xref: /freebsd/contrib/ntp/ntpd/ntp_crypto.c (revision d6b92ffa)
1 /*
2  * ntp_crypto.c - NTP version 4 public key routines
3  */
4 #ifdef HAVE_CONFIG_H
5 #include <config.h>
6 #endif
7 
8 #ifdef AUTOKEY
9 #include <stdio.h>
10 #include <stdlib.h>	/* strtoul */
11 #include <sys/types.h>
12 #include <sys/param.h>
13 #include <unistd.h>
14 #include <fcntl.h>
15 
16 #include "ntpd.h"
17 #include "ntp_stdlib.h"
18 #include "ntp_unixtime.h"
19 #include "ntp_string.h"
20 #include "ntp_random.h"
21 #include "ntp_assert.h"
22 #include "ntp_calendar.h"
23 #include "ntp_leapsec.h"
24 
25 #include "openssl/asn1.h"
26 #include "openssl/bn.h"
27 #include "openssl/crypto.h"
28 #include "openssl/err.h"
29 #include "openssl/evp.h"
30 #include "openssl/opensslv.h"
31 #include "openssl/pem.h"
32 #include "openssl/rand.h"
33 #include "openssl/x509.h"
34 #include "openssl/x509v3.h"
35 #include "libssl_compat.h"
36 
37 #ifdef KERNEL_PLL
38 #include "ntp_syscall.h"
39 #endif /* KERNEL_PLL */
40 
41 /*
42  * calcomp - compare two calendar structures, ignoring yearday and weekday; like strcmp
43  * No, it's not a plotter.  If you don't understand that, you're too young.
44  */
45 static int calcomp(struct calendar *pjd1, struct calendar *pjd2)
46 {
47 	int32_t diff;	/* large enough to hold the signed difference between two uint16_t values */
48 
49 	diff = pjd1->year - pjd2->year;
50 	if (diff < 0) return -1; else if (diff > 0) return 1;
51 	/* same year; compare months */
52 	diff = pjd1->month - pjd2->month;
53 	if (diff < 0) return -1; else if (diff > 0) return 1;
54 	/* same year and month; compare monthday */
55 	diff = pjd1->monthday - pjd2->monthday;
56 	if (diff < 0) return -1; else if (diff > 0) return 1;
57 	/* same year and month and monthday; compare time */
58 	diff = pjd1->hour - pjd2->hour;
59 	if (diff < 0) return -1; else if (diff > 0) return 1;
60 	diff = pjd1->minute - pjd2->minute;
61 	if (diff < 0) return -1; else if (diff > 0) return 1;
62 	diff = pjd1->second - pjd2->second;
63 	if (diff < 0) return -1; else if (diff > 0) return 1;
64 	/* identical */
65 	return 0;
66 }
67 
68 /*
69  * Extension field message format
70  *
71  * These are always signed and saved before sending in network byte
72  * order. They must be converted to and from host byte order for
73  * processing.
74  *
75  * +-------+-------+
76  * |   op  |  len  | <- extension pointer
77  * +-------+-------+
78  * |    associd    |
79  * +---------------+
80  * |   timestamp   | <- value pointer
81  * +---------------+
82  * |   filestamp   |
83  * +---------------+
84  * |   value len   |
85  * +---------------+
86  * |               |
87  * =     value     =
88  * |               |
89  * +---------------+
90  * | signature len |
91  * +---------------+
92  * |               |
93  * =   signature   =
94  * |               |
95  * +---------------+
96  *
97  * The CRYPTO_RESP bit is set to 0 for requests, 1 for responses.
98  * Requests carry the association ID of the receiver; responses carry
99  * the association ID of the sender. Some messages include only the
100  * operation/length and association ID words and so have length 8
101  * octets. Ohers include the value structure and associated value and
102  * signature fields. These messages include the timestamp, filestamp,
103  * value and signature words and so have length at least 24 octets. The
104  * signature and/or value fields can be empty, in which case the
105  * respective length words are zero. An empty value with nonempty
106  * signature is syntactically valid, but semantically questionable.
107  *
108  * The filestamp represents the time when a cryptographic data file such
109  * as a public/private key pair is created. It follows every reference
110  * depending on that file and serves as a means to obsolete earlier data
111  * of the same type. The timestamp represents the time when the
112  * cryptographic data of the message were last signed. Creation of a
113  * cryptographic data file or signing a message can occur only when the
114  * creator or signor is synchronized to an authoritative source and
115  * proventicated to a trusted authority.
116  *
117  * Note there are several conditions required for server trust. First,
118  * the public key on the server certificate must be verified, which can
119  * involve a hike along the certificate trail to a trusted host. Next,
120  * the server trust must be confirmed by one of several identity
121  * schemes. Valid cryptographic values are signed with attached
122  * timestamp and filestamp. Individual packet trust is confirmed
123  * relative to these values by a message digest with keys generated by a
124  * reverse-order pseudorandom hash.
125  *
126  * State decomposition. These flags are lit in the order given. They are
127  * dim only when the association is demobilized.
128  *
129  * CRYPTO_FLAG_ENAB	Lit upon acceptance of a CRYPTO_ASSOC message
130  * CRYPTO_FLAG_CERT	Lit when a self-digned trusted certificate is
131  *			accepted.
132  * CRYPTO_FLAG_VRFY	Lit when identity is confirmed.
133  * CRYPTO_FLAG_PROV	Lit when the first signature is verified.
134  * CRYPTO_FLAG_COOK	Lit when a valid cookie is accepted.
135  * CRYPTO_FLAG_AUTO	Lit when valid autokey values are accepted.
136  * CRYPTO_FLAG_SIGN	Lit when the server signed certificate is
137  *			accepted.
138  * CRYPTO_FLAG_LEAP	Lit when the leapsecond values are accepted.
139  */
140 /*
141  * Cryptodefines
142  */
143 #define TAI_1972	10	/* initial TAI offset (s) */
144 #define MAX_LEAP	100	/* max UTC leapseconds (s) */
145 #define VALUE_LEN	(6 * 4) /* min response field length */
146 #define MAX_VALLEN	(65535 - VALUE_LEN)
147 #define YEAR		(60 * 60 * 24 * 365) /* seconds in year */
148 
149 /*
150  * Global cryptodata in host byte order
151  */
152 u_int32	crypto_flags = 0x0;	/* status word */
153 int	crypto_nid = KEY_TYPE_MD5; /* digest nid */
154 char	*sys_hostname = NULL;
155 char	*sys_groupname = NULL;
156 static char *host_filename = NULL;	/* host file name */
157 static char *ident_filename = NULL;	/* group file name */
158 
159 /*
160  * Global cryptodata in network byte order
161  */
162 struct cert_info *cinfo = NULL;	/* certificate info/value cache */
163 struct cert_info *cert_host = NULL; /* host certificate */
164 struct pkey_info *pkinfo = NULL; /* key info/value cache */
165 struct value hostval;		/* host value */
166 struct value pubkey;		/* public key */
167 struct value tai_leap;		/* leapseconds values */
168 struct pkey_info *iffkey_info = NULL; /* IFF keys */
169 struct pkey_info *gqkey_info = NULL; /* GQ keys */
170 struct pkey_info *mvkey_info = NULL; /* MV keys */
171 
172 /*
173  * Private cryptodata in host byte order
174  */
175 static char *passwd = NULL;	/* private key password */
176 static EVP_PKEY *host_pkey = NULL; /* host key */
177 static EVP_PKEY *sign_pkey = NULL; /* sign key */
178 static const EVP_MD *sign_digest = NULL; /* sign digest */
179 static u_int sign_siglen;	/* sign key length */
180 static char *rand_file = NULL;	/* random seed file */
181 
182 /*
183  * Cryptotypes
184  */
185 static	int	crypto_verify	(struct exten *, struct value *,
186 				    struct peer *);
187 static	int	crypto_encrypt	(const u_char *, u_int, keyid_t *,
188 				    struct value *);
189 static	int	crypto_alice	(struct peer *, struct value *);
190 static	int	crypto_alice2	(struct peer *, struct value *);
191 static	int	crypto_alice3	(struct peer *, struct value *);
192 static	int	crypto_bob	(struct exten *, struct value *);
193 static	int	crypto_bob2	(struct exten *, struct value *);
194 static	int	crypto_bob3	(struct exten *, struct value *);
195 static	int	crypto_iff	(struct exten *, struct peer *);
196 static	int	crypto_gq	(struct exten *, struct peer *);
197 static	int	crypto_mv	(struct exten *, struct peer *);
198 static	int	crypto_send	(struct exten *, struct value *, int);
199 static	tstamp_t crypto_time	(void);
200 static	void	asn_to_calendar		(const ASN1_TIME *, struct calendar*);
201 static	struct cert_info *cert_parse (const u_char *, long, tstamp_t);
202 static	int	cert_sign	(struct exten *, struct value *);
203 static	struct cert_info *cert_install (struct exten *, struct peer *);
204 static	int	cert_hike	(struct peer *, struct cert_info *);
205 static	void	cert_free	(struct cert_info *);
206 static	struct pkey_info *crypto_key (char *, char *, sockaddr_u *);
207 static	void	bighash		(BIGNUM *, BIGNUM *);
208 static	struct cert_info *crypto_cert (char *);
209 static	u_int	exten_payload_size(const struct exten *);
210 
211 #ifdef SYS_WINNT
212 int
213 readlink(char * link, char * file, int len) {
214 	return (-1);
215 }
216 #endif
217 
218 /*
219  * session_key - generate session key
220  *
221  * This routine generates a session key from the source address,
222  * destination address, key ID and private value. The value of the
223  * session key is the MD5 hash of these values, while the next key ID is
224  * the first four octets of the hash.
225  *
226  * Returns the next key ID or 0 if there is no destination address.
227  */
228 keyid_t
229 session_key(
230 	sockaddr_u *srcadr, 	/* source address */
231 	sockaddr_u *dstadr, 	/* destination address */
232 	keyid_t	keyno,		/* key ID */
233 	keyid_t	private,	/* private value */
234 	u_long	lifetime 	/* key lifetime */
235 	)
236 {
237 	EVP_MD_CTX *ctx;	/* message digest context */
238 	u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */
239 	keyid_t	keyid;		/* key identifer */
240 	u_int32	header[10];	/* data in network byte order */
241 	u_int	hdlen, len;
242 
243 	if (!dstadr)
244 		return 0;
245 
246 	/*
247 	 * Generate the session key and key ID. If the lifetime is
248 	 * greater than zero, install the key and call it trusted.
249 	 */
250 	hdlen = 0;
251 	switch(AF(srcadr)) {
252 	case AF_INET:
253 		header[0] = NSRCADR(srcadr);
254 		header[1] = NSRCADR(dstadr);
255 		header[2] = htonl(keyno);
256 		header[3] = htonl(private);
257 		hdlen = 4 * sizeof(u_int32);
258 		break;
259 
260 	case AF_INET6:
261 		memcpy(&header[0], PSOCK_ADDR6(srcadr),
262 		    sizeof(struct in6_addr));
263 		memcpy(&header[4], PSOCK_ADDR6(dstadr),
264 		    sizeof(struct in6_addr));
265 		header[8] = htonl(keyno);
266 		header[9] = htonl(private);
267 		hdlen = 10 * sizeof(u_int32);
268 		break;
269 	}
270 	ctx = EVP_MD_CTX_new();
271 	EVP_DigestInit(ctx, EVP_get_digestbynid(crypto_nid));
272 	EVP_DigestUpdate(ctx, (u_char *)header, hdlen);
273 	EVP_DigestFinal(ctx, dgst, &len);
274 	EVP_MD_CTX_free(ctx);
275 	memcpy(&keyid, dgst, 4);
276 	keyid = ntohl(keyid);
277 	if (lifetime != 0) {
278 		MD5auth_setkey(keyno, crypto_nid, dgst, len, NULL);
279 		authtrust(keyno, lifetime);
280 	}
281 	DPRINTF(2, ("session_key: %s > %s %08x %08x hash %08x life %lu\n",
282 		    stoa(srcadr), stoa(dstadr), keyno,
283 		    private, keyid, lifetime));
284 
285 	return (keyid);
286 }
287 
288 
289 /*
290  * make_keylist - generate key list
291  *
292  * Returns
293  * XEVNT_OK	success
294  * XEVNT_ERR	protocol error
295  *
296  * This routine constructs a pseudo-random sequence by repeatedly
297  * hashing the session key starting from a given source address,
298  * destination address, private value and the next key ID of the
299  * preceeding session key. The last entry on the list is saved along
300  * with its sequence number and public signature.
301  */
302 int
303 make_keylist(
304 	struct peer *peer,	/* peer structure pointer */
305 	struct interface *dstadr /* interface */
306 	)
307 {
308 	EVP_MD_CTX *ctx;	/* signature context */
309 	tstamp_t tstamp;	/* NTP timestamp */
310 	struct autokey *ap;	/* autokey pointer */
311 	struct value *vp;	/* value pointer */
312 	keyid_t	keyid = 0;	/* next key ID */
313 	keyid_t	cookie;		/* private value */
314 	long	lifetime;
315 	u_int	len, mpoll;
316 	int	i;
317 
318 	if (!dstadr)
319 		return XEVNT_ERR;
320 
321 	/*
322 	 * Allocate the key list if necessary.
323 	 */
324 	tstamp = crypto_time();
325 	if (peer->keylist == NULL)
326 		peer->keylist = eallocarray(NTP_MAXSESSION,
327 					    sizeof(keyid_t));
328 
329 	/*
330 	 * Generate an initial key ID which is unique and greater than
331 	 * NTP_MAXKEY.
332 	 */
333 	while (1) {
334 		keyid = ntp_random() & 0xffffffff;
335 		if (keyid <= NTP_MAXKEY)
336 			continue;
337 
338 		if (authhavekey(keyid))
339 			continue;
340 		break;
341 	}
342 
343 	/*
344 	 * Generate up to NTP_MAXSESSION session keys. Stop if the
345 	 * next one would not be unique or not a session key ID or if
346 	 * it would expire before the next poll. The private value
347 	 * included in the hash is zero if broadcast mode, the peer
348 	 * cookie if client mode or the host cookie if symmetric modes.
349 	 */
350 	mpoll = 1 << min(peer->ppoll, peer->hpoll);
351 	lifetime = min(1U << sys_automax, NTP_MAXSESSION * mpoll);
352 	if (peer->hmode == MODE_BROADCAST)
353 		cookie = 0;
354 	else
355 		cookie = peer->pcookie;
356 	for (i = 0; i < NTP_MAXSESSION; i++) {
357 		peer->keylist[i] = keyid;
358 		peer->keynumber = i;
359 		keyid = session_key(&dstadr->sin, &peer->srcadr, keyid,
360 		    cookie, lifetime + mpoll);
361 		lifetime -= mpoll;
362 		if (auth_havekey(keyid) || keyid <= NTP_MAXKEY ||
363 		    lifetime < 0 || tstamp == 0)
364 			break;
365 	}
366 
367 	/*
368 	 * Save the last session key ID, sequence number and timestamp,
369 	 * then sign these values for later retrieval by the clients. Be
370 	 * careful not to use invalid key media. Use the public values
371 	 * timestamp as filestamp.
372 	 */
373 	vp = &peer->sndval;
374 	if (vp->ptr == NULL)
375 		vp->ptr = emalloc(sizeof(struct autokey));
376 	ap = (struct autokey *)vp->ptr;
377 	ap->seq = htonl(peer->keynumber);
378 	ap->key = htonl(keyid);
379 	vp->tstamp = htonl(tstamp);
380 	vp->fstamp = hostval.tstamp;
381 	vp->vallen = htonl(sizeof(struct autokey));
382 	vp->siglen = 0;
383 	if (tstamp != 0) {
384 		if (vp->sig == NULL)
385 			vp->sig = emalloc(sign_siglen);
386 		ctx = EVP_MD_CTX_new();
387 		EVP_SignInit(ctx, sign_digest);
388 		EVP_SignUpdate(ctx, (u_char *)vp, 12);
389 		EVP_SignUpdate(ctx, vp->ptr, sizeof(struct autokey));
390 		if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
391 			INSIST(len <= sign_siglen);
392 			vp->siglen = htonl(len);
393 			peer->flags |= FLAG_ASSOC;
394 		}
395 		EVP_MD_CTX_free(ctx);
396 	}
397 	DPRINTF(1, ("make_keys: %d %08x %08x ts %u fs %u poll %d\n",
398 		    peer->keynumber, keyid, cookie, ntohl(vp->tstamp),
399 		    ntohl(vp->fstamp), peer->hpoll));
400 	return (XEVNT_OK);
401 }
402 
403 
404 /*
405  * crypto_recv - parse extension fields
406  *
407  * This routine is called when the packet has been matched to an
408  * association and passed sanity, format and MAC checks. We believe the
409  * extension field values only if the field has proper format and
410  * length, the timestamp and filestamp are valid and the signature has
411  * valid length and is verified. There are a few cases where some values
412  * are believed even if the signature fails, but only if the proventic
413  * bit is not set.
414  *
415  * Returns
416  * XEVNT_OK	success
417  * XEVNT_ERR	protocol error
418  * XEVNT_LEN	bad field format or length
419  */
420 int
421 crypto_recv(
422 	struct peer *peer,	/* peer structure pointer */
423 	struct recvbuf *rbufp	/* packet buffer pointer */
424 	)
425 {
426 	const EVP_MD *dp;	/* message digest algorithm */
427 	u_int32	*pkt;		/* receive packet pointer */
428 	struct autokey *ap, *bp; /* autokey pointer */
429 	struct exten *ep, *fp;	/* extension pointers */
430 	struct cert_info *xinfo; /* certificate info pointer */
431 	int	macbytes;	/* length of MAC field, signed by intention */
432 	int	authlen;	/* offset of MAC field */
433 	associd_t associd;	/* association ID */
434 	tstamp_t fstamp = 0;	/* filestamp */
435 	u_int	len;		/* extension field length */
436 	u_int	code;		/* extension field opcode */
437 	u_int	vallen = 0;	/* value length */
438 	X509	*cert;		/* X509 certificate */
439 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
440 	keyid_t	cookie;		/* crumbles */
441 	int	hismode;	/* packet mode */
442 	int	rval = XEVNT_OK;
443 	const u_char *puch;
444 	u_int32 temp32;
445 
446 	/*
447 	 * Initialize. Note that the packet has already been checked for
448 	 * valid format and extension field lengths. First extract the
449 	 * field length, command code and association ID in host byte
450 	 * order. These are used with all commands and modes. Then check
451 	 * the version number, which must be 2, and length, which must
452 	 * be at least 8 for requests and VALUE_LEN (24) for responses.
453 	 * Packets that fail either test sink without a trace. The
454 	 * association ID is saved only if nonzero.
455 	 */
456 	authlen = LEN_PKT_NOMAC;
457 	hismode = (int)PKT_MODE((&rbufp->recv_pkt)->li_vn_mode);
458 	while ((macbytes = rbufp->recv_length - authlen) > (int)MAX_MAC_LEN) {
459 		/* We can be reasonably sure that we can read at least
460 		 * the opcode and the size field here. More stringent
461 		 * checks follow up shortly.
462 		 */
463 		pkt = (u_int32 *)&rbufp->recv_pkt + authlen / 4;
464 		ep = (struct exten *)pkt;
465 		code = ntohl(ep->opcode) & 0xffff0000;
466 		len = ntohl(ep->opcode) & 0x0000ffff;
467 		// HMS: Why pkt[1] instead of ep->associd ?
468 		associd = (associd_t)ntohl(pkt[1]);
469 		rval = XEVNT_OK;
470 		DPRINTF(1, ("crypto_recv: flags 0x%x ext offset %d len %u code 0x%x associd %d\n",
471 			    peer->crypto, authlen, len, code >> 16,
472 			    associd));
473 
474 		/*
475 		 * Check version number and field length. If bad,
476 		 * quietly ignore the packet.
477 		 */
478 		if (((code >> 24) & 0x3f) != CRYPTO_VN || len < 8) {
479 			sys_badlength++;
480 			code |= CRYPTO_ERROR;
481 		}
482 
483 		/* Check if the declared size fits into the remaining
484 		 * buffer. We *know* 'macbytes' > 0 here!
485 		 */
486 		if (len > (u_int)macbytes) {
487 			DPRINTF(1, ("crypto_recv: possible attack detected, associd %d\n",
488 				    associd));
489 			return XEVNT_LEN;
490 		}
491 
492 		/* Check if the paylod of the extension fits into the
493 		 * declared frame.
494 		 */
495 		if (len >= VALUE_LEN) {
496 			fstamp = ntohl(ep->fstamp);
497 			vallen = ntohl(ep->vallen);
498 			/*
499 			 * Bug 2761: I hope this isn't too early...
500 			 */
501 			if (   vallen == 0
502 			    || len - VALUE_LEN < vallen)
503 				return XEVNT_LEN;
504 		}
505 		switch (code) {
506 
507 		/*
508 		 * Install status word, host name, signature scheme and
509 		 * association ID. In OpenSSL the signature algorithm is
510 		 * bound to the digest algorithm, so the NID completely
511 		 * defines the signature scheme. Note the request and
512 		 * response are identical, but neither is validated by
513 		 * signature. The request is processed here only in
514 		 * symmetric modes. The server name field might be
515 		 * useful to implement access controls in future.
