xref: /freebsd/contrib/ntp/ntpd/refclock_wwv.c (revision 81ad6265)
1 /*
2  * refclock_wwv - clock driver for NIST WWV/H time/frequency station
3  */
4 #ifdef HAVE_CONFIG_H
5 #include <config.h>
6 #endif
7 
8 #if defined(REFCLOCK) && defined(CLOCK_WWV)
9 
10 #include "ntpd.h"
11 #include "ntp_io.h"
12 #include "ntp_refclock.h"
13 #include "ntp_calendar.h"
14 #include "ntp_stdlib.h"
15 #include "audio.h"
16 
17 #include <stdio.h>
18 #include <ctype.h>
19 #include <math.h>
20 #ifdef HAVE_SYS_IOCTL_H
21 # include <sys/ioctl.h>
22 #endif /* HAVE_SYS_IOCTL_H */
23 
24 #define ICOM 1
25 
26 #ifdef ICOM
27 #include "icom.h"
28 #endif /* ICOM */
29 
30 /*
31  * Audio WWV/H demodulator/decoder
32  *
33  * This driver synchronizes the computer time using data encoded in
34  * radio transmissions from NIST time/frequency stations WWV in Boulder,
35  * CO, and WWVH in Kauai, HI. Transmissions are made continuously on
36  * 2.5, 5, 10 and 15 MHz from WWV and WWVH, and 20 MHz from WWV. An
37  * ordinary AM shortwave receiver can be tuned manually to one of these
38  * frequencies or, in the case of ICOM receivers, the receiver can be
39  * tuned automatically using this program as propagation conditions
40  * change throughout the weasons, both day and night.
41  *
42  * The driver requires an audio codec or sound card with sampling rate 8
43  * kHz and mu-law companding. This is the same standard as used by the
44  * telephone industry and is supported by most hardware and operating
45  * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
46  * implementation, only one audio driver and codec can be supported on a
47  * single machine.
48  *
49  * The demodulation and decoding algorithms used in this driver are
50  * based on those developed for the TAPR DSP93 development board and the
51  * TI 320C25 digital signal processor described in: Mills, D.L. A
52  * precision radio clock for WWV transmissions. Electrical Engineering
53  * Report 97-8-1, University of Delaware, August 1997, 25 pp., available
54  * from www.eecis.udel.edu/~mills/reports.html. The algorithms described
55  * in this report have been modified somewhat to improve performance
56  * under weak signal conditions and to provide an automatic station
57  * identification feature.
58  *
59  * The ICOM code is normally compiled in the driver. It isn't used,
60  * unless the mode keyword on the server configuration command specifies
61  * a nonzero ICOM ID select code. The C-IV trace is turned on if the
62  * debug level is greater than one.
63  *
64  * Fudge factors
65  *
66  * Fudge flag4 causes the debugging output described above to be
67  * recorded in the clockstats file. Fudge flag2 selects the audio input
68  * port, where 0 is the mike port (default) and 1 is the line-in port.
69  * It does not seem useful to select the compact disc player port. Fudge
70  * flag3 enables audio monitoring of the input signal. For this purpose,
71  * the monitor gain is set to a default value.
72  *
73  * CEVNT_BADTIME	invalid date or time
74  * CEVNT_PROP		propagation failure - no stations heard
75  * CEVNT_TIMEOUT	timeout (see newgame() below)
76  */
77 /*
78  * General definitions. These ordinarily do not need to be changed.
79  */
80 #define	DEVICE_AUDIO	"/dev/audio" /* audio device name */
81 #define	AUDIO_BUFSIZ	320	/* audio buffer size (50 ms) */
82 #define	PRECISION	(-10)	/* precision assumed (about 1 ms) */
83 #define	DESCRIPTION	"WWV/H Audio Demodulator/Decoder" /* WRU */
84 #define WWV_SEC		8000	/* second epoch (sample rate) (Hz) */
85 #define WWV_MIN		(WWV_SEC * 60) /* minute epoch */
86 #define OFFSET		128	/* companded sample offset */
87 #define SIZE		256	/* decompanding table size */
88 #define	MAXAMP		6000.	/* max signal level reference */
89 #define	MAXCLP		100	/* max clips above reference per s */
90 #define MAXSNR		40.	/* max SNR reference */
91 #define MAXFREQ		1.5	/* max frequency tolerance (187 PPM) */
92 #define DATCYC		170	/* data filter cycles */
93 #define DATSIZ		(DATCYC * MS) /* data filter size */
94 #define SYNCYC		800	/* minute filter cycles */
95 #define SYNSIZ		(SYNCYC * MS) /* minute filter size */
96 #define TCKCYC		5	/* tick filter cycles */
97 #define TCKSIZ		(TCKCYC * MS) /* tick filter size */
98 #define NCHAN		5	/* number of radio channels */
99 #define	AUDIO_PHI	5e-6	/* dispersion growth factor */
100 #define	TBUF		128	/* max monitor line length */
101 
102 /*
103  * Tunable parameters. The DGAIN parameter can be changed to fit the
104  * audio response of the radio at 100 Hz. The WWV/WWVH data subcarrier
105  * is transmitted at about 20 percent percent modulation; the matched
106  * filter boosts it by a factor of 17 and the receiver response does
107  * what it does. The compromise value works for ICOM radios. If the
108  * radio is not tunable, the DCHAN parameter can be changed to fit the
109  * expected best propagation frequency: higher if further from the
110  * transmitter, lower if nearer. The compromise value works for the US
111  * right coast.
112  */
113 #define DCHAN		3	/* default radio channel (15 Mhz) */
114 #define DGAIN		5.	/* subcarrier gain */
115 
116 /*
117  * General purpose status bits (status)
118  *
119  * SELV and/or SELH are set when WWV or WWVH have been heard and cleared
120  * on signal loss. SSYNC is set when the second sync pulse has been
121  * acquired and cleared by signal loss. MSYNC is set when the minute
122  * sync pulse has been acquired. DSYNC is set when the units digit has
123  * has reached the threshold and INSYNC is set when all nine digits have
124  * reached the threshold. The MSYNC, DSYNC and INSYNC bits are cleared
125  * only by timeout, upon which the driver starts over from scratch.
126  *
127  * DGATE is lit if the data bit amplitude or SNR is below thresholds and
128  * BGATE is lit if the pulse width amplitude or SNR is below thresolds.
129  * LEPSEC is set during the last minute of the leap day. At the end of
130  * this minute the driver inserts second 60 in the seconds state machine
131  * and the minute sync slips a second.
132  */
133 #define MSYNC		0x0001	/* minute epoch sync */
134 #define SSYNC		0x0002	/* second epoch sync */
135 #define DSYNC		0x0004	/* minute units sync */
136 #define INSYNC		0x0008	/* clock synchronized */
137 #define FGATE		0x0010	/* frequency gate */
138 #define DGATE		0x0020	/* data pulse amplitude error */
139 #define BGATE		0x0040	/* data pulse width error */
140 #define	METRIC		0x0080	/* one or more stations heard */
141 #define LEPSEC		0x1000	/* leap minute */
142 
143 /*
144  * Station scoreboard bits
145  *
146  * These are used to establish the signal quality for each of the five
147  * frequencies and two stations.
148  */
149 #define SELV		0x0100	/* WWV station select */
150 #define SELH		0x0200	/* WWVH station select */
151 
152 /*
153  * Alarm status bits (alarm)
154  *
155  * These bits indicate various alarm conditions, which are decoded to
156  * form the quality character included in the timecode.
157  */
158 #define CMPERR		0x1	/* digit or misc bit compare error */
159 #define LOWERR		0x2	/* low bit or digit amplitude or SNR */
160 #define NINERR		0x4	/* less than nine digits in minute */
161 #define SYNERR		0x8	/* not tracking second sync */
162 
163 /*
164  * Watchcat timeouts (watch)
165  *
166  * If these timeouts expire, the status bits are mashed to zero and the
167  * driver starts from scratch. Suitably more refined procedures may be
168  * developed in future. All these are in minutes.
169  */
170 #define ACQSN		6	/* station acquisition timeout */
171 #define DATA		15	/* unit minutes timeout */
172 #define SYNCH		40	/* station sync timeout */
173 #define PANIC		(2 * 1440) /* panic timeout */
174 
175 /*
176  * Thresholds. These establish the minimum signal level, minimum SNR and
177  * maximum jitter thresholds which establish the error and false alarm
178  * rates of the driver. The values defined here may be on the
179  * adventurous side in the interest of the highest sensitivity.
180  */
181 #define MTHR		13.	/* minute sync gate (percent) */
182 #define TTHR		50.	/* minute sync threshold (percent) */
183 #define AWND		20	/* minute sync jitter threshold (ms) */
184 #define ATHR		2500.	/* QRZ minute sync threshold */
185 #define ASNR		20.	/* QRZ minute sync SNR threshold (dB) */
186 #define QTHR		2500.	/* QSY minute sync threshold */
187 #define QSNR		20.	/* QSY minute sync SNR threshold (dB) */
188 #define STHR		2500.	/* second sync threshold */
189 #define	SSNR		15.	/* second sync SNR threshold (dB) */
190 #define SCMP		10 	/* second sync compare threshold */
191 #define DTHR		1000.	/* bit threshold */
192 #define DSNR		10.	/* bit SNR threshold (dB) */
193 #define AMIN		3	/* min bit count */
194 #define AMAX		6	/* max bit count */
195 #define BTHR		1000.	/* digit threshold */
196 #define BSNR		3.	/* digit likelihood threshold (dB) */
197 #define BCMP		3	/* digit compare threshold */
198 #define	MAXERR		40	/* maximum error alarm */
199 
200 /*
201  * Tone frequency definitions. The increments are for 4.5-deg sine
202  * table.
203  */
204 #define MS		(WWV_SEC / 1000) /* samples per millisecond */
205 #define IN100		((100 * 80) / WWV_SEC) /* 100 Hz increment */
206 #define IN1000		((1000 * 80) / WWV_SEC) /* 1000 Hz increment */
207 #define IN1200		((1200 * 80) / WWV_SEC) /* 1200 Hz increment */
208 
209 /*
210  * Acquisition and tracking time constants
211  */
212 #define MINAVG		8	/* min averaging time */
213 #define MAXAVG		1024	/* max averaging time */
214 #define FCONST		3	/* frequency time constant */
215 #define TCONST		16	/* data bit/digit time constant */
216 
217 /*
218  * Miscellaneous status bits (misc)
219  *
220  * These bits correspond to designated bits in the WWV/H timecode. The
221  * bit probabilities are exponentially averaged over several minutes and
222  * processed by a integrator and threshold.
223  */
224 #define DUT1		0x01	/* 56 DUT .1 */
225 #define DUT2		0x02	/* 57 DUT .2 */
226 #define DUT4		0x04	/* 58 DUT .4 */
227 #define DUTS		0x08	/* 50 DUT sign */
228 #define DST1		0x10	/* 55 DST1 leap warning */
229 #define DST2		0x20	/* 2 DST2 DST1 delayed one day */
230 #define SECWAR		0x40	/* 3 leap second warning */
231 
232 /*
233  * The on-time synchronization point is the positive-going zero crossing
234  * of the first cycle of the 5-ms second pulse. The IIR baseband filter
235  * phase delay is 0.91 ms, while the receiver delay is approximately 4.7
236  * ms at 1000 Hz. The fudge value -0.45 ms due to the codec and other
237  * causes was determined by calibrating to a PPS signal from a GPS
238  * receiver. The additional propagation delay specific to each receiver
239  * location can be  programmed in the fudge time1 and time2 values for
240  * WWV and WWVH, respectively.
241  *
242  * The resulting offsets with a 2.4-GHz P4 running FreeBSD 6.1 are
243  * generally within .02 ms short-term with .02 ms jitter. The long-term
244  * offsets vary up to 0.3 ms due to ionosperhic layer height variations.
245  * The processor load due to the driver is 5.8 percent.
246  */
247 #define PDELAY	((.91 + 4.7 - 0.45) / 1000) /* system delay (s) */
248 
249 /*
250  * Table of sine values at 4.5-degree increments. This is used by the
251  * synchronous matched filter demodulators.
252  */
253 double sintab[] = {
254  0.000000e+00,  7.845910e-02,  1.564345e-01,  2.334454e-01, /* 0-3 */
255  3.090170e-01,  3.826834e-01,  4.539905e-01,  5.224986e-01, /* 4-7 */
256  5.877853e-01,  6.494480e-01,  7.071068e-01,  7.604060e-01, /* 8-11 */
257  8.090170e-01,  8.526402e-01,  8.910065e-01,  9.238795e-01, /* 12-15 */
258  9.510565e-01,  9.723699e-01,  9.876883e-01,  9.969173e-01, /* 16-19 */
259  1.000000e+00,  9.969173e-01,  9.876883e-01,  9.723699e-01, /* 20-23 */
260  9.510565e-01,  9.238795e-01,  8.910065e-01,  8.526402e-01, /* 24-27 */
261  8.090170e-01,  7.604060e-01,  7.071068e-01,  6.494480e-01, /* 28-31 */
262  5.877853e-01,  5.224986e-01,  4.539905e-01,  3.826834e-01, /* 32-35 */
263  3.090170e-01,  2.334454e-01,  1.564345e-01,  7.845910e-02, /* 36-39 */
264 -0.000000e+00, -7.845910e-02, -1.564345e-01, -2.334454e-01, /* 40-43 */
265 -3.090170e-01, -3.826834e-01, -4.539905e-01, -5.224986e-01, /* 44-47 */
266 -5.877853e-01, -6.494480e-01, -7.071068e-01, -7.604060e-01, /* 48-51 */
267 -8.090170e-01, -8.526402e-01, -8.910065e-01, -9.238795e-01, /* 52-55 */
268 -9.510565e-01, -9.723699e-01, -9.876883e-01, -9.969173e-01, /* 56-59 */
269 -1.000000e+00, -9.969173e-01, -9.876883e-01, -9.723699e-01, /* 60-63 */
270 -9.510565e-01, -9.238795e-01, -8.910065e-01, -8.526402e-01, /* 64-67 */
271 -8.090170e-01, -7.604060e-01, -7.071068e-01, -6.494480e-01, /* 68-71 */
272 -5.877853e-01, -5.224986e-01, -4.539905e-01, -3.826834e-01, /* 72-75 */
273 -3.090170e-01, -2.334454e-01, -1.564345e-01, -7.845910e-02, /* 76-79 */
274  0.000000e+00};						    /* 80 */
275 
276 /*
277  * Decoder operations at the end of each second are driven by a state
278  * machine. The transition matrix consists of a dispatch table indexed
279  * by second number. Each entry in the table contains a case switch
280  * number and argument.
