xref: /freebsd/contrib/ntp/ntpd/refclock_datum.c (revision 7bd6fde3)
1 /*
2 ** refclock_datum - clock driver for the Datum Programmable Time Server
3 **
4 ** Important note: This driver assumes that you have termios. If you have
5 ** a system that does not have termios, you will have to modify this driver.
6 **
7 ** Sorry, I have only tested this driver on SUN and HP platforms.
8 */
9 
10 #ifdef HAVE_CONFIG_H
11 # include <config.h>
12 #endif
13 
14 #if defined(REFCLOCK) && defined(CLOCK_DATUM)
15 
16 /*
17 ** Include Files
18 */
19 
20 #include "ntpd.h"
21 #include "ntp_io.h"
22 #include "ntp_refclock.h"
23 #include "ntp_unixtime.h"
24 #include "ntp_stdlib.h"
25 
26 #include <stdio.h>
27 #include <ctype.h>
28 
29 #if defined(HAVE_BSD_TTYS)
30 #include <sgtty.h>
31 #endif /* HAVE_BSD_TTYS */
32 
33 #if defined(HAVE_SYSV_TTYS)
34 #include <termio.h>
35 #endif /* HAVE_SYSV_TTYS */
36 
37 #if defined(HAVE_TERMIOS)
38 #include <termios.h>
39 #endif
40 #if defined(STREAM)
41 #include <stropts.h>
42 #if defined(WWVBCLK)
43 #include <sys/clkdefs.h>
44 #endif /* WWVBCLK */
45 #endif /* STREAM */
46 
47 #include "ntp_stdlib.h"
48 
49 /*
50 ** This driver supports the Datum Programmable Time System (PTS) clock.
51 ** The clock works in very straight forward manner. When it receives a
52 ** time code request (e.g., the ascii string "//k/mn"), it responds with
53 ** a seven byte BCD time code. This clock only responds with a
54 ** time code after it first receives the "//k/mn" message. It does not
55 ** periodically send time codes back at some rate once it is started.
56 ** the returned time code can be broken down into the following fields.
57 **
58 **            _______________________________
59 ** Bit Index | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
60 **            ===============================
61 ** byte 0:   | -   -   -   - |      H D      |
62 **            ===============================
63 ** byte 1:   |      T D      |      U D      |
64 **            ===============================
65 ** byte 2:   | -   - |  T H  |      U H      |
66 **            ===============================
67 ** byte 3:   | - |    T M    |      U M      |
68 **            ===============================
69 ** byte 4:   | - |    T S    |      U S      |
70 **            ===============================
71 ** byte 5:   |      t S      |      h S      |
72 **            ===============================
73 ** byte 6:   |      m S      | -   -   -   - |
74 **            ===============================
75 **
76 ** In the table above:
77 **
78 **	"-" means don't care
79 **	"H D", "T D", and "U D" means Hundreds, Tens, and Units of Days
80 **	"T H", and "UH" means Tens and Units of Hours
81 **	"T M", and "U M" means Tens and Units of Minutes
82 **	"T S", and "U S" means Tens and Units of Seconds
83 **	"t S", "h S", and "m S" means tenths, hundredths, and thousandths
84 **				of seconds
85 **
86 ** The Datum PTS communicates throught the RS232 port on your machine.
87 ** Right now, it assumes that you have termios. This driver has been tested
88 ** on SUN and HP workstations. The Datum PTS supports various IRIG and
89 ** NASA input codes. This driver assumes that the name of the device is
90 ** /dev/datum. You will need to make a soft link to your RS232 device or
91 ** create a new driver to use this refclock.
92 */
93 
94 /*
95 ** Datum PTS defines
96 */
97 
98 /*
99 ** Note that if GMT is defined, then the Datum PTS must use Greenwich
100 ** time. Otherwise, this driver allows the Datum PTS to use the current
101 ** wall clock for its time. It determines the time zone offset by minimizing
102 ** the error after trying several time zone offsets. If the Datum PTS
103 ** time is Greenwich time and GMT is not defined, everything should still
104 ** work since the time zone will be found to be 0. What this really means
105 ** is that your system time (at least to start with) must be within the
106 ** correct time by less than +- 30 minutes. The default is for GMT to not
107 ** defined. If you really want to force GMT without the funny +- 30 minute
108 ** stuff then you must define (uncomment) GMT below.