516 		 */
517 		case CRYPTO_ASSOC:
518 
519 			/*
520 			 * If our state machine is running when this
521 			 * message arrives, the other fellow might have
522 			 * restarted. However, this could be an
523 			 * intruder, so just clamp the poll interval and
524 			 * find out for ourselves. Otherwise, pass the
525 			 * extension field to the transmit side.
526 			 */
527 			if (peer->crypto & CRYPTO_FLAG_CERT) {
528 				rval = XEVNT_ERR;
529 				break;
530 			}
531 			if (peer->cmmd) {
532 				if (peer->assoc != associd) {
533 					rval = XEVNT_ERR;
534 					break;
535 				}
536 				free(peer->cmmd); /* will be set again! */
537 			}
538 			fp = emalloc(len);
539 			memcpy(fp, ep, len);
540 			fp->associd = htonl(peer->associd);
541 			peer->cmmd = fp;
542 			/* fall through */
543 
544 		case CRYPTO_ASSOC | CRYPTO_RESP:
545 
546 			/*
547 			 * Discard the message if it has already been
548 			 * stored or the message has been amputated.
549 			 */
550 			if (peer->crypto) {
551 				if (peer->assoc != associd)
552 					rval = XEVNT_ERR;
553 				break;
554 			}
555 			INSIST(len >= VALUE_LEN);
556 			if (vallen == 0 || vallen > MAXHOSTNAME ||
557 			    len - VALUE_LEN < vallen) {
558 				rval = XEVNT_LEN;
559 				break;
560 			}
561 			DPRINTF(1, ("crypto_recv: ident host 0x%x %d server 0x%x %d\n",
562 				    crypto_flags, peer->associd, fstamp,
563 				    peer->assoc));
564 			temp32 = crypto_flags & CRYPTO_FLAG_MASK;
565 
566 			/*
567 			 * If the client scheme is PC, the server scheme
568 			 * must be PC. The public key and identity are
569 			 * presumed valid, so we skip the certificate
570 			 * and identity exchanges and move immediately
571 			 * to the cookie exchange which confirms the
572 			 * server signature.
573 			 */
574 			if (crypto_flags & CRYPTO_FLAG_PRIV) {
575 				if (!(fstamp & CRYPTO_FLAG_PRIV)) {
576 					rval = XEVNT_KEY;
577 					break;
578 				}
579 				fstamp |= CRYPTO_FLAG_CERT |
580 				    CRYPTO_FLAG_VRFY | CRYPTO_FLAG_SIGN;
581 
582 			/*
583 			 * It is an error if either peer supports
584 			 * identity, but the other does not.
585 			 */
586 			} else if (hismode == MODE_ACTIVE || hismode ==
587 			    MODE_PASSIVE) {
588 				if ((temp32 && !(fstamp &
589 				    CRYPTO_FLAG_MASK)) ||
590 				    (!temp32 && (fstamp &
591 				    CRYPTO_FLAG_MASK))) {
592 					rval = XEVNT_KEY;
593 					break;
594 				}
595 			}
596 
597 			/*
598 			 * Discard the message if the signature digest
599 			 * NID is not supported.
600 			 */
601 			temp32 = (fstamp >> 16) & 0xffff;
602 			dp =
603 			    (const EVP_MD *)EVP_get_digestbynid(temp32);
604 			if (dp == NULL) {
605 				rval = XEVNT_MD;
606 				break;
607 			}
608 
609 			/*
610 			 * Save status word, host name and message
611 			 * digest/signature type. If this is from a
612 			 * broadcast and the association ID has changed,
613 			 * request the autokey values.
614 			 */
615 			peer->assoc = associd;
616 			if (hismode == MODE_SERVER)
617 				fstamp |= CRYPTO_FLAG_AUTO;
618 			if (!(fstamp & CRYPTO_FLAG_TAI))
619 				fstamp |= CRYPTO_FLAG_LEAP;
620 			RAND_bytes((u_char *)&peer->hcookie, 4);
621 			peer->crypto = fstamp;
622 			peer->digest = dp;
623 			if (peer->subject != NULL)
624 				free(peer->subject);
625 			peer->subject = emalloc(vallen + 1);
626 			memcpy(peer->subject, ep->pkt, vallen);
627 			peer->subject[vallen] = '\0';
628 			if (peer->issuer != NULL)
629 				free(peer->issuer);
630 			peer->issuer = estrdup(peer->subject);
631 			snprintf(statstr, sizeof(statstr),
632 			    "assoc %d %d host %s %s", peer->associd,
633 			    peer->assoc, peer->subject,
634 			    OBJ_nid2ln(temp32));
635 			record_crypto_stats(&peer->srcadr, statstr);
636 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
637 			break;
638 
639 		/*
640 		 * Decode X509 certificate in ASN.1 format and extract
641 		 * the data containing, among other things, subject
642 		 * name and public key. In the default identification
643 		 * scheme, the certificate trail is followed to a self
644 		 * signed trusted certificate.
645 		 */
646 		case CRYPTO_CERT | CRYPTO_RESP:
647 
648 			/*
649 			 * Discard the message if empty or invalid.
650 			 */
651 			if (len < VALUE_LEN)
652 				break;
653 
654 			if ((rval = crypto_verify(ep, NULL, peer)) !=
655 			    XEVNT_OK)
656 				break;
657 
658 			/*
659 			 * Scan the certificate list to delete old
660 			 * versions and link the newest version first on
661 			 * the list. Then, verify the signature. If the
662 			 * certificate is bad or missing, just ignore
663 			 * it.
664 			 */
665 			if ((xinfo = cert_install(ep, peer)) == NULL) {
666 				rval = XEVNT_CRT;
667 				break;
668 			}
669 			if ((rval = cert_hike(peer, xinfo)) != XEVNT_OK)
670 				break;
671 
672 			/*
673 			 * We plug in the public key and lifetime from
674 			 * the first certificate received. However, note
675 			 * that this certificate might not be signed by
676 			 * the server, so we can't check the
677 			 * signature/digest NID.
678 			 */
679 			if (peer->pkey == NULL) {
680 				puch = xinfo->cert.ptr;
681 				cert = d2i_X509(NULL, &puch,
682 				    ntohl(xinfo->cert.vallen));
683 				peer->pkey = X509_get_pubkey(cert);
684 				X509_free(cert);
685 			}
686 			peer->flash &= ~TEST8;
687 			temp32 = xinfo->nid;
688 			snprintf(statstr, sizeof(statstr),
689 			    "cert %s %s 0x%x %s (%u) fs %u",
690 			    xinfo->subject, xinfo->issuer, xinfo->flags,
691 			    OBJ_nid2ln(temp32), temp32,
692 			    ntohl(ep->fstamp));
693 			record_crypto_stats(&peer->srcadr, statstr);
694 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
695 			break;
696 
697 		/*
698 		 * Schnorr (IFF) identity scheme. This scheme is
699 		 * designed for use with shared secret server group keys
700 		 * and where the certificate may be generated by a third
701 		 * party. The client sends a challenge to the server,
702 		 * which performs a calculation and returns the result.
703 		 * A positive result is possible only if both client and
704 		 * server contain the same secret group key.
705 		 */
706 		case CRYPTO_IFF | CRYPTO_RESP:
707 
708 			/*
709 			 * Discard the message if invalid.
710 			 */
711 			if ((rval = crypto_verify(ep, NULL, peer)) !=
712 			    XEVNT_OK)
713 				break;
714 
715 			/*
716 			 * If the challenge matches the response, the
717 			 * server public key, signature and identity are
718 			 * all verified at the same time. The server is
719 			 * declared trusted, so we skip further
720 			 * certificate exchanges and move immediately to
721 			 * the cookie exchange.
722 			 */
723 			if ((rval = crypto_iff(ep, peer)) != XEVNT_OK)
724 				break;
725 
726 			peer->crypto |= CRYPTO_FLAG_VRFY;
727 			peer->flash &= ~TEST8;
728 			snprintf(statstr, sizeof(statstr), "iff %s fs %u",
729 			    peer->issuer, ntohl(ep->fstamp));
730 			record_crypto_stats(&peer->srcadr, statstr);
731 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
732 			break;
733 
734 		/*
735 		 * Guillou-Quisquater (GQ) identity scheme. This scheme
736 		 * is designed for use with public certificates carrying
737 		 * the GQ public key in an extension field. The client
738 		 * sends a challenge to the server, which performs a
739 		 * calculation and returns the result. A positive result
740 		 * is possible only if both client and server contain
741 		 * the same group key and the server has the matching GQ
742 		 * private key.
743 		 */
744 		case CRYPTO_GQ | CRYPTO_RESP:
745 
746 			/*
747 			 * Discard the message if invalid
748 			 */
749 			if ((rval = crypto_verify(ep, NULL, peer)) !=
750 			    XEVNT_OK)
751 				break;
752 
753 			/*
754 			 * If the challenge matches the response, the
755 			 * server public key, signature and identity are
756 			 * all verified at the same time. The server is
757 			 * declared trusted, so we skip further
758 			 * certificate exchanges and move immediately to
759 			 * the cookie exchange.
760 			 */
761 			if ((rval = crypto_gq(ep, peer)) != XEVNT_OK)
762 				break;
763 
764 			peer->crypto |= CRYPTO_FLAG_VRFY;
765 			peer->flash &= ~TEST8;
766 			snprintf(statstr, sizeof(statstr), "gq %s fs %u",
767 			    peer->issuer, ntohl(ep->fstamp));
768 			record_crypto_stats(&peer->srcadr, statstr);
769 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
770 			break;
771 
772 		/*
773 		 * Mu-Varadharajan (MV) identity scheme. This scheme is
774 		 * designed for use with three levels of trust, trusted
775 		 * host, server and client. The trusted host key is
776 		 * opaque to servers and clients; the server keys are
777 		 * opaque to clients and each client key is different.
778 		 * Client keys can be revoked without requiring new key
779 		 * generations.
780 		 */
781 		case CRYPTO_MV | CRYPTO_RESP:
782 
783 			/*
784 			 * Discard the message if invalid.
785 			 */
786 			if ((rval = crypto_verify(ep, NULL, peer)) !=
787 			    XEVNT_OK)
788 				break;
789 
790 			/*
791 			 * If the challenge matches the response, the
792 			 * server public key, signature and identity are
793 			 * all verified at the same time. The server is
794 			 * declared trusted, so we skip further
795 			 * certificate exchanges and move immediately to
796 			 * the cookie exchange.
797 			 */
798 			if ((rval = crypto_mv(ep, peer)) != XEVNT_OK)
799 				break;
800 
801 			peer->crypto |= CRYPTO_FLAG_VRFY;
802 			peer->flash &= ~TEST8;
803 			snprintf(statstr, sizeof(statstr), "mv %s fs %u",
804 			    peer->issuer, ntohl(ep->fstamp));
805 			record_crypto_stats(&peer->srcadr, statstr);
806 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
807 			break;
808 
809 
810 		/*
811 		 * Cookie response in client and symmetric modes. If the
812 		 * cookie bit is set, the working cookie is the EXOR of
813 		 * the current and new values.
814 		 */
815 		case CRYPTO_COOK | CRYPTO_RESP:
816 
817 			/*
818 			 * Discard the message if invalid or signature
819 			 * not verified with respect to the cookie
820 			 * values.
821 			 */
822 			if ((rval = crypto_verify(ep, &peer->cookval,
823 			    peer)) != XEVNT_OK)
824 				break;
825 
826 			/*
827 			 * Decrypt the cookie, hunting all the time for
828 			 * errors.
829 			 */
830 			if (vallen == (u_int)EVP_PKEY_size(host_pkey)) {
831 				RSA *rsa = EVP_PKEY_get0_RSA(host_pkey);
832 				u_int32 *cookiebuf = malloc(RSA_size(rsa));
833 				if (!cookiebuf) {
834 					rval = XEVNT_CKY;
835 					break;
836 				}
837 
838 				if (RSA_private_decrypt(vallen,
839 				    (u_char *)ep->pkt,
840 				    (u_char *)cookiebuf,
841 				    rsa,
842 				    RSA_PKCS1_OAEP_PADDING) != 4) {
843 					rval = XEVNT_CKY;
844 					free(cookiebuf);
845 					break;
846 				} else {
847 					cookie = ntohl(*cookiebuf);
848 					free(cookiebuf);
849 				}
850 			} else {
851 				rval = XEVNT_CKY;
852 				break;
853 			}
854 
855 			/*
856 			 * Install cookie values and light the cookie
857 			 * bit. If this is not broadcast client mode, we
858 			 * are done here.
859 			 */
860 			key_expire(peer);
861 			if (hismode == MODE_ACTIVE || hismode ==
862 			    MODE_PASSIVE)
863 				peer->pcookie = peer->hcookie ^ cookie;
864 			else
865 				peer->pcookie = cookie;
866 			peer->crypto |= CRYPTO_FLAG_COOK;
867 			peer->flash &= ~TEST8;
868 			snprintf(statstr, sizeof(statstr),
869 			    "cook %x ts %u fs %u", peer->pcookie,
870 			    ntohl(ep->tstamp), ntohl(ep->fstamp));
871 			record_crypto_stats(&peer->srcadr, statstr);
872 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
873 			break;
874 
875 		/*
876 		 * Install autokey values in broadcast client and
877 		 * symmetric modes. We have to do this every time the
878 		 * sever/peer cookie changes or a new keylist is
879 		 * rolled. Ordinarily, this is automatic as this message
880 		 * is piggybacked on the first NTP packet sent upon
881 		 * either of these events. Note that a broadcast client
882 		 * or symmetric peer can receive this response without a
883 		 * matching request.
884 		 */
885 		case CRYPTO_AUTO | CRYPTO_RESP:
886 
887 			/*
888 			 * Discard the message if invalid or signature
889 			 * not verified with respect to the receive
890 			 * autokey values.
891 			 */
892 			if ((rval = crypto_verify(ep, &peer->recval,
893 			    peer)) != XEVNT_OK)
894 				break;
895 
896 			/*
897 			 * Discard the message if a broadcast client and
898 			 * the association ID does not match. This might
899 			 * happen if a broacast server restarts the
900 			 * protocol. A protocol restart will occur at
901 			 * the next ASSOC message.
902 			 */
903 			if ((peer->cast_flags & MDF_BCLNT) &&
904 			    peer->assoc != associd)
905 				break;
906 
907 			/*
908 			 * Install autokey values and light the
909 			 * autokey bit. This is not hard.
910 			 */
911 			if (ep->tstamp == 0)
912 				break;
913 
914 			if (peer->recval.ptr == NULL)
915 				peer->recval.ptr =
916 				    emalloc(sizeof(struct autokey));
917 			bp = (struct autokey *)peer->recval.ptr;
918 			peer->recval.tstamp = ep->tstamp;
919 			peer->recval.fstamp = ep->fstamp;
920 			ap = (struct autokey *)ep->pkt;
921 			bp->seq = ntohl(ap->seq);
922 			bp->key = ntohl(ap->key);
923 			peer->pkeyid = bp->key;
924 			peer->crypto |= CRYPTO_FLAG_AUTO;
925 			peer->flash &= ~TEST8;
926 			snprintf(statstr, sizeof(statstr),
927 			    "auto seq %d key %x ts %u fs %u", bp->seq,
928 			    bp->key, ntohl(ep->tstamp),
929 			    ntohl(ep->fstamp));
930 			record_crypto_stats(&peer->srcadr, statstr);
931 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
932 			break;
933 
934 		/*
935 		 * X509 certificate sign response. Validate the
936 		 * certificate signed by the server and install. Later
937 		 * this can be provided to clients of this server in
938 		 * lieu of the self signed certificate in order to
939 		 * validate the public key.
940 		 */
941 		case CRYPTO_SIGN | CRYPTO_RESP:
942 
943 			/*
944 			 * Discard the message if invalid.
945 			 */
946 			if ((rval = crypto_verify(ep, NULL, peer)) !=
947 			    XEVNT_OK)
948 				break;
949 
950 			/*
951 			 * Scan the certificate list to delete old
952 			 * versions and link the newest version first on
953 			 * the list.
954 			 */
955 			if ((xinfo = cert_install(ep, peer)) == NULL) {
956 				rval = XEVNT_CRT;
957 				break;
958 			}
959 			peer->crypto |= CRYPTO_FLAG_SIGN;
960 			peer->flash &= ~TEST8;
961 			temp32 = xinfo->nid;
962 			snprintf(statstr, sizeof(statstr),
963 			    "sign %s %s 0x%x %s (%u) fs %u",
964 			    xinfo->subject, xinfo->issuer, xinfo->flags,
965 			    OBJ_nid2ln(temp32), temp32,
966 			    ntohl(ep->fstamp));
967 			record_crypto_stats(&peer->srcadr, statstr);
968 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
969 			break;
970 
971 		/*
972 		 * Install leapseconds values. While the leapsecond
973 		 * values epoch, TAI offset and values expiration epoch
974 		 * are retained, only the current TAI offset is provided
975 		 * via the kernel to other applications.
976 		 */
977 		case CRYPTO_LEAP | CRYPTO_RESP:
978 			/*
979 			 * Discard the message if invalid. We can't
980 			 * compare the value timestamps here, as they
981 			 * can be updated by different servers.
982 			 */
983 			rval = crypto_verify(ep, NULL, peer);
984 			if ((rval   != XEVNT_OK          ) ||
985 			    (vallen != 3*sizeof(uint32_t))  )
986 				break;
987 
988 			/* Check if we can update the basic TAI offset
989 			 * for our current leap frame. This is a hack
990 			 * and ignores the time stamps in the autokey
991 			 * message.
992 			 */
993 			if (sys_leap != LEAP_NOTINSYNC)
994 				leapsec_autokey_tai(ntohl(ep->pkt[0]),
995 						    rbufp->recv_time.l_ui, NULL);
996 			tai_leap.tstamp = ep->tstamp;
997 			tai_leap.fstamp = ep->fstamp;
998 			crypto_update();
999 			mprintf_event(EVNT_TAI, peer,
1000 				      "%d seconds", ntohl(ep->pkt[0]));
1001 			peer->crypto |= CRYPTO_FLAG_LEAP;
1002 			peer->flash &= ~TEST8;
1003 			snprintf(statstr, sizeof(statstr),
1004 				 "leap TAI offset %d at %u expire %u fs %u",
1005 				 ntohl(ep->pkt[0]), ntohl(ep->pkt[1]),
1006 				 ntohl(ep->pkt[2]), ntohl(ep->fstamp));
1007 			record_crypto_stats(&peer->srcadr, statstr);
1008 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
1009 			break;
1010 
1011 		/*
1012 		 * We come here in symmetric modes for miscellaneous
1013 		 * commands that have value fields but are processed on
1014 		 * the transmit side. All we need do here is check for
1015 		 * valid field length. Note that ASSOC is handled
1016 		 * separately.
1017 		 */
1018 		case CRYPTO_CERT:
1019 		case CRYPTO_IFF:
1020 		case CRYPTO_GQ:
1021 		case CRYPTO_MV:
1022 		case CRYPTO_COOK:
1023 		case CRYPTO_SIGN:
1024 			if (len < VALUE_LEN) {
1025 				rval = XEVNT_LEN;
1026 				break;
1027 			}
1028 			/* fall through */
1029 
1030 		/*
1031 		 * We come here in symmetric modes for requests
1032 		 * requiring a response (above plus AUTO and LEAP) and
1033 		 * for responses. If a request, save the extension field
1034 		 * for later; invalid requests will be caught on the
1035 		 * transmit side. If an error or invalid response,
1036 		 * declare a protocol error.
1037 		 */
1038 		default:
1039 			if (code & (CRYPTO_RESP | CRYPTO_ERROR)) {
1040 				rval = XEVNT_ERR;
1041 			} else if (peer->cmmd == NULL) {
1042 				fp = emalloc(len);
1043 				memcpy(fp, ep, len);
1044 				peer->cmmd = fp;
1045 			}
1046 		}
1047 
1048 		/*
1049 		 * The first error found terminates the extension field
1050 		 * scan and we return the laundry to the caller.
1051 		 */
1052 		if (rval != XEVNT_OK) {
1053 			snprintf(statstr, sizeof(statstr),
1054 			    "%04x %d %02x %s", htonl(ep->opcode),
1055 			    associd, rval, eventstr(rval));
1056 			record_crypto_stats(&peer->srcadr, statstr);
1057 			DPRINTF(1, ("crypto_recv: %s\n", statstr));
1058 			return (rval);
1059 		}
1060 		authlen += (len + 3) / 4 * 4;
1061 	}
1062 	return (rval);
1063 }
1064 
1065 
1066 /*
1067  * crypto_xmit - construct extension fields
1068  *
1069  * This routine is called both when an association is configured and
1070  * when one is not. The only case where this matters is to retrieve the
1071  * autokey information, in which case the caller has to provide the
1072  * association ID to match the association.
1073  *
1074  * Side effect: update the packet offset.