281  */
282 struct progx {
283 	int sw;			/* case switch number */
284 	int arg;		/* argument */
285 };
286 
287 /*
288  * Case switch numbers
289  */
290 #define IDLE		0	/* no operation */
291 #define COEF		1	/* BCD bit */
292 #define COEF1		2	/* BCD bit for minute unit */
293 #define COEF2		3	/* BCD bit not used */
294 #define DECIM9		4	/* BCD digit 0-9 */
295 #define DECIM6		5	/* BCD digit 0-6 */
296 #define DECIM3		6	/* BCD digit 0-3 */
297 #define DECIM2		7	/* BCD digit 0-2 */
298 #define MSCBIT		8	/* miscellaneous bit */
299 #define MSC20		9	/* miscellaneous bit */
300 #define MSC21		10	/* QSY probe channel */
301 #define MIN1		11	/* latch time */
302 #define MIN2		12	/* leap second */
303 #define SYNC2		13	/* latch minute sync pulse */
304 #define SYNC3		14	/* latch data pulse */
305 
306 /*
307  * Offsets in decoding matrix
308  */
309 #define MN		0	/* minute digits (2) */
310 #define HR		2	/* hour digits (2) */
311 #define DA		4	/* day digits (3) */
312 #define YR		7	/* year digits (2) */
313 
314 struct progx progx[] = {
315 	{SYNC2,	0},		/* 0 latch minute sync pulse */
316 	{SYNC3,	0},		/* 1 latch data pulse */
317 	{MSCBIT, DST2},		/* 2 dst2 */
318 	{MSCBIT, SECWAR},	/* 3 lw */
319 	{COEF,	0},		/* 4 1 year units */
320 	{COEF,	1},		/* 5 2 */
321 	{COEF,	2},		/* 6 4 */
322 	{COEF,	3},		/* 7 8 */
323 	{DECIM9, YR},		/* 8 */
324 	{IDLE,	0},		/* 9 p1 */
325 	{COEF1,	0},		/* 10 1 minute units */
326 	{COEF1,	1},		/* 11 2 */
327 	{COEF1,	2},		/* 12 4 */
328 	{COEF1,	3},		/* 13 8 */
329 	{DECIM9, MN},		/* 14 */
330 	{COEF,	0},		/* 15 10 minute tens */
331 	{COEF,	1},		/* 16 20 */
332 	{COEF,	2},		/* 17 40 */
333 	{COEF2,	3},		/* 18 80 (not used) */
334 	{DECIM6, MN + 1},	/* 19 p2 */
335 	{COEF,	0},		/* 20 1 hour units */
336 	{COEF,	1},		/* 21 2 */
337 	{COEF,	2},		/* 22 4 */
338 	{COEF,	3},		/* 23 8 */
339 	{DECIM9, HR},		/* 24 */
340 	{COEF,	0},		/* 25 10 hour tens */
341 	{COEF,	1},		/* 26 20 */
342 	{COEF2,	2},		/* 27 40 (not used) */
343 	{COEF2,	3},		/* 28 80 (not used) */
344 	{DECIM2, HR + 1},	/* 29 p3 */
345 	{COEF,	0},		/* 30 1 day units */
346 	{COEF,	1},		/* 31 2 */
347 	{COEF,	2},		/* 32 4 */
348 	{COEF,	3},		/* 33 8 */
349 	{DECIM9, DA},		/* 34 */
350 	{COEF,	0},		/* 35 10 day tens */
351 	{COEF,	1},		/* 36 20 */
352 	{COEF,	2},		/* 37 40 */
353 	{COEF,	3},		/* 38 80 */
354 	{DECIM9, DA + 1},	/* 39 p4 */
355 	{COEF,	0},		/* 40 100 day hundreds */
356 	{COEF,	1},		/* 41 200 */
357 	{COEF2,	2},		/* 42 400 (not used) */
358 	{COEF2,	3},		/* 43 800 (not used) */
359 	{DECIM3, DA + 2},	/* 44 */
360 	{IDLE,	0},		/* 45 */
361 	{IDLE,	0},		/* 46 */
362 	{IDLE,	0},		/* 47 */
363 	{IDLE,	0},		/* 48 */
364 	{IDLE,	0},		/* 49 p5 */
365 	{MSCBIT, DUTS},		/* 50 dut+- */
366 	{COEF,	0},		/* 51 10 year tens */
367 	{COEF,	1},		/* 52 20 */
368 	{COEF,	2},		/* 53 40 */
369 	{COEF,	3},		/* 54 80 */
370 	{MSC20, DST1},		/* 55 dst1 */
371 	{MSCBIT, DUT1},		/* 56 0.1 dut */
372 	{MSCBIT, DUT2},		/* 57 0.2 */
373 	{MSC21, DUT4},		/* 58 0.4 QSY probe channel */
374 	{MIN1,	0},		/* 59 p6 latch time */
375 	{MIN2,	0}		/* 60 leap second */
376 };
377 
378 /*
379  * BCD coefficients for maximum-likelihood digit decode
380  */
381 #define P15	1.		/* max positive number */
382 #define N15	-1.		/* max negative number */
383 
384 /*
385  * Digits 0-9
386  */
387 #define P9	(P15 / 4)	/* mark (+1) */
388 #define N9	(N15 / 4)	/* space (-1) */
389 
390 double bcd9[][4] = {
391 	{N9, N9, N9, N9}, 	/* 0 */
392 	{P9, N9, N9, N9}, 	/* 1 */
393 	{N9, P9, N9, N9}, 	/* 2 */
394 	{P9, P9, N9, N9}, 	/* 3 */
395 	{N9, N9, P9, N9}, 	/* 4 */
396 	{P9, N9, P9, N9}, 	/* 5 */
397 	{N9, P9, P9, N9}, 	/* 6 */
398 	{P9, P9, P9, N9}, 	/* 7 */
399 	{N9, N9, N9, P9}, 	/* 8 */
400 	{P9, N9, N9, P9}, 	/* 9 */
401 	{0, 0, 0, 0}		/* backstop */
402 };
403 
404 /*
405  * Digits 0-6 (minute tens)
406  */
407 #define P6	(P15 / 3)	/* mark (+1) */
408 #define N6	(N15 / 3)	/* space (-1) */
409 
410 double bcd6[][4] = {
411 	{N6, N6, N6, 0}, 	/* 0 */
412 	{P6, N6, N6, 0}, 	/* 1 */
413 	{N6, P6, N6, 0}, 	/* 2 */
414 	{P6, P6, N6, 0}, 	/* 3 */
415 	{N6, N6, P6, 0}, 	/* 4 */
416 	{P6, N6, P6, 0}, 	/* 5 */
417 	{N6, P6, P6, 0}, 	/* 6 */
418 	{0, 0, 0, 0}		/* backstop */
419 };
420 
421 /*
422  * Digits 0-3 (day hundreds)
423  */
424 #define P3	(P15 / 2)	/* mark (+1) */
425 #define N3	(N15 / 2)	/* space (-1) */
426 
427 double bcd3[][4] = {
428 	{N3, N3, 0, 0}, 	/* 0 */
429 	{P3, N3, 0, 0}, 	/* 1 */
430 	{N3, P3, 0, 0}, 	/* 2 */
431 	{P3, P3, 0, 0}, 	/* 3 */
432 	{0, 0, 0, 0}		/* backstop */
433 };
434 
435 /*
436  * Digits 0-2 (hour tens)
437  */
438 #define P2	(P15 / 2)	/* mark (+1) */
439 #define N2	(N15 / 2)	/* space (-1) */
440 
441 double bcd2[][4] = {
442 	{N2, N2, 0, 0}, 	/* 0 */
443 	{P2, N2, 0, 0}, 	/* 1 */
444 	{N2, P2, 0, 0}, 	/* 2 */
445 	{0, 0, 0, 0}		/* backstop */
446 };
447 
448 /*
449  * DST decode (DST2 DST1) for prettyprint
450  */
451 char dstcod[] = {
452 	'S',			/* 00 standard time */
453 	'I',			/* 01 set clock ahead at 0200 local */
454 	'O',			/* 10 set clock back at 0200 local */
455 	'D'			/* 11 daylight time */
456 };
457 
458 /*
459  * The decoding matrix consists of nine row vectors, one for each digit
460  * of the timecode. The digits are stored from least to most significant
461  * order. The maximum-likelihood timecode is formed from the digits
462  * corresponding to the maximum-likelihood values reading in the
463  * opposite order: yy ddd hh:mm.
464  */
465 struct decvec {
466 	int radix;		/* radix (3, 4, 6, 10) */
467 	int digit;		/* current clock digit */
468 	int count;		/* match count */
469 	double digprb;		/* max digit probability */
470 	double digsnr;		/* likelihood function (dB) */
471 	double like[10];	/* likelihood integrator 0-9 */
472 };
473 
474 /*
475  * The station structure (sp) is used to acquire the minute pulse from
476  * WWV and/or WWVH. These stations are distinguished by the frequency
477  * used for the second and minute sync pulses, 1000 Hz for WWV and 1200
478  * Hz for WWVH. Other than frequency, the format is the same.
479  */
480 struct sync {
481 	double	epoch;		/* accumulated epoch differences */
482 	double	maxeng;		/* sync max energy */
483 	double	noieng;		/* sync noise energy */
484 	long	pos;		/* max amplitude position */
485 	long	lastpos;	/* last max position */
486 	long	mepoch;		/* minute synch epoch */
487 
488 	double	amp;		/* sync signal */
489 	double	syneng;		/* sync signal max */
490 	double	synmax;		/* sync signal max latched at 0 s */
491 	double	synsnr;		/* sync signal SNR */
492 	double	metric;		/* signal quality metric */
493 	int	reach;		/* reachability register */
494 	int	count;		/* bit counter */
495 	int	select;		/* select bits */
496 	char	refid[5];	/* reference identifier */
497 };
498 
499 /*
500  * The channel structure (cp) is used to mitigate between channels.
501  */
502 struct chan {
503 	int	gain;		/* audio gain */
504 	struct sync wwv;	/* wwv station */
505 	struct sync wwvh;	/* wwvh station */
506 };
507 
508 /*
509  * WWV unit control structure (up)
510  */
511 struct wwvunit {
512 	l_fp	timestamp;	/* audio sample timestamp */
513 	l_fp	tick;		/* audio sample increment */
514 	double	phase, freq;	/* logical clock phase and frequency */
515 	double	monitor;	/* audio monitor point */
516 	double	pdelay;		/* propagation delay (s) */
517 #ifdef ICOM
518 	int	fd_icom;	/* ICOM file descriptor */
519 #endif /* ICOM */
520 	int	errflg;		/* error flags */
521 	int	watch;		/* watchcat */
522 
523 	/*
524 	 * Audio codec variables
525 	 */
526 	double	comp[SIZE];	/* decompanding table */
527  	int	port;		/* codec port */
528 	int	gain;		/* codec gain */
529 	int	mongain;	/* codec monitor gain */
530 	int	clipcnt;	/* sample clipped count */
531 
532 	/*
533 	 * Variables used to establish basic system timing
534 	 */
535 	int	avgint;		/* master time constant */
536 	int	yepoch;		/* sync epoch */
537 	int	repoch;		/* buffered sync epoch */
538 	double	epomax;		/* second sync amplitude */
539 	double	eposnr;		/* second sync SNR */
540 	double	irig;		/* data I channel amplitude */
541 	double	qrig;		/* data Q channel amplitude */
542 	int	datapt;		/* 100 Hz ramp */
543 	double	datpha;		/* 100 Hz VFO control */
544 	int	rphase;		/* second sample counter */
545 	long	mphase;		/* minute sample counter */
546 
547 	/*
548 	 * Variables used to mitigate which channel to use
549 	 */
550 	struct chan mitig[NCHAN]; /* channel data */
551 	struct sync *sptr;	/* station pointer */
552 	int	dchan;		/* data channel */
553 	int	schan;		/* probe channel */
554 	int	achan;		/* active channel */
555 
556 	/*
557 	 * Variables used by the clock state machine
558 	 */
559 	struct decvec decvec[9]; /* decoding matrix */
560 	int	rsec;		/* seconds counter */
561 	int	digcnt;		/* count of digits synchronized */
562 
563 	/*
564 	 * Variables used to estimate signal levels and bit/digit
565 	 * probabilities
566 	 */
567 	double	datsig;		/* data signal max */
568 	double	datsnr;		/* data signal SNR (dB) */
569 
570 	/*
571 	 * Variables used to establish status and alarm conditions
572 	 */
573 	int	status;		/* status bits */
574 	int	alarm;		/* alarm flashers */
575 	int	misc;		/* miscellaneous timecode bits */
576 	int	errcnt;		/* data bit error counter */
577 };
578 
579 /*
580  * Function prototypes
581  */
582 static	int	wwv_start	(int, struct peer *);
583 static	void	wwv_shutdown	(int, struct peer *);
584 static	void	wwv_receive	(struct recvbuf *);
585 static	void	wwv_poll	(int, struct peer *);
586 
587 /*
588  * More function prototypes
589  */
590 static	void	wwv_epoch	(struct peer *);
591 static	void	wwv_rf		(struct peer *, double);
592 static	void	wwv_endpoc	(struct peer *, int);
593 static	void	wwv_rsec	(struct peer *, double);
594 static	void	wwv_qrz		(struct peer *, struct sync *, int);
595 static	void	wwv_corr4	(struct peer *, struct decvec *,
596 				    double [], double [][4]);
597 static	void	wwv_gain	(struct peer *);
598 static	void	wwv_tsec	(struct peer *);
599 static	int	timecode	(struct wwvunit *, char *, size_t);
600 static	double	wwv_snr		(double, double);
601 static	int	carry		(struct decvec *);
602 static	int	wwv_newchan	(struct peer *);
603 static	void	wwv_newgame	(struct peer *);
604 static	double	wwv_metric	(struct sync *);
605 static	void	wwv_clock	(struct peer *);
606 #ifdef ICOM
607 static	int	wwv_qsy		(struct peer *, int);
608 #endif /* ICOM */
609 
610 static double qsy[NCHAN] = {2.5, 5, 10, 15, 20}; /* frequencies (MHz) */
611 
612 /*
613  * Transfer vector
614  */
615 struct	refclock refclock_wwv = {
616 	wwv_start,		/* start up driver */
617 	wwv_shutdown,		/* shut down driver */
618 	wwv_poll,		/* transmit poll message */
619 	noentry,		/* not used (old wwv_control) */
620 	noentry,		/* initialize driver (not used) */
621 	noentry,		/* not used (old wwv_buginfo) */
622 	NOFLAGS			/* not used */
623 };
624 
625 
626 /*
627  * wwv_start - open the devices and initialize data for processing
628  */
629 static int
630 wwv_start(
631 	int	unit,		/* instance number (used by PCM) */
632 	struct peer *peer	/* peer structure pointer */
633 	)
634 {
635 	struct refclockproc *pp;
636 	struct wwvunit *up;
637 #ifdef ICOM
638 	int	temp;
639 #endif /* ICOM */
640 
641 	/*
642 	 * Local variables
643 	 */
644 	int	fd;		/* file descriptor */
645 	int	i;		/* index */
646 	double	step;		/* codec adjustment */
647 
648 	/*
649 	 * Open audio device
650 	 */
651 	fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
652 	if (fd < 0)
653 		return (0);
654 #ifdef DEBUG
655 	if (debug)
656 		audio_show();
657 #endif /* DEBUG */
658 
659 	/*
660 	 * Allocate and initialize unit structure
661 	 */
662 	up = emalloc_zero(sizeof(*up));
663 	pp = peer->procptr;
664 	pp->io.clock_recv = wwv_receive;
665 	pp->io.srcclock = peer;
666 	pp->io.datalen = 0;
667 	pp->io.fd = fd;
668 	if (!io_addclock(&pp->io)) {
669 		close(fd);
670 		free(up);
671 		return (0);
672 	}
673 	pp->unitptr = up;
674 
675 	/*
676 	 * Initialize miscellaneous variables
677 	 */
678 	peer->precision = PRECISION;
679 	pp->clockdesc = DESCRIPTION;
680 
681 	/*
682 	 * The companded samples are encoded sign-magnitude. The table
683 	 * contains all the 256 values in the interest of speed.