109 */
110 
111 /*
112 #define GMT
113 #define DEBUG_DATUM_PTC
114 #define LOG_TIME_ERRORS
115 */
116 
117 
118 #define	PRECISION	(-10)		/* precision assumed 1/1024 ms */
119 #define	REFID "DATM"			/* reference id */
120 #define DATUM_DISPERSION 0		/* fixed dispersion = 0 ms */
121 #define DATUM_MAX_ERROR 0.100		/* limits on sigma squared */
122 
123 #define DATUM_MAX_ERROR2 (DATUM_MAX_ERROR*DATUM_MAX_ERROR)
124 
125 /*
126 ** The Datum PTS structure
127 */
128 
129 /*
130 ** I don't use a fixed array of MAXUNITS like everyone else just because
131 ** I don't like to program that way. Sorry if this bothers anyone. I assume
132 ** that you can use any id for your unit and I will search for it in a
133 ** dynamic array of units until I find it. I was worried that users might
134 ** enter a bad id in their configuration file (larger than MAXUNITS) and
135 ** besides, it is just cleaner not to have to assume that you have a fixed
136 ** number of anything in a program.
137 */
138 
139 struct datum_pts_unit {
140 	struct peer *peer;		/* peer used by ntp */
141 	struct refclockio io;		/* io structure used by ntp */
142 	int PTS_fd;			/* file descriptor for PTS */
143 	u_int unit;			/* id for unit */
144 	u_long timestarted;		/* time started */
145 	l_fp lastrec;			/* time tag for the receive time (system) */
146 	l_fp lastref;			/* reference time (Datum time) */
147 	u_long yearstart;		/* the year that this clock started */
148 	int coderecv;			/* number of time codes received */
149 	int day;			/* day */
150 	int hour;			/* hour */
151 	int minute;			/* minutes */
152 	int second;			/* seconds */
153 	int msec;			/* miliseconds */
154 	int usec;			/* miliseconds */
155 	u_char leap;			/* funny leap character code */
156 	char retbuf[8];		/* returned time from the datum pts */
157 	char nbytes;			/* number of bytes received from datum pts */
158 	double sigma2;		/* average squared error (roughly) */
159 	int tzoff;			/* time zone offest from GMT */
160 };
161 
162 /*
163 ** PTS static constant variables for internal use
164 */
165 
166 static char TIME_REQUEST[6];	/* request message sent to datum for time */
167 static int nunits;		/* number of active units */
168 static struct datum_pts_unit
169 **datum_pts_unit;	/* dynamic array of datum PTS structures */
170 
171 /*
172 ** Callback function prototypes that ntpd needs to know about.
173 */
174 
175 static	int	datum_pts_start		P((int, struct peer *));
176 static	void	datum_pts_shutdown	P((int, struct peer *));
177 static	void	datum_pts_poll		P((int, struct peer *));
178 static	void	datum_pts_control	P((int, struct refclockstat *,
179 					   struct refclockstat *, struct peer *));
180 static	void	datum_pts_init		P((void));
181 static	void	datum_pts_buginfo	P((int, struct refclockbug *, struct peer *));
182 
183 /*
184 ** This is the call back function structure that ntpd actually uses for
185 ** this refclock.