1075  *
1076  * Errors
1077  * XEVNT_OK	success
1078  * XEVNT_CRT	bad or missing certificate
1079  * XEVNT_ERR	protocol error
1080  * XEVNT_LEN	bad field format or length
1081  * XEVNT_PER	host certificate expired
1082  */
1083 int
1084 crypto_xmit(
1085 	struct peer *peer,	/* peer structure pointer */
1086 	struct pkt *xpkt,	/* transmit packet pointer */
1087 	struct recvbuf *rbufp,	/* receive buffer pointer */
1088 	int	start,		/* offset to extension field */
1089 	struct exten *ep,	/* extension pointer */
1090 	keyid_t cookie		/* session cookie */
1091 	)
1092 {
1093 	struct exten *fp;	/* extension pointers */
1094 	struct cert_info *cp, *xp, *yp; /* cert info/value pointer */
1095 	sockaddr_u *srcadr_sin; /* source address */
1096 	u_int32	*pkt;		/* packet pointer */
1097 	u_int	opcode;		/* extension field opcode */
1098 	char	certname[MAXHOSTNAME + 1]; /* subject name buffer */
1099 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
1100 	tstamp_t tstamp;
1101 	struct calendar tscal;
1102 	u_int	vallen;
1103 	struct value vtemp;
1104 	associd_t associd;
1105 	int	rval;
1106 	int	len;
1107 	keyid_t tcookie;
1108 
1109 	/*
1110 	 * Generate the requested extension field request code, length
1111 	 * and association ID. If this is a response and the host is not
1112 	 * synchronized, light the error bit and go home.
1113 	 */
1114 	pkt = (u_int32 *)xpkt + start / 4;
1115 	fp = (struct exten *)pkt;
1116 	opcode = ntohl(ep->opcode);
1117 	if (peer != NULL) {
1118 		srcadr_sin = &peer->srcadr;
1119 		if (!(opcode & CRYPTO_RESP))
1120 			peer->opcode = ep->opcode;
1121 	} else {
1122 		srcadr_sin = &rbufp->recv_srcadr;
1123 	}
1124 	associd = (associd_t) ntohl(ep->associd);
1125 	len = 8;
1126 	fp->opcode = htonl((opcode & 0xffff0000) | len);
1127 	fp->associd = ep->associd;
1128 	rval = XEVNT_OK;
1129 	tstamp = crypto_time();
1130 	switch (opcode & 0xffff0000) {
1131 
1132 	/*
1133 	 * Send association request and response with status word and
1134 	 * host name. Note, this message is not signed and the filestamp
1135 	 * contains only the status word.
1136 	 */
1137 	case CRYPTO_ASSOC:
1138 	case CRYPTO_ASSOC | CRYPTO_RESP:
1139 		len = crypto_send(fp, &hostval, start);
1140 		fp->fstamp = htonl(crypto_flags);
1141 		break;
1142 
1143 	/*
1144 	 * Send certificate request. Use the values from the extension
1145 	 * field.
1146 	 */
1147 	case CRYPTO_CERT:
1148 		memset(&vtemp, 0, sizeof(vtemp));
1149 		vtemp.tstamp = ep->tstamp;
1150 		vtemp.fstamp = ep->fstamp;
1151 		vtemp.vallen = ep->vallen;
1152 		vtemp.ptr = (u_char *)ep->pkt;
1153 		len = crypto_send(fp, &vtemp, start);
1154 		break;
1155 
1156 	/*
1157 	 * Send sign request. Use the host certificate, which is self-
1158 	 * signed and may or may not be trusted.
1159 	 */
1160 	case CRYPTO_SIGN:
1161 		(void)ntpcal_ntp_to_date(&tscal, tstamp, NULL);
1162 		if ((calcomp(&tscal, &(cert_host->first)) < 0)
1163 		|| (calcomp(&tscal, &(cert_host->last)) > 0))
1164 			rval = XEVNT_PER;
1165 		else
1166 			len = crypto_send(fp, &cert_host->cert, start);
1167 		break;
1168 
1169 	/*
1170 	 * Send certificate response. Use the name in the extension
1171 	 * field to find the certificate in the cache. If the request
1172 	 * contains no subject name, assume the name of this host. This
1173 	 * is for backwards compatibility. Private certificates are
1174 	 * never sent.
1175 	 *
1176 	 * There may be several certificates matching the request. First
1177 	 * choice is a self-signed trusted certificate; second choice is
1178 	 * any certificate signed by another host. There is no third
1179 	 * choice.
1180 	 */
1181 	case CRYPTO_CERT | CRYPTO_RESP:
1182 		vallen = exten_payload_size(ep); /* Must be <64k */
1183 		if (vallen == 0 || vallen >= sizeof(certname) ) {
1184 			rval = XEVNT_LEN;
1185 			break;
1186 		}
1187 
1188 		/*
1189 		 * Find all public valid certificates with matching
1190 		 * subject. If a self-signed, trusted certificate is
1191 		 * found, use that certificate. If not, use the last non
1192 		 * self-signed certificate.
1193 		 */
1194 		memcpy(certname, ep->pkt, vallen);
1195 		certname[vallen] = '\0';
1196 		xp = yp = NULL;
1197 		for (cp = cinfo; cp != NULL; cp = cp->link) {
1198 			if (cp->flags & (CERT_PRIV | CERT_ERROR))
1199 				continue;
1200 
1201 			if (strcmp(certname, cp->subject) != 0)
1202 				continue;
1203 
1204 			if (strcmp(certname, cp->issuer) != 0)
1205 				yp = cp;
1206 			else if (cp ->flags & CERT_TRUST)
1207 				xp = cp;
1208 			continue;
1209 		}
1210 
1211 		/*
1212 		 * Be careful who you trust. If the certificate is not
1213 		 * found, return an empty response. Note that we dont
1214 		 * enforce lifetimes here.
1215 		 *
1216 		 * The timestamp and filestamp are taken from the
1217 		 * certificate value structure. For all certificates the
1218 		 * timestamp is the latest signature update time. For
1219 		 * host and imported certificates the filestamp is the
1220 		 * creation epoch. For signed certificates the filestamp
1221 		 * is the creation epoch of the trusted certificate at
1222 		 * the root of the certificate trail. In principle, this
1223 		 * allows strong checking for signature masquerade.
1224 		 */
1225 		if (xp == NULL)
1226 			xp = yp;
1227 		if (xp == NULL)
1228 			break;
1229 
1230 		if (tstamp == 0)
1231 			break;
1232 
1233 		len = crypto_send(fp, &xp->cert, start);
1234 		break;
1235 
1236 	/*
1237 	 * Send challenge in Schnorr (IFF) identity scheme.
1238 	 */
1239 	case CRYPTO_IFF:
1240 		if (peer == NULL)
1241 			break;		/* hack attack */
1242 
1243 		if ((rval = crypto_alice(peer, &vtemp)) == XEVNT_OK) {
1244 			len = crypto_send(fp, &vtemp, start);
1245 			value_free(&vtemp);
1246 		}
1247 		break;
1248 
1249 	/*
1250 	 * Send response in Schnorr (IFF) identity scheme.
1251 	 */
1252 	case CRYPTO_IFF | CRYPTO_RESP:
1253 		if ((rval = crypto_bob(ep, &vtemp)) == XEVNT_OK) {
1254 			len = crypto_send(fp, &vtemp, start);
1255 			value_free(&vtemp);
1256 		}
1257 		break;
1258 
1259 	/*
1260 	 * Send challenge in Guillou-Quisquater (GQ) identity scheme.
1261 	 */
1262 	case CRYPTO_GQ:
1263 		if (peer == NULL)
1264 			break;		/* hack attack */
1265 
1266 		if ((rval = crypto_alice2(peer, &vtemp)) == XEVNT_OK) {
1267 			len = crypto_send(fp, &vtemp, start);
1268 			value_free(&vtemp);
1269 		}
1270 		break;
1271 
1272 	/*
1273 	 * Send response in Guillou-Quisquater (GQ) identity scheme.
1274 	 */
1275 	case CRYPTO_GQ | CRYPTO_RESP:
1276 		if ((rval = crypto_bob2(ep, &vtemp)) == XEVNT_OK) {
1277 			len = crypto_send(fp, &vtemp, start);
1278 			value_free(&vtemp);
1279 		}
1280 		break;
1281 
1282 	/*
1283 	 * Send challenge in MV identity scheme.
1284 	 */
1285 	case CRYPTO_MV:
1286 		if (peer == NULL)
1287 			break;		/* hack attack */
1288 
1289 		if ((rval = crypto_alice3(peer, &vtemp)) == XEVNT_OK) {
1290 			len = crypto_send(fp, &vtemp, start);
1291 			value_free(&vtemp);
1292 		}
1293 		break;
1294 
1295 	/*
1296 	 * Send response in MV identity scheme.
1297 	 */
1298 	case CRYPTO_MV | CRYPTO_RESP:
1299 		if ((rval = crypto_bob3(ep, &vtemp)) == XEVNT_OK) {
1300 			len = crypto_send(fp, &vtemp, start);
1301 			value_free(&vtemp);
1302 		}
1303 		break;
1304 
1305 	/*
1306 	 * Send certificate sign response. The integrity of the request
1307 	 * certificate has already been verified on the receive side.
1308 	 * Sign the response using the local server key. Use the
1309 	 * filestamp from the request and use the timestamp as the
1310 	 * current time. Light the error bit if the certificate is
1311 	 * invalid or contains an unverified signature.
1312 	 */
1313 	case CRYPTO_SIGN | CRYPTO_RESP:
1314 		if ((rval = cert_sign(ep, &vtemp)) == XEVNT_OK) {
1315 			len = crypto_send(fp, &vtemp, start);
1316 			value_free(&vtemp);
1317 		}
1318 		break;
1319 
1320 	/*
1321 	 * Send public key and signature. Use the values from the public
1322 	 * key.
1323 	 */
1324 	case CRYPTO_COOK:
1325 		len = crypto_send(fp, &pubkey, start);
1326 		break;
1327 
1328 	/*
1329 	 * Encrypt and send cookie and signature. Light the error bit if
1330 	 * anything goes wrong.
1331 	 */
1332 	case CRYPTO_COOK | CRYPTO_RESP:
1333 		vallen = ntohl(ep->vallen);	/* Must be <64k */
1334 		if (   vallen == 0
1335 		    || (vallen >= MAX_VALLEN)
1336 		    || (opcode & 0x0000ffff)  < VALUE_LEN + vallen) {
1337 			rval = XEVNT_LEN;
1338 			break;
1339 		}
1340 		if (peer == NULL)
1341 			tcookie = cookie;
1342 		else
1343 			tcookie = peer->hcookie;
1344 		if ((rval = crypto_encrypt((const u_char *)ep->pkt, vallen, &tcookie, &vtemp))
1345 		    == XEVNT_OK) {
1346 			len = crypto_send(fp, &vtemp, start);
1347 			value_free(&vtemp);
1348 		}
1349 		break;
1350 
1351 	/*
1352 	 * Find peer and send autokey data and signature in broadcast
1353 	 * server and symmetric modes. Use the values in the autokey
1354 	 * structure. If no association is found, either the server has
1355 	 * restarted with new associations or some perp has replayed an
1356 	 * old message, in which case light the error bit.
1357 	 */
1358 	case CRYPTO_AUTO | CRYPTO_RESP:
1359 		if (peer == NULL) {
1360 			if ((peer = findpeerbyassoc(associd)) == NULL) {
1361 				rval = XEVNT_ERR;
1362 				break;
1363 			}
1364 		}
1365 		peer->flags &= ~FLAG_ASSOC;
1366 		len = crypto_send(fp, &peer->sndval, start);
1367 		break;
1368 
1369 	/*
1370 	 * Send leapseconds values and signature. Use the values from
1371 	 * the tai structure. If no table has been loaded, just send an
1372 	 * empty request.
1373 	 */
1374 	case CRYPTO_LEAP | CRYPTO_RESP:
1375 		len = crypto_send(fp, &tai_leap, start);
1376 		break;
1377 
1378 	/*
1379 	 * Default - Send a valid command for unknown requests; send
1380 	 * an error response for unknown resonses.
1381 	 */
1382 	default:
1383 		if (opcode & CRYPTO_RESP)
1384 			rval = XEVNT_ERR;
1385 	}
1386 
1387 	/*
1388 	 * In case of error, flame the log. If a request, toss the
1389 	 * puppy; if a response, return so the sender can flame, too.
1390 	 */
1391 	if (rval != XEVNT_OK) {
1392 		u_int32	uint32;
1393 
1394 		uint32 = CRYPTO_ERROR;
1395 		opcode |= uint32;
1396 		fp->opcode |= htonl(uint32);
1397 		snprintf(statstr, sizeof(statstr),
1398 		    "%04x %d %02x %s", opcode, associd, rval,
1399 		    eventstr(rval));
1400 		record_crypto_stats(srcadr_sin, statstr);
1401 		DPRINTF(1, ("crypto_xmit: %s\n", statstr));
1402 		if (!(opcode & CRYPTO_RESP))
1403 			return (0);
1404 	}
1405 	DPRINTF(1, ("crypto_xmit: flags 0x%x offset %d len %d code 0x%x associd %d\n",
1406 		    crypto_flags, start, len, opcode >> 16, associd));
1407 	return (len);
1408 }
1409 
1410 
1411 /*
1412  * crypto_verify - verify the extension field value and signature
1413  *
1414  * Returns
1415  * XEVNT_OK	success
1416  * XEVNT_ERR	protocol error
1417  * XEVNT_FSP	bad filestamp
1418  * XEVNT_LEN	bad field format or length
1419  * XEVNT_PUB	bad or missing public key
1420  * XEVNT_SGL	bad signature length
1421  * XEVNT_SIG	signature not verified
1422  * XEVNT_TSP	bad timestamp
1423  */
1424 static int
1425 crypto_verify(
1426 	struct exten *ep,	/* extension pointer */
1427 	struct value *vp,	/* value pointer */
1428 	struct peer *peer	/* peer structure pointer */
1429 	)
1430 {
1431 	EVP_PKEY *pkey;		/* server public key */
1432 	EVP_MD_CTX *ctx;	/* signature context */
1433 	tstamp_t tstamp, tstamp1 = 0; /* timestamp */
1434 	tstamp_t fstamp, fstamp1 = 0; /* filestamp */
1435 	u_int	vallen;		/* value length */
1436 	u_int	siglen;		/* signature length */
1437 	u_int	opcode, len;
1438 	int	i;
1439 
1440 	/*
1441 	 * We are extremely parannoyed. We require valid opcode, length,
1442 	 * association ID, timestamp, filestamp, public key, digest,
1443 	 * signature length and signature, where relevant. Note that
1444 	 * preliminary length checks are done in the main loop.
1445 	 */
1446 	len = ntohl(ep->opcode) & 0x0000ffff;
1447 	opcode = ntohl(ep->opcode) & 0xffff0000;
1448 
1449 	/*
1450 	 * Check for valid value header, association ID and extension
1451 	 * field length. Remember, it is not an error to receive an
1452 	 * unsolicited response; however, the response ID must match
1453 	 * the association ID.
1454 	 */
1455 	if (opcode & CRYPTO_ERROR)
1456 		return (XEVNT_ERR);
1457 
1458  	if (len < VALUE_LEN)
1459 		return (XEVNT_LEN);
1460 
1461 	if (opcode == (CRYPTO_AUTO | CRYPTO_RESP) && (peer->pmode ==
1462 	    MODE_BROADCAST || (peer->cast_flags & MDF_BCLNT))) {
1463 		if (ntohl(ep->associd) != peer->assoc)
1464 			return (XEVNT_ERR);
1465 	} else {
1466 		if (ntohl(ep->associd) != peer->associd)
1467 			return (XEVNT_ERR);
1468 	}
1469 
1470 	/*
1471 	 * We have a valid value header. Check for valid value and
1472 	 * signature field lengths. The extension field length must be
1473 	 * long enough to contain the value header, value and signature.
1474 	 * Note both the value and signature field lengths are rounded
1475 	 * up to the next word (4 octets).
1476 	 */
1477 	vallen = ntohl(ep->vallen);
1478 	if (   vallen == 0
1479 	    || vallen > MAX_VALLEN)
1480 		return (XEVNT_LEN);
1481 
1482 	i = (vallen + 3) / 4;
1483 	siglen = ntohl(ep->pkt[i++]);
1484 	if (   siglen > MAX_VALLEN
1485 	    || len - VALUE_LEN < ((vallen + 3) / 4) * 4
1486 	    || len - VALUE_LEN - ((vallen + 3) / 4) * 4
1487 	      < ((siglen + 3) / 4) * 4)
1488 		return (XEVNT_LEN);
1489 
1490 	/*
1491 	 * Check for valid timestamp and filestamp. If the timestamp is
1492 	 * zero, the sender is not synchronized and signatures are
1493 	 * not possible. If nonzero the timestamp must not precede the
1494 	 * filestamp. The timestamp and filestamp must not precede the
1495 	 * corresponding values in the value structure, if present.
1496  	 */
1497 	tstamp = ntohl(ep->tstamp);
1498 	fstamp = ntohl(ep->fstamp);
1499 	if (tstamp == 0)
1500 		return (XEVNT_TSP);
1501 
1502 	if (tstamp < fstamp)
1503 		return (XEVNT_TSP);
1504 
1505 	if (vp != NULL) {
1506 		tstamp1 = ntohl(vp->tstamp);
1507 		fstamp1 = ntohl(vp->fstamp);
1508 		if (tstamp1 != 0 && fstamp1 != 0) {
1509 			if (tstamp < tstamp1)
1510 				return (XEVNT_TSP);
1511 
1512 			if ((tstamp < fstamp1 || fstamp < fstamp1))
1513 				return (XEVNT_FSP);
1514 		}
1515 	}
1516 
1517 	/*
1518 	 * At the time the certificate message is validated, the public
1519 	 * key in the message is not available. Thus, don't try to
1520 	 * verify the signature.
1521 	 */
1522 	if (opcode == (CRYPTO_CERT | CRYPTO_RESP))
1523 		return (XEVNT_OK);
1524 
1525 	/*
1526 	 * Check for valid signature length, public key and digest
1527 	 * algorithm.
1528 	 */
1529 	if (crypto_flags & peer->crypto & CRYPTO_FLAG_PRIV)
1530 		pkey = sign_pkey;
1531 	else
1532 		pkey = peer->pkey;
1533 	if (siglen == 0 || pkey == NULL || peer->digest == NULL)
1534 		return (XEVNT_ERR);
1535 
1536 	if (siglen != (u_int)EVP_PKEY_size(pkey))
1537 		return (XEVNT_SGL);
1538 
1539 	/*
1540 	 * Darn, I thought we would never get here. Verify the
1541 	 * signature. If the identity exchange is verified, light the
1542 	 * proventic bit. What a relief.
1543 	 */
1544 	ctx = EVP_MD_CTX_new();
1545 	EVP_VerifyInit(ctx, peer->digest);
1546 	/* XXX: the "+ 12" needs to be at least documented... */
1547 	EVP_VerifyUpdate(ctx, (u_char *)&ep->tstamp, vallen + 12);
1548 	if (EVP_VerifyFinal(ctx, (u_char *)&ep->pkt[i], siglen,
1549 	    pkey) <= 0) {
1550 		EVP_MD_CTX_free(ctx);
1551 		return (XEVNT_SIG);
1552 	}
1553 	EVP_MD_CTX_free(ctx);
1554 
1555 	if (peer->crypto & CRYPTO_FLAG_VRFY)
1556 		peer->crypto |= CRYPTO_FLAG_PROV;
1557 	return (XEVNT_OK);
1558 }
1559 
1560 
1561 /*
1562  * crypto_encrypt - construct vp (encrypted cookie and signature) from
1563  * the public key and cookie.
1564  *
1565  * Returns:
1566  * XEVNT_OK	success
1567  * XEVNT_CKY	bad or missing cookie
1568  * XEVNT_PUB	bad or missing public key
1569  */
1570 static int
1571 crypto_encrypt(
1572 	const u_char *ptr,	/* Public Key */
1573 	u_int	vallen,		/* Length of Public Key */
1574 	keyid_t	*cookie,	/* server cookie */
1575 	struct value *vp	/* value pointer */
1576 	)
1577 {
1578 	EVP_PKEY *pkey;		/* public key */
1579 	EVP_MD_CTX *ctx;	/* signature context */
1580 	tstamp_t tstamp;	/* NTP timestamp */
1581 	u_int32	temp32;
1582 	u_char *puch;
1583 
1584 	/*
1585 	 * Extract the public key from the request.
1586 	 */
1587 	pkey = d2i_PublicKey(EVP_PKEY_RSA, NULL, &ptr, vallen);
1588 	if (pkey == NULL) {
1589 		msyslog(LOG_ERR, "crypto_encrypt: %s",
1590 		    ERR_error_string(ERR_get_error(), NULL));
1591 		return (XEVNT_PUB);
1592 	}
1593 
1594 	/*
1595 	 * Encrypt the cookie, encode in ASN.1 and sign.
