		/* file name */
4097 	)
4098 {
4099 	switch (item) {
4100 
4101 	/*
4102 	 * Set random seed file name.
4103 	 */
4104 	case CRYPTO_CONF_RAND:
4105 		rand_file = emalloc(strlen(cp) + 1);
4106 		strcpy(rand_file, cp);
4107 		break;
4108 
4109 	/*
4110 	 * Set private key password.
4111 	 */
4112 	case CRYPTO_CONF_PW:
4113 		passwd = emalloc(strlen(cp) + 1);
4114 		strcpy(passwd, cp);
4115 		break;
4116 
4117 	/*
4118 	 * Set host file name.
4119 	 */
4120 	case CRYPTO_CONF_PRIV:
4121 		host_file = emalloc(strlen(cp) + 1);
4122 		strcpy(host_file, cp);
4123 		break;
4124 
4125 	/*
4126 	 * Set sign key file name.
4127 	 */
4128 	case CRYPTO_CONF_SIGN:
4129 		sign_file = emalloc(strlen(cp) + 1);
4130 		strcpy(sign_file, cp);
4131 		break;
4132 
4133 	/*
4134 	 * Set iff parameters file name.
4135 	 */
4136 	case CRYPTO_CONF_IFFPAR:
4137 		iffpar_file = emalloc(strlen(cp) + 1);
4138 		strcpy(iffpar_file, cp);
4139 		break;
4140 
4141 	/*
4142 	 * Set gq parameters file name.
4143 	 */
4144 	case CRYPTO_CONF_GQPAR:
4145 		gqpar_file = emalloc(strlen(cp) + 1);
4146 		strcpy(gqpar_file, cp);
4147 		break;
4148 
4149 	/*
4150 	 * Set mv parameters file name.
4151 	 */
4152 	case CRYPTO_CONF_MVPAR:
4153 		mvpar_file = emalloc(strlen(cp) + 1);
4154 		strcpy(mvpar_file, cp);
4155 		break;
4156 
4157 	/*
4158 	 * Set identity scheme.
4159 	 */
4160 	case CRYPTO_CONF_IDENT:
4161 		if (!strcasecmp(cp, "iff"))
4162 			ident_scheme |= CRYPTO_FLAG_IFF;
4163 		else if (!strcasecmp(cp, "gq"))
4164 			ident_scheme |= CRYPTO_FLAG_GQ;
4165 		else if (!strcasecmp(cp, "mv"))
4166 			ident_scheme |= CRYPTO_FLAG_MV;
4167 		break;
4168 
4169 	/*
4170 	 * Set certificate file name.
4171 	 */
4172 	case CRYPTO_CONF_CERT:
4173 		cert_file = emalloc(strlen(cp) + 1);
4174 		strcpy(cert_file, cp);
4175 		break;
4176 
4177 	/*
4178 	 * Set leapseconds file name.
4179 	 */
4180 	case CRYPTO_CONF_LEAP:
4181 		leap_file = emalloc(strlen(cp) + 1);
4182 		strcpy(leap_file, cp);
4183 		break;
4184 	}
4185 	crypto_flags |= CRYPTO_FLAG_ENAB;
4186 }
4187 # else
4188 int ntp_crypto_bs_pubkey;
4189 # endif /* OPENSSL */
4190