186 */
187 
188 struct	refclock refclock_datum = {
189 	datum_pts_start,		/* start up a new Datum refclock */
190 	datum_pts_shutdown,		/* shutdown a Datum refclock */
191 	datum_pts_poll,		/* sends out the time request */
192 	datum_pts_control,		/* not used */
193 	datum_pts_init,		/* initialization (called first) */
194 	datum_pts_buginfo,		/* not used */
195 	NOFLAGS			/* we are not setting any special flags */
196 };
197 
198 /*
199 ** The datum_pts_receive callback function is handled differently from the
200 ** rest. It is passed to the ntpd io data structure. Basically, every
201 ** 64 seconds, the datum_pts_poll() routine is called. It sends out the time
202 ** request message to the Datum Programmable Time System. Then, ntpd
203 ** waits on a select() call to receive data back. The datum_pts_receive()
204 ** function is called as data comes back. We expect a seven byte time
205 ** code to be returned but the datum_pts_receive() function may only get
206 ** a few bytes passed to it at a time. In other words, this routine may
207 ** get called by the io stuff in ntpd a few times before we get all seven
208 ** bytes. Once the last byte is received, we process it and then pass the
209 ** new time measurement to ntpd for updating the system time. For now,
210 ** there is no 3 state filtering done on the time measurements. The
211 ** jitter may be a little high but at least for its current use, it is not
212 ** a problem. We have tried to keep things as simple as possible. This
213 ** clock should not jitter more than 1 or 2 mseconds at the most once
214 ** things settle down. It is important to get the right drift calibrated
215 ** in the ntpd.drift file as well as getting the right tick set up right
216 ** using tickadj for SUNs. Tickadj is not used for the HP but you need to
217 ** remember to bring up the adjtime daemon because HP does not support
218 ** the adjtime() call.
219 */
220 
221 static	void	datum_pts_receive	P((struct recvbuf *));
222 
223 /*......................................................................*/
224 /*	datum_pts_start - start up the datum PTS. This means open the	*/
225 /*	RS232 device and set up the data structure for my unit.		*/
226 /*......................................................................*/
227 
228 static int
229 datum_pts_start(
230 	int unit,
231 	struct peer *peer
232 	)
233 {
234 	struct datum_pts_unit **temp_datum_pts_unit;
235 	struct datum_pts_unit *datum_pts;
236 #ifdef HAVE_TERMIOS
237 	struct termios arg;
238 #endif
239 
240 #ifdef DEBUG_DATUM_PTC
241 	if (debug)
242 	    printf("Starting Datum PTS unit %d\n", unit);
243 #endif
244 
245 	/*
246 	** Create the memory for the new unit
247 	*/
248 
249 	temp_datum_pts_unit = (struct datum_pts_unit **)
250 		malloc((nunits+1)*sizeof(struct datum_pts_unit *));
251 	if (nunits > 0) memcpy(temp_datum_pts_unit, datum_pts_unit,
252 			       nunits*sizeof(struct datum_pts_unit *));
253 	free(datum_pts_unit);
254 	datum_pts_unit = temp_datum_pts_unit;
255 	datum_pts_unit[nunits] = (struct datum_pts_unit *)
256 		malloc(sizeof(struct datum_pts_unit));
257 	datum_pts = datum_pts_unit[nunits];
258 
259 	datum_pts->unit = unit;	/* set my unit id */
260 	datum_pts->yearstart = 0;	/* initialize the yearstart to 0 */
261 	datum_pts->sigma2 = 0.0;	/* initialize the sigma2 to 0 */
262 
263 	/*
264 	** Open the Datum PTS device
265 	*/
266 
267 	datum_pts->PTS_fd = open("/dev/datum",O_RDWR);
268 
269 	fcntl(datum_pts->PTS_fd, F_SETFL, 0); /* clear the descriptor flags */
270 
271 #ifdef DEBUG_DATUM_PTC
272 	if (debug)
273 	    printf("Opening RS232 port with file descriptor %d\n",
274 		   datum_pts->PTS_fd);
275 #endif
276 
277 	/*
278 	** Set up the RS232 terminal device information. Note that we assume that
279 	** we have termios. This code has only been tested on SUNs and HPs. If your
280 	** machine does not have termios this driver cannot be initialized. You can change this
281 	** if you want by editing this source. Please give the changes back to the
282 	** ntp folks so that it can become part of their regular distribution.