1596 	 */
1597 	memset(vp, 0, sizeof(struct value));
1598 	tstamp = crypto_time();
1599 	vp->tstamp = htonl(tstamp);
1600 	vp->fstamp = hostval.tstamp;
1601 	vallen = EVP_PKEY_size(pkey);
1602 	vp->vallen = htonl(vallen);
1603 	vp->ptr = emalloc(vallen);
1604 	puch = vp->ptr;
1605 	temp32 = htonl(*cookie);
1606 	if (RSA_public_encrypt(4, (u_char *)&temp32, puch,
1607 	    EVP_PKEY_get0_RSA(pkey), RSA_PKCS1_OAEP_PADDING) <= 0) {
1608 		msyslog(LOG_ERR, "crypto_encrypt: %s",
1609 		    ERR_error_string(ERR_get_error(), NULL));
1610 		free(vp->ptr);
1611 		EVP_PKEY_free(pkey);
1612 		return (XEVNT_CKY);
1613 	}
1614 	EVP_PKEY_free(pkey);
1615 	if (tstamp == 0)
1616 		return (XEVNT_OK);
1617 
1618 	vp->sig = emalloc(sign_siglen);
1619 	ctx = EVP_MD_CTX_new();
1620 	EVP_SignInit(ctx, sign_digest);
1621 	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
1622 	EVP_SignUpdate(ctx, vp->ptr, vallen);
1623 	if (EVP_SignFinal(ctx, vp->sig, &vallen, sign_pkey)) {
1624 		INSIST(vallen <= sign_siglen);
1625 		vp->siglen = htonl(vallen);
1626 	}
1627 	EVP_MD_CTX_free(ctx);
1628 	return (XEVNT_OK);
1629 }
1630 
1631 
1632 /*
1633  * crypto_ident - construct extension field for identity scheme
1634  *
1635  * This routine determines which identity scheme is in use and
1636  * constructs an extension field for that scheme.
1637  *
1638  * Returns
1639  * CRYTPO_IFF	IFF scheme
1640  * CRYPTO_GQ	GQ scheme
1641  * CRYPTO_MV	MV scheme
1642  * CRYPTO_NULL	no available scheme
1643  */
1644 u_int
1645 crypto_ident(
1646 	struct peer *peer	/* peer structure pointer */
1647 	)
1648 {
1649 	char		filename[MAXFILENAME];
1650 	const char *	scheme_name;
1651 	u_int		scheme_id;
1652 
1653 	/*
1654 	 * We come here after the group trusted host has been found; its
1655 	 * name defines the group name. Search the key cache for all
1656 	 * keys matching the same group name in order IFF, GQ and MV.
1657 	 * Use the first one available.
1658 	 */
1659 	scheme_name = NULL;
1660 	if (peer->crypto & CRYPTO_FLAG_IFF) {
1661 		scheme_name = "iff";
1662 		scheme_id = CRYPTO_IFF;
1663 	} else if (peer->crypto & CRYPTO_FLAG_GQ) {
1664 		scheme_name = "gq";
1665 		scheme_id = CRYPTO_GQ;
1666 	} else if (peer->crypto & CRYPTO_FLAG_MV) {
1667 		scheme_name = "mv";
1668 		scheme_id = CRYPTO_MV;
1669 	}
1670 
1671 	if (scheme_name != NULL) {
1672 		snprintf(filename, sizeof(filename), "ntpkey_%spar_%s",
1673 		    scheme_name, peer->ident);
1674 		peer->ident_pkey = crypto_key(filename, NULL,
1675 		    &peer->srcadr);
1676 		if (peer->ident_pkey != NULL)
1677 			return scheme_id;
1678 	}
1679 
1680 	msyslog(LOG_NOTICE,
1681 	    "crypto_ident: no identity parameters found for group %s",
1682 	    peer->ident);
1683 
1684 	return CRYPTO_NULL;
1685 }
1686 
1687 
1688 /*
1689  * crypto_args - construct extension field from arguments
1690  *
1691  * This routine creates an extension field with current timestamps and
1692  * specified opcode, association ID and optional string. Note that the
1693  * extension field is created here, but freed after the crypto_xmit()
1694  * call in the protocol module.
1695  *
1696  * Returns extension field pointer (no errors)
1697  *
1698  * XXX: opcode and len should really be 32-bit quantities and
1699  * we should make sure that str is not too big.
1700  */
1701 struct exten *
1702 crypto_args(
1703 	struct peer *peer,	/* peer structure pointer */
1704 	u_int	opcode,		/* operation code */
1705 	associd_t associd,	/* association ID */
1706 	char	*str		/* argument string */
1707 	)
1708 {
1709 	tstamp_t tstamp;	/* NTP timestamp */
1710 	struct exten *ep;	/* extension field pointer */
1711 	u_int	len;		/* extension field length */
1712 	size_t	slen = 0;
1713 
1714 	tstamp = crypto_time();
1715 	len = sizeof(struct exten);
1716 	if (str != NULL) {
1717 		slen = strlen(str);
1718 		INSIST(slen < MAX_VALLEN);
1719 		len += slen;
1720 	}
1721 	ep = emalloc_zero(len);
1722 	if (opcode == 0)
1723 		return (ep);
1724 
1725 	REQUIRE(0 == (len    & ~0x0000ffff));
1726 	REQUIRE(0 == (opcode & ~0xffff0000));
1727 
1728 	ep->opcode = htonl(opcode + len);
1729 	ep->associd = htonl(associd);
1730 	ep->tstamp = htonl(tstamp);
1731 	ep->fstamp = hostval.tstamp;
1732 	ep->vallen = 0;
1733 	if (str != NULL) {
1734 		ep->vallen = htonl(slen);
1735 		memcpy((char *)ep->pkt, str, slen);
1736 	}
1737 	return (ep);
1738 }
1739 
1740 
1741 /*
1742  * crypto_send - construct extension field from value components
1743  *
1744  * The value and signature fields are zero-padded to a word boundary.
1745  * Note: it is not polite to send a nonempty signature with zero
1746  * timestamp or a nonzero timestamp with an empty signature, but those
1747  * rules are not enforced here.
1748  *
1749  * XXX This code won't work on a box with 16-bit ints.
1750  */
1751 int
1752 crypto_send(
1753 	struct exten *ep,	/* extension field pointer */
1754 	struct value *vp,	/* value pointer */
1755 	int	start		/* buffer offset */
1756 	)
1757 {
1758 	u_int	len, vallen, siglen, opcode;
1759 	u_int	i, j;
1760 
1761 	/*
1762 	 * Calculate extension field length and check for buffer
1763 	 * overflow. Leave room for the MAC.
1764 	 */
1765 	len = 16;				/* XXX Document! */
1766 	vallen = ntohl(vp->vallen);
1767 	INSIST(vallen <= MAX_VALLEN);
1768 	len += ((vallen + 3) / 4 + 1) * 4;
1769 	siglen = ntohl(vp->siglen);
1770 	len += ((siglen + 3) / 4 + 1) * 4;
1771 	if (start + len > sizeof(struct pkt) - MAX_MAC_LEN)
1772 		return (0);
1773 
1774 	/*
1775 	 * Copy timestamps.
1776 	 */
1777 	ep->tstamp = vp->tstamp;
1778 	ep->fstamp = vp->fstamp;
1779 	ep->vallen = vp->vallen;
1780 
1781 	/*
1782 	 * Copy value. If the data field is empty or zero length,
1783 	 * encode an empty value with length zero.
1784 	 */
1785 	i = 0;
1786 	if (vallen > 0 && vp->ptr != NULL) {
1787 		j = vallen / 4;
1788 		if (j * 4 < vallen)
1789 			ep->pkt[i + j++] = 0;
1790 		memcpy(&ep->pkt[i], vp->ptr, vallen);
1791 		i += j;
1792 	}
1793 
1794 	/*
1795 	 * Copy signature. If the signature field is empty or zero
1796 	 * length, encode an empty signature with length zero.
1797 	 */
1798 	ep->pkt[i++] = vp->siglen;
1799 	if (siglen > 0 && vp->sig != NULL) {
1800 		j = siglen / 4;
1801 		if (j * 4 < siglen)
1802 			ep->pkt[i + j++] = 0;
1803 		memcpy(&ep->pkt[i], vp->sig, siglen);
1804 		/* i += j; */	/* We don't use i after this */
1805 	}
1806 	opcode = ntohl(ep->opcode);
1807 	ep->opcode = htonl((opcode & 0xffff0000) | len);
1808 	ENSURE(len <= MAX_VALLEN);
1809 	return (len);
1810 }
1811 
1812 
1813 /*
1814  * crypto_update - compute new public value and sign extension fields
1815  *
1816  * This routine runs periodically, like once a day, and when something
1817  * changes. It updates the timestamps on three value structures and one
1818  * value structure list, then signs all the structures:
1819  *
1820  * hostval	host name (not signed)
1821  * pubkey	public key
1822  * cinfo	certificate info/value list
1823  * tai_leap	leap values
1824  *
1825  * Filestamps are proventic data, so this routine runs only when the
1826  * host is synchronized to a proventicated source. Thus, the timestamp
1827  * is proventic and can be used to deflect clogging attacks.
1828  *
1829  * Returns void (no errors)
1830  */
1831 void
1832 crypto_update(void)
1833 {
1834 	EVP_MD_CTX *ctx;	/* message digest context */
1835 	struct cert_info *cp;	/* certificate info/value */
1836 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
1837 	u_int32	*ptr;
1838 	u_int	len;
1839 	leap_result_t leap_data;
1840 
1841 	hostval.tstamp = htonl(crypto_time());
1842 	if (hostval.tstamp == 0)
1843 		return;
1844 
1845 	ctx = EVP_MD_CTX_new();
1846 
1847 	/*
1848 	 * Sign public key and timestamps. The filestamp is derived from
1849 	 * the host key file extension from wherever the file was
1850 	 * generated.
1851 	 */
1852 	if (pubkey.vallen != 0) {
1853 		pubkey.tstamp = hostval.tstamp;
1854 		pubkey.siglen = 0;
1855 		if (pubkey.sig == NULL)
1856 			pubkey.sig = emalloc(sign_siglen);
1857 		EVP_SignInit(ctx, sign_digest);
1858 		EVP_SignUpdate(ctx, (u_char *)&pubkey, 12);
1859 		EVP_SignUpdate(ctx, pubkey.ptr, ntohl(pubkey.vallen));
1860 		if (EVP_SignFinal(ctx, pubkey.sig, &len, sign_pkey)) {
1861 			INSIST(len <= sign_siglen);
1862 			pubkey.siglen = htonl(len);
1863 		}
1864 	}
1865 
1866 	/*
1867 	 * Sign certificates and timestamps. The filestamp is derived
1868 	 * from the certificate file extension from wherever the file
1869 	 * was generated. Note we do not throw expired certificates
1870 	 * away; they may have signed younger ones.
1871 	 */
1872 	for (cp = cinfo; cp != NULL; cp = cp->link) {
1873 		cp->cert.tstamp = hostval.tstamp;
1874 		cp->cert.siglen = 0;
1875 		if (cp->cert.sig == NULL)
1876 			cp->cert.sig = emalloc(sign_siglen);
1877 		EVP_SignInit(ctx, sign_digest);
1878 		EVP_SignUpdate(ctx, (u_char *)&cp->cert, 12);
1879 		EVP_SignUpdate(ctx, cp->cert.ptr,
1880 		    ntohl(cp->cert.vallen));
1881 		if (EVP_SignFinal(ctx, cp->cert.sig, &len, sign_pkey)) {
1882 			INSIST(len <= sign_siglen);
1883 			cp->cert.siglen = htonl(len);
1884 		}
1885 	}
1886 
1887 	/*
1888 	 * Sign leapseconds values and timestamps. Note it is not an
1889 	 * error to return null values.
1890 	 */
1891 	tai_leap.tstamp = hostval.tstamp;
1892 	tai_leap.fstamp = hostval.fstamp;
1893 
1894 	/* Get the leap second era. We might need a full lookup early
1895 	 * after start, when the cache is not yet loaded.
1896 	 */
1897 	leapsec_frame(&leap_data);
1898 	if ( ! memcmp(&leap_data.ebase, &leap_data.ttime, sizeof(vint64))) {
1899 		time_t   now    = time(NULL);
1900 		uint32_t nowntp = (uint32_t)now + JAN_1970;
1901 		leapsec_query(&leap_data, nowntp, &now);
1902 	}
1903 
1904 	/* Create the data block. The protocol does not work without. */
1905 	len = 3 * sizeof(u_int32);
1906 	if (tai_leap.ptr == NULL || ntohl(tai_leap.vallen) != len) {
1907 		free(tai_leap.ptr);
1908 		tai_leap.ptr = emalloc(len);
1909 		tai_leap.vallen = htonl(len);
1910 	}
1911 	ptr = (u_int32 *)tai_leap.ptr;
1912 	if (leap_data.tai_offs > 10) {
1913 		/* create a TAI / leap era block. The end time is a
1914 		 * fake -- maybe we can do better.
1915 		 */
1916 		ptr[0] = htonl(leap_data.tai_offs);
1917 		ptr[1] = htonl(leap_data.ebase.d_s.lo);
1918 		if (leap_data.ttime.d_s.hi >= 0)
1919 			ptr[2] = htonl(leap_data.ttime.D_s.lo +  7*86400);
1920 		else
1921 			ptr[2] = htonl(leap_data.ebase.D_s.lo + 25*86400);
1922 	} else {
1923 		/* no leap era available */
1924 		memset(ptr, 0, len);
1925 	}
1926 	if (tai_leap.sig == NULL)
1927 		tai_leap.sig = emalloc(sign_siglen);
1928 	EVP_SignInit(ctx, sign_digest);
1929 	EVP_SignUpdate(ctx, (u_char *)&tai_leap, 12);
1930 	EVP_SignUpdate(ctx, tai_leap.ptr, len);
1931 	if (EVP_SignFinal(ctx, tai_leap.sig, &len, sign_pkey)) {
1932 		INSIST(len <= sign_siglen);
1933 		tai_leap.siglen = htonl(len);
1934 	}
1935 	crypto_flags |= CRYPTO_FLAG_TAI;
1936 
1937 	snprintf(statstr, sizeof(statstr), "signature update ts %u",
1938 	    ntohl(hostval.tstamp));
1939 	record_crypto_stats(NULL, statstr);
1940 	DPRINTF(1, ("crypto_update: %s\n", statstr));
1941 	EVP_MD_CTX_free(ctx);
1942 }
1943 
1944 /*
1945  * crypto_update_taichange - eventually trigger crypto_update
1946  *
1947  * This is called when a change in 'sys_tai' is detected. This will
1948  * happen shortly after a leap second is detected, but unhappily also
1949  * early after system start; also, the crypto stuff might be unused and
1950  * an unguarded call to crypto_update() causes a crash.
1951  *
1952  * This function makes sure that there already *is* a valid crypto block
1953  * for the use with autokey, and only calls 'crypto_update()' if it can
1954  * succeed.
1955  *
1956  * Returns void (no errors)
1957  */
1958 void
1959 crypto_update_taichange(void)
1960 {
1961 	static const u_int len = 3 * sizeof(u_int32);
1962 
1963 	/* check if the signing digest algo is available */
1964 	if (sign_digest == NULL || sign_pkey == NULL)
1965 		return;
1966 
1967 	/* check size of TAI extension block */
1968 	if (tai_leap.ptr == NULL || ntohl(tai_leap.vallen) != len)
1969 		return;
1970 
1971 	/* crypto_update should at least not crash here! */
1972 	crypto_update();
1973 }
1974 
1975 /*
1976  * value_free - free value structure components.
1977  *
1978  * Returns void (no errors)
1979  */
1980 void
1981 value_free(
1982 	struct value *vp	/* value structure */
1983 	)
1984 {
1985 	if (vp->ptr != NULL)
1986 		free(vp->ptr);
1987 	if (vp->sig != NULL)
1988 		free(vp->sig);
1989 	memset(vp, 0, sizeof(struct value));
1990 }
1991 
1992 
1993 /*
1994  * crypto_time - returns current NTP time.
1995  *
1996  * Returns NTP seconds if in synch, 0 otherwise
1997  */
1998 tstamp_t
1999 crypto_time()
2000 {
2001 	l_fp	tstamp;		/* NTP time */
2002 
2003 	L_CLR(&tstamp);
2004 	if (sys_leap != LEAP_NOTINSYNC)
2005 		get_systime(&tstamp);
2006 	return (tstamp.l_ui);
2007 }
2008 
2009 
2010 /*
2011  * asn_to_calendar - convert ASN1_TIME time structure to struct calendar.
2012  *
2013  */
2014 static
2015 void
2016 asn_to_calendar	(
2017 	const ASN1_TIME *asn1time,	/* pointer to ASN1_TIME structure */
2018 	struct calendar *pjd	/* pointer to result */
2019 	)
2020 {
2021 	size_t	len;		/* length of ASN1_TIME string */
2022 	char	v[24];		/* writable copy of ASN1_TIME string */
2023 	unsigned long	temp;	/* result from strtoul */
2024 
2025 	/*
2026 	 * Extract time string YYMMDDHHMMSSZ from ASN1 time structure.
2027 	 * Or YYYYMMDDHHMMSSZ.
2028 	 * Note that the YY, MM, DD fields start with one, the HH, MM,
2029 	 * SS fields start with zero and the Z character is ignored.
2030 	 * Also note that two-digit years less than 50 map to years greater than
2031 	 * 100. Dontcha love ASN.1? Better than MIL-188.
2032 	 */
2033 	len = asn1time->length;
2034 	REQUIRE(len < sizeof(v));
2035 	(void)strncpy(v, (char *)(asn1time->data), len);
2036 	REQUIRE(len >= 13);
2037 	temp = strtoul(v+len-3, NULL, 10);
2038 	pjd->second = temp;
2039 	v[len-3] = '\0';
2040 
2041 	temp = strtoul(v+len-5, NULL, 10);
2042 	pjd->minute = temp;
2043 	v[len-5] = '\0';
2044 
2045 	temp = strtoul(v+len-7, NULL, 10);
2046 	pjd->hour = temp;
2047 	v[len-7] = '\0';
2048 
2049 	temp = strtoul(v+len-9, NULL, 10);
2050 	pjd->monthday = temp;
2051 	v[len-9] = '\0';
2052 
2053 	temp = strtoul(v+len-11, NULL, 10);
2054 	pjd->month = temp;
2055 	v[len-11] = '\0';
2056 
2057 	temp = strtoul(v, NULL, 10);
2058 	/* handle two-digit years */
2059 	if (temp < 50UL)
2060 	    temp += 100UL;
2061 	if (temp < 150UL)
2062 	    temp += 1900UL;
2063 	pjd->year = temp;
2064 
2065 	pjd->yearday = pjd->weekday = 0;
2066 	return;
2067 }
2068 
2069 
2070 /*
2071  * bigdig() - compute a BIGNUM MD5 hash of a BIGNUM number.
2072  *
2073  * Returns void (no errors)
2074  */
2075 static void
2076 bighash(
2077 	BIGNUM	*bn,		/* BIGNUM * from */
2078 	BIGNUM	*bk		/* BIGNUM * to */
2079 	)
2080 {
2081 	EVP_MD_CTX *ctx;	/* message digest context */
2082 	u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */
2083 	u_char	*ptr;		/* a BIGNUM as binary string */
2084 	u_int	len;
2085 
2086 	len = BN_num_bytes(bn);
2087 	ptr = emalloc(len);
2088 	BN_bn2bin(bn, ptr);
2089 	ctx = EVP_MD_CTX_new();
2090 	EVP_DigestInit(ctx, EVP_md5());
2091 	EVP_DigestUpdate(ctx, ptr, len);
2092 	EVP_DigestFinal(ctx, dgst, &len);
2093 	EVP_MD_CTX_free(ctx);
2094 	BN_bin2bn(dgst, len, bk);
2095 	free(ptr);
2096 }
2097 
2098 
2099 /*
2100  ***********************************************************************
2101  *								       *
2102  * The following routines implement the Schnorr (IFF) identity scheme  *
2103  *								       *
2104  ***********************************************************************
2105  *
2106  * The Schnorr (IFF) identity scheme is intended for use when
2107  * certificates are generated by some other trusted certificate
2108  * authority and the certificate cannot be used to convey public
2109  * parameters. There are two kinds of files: encrypted server files that
2110  * contain private and public values and nonencrypted client files that
2111  * contain only public values. New generations of server files must be
2112  * securely transmitted to all servers of the group; client files can be
2113  * distributed by any means. The scheme is self contained and
2114  * independent of new generations of host keys, sign keys and
2115  * certificates.
2116  *
2117  * The IFF values hide in a DSA cuckoo structure which uses the same
2118  * parameters. The values are used by an identity scheme based on DSA
2119  * cryptography and described in Stimson p. 285. The p is a 512-bit
2120  * prime, g a generator of Zp* and q a 160-bit prime that divides p - 1
2121  * and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a
2122  * private random group key b (0 < b < q) and public key v = g^b, then
2123  * sends (p, q, g, b) to the servers and (p, q, g, v) to the clients.
2124  * Alice challenges Bob to confirm identity using the protocol described
2125  * below.