684 	 */
685 	up->comp[0] = up->comp[OFFSET] = 0.;
686 	up->comp[1] = 1.; up->comp[OFFSET + 1] = -1.;
687 	up->comp[2] = 3.; up->comp[OFFSET + 2] = -3.;
688 	step = 2.;
689 	for (i = 3; i < OFFSET; i++) {
690 		up->comp[i] = up->comp[i - 1] + step;
691 		up->comp[OFFSET + i] = -up->comp[i];
692 		if (i % 16 == 0)
693 			step *= 2.;
694 	}
695 	DTOLFP(1. / WWV_SEC, &up->tick);
696 
697 	/*
698 	 * Initialize the decoding matrix with the radix for each digit
699 	 * position.
700 	 */
701 	up->decvec[MN].radix = 10;	/* minutes */
702 	up->decvec[MN + 1].radix = 6;
703 	up->decvec[HR].radix = 10;	/* hours */
704 	up->decvec[HR + 1].radix = 3;
705 	up->decvec[DA].radix = 10;	/* days */
706 	up->decvec[DA + 1].radix = 10;
707 	up->decvec[DA + 2].radix = 4;
708 	up->decvec[YR].radix = 10;	/* years */
709 	up->decvec[YR + 1].radix = 10;
710 
711 #ifdef ICOM
712 	/*
713 	 * Initialize autotune if available. Note that the ICOM select
714 	 * code must be less than 128, so the high order bit can be used
715 	 * to select the line speed 0 (9600 bps) or 1 (1200 bps). Note
716 	 * we don't complain if the ICOM device is not there; but, if it
717 	 * is, the radio better be working.
718 	 */
719 	temp = 0;
720 #ifdef DEBUG
721 	if (debug > 1)
722 		temp = P_TRACE;
723 #endif /* DEBUG */
724 	if (peer->ttl != 0) {
725 		if (peer->ttl & 0x80)
726 			up->fd_icom = icom_init("/dev/icom", B1200,
727 			    temp);
728 		else
729 			up->fd_icom = icom_init("/dev/icom", B9600,
730 			    temp);
731 	}
732 	if (up->fd_icom > 0) {
733 		if (wwv_qsy(peer, DCHAN) != 0) {
734 			msyslog(LOG_NOTICE, "icom: radio not found");
735 			close(up->fd_icom);
736 			up->fd_icom = 0;
737 		} else {
738 			msyslog(LOG_NOTICE, "icom: autotune enabled");
739 		}
740 	}
741 #endif /* ICOM */
742 
743 	/*
744 	 * Let the games begin.
745 	 */
746 	wwv_newgame(peer);
747 	return (1);
748 }
749 
750 
751 /*
752  * wwv_shutdown - shut down the clock
753  */
754 static void
755 wwv_shutdown(
756 	int	unit,		/* instance number (not used) */
757 	struct peer *peer	/* peer structure pointer */
758 	)
759 {
760 	struct refclockproc *pp;
761 	struct wwvunit *up;
762 
763 	pp = peer->procptr;
764 	up = pp->unitptr;
765 	if (up == NULL)
766 		return;
767 
768 	io_closeclock(&pp->io);
769 #ifdef ICOM
770 	if (up->fd_icom > 0)
771 		close(up->fd_icom);
772 #endif /* ICOM */
773 	free(up);
774 }
775 
776 
777 /*
778  * wwv_receive - receive data from the audio device
779  *
780  * This routine reads input samples and adjusts the logical clock to
781  * track the A/D sample clock by dropping or duplicating codec samples.
782  * It also controls the A/D signal level with an AGC loop to mimimize
783  * quantization noise and avoid overload.
784  */
785 static void
786 wwv_receive(
787 	struct recvbuf *rbufp	/* receive buffer structure pointer */
788 	)
789 {
790 	struct peer *peer;
791 	struct refclockproc *pp;
792 	struct wwvunit *up;
793 
794 	/*
795 	 * Local variables
796 	 */
797 	double	sample;		/* codec sample */
798 	u_char	*dpt;		/* buffer pointer */
799 	int	bufcnt;		/* buffer counter */
800 	l_fp	ltemp;
801 
802 	peer = rbufp->recv_peer;
803 	pp = peer->procptr;
804 	up = pp->unitptr;
805 
806 	/*
807 	 * Main loop - read until there ain't no more. Note codec
808 	 * samples are bit-inverted.
809 	 */
810 	DTOLFP((double)rbufp->recv_length / WWV_SEC, &ltemp);
811 	L_SUB(&rbufp->recv_time, &ltemp);
812 	up->timestamp = rbufp->recv_time;
813 	dpt = rbufp->recv_buffer;
814 	for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
815 		sample = up->comp[~*dpt++ & 0xff];
816 
817 		/*
818 		 * Clip noise spikes greater than MAXAMP (6000) and
819 		 * record the number of clips to be used later by the
820 		 * AGC.
821 		 */
822 		if (sample > MAXAMP) {
823 			sample = MAXAMP;
824 			up->clipcnt++;
825 		} else if (sample < -MAXAMP) {
826 			sample = -MAXAMP;
827 			up->clipcnt++;
828 		}
829 
830 		/*
831 		 * Variable frequency oscillator. The codec oscillator
832 		 * runs at the nominal rate of 8000 samples per second,
833 		 * or 125 us per sample. A frequency change of one unit
834 		 * results in either duplicating or deleting one sample
835 		 * per second, which results in a frequency change of
836 		 * 125 PPM.
837 		 */
838 		up->phase += (up->freq + clock_codec) / WWV_SEC;
839 		if (up->phase >= .5) {
840 			up->phase -= 1.;
841 		} else if (up->phase < -.5) {
842 			up->phase += 1.;
843 			wwv_rf(peer, sample);
844 			wwv_rf(peer, sample);
845 		} else {
846 			wwv_rf(peer, sample);
847 		}
848 		L_ADD(&up->timestamp, &up->tick);
849 	}
850 
851 	/*
852 	 * Set the input port and monitor gain for the next buffer.
853 	 */
854 	if (pp->sloppyclockflag & CLK_FLAG2)
855 		up->port = 2;
856 	else
857 		up->port = 1;
858 	if (pp->sloppyclockflag & CLK_FLAG3)
859 		up->mongain = MONGAIN;
860 	else
861 		up->mongain = 0;
862 }
863 
864 
865 /*
866  * wwv_poll - called by the transmit procedure
867  *
868  * This routine keeps track of status. If no offset samples have been
869  * processed during a poll interval, a timeout event is declared. If
870  * errors have have occurred during the interval, they are reported as
871  * well.
872  */
873 static void
874 wwv_poll(
875 	int	unit,		/* instance number (not used) */
876 	struct peer *peer	/* peer structure pointer */
877 	)
878 {
879 	struct refclockproc *pp;
880 	struct wwvunit *up;
881 
882 	pp = peer->procptr;
883 	up = pp->unitptr;
884 	if (up->errflg)
885 		refclock_report(peer, up->errflg);
886 	up->errflg = 0;
887 	pp->polls++;
888 }
889 
890 
891 /*
892  * wwv_rf - process signals and demodulate to baseband
893  *
894  * This routine grooms and filters decompanded raw audio samples. The
895  * output signal is the 100-Hz filtered baseband data signal in
896  * quadrature phase. The routine also determines the minute synch epoch,
897  * as well as certain signal maxima, minima and related values.
898  *
899  * There are two 1-s ramps used by this program. Both count the 8000
900  * logical clock samples spanning exactly one second. The epoch ramp
901  * counts the samples starting at an arbitrary time. The rphase ramp
902  * counts the samples starting at the 5-ms second sync pulse found
903  * during the epoch ramp.
904  *
905  * There are two 1-m ramps used by this program. The mphase ramp counts
906  * the 480,000 logical clock samples spanning exactly one minute and
907  * starting at an arbitrary time. The rsec ramp counts the 60 seconds of
908  * the minute starting at the 800-ms minute sync pulse found during the
909  * mphase ramp. The rsec ramp drives the seconds state machine to
910  * determine the bits and digits of the timecode.
911  *
912  * Demodulation operations are based on three synthesized quadrature
913  * sinusoids: 100 Hz for the data signal, 1000 Hz for the WWV sync
914  * signal and 1200 Hz for the WWVH sync signal. These drive synchronous
915  * matched filters for the data signal (170 ms at 100 Hz), WWV minute
916  * sync signal (800 ms at 1000 Hz) and WWVH minute sync signal (800 ms
917  * at 1200 Hz). Two additional matched filters are switched in
918  * as required for the WWV second sync signal (5 cycles at 1000 Hz) and
919  * WWVH second sync signal (6 cycles at 1200 Hz).
920  */
921 static void
922 wwv_rf(
923 	struct peer *peer,	/* peerstructure pointer */
924 	double isig		/* input signal */
925 	)
926 {
927 	struct refclockproc *pp;
928 	struct wwvunit *up;
929 	struct sync *sp, *rp;
930 
931 	static double lpf[5];	/* 150-Hz lpf delay line */
932 	double data;		/* lpf output */
933 	static double bpf[9];	/* 1000/1200-Hz bpf delay line */
934 	double syncx;		/* bpf output */
935 	static double mf[41];	/* 1000/1200-Hz mf delay line */
936 	double mfsync;		/* mf output */
937 
938 	static int iptr;	/* data channel pointer */
939 	static double ibuf[DATSIZ]; /* data I channel delay line */
940 	static double qbuf[DATSIZ]; /* data Q channel delay line */
941 
942 	static int jptr;	/* sync channel pointer */
943 	static int kptr;	/* tick channel pointer */
944 
945 	static int csinptr;	/* wwv channel phase */
946 	static double cibuf[SYNSIZ]; /* wwv I channel delay line */
947 	static double cqbuf[SYNSIZ]; /* wwv Q channel delay line */
948 	static double ciamp;	/* wwv I channel amplitude */
949 	static double cqamp;	/* wwv Q channel amplitude */
950 
951 	static double csibuf[TCKSIZ]; /* wwv I tick delay line */
952 	static double csqbuf[TCKSIZ]; /* wwv Q tick delay line */
953 	static double csiamp;	/* wwv I tick amplitude */
954 	static double csqamp;	/* wwv Q tick amplitude */
955 
956 	static int hsinptr;	/* wwvh channel phase */
957 	static double hibuf[SYNSIZ]; /* wwvh I channel delay line */
958 	static double hqbuf[SYNSIZ]; /* wwvh Q channel delay line */
959 	static double hiamp;	/* wwvh I channel amplitude */
960 	static double hqamp;	/* wwvh Q channel amplitude */
961 
962 	static double hsibuf[TCKSIZ]; /* wwvh I tick delay line */
963 	static double hsqbuf[TCKSIZ]; /* wwvh Q tick delay line */
964 	static double hsiamp;	/* wwvh I tick amplitude */
965 	static double hsqamp;	/* wwvh Q tick amplitude */
966 
967 	static double epobuf[WWV_SEC]; /* second sync comb filter */
968 	static double epomax, nxtmax; /* second sync amplitude buffer */
969 	static int epopos;	/* epoch second sync position buffer */
970 
971 	static int iniflg;	/* initialization flag */
972 	int	epoch;		/* comb filter index */
973 	double	dtemp;
974 	int	i;
975 
976 	pp = peer->procptr;
977 	up = pp->unitptr;
978 
979 	if (!iniflg) {
980 		iniflg = 1;
981 		memset((char *)lpf, 0, sizeof(lpf));
982 		memset((char *)bpf, 0, sizeof(bpf));
983 		memset((char *)mf, 0, sizeof(mf));
984 		memset((char *)ibuf, 0, sizeof(ibuf));
985 		memset((char *)qbuf, 0, sizeof(qbuf));
986 		memset((char *)cibuf, 0, sizeof(cibuf));
987 		memset((char *)cqbuf, 0, sizeof(cqbuf));
988 		memset((char *)csibuf, 0, sizeof(csibuf));
989 		memset((char *)csqbuf, 0, sizeof(csqbuf));
990 		memset((char *)hibuf, 0, sizeof(hibuf));
991 		memset((char *)hqbuf, 0, sizeof(hqbuf));
992 		memset((char *)hsibuf, 0, sizeof(hsibuf));
993 		memset((char *)hsqbuf, 0, sizeof(hsqbuf));
994 		memset((char *)epobuf, 0, sizeof(epobuf));
995 	}
996 
997 	/*
998 	 * Baseband data demodulation. The 100-Hz subcarrier is
999 	 * extracted using a 150-Hz IIR lowpass filter. This attenuates
1000 	 * the 1000/1200-Hz sync signals, as well as the 440-Hz and
1001 	 * 600-Hz tones and most of the noise and voice modulation
1002 	 * components.
