xref: /freebsd/contrib/ntp/ntpd/refclock_wwv.c (revision aa0a1e58)
1 /*
2  * refclock_wwv - clock driver for NIST WWV/H time/frequency station
3  */
4 #ifdef HAVE_CONFIG_H
5 #include <config.h>
6 #endif
7 
8 #if defined(REFCLOCK) && defined(CLOCK_WWV)
9 
10 #include "ntpd.h"
11 #include "ntp_io.h"
12 #include "ntp_refclock.h"
13 #include "ntp_calendar.h"
14 #include "ntp_stdlib.h"
15 #include "audio.h"
16 
17 #include <stdio.h>
18 #include <ctype.h>
19 #include <math.h>
20 #ifdef HAVE_SYS_IOCTL_H
21 # include <sys/ioctl.h>
22 #endif /* HAVE_SYS_IOCTL_H */
23 
24 #define ICOM 1
25 
26 #ifdef ICOM
27 #include "icom.h"
28 #endif /* ICOM */
29 
30 /*
31  * Audio WWV/H demodulator/decoder
32  *
33  * This driver synchronizes the computer time using data encoded in
34  * radio transmissions from NIST time/frequency stations WWV in Boulder,
35  * CO, and WWVH in Kauai, HI. Transmissions are made continuously on
36  * 2.5, 5, 10 and 15 MHz from WWV and WWVH, and 20 MHz from WWV. An
37  * ordinary AM shortwave receiver can be tuned manually to one of these
38  * frequencies or, in the case of ICOM receivers, the receiver can be
39  * tuned automatically using this program as propagation conditions
40  * change throughout the weasons, both day and night.
41  *
42  * The driver receives, demodulates and decodes the radio signals when
43  * connected to the audio codec of a workstation running Solaris, SunOS
44  * FreeBSD or Linux, and with a little help, other workstations with
45  * similar codecs or sound cards. In this implementation, only one audio
46  * driver and codec can be supported on a single machine.
47  *
48  * The demodulation and decoding algorithms used in this driver are
49  * based on those developed for the TAPR DSP93 development board and the
50  * TI 320C25 digital signal processor described in: Mills, D.L. A
51  * precision radio clock for WWV transmissions. Electrical Engineering
52  * Report 97-8-1, University of Delaware, August 1997, 25 pp., available
53  * from www.eecis.udel.edu/~mills/reports.html. The algorithms described
54  * in this report have been modified somewhat to improve performance
55  * under weak signal conditions and to provide an automatic station
56  * identification feature.
57  *
58  * The ICOM code is normally compiled in the driver. It isn't used,
59  * unless the mode keyword on the server configuration command specifies
60  * a nonzero ICOM ID select code. The C-IV trace is turned on if the
61  * debug level is greater than one.
62  *
63  * Fudge factors
64  *
65  * Fudge flag4 causes the dubugging output described above to be
66  * recorded in the clockstats file. Fudge flag2 selects the audio input
67  * port, where 0 is the mike port (default) and 1 is the line-in port.
68  * It does not seem useful to select the compact disc player port. Fudge
69  * flag3 enables audio monitoring of the input signal. For this purpose,
70  * the monitor gain is set to a default value.
71  */
72 /*
73  * General definitions. These ordinarily do not need to be changed.
74  */
75 #define	DEVICE_AUDIO	"/dev/audio" /* audio device name */
76 #define	AUDIO_BUFSIZ	320	/* audio buffer size (50 ms) */
77 #define	PRECISION	(-10)	/* precision assumed (about 1 ms) */
78 #define	DESCRIPTION	"WWV/H Audio Demodulator/Decoder" /* WRU */
79 #define SECOND		8000	/* second epoch (sample rate) (Hz) */
80 #define MINUTE		(SECOND * 60) /* minute epoch */
81 #define OFFSET		128	/* companded sample offset */
82 #define SIZE		256	/* decompanding table size */
83 #define	MAXAMP		6000.	/* max signal level reference */
84 #define	MAXCLP		100	/* max clips above reference per s */
85 #define MAXSNR		40.	/* max SNR reference */
86 #define MAXFREQ		1.5	/* max frequency tolerance (187 PPM) */
87 #define DATCYC		170	/* data filter cycles */
88 #define DATSIZ		(DATCYC * MS) /* data filter size */
89 #define SYNCYC		800	/* minute filter cycles */
90 #define SYNSIZ		(SYNCYC * MS) /* minute filter size */
91 #define TCKCYC		5	/* tick filter cycles */
92 #define TCKSIZ		(TCKCYC * MS) /* tick filter size */
93 #define NCHAN		5	/* number of radio channels */
94 #define	AUDIO_PHI	5e-6	/* dispersion growth factor */
95 
96 /*
97  * Tunable parameters. The DGAIN parameter can be changed to fit the
98  * audio response of the radio at 100 Hz. The WWV/WWVH data subcarrier
99  * is transmitted at about 20 percent percent modulation; the matched
100  * filter boosts it by a factor of 17 and the receiver response does
101  * what it does. The compromise value works for ICOM radios. If the
102  * radio is not tunable, the DCHAN parameter can be changed to fit the
103  * expected best propagation frequency: higher if further from the
104  * transmitter, lower if nearer. The compromise value works for the US
105  * right coast. The FREQ_OFFSET parameter can be used as a frequency
106  * vernier to correct codec requency if greater than MAXFREQ.
107  */
108 #define DCHAN		3	/* default radio channel (15 Mhz) */
109 #define DGAIN		5.	/* subcarrier gain */
110 #define	FREQ_OFFSET	0.	/* codec frequency correction (PPM) */
111 
112 /*
113  * General purpose status bits (status)
114  *
115  * SELV and/or SELH are set when WWV or WWVH have been heard and cleared
116  * on signal loss. SSYNC is set when the second sync pulse has been
117  * acquired and cleared by signal loss. MSYNC is set when the minute
118  * sync pulse has been acquired. DSYNC is set when the units digit has
119  * has reached the threshold and INSYNC is set when all nine digits have
120  * reached the threshold. The MSYNC, DSYNC and INSYNC bits are cleared
121  * only by timeout, upon which the driver starts over from scratch.
122  *
123  * DGATE is lit if the data bit amplitude or SNR is below thresholds and
124  * BGATE is lit if the pulse width amplitude or SNR is below thresolds.
125  * LEPSEC is set during the last minute of the leap day. At the end of
126  * this minute the driver inserts second 60 in the seconds state machine
127  * and the minute sync slips a second.
128  */
129 #define MSYNC		0x0001	/* minute epoch sync */
130 #define SSYNC		0x0002	/* second epoch sync */
131 #define DSYNC		0x0004	/* minute units sync */
132 #define INSYNC		0x0008	/* clock synchronized */
133 #define FGATE		0x0010	/* frequency gate */
134 #define DGATE		0x0020	/* data pulse amplitude error */
135 #define BGATE		0x0040	/* data pulse width error */
136 #define LEPSEC		0x1000	/* leap minute */
137 
138 /*
139  * Station scoreboard bits
140  *
141  * These are used to establish the signal quality for each of the five
142  * frequencies and two stations.
143  */
144 #define SELV		0x0100	/* WWV station select */
145 #define SELH		0x0200	/* WWVH station select */
146 
147 /*
148  * Alarm status bits (alarm)
149  *
150  * These bits indicate various alarm conditions, which are decoded to
151  * form the quality character included in the timecode.
152  */
153 #define CMPERR		1	/* digit or misc bit compare error */
154 #define LOWERR		2	/* low bit or digit amplitude or SNR */
155 #define NINERR		4	/* less than nine digits in minute */
156 #define SYNERR		8	/* not tracking second sync */
157 
158 /*
159  * Watchcat timeouts (watch)
160  *
161  * If these timeouts expire, the status bits are mashed to zero and the
162  * driver starts from scratch. Suitably more refined procedures may be
163  * developed in future. All these are in minutes.
164  */
165 #define ACQSN		6	/* station acquisition timeout */
166 #define DATA		15	/* unit minutes timeout */
167 #define SYNCH		40	/* station sync timeout */
168 #define PANIC		(2 * 1440) /* panic timeout */
169 
170 /*
171  * Thresholds. These establish the minimum signal level, minimum SNR and
172  * maximum jitter thresholds which establish the error and false alarm
173  * rates of the driver. The values defined here may be on the
174  * adventurous side in the interest of the highest sensitivity.
175  */
176 #define MTHR		13.	/* minute sync gate (percent) */
177 #define TTHR		50.	/* minute sync threshold (percent) */
178 #define AWND		20	/* minute sync jitter threshold (ms) */
179 #define ATHR		2500.	/* QRZ minute sync threshold */
180 #define ASNR		20.	/* QRZ minute sync SNR threshold (dB) */
181 #define QTHR		2500.	/* QSY minute sync threshold */
182 #define QSNR		20.	/* QSY minute sync SNR threshold (dB) */
183 #define STHR		2500.	/* second sync threshold */
184 #define	SSNR		15.	/* second sync SNR threshold (dB) */
185 #define SCMP		10 	/* second sync compare threshold */
186 #define DTHR		1000.	/* bit threshold */
187 #define DSNR		10.	/* bit SNR threshold (dB) */
188 #define AMIN		3	/* min bit count */
189 #define AMAX		6	/* max bit count */
190 #define BTHR		1000.	/* digit threshold */
191 #define BSNR		3.	/* digit likelihood threshold (dB) */
192 #define BCMP		3	/* digit compare threshold */
193 #define	MAXERR		40	/* maximum error alarm */
194 
195 /*
196  * Tone frequency definitions. The increments are for 4.5-deg sine
197  * table.
198  */
199 #define MS		(SECOND / 1000) /* samples per millisecond */
200 #define IN100		((100 * 80) / SECOND) /* 100 Hz increment */
201 #define IN1000		((1000 * 80) / SECOND) /* 1000 Hz increment */
202 #define IN1200		((1200 * 80) / SECOND) /* 1200 Hz increment */
203 
204 /*
205  * Acquisition and tracking time constants
206  */
207 #define MINAVG		8	/* min averaging time */
208 #define MAXAVG		1024	/* max averaging time */
209 #define FCONST		3	/* frequency time constant */
210 #define TCONST		16	/* data bit/digit time constant */
211 
212 /*
213  * Miscellaneous status bits (misc)
214  *
215  * These bits correspond to designated bits in the WWV/H timecode. The
216  * bit probabilities are exponentially averaged over several minutes and
217  * processed by a integrator and threshold.
218  */
219 #define DUT1		0x01	/* 56 DUT .1 */
220 #define DUT2		0x02	/* 57 DUT .2 */
221 #define DUT4		0x04	/* 58 DUT .4 */
222 #define DUTS		0x08	/* 50 DUT sign */
223 #define DST1		0x10	/* 55 DST1 leap warning */
224 #define DST2		0x20	/* 2 DST2 DST1 delayed one day */
225 #define SECWAR		0x40	/* 3 leap second warning */
226 
227 /*
228  * The on-time synchronization point for the driver is the second epoch
229  * sync pulse produced by the FIR matched filters. As the 5-ms delay of
230  * these filters is compensated, the program delay is 1.1 ms due to the
231  * 600-Hz IIR bandpass filter. The measured receiver delay is 4.7 ms and
232  * the codec delay less than 0.2 ms. The additional propagation delay
233  * specific to each receiver location can be programmed in the fudge
234  * time1 and time2 values for WWV and WWVH, respectively.
235  */
236 #define PDELAY	(.0011 + .0047 + .0002)	/* net system delay (s) */
237 
238 /*
239  * Table of sine values at 4.5-degree increments. This is used by the
240  * synchronous matched filter demodulators.
241  */
242 double sintab[] = {
243  0.000000e+00,  7.845910e-02,  1.564345e-01,  2.334454e-01, /* 0-3 */
244  3.090170e-01,  3.826834e-01,  4.539905e-01,  5.224986e-01, /* 4-7 */
245  5.877853e-01,  6.494480e-01,  7.071068e-01,  7.604060e-01, /* 8-11 */
246  8.090170e-01,  8.526402e-01,  8.910065e-01,  9.238795e-01, /* 12-15 */
247  9.510565e-01,  9.723699e-01,  9.876883e-01,  9.969173e-01, /* 16-19 */
248  1.000000e+00,  9.969173e-01,  9.876883e-01,  9.723699e-01, /* 20-23 */
249  9.510565e-01,  9.238795e-01,  8.910065e-01,  8.526402e-01, /* 24-27 */
250  8.090170e-01,  7.604060e-01,  7.071068e-01,  6.494480e-01, /* 28-31 */
251  5.877853e-01,  5.224986e-01,  4.539905e-01,  3.826834e-01, /* 32-35 */
252  3.090170e-01,  2.334454e-01,  1.564345e-01,  7.845910e-02, /* 36-39 */
253 -0.000000e+00, -7.845910e-02, -1.564345e-01, -2.334454e-01, /* 40-43 */
254 -3.090170e-01, -3.826834e-01, -4.539905e-01, -5.224986e-01, /* 44-47 */
255 -5.877853e-01, -6.494480e-01, -7.071068e-01, -7.604060e-01, /* 48-51 */
256 -8.090170e-01, -8.526402e-01, -8.910065e-01, -9.238795e-01, /* 52-55 */
257 -9.510565e-01, -9.723699e-01, -9.876883e-01, -9.969173e-01, /* 56-59 */
258 -1.000000e+00, -9.969173e-01, -9.876883e-01, -9.723699e-01, /* 60-63 */
259 -9.510565e-01, -9.238795e-01, -8.910065e-01, -8.526402e-01, /* 64-67 */
260 -8.090170e-01, -7.604060e-01, -7.071068e-01, -6.494480e-01, /* 68-71 */
261 -5.877853e-01, -5.224986e-01, -4.539905e-01, -3.826834e-01, /* 72-75 */
262 -3.090170e-01, -2.334454e-01, -1.564345e-01, -7.845910e-02, /* 76-79 */
263  0.000000e+00};						    /* 80 */
264 
265 /*
266  * Decoder operations at the end of each second are driven by a state
267  * machine. The transition matrix consists of a dispatch table indexed
268  * by second number. Each entry in the table contains a case switch
269  * number and argument.