2126  *
2127  * How it works
2128  *
2129  * The scheme goes like this. Both Alice and Bob have the public primes
2130  * p, q and generator g. The TA gives private key b to Bob and public
2131  * key v to Alice.
2132  *
2133  * Alice rolls new random challenge r (o < r < q) and sends to Bob in
2134  * the IFF request message. Bob rolls new random k (0 < k < q), then
2135  * computes y = k + b r mod q and x = g^k mod p and sends (y, hash(x))
2136  * to Alice in the response message. Besides making the response
2137  * shorter, the hash makes it effectivey impossible for an intruder to
2138  * solve for b by observing a number of these messages.
2139  *
2140  * Alice receives the response and computes g^y v^r mod p. After a bit
2141  * of algebra, this simplifies to g^k. If the hash of this result
2142  * matches hash(x), Alice knows that Bob has the group key b. The signed
2143  * response binds this knowledge to Bob's private key and the public key
2144  * previously received in his certificate.
2145  *
2146  * crypto_alice - construct Alice's challenge in IFF scheme
2147  *
2148  * Returns
2149  * XEVNT_OK	success
2150  * XEVNT_ID	bad or missing group key
2151  * XEVNT_PUB	bad or missing public key
2152  */
2153 static int
2154 crypto_alice(
2155 	struct peer *peer,	/* peer pointer */
2156 	struct value *vp	/* value pointer */
2157 	)
2158 {
2159 	DSA	*dsa;		/* IFF parameters */
2160 	BN_CTX	*bctx;		/* BIGNUM context */
2161 	EVP_MD_CTX *ctx;	/* signature context */
2162 	tstamp_t tstamp;
2163 	u_int	len;
2164 	const BIGNUM *q;
2165 
2166 	/*
2167 	 * The identity parameters must have correct format and content.
2168 	 */
2169 	if (peer->ident_pkey == NULL) {
2170 		msyslog(LOG_NOTICE, "crypto_alice: scheme unavailable");
2171 		return (XEVNT_ID);
2172 	}
2173 
2174 	if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) {
2175 		msyslog(LOG_NOTICE, "crypto_alice: defective key");
2176 		return (XEVNT_PUB);
2177 	}
2178 
2179 	/*
2180 	 * Roll new random r (0 < r < q).
2181 	 */
2182 	if (peer->iffval != NULL)
2183 		BN_free(peer->iffval);
2184 	peer->iffval = BN_new();
2185 	DSA_get0_pqg(dsa, NULL, &q, NULL);
2186 	len = BN_num_bytes(q);
2187 	BN_rand(peer->iffval, len * 8, -1, 1);	/* r mod q*/
2188 	bctx = BN_CTX_new();
2189 	BN_mod(peer->iffval, peer->iffval, q, bctx);
2190 	BN_CTX_free(bctx);
2191 
2192 	/*
2193 	 * Sign and send to Bob. The filestamp is from the local file.
2194 	 */
2195 	memset(vp, 0, sizeof(struct value));
2196 	tstamp = crypto_time();
2197 	vp->tstamp = htonl(tstamp);
2198 	vp->fstamp = htonl(peer->ident_pkey->fstamp);
2199 	vp->vallen = htonl(len);
2200 	vp->ptr = emalloc(len);
2201 	BN_bn2bin(peer->iffval, vp->ptr);
2202 	if (tstamp == 0)
2203 		return (XEVNT_OK);
2204 
2205 	vp->sig = emalloc(sign_siglen);
2206 	ctx = EVP_MD_CTX_new();
2207 	EVP_SignInit(ctx, sign_digest);
2208 	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2209 	EVP_SignUpdate(ctx, vp->ptr, len);
2210 	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2211 		INSIST(len <= sign_siglen);
2212 		vp->siglen = htonl(len);
2213 	}
2214 	EVP_MD_CTX_free(ctx);
2215 	return (XEVNT_OK);
2216 }
2217 
2218 
2219 /*
2220  * crypto_bob - construct Bob's response to Alice's challenge
2221  *
2222  * Returns
2223  * XEVNT_OK	success
2224  * XEVNT_ERR	protocol error
2225  * XEVNT_ID	bad or missing group key
2226  */
2227 static int
2228 crypto_bob(
2229 	struct exten *ep,	/* extension pointer */
2230 	struct value *vp	/* value pointer */
2231 	)
2232 {
2233 	DSA	*dsa;		/* IFF parameters */
2234 	DSA_SIG	*sdsa;		/* DSA signature context fake */
2235 	BN_CTX	*bctx;		/* BIGNUM context */
2236 	EVP_MD_CTX *ctx;	/* signature context */
2237 	tstamp_t tstamp;	/* NTP timestamp */
2238 	BIGNUM	*bn, *bk, *r;
2239 	u_char	*ptr;
2240 	u_int	len;		/* extension field value length */
2241 	const BIGNUM *p, *q, *g;
2242 	const BIGNUM *priv_key;
2243 
2244 	/*
2245 	 * If the IFF parameters are not valid, something awful
2246 	 * happened or we are being tormented.
2247 	 */
2248 	if (iffkey_info == NULL) {
2249 		msyslog(LOG_NOTICE, "crypto_bob: scheme unavailable");
2250 		return (XEVNT_ID);
2251 	}
2252 	dsa = EVP_PKEY_get0_DSA(iffkey_info->pkey);
2253 	DSA_get0_pqg(dsa, &p, &q, &g);
2254 	DSA_get0_key(dsa, NULL, &priv_key);
2255 
2256 	/*
2257 	 * Extract r from the challenge.
2258 	 */
2259 	len = exten_payload_size(ep);
2260 	if (len == 0 || len > MAX_VALLEN)
2261 		return (XEVNT_LEN);
2262 	if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2263 		msyslog(LOG_ERR, "crypto_bob: %s",
2264 		    ERR_error_string(ERR_get_error(), NULL));
2265 		return (XEVNT_ERR);
2266 	}
2267 
2268 	/*
2269 	 * Bob rolls random k (0 < k < q), computes y = k + b r mod q
2270 	 * and x = g^k mod p, then sends (y, hash(x)) to Alice.
2271 	 */
2272 	bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new();
2273 	sdsa = DSA_SIG_new();
2274 	BN_rand(bk, len * 8, -1, 1);		/* k */
2275 	BN_mod_mul(bn, priv_key, r, q, bctx); /* b r mod q */
2276 	BN_add(bn, bn, bk);
2277 	BN_mod(bn, bn, q, bctx);		/* k + b r mod q */
2278 	BN_mod_exp(bk, g, bk, p, bctx); /* g^k mod p */
2279 	bighash(bk, bk);
2280 	DSA_SIG_set0(sdsa, bn, bk);
2281 	BN_CTX_free(bctx);
2282 	BN_free(r);
2283 #ifdef DEBUG
2284 	if (debug > 1)
2285 		DSA_print_fp(stdout, dsa, 0);
2286 #endif
2287 
2288 	/*
2289 	 * Encode the values in ASN.1 and sign. The filestamp is from
2290 	 * the local file.
2291 	 */
2292 	len = i2d_DSA_SIG(sdsa, NULL);
2293 	if (len == 0) {
2294 		msyslog(LOG_ERR, "crypto_bob: %s",
2295 		    ERR_error_string(ERR_get_error(), NULL));
2296 		DSA_SIG_free(sdsa);
2297 		return (XEVNT_ERR);
2298 	}
2299 	if (len > MAX_VALLEN) {
2300 		msyslog(LOG_ERR, "crypto_bob: signature is too big: %u",
2301 		    len);
2302 		DSA_SIG_free(sdsa);
2303 		return (XEVNT_LEN);
2304 	}
2305 	memset(vp, 0, sizeof(struct value));
2306 	tstamp = crypto_time();
2307 	vp->tstamp = htonl(tstamp);
2308 	vp->fstamp = htonl(iffkey_info->fstamp);
2309 	vp->vallen = htonl(len);
2310 	ptr = emalloc(len);
2311 	vp->ptr = ptr;
2312 	i2d_DSA_SIG(sdsa, &ptr);
2313 	DSA_SIG_free(sdsa);
2314 	if (tstamp == 0)
2315 		return (XEVNT_OK);
2316 
2317 	/* XXX: more validation to make sure the sign fits... */
2318 	vp->sig = emalloc(sign_siglen);
2319 	ctx = EVP_MD_CTX_new();
2320 	EVP_SignInit(ctx, sign_digest);
2321 	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2322 	EVP_SignUpdate(ctx, vp->ptr, len);
2323 	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2324 		INSIST(len <= sign_siglen);
2325 		vp->siglen = htonl(len);
2326 	}
2327 	EVP_MD_CTX_free(ctx);
2328 	return (XEVNT_OK);
2329 }
2330 
2331 
2332 /*
2333  * crypto_iff - verify Bob's response to Alice's challenge
2334  *
2335  * Returns
2336  * XEVNT_OK	success
2337  * XEVNT_FSP	bad filestamp
2338  * XEVNT_ID	bad or missing group key
2339  * XEVNT_PUB	bad or missing public key
2340  */
2341 int
2342 crypto_iff(
2343 	struct exten *ep,	/* extension pointer */
2344 	struct peer *peer	/* peer structure pointer */
2345 	)
2346 {
2347 	DSA	*dsa;		/* IFF parameters */
2348 	BN_CTX	*bctx;		/* BIGNUM context */
2349 	DSA_SIG	*sdsa;		/* DSA parameters */
2350 	BIGNUM	*bn, *bk;
2351 	u_int	len;
2352 	const u_char *ptr;
2353 	int	temp;
2354 	const BIGNUM *p, *g;
2355 	const BIGNUM *r, *s;
2356 	const BIGNUM *pub_key;
2357 
2358 	/*
2359 	 * If the IFF parameters are not valid or no challenge was sent,
2360 	 * something awful happened or we are being tormented.
2361 	 */
2362 	if (peer->ident_pkey == NULL) {
2363 		msyslog(LOG_NOTICE, "crypto_iff: scheme unavailable");
2364 		return (XEVNT_ID);
2365 	}
2366 	if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) {
2367 		msyslog(LOG_NOTICE, "crypto_iff: invalid filestamp %u",
2368 		    ntohl(ep->fstamp));
2369 		return (XEVNT_FSP);
2370 	}
2371 	if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) {
2372 		msyslog(LOG_NOTICE, "crypto_iff: defective key");
2373 		return (XEVNT_PUB);
2374 	}
2375 	if (peer->iffval == NULL) {
2376 		msyslog(LOG_NOTICE, "crypto_iff: missing challenge");
2377 		return (XEVNT_ID);
2378 	}
2379 
2380 	/*
2381 	 * Extract the k + b r and g^k values from the response.
2382 	 */
2383 	bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new();
2384 	len = ntohl(ep->vallen);
2385 	ptr = (u_char *)ep->pkt;
2386 	if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) {
2387 		BN_free(bn); BN_free(bk); BN_CTX_free(bctx);
2388 		msyslog(LOG_ERR, "crypto_iff: %s",
2389 		    ERR_error_string(ERR_get_error(), NULL));
2390 		return (XEVNT_ERR);
2391 	}
2392 
2393 	/*
2394 	 * Compute g^(k + b r) g^(q - b)r mod p.
2395 	 */
2396 	DSA_get0_key(dsa, &pub_key, NULL);
2397 	DSA_get0_pqg(dsa, &p, NULL, &g);
2398 	DSA_SIG_get0(sdsa, &r, &s);
2399 	BN_mod_exp(bn, pub_key, peer->iffval, p, bctx);
2400 	BN_mod_exp(bk, g, r, p, bctx);
2401 	BN_mod_mul(bn, bn, bk, p, bctx);
2402 
2403 	/*
2404 	 * Verify the hash of the result matches hash(x).
2405 	 */
2406 	bighash(bn, bn);
2407 	temp = BN_cmp(bn, s);
2408 	BN_free(bn); BN_free(bk); BN_CTX_free(bctx);
2409 	BN_free(peer->iffval);
2410 	peer->iffval = NULL;
2411 	DSA_SIG_free(sdsa);
2412 	if (temp == 0)
2413 		return (XEVNT_OK);
2414 
2415 	msyslog(LOG_NOTICE, "crypto_iff: identity not verified");
2416 	return (XEVNT_ID);
2417 }
2418 
2419 
2420 /*
2421  ***********************************************************************
2422  *								       *
2423  * The following routines implement the Guillou-Quisquater (GQ)        *
2424  * identity scheme                                                     *
2425  *								       *
2426  ***********************************************************************
2427  *
2428  * The Guillou-Quisquater (GQ) identity scheme is intended for use when
2429  * the certificate can be used to convey public parameters. The scheme
2430  * uses a X509v3 certificate extension field do convey the public key of
2431  * a private key known only to servers. There are two kinds of files:
2432  * encrypted server files that contain private and public values and
2433  * nonencrypted client files that contain only public values. New
2434  * generations of server files must be securely transmitted to all
2435  * servers of the group; client files can be distributed by any means.
2436  * The scheme is self contained and independent of new generations of
2437  * host keys and sign keys. The scheme is self contained and independent
2438  * of new generations of host keys and sign keys.
2439  *
2440  * The GQ parameters hide in a RSA cuckoo structure which uses the same
2441  * parameters. The values are used by an identity scheme based on RSA
2442  * cryptography and described in Stimson p. 300 (with errors). The 512-
2443  * bit public modulus is n = p q, where p and q are secret large primes.
2444  * The TA rolls private random group key b as RSA exponent. These values
2445  * are known to all group members.
2446  *
2447  * When rolling new certificates, a server recomputes the private and
2448  * public keys. The private key u is a random roll, while the public key
2449  * is the inverse obscured by the group key v = (u^-1)^b. These values
2450  * replace the private and public keys normally generated by the RSA
2451  * scheme. Alice challenges Bob to confirm identity using the protocol
2452  * described below.
2453  *
2454  * How it works
2455  *
2456  * The scheme goes like this. Both Alice and Bob have the same modulus n
2457  * and some random b as the group key. These values are computed and
2458  * distributed in advance via secret means, although only the group key
2459  * b is truly secret. Each has a private random private key u and public
2460  * key (u^-1)^b, although not necessarily the same ones. Bob and Alice
2461  * can regenerate the key pair from time to time without affecting
2462  * operations. The public key is conveyed on the certificate in an
2463  * extension field; the private key is never revealed.
2464  *
2465  * Alice rolls new random challenge r and sends to Bob in the GQ
2466  * request message. Bob rolls new random k, then computes y = k u^r mod
2467  * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response
2468  * message. Besides making the response shorter, the hash makes it
2469  * effectivey impossible for an intruder to solve for b by observing
2470  * a number of these messages.
2471  *
2472  * Alice receives the response and computes y^b v^r mod n. After a bit
2473  * of algebra, this simplifies to k^b. If the hash of this result
2474  * matches hash(x), Alice knows that Bob has the group key b. The signed
2475  * response binds this knowledge to Bob's private key and the public key
2476  * previously received in his certificate.
2477  *
2478  * crypto_alice2 - construct Alice's challenge in GQ scheme
2479  *
2480  * Returns
2481  * XEVNT_OK	success
2482  * XEVNT_ID	bad or missing group key
2483  * XEVNT_PUB	bad or missing public key
2484  */
2485 static int
2486 crypto_alice2(
2487 	struct peer *peer,	/* peer pointer */
2488 	struct value *vp	/* value pointer */
2489 	)
2490 {
2491 	RSA	*rsa;		/* GQ parameters */
2492 	BN_CTX	*bctx;		/* BIGNUM context */
2493 	EVP_MD_CTX *ctx;	/* signature context */
2494 	tstamp_t tstamp;
2495 	u_int	len;
2496 	const BIGNUM *n;
2497 
2498 	/*
2499 	 * The identity parameters must have correct format and content.
2500 	 */
2501 	if (peer->ident_pkey == NULL)
2502 		return (XEVNT_ID);
2503 
2504 	if ((rsa = EVP_PKEY_get0_RSA(peer->ident_pkey->pkey)) == NULL) {
2505 		msyslog(LOG_NOTICE, "crypto_alice2: defective key");
2506 		return (XEVNT_PUB);
2507 	}
2508 
2509 	/*
2510 	 * Roll new random r (0 < r < n).
2511 	 */
2512 	if (peer->iffval != NULL)
2513 		BN_free(peer->iffval);
2514 	peer->iffval = BN_new();
2515 	RSA_get0_key(rsa, &n, NULL, NULL);
2516 	len = BN_num_bytes(n);
2517 	BN_rand(peer->iffval, len * 8, -1, 1);	/* r mod n */
2518 	bctx = BN_CTX_new();
2519 	BN_mod(peer->iffval, peer->iffval, n, bctx);
2520 	BN_CTX_free(bctx);
2521 
2522 	/*
2523 	 * Sign and send to Bob. The filestamp is from the local file.
2524 	 */
2525 	memset(vp, 0, sizeof(struct value));
2526 	tstamp = crypto_time();
2527 	vp->tstamp = htonl(tstamp);
2528 	vp->fstamp = htonl(peer->ident_pkey->fstamp);
2529 	vp->vallen = htonl(len);
2530 	vp->ptr = emalloc(len);
2531 	BN_bn2bin(peer->iffval, vp->ptr);
2532 	if (tstamp == 0)
2533 		return (XEVNT_OK);
2534 
2535 	vp->sig = emalloc(sign_siglen);
2536 	ctx = EVP_MD_CTX_new();
2537 	EVP_SignInit(ctx, sign_digest);
2538 	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2539 	EVP_SignUpdate(ctx, vp->ptr, len);
2540 	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2541 		INSIST(len <= sign_siglen);
2542 		vp->siglen = htonl(len);
2543 	}
2544 	EVP_MD_CTX_free(ctx);
2545 	return (XEVNT_OK);
2546 }
2547 
2548 
2549 /*
2550  * crypto_bob2 - construct Bob's response to Alice's challenge
2551  *
2552  * Returns
2553  * XEVNT_OK	success
2554  * XEVNT_ERR	protocol error
2555  * XEVNT_ID	bad or missing group key
2556  */
2557 static int
2558 crypto_bob2(
2559 	struct exten *ep,	/* extension pointer */
2560 	struct value *vp	/* value pointer */
2561 	)
2562 {
2563 	RSA	*rsa;		/* GQ parameters */
2564 	DSA_SIG	*sdsa;		/* DSA parameters */
2565 	BN_CTX	*bctx;		/* BIGNUM context */
2566 	EVP_MD_CTX *ctx;	/* signature context */
2567 	tstamp_t tstamp;	/* NTP timestamp */
2568 	BIGNUM	*r, *k, *g, *y;
2569 	u_char	*ptr;
2570 	u_int	len;
2571 	int	s_len;
2572 	const BIGNUM *n, *p, *e;
2573 
2574 	/*
2575 	 * If the GQ parameters are not valid, something awful
2576 	 * happened or we are being tormented.
2577 	 */
2578 	if (gqkey_info == NULL) {
2579 		msyslog(LOG_NOTICE, "crypto_bob2: scheme unavailable");
2580 		return (XEVNT_ID);
2581 	}
2582 	rsa = EVP_PKEY_get0_RSA(gqkey_info->pkey);
2583 	RSA_get0_key(rsa, &n, &p, &e);
2584 
2585 	/*
2586 	 * Extract r from the challenge.
2587 	 */
2588 	len = exten_payload_size(ep);
2589 	if (len == 0 || len > MAX_VALLEN)
2590 		return (XEVNT_LEN);
2591 	if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2592 		msyslog(LOG_ERR, "crypto_bob2: %s",
2593 		    ERR_error_string(ERR_get_error(), NULL));
2594 		return (XEVNT_ERR);
2595 	}
2596 
2597 	/*
2598 	 * Bob rolls random k (0 < k < n), computes y = k u^r mod n and
2599 	 * x = k^b mod n, then sends (y, hash(x)) to Alice.
2600 	 */
2601 	bctx = BN_CTX_new(); k = BN_new(); g = BN_new(); y = BN_new();
2602 	sdsa = DSA_SIG_new();
2603 	BN_rand(k, len * 8, -1, 1);		/* k */
2604 	BN_mod(k, k, n, bctx);
2605 	BN_mod_exp(y, p, r, n, bctx); /* u^r mod n */
2606 	BN_mod_mul(y, k, y, n, bctx);	/* k u^r mod n */
2607 	BN_mod_exp(g, k, e, n, bctx); /* k^b mod n */
2608 	bighash(g, g);
2609 	DSA_SIG_set0(sdsa, y, g);
2610 	BN_CTX_free(bctx);
2611 	BN_free(r); BN_free(k);
2612 #ifdef DEBUG
2613 	if (debug > 1)
2614 		RSA_print_fp(stdout, rsa, 0);
2615 #endif
2616 
2617 	/*
2618 	 * Encode the values in ASN.1 and sign. The filestamp is from
2619 	 * the local file.