283 	*/
284 
285 #ifdef HAVE_TERMIOS
286 
287 	arg.c_iflag = IGNBRK;
288 	arg.c_oflag = 0;
289 	arg.c_cflag = B9600 | CS8 | CREAD | PARENB | CLOCAL;
290 	arg.c_lflag = 0;
291 	arg.c_cc[VMIN] = 0;		/* start timeout timer right away (not used) */
292 	arg.c_cc[VTIME] = 30;		/* 3 second timout on reads (not used) */
293 
294 	tcsetattr(datum_pts->PTS_fd, TCSANOW, &arg);
295 
296 #else
297 
298 	msyslog(LOG_ERR, "Datum_PTS: Termios not supported in this driver");
299 	(void)close(datum_pts->PTS_fd);
300 
301 	peer->precision = PRECISION;
302 	pp->clockdesc = DESCRIPTION;
303 	memcpy((char *)&pp->refid, REFID, 4);
304 
305 	return 0;
306 
307 #endif
308 
309 	/*
310 	** Initialize the ntpd IO structure
311 	*/
312 
313 	datum_pts->peer = peer;
314 	datum_pts->io.clock_recv = datum_pts_receive;
315 	datum_pts->io.srcclock = (caddr_t)datum_pts;
316 	datum_pts->io.datalen = 0;
317 	datum_pts->io.fd = datum_pts->PTS_fd;
318 
319 	if (!io_addclock(&(datum_pts->io))) {
320 
321 #ifdef DEBUG_DATUM_PTC
322 		if (debug)
323 		    printf("Problem adding clock\n");
324 #endif
325 
326 		msyslog(LOG_ERR, "Datum_PTS: Problem adding clock");
327 		(void)close(datum_pts->PTS_fd);
328 
329 		return 0;
330 	}
331 
332 	/*
333 	** Now add one to the number of units and return a successful code
334 	*/
335 
336 	nunits++;
337 	return 1;
338 
339 }
340 
341 
342 /*......................................................................*/
343 /*	datum_pts_shutdown - this routine shuts doen the device and	*/
344 /*	removes the memory for the unit.				*/
345 /*......................................................................*/
346 
347 static void
348 datum_pts_shutdown(
349 	int unit,
350 	struct peer *peer
351 	)
352 {
353 	int i,j;
354 	struct datum_pts_unit **temp_datum_pts_unit;
355 
356 #ifdef DEBUG_DATUM_PTC
357 	if (debug)
358 	    printf("Shutdown Datum PTS\n");
359 #endif
360 
361 	msyslog(LOG_ERR, "Datum_PTS: Shutdown Datum PTS");
362 
363 	/*
364 	** First we have to find the right unit (i.e., the one with the same id).
365 	** We do this by looping through the dynamic array of units intil we find
366 	** it. Note, that I don't simply use an array with a maximimum number of
367 	** Datum PTS units. Everything is completely dynamic.
368 	*/
369 
370 	for (i=0; i<nunits; i++) {
371 		if (datum_pts_unit[i]->unit == unit) {
372 
373 			/*
374 			** We found the unit so close the file descriptor and free up the memory used
375 			** by the structure.
376 			*/
377 
378 			io_closeclock(&datum_pts_unit[i]->io);
379 			close(datum_pts_unit[i]->PTS_fd);
380 			free(datum_pts_unit[i]);
381 
382 			/*
383 			** Now clean up the datum_pts_unit dynamic array so that there are no holes.
384 			** This may mean moving pointers around, etc., to keep things compact.