270  */
271 struct progx {
272 	int sw;			/* case switch number */
273 	int arg;		/* argument */
274 };
275 
276 /*
277  * Case switch numbers
278  */
279 #define IDLE		0	/* no operation */
280 #define COEF		1	/* BCD bit */
281 #define COEF1		2	/* BCD bit for minute unit */
282 #define COEF2		3	/* BCD bit not used */
283 #define DECIM9		4	/* BCD digit 0-9 */
284 #define DECIM6		5	/* BCD digit 0-6 */
285 #define DECIM3		6	/* BCD digit 0-3 */
286 #define DECIM2		7	/* BCD digit 0-2 */
287 #define MSCBIT		8	/* miscellaneous bit */
288 #define MSC20		9	/* miscellaneous bit */
289 #define MSC21		10	/* QSY probe channel */
290 #define MIN1		11	/* latch time */
291 #define MIN2		12	/* leap second */
292 #define SYNC2		13	/* latch minute sync pulse */
293 #define SYNC3		14	/* latch data pulse */
294 
295 /*
296  * Offsets in decoding matrix
297  */
298 #define MN		0	/* minute digits (2) */
299 #define HR		2	/* hour digits (2) */
300 #define DA		4	/* day digits (3) */
301 #define YR		7	/* year digits (2) */
302 
303 struct progx progx[] = {
304 	{SYNC2,	0},		/* 0 latch minute sync pulse */
305 	{SYNC3,	0},		/* 1 latch data pulse */
306 	{MSCBIT, DST2},		/* 2 dst2 */
307 	{MSCBIT, SECWAR},	/* 3 lw */
308 	{COEF,	0},		/* 4 1 year units */
309 	{COEF,	1},		/* 5 2 */
310 	{COEF,	2},		/* 6 4 */
311 	{COEF,	3},		/* 7 8 */
312 	{DECIM9, YR},		/* 8 */
313 	{IDLE,	0},		/* 9 p1 */
314 	{COEF1,	0},		/* 10 1 minute units */
315 	{COEF1,	1},		/* 11 2 */
316 	{COEF1,	2},		/* 12 4 */
317 	{COEF1,	3},		/* 13 8 */
318 	{DECIM9, MN},		/* 14 */
319 	{COEF,	0},		/* 15 10 minute tens */
320 	{COEF,	1},		/* 16 20 */
321 	{COEF,	2},		/* 17 40 */
322 	{COEF2,	3},		/* 18 80 (not used) */
323 	{DECIM6, MN + 1},	/* 19 p2 */
324 	{COEF,	0},		/* 20 1 hour units */
325 	{COEF,	1},		/* 21 2 */
326 	{COEF,	2},		/* 22 4 */
327 	{COEF,	3},		/* 23 8 */
328 	{DECIM9, HR},		/* 24 */
329 	{COEF,	0},		/* 25 10 hour tens */
330 	{COEF,	1},		/* 26 20 */
331 	{COEF2,	2},		/* 27 40 (not used) */
332 	{COEF2,	3},		/* 28 80 (not used) */
333 	{DECIM2, HR + 1},	/* 29 p3 */
334 	{COEF,	0},		/* 30 1 day units */
335 	{COEF,	1},		/* 31 2 */
336 	{COEF,	2},		/* 32 4 */
337 	{COEF,	3},		/* 33 8 */
338 	{DECIM9, DA},		/* 34 */
339 	{COEF,	0},		/* 35 10 day tens */
340 	{COEF,	1},		/* 36 20 */
341 	{COEF,	2},		/* 37 40 */
342 	{COEF,	3},		/* 38 80 */
343 	{DECIM9, DA + 1},	/* 39 p4 */
344 	{COEF,	0},		/* 40 100 day hundreds */
345 	{COEF,	1},		/* 41 200 */
346 	{COEF2,	2},		/* 42 400 (not used) */
347 	{COEF2,	3},		/* 43 800 (not used) */
348 	{DECIM3, DA + 2},	/* 44 */
349 	{IDLE,	0},		/* 45 */
350 	{IDLE,	0},		/* 46 */
351 	{IDLE,	0},		/* 47 */
352 	{IDLE,	0},		/* 48 */
353 	{IDLE,	0},		/* 49 p5 */
354 	{MSCBIT, DUTS},		/* 50 dut+- */
355 	{COEF,	0},		/* 51 10 year tens */
356 	{COEF,	1},		/* 52 20 */
357 	{COEF,	2},		/* 53 40 */
358 	{COEF,	3},		/* 54 80 */
359 	{MSC20, DST1},		/* 55 dst1 */
360 	{MSCBIT, DUT1},		/* 56 0.1 dut */
361 	{MSCBIT, DUT2},		/* 57 0.2 */
362 	{MSC21, DUT4},		/* 58 0.4 QSY probe channel */
363 	{MIN1,	0},		/* 59 p6 latch time */
364 	{MIN2,	0}		/* 60 leap second */
365 };
366 
367 /*
368  * BCD coefficients for maximum likelihood digit decode
369  */
370 #define P15	1.		/* max positive number */
371 #define N15	-1.		/* max negative number */
372 
373 /*
374  * Digits 0-9
375  */
376 #define P9	(P15 / 4)	/* mark (+1) */
377 #define N9	(N15 / 4)	/* space (-1) */
378 
379 double bcd9[][4] = {
380 	{N9, N9, N9, N9}, 	/* 0 */
381 	{P9, N9, N9, N9}, 	/* 1 */
382 	{N9, P9, N9, N9}, 	/* 2 */
383 	{P9, P9, N9, N9}, 	/* 3 */
384 	{N9, N9, P9, N9}, 	/* 4 */
385 	{P9, N9, P9, N9}, 	/* 5 */
386 	{N9, P9, P9, N9}, 	/* 6 */
387 	{P9, P9, P9, N9}, 	/* 7 */
388 	{N9, N9, N9, P9}, 	/* 8 */
389 	{P9, N9, N9, P9}, 	/* 9 */
390 	{0, 0, 0, 0}		/* backstop */
391 };
392 
393 /*
394  * Digits 0-6 (minute tens)
395  */
396 #define P6	(P15 / 3)	/* mark (+1) */
397 #define N6	(N15 / 3)	/* space (-1) */
398 
399 double bcd6[][4] = {
400 	{N6, N6, N6, 0}, 	/* 0 */
401 	{P6, N6, N6, 0}, 	/* 1 */
402 	{N6, P6, N6, 0}, 	/* 2 */
403 	{P6, P6, N6, 0}, 	/* 3 */
404 	{N6, N6, P6, 0}, 	/* 4 */
405 	{P6, N6, P6, 0}, 	/* 5 */
406 	{N6, P6, P6, 0}, 	/* 6 */
407 	{0, 0, 0, 0}		/* backstop */
408 };
409 
410 /*
411  * Digits 0-3 (day hundreds)
412  */
413 #define P3	(P15 / 2)	/* mark (+1) */
414 #define N3	(N15 / 2)	/* space (-1) */
415 
416 double bcd3[][4] = {
417 	{N3, N3, 0, 0}, 	/* 0 */
418 	{P3, N3, 0, 0}, 	/* 1 */
419 	{N3, P3, 0, 0}, 	/* 2 */
420 	{P3, P3, 0, 0}, 	/* 3 */
421 	{0, 0, 0, 0}		/* backstop */
422 };
423 
424 /*
425  * Digits 0-2 (hour tens)
426  */
427 #define P2	(P15 / 2)	/* mark (+1) */
428 #define N2	(N15 / 2)	/* space (-1) */
429 
430 double bcd2[][4] = {
431 	{N2, N2, 0, 0}, 	/* 0 */
432 	{P2, N2, 0, 0}, 	/* 1 */
433 	{N2, P2, 0, 0}, 	/* 2 */
434 	{0, 0, 0, 0}		/* backstop */
435 };
436 
437 /*
438  * DST decode (DST2 DST1) for prettyprint
439  */
440 char dstcod[] = {
441 	'S',			/* 00 standard time */
442 	'I',			/* 01 set clock ahead at 0200 local */
443 	'O',			/* 10 set clock back at 0200 local */
444 	'D'			/* 11 daylight time */
445 };
446 
447 /*
448  * The decoding matrix consists of nine row vectors, one for each digit
449  * of the timecode. The digits are stored from least to most significant
450  * order. The maximum likelihood timecode is formed from the digits
451  * corresponding to the maximum likelihood values reading in the
452  * opposite order: yy ddd hh:mm.
453  */
454 struct decvec {
455 	int radix;		/* radix (3, 4, 6, 10) */
456 	int digit;		/* current clock digit */
457 	int mldigit;		/* maximum likelihood digit */
458 	int count;		/* match count */
459 	double digprb;		/* max digit probability */
460 	double digsnr;		/* likelihood function (dB) */
461 	double like[10];	/* likelihood integrator 0-9 */
462 };
463 
464 /*
465  * The station structure (sp) is used to acquire the minute pulse from
466  * WWV and/or WWVH. These stations are distinguished by the frequency
467  * used for the second and minute sync pulses, 1000 Hz for WWV and 1200
468  * Hz for WWVH. Other than frequency, the format is the same.
469  */
470 struct sync {
471 	double	epoch;		/* accumulated epoch differences */
472 	double	maxeng;		/* sync max energy */
473 	double	noieng;		/* sync noise energy */
474 	long	pos;		/* max amplitude position */
475 	long	lastpos;	/* last max position */
476 	long	mepoch;		/* minute synch epoch */
477 
478 	double	amp;		/* sync signal */
479 	double	syneng;		/* sync signal max */
480 	double	synmax;		/* sync signal max latched at 0 s */
481 	double	synsnr;		/* sync signal SNR */
482 	double	metric;		/* signal quality metric */
483 	int	reach;		/* reachability register */
484 	int	count;		/* bit counter */
485 	int	select;		/* select bits */
486 	char	refid[5];	/* reference identifier */
487 };
488 
489 /*
490  * The channel structure (cp) is used to mitigate between channels.
491  */
492 struct chan {
493 	int	gain;		/* audio gain */
494 	struct sync wwv;	/* wwv station */
495 	struct sync wwvh;	/* wwvh station */
496 };
497 
498 /*
499  * WWV unit control structure (up)
500  */
501 struct wwvunit {
502 	l_fp	timestamp;	/* audio sample timestamp */
503 	l_fp	tick;		/* audio sample increment */
504 	double	phase, freq;	/* logical clock phase and frequency */
505 	double	monitor;	/* audio monitor point */
506 #ifdef ICOM
507 	int	fd_icom;	/* ICOM file descriptor */
508 #endif /* ICOM */
509 	int	errflg;		/* error flags */
510 	int	watch;		/* watchcat */
511 
512 	/*
513 	 * Audio codec variables
514 	 */
515 	double	comp[SIZE];	/* decompanding table */
516 	int	port;		/* codec port */
517 	int	gain;		/* codec gain */
518 	int	mongain;	/* codec monitor gain */
519 	int	clipcnt;	/* sample clipped count */
520 
521 	/*
522 	 * Variables used to establish basic system timing
523 	 */
524 	int	avgint;		/* master time constant */
525 	int	yepoch;		/* sync epoch */
526 	int	repoch;		/* buffered sync epoch */
527 	double	epomax;		/* second sync amplitude */
528 	double	eposnr;		/* second sync SNR */
529 	double	irig;		/* data I channel amplitude */
530 	double	qrig;		/* data Q channel amplitude */
531 	int	datapt;		/* 100 Hz ramp */
532 	double	datpha;		/* 100 Hz VFO control */
533 	int	rphase;		/* second sample counter */
534 	long	mphase;		/* minute sample counter */
535 
536 	/*
537 	 * Variables used to mitigate which channel to use
538 	 */
539 	struct chan mitig[NCHAN]; /* channel data */
540 	struct sync *sptr;	/* station pointer */
541 	int	dchan;		/* data channel */
542 	int	schan;		/* probe channel */
543 	int	achan;		/* active channel */
544 
545 	/*
546 	 * Variables used by the clock state machine
547 	 */
548 	struct decvec decvec[9]; /* decoding matrix */
549 	int	rsec;		/* seconds counter */
550 	int	digcnt;		/* count of digits synchronized */
551 
552 	/*
553 	 * Variables used to estimate signal levels and bit/digit
554 	 * probabilities
555 	 */
556 	double	datsig;		/* data signal max */
557 	double	datsnr;		/* data signal SNR (dB) */
558 
559 	/*
560 	 * Variables used to establish status and alarm conditions
561 	 */
562 	int	status;		/* status bits */
563 	int	alarm;		/* alarm flashers */
564 	int	misc;		/* miscellaneous timecode bits */
565 	int	errcnt;		/* data bit error counter */
566 };
567 
568 /*
569  * Function prototypes
570  */
571 static	int	wwv_start	P((int, struct peer *));
572 static	void	wwv_shutdown	P((int, struct peer *));
573 static	void	wwv_receive	P((struct recvbuf *));
574 static	void	wwv_poll	P((int, struct peer *));
575 
576 /*
577  * More function prototypes
578  */
579 static	void	wwv_epoch	P((struct peer *));
580 static	void	wwv_rf		P((struct peer *, double));
581 static	void	wwv_endpoc	P((struct peer *, int));
582 static	void	wwv_rsec	P((struct peer *, double));
583 static	void	wwv_qrz		P((struct peer *, struct sync *, int));
584 static	void	wwv_corr4	P((struct peer *, struct decvec *,
585 				    double [], double [][4]));
586 static	void	wwv_gain	P((struct peer *));
587 static	void	wwv_tsec	P((struct peer *));
588 static	int	timecode	P((struct wwvunit *, char *));
589 static	double	wwv_snr		P((double, double));
590 static	int	carry		P((struct decvec *));
591 static	int	wwv_newchan	P((struct peer *));
592 static	void	wwv_newgame	P((struct peer *));
593 static	double	wwv_metric	P((struct sync *));
594 static	void	wwv_clock	P((struct peer *));
595 #ifdef ICOM
596 static	int	wwv_qsy		P((struct peer *, int));
597 #endif /* ICOM */
598 
599 static double qsy[NCHAN] = {2.5, 5, 10, 15, 20}; /* frequencies (MHz) */
600 
601 /*
602  * Transfer vector
603  */
604 struct	refclock refclock_wwv = {
605 	wwv_start,		/* start up driver */
606 	wwv_shutdown,		/* shut down driver */
607 	wwv_poll,		/* transmit poll message */
608 	noentry,		/* not used (old wwv_control) */
609 	noentry,		/* initialize driver (not used) */
610 	noentry,		/* not used (old wwv_buginfo) */
611 	NOFLAGS			/* not used */
612 };
613 
614 
615 /*
616  * wwv_start - open the devices and initialize data for processing
617  */
618 static int
619 wwv_start(
620 	int	unit,		/* instance number (used by PCM) */
621 	struct peer *peer	/* peer structure pointer */
622 	)
623 {
624 	struct refclockproc *pp;
625 	struct wwvunit *up;
626 #ifdef ICOM
627 	int	temp;
628 #endif /* ICOM */
629 
630 	/*
631 	 * Local variables
632 	 */
633 	int	fd;		/* file descriptor */
634 	int	i;		/* index */
635 	double	step;		/* codec adjustment */
636 
637 	/*
638 	 * Open audio device
639 	 */
640 	fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
641 	if (fd < 0)
642 		return (0);
643 #ifdef DEBUG
644 	if (debug)
645 		audio_show();
646 #endif /* DEBUG */
647 
648 	/*
649 	 * Allocate and initialize unit structure
650 	 */
651 	if (!(up = (struct wwvunit *)emalloc(sizeof(struct wwvunit)))) {
652 		close(fd);
653 		return (0);
654 	}
655 	memset(up, 0, sizeof(struct wwvunit));
656 	pp = peer->procptr;
657 	pp->unitptr = (caddr_t)up;
658 	pp->io.clock_recv = wwv_receive;
659 	pp->io.srcclock = (caddr_t)peer;
660 	pp->io.datalen = 0;
661 	pp->io.fd = fd;
662 	if (!io_addclock(&pp->io)) {
663 		close(fd);
664 		free(up);
665 		return (0);
666 	}
667 
668 	/*
669 	 * Initialize miscellaneous variables
670 	 */
671 	peer->precision = PRECISION;
672 	pp->clockdesc = DESCRIPTION;
673 
674 	/*
675 	 * The companded samples are encoded sign-magnitude. The table
676 	 * contains all the 256 values in the interest of speed.