2620 	 */
2621 	len = s_len = i2d_DSA_SIG(sdsa, NULL);
2622 	if (s_len <= 0) {
2623 		msyslog(LOG_ERR, "crypto_bob2: %s",
2624 		    ERR_error_string(ERR_get_error(), NULL));
2625 		DSA_SIG_free(sdsa);
2626 		return (XEVNT_ERR);
2627 	}
2628 	memset(vp, 0, sizeof(struct value));
2629 	tstamp = crypto_time();
2630 	vp->tstamp = htonl(tstamp);
2631 	vp->fstamp = htonl(gqkey_info->fstamp);
2632 	vp->vallen = htonl(len);
2633 	ptr = emalloc(len);
2634 	vp->ptr = ptr;
2635 	i2d_DSA_SIG(sdsa, &ptr);
2636 	DSA_SIG_free(sdsa);
2637 	if (tstamp == 0)
2638 		return (XEVNT_OK);
2639 
2640 	vp->sig = emalloc(sign_siglen);
2641 	ctx = EVP_MD_CTX_new();
2642 	EVP_SignInit(ctx, sign_digest);
2643 	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2644 	EVP_SignUpdate(ctx, vp->ptr, len);
2645 	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2646 		INSIST(len <= sign_siglen);
2647 		vp->siglen = htonl(len);
2648 	}
2649 	EVP_MD_CTX_free(ctx);
2650 	return (XEVNT_OK);
2651 }
2652 
2653 
2654 /*
2655  * crypto_gq - verify Bob's response to Alice's challenge
2656  *
2657  * Returns
2658  * XEVNT_OK	success
2659  * XEVNT_ERR	protocol error
2660  * XEVNT_FSP	bad filestamp
2661  * XEVNT_ID	bad or missing group keys
2662  * XEVNT_PUB	bad or missing public key
2663  */
2664 int
2665 crypto_gq(
2666 	struct exten *ep,	/* extension pointer */
2667 	struct peer *peer	/* peer structure pointer */
2668 	)
2669 {
2670 	RSA	*rsa;		/* GQ parameters */
2671 	BN_CTX	*bctx;		/* BIGNUM context */
2672 	DSA_SIG	*sdsa;		/* RSA signature context fake */
2673 	BIGNUM	*y, *v;
2674 	const u_char *ptr;
2675 	long	len;
2676 	u_int	temp;
2677 	const BIGNUM *n, *e;
2678 	const BIGNUM *r, *s;
2679 
2680 	/*
2681 	 * If the GQ parameters are not valid or no challenge was sent,
2682 	 * something awful happened or we are being tormented. Note that
2683 	 * the filestamp on the local key file can be greater than on
2684 	 * the remote parameter file if the keys have been refreshed.
2685 	 */
2686 	if (peer->ident_pkey == NULL) {
2687 		msyslog(LOG_NOTICE, "crypto_gq: scheme unavailable");
2688 		return (XEVNT_ID);
2689 	}
2690 	if (ntohl(ep->fstamp) < peer->ident_pkey->fstamp) {
2691 		msyslog(LOG_NOTICE, "crypto_gq: invalid filestamp %u",
2692 		    ntohl(ep->fstamp));
2693 		return (XEVNT_FSP);
2694 	}
2695 	if ((rsa = EVP_PKEY_get0_RSA(peer->ident_pkey->pkey)) == NULL) {
2696 		msyslog(LOG_NOTICE, "crypto_gq: defective key");
2697 		return (XEVNT_PUB);
2698 	}
2699 	RSA_get0_key(rsa, &n, NULL, &e);
2700 	if (peer->iffval == NULL) {
2701 		msyslog(LOG_NOTICE, "crypto_gq: missing challenge");
2702 		return (XEVNT_ID);
2703 	}
2704 
2705 	/*
2706 	 * Extract the y = k u^r and hash(x = k^b) values from the
2707 	 * response.
2708 	 */
2709 	bctx = BN_CTX_new(); y = BN_new(); v = BN_new();
2710 	len = ntohl(ep->vallen);
2711 	ptr = (u_char *)ep->pkt;
2712 	if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) {
2713 		BN_CTX_free(bctx); BN_free(y); BN_free(v);
2714 		msyslog(LOG_ERR, "crypto_gq: %s",
2715 		    ERR_error_string(ERR_get_error(), NULL));
2716 		return (XEVNT_ERR);
2717 	}
2718 	DSA_SIG_get0(sdsa, &r, &s);
2719 
2720 	/*
2721 	 * Compute v^r y^b mod n.
2722 	 */
2723 	if (peer->grpkey == NULL) {
2724 		msyslog(LOG_NOTICE, "crypto_gq: missing group key");
2725 		return (XEVNT_ID);
2726 	}
2727 	BN_mod_exp(v, peer->grpkey, peer->iffval, n, bctx);
2728 						/* v^r mod n */
2729 	BN_mod_exp(y, r, e, n, bctx); /* y^b mod n */
2730 	BN_mod_mul(y, v, y, n, bctx);	/* v^r y^b mod n */
2731 
2732 	/*
2733 	 * Verify the hash of the result matches hash(x).
2734 	 */
2735 	bighash(y, y);
2736 	temp = BN_cmp(y, s);
2737 	BN_CTX_free(bctx); BN_free(y); BN_free(v);
2738 	BN_free(peer->iffval);
2739 	peer->iffval = NULL;
2740 	DSA_SIG_free(sdsa);
2741 	if (temp == 0)
2742 		return (XEVNT_OK);
2743 
2744 	msyslog(LOG_NOTICE, "crypto_gq: identity not verified");
2745 	return (XEVNT_ID);
2746 }
2747 
2748 
2749 /*
2750  ***********************************************************************
2751  *								       *
2752  * The following routines implement the Mu-Varadharajan (MV) identity  *
2753  * scheme                                                              *
2754  *								       *
2755  ***********************************************************************
2756  *
2757  * The Mu-Varadharajan (MV) cryptosystem was originally intended when
2758  * servers broadcast messages to clients, but clients never send
2759  * messages to servers. There is one encryption key for the server and a
2760  * separate decryption key for each client. It operated something like a
2761  * pay-per-view satellite broadcasting system where the session key is
2762  * encrypted by the broadcaster and the decryption keys are held in a
2763  * tamperproof set-top box.
2764  *
2765  * The MV parameters and private encryption key hide in a DSA cuckoo
2766  * structure which uses the same parameters, but generated in a
2767  * different way. The values are used in an encryption scheme similar to
2768  * El Gamal cryptography and a polynomial formed from the expansion of
2769  * product terms (x - x[j]), as described in Mu, Y., and V.
2770  * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001,
2771  * 223-231. The paper has significant errors and serious omissions.
2772  *
2773  * Let q be the product of n distinct primes s1[j] (j = 1...n), where
2774  * each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so
2775  * that q and each s1[j] divide p - 1 and p has M = n * m + 1
2776  * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1)
2777  * = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then
2778  * project into Zp* as exponents of g. Sometimes we have to compute an
2779  * inverse b^-1 of random b in Zq, but for that purpose we require
2780  * gcd(b, q) = 1. We expect M to be in the 500-bit range and n
2781  * relatively small, like 30. These are the parameters of the scheme and
2782  * they are expensive to compute.
2783  *
2784  * We set up an instance of the scheme as follows. A set of random
2785  * values x[j] mod q (j = 1...n), are generated as the zeros of a
2786  * polynomial of order n. The product terms (x - x[j]) are expanded to
2787  * form coefficients a[i] mod q (i = 0...n) in powers of x. These are
2788  * used as exponents of the generator g mod p to generate the private
2789  * encryption key A. The pair (gbar, ghat) of public server keys and the
2790  * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used
2791  * to construct the decryption keys. The devil is in the details.
2792  *
2793  * This routine generates a private server encryption file including the
2794  * private encryption key E and partial decryption keys gbar and ghat.
2795  * It then generates public client decryption files including the public
2796  * keys xbar[j] and xhat[j] for each client j. The partial decryption
2797  * files are used to compute the inverse of E. These values are suitably
2798  * blinded so secrets are not revealed.
2799  *
2800  * The distinguishing characteristic of this scheme is the capability to
2801  * revoke keys. Included in the calculation of E, gbar and ghat is the
2802  * product s = prod(s1[j]) (j = 1...n) above. If the factor s1[j] is
2803  * subsequently removed from the product and E, gbar and ghat
2804  * recomputed, the jth client will no longer be able to compute E^-1 and
2805  * thus unable to decrypt the messageblock.
2806  *
2807  * How it works
2808  *
2809  * The scheme goes like this. Bob has the server values (p, E, q, gbar,
2810  * ghat) and Alice has the client values (p, xbar, xhat).
2811  *
2812  * Alice rolls new random nonce r mod p and sends to Bob in the MV
2813  * request message. Bob rolls random nonce k mod q, encrypts y = r E^k
2814  * mod p and sends (y, gbar^k, ghat^k) to Alice.
2815  *
2816  * Alice receives the response and computes the inverse (E^k)^-1 from
2817  * the partial decryption keys gbar^k, ghat^k, xbar and xhat. She then
2818  * decrypts y and verifies it matches the original r. The signed
2819  * response binds this knowledge to Bob's private key and the public key
2820  * previously received in his certificate.
2821  *
2822  * crypto_alice3 - construct Alice's challenge in MV scheme
2823  *
2824  * Returns
2825  * XEVNT_OK	success
2826  * XEVNT_ID	bad or missing group key
2827  * XEVNT_PUB	bad or missing public key
2828  */
2829 static int
2830 crypto_alice3(
2831 	struct peer *peer,	/* peer pointer */
2832 	struct value *vp	/* value pointer */
2833 	)
2834 {
2835 	DSA	*dsa;		/* MV parameters */
2836 	BN_CTX	*bctx;		/* BIGNUM context */
2837 	EVP_MD_CTX *ctx;	/* signature context */
2838 	tstamp_t tstamp;
2839 	u_int	len;
2840 	const BIGNUM *p;
2841 
2842 	/*
2843 	 * The identity parameters must have correct format and content.
2844 	 */
2845 	if (peer->ident_pkey == NULL)
2846 		return (XEVNT_ID);
2847 
2848 	if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) {
2849 		msyslog(LOG_NOTICE, "crypto_alice3: defective key");
2850 		return (XEVNT_PUB);
2851 	}
2852 	DSA_get0_pqg(dsa, &p, NULL, NULL);
2853 
2854 	/*
2855 	 * Roll new random r (0 < r < q).
2856 	 */
2857 	if (peer->iffval != NULL)
2858 		BN_free(peer->iffval);
2859 	peer->iffval = BN_new();
2860 	len = BN_num_bytes(p);
2861 	BN_rand(peer->iffval, len * 8, -1, 1);	/* r mod p */
2862 	bctx = BN_CTX_new();
2863 	BN_mod(peer->iffval, peer->iffval, p, bctx);
2864 	BN_CTX_free(bctx);
2865 
2866 	/*
2867 	 * Sign and send to Bob. The filestamp is from the local file.
2868 	 */
2869 	memset(vp, 0, sizeof(struct value));
2870 	tstamp = crypto_time();
2871 	vp->tstamp = htonl(tstamp);
2872 	vp->fstamp = htonl(peer->ident_pkey->fstamp);
2873 	vp->vallen = htonl(len);
2874 	vp->ptr = emalloc(len);
2875 	BN_bn2bin(peer->iffval, vp->ptr);
2876 	if (tstamp == 0)
2877 		return (XEVNT_OK);
2878 
2879 	vp->sig = emalloc(sign_siglen);
2880 	ctx = EVP_MD_CTX_new();
2881 	EVP_SignInit(ctx, sign_digest);
2882 	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2883 	EVP_SignUpdate(ctx, vp->ptr, len);
2884 	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2885 		INSIST(len <= sign_siglen);
2886 		vp->siglen = htonl(len);
2887 	}
2888 	EVP_MD_CTX_free(ctx);
2889 	return (XEVNT_OK);
2890 }
2891 
2892 
2893 /*
2894  * crypto_bob3 - construct Bob's response to Alice's challenge
2895  *
2896  * Returns
2897  * XEVNT_OK	success
2898  * XEVNT_ERR	protocol error
2899  */
2900 static int
2901 crypto_bob3(
2902 	struct exten *ep,	/* extension pointer */
2903 	struct value *vp	/* value pointer */
2904 	)
2905 {
2906 	DSA	*dsa;		/* MV parameters */
2907 	DSA	*sdsa;		/* DSA signature context fake */
2908 	BN_CTX	*bctx;		/* BIGNUM context */
2909 	EVP_MD_CTX *ctx;	/* signature context */
2910 	tstamp_t tstamp;	/* NTP timestamp */
2911 	BIGNUM	*r, *k, *u;
2912 	u_char	*ptr;
2913 	u_int	len;
2914 	const BIGNUM *p, *q, *g;
2915 	const BIGNUM *pub_key, *priv_key;
2916 	BIGNUM *sp, *sq, *sg;
2917 
2918 	/*
2919 	 * If the MV parameters are not valid, something awful
2920 	 * happened or we are being tormented.
2921 	 */
2922 	if (mvkey_info == NULL) {
2923 		msyslog(LOG_NOTICE, "crypto_bob3: scheme unavailable");
2924 		return (XEVNT_ID);
2925 	}
2926 	dsa = EVP_PKEY_get0_DSA(mvkey_info->pkey);
2927 	DSA_get0_pqg(dsa, &p, &q, &g);
2928 	DSA_get0_key(dsa, &pub_key, &priv_key);
2929 
2930 	/*
2931 	 * Extract r from the challenge.
2932 	 */
2933 	len = exten_payload_size(ep);
2934 	if (len == 0 || len > MAX_VALLEN)
2935 		return (XEVNT_LEN);
2936 	if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2937 		msyslog(LOG_ERR, "crypto_bob3: %s",
2938 		    ERR_error_string(ERR_get_error(), NULL));
2939 		return (XEVNT_ERR);
2940 	}
2941 
2942 	/*
2943 	 * Bob rolls random k (0 < k < q), making sure it is not a
2944 	 * factor of q. He then computes y = r A^k and sends (y, gbar^k,
2945 	 * and ghat^k) to Alice.
2946 	 */
2947 	bctx = BN_CTX_new(); k = BN_new(); u = BN_new();
2948 	sdsa = DSA_new();
2949 	sp = BN_new(); sq = BN_new(); sg = BN_new();
2950 	while (1) {
2951 		BN_rand(k, BN_num_bits(q), 0, 0);
2952 		BN_mod(k, k, q, bctx);
2953 		BN_gcd(u, k, q, bctx);
2954 		if (BN_is_one(u))
2955 			break;
2956 	}
2957 	BN_mod_exp(u, g, k, p, bctx); /* A^k r */
2958 	BN_mod_mul(sp, u, r, p, bctx);
2959 	BN_mod_exp(sq, priv_key, k, p, bctx); /* gbar */
2960 	BN_mod_exp(sg, pub_key, k, p, bctx); /* ghat */
2961 	DSA_set0_key(sdsa, BN_dup(pub_key), NULL);
2962 	DSA_set0_pqg(sdsa, sp, sq, sg);
2963 	BN_CTX_free(bctx); BN_free(k); BN_free(r); BN_free(u);
2964 #ifdef DEBUG
2965 	if (debug > 1)
2966 		DSA_print_fp(stdout, sdsa, 0);
2967 #endif
2968 
2969 	/*
2970 	 * Encode the values in ASN.1 and sign. The filestamp is from
2971 	 * the local file.
2972 	 */
2973 	memset(vp, 0, sizeof(struct value));
2974 	tstamp = crypto_time();
2975 	vp->tstamp = htonl(tstamp);
2976 	vp->fstamp = htonl(mvkey_info->fstamp);
2977 	len = i2d_DSAparams(sdsa, NULL);
2978 	if (len == 0) {
2979 		msyslog(LOG_ERR, "crypto_bob3: %s",
2980 		    ERR_error_string(ERR_get_error(), NULL));
2981 		DSA_free(sdsa);
2982 		return (XEVNT_ERR);
2983 	}
2984 	vp->vallen = htonl(len);
2985 	ptr = emalloc(len);
2986 	vp->ptr = ptr;
2987 	i2d_DSAparams(sdsa, &ptr);
2988 	DSA_free(sdsa);
2989 	if (tstamp == 0)
2990 		return (XEVNT_OK);
2991 
2992 	vp->sig = emalloc(sign_siglen);
2993 	ctx = EVP_MD_CTX_new();
2994 	EVP_SignInit(ctx, sign_digest);
2995 	EVP_SignUpdate(ctx, (u_char *)&vp->tstamp, 12);
2996 	EVP_SignUpdate(ctx, vp->ptr, len);
2997 	if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
2998 		INSIST(len <= sign_siglen);
2999 		vp->siglen = htonl(len);
3000 	}
3001 	EVP_MD_CTX_free(ctx);
3002 	return (XEVNT_OK);
3003 }
3004 
3005 
3006 /*
3007  * crypto_mv - verify Bob's response to Alice's challenge
3008  *
3009  * Returns
3010  * XEVNT_OK	success
3011  * XEVNT_ERR	protocol error
3012  * XEVNT_FSP	bad filestamp
3013  * XEVNT_ID	bad or missing group key
3014  * XEVNT_PUB	bad or missing public key
3015  */
3016 int
3017 crypto_mv(
3018 	struct exten *ep,	/* extension pointer */
3019 	struct peer *peer	/* peer structure pointer */
3020 	)
3021 {
3022 	DSA	*dsa;		/* MV parameters */
3023 	DSA	*sdsa;		/* DSA parameters */
3024 	BN_CTX	*bctx;		/* BIGNUM context */
3025 	BIGNUM	*k, *u, *v;
3026 	u_int	len;
3027 	const u_char *ptr;
3028 	int	temp;
3029 	const BIGNUM *p;
3030 	const BIGNUM *pub_key, *priv_key;
3031 	const BIGNUM *sp, *sq, *sg;
3032 
3033 	/*
3034 	 * If the MV parameters are not valid or no challenge was sent,
3035 	 * something awful happened or we are being tormented.
3036 	 */
3037 	if (peer->ident_pkey == NULL) {
3038 		msyslog(LOG_NOTICE, "crypto_mv: scheme unavailable");
3039 		return (XEVNT_ID);
3040 	}
3041 	if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) {
3042 		msyslog(LOG_NOTICE, "crypto_mv: invalid filestamp %u",
3043 		    ntohl(ep->fstamp));
3044 		return (XEVNT_FSP);
3045 	}
3046 	if ((dsa = EVP_PKEY_get0_DSA(peer->ident_pkey->pkey)) == NULL) {
3047 		msyslog(LOG_NOTICE, "crypto_mv: defective key");
3048 		return (XEVNT_PUB);
3049 	}
3050 	DSA_get0_pqg(dsa, &p, NULL, NULL);
3051 	DSA_get0_key(dsa, &pub_key, &priv_key);
3052 	if (peer->iffval == NULL) {
3053 		msyslog(LOG_NOTICE, "crypto_mv: missing challenge");
3054 		return (XEVNT_ID);
3055 	}
3056 
3057 	/*
3058 	 * Extract the y, gbar and ghat values from the response.
3059 	 */
3060 	bctx = BN_CTX_new(); k = BN_new(); u = BN_new(); v = BN_new();
3061 	len = ntohl(ep->vallen);
3062 	ptr = (u_char *)ep->pkt;
3063 	if ((sdsa = d2i_DSAparams(NULL, &ptr, len)) == NULL) {
3064 		msyslog(LOG_ERR, "crypto_mv: %s",
3065 		    ERR_error_string(ERR_get_error(), NULL));
3066 		return (XEVNT_ERR);
3067 	}
3068 	DSA_get0_pqg(sdsa, &sp, &sq, &sg);
3069 
3070 	/*
3071 	 * Compute (gbar^xhat ghat^xbar) mod p.
3072 	 */
3073 	BN_mod_exp(u, sq, pub_key, p, bctx);
3074 	BN_mod_exp(v, sg, priv_key, p, bctx);
3075 	BN_mod_mul(u, u, v, p, bctx);
3076 	BN_mod_mul(u, u, sp, p, bctx);
3077 
3078 	/*
3079 	 * The result should match r.
3080 	 */
3081 	temp = BN_cmp(u, peer->iffval);
3082 	BN_CTX_free(bctx); BN_free(k); BN_free(u); BN_free(v);
3083 	BN_free(peer->iffval);
3084 	peer->iffval = NULL;
3085 	DSA_free(sdsa);
3086 	if (temp == 0)
3087 		return (XEVNT_OK);
3088 
3089 	msyslog(LOG_NOTICE, "crypto_mv: identity not verified");
3090 	return (XEVNT_ID);
3091 }
3092 
3093 
3094 /*
3095  ***********************************************************************
3096  *								       *
3097  * The following routines are used to manipulate certificates          *
3098  *								       *
3099  ***********************************************************************
3100  */
3101 /*
3102  * cert_sign - sign x509 certificate equest and update value structure.
3103  *
3104  * The certificate request includes a copy of the host certificate,
3105  * which includes the version number, subject name and public key of the
3106  * host. The resulting certificate includes these values plus the
3107  * serial number, issuer name and valid interval of the server. The
3108  * valid interval extends from the current time to the same time one
3109  * year hence. This may extend the life of the signed certificate beyond
3110  * that of the signer certificate.