1003 	 *
1004 	 * The subcarrier is transmitted 10 dB down from the carrier.
1005 	 * The DGAIN parameter can be adjusted for this and to
1006 	 * compensate for the radio audio response at 100 Hz.
1007 	 *
1008 	 * Matlab IIR 4th-order IIR elliptic, 150 Hz lowpass, 0.2 dB
1009 	 * passband ripple, -50 dB stopband ripple, phase delay 0.97 ms.
1010 	 */
1011 	data = (lpf[4] = lpf[3]) * 8.360961e-01;
1012 	data += (lpf[3] = lpf[2]) * -3.481740e+00;
1013 	data += (lpf[2] = lpf[1]) * 5.452988e+00;
1014 	data += (lpf[1] = lpf[0]) * -3.807229e+00;
1015 	lpf[0] = isig * DGAIN - data;
1016 	data = lpf[0] * 3.281435e-03
1017 	    + lpf[1] * -1.149947e-02
1018 	    + lpf[2] * 1.654858e-02
1019 	    + lpf[3] * -1.149947e-02
1020 	    + lpf[4] * 3.281435e-03;
1021 
1022 	/*
1023 	 * The 100-Hz data signal is demodulated using a pair of
1024 	 * quadrature multipliers, matched filters and a phase lock
1025 	 * loop. The I and Q quadrature data signals are produced by
1026 	 * multiplying the filtered signal by 100-Hz sine and cosine
1027 	 * signals, respectively. The signals are processed by 170-ms
1028 	 * synchronous matched filters to produce the amplitude and
1029 	 * phase signals used by the demodulator. The signals are scaled
1030 	 * to produce unit energy at the maximum value.
1031 	 */
1032 	i = up->datapt;
1033 	up->datapt = (up->datapt + IN100) % 80;
1034 	dtemp = sintab[i] * data / (MS / 2. * DATCYC);
1035 	up->irig -= ibuf[iptr];
1036 	ibuf[iptr] = dtemp;
1037 	up->irig += dtemp;
1038 
1039 	i = (i + 20) % 80;
1040 	dtemp = sintab[i] * data / (MS / 2. * DATCYC);
1041 	up->qrig -= qbuf[iptr];
1042 	qbuf[iptr] = dtemp;
1043 	up->qrig += dtemp;
1044 	iptr = (iptr + 1) % DATSIZ;
1045 
1046 	/*
1047 	 * Baseband sync demodulation. The 1000/1200 sync signals are
1048 	 * extracted using a 600-Hz IIR bandpass filter. This removes
1049 	 * the 100-Hz data subcarrier, as well as the 440-Hz and 600-Hz
1050 	 * tones and most of the noise and voice modulation components.
1051 	 *
1052 	 * Matlab 4th-order IIR elliptic, 800-1400 Hz bandpass, 0.2 dB
1053 	 * passband ripple, -50 dB stopband ripple, phase delay 0.91 ms.
1054 	 */
1055 	syncx = (bpf[8] = bpf[7]) * 4.897278e-01;
1056 	syncx += (bpf[7] = bpf[6]) * -2.765914e+00;
1057 	syncx += (bpf[6] = bpf[5]) * 8.110921e+00;
1058 	syncx += (bpf[5] = bpf[4]) * -1.517732e+01;
1059 	syncx += (bpf[4] = bpf[3]) * 1.975197e+01;
1060 	syncx += (bpf[3] = bpf[2]) * -1.814365e+01;
1061 	syncx += (bpf[2] = bpf[1]) * 1.159783e+01;
1062 	syncx += (bpf[1] = bpf[0]) * -4.735040e+00;
1063 	bpf[0] = isig - syncx;
1064 	syncx = bpf[0] * 8.203628e-03
1065 	    + bpf[1] * -2.375732e-02
1066 	    + bpf[2] * 3.353214e-02
1067 	    + bpf[3] * -4.080258e-02
1068 	    + bpf[4] * 4.605479e-02
1069 	    + bpf[5] * -4.080258e-02
1070 	    + bpf[6] * 3.353214e-02
1071 	    + bpf[7] * -2.375732e-02
1072 	    + bpf[8] * 8.203628e-03;
1073 
1074 	/*
1075 	 * The 1000/1200 sync signals are demodulated using a pair of
1076 	 * quadrature multipliers and matched filters. However,
1077 	 * synchronous demodulation at these frequencies is impractical,
1078 	 * so only the signal amplitude is used. The I and Q quadrature
1079 	 * sync signals are produced by multiplying the filtered signal
1080 	 * by 1000-Hz (WWV) and 1200-Hz (WWVH) sine and cosine signals,
1081 	 * respectively. The WWV and WWVH signals are processed by 800-
1082 	 * ms synchronous matched filters and combined to produce the
1083 	 * minute sync signal and detect which one (or both) the WWV or
1084 	 * WWVH signal is present. The WWV and WWVH signals are also
1085 	 * processed by 5-ms synchronous matched filters and combined to
1086 	 * produce the second sync signal. The signals are scaled to
1087 	 * produce unit energy at the maximum value.
1088 	 *
1089 	 * Note the master timing ramps, which run continuously. The
1090 	 * minute counter (mphase) counts the samples in the minute,
1091 	 * while the second counter (epoch) counts the samples in the
1092 	 * second.
1093 	 */
1094 	up->mphase = (up->mphase + 1) % WWV_MIN;
1095 	epoch = up->mphase % WWV_SEC;
1096 
1097 	/*
1098 	 * WWV
1099 	 */
1100 	i = csinptr;
1101 	csinptr = (csinptr + IN1000) % 80;
1102 
1103 	dtemp = sintab[i] * syncx / (MS / 2.);
1104 	ciamp -= cibuf[jptr];
1105 	cibuf[jptr] = dtemp;
1106 	ciamp += dtemp;
1107 	csiamp -= csibuf[kptr];
1108 	csibuf[kptr] = dtemp;
1109 	csiamp += dtemp;
1110 
1111 	i = (i + 20) % 80;
1112 	dtemp = sintab[i] * syncx / (MS / 2.);
1113 	cqamp -= cqbuf[jptr];
1114 	cqbuf[jptr] = dtemp;
1115 	cqamp += dtemp;
1116 	csqamp -= csqbuf[kptr];
1117 	csqbuf[kptr] = dtemp;
1118 	csqamp += dtemp;
1119 
1120 	sp = &up->mitig[up->achan].wwv;
1121 	sp->amp = sqrt(ciamp * ciamp + cqamp * cqamp) / SYNCYC;
1122 	if (!(up->status & MSYNC))
1123 		wwv_qrz(peer, sp, (int)(pp->fudgetime1 * WWV_SEC));
1124 
1125 	/*
1126 	 * WWVH
1127 	 */
1128 	i = hsinptr;
1129 	hsinptr = (hsinptr + IN1200) % 80;
1130 
1131 	dtemp = sintab[i] * syncx / (MS / 2.);
1132 	hiamp -= hibuf[jptr];
1133 	hibuf[jptr] = dtemp;
1134 	hiamp += dtemp;
1135 	hsiamp -= hsibuf[kptr];
1136 	hsibuf[kptr] = dtemp;
1137 	hsiamp += dtemp;
1138 
1139 	i = (i + 20) % 80;
1140 	dtemp = sintab[i] * syncx / (MS / 2.);
1141 	hqamp -= hqbuf[jptr];
1142 	hqbuf[jptr] = dtemp;
1143 	hqamp += dtemp;
1144 	hsqamp -= hsqbuf[kptr];
1145 	hsqbuf[kptr] = dtemp;
1146 	hsqamp += dtemp;
1147 
1148 	rp = &up->mitig[up->achan].wwvh;
1149 	rp->amp = sqrt(hiamp * hiamp + hqamp * hqamp) / SYNCYC;
1150 	if (!(up->status & MSYNC))
1151 		wwv_qrz(peer, rp, (int)(pp->fudgetime2 * WWV_SEC));
1152 	jptr = (jptr + 1) % SYNSIZ;
1153 	kptr = (kptr + 1) % TCKSIZ;
1154 
1155 	/*
1156 	 * The following section is called once per minute. It does
1157 	 * housekeeping and timeout functions and empties the dustbins.
1158 	 */
1159 	if (up->mphase == 0) {
1160 		up->watch++;
1161 		if (!(up->status & MSYNC)) {
1162 
1163 			/*
1164 			 * If minute sync has not been acquired before
1165 			 * ACQSN timeout (6 min), or if no signal is
1166 			 * heard, the program cycles to the next
1167 			 * frequency and tries again.
1168 			 */
1169 			if (!wwv_newchan(peer))
1170 				up->watch = 0;
1171 		} else {
1172 
1173 			/*
1174 			 * If the leap bit is set, set the minute epoch
1175 			 * back one second so the station processes
1176 			 * don't miss a beat.
1177 			 */
1178 			if (up->status & LEPSEC) {
1179 				up->mphase -= WWV_SEC;
1180 				if (up->mphase < 0)
1181 					up->mphase += WWV_MIN;
1182 			}
1183 		}
1184 	}
1185 
1186 	/*
1187 	 * When the channel metric reaches threshold and the second
1188 	 * counter matches the minute epoch within the second, the
1189 	 * driver has synchronized to the station. The second number is
1190 	 * the remaining seconds until the next minute epoch, while the
1191 	 * sync epoch is zero. Watch out for the first second; if
1192 	 * already synchronized to the second, the buffered sync epoch
1193 	 * must be set.
1194 	 *
1195 	 * Note the guard interval is 200 ms; if for some reason the
1196 	 * clock drifts more than that, it might wind up in the wrong
1197 	 * second. If the maximum frequency error is not more than about
1198 	 * 1 PPM, the clock can go as much as two days while still in
1199 	 * the same second.
1200 	 */
1201 	if (up->status & MSYNC) {
1202 		wwv_epoch(peer);
1203 	} else if (up->sptr != NULL) {
1204 		sp = up->sptr;
1205 		if (sp->metric >= TTHR && epoch == sp->mepoch % WWV_SEC)
1206  		    {
1207 			up->rsec = (60 - sp->mepoch / WWV_SEC) % 60;
1208 			up->rphase = 0;
1209 			up->status |= MSYNC;
1210 			up->watch = 0;
1211 			if (!(up->status & SSYNC))
1212 				up->repoch = up->yepoch = epoch;
1213 			else
1214 				up->repoch = up->yepoch;
1215 
1216 		}
1217 	}
1218 
1219 	/*
1220 	 * The second sync pulse is extracted using 5-ms (40 sample) FIR
1221 	 * matched filters at 1000 Hz for WWV or 1200 Hz for WWVH. This
1222 	 * pulse is used for the most precise synchronization, since if
1223 	 * provides a resolution of one sample (125 us). The filters run
1224 	 * only if the station has been reliably determined.
1225 	 */
1226 	if (up->status & SELV)
1227 		mfsync = sqrt(csiamp * csiamp + csqamp * csqamp) /
1228 		    TCKCYC;
1229 	else if (up->status & SELH)
1230 		mfsync = sqrt(hsiamp * hsiamp + hsqamp * hsqamp) /
1231 		    TCKCYC;
1232 	else
1233 		mfsync = 0;
1234 
1235 	/*
1236 	 * Enhance the seconds sync pulse using a 1-s (8000-sample) comb
1237 	 * filter. Correct for the FIR matched filter delay, which is 5
1238 	 * ms for both the WWV and WWVH filters, and also for the
1239 	 * propagation delay. Once each second look for second sync. If
1240 	 * not in minute sync, fiddle the codec gain. Note the SNR is
1241 	 * computed from the maximum sample and the envelope of the
1242 	 * sample 6 ms before it, so if we slip more than a cycle the
1243 	 * SNR should plummet. The signal is scaled to produce unit
1244 	 * energy at the maximum value.
1245 	 */
1246 	dtemp = (epobuf[epoch] += (mfsync - epobuf[epoch]) /
1247 	    up->avgint);
1248 	if (dtemp > epomax) {
1249 		int	j;
1250 
1251 		epomax = dtemp;
1252 		epopos = epoch;
1253 		j = epoch - 6 * MS;
1254 		if (j < 0)
1255 			j += WWV_SEC;
1256 		nxtmax = fabs(epobuf[j]);
1257 	}
1258 	if (epoch == 0) {
1259 		up->epomax = epomax;
1260 		up->eposnr = wwv_snr(epomax, nxtmax);
1261 		epopos -= TCKCYC * MS;
1262 		if (epopos < 0)
1263 			epopos += WWV_SEC;
1264 		wwv_endpoc(peer, epopos);
1265 		if (!(up->status & SSYNC))
1266 			up->alarm |= SYNERR;
1267 		epomax = 0;
1268 		if (!(up->status & MSYNC))
1269 			wwv_gain(peer);
1270 	}
1271 }
1272 
1273 
1274 /*
1275  * wwv_qrz - identify and acquire WWV/WWVH minute sync pulse
1276  *
1277  * This routine implements a virtual station process used to acquire
1278  * minute sync and to mitigate among the ten frequency and station
1279  * combinations. During minute sync acquisition the process probes each
1280  * frequency and station in turn for the minute pulse, which
1281  * involves searching through the entire 480,000-sample minute. The
1282  * process finds the maximum signal and RMS noise plus signal. Then, the
1283  * actual noise is determined by subtracting the energy of the matched
1284  * filter.
1285  *
1286  * Students of radar receiver technology will discover this algorithm
1287  * amounts to a range-gate discriminator. A valid pulse must have peak
1288  * amplitude at least QTHR (2500) and SNR at least QSNR (20) dB and the
1289  * difference between the current and previous epoch must be less than
1290  * AWND (20 ms). Note that the discriminator peak occurs about 800 ms
1291  * into the second, so the timing is retarded to the previous second
1292  * epoch.