677 	 */
678 	up->comp[0] = up->comp[OFFSET] = 0.;
679 	up->comp[1] = 1.; up->comp[OFFSET + 1] = -1.;
680 	up->comp[2] = 3.; up->comp[OFFSET + 2] = -3.;
681 	step = 2.;
682 	for (i = 3; i < OFFSET; i++) {
683 		up->comp[i] = up->comp[i - 1] + step;
684 		up->comp[OFFSET + i] = -up->comp[i];
685                 if (i % 16 == 0)
686 		    step *= 2.;
687 	}
688 	DTOLFP(1. / SECOND, &up->tick);
689 
690 	/*
691 	 * Initialize the decoding matrix with the radix for each digit
692 	 * position.
693 	 */
694 	up->decvec[MN].radix = 10;	/* minutes */
695 	up->decvec[MN + 1].radix = 6;
696 	up->decvec[HR].radix = 10;	/* hours */
697 	up->decvec[HR + 1].radix = 3;
698 	up->decvec[DA].radix = 10;	/* days */
699 	up->decvec[DA + 1].radix = 10;
700 	up->decvec[DA + 2].radix = 4;
701 	up->decvec[YR].radix = 10;	/* years */
702 	up->decvec[YR + 1].radix = 10;
703 
704 #ifdef ICOM
705 	/*
706 	 * Initialize autotune if available. Note that the ICOM select
707 	 * code must be less than 128, so the high order bit can be used
708 	 * to select the line speed 0 (9600 bps) or 1 (1200 bps).
709 	 */
710 	temp = 0;
711 #ifdef DEBUG
712 	if (debug > 1)
713 		temp = P_TRACE;
714 #endif /* DEBUG */
715 	if (peer->ttl != 0) {
716 		if (peer->ttl & 0x80)
717 			up->fd_icom = icom_init("/dev/icom", B1200,
718 			    temp);
719 		else
720 			up->fd_icom = icom_init("/dev/icom", B9600,
721 			    temp);
722 		if (up->fd_icom < 0) {
723 			NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT)
724 			    msyslog(LOG_NOTICE,
725 			    "icom: %m");
726 			up->errflg = CEVNT_FAULT;
727 		}
728 	}
729 	if (up->fd_icom > 0) {
730 		if (wwv_qsy(peer, DCHAN) != 0) {
731 			NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT)
732 			    msyslog(LOG_NOTICE,
733 			    "icom: radio not found");
734 			up->errflg = CEVNT_FAULT;
735 			close(up->fd_icom);
736 			up->fd_icom = 0;
737 		} else {
738 			NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT)
739 			    msyslog(LOG_NOTICE,
740 			    "icom: autotune enabled");
741 		}
742 	}
743 #endif /* ICOM */
744 
745 	/*
746 	 * Let the games begin.
747 	 */
748 	wwv_newgame(peer);
749 	return (1);
750 }
751 
752 
753 /*
754  * wwv_shutdown - shut down the clock
755  */
756 static void
757 wwv_shutdown(
758 	int	unit,		/* instance number (not used) */
759 	struct peer *peer	/* peer structure pointer */
760 	)
761 {
762 	struct refclockproc *pp;
763 	struct wwvunit *up;
764 
765 	pp = peer->procptr;
766 	up = (struct wwvunit *)pp->unitptr;
767 	if (up == NULL)
768 		return;
769 
770 	io_closeclock(&pp->io);
771 #ifdef ICOM
772 	if (up->fd_icom > 0)
773 		close(up->fd_icom);
774 #endif /* ICOM */
775 	free(up);
776 }
777 
778 
779 /*
780  * wwv_receive - receive data from the audio device
781  *
782  * This routine reads input samples and adjusts the logical clock to
783  * track the A/D sample clock by dropping or duplicating codec samples.
784  * It also controls the A/D signal level with an AGC loop to mimimize
785  * quantization noise and avoid overload.
786  */
787 static void
788 wwv_receive(
789 	struct recvbuf *rbufp	/* receive buffer structure pointer */
790 	)
791 {
792 	struct peer *peer;
793 	struct refclockproc *pp;
794 	struct wwvunit *up;
795 
796 	/*
797 	 * Local variables
798 	 */
799 	double	sample;		/* codec sample */
800 	u_char	*dpt;		/* buffer pointer */
801 	int	bufcnt;		/* buffer counter */
802 	l_fp	ltemp;
803 
804 	peer = (struct peer *)rbufp->recv_srcclock;
805 	pp = peer->procptr;
806 	up = (struct wwvunit *)pp->unitptr;
807 
808 	/*
809 	 * Main loop - read until there ain't no more. Note codec
810 	 * samples are bit-inverted.
811 	 */
812 	DTOLFP((double)rbufp->recv_length / SECOND, &ltemp);
813 	L_SUB(&rbufp->recv_time, &ltemp);
814 	up->timestamp = rbufp->recv_time;
815 	dpt = rbufp->recv_buffer;
816 	for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
817 		sample = up->comp[~*dpt++ & 0xff];
818 
819 		/*
820 		 * Clip noise spikes greater than MAXAMP (6000) and
821 		 * record the number of clips to be used later by the
822 		 * AGC.
823 		 */
824 		if (sample > MAXAMP) {
825 			sample = MAXAMP;
826 			up->clipcnt++;
827 		} else if (sample < -MAXAMP) {
828 			sample = -MAXAMP;
829 			up->clipcnt++;
830 		}
831 
832 		/*
833 		 * Variable frequency oscillator. The codec oscillator
834 		 * runs at the nominal rate of 8000 samples per second,
835 		 * or 125 us per sample. A frequency change of one unit
836 		 * results in either duplicating or deleting one sample
837 		 * per second, which results in a frequency change of
838 		 * 125 PPM.
839 		 */
840 		up->phase += up->freq / SECOND;
841 		up->phase += FREQ_OFFSET / 1e6;
842 		if (up->phase >= .5) {
843 			up->phase -= 1.;
844 		} else if (up->phase < -.5) {
845 			up->phase += 1.;
846 			wwv_rf(peer, sample);
847 			wwv_rf(peer, sample);
848 		} else {
849 			wwv_rf(peer, sample);
850 		}
851 		L_ADD(&up->timestamp, &up->tick);
852 	}
853 
854 	/*
855 	 * Set the input port and monitor gain for the next buffer.
856 	 */
857 	if (pp->sloppyclockflag & CLK_FLAG2)
858 		up->port = 2;
859 	else
860 		up->port = 1;
861 	if (pp->sloppyclockflag & CLK_FLAG3)
862 		up->mongain = MONGAIN;
863 	else
864 		up->mongain = 0;
865 }
866 
867 
868 /*
869  * wwv_poll - called by the transmit procedure
870  *
871  * This routine keeps track of status. If no offset samples have been
872  * processed during a poll interval, a timeout event is declared. If
873  * errors have have occurred during the interval, they are reported as
874  * well.
875  */
876 static void
877 wwv_poll(
878 	int	unit,		/* instance number (not used) */
879 	struct peer *peer	/* peer structure pointer */
880 	)
881 {
882 	struct refclockproc *pp;
883 	struct wwvunit *up;
884 
885 	pp = peer->procptr;
886 	up = (struct wwvunit *)pp->unitptr;
887 	if (pp->coderecv == pp->codeproc)
888 		up->errflg = CEVNT_TIMEOUT;
889 	if (up->errflg)
890 		refclock_report(peer, up->errflg);
891 	up->errflg = 0;
892 	pp->polls++;
893 }
894 
895 
896 /*
897  * wwv_rf - process signals and demodulate to baseband
898  *
899  * This routine grooms and filters decompanded raw audio samples. The
900  * output signal is the 100-Hz filtered baseband data signal in
901  * quadrature phase. The routine also determines the minute synch epoch,
902  * as well as certain signal maxima, minima and related values.
903  *
904  * There are two 1-s ramps used by this program. Both count the 8000
905  * logical clock samples spanning exactly one second. The epoch ramp
906  * counts the samples starting at an arbitrary time. The rphase ramp
907  * counts the samples starting at the 5-ms second sync pulse found
908  * during the epoch ramp.
909  *
910  * There are two 1-m ramps used by this program. The mphase ramp counts
911  * the 480,000 logical clock samples spanning exactly one minute and
912  * starting at an arbitrary time. The rsec ramp counts the 60 seconds of
913  * the minute starting at the 800-ms minute sync pulse found during the
914  * mphase ramp. The rsec ramp drives the seconds state machine to
915  * determine the bits and digits of the timecode.
916  *
917  * Demodulation operations are based on three synthesized quadrature
918  * sinusoids: 100 Hz for the data signal, 1000 Hz for the WWV sync
919  * signal and 1200 Hz for the WWVH sync signal. These drive synchronous
920  * matched filters for the data signal (170 ms at 100 Hz), WWV minute
921  * sync signal (800 ms at 1000 Hz) and WWVH minute sync signal (800 ms
922  * at 1200 Hz). Two additional matched filters are switched in
923  * as required for the WWV second sync signal (5 cycles at 1000 Hz) and
924  * WWVH second sync signal (6 cycles at 1200 Hz).
925  */
926 static void
927 wwv_rf(
928 	struct peer *peer,	/* peerstructure pointer */
929 	double isig		/* input signal */
930 	)
931 {
932 	struct refclockproc *pp;
933 	struct wwvunit *up;
934 	struct sync *sp, *rp;
935 
936 	static double lpf[5];	/* 150-Hz lpf delay line */
937 	double data;		/* lpf output */
938 	static double bpf[9];	/* 1000/1200-Hz bpf delay line */
939 	double syncx;		/* bpf output */
940 	static double mf[41];	/* 1000/1200-Hz mf delay line */
941 	double mfsync;		/* mf output */
942 
943 	static int iptr;	/* data channel pointer */
944 	static double ibuf[DATSIZ]; /* data I channel delay line */
945 	static double qbuf[DATSIZ]; /* data Q channel delay line */
946 
947 	static int jptr;	/* sync channel pointer */
948 	static int kptr;	/* tick channel pointer */
949 
950 	static int csinptr;	/* wwv channel phase */
951 	static double cibuf[SYNSIZ]; /* wwv I channel delay line */
952 	static double cqbuf[SYNSIZ]; /* wwv Q channel delay line */
953 	static double ciamp;	/* wwv I channel amplitude */
954 	static double cqamp;	/* wwv Q channel amplitude */
955 
956 	static double csibuf[TCKSIZ]; /* wwv I tick delay line */
957 	static double csqbuf[TCKSIZ]; /* wwv Q tick delay line */
958 	static double csiamp;	/* wwv I tick amplitude */
959 	static double csqamp;	/* wwv Q tick amplitude */
960 
961 	static int hsinptr;	/* wwvh channel phase */
962 	static double hibuf[SYNSIZ]; /* wwvh I channel delay line */
963 	static double hqbuf[SYNSIZ]; /* wwvh Q channel delay line */
964 	static double hiamp;	/* wwvh I channel amplitude */
965 	static double hqamp;	/* wwvh Q channel amplitude */
966 
967 	static double hsibuf[TCKSIZ]; /* wwvh I tick delay line */
968 	static double hsqbuf[TCKSIZ]; /* wwvh Q tick delay line */
969 	static double hsiamp;	/* wwvh I tick amplitude */
970 	static double hsqamp;	/* wwvh Q tick amplitude */
971 
972 	static double epobuf[SECOND]; /* second sync comb filter */
973 	static double epomax, nxtmax; /* second sync amplitude buffer */
974 	static int epopos;	/* epoch second sync position buffer */
975 
976 	static int iniflg;	/* initialization flag */
977 	int	pdelay;		/* propagation delay (samples) */
978 	int	epoch;		/* comb filter index */
979 	double	dtemp;
980 	int	i;
981 
982 	pp = peer->procptr;
983 	up = (struct wwvunit *)pp->unitptr;
984 
985 	if (!iniflg) {
986 		iniflg = 1;
987 		memset((char *)lpf, 0, sizeof(lpf));
988 		memset((char *)bpf, 0, sizeof(bpf));
989 		memset((char *)mf, 0, sizeof(mf));
990 		memset((char *)ibuf, 0, sizeof(ibuf));
991 		memset((char *)qbuf, 0, sizeof(qbuf));
992 		memset((char *)cibuf, 0, sizeof(cibuf));
993 		memset((char *)cqbuf, 0, sizeof(cqbuf));
994 		memset((char *)csibuf, 0, sizeof(csibuf));
995 		memset((char *)csqbuf, 0, sizeof(csqbuf));
996 		memset((char *)hibuf, 0, sizeof(hibuf));
997 		memset((char *)hqbuf, 0, sizeof(hqbuf));
998 		memset((char *)hsibuf, 0, sizeof(hsibuf));
999 		memset((char *)hsqbuf, 0, sizeof(hsqbuf));
1000 		memset((char *)epobuf, 0, sizeof(epobuf));
1001 	}
1002 
1003 	/*
1004 	 * Baseband data demodulation. The 100-Hz subcarrier is
1005 	 * extracted using a 150-Hz IIR lowpass filter. This attenuates
1006 	 * the 1000/1200-Hz sync signals, as well as the 440-Hz and
1007 	 * 600-Hz tones and most of the noise and voice modulation
1008 	 * components.