385 			*/
386 
387 			if (nunits > 1) {
388 
389 				temp_datum_pts_unit = (struct datum_pts_unit **)
390 					malloc((nunits-1)*sizeof(struct datum_pts_unit *));
391 				if (i!= 0) memcpy(temp_datum_pts_unit, datum_pts_unit,
392 						  i*sizeof(struct datum_pts_unit *));
393 
394 				for (j=i+1; j<nunits; j++) {
395 					temp_datum_pts_unit[j-1] = datum_pts_unit[j];
396 				}
397 
398 				free(datum_pts_unit);
399 				datum_pts_unit = temp_datum_pts_unit;
400 
401 			}else{
402 
403 				free(datum_pts_unit);
404 				datum_pts_unit = NULL;
405 
406 			}
407 
408 			return;
409 
410 		}
411 	}
412 
413 #ifdef DEBUG_DATUM_PTC
414 	if (debug)
415 	    printf("Error, could not shut down unit %d\n",unit);
416 #endif
417 
418 	msyslog(LOG_ERR, "Datum_PTS: Could not shut down Datum PTS unit %d",unit);
419 
420 }
421 
422 /*......................................................................*/
423 /*	datum_pts_poll - this routine sends out the time request to the */
424 /*	Datum PTS device. The time will be passed back in the 		*/
425 /*	datum_pts_receive() routine.					*/
426 /*......................................................................*/
427 
428 static void
429 datum_pts_poll(
430 	int unit,
431 	struct peer *peer
432 	)
433 {
434 	int i;
435 	int unit_index;
436 	int error_code;
437 	struct datum_pts_unit *datum_pts;
438 
439 #ifdef DEBUG_DATUM_PTC
440 	if (debug)
441 	    printf("Poll Datum PTS\n");
442 #endif
443 
444 	/*
445 	** Find the right unit and send out a time request once it is found.
446 	*/
447 
448 	unit_index = -1;
449 	for (i=0; i<nunits; i++) {
450 		if (datum_pts_unit[i]->unit == unit) {
451 			unit_index = i;
452 			datum_pts = datum_pts_unit[i];
453 			error_code = write(datum_pts->PTS_fd, TIME_REQUEST, 6);
454 			if (error_code != 6) perror("TIME_REQUEST");
455 			datum_pts->nbytes = 0;
456 			break;
457 		}
458 	}
459 
460 	/*
461 	** Print out an error message if we could not find the right unit.
462 	*/
463 
464 	if (unit_index == -1) {
465 
466 #ifdef DEBUG_DATUM_PTC
467 		if (debug)
468 		    printf("Error, could not poll unit %d\n",unit);
469 #endif
470 
471 		msyslog(LOG_ERR, "Datum_PTS: Could not poll unit %d",unit);
472 		return;
473 
474 	}
475 
476 }
477 
478 
479 /*......................................................................*/
480 /*	datum_pts_control - not used					*/
481 /*......................................................................*/
482 
483 static void
484 datum_pts_control(
485 	int unit,
486 	struct refclockstat *in,
487 	struct refclockstat *out,
488 	struct peer *peer
489 	)
490 {
491 
492 #ifdef DEBUG_DATUM_PTC
493 	if (debug)
494 	    printf("Control Datum PTS\n");
495 #endif
496 
497 }
498 
499 
500 /*......................................................................*/
501 /*	datum_pts_init - initializes things for all possible Datum	*/
502 /*	time code generators that might be used. In practice, this is	*/
503 /*	only called once at the beginning before anything else is	*/
504 /*	called.								*/
505 /*......................................................................*/
506 
507 static void
508 datum_pts_init(void)
509 {
510 
511 	/*									*/
512 	/*...... open up the log file if we are debugging ......................*/
513 	/*									*/
514 
515 	/*
516 	** Open up the log file if we are debugging. For now, send data out to the
517 	** screen (stdout).
518 	*/
519 
520 #ifdef DEBUG_DATUM_PTC
521 	if (debug)
522 	    printf("Init Datum PTS\n");
523 #endif
524 
525 	/*
526 	** Initialize the time request command string. This is the only message
527 	** that we ever have to send to the Datum PTS (although others are defined).
528 	*/
529 
530 	memcpy(TIME_REQUEST, "//k/mn",6);
531 
532 	/*
533 	** Initialize the number of units to 0 and set the dynamic array of units to
534 	** NULL since there are no units defined yet.