1293  */
1294 static void
1295 wwv_qrz(
1296 	struct peer *peer,	/* peer structure pointer */
1297 	struct sync *sp,	/* sync channel structure */
1298 	int	pdelay		/* propagation delay (samples) */
1299 	)
1300 {
1301 	struct refclockproc *pp;
1302 	struct wwvunit *up;
1303 	char	tbuf[TBUF];	/* monitor buffer */
1304 	long	epoch;
1305 
1306 	pp = peer->procptr;
1307 	up = pp->unitptr;
1308 
1309 	/*
1310 	 * Find the sample with peak amplitude, which defines the minute
1311 	 * epoch. Accumulate all samples to determine the total noise
1312 	 * energy.
1313 	 */
1314 	epoch = up->mphase - pdelay - SYNSIZ;
1315 	if (epoch < 0)
1316 		epoch += WWV_MIN;
1317 	if (sp->amp > sp->maxeng) {
1318 		sp->maxeng = sp->amp;
1319 		sp->pos = epoch;
1320 	}
1321 	sp->noieng += sp->amp;
1322 
1323 	/*
1324 	 * At the end of the minute, determine the epoch of the minute
1325 	 * sync pulse, as well as the difference between the current and
1326 	 * previous epoches due to the intrinsic frequency error plus
1327 	 * jitter. When calculating the SNR, subtract the pulse energy
1328 	 * from the total noise energy and then normalize.
1329 	 */
1330 	if (up->mphase == 0) {
1331 		sp->synmax = sp->maxeng;
1332 		sp->synsnr = wwv_snr(sp->synmax, (sp->noieng -
1333 		    sp->synmax) / WWV_MIN);
1334 		if (sp->count == 0)
1335 			sp->lastpos = sp->pos;
1336 		epoch = (sp->pos - sp->lastpos) % WWV_MIN;
1337 		sp->reach <<= 1;
1338 		if (sp->reach & (1 << AMAX))
1339 			sp->count--;
1340 		if (sp->synmax > ATHR && sp->synsnr > ASNR) {
1341 			if (labs(epoch) < AWND * MS) {
1342 				sp->reach |= 1;
1343 				sp->count++;
1344 				sp->mepoch = sp->lastpos = sp->pos;
1345 			} else if (sp->count == 1) {
1346 				sp->lastpos = sp->pos;
1347 			}
1348 		}
1349 		if (up->watch > ACQSN)
1350 			sp->metric = 0;
1351 		else
1352 			sp->metric = wwv_metric(sp);
1353 		if (pp->sloppyclockflag & CLK_FLAG4) {
1354 			snprintf(tbuf, sizeof(tbuf),
1355 			    "wwv8 %04x %3d %s %04x %.0f %.0f/%.1f %ld %ld",
1356 			    up->status, up->gain, sp->refid,
1357 			    sp->reach & 0xffff, sp->metric, sp->synmax,
1358 			    sp->synsnr, sp->pos % WWV_SEC, epoch);
1359 			record_clock_stats(&peer->srcadr, tbuf);
1360 #ifdef DEBUG
1361 			if (debug)
1362 				printf("%s\n", tbuf);
1363 #endif /* DEBUG */
1364 		}
1365 		sp->maxeng = sp->noieng = 0;
1366 	}
1367 }
1368 
1369 
1370 /*
1371  * wwv_endpoc - identify and acquire second sync pulse
1372  *
1373  * This routine is called at the end of the second sync interval. It
1374  * determines the second sync epoch position within the second and
1375  * disciplines the sample clock using a frequency-lock loop (FLL).
1376  *
1377  * Second sync is determined in the RF input routine as the maximum
1378  * over all 8000 samples in the second comb filter. To assure accurate
1379  * and reliable time and frequency discipline, this routine performs a
1380  * great deal of heavy-handed heuristic data filtering and grooming.
1381  */
1382 static void
1383 wwv_endpoc(
1384 	struct peer *peer,	/* peer structure pointer */
1385 	int epopos		/* epoch max position */
1386 	)
1387 {
1388 	struct refclockproc *pp;
1389 	struct wwvunit *up;
1390 	static int epoch_mf[3]; /* epoch median filter */
1391 	static int tepoch;	/* current second epoch */
1392  	static int xepoch;	/* last second epoch */
1393  	static int zepoch;	/* last run epoch */
1394 	static int zcount;	/* last run end time */
1395 	static int scount;	/* seconds counter */
1396 	static int syncnt;	/* run length counter */
1397 	static int maxrun;	/* longest run length */
1398 	static int mepoch;	/* longest run end epoch */
1399 	static int mcount;	/* longest run end time */
1400 	static int avgcnt;	/* averaging interval counter */
1401 	static int avginc;	/* averaging ratchet */
1402 	static int iniflg;	/* initialization flag */
1403 	char tbuf[TBUF];		/* monitor buffer */
1404 	double dtemp;
1405 	int tmp2;
1406 
1407 	pp = peer->procptr;
1408 	up = pp->unitptr;
1409 	if (!iniflg) {
1410 		iniflg = 1;
1411 		ZERO(epoch_mf);
1412 	}
1413 
1414 	/*
1415 	 * If the signal amplitude or SNR fall below thresholds, dim the
1416 	 * second sync lamp and wait for hotter ions. If no stations are
1417 	 * heard, we are either in a probe cycle or the ions are really
1418 	 * cold.
1419 	 */
1420 	scount++;
1421 	if (up->epomax < STHR || up->eposnr < SSNR) {
1422 		up->status &= ~(SSYNC | FGATE);
1423 		avgcnt = syncnt = maxrun = 0;
1424 		return;
1425 	}
1426 	if (!(up->status & (SELV | SELH)))
1427 		return;
1428 
1429 	/*
1430 	 * A three-stage median filter is used to help denoise the
1431 	 * second sync pulse. The median sample becomes the candidate
1432 	 * epoch.
1433 	 */
1434 	epoch_mf[2] = epoch_mf[1];
1435 	epoch_mf[1] = epoch_mf[0];
1436 	epoch_mf[0] = epopos;
1437 	if (epoch_mf[0] > epoch_mf[1]) {
1438 		if (epoch_mf[1] > epoch_mf[2])
1439 			tepoch = epoch_mf[1];	/* 0 1 2 */
1440 		else if (epoch_mf[2] > epoch_mf[0])
1441 			tepoch = epoch_mf[0];	/* 2 0 1 */
1442 		else
1443 			tepoch = epoch_mf[2];	/* 0 2 1 */
1444 	} else {
1445 		if (epoch_mf[1] < epoch_mf[2])
1446 			tepoch = epoch_mf[1];	/* 2 1 0 */
1447 		else if (epoch_mf[2] < epoch_mf[0])
1448 			tepoch = epoch_mf[0];	/* 1 0 2 */
1449 		else
1450 			tepoch = epoch_mf[2];	/* 1 2 0 */
1451 	}
1452 
1453 
1454 	/*
1455 	 * If the epoch candidate is the same as the last one, increment
1456 	 * the run counter. If not, save the length, epoch and end
1457 	 * time of the current run for use later and reset the counter.
1458 	 * The epoch is considered valid if the run is at least SCMP
1459 	 * (10) s, the minute is synchronized and the interval since the
1460 	 * last epoch  is not greater than the averaging interval. Thus,
1461 	 * after a long absence, the program will wait a full averaging
1462 	 * interval while the comb filter charges up and noise
1463 	 * dissapates..
1464 	 */
1465 	tmp2 = (tepoch - xepoch) % WWV_SEC;
1466 	if (tmp2 == 0) {
1467 		syncnt++;
1468 		if (syncnt > SCMP && up->status & MSYNC && (up->status &
1469 		    FGATE || scount - zcount <= up->avgint)) {
1470 			up->status |= SSYNC;
1471 			up->yepoch = tepoch;
1472 		}
1473 	} else if (syncnt >= maxrun) {
1474 		maxrun = syncnt;
1475 		mcount = scount;
1476 		mepoch = xepoch;
1477 		syncnt = 0;
1478 	}
1479 	if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
1480 	    MSYNC)) {
1481 		snprintf(tbuf, sizeof(tbuf),
1482 		    "wwv1 %04x %3d %4d %5.0f %5.1f %5d %4d %4d %4d",
1483 		    up->status, up->gain, tepoch, up->epomax,
1484 		    up->eposnr, tmp2, avgcnt, syncnt,
1485 		    maxrun);
1486 		record_clock_stats(&peer->srcadr, tbuf);
1487 #ifdef DEBUG
1488 		if (debug)
1489 			printf("%s\n", tbuf);
1490 #endif /* DEBUG */
1491 	}
1492 	avgcnt++;
1493 	if (avgcnt < up->avgint) {
1494 		xepoch = tepoch;
1495 		return;
1496 	}
1497 
1498 	/*
1499 	 * The sample clock frequency is disciplined using a first-order
1500 	 * feedback loop with time constant consistent with the Allan
1501 	 * intercept of typical computer clocks. During each averaging
1502 	 * interval the candidate epoch at the end of the longest run is
1503 	 * determined. If the longest run is zero, all epoches in the
1504 	 * interval are different, so the candidate epoch is the current
1505 	 * epoch. The frequency update is computed from the candidate
1506 	 * epoch difference (125-us units) and time difference (seconds)
1507 	 * between updates.
1508 	 */
1509 	if (syncnt >= maxrun) {
1510 		maxrun = syncnt;
1511 		mcount = scount;
1512 		mepoch = xepoch;
1513 	}
1514 	xepoch = tepoch;
1515 	if (maxrun == 0) {
1516 		mepoch = tepoch;
1517 		mcount = scount;
1518 	}
1519 
1520 	/*
1521 	 * The master clock runs at the codec sample frequency of 8000
1522 	 * Hz, so the intrinsic time resolution is 125 us. The frequency
1523 	 * resolution ranges from 18 PPM at the minimum averaging
1524 	 * interval of 8 s to 0.12 PPM at the maximum interval of 1024
1525 	 * s. An offset update is determined at the end of the longest
1526 	 * run in each averaging interval. The frequency adjustment is
1527 	 * computed from the difference between offset updates and the
1528 	 * interval between them.
1529 	 *
1530 	 * The maximum frequency adjustment ranges from 187 PPM at the
1531 	 * minimum interval to 1.5 PPM at the maximum. If the adjustment
1532 	 * exceeds the maximum, the update is discarded and the
1533 	 * hysteresis counter is decremented. Otherwise, the frequency
1534 	 * is incremented by the adjustment, but clamped to the maximum
1535 	 * 187.5 PPM. If the update is less than half the maximum, the
1536 	 * hysteresis counter is incremented. If the counter increments
1537 	 * to +3, the averaging interval is doubled and the counter set
1538 	 * to zero; if it decrements to -3, the interval is halved and
1539 	 * the counter set to zero.
1540 	 */
1541 	dtemp = (mepoch - zepoch) % WWV_SEC;
1542 	if (up->status & FGATE) {
1543 		if (fabs(dtemp) < MAXFREQ * MINAVG) {
1544 			up->freq += (dtemp / 2.) / ((mcount - zcount) *
1545 			    FCONST);
1546 			if (up->freq > MAXFREQ)
1547 				up->freq = MAXFREQ;
1548 			else if (up->freq < -MAXFREQ)
1549 				up->freq = -MAXFREQ;
1550 			if (fabs(dtemp) < MAXFREQ * MINAVG / 2.) {
1551 				if (avginc < 3) {
1552 					avginc++;
1553 				} else {
1554 					if (up->avgint < MAXAVG) {
1555 						up->avgint <<= 1;
1556 						avginc = 0;
1557 					}
1558 				}
1559 			}
1560 		} else {
1561 			if (avginc > -3) {
1562 				avginc--;
1563 			} else {
1564 				if (up->avgint > MINAVG) {
1565 					up->avgint >>= 1;
1566 					avginc = 0;
1567 				}
1568 			}
1569 		}
1570 	}
1571 	if (pp->sloppyclockflag & CLK_FLAG4) {
1572 		snprintf(tbuf, sizeof(tbuf),
1573 		    "wwv2 %04x %5.0f %5.1f %5d %4d %4d %4d %4.0f %7.2f",
1574 		    up->status, up->epomax, up->eposnr, mepoch,
1575 		    up->avgint, maxrun, mcount - zcount, dtemp,
1576 		    up->freq * 1e6 / WWV_SEC);
1577 		record_clock_stats(&peer->srcadr, tbuf);
1578 #ifdef DEBUG
1579 		if (debug)
1580 			printf("%s\n", tbuf);
1581 #endif /* DEBUG */
1582 	}
1583 
1584 	/*
1585 	 * This is a valid update; set up for the next interval.
1586 	 */
1587 	up->status |= FGATE;
1588 	zepoch = mepoch;
1589 	zcount = mcount;
1590 	avgcnt = syncnt = maxrun = 0;
1591 }
1592 
1593 
1594 /*
1595  * wwv_epoch - epoch scanner
1596  *
1597  * This routine extracts data signals from the 100-Hz subcarrier. It
1598  * scans the receiver second epoch to determine the signal amplitudes
1599  * and pulse timings. Receiver synchronization is determined by the
1600  * minute sync pulse detected in the wwv_rf() routine and the second
1601  * sync pulse detected in the wwv_epoch() routine. The transmitted
1602  * signals are delayed by the propagation delay, receiver delay and
1603  * filter delay of this program. Delay corrections are introduced
1604  * separately for WWV and WWVH.
1605  *
1606  * Most communications radios use a highpass filter in the audio stages,
1607  * which can do nasty things to the subcarrier phase relative to the
1608  * sync pulses. Therefore, the data subcarrier reference phase is
1609  * disciplined using the hardlimited quadrature-phase signal sampled at
1610  * the same time as the in-phase signal. The phase tracking loop uses
1611  * phase adjustments of plus-minus one sample (125 us).
1612  */
1613 static void
1614 wwv_epoch(
1615 	struct peer *peer	/* peer structure pointer */
1616 	)
1617 {
1618 	struct refclockproc *pp;
1619 	struct wwvunit *up;
1620 	struct chan *cp;
1621 	static double sigmin, sigzer, sigone, engmax, engmin;
1622 
1623 	pp = peer->procptr;
1624 	up = pp->unitptr;
1625 
1626 	/*
1627 	 * Find the maximum minute sync pulse energy for both the
1628 	 * WWV and WWVH stations. This will be used later for channel
1629 	 * and station mitigation. Also set the seconds epoch at 800 ms
1630 	 * well before the end of the second to make sure we never set
1631 	 * the epoch backwards.