3111  *
3112  * It is convenient to use the NTP seconds of the current time as the
3113  * serial number. In the value structure the timestamp is the current
3114  * time and the filestamp is taken from the extension field. Note this
3115  * routine is called only when the client clock is synchronized to a
3116  * proventic source, so timestamp comparisons are valid.
3117  *
3118  * The host certificate is valid from the time it was generated for a
3119  * period of one year. A signed certificate is valid from the time of
3120  * signature for a period of one year, but only the host certificate (or
3121  * sign certificate if used) is actually used to encrypt and decrypt
3122  * signatures. The signature trail is built from the client via the
3123  * intermediate servers to the trusted server. Each signature on the
3124  * trail must be valid at the time of signature, but it could happen
3125  * that a signer certificate expire before the signed certificate, which
3126  * remains valid until its expiration.
3127  *
3128  * Returns
3129  * XEVNT_OK	success
3130  * XEVNT_CRT	bad or missing certificate
3131  * XEVNT_PER	host certificate expired
3132  * XEVNT_PUB	bad or missing public key
3133  * XEVNT_VFY	certificate not verified
3134  */
3135 static int
3136 cert_sign(
3137 	struct exten *ep,	/* extension field pointer */
3138 	struct value *vp	/* value pointer */
3139 	)
3140 {
3141 	X509	*req;		/* X509 certificate request */
3142 	X509	*cert;		/* X509 certificate */
3143 	X509_EXTENSION *ext;	/* certificate extension */
3144 	ASN1_INTEGER *serial;	/* serial number */
3145 	X509_NAME *subj;	/* distinguished (common) name */
3146 	EVP_PKEY *pkey;		/* public key */
3147 	EVP_MD_CTX *ctx;	/* message digest context */
3148 	tstamp_t tstamp;	/* NTP timestamp */
3149 	struct calendar tscal;
3150 	u_int	len;
3151 	const u_char *cptr;
3152 	u_char *ptr;
3153 	int	i, temp;
3154 
3155 	/*
3156 	 * Decode ASN.1 objects and construct certificate structure.
3157 	 * Make sure the system clock is synchronized to a proventic
3158 	 * source.
3159 	 */
3160 	tstamp = crypto_time();
3161 	if (tstamp == 0)
3162 		return (XEVNT_TSP);
3163 
3164 	len = exten_payload_size(ep);
3165 	if (len == 0 || len > MAX_VALLEN)
3166 		return (XEVNT_LEN);
3167 	cptr = (void *)ep->pkt;
3168 	if ((req = d2i_X509(NULL, &cptr, len)) == NULL) {
3169 		msyslog(LOG_ERR, "cert_sign: %s",
3170 		    ERR_error_string(ERR_get_error(), NULL));
3171 		return (XEVNT_CRT);
3172 	}
3173 	/*
3174 	 * Extract public key and check for errors.
3175 	 */
3176 	if ((pkey = X509_get_pubkey(req)) == NULL) {
3177 		msyslog(LOG_ERR, "cert_sign: %s",
3178 		    ERR_error_string(ERR_get_error(), NULL));
3179 		X509_free(req);
3180 		return (XEVNT_PUB);
3181 	}
3182 
3183 	/*
3184 	 * Generate X509 certificate signed by this server. If this is a
3185 	 * trusted host, the issuer name is the group name; otherwise,
3186 	 * it is the host name. Also copy any extensions that might be
3187 	 * present.
3188 	 */
3189 	cert = X509_new();
3190 	X509_set_version(cert, X509_get_version(req));
3191 	serial = ASN1_INTEGER_new();
3192 	ASN1_INTEGER_set(serial, tstamp);
3193 	X509_set_serialNumber(cert, serial);
3194 	X509_gmtime_adj(X509_getm_notBefore(cert), 0L);
3195 	X509_gmtime_adj(X509_getm_notAfter(cert), YEAR);
3196 	subj = X509_get_issuer_name(cert);
3197 	X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
3198 	    hostval.ptr, strlen((const char *)hostval.ptr), -1, 0);
3199 	subj = X509_get_subject_name(req);
3200 	X509_set_subject_name(cert, subj);
3201 	X509_set_pubkey(cert, pkey);
3202 	temp = X509_get_ext_count(req);
3203 	for (i = 0; i < temp; i++) {
3204 		ext = X509_get_ext(req, i);
3205 		INSIST(X509_add_ext(cert, ext, -1));
3206 	}
3207 	X509_free(req);
3208 
3209 	/*
3210 	 * Sign and verify the client certificate, but only if the host
3211 	 * certificate has not expired.
3212 	 */
3213 	(void)ntpcal_ntp_to_date(&tscal, tstamp, NULL);
3214 	if ((calcomp(&tscal, &(cert_host->first)) < 0)
3215 	|| (calcomp(&tscal, &(cert_host->last)) > 0)) {
3216 		X509_free(cert);
3217 		return (XEVNT_PER);
3218 	}
3219 	X509_sign(cert, sign_pkey, sign_digest);
3220 	if (X509_verify(cert, sign_pkey) <= 0) {
3221 		msyslog(LOG_ERR, "cert_sign: %s",
3222 		    ERR_error_string(ERR_get_error(), NULL));
3223 		X509_free(cert);
3224 		return (XEVNT_VFY);
3225 	}
3226 	len = i2d_X509(cert, NULL);
3227 
3228 	/*
3229 	 * Build and sign the value structure. We have to sign it here,
3230 	 * since the response has to be returned right away. This is a
3231 	 * clogging hazard.
3232 	 */
3233 	memset(vp, 0, sizeof(struct value));
3234 	vp->tstamp = htonl(tstamp);
3235 	vp->fstamp = ep->fstamp;
3236 	vp->vallen = htonl(len);
3237 	vp->ptr = emalloc(len);
3238 	ptr = vp->ptr;
3239 	i2d_X509(cert, (unsigned char **)(intptr_t)&ptr);
3240 	vp->siglen = 0;
3241 	if (tstamp != 0) {
3242 		vp->sig = emalloc(sign_siglen);
3243 		ctx = EVP_MD_CTX_new();
3244 		EVP_SignInit(ctx, sign_digest);
3245 		EVP_SignUpdate(ctx, (u_char *)vp, 12);
3246 		EVP_SignUpdate(ctx, vp->ptr, len);
3247 		if (EVP_SignFinal(ctx, vp->sig, &len, sign_pkey)) {
3248 			INSIST(len <= sign_siglen);
3249 			vp->siglen = htonl(len);
3250 		}
3251 		EVP_MD_CTX_free(ctx);
3252 	}
3253 #ifdef DEBUG
3254 	if (debug > 1)
3255 		X509_print_fp(stdout, cert);
3256 #endif
3257 	X509_free(cert);
3258 	return (XEVNT_OK);
3259 }
3260 
3261 
3262 /*
3263  * cert_install - install certificate in certificate cache
3264  *
3265  * This routine encodes an extension field into a certificate info/value
3266  * structure. It searches the certificate list for duplicates and
3267  * expunges whichever is older. Finally, it inserts this certificate
3268  * first on the list.
3269  *
3270  * Returns certificate info pointer if valid, NULL if not.
3271  */
3272 struct cert_info *
3273 cert_install(
3274 	struct exten *ep,	/* cert info/value */
3275 	struct peer *peer	/* peer structure */
3276 	)
3277 {
3278 	struct cert_info *cp, *xp, **zp;
3279 
3280 	/*
3281 	 * Parse and validate the signed certificate. If valid,
3282 	 * construct the info/value structure; otherwise, scamper home
3283 	 * empty handed.
3284 	 */
3285 	if ((cp = cert_parse((u_char *)ep->pkt, (long)ntohl(ep->vallen),
3286 	    (tstamp_t)ntohl(ep->fstamp))) == NULL)
3287 		return (NULL);
3288 
3289 	/*
3290 	 * Scan certificate list looking for another certificate with
3291 	 * the same subject and issuer. If another is found with the
3292 	 * same or older filestamp, unlink it and return the goodies to
3293 	 * the heap. If another is found with a later filestamp, discard
3294 	 * the new one and leave the building with the old one.
3295 	 *
3296 	 * Make a note to study this issue again. An earlier certificate
3297 	 * with a long lifetime might be overtaken by a later
3298 	 * certificate with a short lifetime, thus invalidating the
3299 	 * earlier signature. However, we gotta find a way to leak old
3300 	 * stuff from the cache, so we do it anyway.
3301 	 */
3302 	zp = &cinfo;
3303 	for (xp = cinfo; xp != NULL; xp = xp->link) {
3304 		if (strcmp(cp->subject, xp->subject) == 0 &&
3305 		    strcmp(cp->issuer, xp->issuer) == 0) {
3306 			if (ntohl(cp->cert.fstamp) <=
3307 			    ntohl(xp->cert.fstamp)) {
3308 				cert_free(cp);
3309 				cp = xp;
3310 			} else {
3311 				*zp = xp->link;
3312 				cert_free(xp);
3313 				xp = NULL;
3314 			}
3315 			break;
3316 		}
3317 		zp = &xp->link;
3318 	}
3319 	if (xp == NULL) {
3320 		cp->link = cinfo;
3321 		cinfo = cp;
3322 	}
3323 	cp->flags |= CERT_VALID;
3324 	crypto_update();
3325 	return (cp);
3326 }
3327 
3328 
3329 /*
3330  * cert_hike - verify the signature using the issuer public key
3331  *
3332  * Returns
3333  * XEVNT_OK	success
3334  * XEVNT_CRT	bad or missing certificate
3335  * XEVNT_PER	host certificate expired
3336  * XEVNT_VFY	certificate not verified
3337  */
3338 int
3339 cert_hike(
3340 	struct peer *peer,	/* peer structure pointer */
3341 	struct cert_info *yp	/* issuer certificate */
3342 	)
3343 {
3344 	struct cert_info *xp;	/* subject certificate */
3345 	X509	*cert;		/* X509 certificate */
3346 	const u_char *ptr;
3347 
3348 	/*
3349 	 * Save the issuer on the new certificate, but remember the old
3350 	 * one.
3351 	 */
3352 	if (peer->issuer != NULL)
3353 		free(peer->issuer);
3354 	peer->issuer = estrdup(yp->issuer);
3355 	xp = peer->xinfo;
3356 	peer->xinfo = yp;
3357 
3358 	/*
3359 	 * If subject Y matches issuer Y, then the certificate trail is
3360 	 * complete. If Y is not trusted, the server certificate has yet
3361 	 * been signed, so keep trying. Otherwise, save the group key
3362 	 * and light the valid bit. If the host certificate is trusted,
3363 	 * do not execute a sign exchange. If no identity scheme is in
3364 	 * use, light the identity and proventic bits.
3365 	 */
3366 	if (strcmp(yp->subject, yp->issuer) == 0) {
3367 		if (!(yp->flags & CERT_TRUST))
3368 			return (XEVNT_OK);
3369 
3370 		/*
3371 		 * If the server has an an identity scheme, fetch the
3372 		 * identity credentials. If not, the identity is
3373 		 * verified only by the trusted certificate. The next
3374 		 * signature will set the server proventic.
3375 		 */
3376 		peer->crypto |= CRYPTO_FLAG_CERT;
3377 		peer->grpkey = yp->grpkey;
3378 		if (peer->ident == NULL || !(peer->crypto &
3379 		    CRYPTO_FLAG_MASK))
3380 			peer->crypto |= CRYPTO_FLAG_VRFY;
3381 	}
3382 
3383 	/*
3384 	 * If X exists, verify signature X using public key Y.
3385 	 */
3386 	if (xp == NULL)
3387 		return (XEVNT_OK);
3388 
3389 	ptr = (u_char *)xp->cert.ptr;
3390 	cert = d2i_X509(NULL, &ptr, ntohl(xp->cert.vallen));
3391 	if (cert == NULL) {
3392 		xp->flags |= CERT_ERROR;
3393 		return (XEVNT_CRT);
3394 	}
3395 	if (X509_verify(cert, yp->pkey) <= 0) {
3396 		X509_free(cert);
3397 		xp->flags |= CERT_ERROR;
3398 		return (XEVNT_VFY);
3399 	}
3400 	X509_free(cert);
3401 
3402 	/*
3403 	 * Signature X is valid only if it begins during the
3404 	 * lifetime of Y.
3405 	 */
3406 	if ((calcomp(&(xp->first), &(yp->first)) < 0)
3407 	|| (calcomp(&(xp->first), &(yp->last)) > 0)) {
3408 		xp->flags |= CERT_ERROR;
3409 		return (XEVNT_PER);
3410 	}
3411 	xp->flags |= CERT_SIGN;
3412 	return (XEVNT_OK);
3413 }
3414 
3415 
3416 /*
3417  * cert_parse - parse x509 certificate and create info/value structures.
3418  *
3419  * The server certificate includes the version number, issuer name,
3420  * subject name, public key and valid date interval. If the issuer name
3421  * is the same as the subject name, the certificate is self signed and
3422  * valid only if the server is configured as trustable. If the names are
3423  * different, another issuer has signed the server certificate and
3424  * vouched for it. In this case the server certificate is valid if
3425  * verified by the issuer public key.
3426  *
3427  * Returns certificate info/value pointer if valid, NULL if not.
3428  */
3429 struct cert_info *		/* certificate information structure */
3430 cert_parse(
3431 	const u_char *asn1cert,	/* X509 certificate */
3432 	long	len,		/* certificate length */
3433 	tstamp_t fstamp		/* filestamp */
3434 	)
3435 {
3436 	X509	*cert;		/* X509 certificate */
3437 	struct cert_info *ret;	/* certificate info/value */
3438 	BIO	*bp;
3439 	char	pathbuf[MAXFILENAME];
3440 	const u_char *ptr;
3441 	char	*pch;
3442 	int	cnt, i;
3443 	struct calendar fscal;
3444 
3445 	/*
3446 	 * Decode ASN.1 objects and construct certificate structure.
3447 	 */
3448 	ptr = asn1cert;
3449 	if ((cert = d2i_X509(NULL, &ptr, len)) == NULL) {
3450 		msyslog(LOG_ERR, "cert_parse: %s",
3451 		    ERR_error_string(ERR_get_error(), NULL));
3452 		return (NULL);
3453 	}
3454 #ifdef DEBUG
3455 	if (debug > 1)
3456 		X509_print_fp(stdout, cert);
3457 #endif
3458 
3459 	/*
3460 	 * Extract version, subject name and public key.
3461 	 */
3462 	ret = emalloc_zero(sizeof(*ret));
3463 	if ((ret->pkey = X509_get_pubkey(cert)) == NULL) {
3464 		msyslog(LOG_ERR, "cert_parse: %s",
3465 		    ERR_error_string(ERR_get_error(), NULL));
3466 		cert_free(ret);
3467 		X509_free(cert);
3468 		return (NULL);
3469 	}
3470 	ret->version = X509_get_version(cert);
3471 	X509_NAME_oneline(X509_get_subject_name(cert), pathbuf,
3472 	    sizeof(pathbuf));
3473 	pch = strstr(pathbuf, "CN=");
3474 	if (NULL == pch) {
3475 		msyslog(LOG_NOTICE, "cert_parse: invalid subject %s",
3476 		    pathbuf);
3477 		cert_free(ret);
3478 		X509_free(cert);
3479 		return (NULL);
3480 	}
3481 	ret->subject = estrdup(pch + 3);
3482 
3483 	/*
3484 	 * Extract remaining objects. Note that the NTP serial number is
3485 	 * the NTP seconds at the time of signing, but this might not be
3486 	 * the case for other authority. We don't bother to check the
3487 	 * objects at this time, since the real crunch can happen only
3488 	 * when the time is valid but not yet certificated.
3489 	 */
3490 	ret->nid = X509_get_signature_nid(cert);
3491 	ret->digest = (const EVP_MD *)EVP_get_digestbynid(ret->nid);
3492 	ret->serial =
3493 	    (u_long)ASN1_INTEGER_get(X509_get_serialNumber(cert));
3494 	X509_NAME_oneline(X509_get_issuer_name(cert), pathbuf,
3495 	    sizeof(pathbuf));
3496 	if ((pch = strstr(pathbuf, "CN=")) == NULL) {
3497 		msyslog(LOG_NOTICE, "cert_parse: invalid issuer %s",
3498 		    pathbuf);
3499 		cert_free(ret);
3500 		X509_free(cert);
3501 		return (NULL);
3502 	}
3503 	ret->issuer = estrdup(pch + 3);
3504 	asn_to_calendar(X509_get0_notBefore(cert), &(ret->first));
3505 	asn_to_calendar(X509_get0_notAfter(cert), &(ret->last));
3506 
3507 	/*
3508 	 * Extract extension fields. These are ad hoc ripoffs of
3509 	 * currently assigned functions and will certainly be changed
3510 	 * before prime time.
3511 	 */
3512 	cnt = X509_get_ext_count(cert);
3513 	for (i = 0; i < cnt; i++) {
3514 		X509_EXTENSION *ext;
3515 		ASN1_OBJECT *obj;
3516 		int nid;
3517 		ASN1_OCTET_STRING *data;
3518 
3519 		ext = X509_get_ext(cert, i);
3520 		obj = X509_EXTENSION_get_object(ext);
3521 		nid = OBJ_obj2nid(obj);
3522 
3523 		switch (nid) {
3524 
3525 		/*
3526 		 * If a key_usage field is present, we decode whether
3527 		 * this is a trusted or private certificate. This is
3528 		 * dorky; all we want is to compare NIDs, but OpenSSL
3529 		 * insists on BIO text strings.
3530 		 */
3531 		case NID_ext_key_usage:
3532 			bp = BIO_new(BIO_s_mem());
3533 			X509V3_EXT_print(bp, ext, 0, 0);
3534 			BIO_gets(bp, pathbuf, sizeof(pathbuf));
3535 			BIO_free(bp);
3536 			if (strcmp(pathbuf, "Trust Root") == 0)
3537 				ret->flags |= CERT_TRUST;
3538 			else if (strcmp(pathbuf, "Private") == 0)
3539 				ret->flags |= CERT_PRIV;
3540 			DPRINTF(1, ("cert_parse: %s: %s\n",
3541 				    OBJ_nid2ln(nid), pathbuf));
3542 			break;
3543 
3544 		/*
3545 		 * If a NID_subject_key_identifier field is present, it
3546 		 * contains the GQ public key.
3547 		 */
3548 		case NID_subject_key_identifier:
3549 			data = X509_EXTENSION_get_data(ext);
3550 			ret->grpkey = BN_bin2bn(&data->data[2],
3551 			    data->length - 2, NULL);
3552 			/* fall through */
3553 		default:
3554 			DPRINTF(1, ("cert_parse: %s\n",
3555 				    OBJ_nid2ln(nid)));
3556 			break;
3557 		}
3558 	}
3559 	if (strcmp(ret->subject, ret->issuer) == 0) {
3560 
3561 		/*
3562 		 * If certificate is self signed, verify signature.
3563 		 */
3564 		if (X509_verify(cert, ret->pkey) <= 0) {
3565 			msyslog(LOG_NOTICE,
3566 			    "cert_parse: signature not verified %s",
3567 			    ret->subject);
3568 			cert_free(ret);
3569 			X509_free(cert);
3570 			return (NULL);
3571 		}
3572 	} else {
3573 
3574 		/*
3575 		 * Check for a certificate loop.
3576 		 */
3577 		if (strcmp((const char *)hostval.ptr, ret->issuer) == 0) {
3578 			msyslog(LOG_NOTICE,
3579 			    "cert_parse: certificate trail loop %s",
3580 			    ret->subject);
3581 			cert_free(ret);
3582 			X509_free(cert);
3583 			return (NULL);
3584 		}
3585 	}
3586 
3587 	/*
3588 	 * Verify certificate valid times. Note that certificates cannot
3589 	 * be retroactive.
3590 	 */
3591 	(void)ntpcal_ntp_to_date(&fscal, fstamp, NULL);
3592 	if ((calcomp(&(ret->first), &(ret->last)) > 0)
3593 	|| (calcomp(&(ret->first), &fscal) < 0)) {
3594 		msyslog(LOG_NOTICE,
3595 		    "cert_parse: invalid times %s first %u-%02u-%02uT%02u:%02u:%02u last %u-%02u-%02uT%02u:%02u:%02u fstamp %u-%02u-%02uT%02u:%02u:%02u",
3596 		    ret->subject,
3597 		    ret->first.year, ret->first.month, ret->first.monthday,
3598 		    ret->first.hour, ret->first.minute, ret->first.second,
3599 		    ret->last.year, ret->last.month, ret->last.monthday,
3600 		    ret->last.hour, ret->last.minute, ret->last.second,
3601 		    fscal.year, fscal.month, fscal.monthday,
3602 		    fscal.hour, fscal.minute, fscal.second);
3603 		cert_free(ret);
3604 		X509_free(cert);
3605 		return (NULL);
3606 	}
3607 
3608 	/*
3609 	 * Build the value structure to sign and send later.