1009 	 *
1010 	 * The subcarrier is transmitted 10 dB down from the carrier.
1011 	 * The DGAIN parameter can be adjusted for this and to
1012 	 * compensate for the radio audio response at 100 Hz.
1013 	 *
1014 	 * Matlab IIR 4th-order IIR elliptic, 150 Hz lowpass, 0.2 dB
1015 	 * passband ripple, -50 dB stopband ripple.
1016 	 */
1017 	data = (lpf[4] = lpf[3]) * 8.360961e-01;
1018 	data += (lpf[3] = lpf[2]) * -3.481740e+00;
1019 	data += (lpf[2] = lpf[1]) * 5.452988e+00;
1020 	data += (lpf[1] = lpf[0]) * -3.807229e+00;
1021 	lpf[0] = isig * DGAIN - data;
1022 	data = lpf[0] * 3.281435e-03
1023 	    + lpf[1] * -1.149947e-02
1024 	    + lpf[2] * 1.654858e-02
1025 	    + lpf[3] * -1.149947e-02
1026 	    + lpf[4] * 3.281435e-03;
1027 
1028 	/*
1029 	 * The 100-Hz data signal is demodulated using a pair of
1030 	 * quadrature multipliers, matched filters and a phase lock
1031 	 * loop. The I and Q quadrature data signals are produced by
1032 	 * multiplying the filtered signal by 100-Hz sine and cosine
1033 	 * signals, respectively. The signals are processed by 170-ms
1034 	 * synchronous matched filters to produce the amplitude and
1035 	 * phase signals used by the demodulator. The signals are scaled
1036 	 * to produce unit energy at the maximum value.
1037 	 */
1038 	i = up->datapt;
1039 	up->datapt = (up->datapt + IN100) % 80;
1040 	dtemp = sintab[i] * data / (MS / 2. * DATCYC);
1041 	up->irig -= ibuf[iptr];
1042 	ibuf[iptr] = dtemp;
1043 	up->irig += dtemp;
1044 
1045 	i = (i + 20) % 80;
1046 	dtemp = sintab[i] * data / (MS / 2. * DATCYC);
1047 	up->qrig -= qbuf[iptr];
1048 	qbuf[iptr] = dtemp;
1049 	up->qrig += dtemp;
1050 	iptr = (iptr + 1) % DATSIZ;
1051 
1052 	/*
1053 	 * Baseband sync demodulation. The 1000/1200 sync signals are
1054 	 * extracted using a 600-Hz IIR bandpass filter. This removes
1055 	 * the 100-Hz data subcarrier, as well as the 440-Hz and 600-Hz
1056 	 * tones and most of the noise and voice modulation components.
1057 	 *
1058 	 * Matlab 4th-order IIR elliptic, 800-1400 Hz bandpass, 0.2 dB
1059 	 * passband ripple, -50 dB stopband ripple.
1060 	 */
1061 	syncx = (bpf[8] = bpf[7]) * 4.897278e-01;
1062 	syncx += (bpf[7] = bpf[6]) * -2.765914e+00;
1063 	syncx += (bpf[6] = bpf[5]) * 8.110921e+00;
1064 	syncx += (bpf[5] = bpf[4]) * -1.517732e+01;
1065 	syncx += (bpf[4] = bpf[3]) * 1.975197e+01;
1066 	syncx += (bpf[3] = bpf[2]) * -1.814365e+01;
1067 	syncx += (bpf[2] = bpf[1]) * 1.159783e+01;
1068 	syncx += (bpf[1] = bpf[0]) * -4.735040e+00;
1069 	bpf[0] = isig - syncx;
1070 	syncx = bpf[0] * 8.203628e-03
1071 	    + bpf[1] * -2.375732e-02
1072 	    + bpf[2] * 3.353214e-02
1073 	    + bpf[3] * -4.080258e-02
1074 	    + bpf[4] * 4.605479e-02
1075 	    + bpf[5] * -4.080258e-02
1076 	    + bpf[6] * 3.353214e-02
1077 	    + bpf[7] * -2.375732e-02
1078 	    + bpf[8] * 8.203628e-03;
1079 
1080 	/*
1081 	 * The 1000/1200 sync signals are demodulated using a pair of
1082 	 * quadrature multipliers and matched filters. However,
1083 	 * synchronous demodulation at these frequencies is impractical,
1084 	 * so only the signal amplitude is used. The I and Q quadrature
1085 	 * sync signals are produced by multiplying the filtered signal
1086 	 * by 1000-Hz (WWV) and 1200-Hz (WWVH) sine and cosine signals,
1087 	 * respectively. The WWV and WWVH signals are processed by 800-
1088 	 * ms synchronous matched filters and combined to produce the
1089 	 * minute sync signal and detect which one (or both) the WWV or
1090 	 * WWVH signal is present. The WWV and WWVH signals are also
1091 	 * processed by 5-ms synchronous matched filters and combined to
1092 	 * produce the second sync signal. The signals are scaled to
1093 	 * produce unit energy at the maximum value.
1094 	 *
1095 	 * Note the master timing ramps, which run continuously. The
1096 	 * minute counter (mphase) counts the samples in the minute,
1097 	 * while the second counter (epoch) counts the samples in the
1098 	 * second.
1099 	 */
1100 	up->mphase = (up->mphase + 1) % MINUTE;
1101 	epoch = up->mphase % SECOND;
1102 
1103 	/*
1104 	 * WWV
1105 	 */
1106 	i = csinptr;
1107 	csinptr = (csinptr + IN1000) % 80;
1108 
1109 	dtemp = sintab[i] * syncx / (MS / 2.);
1110 	ciamp -= cibuf[jptr];
1111 	cibuf[jptr] = dtemp;
1112 	ciamp += dtemp;
1113 	csiamp -= csibuf[kptr];
1114 	csibuf[kptr] = dtemp;
1115 	csiamp += dtemp;
1116 
1117 	i = (i + 20) % 80;
1118 	dtemp = sintab[i] * syncx / (MS / 2.);
1119 	cqamp -= cqbuf[jptr];
1120 	cqbuf[jptr] = dtemp;
1121 	cqamp += dtemp;
1122 	csqamp -= csqbuf[kptr];
1123 	csqbuf[kptr] = dtemp;
1124 	csqamp += dtemp;
1125 
1126 	sp = &up->mitig[up->achan].wwv;
1127 	sp->amp = sqrt(ciamp * ciamp + cqamp * cqamp) / SYNCYC;
1128 	if (!(up->status & MSYNC))
1129 		wwv_qrz(peer, sp, (int)(pp->fudgetime1 * SECOND));
1130 
1131 	/*
1132 	 * WWVH
1133 	 */
1134 	i = hsinptr;
1135 	hsinptr = (hsinptr + IN1200) % 80;
1136 
1137 	dtemp = sintab[i] * syncx / (MS / 2.);
1138 	hiamp -= hibuf[jptr];
1139 	hibuf[jptr] = dtemp;
1140 	hiamp += dtemp;
1141 	hsiamp -= hsibuf[kptr];
1142 	hsibuf[kptr] = dtemp;
1143 	hsiamp += dtemp;
1144 
1145 	i = (i + 20) % 80;
1146 	dtemp = sintab[i] * syncx / (MS / 2.);
1147 	hqamp -= hqbuf[jptr];
1148 	hqbuf[jptr] = dtemp;
1149 	hqamp += dtemp;
1150 	hsqamp -= hsqbuf[kptr];
1151 	hsqbuf[kptr] = dtemp;
1152 	hsqamp += dtemp;
1153 
1154 	rp = &up->mitig[up->achan].wwvh;
1155 	rp->amp = sqrt(hiamp * hiamp + hqamp * hqamp) / SYNCYC;
1156 	if (!(up->status & MSYNC))
1157 		wwv_qrz(peer, rp, (int)(pp->fudgetime2 * SECOND));
1158 	jptr = (jptr + 1) % SYNSIZ;
1159 	kptr = (kptr + 1) % TCKSIZ;
1160 
1161 	/*
1162 	 * The following section is called once per minute. It does
1163 	 * housekeeping and timeout functions and empties the dustbins.
1164 	 */
1165 	if (up->mphase == 0) {
1166 		up->watch++;
1167 		if (!(up->status & MSYNC)) {
1168 
1169 			/*
1170 			 * If minute sync has not been acquired before
1171 			 * ACQSN timeout (6 min), or if no signal is
1172 			 * heard, the program cycles to the next
1173 			 * frequency and tries again.
1174 			 */
1175 			if (!wwv_newchan(peer))
1176 				up->watch = 0;
1177 #ifdef ICOM
1178 			if (up->fd_icom > 0)
1179 				wwv_qsy(peer, up->dchan);
1180 #endif /* ICOM */
1181 		} else {
1182 
1183 			/*
1184 			 * If the leap bit is set, set the minute epoch
1185 			 * back one second so the station processes
1186 			 * don't miss a beat.
1187 			 */
1188 			if (up->status & LEPSEC) {
1189 				up->mphase -= SECOND;
1190 				if (up->mphase < 0)
1191 					up->mphase += MINUTE;
1192 			}
1193 		}
1194 	}
1195 
1196 	/*
1197 	 * When the channel metric reaches threshold and the second
1198 	 * counter matches the minute epoch within the second, the
1199 	 * driver has synchronized to the station. The second number is
1200 	 * the remaining seconds until the next minute epoch, while the
1201 	 * sync epoch is zero. Watch out for the first second; if
1202 	 * already synchronized to the second, the buffered sync epoch
1203 	 * must be set.
1204 	 *
1205 	 * Note the guard interval is 200 ms; if for some reason the
1206 	 * clock drifts more than that, it might wind up in the wrong
1207 	 * second. If the maximum frequency error is not more than about
1208 	 * 1 PPM, the clock can go as much as two days while still in
1209 	 * the same second.
1210 	 */
1211 	if (up->status & MSYNC) {
1212 		wwv_epoch(peer);
1213 	} else if (up->sptr != NULL) {
1214 		sp = up->sptr;
1215 		if (sp->metric >= TTHR && epoch == sp->mepoch % SECOND) 		    {
1216 			up->rsec = (60 - sp->mepoch / SECOND) % 60;
1217 			up->rphase = 0;
1218 			up->status |= MSYNC;
1219 			up->watch = 0;
1220 			if (!(up->status & SSYNC))
1221 				up->repoch = up->yepoch = epoch;
1222 			else
1223 				up->repoch = up->yepoch;
1224 
1225 		}
1226 	}
1227 
1228 	/*
1229 	 * The second sync pulse is extracted using 5-ms (40 sample) FIR
1230 	 * matched filters at 1000 Hz for WWV or 1200 Hz for WWVH. This
1231 	 * pulse is used for the most precise synchronization, since if
1232 	 * provides a resolution of one sample (125 us). The filters run
1233 	 * only if the station has been reliably determined.
1234 	 */
1235 	if (up->status & SELV) {
1236 		pdelay = (int)(pp->fudgetime1 * SECOND);
1237 		mfsync = sqrt(csiamp * csiamp + csqamp * csqamp) /
1238 		    TCKCYC;
1239 	} else if (up->status & SELH) {
1240 		pdelay = (int)(pp->fudgetime2 * SECOND);
1241 		mfsync = sqrt(hsiamp * hsiamp + hsqamp * hsqamp) /
1242 		    TCKCYC;
1243 	} else {
1244 		pdelay = 0;
1245 		mfsync = 0;
1246 	}
1247 
1248 	/*
1249 	 * Enhance the seconds sync pulse using a 1-s (8000-sample) comb
1250 	 * filter. Correct for the FIR matched filter delay, which is 5
1251 	 * ms for both the WWV and WWVH filters, and also for the
1252 	 * propagation delay. Once each second look for second sync. If
1253 	 * not in minute sync, fiddle the codec gain. Note the SNR is
1254 	 * computed from the maximum sample and the envelope of the
1255 	 * sample 6 ms before it, so if we slip more than a cycle the
1256 	 * SNR should plummet. The signal is scaled to produce unit
1257 	 * energy at the maximum value.
1258 	 */
1259 	dtemp = (epobuf[epoch] += (mfsync - epobuf[epoch]) /
1260 	    up->avgint);
1261 	if (dtemp > epomax) {
1262 		int	j;
1263 
1264 		epomax = dtemp;
1265 		epopos = epoch;
1266 		j = epoch - 6 * MS;
1267 		if (j < 0)
1268 			j += SECOND;
1269 		nxtmax = fabs(epobuf[j]);
1270 	}
1271 	if (epoch == 0) {
1272 		up->epomax = epomax;
1273 		up->eposnr = wwv_snr(epomax, nxtmax);
1274 		epopos -= pdelay + TCKCYC * MS;
1275 		if (epopos < 0)
1276 			epopos += SECOND;
1277 		wwv_endpoc(peer, epopos);
1278 		if (!(up->status & SSYNC))
1279 			up->alarm |= SYNERR;
1280 		epomax = 0;
1281 		if (!(up->status & MSYNC))
1282 			wwv_gain(peer);
1283 	}
1284 }
1285 
1286 
1287 /*
1288  * wwv_qrz - identify and acquire WWV/WWVH minute sync pulse
1289  *
1290  * This routine implements a virtual station process used to acquire
1291  * minute sync and to mitigate among the ten frequency and station
1292  * combinations. During minute sync acquisition the process probes each
1293  * frequency and station in turn for the minute pulse, which
1294  * involves searching through the entire 480,000-sample minute. The
1295  * process finds the maximum signal and RMS noise plus signal. Then, the
1296  * actual noise is determined by subtracting the energy of the matched
1297  * filter.