1632 	 */
1633 	cp = &up->mitig[up->achan];
1634 	if (cp->wwv.amp > cp->wwv.syneng)
1635 		cp->wwv.syneng = cp->wwv.amp;
1636 	if (cp->wwvh.amp > cp->wwvh.syneng)
1637 		cp->wwvh.syneng = cp->wwvh.amp;
1638 	if (up->rphase == 800 * MS)
1639 		up->repoch = up->yepoch;
1640 
1641 	/*
1642 	 * Use the signal amplitude at epoch 15 ms as the noise floor.
1643 	 * This gives a guard time of +-15 ms from the beginning of the
1644 	 * second until the second pulse rises at 30 ms. There is a
1645 	 * compromise here; we want to delay the sample as long as
1646 	 * possible to give the radio time to change frequency and the
1647 	 * AGC to stabilize, but as early as possible if the second
1648 	 * epoch is not exact.
1649 	 */
1650 	if (up->rphase == 15 * MS)
1651 		sigmin = sigzer = sigone = up->irig;
1652 
1653 	/*
1654 	 * Latch the data signal at 200 ms. Keep this around until the
1655 	 * end of the second. Use the signal energy as the peak to
1656 	 * compute the SNR. Use the Q sample to adjust the 100-Hz
1657 	 * reference oscillator phase.
1658 	 */
1659 	if (up->rphase == 200 * MS) {
1660 		sigzer = up->irig;
1661 		engmax = sqrt(up->irig * up->irig + up->qrig *
1662 		    up->qrig);
1663 		up->datpha = up->qrig / up->avgint;
1664 		if (up->datpha >= 0) {
1665 			up->datapt++;
1666 			if (up->datapt >= 80)
1667 				up->datapt -= 80;
1668 		} else {
1669 			up->datapt--;
1670 			if (up->datapt < 0)
1671 				up->datapt += 80;
1672 		}
1673 	}
1674 
1675 
1676 	/*
1677 	 * Latch the data signal at 500 ms. Keep this around until the
1678 	 * end of the second.
1679 	 */
1680 	else if (up->rphase == 500 * MS)
1681 		sigone = up->irig;
1682 
1683 	/*
1684 	 * At the end of the second crank the clock state machine and
1685 	 * adjust the codec gain. Note the epoch is buffered from the
1686 	 * center of the second in order to avoid jitter while the
1687 	 * seconds synch is diddling the epoch. Then, determine the true
1688 	 * offset and update the median filter in the driver interface.
1689 	 *
1690 	 * Use the energy at the end of the second as the noise to
1691 	 * compute the SNR for the data pulse. This gives a better
1692 	 * measurement than the beginning of the second, especially when
1693 	 * returning from the probe channel. This gives a guard time of
1694 	 * 30 ms from the decay of the longest pulse to the rise of the
1695 	 * next pulse.
1696 	 */
1697 	up->rphase++;
1698 	if (up->mphase % WWV_SEC == up->repoch) {
1699 		up->status &= ~(DGATE | BGATE);
1700 		engmin = sqrt(up->irig * up->irig + up->qrig *
1701 		    up->qrig);
1702 		up->datsig = engmax;
1703 		up->datsnr = wwv_snr(engmax, engmin);
1704 
1705 		/*
1706 		 * If the amplitude or SNR is below threshold, average a
1707 		 * 0 in the the integrators; otherwise, average the
1708 		 * bipolar signal. This is done to avoid noise polution.
1709 		 */
1710 		if (engmax < DTHR || up->datsnr < DSNR) {
1711 			up->status |= DGATE;
1712 			wwv_rsec(peer, 0);
1713 		} else {
1714 			sigzer -= sigone;
1715 			sigone -= sigmin;
1716 			wwv_rsec(peer, sigone - sigzer);
1717 		}
1718 		if (up->status & (DGATE | BGATE))
1719 			up->errcnt++;
1720 		if (up->errcnt > MAXERR)
1721 			up->alarm |= LOWERR;
1722 		wwv_gain(peer);
1723 		cp = &up->mitig[up->achan];
1724 		cp->wwv.syneng = 0;
1725 		cp->wwvh.syneng = 0;
1726 		up->rphase = 0;
1727 	}
1728 }
1729 
1730 
1731 /*
1732  * wwv_rsec - process receiver second
1733  *
1734  * This routine is called at the end of each receiver second to
1735  * implement the per-second state machine. The machine assembles BCD
1736  * digit bits, decodes miscellaneous bits and dances the leap seconds.
1737  *
1738  * Normally, the minute has 60 seconds numbered 0-59. If the leap
1739  * warning bit is set, the last minute (1439) of 30 June (day 181 or 182
1740  * for leap years) or 31 December (day 365 or 366 for leap years) is
1741  * augmented by one second numbered 60. This is accomplished by
1742  * extending the minute interval by one second and teaching the state
1743  * machine to ignore it.
1744  */
1745 static void
1746 wwv_rsec(
1747 	struct peer *peer,	/* peer structure pointer */
1748 	double bit
1749 	)
1750 {
1751 	static int iniflg;	/* initialization flag */
1752 	static double bcddld[4]; /* BCD data bits */
1753 	static double bitvec[61]; /* bit integrator for misc bits */
1754 	struct refclockproc *pp;
1755 	struct wwvunit *up;
1756 	struct chan *cp;
1757 	struct sync *sp, *rp;
1758 	char	tbuf[TBUF];	/* monitor buffer */
1759 	int	sw, arg, nsec;
1760 
1761 	pp = peer->procptr;
1762 	up = pp->unitptr;
1763 	if (!iniflg) {
1764 		iniflg = 1;
1765 		ZERO(bitvec);
1766 	}
1767 
1768 	/*
1769 	 * The bit represents the probability of a hit on zero (negative
1770 	 * values), a hit on one (positive values) or a miss (zero
1771 	 * value). The likelihood vector is the exponential average of
1772 	 * these probabilities. Only the bits of this vector
1773 	 * corresponding to the miscellaneous bits of the timecode are
1774 	 * used, but it's easier to do them all. After that, crank the
1775 	 * seconds state machine.
1776 	 */
1777 	nsec = up->rsec;
1778 	up->rsec++;
1779 	bitvec[nsec] += (bit - bitvec[nsec]) / TCONST;
1780 	sw = progx[nsec].sw;
1781 	arg = progx[nsec].arg;
1782 
1783 	/*
1784 	 * The minute state machine. Fly off to a particular section as
1785 	 * directed by the transition matrix and second number.
1786 	 */
1787 	switch (sw) {
1788 
1789 	/*
1790 	 * Ignore this second.
1791 	 */
1792 	case IDLE:			/* 9, 45-49 */
1793 		break;
1794 
1795 	/*
1796 	 * Probe channel stuff
1797 	 *
1798 	 * The WWV/H format contains data pulses in second 59 (position
1799 	 * identifier) and second 1, but not in second 0. The minute
1800 	 * sync pulse is contained in second 0. At the end of second 58
1801 	 * QSY to the probe channel, which rotates in turn over all
1802 	 * WWV/H frequencies. At the end of second 0 measure the minute
1803 	 * sync pulse. At the end of second 1 measure the data pulse and
1804 	 * QSY back to the data channel. Note that the actions commented
1805 	 * here happen at the end of the second numbered as shown.
1806 	 *
1807 	 * At the end of second 0 save the minute sync amplitude latched
1808 	 * at 800 ms as the signal later used to calculate the SNR.
1809 	 */
1810 	case SYNC2:			/* 0 */
1811 		cp = &up->mitig[up->achan];
1812 		cp->wwv.synmax = cp->wwv.syneng;
1813 		cp->wwvh.synmax = cp->wwvh.syneng;
1814 		break;
1815 
1816 	/*
1817 	 * At the end of second 1 use the minute sync amplitude latched
1818 	 * at 800 ms as the noise to calculate the SNR. If the minute
1819 	 * sync pulse and SNR are above thresholds and the data pulse
1820 	 * amplitude and SNR are above thresolds, shift a 1 into the
1821 	 * station reachability register; otherwise, shift a 0. The
1822 	 * number of 1 bits in the last six intervals is a component of
1823 	 * the channel metric computed by the wwv_metric() routine.
1824 	 * Finally, QSY back to the data channel.
1825 	 */
1826 	case SYNC3:			/* 1 */
1827 		cp = &up->mitig[up->achan];
1828 
1829 		/*
1830 		 * WWV station
1831 		 */
1832 		sp = &cp->wwv;
1833 		sp->synsnr = wwv_snr(sp->synmax, sp->amp);
1834 		sp->reach <<= 1;
1835 		if (sp->reach & (1 << AMAX))
1836 			sp->count--;
1837 		if (sp->synmax >= QTHR && sp->synsnr >= QSNR &&
1838 		    !(up->status & (DGATE | BGATE))) {
1839 			sp->reach |= 1;
1840 			sp->count++;
1841 		}
1842 		sp->metric = wwv_metric(sp);
1843 
1844 		/*
1845 		 * WWVH station
1846 		 */
1847 		rp = &cp->wwvh;
1848 		rp->synsnr = wwv_snr(rp->synmax, rp->amp);
1849 		rp->reach <<= 1;
1850 		if (rp->reach & (1 << AMAX))
1851 			rp->count--;
1852 		if (rp->synmax >= QTHR && rp->synsnr >= QSNR &&
1853 		    !(up->status & (DGATE | BGATE))) {
1854 			rp->reach |= 1;
1855 			rp->count++;
1856 		}
1857 		rp->metric = wwv_metric(rp);
1858 		if (pp->sloppyclockflag & CLK_FLAG4) {
1859 			snprintf(tbuf, sizeof(tbuf),
1860 			    "wwv5 %04x %3d %4d %.0f/%.1f %.0f/%.1f %s %04x %.0f %.0f/%.1f %s %04x %.0f %.0f/%.1f",
1861 			    up->status, up->gain, up->yepoch,
1862 			    up->epomax, up->eposnr, up->datsig,
1863 			    up->datsnr,
1864 			    sp->refid, sp->reach & 0xffff,
1865 			    sp->metric, sp->synmax, sp->synsnr,
1866 			    rp->refid, rp->reach & 0xffff,
1867 			    rp->metric, rp->synmax, rp->synsnr);
1868 			record_clock_stats(&peer->srcadr, tbuf);
1869 #ifdef DEBUG
1870 			if (debug)
1871 				printf("%s\n", tbuf);
1872 #endif /* DEBUG */
1873 		}
1874 		up->errcnt = up->digcnt = up->alarm = 0;
1875 
1876 		/*
1877 		 * If synchronized to a station, restart if no stations
1878 		 * have been heard within the PANIC timeout (2 days). If
1879 		 * not and the minute digit has been found, restart if
1880 		 * not synchronized withing the SYNCH timeout (40 m). If
1881 		 * not, restart if the unit digit has not been found
1882 		 * within the DATA timeout (15 m).
1883 		 */
1884 		if (up->status & INSYNC) {
1885 			if (up->watch > PANIC) {
1886 				wwv_newgame(peer);
1887 				return;
1888 			}
1889 		} else if (up->status & DSYNC) {
1890 			if (up->watch > SYNCH) {
1891 				wwv_newgame(peer);
1892 				return;
1893 			}
1894 		} else if (up->watch > DATA) {
1895 			wwv_newgame(peer);
1896 			return;
1897 		}
1898 		wwv_newchan(peer);
1899 		break;
1900 
1901 	/*
1902 	 * Save the bit probability in the BCD data vector at the index
1903 	 * given by the argument. Bits not used in the digit are forced
1904 	 * to zero.
1905 	 */
1906 	case COEF1:			/* 4-7 */
1907 		bcddld[arg] = bit;
1908 		break;
1909 
1910 	case COEF:			/* 10-13, 15-17, 20-23, 25-26,
1911 					   30-33, 35-38, 40-41, 51-54 */
1912 		if (up->status & DSYNC)
1913 			bcddld[arg] = bit;
1914 		else
1915 			bcddld[arg] = 0;
1916 		break;
1917 
1918 	case COEF2:			/* 18, 27-28, 42-43 */
1919 		bcddld[arg] = 0;
1920 		break;
1921 
1922 	/*
1923 	 * Correlate coefficient vector with each valid digit vector and
1924 	 * save in decoding matrix. We step through the decoding matrix
1925 	 * digits correlating each with the coefficients and saving the
1926 	 * greatest and the next lower for later SNR calculation.
1927 	 */
1928 	case DECIM2:			/* 29 */
1929 		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd2);
1930 		break;
1931 
1932 	case DECIM3:			/* 44 */
1933 		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd3);
1934 		break;
1935 
1936 	case DECIM6:			/* 19 */
1937 		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd6);
1938 		break;
1939 
1940 	case DECIM9:			/* 8, 14, 24, 34, 39 */
1941 		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd9);
1942 		break;
1943 
1944 	/*
1945 	 * Miscellaneous bits. If above the positive threshold, declare
1946 	 * 1; if below the negative threshold, declare 0; otherwise
1947 	 * raise the BGATE bit. The design is intended to avoid
1948 	 * integrating noise under low SNR conditions.
1949 	 */
1950 	case MSC20:			/* 55 */
1951 		wwv_corr4(peer, &up->decvec[YR + 1], bcddld, bcd9);
1952 		/* fall through */
1953 
1954 	case MSCBIT:			/* 2-3, 50, 56-57 */
1955 		if (bitvec[nsec] > BTHR) {
1956 			if (!(up->misc & arg))
1957 				up->alarm |= CMPERR;
1958 			up->misc |= arg;
1959 		} else if (bitvec[nsec] < -BTHR) {
1960 			if (up->misc & arg)
1961 				up->alarm |= CMPERR;
1962 			up->misc &= ~arg;
1963 		} else {
1964 			up->status |= BGATE;
1965 		}
1966 		break;
1967 
1968 	/*
1969 	 * Save the data channel gain, then QSY to the probe channel and
1970 	 * dim the seconds comb filters. The www_newchan() routine will
1971 	 * light them back up.