535 	*/
536 
537 	datum_pts_unit = NULL;
538 	nunits = 0;
539 
540 }
541 
542 
543 /*......................................................................*/
544 /*	datum_pts_buginfo - not used					*/
545 /*......................................................................*/
546 
547 static void
548 datum_pts_buginfo(
549 	int unit,
550 	register struct refclockbug *bug,
551 	register struct peer *peer
552 	)
553 {
554 
555 #ifdef DEBUG_DATUM_PTC
556 	if (debug)
557 	    printf("Buginfo Datum PTS\n");
558 #endif
559 
560 }
561 
562 
563 /*......................................................................*/
564 /*	datum_pts_receive - receive the time buffer that was read in	*/
565 /*	by the ntpd io handling routines. When 7 bytes have been	*/
566 /*	received (it may take several tries before all 7 bytes are	*/
567 /*	received), then the time code must be unpacked and sent to	*/
568 /*	the ntpd clock_receive() routine which causes the systems	*/
569 /*	clock to be updated (several layers down).			*/
570 /*......................................................................*/
571 
572 static void
573 datum_pts_receive(
574 	struct recvbuf *rbufp
575 	)
576 {
577 	int i;
578 	l_fp tstmp;
579 	struct datum_pts_unit *datum_pts;
580 	char *dpt;
581 	int dpend;
582 	int tzoff;
583 	int timerr;
584 	double ftimerr, abserr;
585 #ifdef DEBUG_DATUM_PTC
586 	double dispersion;
587 #endif
588 	int goodtime;
589       /*double doffset;*/
590 
591 	/*
592 	** Get the time code (maybe partial) message out of the rbufp buffer.
593 	*/
594 
595 	datum_pts = (struct datum_pts_unit *)rbufp->recv_srcclock;
596 	dpt = (char *)&rbufp->recv_space;
597 	dpend = rbufp->recv_length;
598 
599 #ifdef DEBUG_DATUM_PTC
600 	if (debug)
601 	    printf("Receive Datum PTS: %d bytes\n", dpend);
602 #endif
603 
604 	/*									*/
605 	/*...... save the ntp system time when the first byte is received ......*/
606 	/*									*/
607 
608 	/*
609 	** Save the ntp system time when the first byte is received. Note that
610 	** because it may take several calls to this routine before all seven
611 	** bytes of our return message are finally received by the io handlers in
612 	** ntpd, we really do want to use the time tag when the first byte is
613 	** received to reduce the jitter.
614 	*/
615 
616 	if (datum_pts->nbytes == 0) {
617 		datum_pts->lastrec = rbufp->recv_time;
618 	}
619 
620 	/*
621 	** Increment our count to the number of bytes received so far. Return if we
622 	** haven't gotten all seven bytes yet.
623 	*/
624 
625 	for (i=0; i<dpend; i++) {
626 		datum_pts->retbuf[datum_pts->nbytes+i] = dpt[i];
627 	}
628 
629 	datum_pts->nbytes += dpend;
630 
631 	if (datum_pts->nbytes != 7) {
632 		return;
633 	}
634 
635 	/*
636 	** Convert the seven bytes received in our time buffer to day, hour, minute,
637 	** second, and msecond values. The usec value is not used for anything
638 	** currently. It is just the fractional part of the time stored in units
639 	** of microseconds.
640 	*/
641 
642 	datum_pts->day =	100*(datum_pts->retbuf[0] & 0x0f) +
643 		10*((datum_pts->retbuf[1] & 0xf0)>>4) +
644 		(datum_pts->retbuf[1] & 0x0f);
645 
646 	datum_pts->hour =	10*((datum_pts->retbuf[2] & 0x30)>>4) +
647 		(datum_pts->retbuf[2] & 0x0f);
648 
649 	datum_pts->minute =	10*((datum_pts->retbuf[3] & 0x70)>>4) +
650 		(datum_pts->retbuf[3] & 0x0f);
651 
652 	datum_pts->second =	10*((datum_pts->retbuf[4] & 0x70)>>4) +
653 		(datum_pts->retbuf[4] & 0x0f);
654 
655 	datum_pts->msec =	100*((datum_pts->retbuf[5] & 0xf0) >> 4) +
656 		10*(datum_pts->retbuf[5] & 0x0f) +
657 		((datum_pts->retbuf[6] & 0xf0)>>4);
658 
659 	datum_pts->usec =	1000*datum_pts->msec;
660 
661 #ifdef DEBUG_DATUM_PTC
662 	if (debug)
663 	    printf("day %d, hour %d, minute %d, second %d, msec %d\n",
664 		   datum_pts->day,
665 		   datum_pts->hour,
666 		   datum_pts->minute,
667 		   datum_pts->second,
668 		   datum_pts->msec);
669 #endif
670 
671 	/*
672 	** Get the GMT time zone offset. Note that GMT should be zero if the Datum
673 	** reference time is using GMT as its time base. Otherwise we have to
674 	** determine the offset if the Datum PTS is using time of day as its time
675 	** base.