1298  *
1299  * Students of radar receiver technology will discover this algorithm
1300  * amounts to a range-gate discriminator. A valid pulse must have peak
1301  * amplitude at least QTHR (2500) and SNR at least QSNR (20) dB and the
1302  * difference between the current and previous epoch must be less than
1303  * AWND (20 ms). Note that the discriminator peak occurs about 800 ms
1304  * into the second, so the timing is retarded to the previous second
1305  * epoch.
1306  */
1307 static void
1308 wwv_qrz(
1309 	struct peer *peer,	/* peer structure pointer */
1310 	struct sync *sp,	/* sync channel structure */
1311 	int	pdelay		/* propagation delay (samples) */
1312 	)
1313 {
1314 	struct refclockproc *pp;
1315 	struct wwvunit *up;
1316 	char	tbuf[80];	/* monitor buffer */
1317 	long	epoch;
1318 
1319 	pp = peer->procptr;
1320 	up = (struct wwvunit *)pp->unitptr;
1321 
1322 	/*
1323 	 * Find the sample with peak amplitude, which defines the minute
1324 	 * epoch. Accumulate all samples to determine the total noise
1325 	 * energy.
1326 	 */
1327 	epoch = up->mphase - pdelay - SYNSIZ;
1328 	if (epoch < 0)
1329 		epoch += MINUTE;
1330 	if (sp->amp > sp->maxeng) {
1331 		sp->maxeng = sp->amp;
1332 		sp->pos = epoch;
1333 	}
1334 	sp->noieng += sp->amp;
1335 
1336 	/*
1337 	 * At the end of the minute, determine the epoch of the minute
1338 	 * sync pulse, as well as the difference between the current and
1339 	 * previous epoches due to the intrinsic frequency error plus
1340 	 * jitter. When calculating the SNR, subtract the pulse energy
1341 	 * from the total noise energy and then normalize.
1342 	 */
1343 	if (up->mphase == 0) {
1344 		sp->synmax = sp->maxeng;
1345 		sp->synsnr = wwv_snr(sp->synmax, (sp->noieng -
1346 		    sp->synmax) / MINUTE);
1347 		if (sp->count == 0)
1348 			sp->lastpos = sp->pos;
1349 		epoch = (sp->pos - sp->lastpos) % MINUTE;
1350 		sp->reach <<= 1;
1351 		if (sp->reach & (1 << AMAX))
1352 			sp->count--;
1353 		if (sp->synmax > ATHR && sp->synsnr > ASNR) {
1354 			if (abs(epoch) < AWND * MS) {
1355 				sp->reach |= 1;
1356 				sp->count++;
1357 				sp->mepoch = sp->lastpos = sp->pos;
1358 			} else if (sp->count == 1) {
1359 				sp->lastpos = sp->pos;
1360 			}
1361 		}
1362 		if (up->watch > ACQSN)
1363 			sp->metric = 0;
1364 		else
1365 			sp->metric = wwv_metric(sp);
1366 		if (pp->sloppyclockflag & CLK_FLAG4) {
1367 			sprintf(tbuf,
1368 			    "wwv8 %04x %3d %s %04x %.0f %.0f/%.1f %4ld %4ld",
1369 			    up->status, up->gain, sp->refid,
1370 			    sp->reach & 0xffff, sp->metric, sp->synmax,
1371 			    sp->synsnr, sp->pos % SECOND, epoch);
1372 			record_clock_stats(&peer->srcadr, tbuf);
1373 #ifdef DEBUG
1374 			if (debug)
1375 				printf("%s\n", tbuf);
1376 #endif /* DEBUG */
1377 		}
1378 		sp->maxeng = sp->noieng = 0;
1379 	}
1380 }
1381 
1382 
1383 /*
1384  * wwv_endpoc - identify and acquire second sync pulse
1385  *
1386  * This routine is called at the end of the second sync interval. It
1387  * determines the second sync epoch position within the second and
1388  * disciplines the sample clock using a frequency-lock loop (FLL).
1389  *
1390  * Second sync is determined in the RF input routine as the maximum
1391  * over all 8000 samples in the second comb filter. To assure accurate
1392  * and reliable time and frequency discipline, this routine performs a
1393  * great deal of heavy-handed heuristic data filtering and grooming.
1394  */
1395 static void
1396 wwv_endpoc(
1397 	struct peer *peer,	/* peer structure pointer */
1398 	int epopos		/* epoch max position */
1399 	)
1400 {
1401 	struct refclockproc *pp;
1402 	struct wwvunit *up;
1403 	static int epoch_mf[3]; /* epoch median filter */
1404 	static int tepoch;	/* current second epoch */
1405  	static int xepoch;	/* last second epoch */
1406  	static int zepoch;	/* last run epoch */
1407 	static int zcount;	/* last run end time */
1408 	static int scount;	/* seconds counter */
1409 	static int syncnt;	/* run length counter */
1410 	static int maxrun;	/* longest run length */
1411 	static int mepoch;	/* longest run end epoch */
1412 	static int mcount;	/* longest run end time */
1413 	static int avgcnt;	/* averaging interval counter */
1414 	static int avginc;	/* averaging ratchet */
1415 	static int iniflg;	/* initialization flag */
1416 	char tbuf[80];		/* monitor buffer */
1417 	double dtemp;
1418 	int tmp2;
1419 
1420 	pp = peer->procptr;
1421 	up = (struct wwvunit *)pp->unitptr;
1422 	if (!iniflg) {
1423 		iniflg = 1;
1424 		memset((char *)epoch_mf, 0, sizeof(epoch_mf));
1425 	}
1426 
1427 	/*
1428 	 * If the signal amplitude or SNR fall below thresholds, dim the
1429 	 * second sync lamp and wait for hotter ions. If no stations are
1430 	 * heard, we are either in a probe cycle or the ions are really
1431 	 * cold.
1432 	 */
1433 	scount++;
1434 	if (up->epomax < STHR || up->eposnr < SSNR) {
1435 		up->status &= ~(SSYNC | FGATE);
1436 		avgcnt = syncnt = maxrun = 0;
1437 		return;
1438 	}
1439 	if (!(up->status & (SELV | SELH)))
1440 		return;
1441 
1442 	/*
1443 	 * A three-stage median filter is used to help denoise the
1444 	 * second sync pulse. The median sample becomes the candidate
1445 	 * epoch.
1446 	 */
1447 	epoch_mf[2] = epoch_mf[1];
1448 	epoch_mf[1] = epoch_mf[0];
1449 	epoch_mf[0] = epopos;
1450 	if (epoch_mf[0] > epoch_mf[1]) {
1451 		if (epoch_mf[1] > epoch_mf[2])
1452 			tepoch = epoch_mf[1];	/* 0 1 2 */
1453 		else if (epoch_mf[2] > epoch_mf[0])
1454 			tepoch = epoch_mf[0];	/* 2 0 1 */
1455 		else
1456 			tepoch = epoch_mf[2];	/* 0 2 1 */
1457 	} else {
1458 		if (epoch_mf[1] < epoch_mf[2])
1459 			tepoch = epoch_mf[1];	/* 2 1 0 */
1460 		else if (epoch_mf[2] < epoch_mf[0])
1461 			tepoch = epoch_mf[0];	/* 1 0 2 */
1462 		else
1463 			tepoch = epoch_mf[2];	/* 1 2 0 */
1464 	}
1465 
1466 
1467 	/*
1468 	 * If the epoch candidate is the same as the last one, increment
1469 	 * the run counter. If not, save the length, epoch and end
1470 	 * time of the current run for use later and reset the counter.
1471 	 * The epoch is considered valid if the run is at least SCMP
1472 	 * (10) s, the minute is synchronized and the interval since the
1473 	 * last epoch  is not greater than the averaging interval. Thus,
1474 	 * after a long absence, the program will wait a full averaging
1475 	 * interval while the comb filter charges up and noise
1476 	 * dissapates..
1477 	 */
1478 	tmp2 = (tepoch - xepoch) % SECOND;
1479 	if (tmp2 == 0) {
1480 		syncnt++;
1481 		if (syncnt > SCMP && up->status & MSYNC && (up->status &
1482 		    FGATE || scount - zcount <= up->avgint)) {
1483 			up->status |= SSYNC;
1484 			up->yepoch = tepoch;
1485 		}
1486 	} else if (syncnt >= maxrun) {
1487 		maxrun = syncnt;
1488 		mcount = scount;
1489 		mepoch = xepoch;
1490 		syncnt = 0;
1491 	}
1492 	if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status & MSYNC))
1493 	    {
1494 		sprintf(tbuf,
1495 		    "wwv1 %04x %3d %4d %5.0f %5.1f %5d %4d %4d %4d",
1496 		    up->status, up->gain, tepoch, up->epomax,
1497 		    up->eposnr, tmp2, avgcnt, syncnt,
1498 		    maxrun);
1499 		record_clock_stats(&peer->srcadr, tbuf);
1500 #ifdef DEBUG
1501 		if (debug)
1502 			printf("%s\n", tbuf);
1503 #endif /* DEBUG */
1504 	}
1505 	avgcnt++;
1506 	if (avgcnt < up->avgint) {
1507 		xepoch = tepoch;
1508 		return;
1509 	}
1510 
1511 	/*
1512 	 * The sample clock frequency is disciplined using a first-order
1513 	 * feedback loop with time constant consistent with the Allan
1514 	 * intercept of typical computer clocks. During each averaging
1515 	 * interval the candidate epoch at the end of the longest run is
1516 	 * determined. If the longest run is zero, all epoches in the
1517 	 * interval are different, so the candidate epoch is the current
1518 	 * epoch. The frequency update is computed from the candidate
1519 	 * epoch difference (125-us units) and time difference (seconds)
1520 	 * between updates.
1521 	 */
1522 	if (syncnt >= maxrun) {
1523 		maxrun = syncnt;
1524 		mcount = scount;
1525 		mepoch = xepoch;
1526 	}
1527 	xepoch = tepoch;
1528 	if (maxrun == 0) {
1529 		mepoch = tepoch;
1530 		mcount = scount;
1531 	}
1532 
1533 	/*
1534 	 * The master clock runs at the codec sample frequency of 8000
1535 	 * Hz, so the intrinsic time resolution is 125 us. The frequency
1536 	 * resolution ranges from 18 PPM at the minimum averaging
1537 	 * interval of 8 s to 0.12 PPM at the maximum interval of 1024
1538 	 * s. An offset update is determined at the end of the longest
1539 	 * run in each averaging interval. The frequency adjustment is
1540 	 * computed from the difference between offset updates and the
1541 	 * interval between them.
1542 	 *
1543 	 * The maximum frequency adjustment ranges from 187 PPM at the
1544 	 * minimum interval to 1.5 PPM at the maximum. If the adjustment
1545 	 * exceeds the maximum, the update is discarded and the
1546 	 * hysteresis counter is decremented. Otherwise, the frequency
1547 	 * is incremented by the adjustment, but clamped to the maximum
1548 	 * 187.5 PPM. If the update is less than half the maximum, the
1549 	 * hysteresis counter is incremented. If the counter increments
1550 	 * to +3, the averaging interval is doubled and the counter set
1551 	 * to zero; if it decrements to -3, the interval is halved and
1552 	 * the counter set to zero.
1553 	 */
1554 	dtemp = (mepoch - zepoch) % SECOND;
1555 	if (up->status & FGATE) {
1556 		if (abs(dtemp) < MAXFREQ * MINAVG) {
1557 			up->freq += (dtemp / 2.) / ((mcount - zcount) *
1558 			    FCONST);
1559 			if (up->freq > MAXFREQ)
1560 				up->freq = MAXFREQ;
1561 			else if (up->freq < -MAXFREQ)
1562 				up->freq = -MAXFREQ;
1563 			if (abs(dtemp) < MAXFREQ * MINAVG / 2.) {
1564 				if (avginc < 3) {
1565 					avginc++;
1566 				} else {
1567 					if (up->avgint < MAXAVG) {
1568 						up->avgint <<= 1;
1569 						avginc = 0;
1570 					}
1571 				}
1572 			}
1573 		} else {
1574 			if (avginc > -3) {
1575 				avginc--;
1576 			} else {
1577 				if (up->avgint > MINAVG) {
1578 					up->avgint >>= 1;
1579 					avginc = 0;
1580 				}
1581 			}
1582 		}
1583 	}
1584 	if (pp->sloppyclockflag & CLK_FLAG4) {
1585 		sprintf(tbuf,
1586 		    "wwv2 %04x %5.0f %5.1f %5d %4d %4d %4d %4.0f %7.2f",
1587 		    up->status, up->epomax, up->eposnr, mepoch,
1588 		    up->avgint, maxrun, mcount - zcount, dtemp,
1589 		    up->freq * 1e6 / SECOND);
1590 		record_clock_stats(&peer->srcadr, tbuf);
1591 #ifdef DEBUG
1592 		if (debug)
1593 			printf("%s\n", tbuf);
1594 #endif /* DEBUG */
1595 	}
1596 
1597 	/*
1598 	 * This is a valid update; set up for the next interval.
1599 	 */
1600 	up->status |= FGATE;
1601 	zepoch = mepoch;
1602 	zcount = mcount;
1603 	avgcnt = syncnt = maxrun = 0;
1604 }
1605 
1606 
1607 /*
1608  * wwv_epoch - epoch scanner
1609  *
1610  * This routine extracts data signals from the 100-Hz subcarrier. It
1611  * scans the receiver second epoch to determine the signal amplitudes
1612  * and pulse timings. Receiver synchronization is determined by the
1613  * minute sync pulse detected in the wwv_rf() routine and the second
1614  * sync pulse detected in the wwv_epoch() routine. The transmitted
1615  * signals are delayed by the propagation delay, receiver delay and
1616  * filter delay of this program. Delay corrections are introduced
1617  * separately for WWV and WWVH.
1618  *
1619  * Most communications radios use a highpass filter in the audio stages,
1620  * which can do nasty things to the subcarrier phase relative to the
1621  * sync pulses. Therefore, the data subcarrier reference phase is
1622  * disciplined using the hardlimited quadrature-phase signal sampled at
1623  * the same time as the in-phase signal. The phase tracking loop uses
1624  * phase adjustments of plus-minus one sample (125 us).