3610 	 */
3611 	ret->cert.fstamp = htonl(fstamp);
3612 	ret->cert.vallen = htonl(len);
3613 	ret->cert.ptr = emalloc(len);
3614 	memcpy(ret->cert.ptr, asn1cert, len);
3615 	X509_free(cert);
3616 	return (ret);
3617 }
3618 
3619 
3620 /*
3621  * cert_free - free certificate information structure
3622  */
3623 void
3624 cert_free(
3625 	struct cert_info *cinf	/* certificate info/value structure */
3626 	)
3627 {
3628 	if (cinf->pkey != NULL)
3629 		EVP_PKEY_free(cinf->pkey);
3630 	if (cinf->subject != NULL)
3631 		free(cinf->subject);
3632 	if (cinf->issuer != NULL)
3633 		free(cinf->issuer);
3634 	if (cinf->grpkey != NULL)
3635 		BN_free(cinf->grpkey);
3636 	value_free(&cinf->cert);
3637 	free(cinf);
3638 }
3639 
3640 
3641 /*
3642  * crypto_key - load cryptographic parameters and keys
3643  *
3644  * This routine searches the key cache for matching name in the form
3645  * ntpkey_<key>_<name>, where <key> is one of host, sign, iff, gq, mv,
3646  * and <name> is the host/group name. If not found, it tries to load a
3647  * PEM-encoded file of the same name and extracts the filestamp from
3648  * the first line of the file name. It returns the key pointer if valid,
3649  * NULL if not.
3650  */
3651 static struct pkey_info *
3652 crypto_key(
3653 	char	*cp,		/* file name */
3654 	char	*passwd1,	/* password */
3655 	sockaddr_u *addr 	/* IP address */
3656 	)
3657 {
3658 	FILE	*str;		/* file handle */
3659 	struct pkey_info *pkp;	/* generic key */
3660 	EVP_PKEY *pkey = NULL;	/* public/private key */
3661 	tstamp_t fstamp;
3662 	char	filename[MAXFILENAME]; /* name of key file */
3663 	char	linkname[MAXFILENAME]; /* filestamp buffer) */
3664 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3665 	char	*ptr;
3666 
3667 	/*
3668 	 * Search the key cache for matching key and name.
3669 	 */
3670 	for (pkp = pkinfo; pkp != NULL; pkp = pkp->link) {
3671 		if (strcmp(cp, pkp->name) == 0)
3672 			return (pkp);
3673 	}
3674 
3675 	/*
3676 	 * Open the key file. If the first character of the file name is
3677 	 * not '/', prepend the keys directory string. If something goes
3678 	 * wrong, abandon ship.
3679 	 */
3680 	if (*cp == '/')
3681 		strlcpy(filename, cp, sizeof(filename));
3682 	else
3683 		snprintf(filename, sizeof(filename), "%s/%s", keysdir,
3684 		    cp);
3685 	str = fopen(filename, "r");
3686 	if (str == NULL)
3687 		return (NULL);
3688 
3689 	/*
3690 	 * Read the filestamp, which is contained in the first line.
3691 	 */
3692 	if ((ptr = fgets(linkname, sizeof(linkname), str)) == NULL) {
3693 		msyslog(LOG_ERR, "crypto_key: empty file %s",
3694 		    filename);
3695 		fclose(str);
3696 		return (NULL);
3697 	}
3698 	if ((ptr = strrchr(ptr, '.')) == NULL) {
3699 		msyslog(LOG_ERR, "crypto_key: no filestamp %s",
3700 		    filename);
3701 		fclose(str);
3702 		return (NULL);
3703 	}
3704 	if (sscanf(++ptr, "%u", &fstamp) != 1) {
3705 		msyslog(LOG_ERR, "crypto_key: invalid filestamp %s",
3706 		    filename);
3707 		fclose(str);
3708 		return (NULL);
3709 	}
3710 
3711 	/*
3712 	 * Read and decrypt PEM-encoded private key. If it fails to
3713 	 * decrypt, game over.
3714 	 */
3715 	pkey = PEM_read_PrivateKey(str, NULL, NULL, passwd1);
3716 	fclose(str);
3717 	if (pkey == NULL) {
3718 		msyslog(LOG_ERR, "crypto_key: %s",
3719 		    ERR_error_string(ERR_get_error(), NULL));
3720 		exit (-1);
3721 	}
3722 
3723 	/*
3724 	 * Make a new entry in the key cache.
3725 	 */
3726 	pkp = emalloc(sizeof(struct pkey_info));
3727 	pkp->link = pkinfo;
3728 	pkinfo = pkp;
3729 	pkp->pkey = pkey;
3730 	pkp->name = estrdup(cp);
3731 	pkp->fstamp = fstamp;
3732 
3733 	/*
3734 	 * Leave tracks in the cryptostats.
3735 	 */
3736 	if ((ptr = strrchr(linkname, '\n')) != NULL)
3737 		*ptr = '\0';
3738 	snprintf(statstr, sizeof(statstr), "%s mod %d", &linkname[2],
3739 	    EVP_PKEY_size(pkey) * 8);
3740 	record_crypto_stats(addr, statstr);
3741 
3742 	DPRINTF(1, ("crypto_key: %s\n", statstr));
3743 #ifdef DEBUG
3744 	if (debug > 1) {
3745 		if (EVP_PKEY_base_id(pkey) == EVP_PKEY_DSA)
3746 			DSA_print_fp(stdout, EVP_PKEY_get0_DSA(pkey), 0);
3747 		else if (EVP_PKEY_base_id(pkey) == EVP_PKEY_RSA)
3748 			RSA_print_fp(stdout, EVP_PKEY_get0_RSA(pkey), 0);
3749 	}
3750 #endif
3751 	return (pkp);
3752 }
3753 
3754 
3755 /*
3756  ***********************************************************************
3757  *								       *
3758  * The following routines are used only at initialization time         *
3759  *								       *
3760  ***********************************************************************
3761  */
3762 /*
3763  * crypto_cert - load certificate from file
3764  *
3765  * This routine loads an X.509 RSA or DSA certificate from a file and
3766  * constructs a info/cert value structure for this machine. The
3767  * structure includes a filestamp extracted from the file name. Later
3768  * the certificate can be sent to another machine on request.
3769  *
3770  * Returns certificate info/value pointer if valid, NULL if not.
3771  */
3772 static struct cert_info *	/* certificate information */
3773 crypto_cert(
3774 	char	*cp		/* file name */
3775 	)
3776 {
3777 	struct cert_info *ret; /* certificate information */
3778 	FILE	*str;		/* file handle */
3779 	char	filename[MAXFILENAME]; /* name of certificate file */
3780 	char	linkname[MAXFILENAME]; /* filestamp buffer */
3781 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3782 	tstamp_t fstamp;	/* filestamp */
3783 	long	len;
3784 	char	*ptr;
3785 	char	*name, *header;
3786 	u_char	*data;
3787 
3788 	/*
3789 	 * Open the certificate file. If the first character of the file
3790 	 * name is not '/', prepend the keys directory string. If
3791 	 * something goes wrong, abandon ship.
3792 	 */
3793 	if (*cp == '/')
3794 		strlcpy(filename, cp, sizeof(filename));
3795 	else
3796 		snprintf(filename, sizeof(filename), "%s/%s", keysdir,
3797 		    cp);
3798 	str = fopen(filename, "r");
3799 	if (str == NULL)
3800 		return (NULL);
3801 
3802 	/*
3803 	 * Read the filestamp, which is contained in the first line.
3804 	 */
3805 	if ((ptr = fgets(linkname, sizeof(linkname), str)) == NULL) {
3806 		msyslog(LOG_ERR, "crypto_cert: empty file %s",
3807 		    filename);
3808 		fclose(str);
3809 		return (NULL);
3810 	}
3811 	if ((ptr = strrchr(ptr, '.')) == NULL) {
3812 		msyslog(LOG_ERR, "crypto_cert: no filestamp %s",
3813 		    filename);
3814 		fclose(str);
3815 		return (NULL);
3816 	}
3817 	if (sscanf(++ptr, "%u", &fstamp) != 1) {
3818 		msyslog(LOG_ERR, "crypto_cert: invalid filestamp %s",
3819 		    filename);
3820 		fclose(str);
3821 		return (NULL);
3822 	}
3823 
3824 	/*
3825 	 * Read PEM-encoded certificate and install.
3826 	 */
3827 	if (!PEM_read(str, &name, &header, &data, &len)) {
3828 		msyslog(LOG_ERR, "crypto_cert: %s",
3829 		    ERR_error_string(ERR_get_error(), NULL));
3830 		fclose(str);
3831 		return (NULL);
3832 	}
3833 	fclose(str);
3834 	free(header);
3835 	if (strcmp(name, "CERTIFICATE") != 0) {
3836 		msyslog(LOG_NOTICE, "crypto_cert: wrong PEM type %s",
3837 		    name);
3838 		free(name);
3839 		free(data);
3840 		return (NULL);
3841 	}
3842 	free(name);
3843 
3844 	/*
3845 	 * Parse certificate and generate info/value structure. The
3846 	 * pointer and copy nonsense is due something broken in Solaris.
3847 	 */
3848 	ret = cert_parse(data, len, fstamp);
3849 	free(data);
3850 	if (ret == NULL)
3851 		return (NULL);
3852 
3853 	if ((ptr = strrchr(linkname, '\n')) != NULL)
3854 		*ptr = '\0';
3855 	snprintf(statstr, sizeof(statstr), "%s 0x%x len %lu",
3856 	    &linkname[2], ret->flags, len);
3857 	record_crypto_stats(NULL, statstr);
3858 	DPRINTF(1, ("crypto_cert: %s\n", statstr));
3859 	return (ret);
3860 }
3861 
3862 
3863 /*
3864  * crypto_setup - load keys, certificate and identity parameters
3865  *
3866  * This routine loads the public/private host key and certificate. If
3867  * available, it loads the public/private sign key, which defaults to
3868  * the host key. The host key must be RSA, but the sign key can be
3869  * either RSA or DSA. If a trusted certificate, it loads the identity
3870  * parameters. In either case, the public key on the certificate must
3871  * agree with the sign key.
3872  *
3873  * Required but missing files and inconsistent data and errors are
3874  * fatal. Allowing configuration to continue would be hazardous and
3875  * require really messy error checks.
3876  */
3877 void
3878 crypto_setup(void)
3879 {
3880 	struct pkey_info *pinfo; /* private/public key */
3881 	char	filename[MAXFILENAME]; /* file name buffer */
3882 	char	hostname[MAXFILENAME]; /* host name buffer */
3883 	char	*randfile;
3884 	char	statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3885 	l_fp	seed;		/* crypto PRNG seed as NTP timestamp */
3886 	u_int	len;
3887 	int	bytes;
3888 	u_char	*ptr;
3889 
3890 	/*
3891 	 * Check for correct OpenSSL version and avoid initialization in
3892 	 * the case of multiple crypto commands.
3893 	 */
3894 	if (crypto_flags & CRYPTO_FLAG_ENAB) {
3895 		msyslog(LOG_NOTICE,
3896 		    "crypto_setup: spurious crypto command");
3897 		return;
3898 	}
3899 	ssl_check_version();
3900 
3901 	/*
3902 	 * Load required random seed file and seed the random number
3903 	 * generator. Be default, it is found as .rnd in the user home
3904 	 * directory. The root home directory may be / or /root,
3905 	 * depending on the system. Wiggle the contents a bit and write
3906 	 * it back so the sequence does not repeat when we next restart.
3907 	 */
3908 	if (!RAND_status()) {
3909 		if (rand_file == NULL) {
3910 			RAND_file_name(filename, sizeof(filename));
3911 			randfile = filename;
3912 		} else if (*rand_file != '/') {
3913 			snprintf(filename, sizeof(filename), "%s/%s",
3914 			    keysdir, rand_file);
3915 			randfile = filename;
3916 		} else
3917 			randfile = rand_file;
3918 
3919 		if ((bytes = RAND_load_file(randfile, -1)) == 0) {
3920 			msyslog(LOG_ERR,
3921 			    "crypto_setup: random seed file %s missing",
3922 			    randfile);
3923 			exit (-1);
3924 		}
3925 		arc4random_buf(&seed, sizeof(l_fp));
3926 		RAND_seed(&seed, sizeof(l_fp));
3927 		RAND_write_file(randfile);
3928 		DPRINTF(1, ("crypto_setup: OpenSSL version %lx random seed file %s bytes read %d\n",
3929 			    OpenSSL_version_num(), randfile, bytes));
3930 
3931 	}
3932 
3933 	/*
3934 	 * Initialize structures.
3935 	 */
3936 	gethostname(hostname, sizeof(hostname));
3937 	if (host_filename != NULL)
3938 		strlcpy(hostname, host_filename, sizeof(hostname));
3939 	if (passwd == NULL)
3940 		passwd = estrdup(hostname);
3941 	memset(&hostval, 0, sizeof(hostval));
3942 	memset(&pubkey, 0, sizeof(pubkey));
3943 	memset(&tai_leap, 0, sizeof(tai_leap));
3944 
3945 	/*
3946 	 * Load required host key from file "ntpkey_host_<hostname>". If
3947 	 * no host key file is not found or has invalid password, life
3948 	 * as we know it ends. The host key also becomes the default
3949 	 * sign key.
3950 	 */
3951 	snprintf(filename, sizeof(filename), "ntpkey_host_%s", hostname);
3952 	pinfo = crypto_key(filename, passwd, NULL);
3953 	if (pinfo == NULL) {
3954 		msyslog(LOG_ERR,
3955 		    "crypto_setup: host key file %s not found or corrupt",
3956 		    filename);
3957 		exit (-1);
3958 	}
3959 	if (EVP_PKEY_base_id(pinfo->pkey) != EVP_PKEY_RSA) {
3960 		msyslog(LOG_ERR,
3961 		    "crypto_setup: host key is not RSA key type");
3962 		exit (-1);
3963 	}
3964 	host_pkey = pinfo->pkey;
3965 	sign_pkey = host_pkey;
3966 	hostval.fstamp = htonl(pinfo->fstamp);
3967 
3968 	/*
3969 	 * Construct public key extension field for agreement scheme.
3970 	 */
3971 	len = i2d_PublicKey(host_pkey, NULL);
3972 	ptr = emalloc(len);
3973 	pubkey.ptr = ptr;
3974 	i2d_PublicKey(host_pkey, &ptr);
3975 	pubkey.fstamp = hostval.fstamp;
3976 	pubkey.vallen = htonl(len);
3977 
3978 	/*
3979 	 * Load optional sign key from file "ntpkey_sign_<hostname>". If
3980 	 * available, it becomes the sign key.
3981 	 */
3982 	snprintf(filename, sizeof(filename), "ntpkey_sign_%s", hostname);
3983 	pinfo = crypto_key(filename, passwd, NULL);
3984 	if (pinfo != NULL)
3985 		sign_pkey = pinfo->pkey;
3986 
3987 	/*
3988 	 * Load required certificate from file "ntpkey_cert_<hostname>".
3989 	 */
3990 	snprintf(filename, sizeof(filename), "ntpkey_cert_%s", hostname);
3991 	cinfo = crypto_cert(filename);
3992 	if (cinfo == NULL) {
3993 		msyslog(LOG_ERR,
3994 		    "crypto_setup: certificate file %s not found or corrupt",
3995 		    filename);
3996 		exit (-1);
3997 	}
3998 	cert_host = cinfo;
3999 	sign_digest = cinfo->digest;
4000 	sign_siglen = EVP_PKEY_size(sign_pkey);
4001 	if (cinfo->flags & CERT_PRIV)
4002 		crypto_flags |= CRYPTO_FLAG_PRIV;
4003 
4004 	/*
4005 	 * The certificate must be self-signed.
4006 	 */
4007 	if (strcmp(cinfo->subject, cinfo->issuer) != 0) {
4008 		msyslog(LOG_ERR,
4009 		    "crypto_setup: certificate %s is not self-signed",
4010 		    filename);
4011 		exit (-1);
4012 	}
4013 	hostval.ptr = estrdup(cinfo->subject);
4014 	hostval.vallen = htonl(strlen(cinfo->subject));
4015 	sys_hostname = hostval.ptr;
4016 	ptr = (u_char *)strchr(sys_hostname, '@');
4017 	if (ptr != NULL)
4018 		sys_groupname = estrdup((char *)++ptr);
4019 	if (ident_filename != NULL)
4020 		strlcpy(hostname, ident_filename, sizeof(hostname));
4021 
4022 	/*
4023 	 * Load optional IFF parameters from file
4024 	 * "ntpkey_iffkey_<hostname>".
4025 	 */
4026 	snprintf(filename, sizeof(filename), "ntpkey_iffkey_%s",
4027 	    hostname);
4028 	iffkey_info = crypto_key(filename, passwd, NULL);
4029 	if (iffkey_info != NULL)
4030 		crypto_flags |= CRYPTO_FLAG_IFF;
4031 
4032 	/*
4033 	 * Load optional GQ parameters from file
4034 	 * "ntpkey_gqkey_<hostname>".
4035 	 */
4036 	snprintf(filename, sizeof(filename), "ntpkey_gqkey_%s",
4037 	    hostname);
4038 	gqkey_info = crypto_key(filename, passwd, NULL);
4039 	if (gqkey_info != NULL)
4040 		crypto_flags |= CRYPTO_FLAG_GQ;
4041 
4042 	/*
4043 	 * Load optional MV parameters from file
4044 	 * "ntpkey_mvkey_<hostname>".
4045 	 */
4046 	snprintf(filename, sizeof(filename), "ntpkey_mvkey_%s",
4047 	    hostname);
4048 	mvkey_info = crypto_key(filename, passwd, NULL);
4049 	if (mvkey_info != NULL)
4050 		crypto_flags |= CRYPTO_FLAG_MV;
4051 
4052 	/*
4053 	 * We met the enemy and he is us. Now strike up the dance.
4054 	 */
4055 	crypto_flags |= CRYPTO_FLAG_ENAB | (cinfo->nid << 16);
4056 	snprintf(statstr, sizeof(statstr), "setup 0x%x host %s %s",
4057 	    crypto_flags, hostname, OBJ_nid2ln(cinfo->nid));
4058 	record_crypto_stats(NULL, statstr);
4059 	DPRINTF(1, ("crypto_setup: %s\n", statstr));
4060 }
4061 
4062 
4063 /*
4064  * crypto_config - configure data from the crypto command.
4065  */
4066 void
4067 crypto_config(
4068 	int	item,		/* configuration item */
4069 	char	*cp		/* item name */
4070 	)
4071 {
4072 	int	nid;
4073 
4074 	DPRINTF(1, ("crypto_config: item %d %s\n", item, cp));
4075 
4076 	switch (item) {
4077 
4078 	/*
4079 	 * Set host name (host).
4080 	 */
4081 	case CRYPTO_CONF_PRIV:
4082 		if (NULL != host_filename)
4083 			free(host_filename);
4084 		host_filename = estrdup(cp);
4085 		break;
4086 
4087 	/*
4088 	 * Set group name (ident).
4089 	 */
4090 	case CRYPTO_CONF_IDENT:
4091 		if (NULL != ident_filename)
4092 			free(ident_filename);
4093 		ident_filename = estrdup(cp);
4094 		break;
4095 
4096 	/*
4097 	 * Set private key password (pw).
4098 	 */
4099 	case CRYPTO_CONF_PW:
4100 		if (NULL != passwd)
4101 			free(passwd);
4102 		passwd = estrdup(cp);
4103 		break;
4104 
4105 	/*
4106 	 * Set random seed file name (randfile).
4107 	 */
4108 	case CRYPTO_CONF_RAND:
4109 		if (NULL != rand_file)
4110 			free(rand_file);
4111 		rand_file = estrdup(cp);
4112 		break;
4113 
4114 	/*
4115 	 * Set message digest NID.
4116 	 */
4117 	case CRYPTO_CONF_NID:
4118 		nid = OBJ_sn2nid(cp);
4119 		if (nid == 0)
4120 			msyslog(LOG_ERR,
4121 			    "crypto_config: invalid digest name %s", cp);
4122 		else
4123 			crypto_nid = nid;
4124 		break;
4125 	}
4126 }
4127 
4128 /*
4129  * Get the  payload size (internal value length) of an extension packet.
4130  * If the inner value size does not match the outer packet size (that
4131  * is, the value would end behind the frame given by the opcode/size
4132  * field) the function will effectively return UINT_MAX. If the frame is
4133  * too short to hold a variable-sized value, the return value is zero.
4134  */
4135 static u_int
4136 exten_payload_size(
4137 	const struct exten * ep)
4138 {
4139 	typedef const u_char *BPTR;
4140 
4141 	size_t extn_size;
4142 	size_t data_size;
4143 	size_t head_size;
4144 
4145 	data_size = 0;
4146 	if (NULL != ep) {
4147 		head_size = (BPTR)(&ep->vallen + 1) - (BPTR)ep;
4148 		extn_size = (uint16_t)(ntohl(ep->opcode) & 0x0000ffff);
4149 		if (extn_size >= head_size) {
4150 			data_size = (uint32_t)ntohl(ep->vallen);
4151 			if (data_size > extn_size - head_size)
4152 				data_size = ~(size_t)0u;
4153 		}
4154 	}
4155 	return (u_int)data_size;
4156 }
4157 # else	/* !AUTOKEY follows */
4158 int ntp_crypto_bs_pubkey;
4159 # endif	/* !AUTOKEY */
4160