676 	*/
677 
678 	goodtime = 0;		/* We are not sure about the time and offset yet */
679 
680 #ifdef GMT
681 
682 	/*
683 	** This is the case where the Datum PTS is using GMT so there is no time
684 	** zone offset.
685 	*/
686 
687 	tzoff = 0;		/* set time zone offset to 0 */
688 
689 #else
690 
691 	/*
692 	** This is the case where the Datum PTS is using regular time of day for its
693 	** time so we must compute the time zone offset. The way we do it is kind of
694 	** funny but it works. We loop through different time zones (0 to 24) and
695 	** pick the one that gives the smallest error (+- one half hour). The time
696 	** zone offset is stored in the datum_pts structure for future use. Normally,
697 	** the clocktime() routine is only called once (unless the time zone offset
698 	** changes due to daylight savings) since the goodtime flag is set when a
699 	** good time is found (with a good offset). Note that even if the Datum
700 	** PTS is using GMT, this mechanism will still work since it should come up
701 	** with a value for tzoff = 0 (assuming that your system clock is within
702 	** a half hour of the Datum time (even with time zone differences).
703 	*/
704 
705 	for (tzoff=0; tzoff<24; tzoff++) {
706 		if (clocktime( datum_pts->day,
707 			       datum_pts->hour,
708 			       datum_pts->minute,
709 			       datum_pts->second,
710 			       (tzoff + datum_pts->tzoff) % 24,
711 			       datum_pts->lastrec.l_ui,
712 			       &datum_pts->yearstart,
713 			       &datum_pts->lastref.l_ui) ) {
714 
715 			datum_pts->lastref.l_uf = 0;
716 			error = datum_pts->lastref.l_ui - datum_pts->lastrec.l_ui;
717 
718 #ifdef DEBUG_DATUM_PTC
719 			printf("Time Zone (clocktime method) = %d, error = %d\n", tzoff, error);
720 #endif
721 
722 			if ((error < 1799) && (error > -1799)) {
723 				tzoff = (tzoff + datum_pts->tzoff) % 24;
724 				datum_pts->tzoff = tzoff;
725 				goodtime = 1;
726 
727 #ifdef DEBUG_DATUM_PTC
728 				printf("Time Zone found (clocktime method) = %d\n",tzoff);
729 #endif
730 
731 				break;
732 			}
733 
734 		}
735 	}
736 
737 #endif
738 
739 	/*
740 	** Make sure that we have a good time from the Datum PTS. Clocktime() also
741 	** sets yearstart and lastref.l_ui. We will have to set astref.l_uf (i.e.,
742 	** the fraction of a second) stuff later.
743 	*/
744 
745 	if (!goodtime) {
746 
747 		if (!clocktime( datum_pts->day,
748 				datum_pts->hour,
749 				datum_pts->minute,
750 				datum_pts->second,
751 				tzoff,
752 				datum_pts->lastrec.l_ui,
753 				&datum_pts->yearstart,
754 				&datum_pts->lastref.l_ui) ) {
755 
756 #ifdef DEBUG_DATUM_PTC
757 			if (debug)
758 			{
759 				printf("Error: bad clocktime\n");
760 				printf("GMT %d, lastrec %d, yearstart %d, lastref %d\n",
761 				       tzoff,
762 				       datum_pts->lastrec.l_ui,
763 				       datum_pts->yearstart,
764 				       datum_pts->lastref.l_ui);
765 			}
766 #endif
767 
768 			msyslog(LOG_ERR, "Datum_PTS: Bad clocktime");
769 
770 			return;
771 
772 		}else{
773 
774 #ifdef DEBUG_DATUM_PTC
775 			if (debug)
776 			    printf("Good clocktime\n");
777 #endif
778 
779 		}
780 
781 	}
782 
783 	/*
784 	** We have datum_pts->lastref.l_ui set (which is the integer part of the
785 	** time. Now set the microseconds field.