1625  */
1626 static void
1627 wwv_epoch(
1628 	struct peer *peer	/* peer structure pointer */
1629 	)
1630 {
1631 	struct refclockproc *pp;
1632 	struct wwvunit *up;
1633 	struct chan *cp;
1634 	static double sigmin, sigzer, sigone, engmax, engmin;
1635 
1636 	pp = peer->procptr;
1637 	up = (struct wwvunit *)pp->unitptr;
1638 
1639 	/*
1640 	 * Find the maximum minute sync pulse energy for both the
1641 	 * WWV and WWVH stations. This will be used later for channel
1642 	 * and station mitigation. Also set the seconds epoch at 800 ms
1643 	 * well before the end of the second to make sure we never set
1644 	 * the epoch backwards.
1645 	 */
1646 	cp = &up->mitig[up->achan];
1647 	if (cp->wwv.amp > cp->wwv.syneng)
1648 		cp->wwv.syneng = cp->wwv.amp;
1649 	if (cp->wwvh.amp > cp->wwvh.syneng)
1650 		cp->wwvh.syneng = cp->wwvh.amp;
1651 	if (up->rphase == 800 * MS)
1652 		up->repoch = up->yepoch;
1653 
1654 	/*
1655 	 * Use the signal amplitude at epoch 15 ms as the noise floor.
1656 	 * This gives a guard time of +-15 ms from the beginning of the
1657 	 * second until the second pulse rises at 30 ms. There is a
1658 	 * compromise here; we want to delay the sample as long as
1659 	 * possible to give the radio time to change frequency and the
1660 	 * AGC to stabilize, but as early as possible if the second
1661 	 * epoch is not exact.
1662 	 */
1663 	if (up->rphase == 15 * MS)
1664 		sigmin = sigzer = sigone = up->irig;
1665 
1666 	/*
1667 	 * Latch the data signal at 200 ms. Keep this around until the
1668 	 * end of the second. Use the signal energy as the peak to
1669 	 * compute the SNR. Use the Q sample to adjust the 100-Hz
1670 	 * reference oscillator phase.
1671 	 */
1672 	if (up->rphase == 200 * MS) {
1673 		sigzer = up->irig;
1674 		engmax = sqrt(up->irig * up->irig + up->qrig *
1675 		    up->qrig);
1676 		up->datpha = up->qrig / up->avgint;
1677 		if (up->datpha >= 0) {
1678 			up->datapt++;
1679 			if (up->datapt >= 80)
1680 				up->datapt -= 80;
1681 		} else {
1682 			up->datapt--;
1683 			if (up->datapt < 0)
1684 				up->datapt += 80;
1685 		}
1686 	}
1687 
1688 
1689 	/*
1690 	 * Latch the data signal at 500 ms. Keep this around until the
1691 	 * end of the second.
1692 	 */
1693 	else if (up->rphase == 500 * MS)
1694 		sigone = up->irig;
1695 
1696 	/*
1697 	 * At the end of the second crank the clock state machine and
1698 	 * adjust the codec gain. Note the epoch is buffered from the
1699 	 * center of the second in order to avoid jitter while the
1700 	 * seconds synch is diddling the epoch. Then, determine the true
1701 	 * offset and update the median filter in the driver interface.
1702 	 *
1703 	 * Use the energy at the end of the second as the noise to
1704 	 * compute the SNR for the data pulse. This gives a better
1705 	 * measurement than the beginning of the second, especially when
1706 	 * returning from the probe channel. This gives a guard time of
1707 	 * 30 ms from the decay of the longest pulse to the rise of the
1708 	 * next pulse.
1709 	 */
1710 	up->rphase++;
1711 	if (up->mphase % SECOND == up->repoch) {
1712 		up->status &= ~(DGATE | BGATE);
1713 		engmin = sqrt(up->irig * up->irig + up->qrig *
1714 		    up->qrig);
1715 		up->datsig = engmax;
1716 		up->datsnr = wwv_snr(engmax, engmin);
1717 
1718 		/*
1719 		 * If the amplitude or SNR is below threshold, average a
1720 		 * 0 in the the integrators; otherwise, average the
1721 		 * bipolar signal. This is done to avoid noise polution.
1722 		 */
1723 		if (engmax < DTHR || up->datsnr < DSNR) {
1724 			up->status |= DGATE;
1725 			wwv_rsec(peer, 0);
1726 		} else {
1727 			sigzer -= sigone;
1728 			sigone -= sigmin;
1729 			wwv_rsec(peer, sigone - sigzer);
1730 		}
1731 		if (up->status & (DGATE | BGATE))
1732 			up->errcnt++;
1733 		if (up->errcnt > MAXERR)
1734 			up->alarm |= LOWERR;
1735 		wwv_gain(peer);
1736 		cp = &up->mitig[up->achan];
1737 		cp->wwv.syneng = 0;
1738 		cp->wwvh.syneng = 0;
1739 		up->rphase = 0;
1740 	}
1741 }
1742 
1743 
1744 /*
1745  * wwv_rsec - process receiver second
1746  *
1747  * This routine is called at the end of each receiver second to
1748  * implement the per-second state machine. The machine assembles BCD
1749  * digit bits, decodes miscellaneous bits and dances the leap seconds.
1750  *
1751  * Normally, the minute has 60 seconds numbered 0-59. If the leap
1752  * warning bit is set, the last minute (1439) of 30 June (day 181 or 182
1753  * for leap years) or 31 December (day 365 or 366 for leap years) is
1754  * augmented by one second numbered 60. This is accomplished by
1755  * extending the minute interval by one second and teaching the state
1756  * machine to ignore it.
1757  */
1758 static void
1759 wwv_rsec(
1760 	struct peer *peer,	/* peer structure pointer */
1761 	double bit
1762 	)
1763 {
1764 	static int iniflg;	/* initialization flag */
1765 	static double bcddld[4]; /* BCD data bits */
1766 	static double bitvec[61]; /* bit integrator for misc bits */
1767 	struct refclockproc *pp;
1768 	struct wwvunit *up;
1769 	struct chan *cp;
1770 	struct sync *sp, *rp;
1771 	char	tbuf[80];	/* monitor buffer */
1772 	int	sw, arg, nsec;
1773 
1774 	pp = peer->procptr;
1775 	up = (struct wwvunit *)pp->unitptr;
1776 	if (!iniflg) {
1777 		iniflg = 1;
1778 		memset((char *)bitvec, 0, sizeof(bitvec));
1779 	}
1780 
1781 	/*
1782 	 * The bit represents the probability of a hit on zero (negative
1783 	 * values), a hit on one (positive values) or a miss (zero
1784 	 * value). The likelihood vector is the exponential average of
1785 	 * these probabilities. Only the bits of this vector
1786 	 * corresponding to the miscellaneous bits of the timecode are
1787 	 * used, but it's easier to do them all. After that, crank the
1788 	 * seconds state machine.
1789 	 */
1790 	nsec = up->rsec;
1791 	up->rsec++;
1792 	bitvec[nsec] += (bit - bitvec[nsec]) / TCONST;
1793 	sw = progx[nsec].sw;
1794 	arg = progx[nsec].arg;
1795 
1796 	/*
1797 	 * The minute state machine. Fly off to a particular section as
1798 	 * directed by the transition matrix and second number.
1799 	 */
1800 	switch (sw) {
1801 
1802 	/*
1803 	 * Ignore this second.
1804 	 */
1805 	case IDLE:			/* 9, 45-49 */
1806 		break;
1807 
1808 	/*
1809 	 * Probe channel stuff
1810 	 *
1811 	 * The WWV/H format contains data pulses in second 59 (position
1812 	 * identifier) and second 1, but not in second 0. The minute
1813 	 * sync pulse is contained in second 0. At the end of second 58
1814 	 * QSY to the probe channel, which rotates in turn over all
1815 	 * WWV/H frequencies. At the end of second 0 measure the minute
1816 	 * sync pulse. At the end of second 1 measure the data pulse and
1817 	 * QSY back to the data channel. Note that the actions commented
1818 	 * here happen at the end of the second numbered as shown.
1819 	 *
1820 	 * At the end of second 0 save the minute sync amplitude latched
1821 	 * at 800 ms as the signal later used to calculate the SNR.
1822 	 */
1823 	case SYNC2:			/* 0 */
1824 		cp = &up->mitig[up->achan];
1825 		cp->wwv.synmax = cp->wwv.syneng;
1826 		cp->wwvh.synmax = cp->wwvh.syneng;
1827 		break;
1828 
1829 	/*
1830 	 * At the end of second 1 use the minute sync amplitude latched
1831 	 * at 800 ms as the noise to calculate the SNR. If the minute
1832 	 * sync pulse and SNR are above thresholds and the data pulse
1833 	 * amplitude and SNR are above thresolds, shift a 1 into the
1834 	 * station reachability register; otherwise, shift a 0. The
1835 	 * number of 1 bits in the last six intervals is a component of
1836 	 * the channel metric computed by the wwv_metric() routine.
1837 	 * Finally, QSY back to the data channel.
1838 	 */
1839 	case SYNC3:			/* 1 */
1840 		cp = &up->mitig[up->achan];
1841 
1842 		/*
1843 		 * WWV station
1844 		 */
1845 		sp = &cp->wwv;
1846 		sp->synsnr = wwv_snr(sp->synmax, sp->amp);
1847 		sp->reach <<= 1;
1848 		if (sp->reach & (1 << AMAX))
1849 			sp->count--;
1850 		if (sp->synmax >= QTHR && sp->synsnr >= QSNR &&
1851 		    !(up->status & (DGATE | BGATE))) {
1852 			sp->reach |= 1;
1853 			sp->count++;
1854 		}
1855 		sp->metric = wwv_metric(sp);
1856 
1857 		/*
1858 		 * WWVH station
1859 		 */
1860 		rp = &cp->wwvh;
1861 		rp->synsnr = wwv_snr(rp->synmax, rp->amp);
1862 		rp->reach <<= 1;
1863 		if (rp->reach & (1 << AMAX))
1864 			rp->count--;
1865 		if (rp->synmax >= QTHR && rp->synsnr >= QSNR &&
1866 		    !(up->status & (DGATE | BGATE))) {
1867 			rp->reach |= 1;
1868 			rp->count++;
1869 		}
1870 		rp->metric = wwv_metric(rp);
1871 		if (pp->sloppyclockflag & CLK_FLAG4) {
1872 			sprintf(tbuf,
1873 			    "wwv5 %04x %3d %4d %.0f/%.1f %.0f/%.1f %s %04x %.0f %.0f/%.1f %s %04x %.0f %.0f/%.1f",
1874 			    up->status, up->gain, up->yepoch,
1875 			    up->epomax, up->eposnr, up->datsig,
1876 			    up->datsnr,
1877 			    sp->refid, sp->reach & 0xffff,
1878 			    sp->metric, sp->synmax, sp->synsnr,
1879 			    rp->refid, rp->reach & 0xffff,
1880 			    rp->metric, rp->synmax, rp->synsnr);
1881 			record_clock_stats(&peer->srcadr, tbuf);
1882 #ifdef DEBUG
1883 			if (debug)
1884 				printf("%s\n", tbuf);
1885 #endif /* DEBUG */
1886 		}
1887 		up->errcnt = up->digcnt = up->alarm = 0;
1888 
1889 		/*
1890 		 * We now begin the minute scan. If not yet synchronized
1891 		 * to a station, restart if the units digit has not been
1892 		 * found within the DATA timeout (15 m) or if not
1893 		 * synchronized within the SYNCH timeout (40 m). After
1894 		 * synchronizing to a station, restart if no stations
1895 		 * are found within the PANIC timeout (2 days).
1896 		 */
1897 		if (up->status & INSYNC) {
1898 			if (up->watch > PANIC) {
1899 				wwv_newgame(peer);
1900 				return;
1901 			}
1902 		} else {
1903 			if (!(up->status & DSYNC)) {
1904 				if (up->watch > DATA) {
1905 					wwv_newgame(peer);
1906 					return;
1907 				}
1908 			}
1909 			if (up->watch > SYNCH) {
1910 				wwv_newgame(peer);
1911 				return;
1912 			}
1913 		}
1914 		wwv_newchan(peer);
1915 #ifdef ICOM
1916 		if (up->fd_icom > 0)
1917 			wwv_qsy(peer, up->dchan);
1918 #endif /* ICOM */
1919 		break;
1920 
1921 	/*
1922 	 * Save the bit probability in the BCD data vector at the index
1923 	 * given by the argument. Bits not used in the digit are forced
1924 	 * to zero.
1925 	 */
1926 	case COEF1:			/* 4-7 */
1927 		bcddld[arg] = bit;
1928 		break;
1929 
1930 	case COEF:			/* 10-13, 15-17, 20-23, 25-26,
1931 					   30-33, 35-38, 40-41, 51-54 */
1932 		if (up->status & DSYNC)
1933 			bcddld[arg] = bit;
1934 		else
1935 			bcddld[arg] = 0;
1936 		break;
1937 
1938 	case COEF2:			/* 18, 27-28, 42-43 */
1939 		bcddld[arg] = 0;
1940 		break;
1941 
1942 	/*
1943 	 * Correlate coefficient vector with each valid digit vector and
1944 	 * save in decoding matrix. We step through the decoding matrix
1945 	 * digits correlating each with the coefficients and saving the
1946 	 * greatest and the next lower for later SNR calculation.
1947 	 */
1948 	case DECIM2:			/* 29 */
1949 		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd2);
1950 		break;
1951 
1952 	case DECIM3:			/* 44 */
1953 		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd3);
1954 		break;
1955 
1956 	case DECIM6:			/* 19 */
1957 		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd6);
1958 		break;
1959 
1960 	case DECIM9:			/* 8, 14, 24, 34, 39 */
1961 		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd9);
1962 		break;
1963 
1964 	/*
1965 	 * Miscellaneous bits. If above the positive threshold, declare
1966 	 * 1; if below the negative threshold, declare 0; otherwise
1967 	 * raise the BGATE bit. The design is intended to avoid
1968 	 * integrating noise under low SNR conditions.
1969 	 */
1970 	case MSC20:			/* 55 */
1971 		wwv_corr4(peer, &up->decvec[YR + 1], bcddld, bcd9);
1972 		/* fall through */
1973 
1974 	case MSCBIT:			/* 2-3, 50, 56-57 */
1975 		if (bitvec[nsec] > BTHR) {
1976 			if (!(up->misc & arg))
1977 				up->alarm |= CMPERR;
1978 			up->misc |= arg;
1979 		} else if (bitvec[nsec] < -BTHR) {
1980 			if (up->misc & arg)
1981 				up->alarm |= CMPERR;
1982 			up->misc &= ~arg;
1983 		} else {
1984 			up->status |= BGATE;
1985 		}
1986 		break;
1987 
1988 	/*
1989 	 * Save the data channel gain, then QSY to the probe channel and
1990 	 * dim the seconds comb filters. The newchan() routine will
1991 	 * light them back up.