1972 	 */
1973 	case MSC21:			/* 58 */
1974 		if (bitvec[nsec] > BTHR) {
1975 			if (!(up->misc & arg))
1976 				up->alarm |= CMPERR;
1977 			up->misc |= arg;
1978 		} else if (bitvec[nsec] < -BTHR) {
1979 			if (up->misc & arg)
1980 				up->alarm |= CMPERR;
1981 			up->misc &= ~arg;
1982 		} else {
1983 			up->status |= BGATE;
1984 		}
1985 		up->status &= ~(SELV | SELH);
1986 #ifdef ICOM
1987 		if (up->fd_icom > 0) {
1988 			up->schan = (up->schan + 1) % NCHAN;
1989 			wwv_qsy(peer, up->schan);
1990 		} else {
1991 			up->mitig[up->achan].gain = up->gain;
1992 		}
1993 #else
1994 		up->mitig[up->achan].gain = up->gain;
1995 #endif /* ICOM */
1996 		break;
1997 
1998 	/*
1999 	 * The endgames
2000 	 *
2001 	 * During second 59 the receiver and codec AGC are settling
2002 	 * down, so the data pulse is unusable as quality metric. If
2003 	 * LEPSEC is set on the last minute of 30 June or 31 December,
2004 	 * the transmitter and receiver insert an extra second (60) in
2005 	 * the timescale and the minute sync repeats the second. Once
2006 	 * leaps occurred at intervals of about 18 months, but the last
2007 	 * leap before the most recent leap in 1995 was in  1998.
2008 	 */
2009 	case MIN1:			/* 59 */
2010 		if (up->status & LEPSEC)
2011 			break;
2012 
2013 		/* fall through */
2014 
2015 	case MIN2:			/* 60 */
2016 		up->status &= ~LEPSEC;
2017 		wwv_tsec(peer);
2018 		up->rsec = 0;
2019 		wwv_clock(peer);
2020 		break;
2021 	}
2022 	if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
2023 	    DSYNC)) {
2024 		snprintf(tbuf, sizeof(tbuf),
2025 		    "wwv3 %2d %04x %3d %4d %5.0f %5.1f %5.0f %5.1f %5.0f",
2026 		    nsec, up->status, up->gain, up->yepoch, up->epomax,
2027 		    up->eposnr, up->datsig, up->datsnr, bit);
2028 		record_clock_stats(&peer->srcadr, tbuf);
2029 #ifdef DEBUG
2030 		if (debug)
2031 			printf("%s\n", tbuf);
2032 #endif /* DEBUG */
2033 	}
2034 	pp->disp += AUDIO_PHI;
2035 }
2036 
2037 /*
2038  * The radio clock is set if the alarm bits are all zero. After that,
2039  * the time is considered valid if the second sync bit is lit. It should
2040  * not be a surprise, especially if the radio is not tunable, that
2041  * sometimes no stations are above the noise and the integrators
2042  * discharge below the thresholds. We assume that, after a day of signal
2043  * loss, the minute sync epoch will be in the same second. This requires
2044  * the codec frequency be accurate within 6 PPM. Practical experience
2045  * shows the frequency typically within 0.1 PPM, so after a day of
2046  * signal loss, the time should be within 8.6 ms..
2047  */
2048 static void
2049 wwv_clock(
2050 	struct peer *peer	/* peer unit pointer */
2051 	)
2052 {
2053 	struct refclockproc *pp;
2054 	struct wwvunit *up;
2055 	l_fp	offset;		/* offset in NTP seconds */
2056 
2057 	pp = peer->procptr;
2058 	up = pp->unitptr;
2059 	if (!(up->status & SSYNC))
2060 		up->alarm |= SYNERR;
2061 	if (up->digcnt < 9)
2062 		up->alarm |= NINERR;
2063 	if (!(up->alarm))
2064 		up->status |= INSYNC;
2065 	if (up->status & INSYNC && up->status & SSYNC) {
2066 		if (up->misc & SECWAR)
2067 			pp->leap = LEAP_ADDSECOND;
2068 		else
2069 			pp->leap = LEAP_NOWARNING;
2070 		pp->second = up->rsec;
2071 		pp->minute = up->decvec[MN].digit + up->decvec[MN +
2072 		    1].digit * 10;
2073 		pp->hour = up->decvec[HR].digit + up->decvec[HR +
2074 		    1].digit * 10;
2075 		pp->day = up->decvec[DA].digit + up->decvec[DA +
2076 		    1].digit * 10 + up->decvec[DA + 2].digit * 100;
2077 		pp->year = up->decvec[YR].digit + up->decvec[YR +
2078 		    1].digit * 10;
2079 		pp->year += 2000;
2080 		L_CLR(&offset);
2081 		if (!clocktime(pp->day, pp->hour, pp->minute,
2082 		    pp->second, GMT, up->timestamp.l_ui,
2083 		    &pp->yearstart, &offset.l_ui)) {
2084 			up->errflg = CEVNT_BADTIME;
2085 		} else {
2086 			up->watch = 0;
2087 			pp->disp = 0;
2088 			pp->lastref = up->timestamp;
2089 			refclock_process_offset(pp, offset,
2090 			    up->timestamp, PDELAY + up->pdelay);
2091 			refclock_receive(peer);
2092 		}
2093 	}
2094 	pp->lencode = timecode(up, pp->a_lastcode,
2095 			       sizeof(pp->a_lastcode));
2096 	record_clock_stats(&peer->srcadr, pp->a_lastcode);
2097 #ifdef DEBUG
2098 	if (debug)
2099 		printf("wwv: timecode %d %s\n", pp->lencode,
2100 		    pp->a_lastcode);
2101 #endif /* DEBUG */
2102 }
2103 
2104 
2105 /*
2106  * wwv_corr4 - determine maximum-likelihood digit
2107  *
2108  * This routine correlates the received digit vector with the BCD
2109  * coefficient vectors corresponding to all valid digits at the given
2110  * position in the decoding matrix. The maximum value corresponds to the
2111  * maximum-likelihood digit, while the ratio of this value to the next
2112  * lower value determines the likelihood function. Note that, if the
2113  * digit is invalid, the likelihood vector is averaged toward a miss.
2114  */
2115 static void
2116 wwv_corr4(
2117 	struct peer *peer,	/* peer unit pointer */
2118 	struct decvec *vp,	/* decoding table pointer */
2119 	double	data[],		/* received data vector */
2120 	double	tab[][4]	/* correlation vector array */
2121 	)
2122 {
2123 	struct refclockproc *pp;
2124 	struct wwvunit *up;
2125 	double	topmax, nxtmax;	/* metrics */
2126 	double	acc;		/* accumulator */
2127 	char	tbuf[TBUF];	/* monitor buffer */
2128 	int	mldigit;	/* max likelihood digit */
2129 	int	i, j;
2130 
2131 	pp = peer->procptr;
2132 	up = pp->unitptr;
2133 
2134 	/*
2135 	 * Correlate digit vector with each BCD coefficient vector. If
2136 	 * any BCD digit bit is bad, consider all bits a miss. Until the
2137 	 * minute units digit has been resolved, don't to anything else.
2138 	 * Note the SNR is calculated as the ratio of the largest
2139 	 * likelihood value to the next largest likelihood value.
2140  	 */
2141 	mldigit = 0;
2142 	topmax = nxtmax = -MAXAMP;
2143 	for (i = 0; tab[i][0] != 0; i++) {
2144 		acc = 0;
2145 		for (j = 0; j < 4; j++)
2146 			acc += data[j] * tab[i][j];
2147 		acc = (vp->like[i] += (acc - vp->like[i]) / TCONST);
2148 		if (acc > topmax) {
2149 			nxtmax = topmax;
2150 			topmax = acc;
2151 			mldigit = i;
2152 		} else if (acc > nxtmax) {
2153 			nxtmax = acc;
2154 		}
2155 	}
2156 	vp->digprb = topmax;
2157 	vp->digsnr = wwv_snr(topmax, nxtmax);
2158 
2159 	/*
2160 	 * The current maximum-likelihood digit is compared to the last
2161 	 * maximum-likelihood digit. If different, the compare counter
2162 	 * and maximum-likelihood digit are reset.  When the compare
2163 	 * counter reaches the BCMP threshold (3), the digit is assumed
2164 	 * correct. When the compare counter of all nine digits have
2165 	 * reached threshold, the clock is assumed correct.
2166 	 *
2167 	 * Note that the clock display digit is set before the compare
2168 	 * counter has reached threshold; however, the clock display is
2169 	 * not considered correct until all nine clock digits have
2170 	 * reached threshold. This is intended as eye candy, but avoids
2171 	 * mistakes when the signal is low and the SNR is very marginal.
2172 	 */
2173 	if (vp->digprb < BTHR || vp->digsnr < BSNR) {
2174 		up->status |= BGATE;
2175 	} else {
2176 		if (vp->digit != mldigit) {
2177 			up->alarm |= CMPERR;
2178 			if (vp->count > 0)
2179 				vp->count--;
2180 			if (vp->count == 0)
2181 				vp->digit = mldigit;
2182 		} else {
2183 			if (vp->count < BCMP)
2184 				vp->count++;
2185 			if (vp->count == BCMP) {
2186 				up->status |= DSYNC;
2187 				up->digcnt++;
2188 			}
2189 		}
2190 	}
2191 	if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
2192 	    INSYNC)) {
2193 		snprintf(tbuf, sizeof(tbuf),
2194 		    "wwv4 %2d %04x %3d %4d %5.0f %2d %d %d %d %5.0f %5.1f",
2195 		    up->rsec - 1, up->status, up->gain, up->yepoch,
2196 		    up->epomax, vp->radix, vp->digit, mldigit,
2197 		    vp->count, vp->digprb, vp->digsnr);
2198 		record_clock_stats(&peer->srcadr, tbuf);
2199 #ifdef DEBUG
2200 		if (debug)
2201 			printf("%s\n", tbuf);
2202 #endif /* DEBUG */
2203 	}
2204 }
2205 
2206 
2207 /*
2208  * wwv_tsec - transmitter minute processing
2209  *
2210  * This routine is called at the end of the transmitter minute. It
2211  * implements a state machine that advances the logical clock subject to
2212  * the funny rules that govern the conventional clock and calendar.
2213  */
2214 static void
2215 wwv_tsec(
2216 	struct peer *peer	/* driver structure pointer */
2217 	)
2218 {
2219 	struct refclockproc *pp;
2220 	struct wwvunit *up;
2221 	int minute, day, isleap;
2222 	int temp;
2223 
2224 	pp = peer->procptr;
2225 	up = pp->unitptr;
2226 
2227 	/*
2228 	 * Advance minute unit of the day. Don't propagate carries until
2229 	 * the unit minute digit has been found.
2230 	 */
2231 	temp = carry(&up->decvec[MN]);	/* minute units */
2232 	if (!(up->status & DSYNC))
2233 		return;
2234 
2235 	/*
2236 	 * Propagate carries through the day.
2237 	 */
2238 	if (temp == 0)			/* carry minutes */
2239 		temp = carry(&up->decvec[MN + 1]);
2240 	if (temp == 0)			/* carry hours */
2241 		temp = carry(&up->decvec[HR]);
2242 	if (temp == 0)
2243 		temp = carry(&up->decvec[HR + 1]);
2244 	// XXX: Does temp have an expected value here?
2245 
2246 	/*
2247 	 * Decode the current minute and day. Set leap day if the
2248 	 * timecode leap bit is set on 30 June or 31 December. Set leap
2249 	 * minute if the last minute on leap day, but only if the clock
2250 	 * is syncrhronized. This code fails in 2400 AD.
2251 	 */
2252 	minute = up->decvec[MN].digit + up->decvec[MN + 1].digit *
2253 	    10 + up->decvec[HR].digit * 60 + up->decvec[HR +
2254 	    1].digit * 600;
2255 	day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 +
2256 	    up->decvec[DA + 2].digit * 100;
2257 
2258 	/*
2259 	 * Set the leap bit on the last minute of the leap day.
2260 	 */
2261 	isleap = up->decvec[YR].digit & 0x3;
2262 	if (up->misc & SECWAR && up->status & INSYNC) {
2263 		if ((day == (isleap ? 182 : 183) || day == (isleap ?
2264 		    365 : 366)) && minute == 1439)
2265 			up->status |= LEPSEC;
2266 	}
2267 
2268 	/*
2269 	 * Roll the day if this the first minute and propagate carries
2270 	 * through the year.
2271 	 */
2272 	if (minute != 1440)
2273 		return;
2274 
2275 	// minute = 0;
2276 	while (carry(&up->decvec[HR]) != 0); /* advance to minute 0 */
2277 	while (carry(&up->decvec[HR + 1]) != 0);
2278 	day++;
2279 	temp = carry(&up->decvec[DA]);	/* carry days */
2280 	if (temp == 0)
2281 		temp = carry(&up->decvec[DA + 1]);
2282 	if (temp == 0)
2283 		temp = carry(&up->decvec[DA + 2]);
2284 	// XXX: Is there an expected value of temp here?
2285 
2286 	/*
2287 	 * Roll the year if this the first day and propagate carries
2288 	 * through the century.
2289 	 */
2290 	if (day != (isleap ? 365 : 366))
2291 		return;
2292 
2293 	// day = 1;
2294 	while (carry(&up->decvec[DA]) != 1); /* advance to day 1 */
2295 	while (carry(&up->decvec[DA + 1]) != 0);
2296 	while (carry(&up->decvec[DA + 2]) != 0);
2297 	temp = carry(&up->decvec[YR]);	/* carry years */
2298 	if (temp == 0)
2299 		carry(&up->decvec[YR + 1]);
2300 }
2301 
2302 
2303 /*
2304  * carry - process digit
2305  *
2306  * This routine rotates a likelihood vector one position and increments
2307  * the clock digit modulo the radix. It returns the new clock digit or
2308  * zero if a carry occurred. Once synchronized, the clock digit will
2309  * match the maximum-likelihood digit corresponding to that position.
2310  */
2311 static int
2312 carry(
2313 	struct decvec *dp	/* decoding table pointer */
2314 	)
2315 {
2316 	int temp;
2317 	int j;
2318 
2319 	dp->digit++;
2320 	if (dp->digit == dp->radix)
2321 		dp->digit = 0;
2322 	temp = dp->like[dp->radix - 1];
2323 	for (j = dp->radix - 1; j > 0; j--)
2324 		dp->like[j] = dp->like[j - 1];
2325 	dp->like[0] = temp;
2326 	return (dp->digit);
2327 }
2328 
2329 
2330 /*
2331  * wwv_snr - compute SNR or likelihood function
2332  */
2333 static double
2334 wwv_snr(
2335 	double signal,		/* signal */
2336 	double noise		/* noise */
2337 	)
2338 {
2339 	double rval;
2340 
2341 	/*
2342 	 * This is a little tricky. Due to the way things are measured,
2343 	 * either or both the signal or noise amplitude can be negative
2344 	 * or zero. The intent is that, if the signal is negative or
2345 	 * zero, the SNR must always be zero. This can happen with the
2346 	 * subcarrier SNR before the phase has been aligned. On the
2347 	 * other hand, in the likelihood function the "noise" is the
2348 	 * next maximum down from the peak and this could be negative.