786 	*/
787 
788 	TVUTOTSF(datum_pts->usec, datum_pts->lastref.l_uf);
789 
790 	/*
791 	** Compute the time correction as the difference between the reference
792 	** time (i.e., the Datum time) minus the receive time (system time).
793 	*/
794 
795 	tstmp = datum_pts->lastref;		/* tstmp is the datum ntp time */
796 	L_SUB(&tstmp, &datum_pts->lastrec);	/* tstmp is now the correction */
797 	datum_pts->coderecv++;		/* increment a counter */
798 
799 #ifdef DEBUG_DATUM_PTC
800 	dispersion = DATUM_DISPERSION;	/* set the dispersion to 0 */
801 	ftimerr = dispersion;
802 	ftimerr /= (1024.0 * 64.0);
803 	if (debug)
804 	    printf("dispersion = %d, %f\n", dispersion, ftimerr);
805 #endif
806 
807 	/*
808 	** Pass the new time to ntpd through the refclock_receive function. Note
809 	** that we are not trying to make any corrections due to the time it takes
810 	** for the Datum PTS to send the message back. I am (erroneously) assuming
811 	** that the time for the Datum PTS to send the time back to us is negligable.
812 	** I suspect that this time delay may be as much as 15 ms or so (but probably
813 	** less). For our needs at JPL, this kind of error is ok so it is not
814 	** necessary to use fudge factors in the ntp.conf file. Maybe later we will.
815 	*/
816       /*LFPTOD(&tstmp, doffset);*/
817 	datum_pts->lastref = datum_pts->lastrec;
818 	refclock_receive(datum_pts->peer);
819 
820 	/*
821 	** Compute sigma squared (not used currently). Maybe later, this could be
822 	** used for the dispersion estimate. The problem is that ntpd does not link
823 	** in the math library so sqrt() is not available. Anyway, this is useful
824 	** for debugging. Maybe later I will just use absolute values for the time
825 	** error to come up with my dispersion estimate. Anyway, for now my dispersion
826 	** is set to 0.
827 	*/
828 
829 	timerr = tstmp.l_ui<<20;
830 	timerr |= (tstmp.l_uf>>12) & 0x000fffff;
831 	ftimerr = timerr;
832 	ftimerr /= 1024*1024;
833 	abserr = ftimerr;
834 	if (ftimerr < 0.0) abserr = -ftimerr;
835 
836 	if (datum_pts->sigma2 == 0.0) {
837 		if (abserr < DATUM_MAX_ERROR) {
838 			datum_pts->sigma2 = abserr*abserr;
839 		}else{
840 			datum_pts->sigma2 = DATUM_MAX_ERROR2;
841 		}
842 	}else{
843 		if (abserr < DATUM_MAX_ERROR) {
844 			datum_pts->sigma2 = 0.95*datum_pts->sigma2 + 0.05*abserr*abserr;
845 		}else{
846 			datum_pts->sigma2 = 0.95*datum_pts->sigma2 + 0.05*DATUM_MAX_ERROR2;
847 		}
848 	}
849 
850 #ifdef DEBUG_DATUM_PTC
851 	if (debug)
852 	    printf("Time error = %f seconds\n", ftimerr);
853 #endif
854 
855 #if defined(DEBUG_DATUM_PTC) || defined(LOG_TIME_ERRORS)
856 	if (debug)
857 	    printf("PTS: day %d, hour %d, minute %d, second %d, msec %d, Time Error %f\n",
858 		   datum_pts->day,
859 		   datum_pts->hour,
860 		   datum_pts->minute,
861 		   datum_pts->second,
862 		   datum_pts->msec,
863 		   ftimerr);
864 #endif
865 
866 }
867 #else
868 int refclock_datum_bs;
869 #endif /* REFCLOCK */
870