1992 	 */
1993 	case MSC21:			/* 58 */
1994 		if (bitvec[nsec] > BTHR) {
1995 			if (!(up->misc & arg))
1996 				up->alarm |= CMPERR;
1997 			up->misc |= arg;
1998 		} else if (bitvec[nsec] < -BTHR) {
1999 			if (up->misc & arg)
2000 				up->alarm |= CMPERR;
2001 			up->misc &= ~arg;
2002 		} else {
2003 			up->status |= BGATE;
2004 		}
2005 		up->status &= ~(SELV | SELH);
2006 #ifdef ICOM
2007 		if (up->fd_icom > 0) {
2008 			up->schan = (up->schan + 1) % NCHAN;
2009 			wwv_qsy(peer, up->schan);
2010 		} else {
2011 			up->mitig[up->achan].gain = up->gain;
2012 		}
2013 #else
2014 		up->mitig[up->achan].gain = up->gain;
2015 #endif /* ICOM */
2016 		break;
2017 
2018 	/*
2019 	 * The endgames
2020 	 *
2021 	 * During second 59 the receiver and codec AGC are settling
2022 	 * down, so the data pulse is unusable as quality metric. If
2023 	 * LEPSEC is set on the last minute of 30 June or 31 December,
2024 	 * the transmitter and receiver insert an extra second (60) in
2025 	 * the timescale and the minute sync repeats the second. Once
2026 	 * leaps occurred at intervals of about 18 months, but the last
2027 	 * leap before the most recent leap in 1995 was in  1998.
2028 	 */
2029 	case MIN1:			/* 59 */
2030 		if (up->status & LEPSEC)
2031 			break;
2032 
2033 		/* fall through */
2034 
2035 	case MIN2:			/* 60 */
2036 		up->status &= ~LEPSEC;
2037 		wwv_tsec(peer);
2038 		up->rsec = 0;
2039 		wwv_clock(peer);
2040 		break;
2041 	}
2042 	if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
2043 	    DSYNC)) {
2044 		sprintf(tbuf,
2045 		    "wwv3 %2d %04x %3d %4d %5.0f %5.1f %5.0f %5.1f %5.0f",
2046 		    nsec, up->status, up->gain, up->yepoch, up->epomax,
2047 		    up->eposnr, up->datsig, up->datsnr, bit);
2048 		record_clock_stats(&peer->srcadr, tbuf);
2049 #ifdef DEBUG
2050 		if (debug)
2051 			printf("%s\n", tbuf);
2052 #endif /* DEBUG */
2053 	}
2054 	pp->disp += AUDIO_PHI;
2055 }
2056 
2057 /*
2058  * The radio clock is set if the alarm bits are all zero. After that,
2059  * the time is considered valid if the second sync bit is lit. It should
2060  * not be a surprise, especially if the radio is not tunable, that
2061  * sometimes no stations are above the noise and the integrators
2062  * discharge below the thresholds. We assume that, after a day of signal
2063  * loss, the minute sync epoch will be in the same second. This requires
2064  * the codec frequency be accurate within 6 PPM. Practical experience
2065  * shows the frequency typically within 0.1 PPM, so after a day of
2066  * signal loss, the time should be within 8.6 ms..
2067  */
2068 static void
2069 wwv_clock(
2070 	struct peer *peer	/* peer unit pointer */
2071 	)
2072 {
2073 	struct refclockproc *pp;
2074 	struct wwvunit *up;
2075 	l_fp	offset;		/* offset in NTP seconds */
2076 
2077 	pp = peer->procptr;
2078 	up = (struct wwvunit *)pp->unitptr;
2079 	if (!(up->status & SSYNC))
2080 		up->alarm |= SYNERR;
2081 	if (up->digcnt < 9)
2082 		up->alarm |= NINERR;
2083 	if (!(up->alarm))
2084 		up->status |= INSYNC;
2085 	if (up->status & INSYNC && up->status & SSYNC) {
2086 		if (up->misc & SECWAR)
2087 			pp->leap = LEAP_ADDSECOND;
2088 		else
2089 			pp->leap = LEAP_NOWARNING;
2090 		pp->second = up->rsec;
2091 		pp->minute = up->decvec[MN].digit + up->decvec[MN +
2092 		    1].digit * 10;
2093 		pp->hour = up->decvec[HR].digit + up->decvec[HR +
2094 		    1].digit * 10;
2095 		pp->day = up->decvec[DA].digit + up->decvec[DA +
2096 		    1].digit * 10 + up->decvec[DA + 2].digit * 100;
2097 		pp->year = up->decvec[YR].digit + up->decvec[YR +
2098 		    1].digit * 10;
2099 		pp->year += 2000;
2100 		L_CLR(&offset);
2101 		if (!clocktime(pp->day, pp->hour, pp->minute,
2102 		    pp->second, GMT, up->timestamp.l_ui,
2103 		    &pp->yearstart, &offset.l_ui)) {
2104 			up->errflg = CEVNT_BADTIME;
2105 		} else {
2106 			up->watch = 0;
2107 			pp->disp = 0;
2108 			pp->lastref = up->timestamp;
2109 			refclock_process_offset(pp, offset,
2110 			    up->timestamp, PDELAY);
2111 			refclock_receive(peer);
2112 		}
2113 	}
2114 	pp->lencode = timecode(up, pp->a_lastcode);
2115 	record_clock_stats(&peer->srcadr, pp->a_lastcode);
2116 #ifdef DEBUG
2117 	if (debug)
2118 		printf("wwv: timecode %d %s\n", pp->lencode,
2119 		    pp->a_lastcode);
2120 #endif /* DEBUG */
2121 }
2122 
2123 
2124 /*
2125  * wwv_corr4 - determine maximum likelihood digit
2126  *
2127  * This routine correlates the received digit vector with the BCD
2128  * coefficient vectors corresponding to all valid digits at the given
2129  * position in the decoding matrix. The maximum value corresponds to the
2130  * maximum likelihood digit, while the ratio of this value to the next
2131  * lower value determines the likelihood function. Note that, if the
2132  * digit is invalid, the likelihood vector is averaged toward a miss.
2133  */
2134 static void
2135 wwv_corr4(
2136 	struct peer *peer,	/* peer unit pointer */
2137 	struct decvec *vp,	/* decoding table pointer */
2138 	double	data[],		/* received data vector */
2139 	double	tab[][4]	/* correlation vector array */
2140 	)
2141 {
2142 	struct refclockproc *pp;
2143 	struct wwvunit *up;
2144 	double	topmax, nxtmax;	/* metrics */
2145 	double	acc;		/* accumulator */
2146 	char	tbuf[80];	/* monitor buffer */
2147 	int	mldigit;	/* max likelihood digit */
2148 	int	i, j;
2149 
2150 	pp = peer->procptr;
2151 	up = (struct wwvunit *)pp->unitptr;
2152 
2153 	/*
2154 	 * Correlate digit vector with each BCD coefficient vector. If
2155 	 * any BCD digit bit is bad, consider all bits a miss. Until the
2156 	 * minute units digit has been resolved, don't to anything else.
2157 	 * Note the SNR is calculated as the ratio of the largest
2158 	 * likelihood value to the next largest likelihood value.
2159  	 */
2160 	mldigit = 0;
2161 	topmax = nxtmax = -MAXAMP;
2162 	for (i = 0; tab[i][0] != 0; i++) {
2163 		acc = 0;
2164 		for (j = 0; j < 4; j++)
2165 			acc += data[j] * tab[i][j];
2166 		acc = (vp->like[i] += (acc - vp->like[i]) / TCONST);
2167 		if (acc > topmax) {
2168 			nxtmax = topmax;
2169 			topmax = acc;
2170 			mldigit = i;
2171 		} else if (acc > nxtmax) {
2172 			nxtmax = acc;
2173 		}
2174 	}
2175 	vp->digprb = topmax;
2176 	vp->digsnr = wwv_snr(topmax, nxtmax);
2177 
2178 	/*
2179 	 * The current maximum likelihood digit is compared to the last
2180 	 * maximum likelihood digit. If different, the compare counter
2181 	 * and maximum likelihood digit are reset.  When the compare
2182 	 * counter reaches the BCMP threshold (3), the digit is assumed
2183 	 * correct. When the compare counter of all nine digits have
2184 	 * reached threshold, the clock is assumed correct.
2185 	 *
2186 	 * Note that the clock display digit is set before the compare
2187 	 * counter has reached threshold; however, the clock display is
2188 	 * not considered correct until all nine clock digits have
2189 	 * reached threshold. This is intended as eye candy, but avoids
2190 	 * mistakes when the signal is low and the SNR is very marginal.
2191 	 * once correctly set, the maximum likelihood digit is ignored
2192 	 * on the assumption the clock will always be correct unless for
2193 	 * some reason it drifts to a different second.
2194 	 */
2195 	vp->mldigit = mldigit;
2196 	if (vp->digprb < BTHR || vp->digsnr < BSNR) {
2197 		vp->count = 0;
2198 		up->status |= BGATE;
2199 	} else {
2200 		up->status |= DSYNC;
2201 		if (vp->digit != mldigit) {
2202 			vp->count = 0;
2203 			up->alarm |= CMPERR;
2204 			if (!(up->status & INSYNC))
2205 				vp->digit = mldigit;
2206 		} else {
2207 			if (vp->count < BCMP)
2208 				vp->count++;
2209 			else
2210 				up->digcnt++;
2211 		}
2212 	}
2213 	if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
2214 	    INSYNC)) {
2215 		sprintf(tbuf,
2216 		    "wwv4 %2d %04x %3d %4d %5.0f %2d %d %d %d %5.0f %5.1f",
2217 		    up->rsec - 1, up->status, up->gain, up->yepoch,
2218 		    up->epomax, vp->radix, vp->digit, vp->mldigit,
2219 		    vp->count, vp->digprb, vp->digsnr);
2220 		record_clock_stats(&peer->srcadr, tbuf);
2221 #ifdef DEBUG
2222 		if (debug)
2223 			printf("%s\n", tbuf);
2224 #endif /* DEBUG */
2225 	}
2226 }
2227 
2228 
2229 /*
2230  * wwv_tsec - transmitter minute processing
2231  *
2232  * This routine is called at the end of the transmitter minute. It
2233  * implements a state machine that advances the logical clock subject to
2234  * the funny rules that govern the conventional clock and calendar.
2235  */
2236 static void
2237 wwv_tsec(
2238 	struct peer *peer	/* driver structure pointer */
2239 	)
2240 {
2241 	struct refclockproc *pp;
2242 	struct wwvunit *up;
2243 	int minute, day, isleap;
2244 	int temp;
2245 
2246 	pp = peer->procptr;
2247 	up = (struct wwvunit *)pp->unitptr;
2248 
2249 	/*
2250 	 * Advance minute unit of the day. Don't propagate carries until
2251 	 * the unit minute digit has been found.
2252 	 */
2253 	temp = carry(&up->decvec[MN]);	/* minute units */
2254 	if (!(up->status & DSYNC))
2255 		return;
2256 
2257 	/*
2258 	 * Propagate carries through the day.
2259 	 */
2260 	if (temp == 0)			/* carry minutes */
2261 		temp = carry(&up->decvec[MN + 1]);
2262 	if (temp == 0)			/* carry hours */
2263 		temp = carry(&up->decvec[HR]);
2264 	if (temp == 0)
2265 		temp = carry(&up->decvec[HR + 1]);
2266 
2267 	/*
2268 	 * Decode the current minute and day. Set leap day if the
2269 	 * timecode leap bit is set on 30 June or 31 December. Set leap
2270 	 * minute if the last minute on leap day, but only if the clock
2271 	 * is syncrhronized. This code fails in 2400 AD.
2272 	 */
2273 	minute = up->decvec[MN].digit + up->decvec[MN + 1].digit *
2274 	    10 + up->decvec[HR].digit * 60 + up->decvec[HR +
2275 	    1].digit * 600;
2276 	day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 +
2277 	    up->decvec[DA + 2].digit * 100;
2278 
2279 	/*
2280 	 * Set the leap bit on the last minute of the leap day.
2281 	 */
2282 	isleap = up->decvec[YR].digit & 0x3;
2283 	if (up->misc & SECWAR && up->status & INSYNC) {
2284 		if ((day == (isleap ? 182 : 183) || day == (isleap ?
2285 		    365 : 366)) && minute == 1439)
2286 			up->status |= LEPSEC;
2287 	}
2288 
2289 	/*
2290 	 * Roll the day if this the first minute and propagate carries
2291 	 * through the year.
2292 	 */
2293 	if (minute != 1440)
2294 		return;
2295 
2296 	minute = 0;
2297 	while (carry(&up->decvec[HR]) != 0); /* advance to minute 0 */
2298 	while (carry(&up->decvec[HR + 1]) != 0);
2299 	day++;
2300 	temp = carry(&up->decvec[DA]);	/* carry days */
2301 	if (temp == 0)
2302 		temp = carry(&up->decvec[DA + 1]);
2303 	if (temp == 0)
2304 		temp = carry(&up->decvec[DA + 2]);
2305 
2306 	/*
2307 	 * Roll the year if this the first day and propagate carries
2308 	 * through the century.
2309 	 */
2310 	if (day != (isleap ? 365 : 366))
2311 		return;
2312 
2313 	day = 1;
2314 	while (carry(&up->decvec[DA]) != 1); /* advance to day 1 */
2315 	while (carry(&up->decvec[DA + 1]) != 0);
2316 	while (carry(&up->decvec[DA + 2]) != 0);
2317 	temp = carry(&up->decvec[YR]);	/* carry years */
2318 	if (temp == 0)
2319 		carry(&up->decvec[YR + 1]);
2320 }
2321 
2322 
2323 /*
2324  * carry - process digit
2325  *
2326  * This routine rotates a likelihood vector one position and increments
2327  * the clock digit modulo the radix. It returns the new clock digit or
2328  * zero if a carry occurred. Once synchronized, the clock digit will
2329  * match the maximum likelihood digit corresponding to that position.