2349 	 * However, in this case the SNR is truly stupendous, so we
2350 	 * simply cap at MAXSNR dB (40).
2351 	 */
2352 	if (signal <= 0) {
2353 		rval = 0;
2354 	} else if (noise <= 0) {
2355 		rval = MAXSNR;
2356 	} else {
2357 		rval = 20. * log10(signal / noise);
2358 		if (rval > MAXSNR)
2359 			rval = MAXSNR;
2360 	}
2361 	return (rval);
2362 }
2363 
2364 
2365 /*
2366  * wwv_newchan - change to new data channel
2367  *
2368  * The radio actually appears to have ten channels, one channel for each
2369  * of five frequencies and each of two stations (WWV and WWVH), although
2370  * if not tunable only the DCHAN channel appears live. While the radio
2371  * is tuned to the working data channel frequency and station for most
2372  * of the minute, during seconds 59, 0 and 1 the radio is tuned to a
2373  * probe frequency in order to search for minute sync pulse and data
2374  * subcarrier from other transmitters.
2375  *
2376  * The search for WWV and WWVH operates simultaneously, with WWV minute
2377  * sync pulse at 1000 Hz and WWVH at 1200 Hz. The probe frequency
2378  * rotates each minute over 2.5, 5, 10, 15 and 20 MHz in order and yes,
2379  * we all know WWVH is dark on 20 MHz, but few remember when WWV was lit
2380  * on 25 MHz.
2381  *
2382  * This routine selects the best channel using a metric computed from
2383  * the reachability register and minute pulse amplitude. Normally, the
2384  * award goes to the the channel with the highest metric; but, in case
2385  * of ties, the award goes to the channel with the highest minute sync
2386  * pulse amplitude and then to the highest frequency.
2387  *
2388  * The routine performs an important squelch function to keep dirty data
2389  * from polluting the integrators. In order to consider a station valid,
2390  * the metric must be at least MTHR (13); otherwise, the station select
2391  * bits are cleared so the second sync is disabled and the data bit
2392  * integrators averaged to a miss.
2393  */
2394 static int
2395 wwv_newchan(
2396 	struct peer *peer	/* peer structure pointer */
2397 	)
2398 {
2399 	struct refclockproc *pp;
2400 	struct wwvunit *up;
2401 	struct sync *sp, *rp;
2402 	double rank, dtemp;
2403 	int i, j, rval;
2404 
2405 	pp = peer->procptr;
2406 	up = pp->unitptr;
2407 
2408 	/*
2409 	 * Search all five station pairs looking for the channel with
2410 	 * maximum metric.
2411 	 */
2412 	sp = NULL;
2413 	j = 0;
2414 	rank = 0;
2415 	for (i = 0; i < NCHAN; i++) {
2416 		rp = &up->mitig[i].wwvh;
2417 		dtemp = rp->metric;
2418 		if (dtemp >= rank) {
2419 			rank = dtemp;
2420 			sp = rp;
2421 			j = i;
2422 		}
2423 		rp = &up->mitig[i].wwv;
2424 		dtemp = rp->metric;
2425 		if (dtemp >= rank) {
2426 			rank = dtemp;
2427 			sp = rp;
2428 			j = i;
2429 		}
2430 	}
2431 
2432 	/*
2433 	 * If the strongest signal is less than the MTHR threshold (13),
2434 	 * we are beneath the waves, so squelch the second sync and
2435 	 * advance to the next station. This makes sure all stations are
2436 	 * scanned when the ions grow dim. If the strongest signal is
2437 	 * greater than the threshold, tune to that frequency and
2438 	 * transmitter QTH.
2439 	 */
2440 	up->status &= ~(SELV | SELH);
2441 	if (rank < MTHR) {
2442 		up->dchan = (up->dchan + 1) % NCHAN;
2443 		if (up->status & METRIC) {
2444 			up->status &= ~METRIC;
2445 			refclock_report(peer, CEVNT_PROP);
2446 		}
2447 		rval = FALSE;
2448 	} else {
2449 		up->dchan = j;
2450 		up->sptr = sp;
2451 		memcpy(&pp->refid, sp->refid, 4);
2452 		peer->refid = pp->refid;
2453 		up->status |= METRIC;
2454 		if (sp->select & SELV) {
2455 			up->status |= SELV;
2456 			up->pdelay = pp->fudgetime1;
2457 		} else if (sp->select & SELH) {
2458 			up->status |= SELH;
2459 			up->pdelay = pp->fudgetime2;
2460 		} else {
2461 			up->pdelay = 0;
2462 		}
2463 		rval = TRUE;
2464 	}
2465 #ifdef ICOM
2466 	if (up->fd_icom > 0)
2467 		wwv_qsy(peer, up->dchan);
2468 #endif /* ICOM */
2469 	return (rval);
2470 }
2471 
2472 
2473 /*
2474  * wwv_newgame - reset and start over
2475  *
2476  * There are three conditions resulting in a new game:
2477  *
2478  * 1	After finding the minute pulse (MSYNC lit), going 15 minutes
2479  *	(DATA) without finding the unit seconds digit.
2480  *
2481  * 2	After finding good data (DSYNC lit), going more than 40 minutes
2482  *	(SYNCH) without finding station sync (INSYNC lit).
2483  *
2484  * 3	After finding station sync (INSYNC lit), going more than 2 days
2485  *	(PANIC) without finding any station.
2486  */
2487 static void
2488 wwv_newgame(
2489 	struct peer *peer	/* peer structure pointer */
2490 	)
2491 {
2492 	struct refclockproc *pp;
2493 	struct wwvunit *up;
2494 	struct chan *cp;
2495 	int i;
2496 
2497 	pp = peer->procptr;
2498 	up = pp->unitptr;
2499 
2500 	/*
2501 	 * Initialize strategic values. Note we set the leap bits
2502 	 * NOTINSYNC and the refid "NONE".
2503 	 */
2504 	if (up->status)
2505 		up->errflg = CEVNT_TIMEOUT;
2506 	peer->leap = LEAP_NOTINSYNC;
2507 	up->watch = up->status = up->alarm = 0;
2508 	up->avgint = MINAVG;
2509 	up->freq = 0;
2510 	up->gain = MAXGAIN / 2;
2511 
2512 	/*
2513 	 * Initialize the station processes for audio gain, select bit,
2514 	 * station/frequency identifier and reference identifier. Start
2515 	 * probing at the strongest channel or the default channel if
2516 	 * nothing heard.
2517 	 */
2518 	memset(up->mitig, 0, sizeof(up->mitig));
2519 	for (i = 0; i < NCHAN; i++) {
2520 		cp = &up->mitig[i];
2521 		cp->gain = up->gain;
2522 		cp->wwv.select = SELV;
2523 		snprintf(cp->wwv.refid, sizeof(cp->wwv.refid), "WV%.0f",
2524 		    floor(qsy[i]));
2525 		cp->wwvh.select = SELH;
2526 		snprintf(cp->wwvh.refid, sizeof(cp->wwvh.refid), "WH%.0f",
2527 		    floor(qsy[i]));
2528 	}
2529 	up->dchan = (DCHAN + NCHAN - 1) % NCHAN;
2530 	wwv_newchan(peer);
2531 	up->schan = up->dchan;
2532 }
2533 
2534 /*
2535  * wwv_metric - compute station metric
2536  *
2537  * The most significant bits represent the number of ones in the
2538  * station reachability register. The least significant bits represent
2539  * the minute sync pulse amplitude. The combined value is scaled 0-100.
2540  */
2541 double
2542 wwv_metric(
2543 	struct sync *sp		/* station pointer */
2544 	)
2545 {
2546 	double	dtemp;
2547 
2548 	dtemp = sp->count * MAXAMP;
2549 	if (sp->synmax < MAXAMP)
2550 		dtemp += sp->synmax;
2551 	else
2552 		dtemp += MAXAMP - 1;
2553 	dtemp /= (AMAX + 1) * MAXAMP;
2554 	return (dtemp * 100.);
2555 }
2556 
2557 
2558 #ifdef ICOM
2559 /*
2560  * wwv_qsy - Tune ICOM receiver
2561  *
2562  * This routine saves the AGC for the current channel, switches to a new
2563  * channel and restores the AGC for that channel. If a tunable receiver
2564  * is not available, just fake it.
2565  */
2566 static int
2567 wwv_qsy(
2568 	struct peer *peer,	/* peer structure pointer */
2569 	int	chan		/* channel */
2570 	)
2571 {
2572 	int rval = 0;
2573 	struct refclockproc *pp;
2574 	struct wwvunit *up;
2575 
2576 	pp = peer->procptr;
2577 	up = pp->unitptr;
2578 	if (up->fd_icom > 0) {
2579 		up->mitig[up->achan].gain = up->gain;
2580 		rval = icom_freq(up->fd_icom, peer->ttl & 0x7f,
2581 		    qsy[chan]);
2582 		up->achan = chan;
2583 		up->gain = up->mitig[up->achan].gain;
2584 	}
2585 	return (rval);
2586 }
2587 #endif /* ICOM */
2588 
2589 
2590 /*
2591  * timecode - assemble timecode string and length
2592  *
2593  * Prettytime format - similar to Spectracom
2594  *
2595  * sq yy ddd hh:mm:ss ld dut lset agc iden sig errs freq avgt
2596  *
2597  * s	sync indicator ('?' or ' ')
2598  * q	error bits (hex 0-F)
2599  * yyyy	year of century
2600  * ddd	day of year
2601  * hh	hour of day
2602  * mm	minute of hour
2603  * ss	second of minute)
2604  * l	leap second warning (' ' or 'L')
2605  * d	DST state ('S', 'D', 'I', or 'O')
2606  * dut	DUT sign and magnitude (0.1 s)
2607  * lset	minutes since last clock update
2608  * agc	audio gain (0-255)
2609  * iden	reference identifier (station and frequency)
2610  * sig	signal quality (0-100)
2611  * errs	bit errors in last minute
2612  * freq	frequency offset (PPM)
2613  * avgt	averaging time (s)
2614  */
2615 static int
2616 timecode(
2617 	struct wwvunit *up,	/* driver structure pointer */
2618 	char *		tc,	/* target string */
2619 	size_t		tcsiz	/* target max chars */
2620 	)
2621 {
2622 	struct sync *sp;
2623 	int year, day, hour, minute, second, dut;
2624 	char synchar, leapchar, dst;
2625 	char cptr[50];
2626 
2627 
2628 	/*
2629 	 * Common fixed-format fields
2630 	 */
2631 	synchar = (up->status & INSYNC) ? ' ' : '?';
2632 	year = up->decvec[YR].digit + up->decvec[YR + 1].digit * 10 +
2633 	    2000;
2634 	day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 +
2635 	    up->decvec[DA + 2].digit * 100;
2636 	hour = up->decvec[HR].digit + up->decvec[HR + 1].digit * 10;
2637 	minute = up->decvec[MN].digit + up->decvec[MN + 1].digit * 10;
2638 	second = 0;
2639 	leapchar = (up->misc & SECWAR) ? 'L' : ' ';
2640 	dst = dstcod[(up->misc >> 4) & 0x3];
2641 	dut = up->misc & 0x7;
2642 	if (!(up->misc & DUTS))
2643 		dut = -dut;
2644 	snprintf(tc, tcsiz, "%c%1X", synchar, up->alarm);
2645 	snprintf(cptr, sizeof(cptr),
2646 		 " %4d %03d %02d:%02d:%02d %c%c %+d",
2647 		 year, day, hour, minute, second, leapchar, dst, dut);
2648 	strlcat(tc, cptr, tcsiz);
2649 
2650 	/*
2651 	 * Specific variable-format fields
2652 	 */
2653 	sp = up->sptr;
2654 	snprintf(cptr, sizeof(cptr), " %d %d %s %.0f %d %.1f %d",
2655 		 up->watch, up->mitig[up->dchan].gain, sp->refid,
2656 		 sp->metric, up->errcnt, up->freq / WWV_SEC * 1e6,
2657 		 up->avgint);
2658 	strlcat(tc, cptr, tcsiz);
2659 
2660 	return strlen(tc);
2661 }
2662 
2663 
2664 /*
2665  * wwv_gain - adjust codec gain
2666  *
2667  * This routine is called at the end of each second. During the second
2668  * the number of signal clips above the MAXAMP threshold (6000). If
2669  * there are no clips, the gain is bumped up; if there are more than
2670  * MAXCLP clips (100), it is bumped down. The decoder is relatively
2671  * insensitive to amplitude, so this crudity works just peachy. The
2672  * routine also jiggles the input port and selectively mutes the
2673  * monitor.
2674  */
2675 static void
2676 wwv_gain(
2677 	struct peer *peer	/* peer structure pointer */
2678 	)
2679 {
2680 	struct refclockproc *pp;
2681 	struct wwvunit *up;
2682 
2683 	pp = peer->procptr;
2684 	up = pp->unitptr;
2685 
2686 	/*
2687 	 * Apparently, the codec uses only the high order bits of the
2688 	 * gain control field. Thus, it may take awhile for changes to
2689 	 * wiggle the hardware bits.
2690 	 */
2691 	if (up->clipcnt == 0) {
2692 		up->gain += 4;
2693 		if (up->gain > MAXGAIN)
2694 			up->gain = MAXGAIN;
2695 	} else if (up->clipcnt > MAXCLP) {
2696 		up->gain -= 4;
2697 		if (up->gain < 0)
2698 			up->gain = 0;
2699 	}
2700 	audio_gain(up->gain, up->mongain, up->port);
2701 	up->clipcnt = 0;
2702 #if DEBUG
2703 	if (debug > 1)
2704 		audio_show();
2705 #endif
2706 }
2707 
2708 
2709 #else
2710 int refclock_wwv_bs;
2711 #endif /* REFCLOCK */
2712