2330  */
2331 static int
2332 carry(
2333 	struct decvec *dp	/* decoding table pointer */
2334 	)
2335 {
2336 	int temp;
2337 	int j;
2338 
2339 	dp->digit++;
2340 	if (dp->digit == dp->radix)
2341 		dp->digit = 0;
2342 	temp = dp->like[dp->radix - 1];
2343 	for (j = dp->radix - 1; j > 0; j--)
2344 		dp->like[j] = dp->like[j - 1];
2345 	dp->like[0] = temp;
2346 	return (dp->digit);
2347 }
2348 
2349 
2350 /*
2351  * wwv_snr - compute SNR or likelihood function
2352  */
2353 static double
2354 wwv_snr(
2355 	double signal,		/* signal */
2356 	double noise		/* noise */
2357 	)
2358 {
2359 	double rval;
2360 
2361 	/*
2362 	 * This is a little tricky. Due to the way things are measured,
2363 	 * either or both the signal or noise amplitude can be negative
2364 	 * or zero. The intent is that, if the signal is negative or
2365 	 * zero, the SNR must always be zero. This can happen with the
2366 	 * subcarrier SNR before the phase has been aligned. On the
2367 	 * other hand, in the likelihood function the "noise" is the
2368 	 * next maximum down from the peak and this could be negative.
2369 	 * However, in this case the SNR is truly stupendous, so we
2370 	 * simply cap at MAXSNR dB (40).
2371 	 */
2372 	if (signal <= 0) {
2373 		rval = 0;
2374 	} else if (noise <= 0) {
2375 		rval = MAXSNR;
2376 	} else {
2377 		rval = 20. * log10(signal / noise);
2378 		if (rval > MAXSNR)
2379 			rval = MAXSNR;
2380 	}
2381 	return (rval);
2382 }
2383 
2384 
2385 /*
2386  * wwv_newchan - change to new data channel
2387  *
2388  * The radio actually appears to have ten channels, one channel for each
2389  * of five frequencies and each of two stations (WWV and WWVH), although
2390  * if not tunable only the DCHAN channel appears live. While the radio
2391  * is tuned to the working data channel frequency and station for most
2392  * of the minute, during seconds 59, 0 and 1 the radio is tuned to a
2393  * probe frequency in order to search for minute sync pulse and data
2394  * subcarrier from other transmitters.
2395  *
2396  * The search for WWV and WWVH operates simultaneously, with WWV minute
2397  * sync pulse at 1000 Hz and WWVH at 1200 Hz. The probe frequency
2398  * rotates each minute over 2.5, 5, 10, 15 and 20 MHz in order and yes,
2399  * we all know WWVH is dark on 20 MHz, but few remember when WWV was lit
2400  * on 25 MHz.
2401  *
2402  * This routine selects the best channel using a metric computed from
2403  * the reachability register and minute pulse amplitude. Normally, the
2404  * award goes to the the channel with the highest metric; but, in case
2405  * of ties, the award goes to the channel with the highest minute sync
2406  * pulse amplitude and then to the highest frequency.
2407  *
2408  * The routine performs an important squelch function to keep dirty data
2409  * from polluting the integrators. In order to consider a station valid,
2410  * the metric must be at least MTHR (13); otherwise, the station select
2411  * bits are cleared so the second sync is disabled and the data bit
2412  * integrators averaged to a miss.
2413  */
2414 static int
2415 wwv_newchan(
2416 	struct peer *peer	/* peer structure pointer */
2417 	)
2418 {
2419 	struct refclockproc *pp;
2420 	struct wwvunit *up;
2421 	struct sync *sp, *rp;
2422 	double rank, dtemp;
2423 	int i, j;
2424 
2425 	pp = peer->procptr;
2426 	up = (struct wwvunit *)pp->unitptr;
2427 
2428 	/*
2429 	 * Search all five station pairs looking for the channel with
2430 	 * maximum metric. If no station is found above thresholds, tune
2431 	 * to WWV on 15 MHz, set the reference ID to NONE and wait for
2432 	 * hotter ions.
2433 	 */
2434 	sp = NULL;
2435 	j = 0;
2436 	rank = 0;
2437 	for (i = 0; i < NCHAN; i++) {
2438 		rp = &up->mitig[i].wwvh;
2439 		dtemp = rp->metric;
2440 		if (dtemp >= rank) {
2441 			rank = dtemp;
2442 			sp = rp;
2443 			j = i;
2444 		}
2445 		rp = &up->mitig[i].wwv;
2446 		dtemp = rp->metric;
2447 		if (dtemp >= rank) {
2448 			rank = dtemp;
2449 			sp = rp;
2450 			j = i;
2451 		}
2452 	}
2453 
2454 	/*
2455 	 * If the strongest signal is less than the MTHR threshold (13),
2456 	 * we are beneath the waves, so squelch the second sync. If the
2457 	 * strongest signal is greater than the threshold, tune to that
2458 	 * frequency and transmitter QTH.
2459 	 */
2460 	if (rank < MTHR) {
2461 		up->dchan = (up->dchan + 1) % NCHAN;
2462 		up->status &= ~(SELV | SELH);
2463 		return (FALSE);
2464 	}
2465 	up->dchan = j;
2466 	up->status |= SELV | SELH;
2467 	up->sptr = sp;
2468 	memcpy(&pp->refid, sp->refid, 4);
2469 	peer->refid = pp->refid;
2470 	return (TRUE);
2471 }
2472 
2473 
2474 /*
2475  * wwv_newgame - reset and start over
2476  *
2477  * There are four conditions resulting in a new game:
2478  *
2479  * 1	During initial acquisition (MSYNC dark) going 6 minutes (ACQSN)
2480  *	without reliably finding the minute pulse (MSYNC lit).
2481  *
2482  * 2	After finding the minute pulse (MSYNC lit), going 15 minutes
2483  *	(DATA) without finding the unit seconds digit.
2484  *
2485  * 3	After finding good data (DATA lit), going more than 40 minutes
2486  *	(SYNCH) without finding station sync (INSYNC lit).
2487  *
2488  * 4	After finding station sync (INSYNC lit), going more than 2 days
2489  *	(PANIC) without finding any station.
2490  */
2491 static void
2492 wwv_newgame(
2493 	struct peer *peer	/* peer structure pointer */
2494 	)
2495 {
2496 	struct refclockproc *pp;
2497 	struct wwvunit *up;
2498 	struct chan *cp;
2499 	int i;
2500 
2501 	pp = peer->procptr;
2502 	up = (struct wwvunit *)pp->unitptr;
2503 
2504 	/*
2505 	 * Initialize strategic values. Note we set the leap bits
2506 	 * NOTINSYNC and the refid "NONE".
2507 	 */
2508 	peer->leap = LEAP_NOTINSYNC;
2509 	up->watch = up->status = up->alarm = 0;
2510 	up->avgint = MINAVG;
2511 	up->freq = 0;
2512 	up->gain = MAXGAIN / 2;
2513 
2514 	/*
2515 	 * Initialize the station processes for audio gain, select bit,
2516 	 * station/frequency identifier and reference identifier. Start
2517 	 * probing at the next channel after the data channel.
2518 	 */
2519 	memset(up->mitig, 0, sizeof(up->mitig));
2520 	for (i = 0; i < NCHAN; i++) {
2521 		cp = &up->mitig[i];
2522 		cp->gain = up->gain;
2523 		cp->wwv.select = SELV;
2524 		sprintf(cp->wwv.refid, "WV%.0f", floor(qsy[i]));
2525 		cp->wwvh.select = SELH;
2526 		sprintf(cp->wwvh.refid, "WH%.0f", floor(qsy[i]));
2527 	}
2528 	up->dchan = (DCHAN + NCHAN - 1) % NCHAN;;
2529 	wwv_newchan(peer);
2530 	up->achan = up->schan = up->dchan;
2531 #ifdef ICOM
2532 	if (up->fd_icom > 0)
2533 		wwv_qsy(peer, up->dchan);
2534 #endif /* ICOM */
2535 }
2536 
2537 /*
2538  * wwv_metric - compute station metric
2539  *
2540  * The most significant bits represent the number of ones in the
2541  * station reachability register. The least significant bits represent
2542  * the minute sync pulse amplitude. The combined value is scaled 0-100.
2543  */
2544 double
2545 wwv_metric(
2546 	struct sync *sp		/* station pointer */
2547 	)
2548 {
2549 	double	dtemp;
2550 
2551 	dtemp = sp->count * MAXAMP;
2552 	if (sp->synmax < MAXAMP)
2553 		dtemp += sp->synmax;
2554 	else
2555 		dtemp += MAXAMP - 1;
2556 	dtemp /= (AMAX + 1) * MAXAMP;
2557 	return (dtemp * 100.);
2558 }
2559 
2560 
2561 #ifdef ICOM
2562 /*
2563  * wwv_qsy - Tune ICOM receiver
2564  *
2565  * This routine saves the AGC for the current channel, switches to a new
2566  * channel and restores the AGC for that channel. If a tunable receiver
2567  * is not available, just fake it.
2568  */
2569 static int
2570 wwv_qsy(
2571 	struct peer *peer,	/* peer structure pointer */
2572 	int	chan		/* channel */
2573 	)
2574 {
2575 	int rval = 0;
2576 	struct refclockproc *pp;
2577 	struct wwvunit *up;
2578 
2579 	pp = peer->procptr;
2580 	up = (struct wwvunit *)pp->unitptr;
2581 	if (up->fd_icom > 0) {
2582 		up->mitig[up->achan].gain = up->gain;
2583 		rval = icom_freq(up->fd_icom, peer->ttl & 0x7f,
2584 		    qsy[chan]);
2585 		up->achan = chan;
2586 		up->gain = up->mitig[up->achan].gain;
2587 	}
2588 	return (rval);
2589 }
2590 #endif /* ICOM */
2591 
2592 
2593 /*
2594  * timecode - assemble timecode string and length
2595  *
2596  * Prettytime format - similar to Spectracom
2597  *
2598  * sq yy ddd hh:mm:ss ld dut lset agc iden sig errs freq avgt
2599  *
2600  * s	sync indicator ('?' or ' ')
2601  * q	error bits (hex 0-F)
2602  * yyyy	year of century
2603  * ddd	day of year
2604  * hh	hour of day
2605  * mm	minute of hour
2606  * ss	second of minute)
2607  * l	leap second warning (' ' or 'L')
2608  * d	DST state ('S', 'D', 'I', or 'O')
2609  * dut	DUT sign and magnitude (0.1 s)
2610  * lset	minutes since last clock update
2611  * agc	audio gain (0-255)
2612  * iden	reference identifier (station and frequency)
2613  * sig	signal quality (0-100)
2614  * errs	bit errors in last minute
2615  * freq	frequency offset (PPM)
2616  * avgt	averaging time (s)
2617  */
2618 static int
2619 timecode(
2620 	struct wwvunit *up,	/* driver structure pointer */
2621 	char *ptr		/* target string */
2622 	)
2623 {
2624 	struct sync *sp;
2625 	int year, day, hour, minute, second, dut;
2626 	char synchar, leapchar, dst;
2627 	char cptr[50];
2628 
2629 
2630 	/*
2631 	 * Common fixed-format fields
2632 	 */
2633 	synchar = (up->status & INSYNC) ? ' ' : '?';
2634 	year = up->decvec[YR].digit + up->decvec[YR + 1].digit * 10 +
2635 	    2000;
2636 	day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 +
2637 	    up->decvec[DA + 2].digit * 100;
2638 	hour = up->decvec[HR].digit + up->decvec[HR + 1].digit * 10;
2639 	minute = up->decvec[MN].digit + up->decvec[MN + 1].digit * 10;
2640 	second = 0;
2641 	leapchar = (up->misc & SECWAR) ? 'L' : ' ';
2642 	dst = dstcod[(up->misc >> 4) & 0x3];
2643 	dut = up->misc & 0x7;
2644 	if (!(up->misc & DUTS))
2645 		dut = -dut;
2646 	sprintf(ptr, "%c%1X", synchar, up->alarm);
2647 	sprintf(cptr, " %4d %03d %02d:%02d:%02d %c%c %+d",
2648 	    year, day, hour, minute, second, leapchar, dst, dut);
2649 	strcat(ptr, cptr);
2650 
2651 	/*
2652 	 * Specific variable-format fields
2653 	 */
2654 	sp = up->sptr;
2655 	sprintf(cptr, " %d %d %s %.0f %d %.1f %d", up->watch,
2656 	    up->mitig[up->dchan].gain, sp->refid, sp->metric,
2657 	    up->errcnt, up->freq / SECOND * 1e6, up->avgint);
2658 	strcat(ptr, cptr);
2659 	return (strlen(ptr));
2660 }
2661 
2662 
2663 /*
2664  * wwv_gain - adjust codec gain
2665  *
2666  * This routine is called at the end of each second. During the second
2667  * the number of signal clips above the MAXAMP threshold (6000). If
2668  * there are no clips, the gain is bumped up; if there are more than
2669  * MAXCLP clips (100), it is bumped down. The decoder is relatively
2670  * insensitive to amplitude, so this crudity works just peachy. The
2671  * input port is set and the error flag is cleared, mostly to be ornery.
2672  */
2673 static void
2674 wwv_gain(
2675 	struct peer *peer	/* peer structure pointer */
2676 	)
2677 {
2678 	struct refclockproc *pp;
2679 	struct wwvunit *up;
2680 
2681 	pp = peer->procptr;
2682 	up = (struct wwvunit *)pp->unitptr;
2683 
2684 	/*
2685 	 * Apparently, the codec uses only the high order bits of the
2686 	 * gain control field. Thus, it may take awhile for changes to
2687 	 * wiggle the hardware bits.
2688 	 */
2689 	if (up->clipcnt == 0) {
2690 		up->gain += 4;
2691 		if (up->gain > MAXGAIN)
2692 			up->gain = MAXGAIN;
2693 	} else if (up->clipcnt > MAXCLP) {
2694 		up->gain -= 4;
2695 		if (up->gain < 0)
2696 			up->gain = 0;
2697 	}
2698 	audio_gain(up->gain, up->mongain, up->port);
2699 	up->clipcnt = 0;
2700 #if DEBUG
2701 	if (debug > 1)
2702 		audio_show();
2703 #endif
2704 }
2705 
2706 
2707 #else
2708 int refclock_wwv_bs;
2709 #endif /* REFCLOCK */
2710