xref: /freebsd/contrib/ntp/sntp/libevent/test/regress.c (revision 5b9c547c)
1 /*
2  * Copyright (c) 2003-2007 Niels Provos <provos@citi.umich.edu>
3  * Copyright (c) 2007-2012 Niels Provos and Nick Mathewson
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. The name of the author may not be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 #include "util-internal.h"
28 
29 #ifdef _WIN32
30 #include <winsock2.h>
31 #include <windows.h>
32 #endif
33 
34 #include "event2/event-config.h"
35 
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #ifdef EVENT__HAVE_SYS_TIME_H
39 #include <sys/time.h>
40 #endif
41 #include <sys/queue.h>
42 #ifndef _WIN32
43 #include <sys/socket.h>
44 #include <sys/wait.h>
45 #include <signal.h>
46 #include <unistd.h>
47 #include <netdb.h>
48 #endif
49 #include <fcntl.h>
50 #include <signal.h>
51 #include <stdlib.h>
52 #include <stdio.h>
53 #include <string.h>
54 #include <errno.h>
55 #include <assert.h>
56 #include <ctype.h>
57 
58 #include "event2/event.h"
59 #include "event2/event_struct.h"
60 #include "event2/event_compat.h"
61 #include "event2/tag.h"
62 #include "event2/buffer.h"
63 #include "event2/buffer_compat.h"
64 #include "event2/util.h"
65 #include "event-internal.h"
66 #include "evthread-internal.h"
67 #include "log-internal.h"
68 #include "time-internal.h"
69 
70 #include "regress.h"
71 
72 #ifndef _WIN32
73 #include "regress.gen.h"
74 #endif
75 
76 evutil_socket_t pair[2];
77 int test_ok;
78 int called;
79 struct event_base *global_base;
80 
81 static char wbuf[4096];
82 static char rbuf[4096];
83 static int woff;
84 static int roff;
85 static int usepersist;
86 static struct timeval tset;
87 static struct timeval tcalled;
88 
89 
90 #define TEST1	"this is a test"
91 
92 #ifndef SHUT_WR
93 #define SHUT_WR 1
94 #endif
95 
96 #ifdef _WIN32
97 #define write(fd,buf,len) send((fd),(buf),(int)(len),0)
98 #define read(fd,buf,len) recv((fd),(buf),(int)(len),0)
99 #endif
100 
101 struct basic_cb_args
102 {
103 	struct event_base *eb;
104 	struct event *ev;
105 	unsigned int callcount;
106 };
107 
108 static void
109 simple_read_cb(evutil_socket_t fd, short event, void *arg)
110 {
111 	char buf[256];
112 	int len;
113 
114 	len = read(fd, buf, sizeof(buf));
115 
116 	if (len) {
117 		if (!called) {
118 			if (event_add(arg, NULL) == -1)
119 				exit(1);
120 		}
121 	} else if (called == 1)
122 		test_ok = 1;
123 
124 	called++;
125 }
126 
127 static void
128 basic_read_cb(evutil_socket_t fd, short event, void *data)
129 {
130 	char buf[256];
131 	int len;
132 	struct basic_cb_args *arg = data;
133 
134 	len = read(fd, buf, sizeof(buf));
135 
136 	if (len < 0) {
137 		tt_fail_perror("read (callback)");
138 	} else {
139 		switch (arg->callcount++) {
140 		case 0:	 /* first call: expect to read data; cycle */
141 			if (len > 0)
142 				return;
143 
144 			tt_fail_msg("EOF before data read");
145 			break;
146 
147 		case 1:	 /* second call: expect EOF; stop */
148 			if (len > 0)
149 				tt_fail_msg("not all data read on first cycle");
150 			break;
151 
152 		default:  /* third call: should not happen */
153 			tt_fail_msg("too many cycles");
154 		}
155 	}
156 
157 	event_del(arg->ev);
158 	event_base_loopexit(arg->eb, NULL);
159 }
160 
161 static void
162 dummy_read_cb(evutil_socket_t fd, short event, void *arg)
163 {
164 }
165 
166 static void
167 simple_write_cb(evutil_socket_t fd, short event, void *arg)
168 {
169 	int len;
170 
171 	len = write(fd, TEST1, strlen(TEST1) + 1);
172 	if (len == -1)
173 		test_ok = 0;
174 	else
175 		test_ok = 1;
176 }
177 
178 static void
179 multiple_write_cb(evutil_socket_t fd, short event, void *arg)
180 {
181 	struct event *ev = arg;
182 	int len;
183 
184 	len = 128;
185 	if (woff + len >= (int)sizeof(wbuf))
186 		len = sizeof(wbuf) - woff;
187 
188 	len = write(fd, wbuf + woff, len);
189 	if (len == -1) {
190 		fprintf(stderr, "%s: write\n", __func__);
191 		if (usepersist)
192 			event_del(ev);
193 		return;
194 	}
195 
196 	woff += len;
197 
198 	if (woff >= (int)sizeof(wbuf)) {
199 		shutdown(fd, SHUT_WR);
200 		if (usepersist)
201 			event_del(ev);
202 		return;
203 	}
204 
205 	if (!usepersist) {
206 		if (event_add(ev, NULL) == -1)
207 			exit(1);
208 	}
209 }
210 
211 static void
212 multiple_read_cb(evutil_socket_t fd, short event, void *arg)
213 {
214 	struct event *ev = arg;
215 	int len;
216 
217 	len = read(fd, rbuf + roff, sizeof(rbuf) - roff);
218 	if (len == -1)
219 		fprintf(stderr, "%s: read\n", __func__);
220 	if (len <= 0) {
221 		if (usepersist)
222 			event_del(ev);
223 		return;
224 	}
225 
226 	roff += len;
227 	if (!usepersist) {
228 		if (event_add(ev, NULL) == -1)
229 			exit(1);
230 	}
231 }
232 
233 static void
234 timeout_cb(evutil_socket_t fd, short event, void *arg)
235 {
236 	evutil_gettimeofday(&tcalled, NULL);
237 }
238 
239 struct both {
240 	struct event ev;
241 	int nread;
242 };
243 
244 static void
245 combined_read_cb(evutil_socket_t fd, short event, void *arg)
246 {
247 	struct both *both = arg;
248 	char buf[128];
249 	int len;
250 
251 	len = read(fd, buf, sizeof(buf));
252 	if (len == -1)
253 		fprintf(stderr, "%s: read\n", __func__);
254 	if (len <= 0)
255 		return;
256 
257 	both->nread += len;
258 	if (event_add(&both->ev, NULL) == -1)
259 		exit(1);
260 }
261 
262 static void
263 combined_write_cb(evutil_socket_t fd, short event, void *arg)
264 {
265 	struct both *both = arg;
266 	char buf[128];
267 	int len;
268 
269 	len = sizeof(buf);
270 	if (len > both->nread)
271 		len = both->nread;
272 
273 	memset(buf, 'q', len);
274 
275 	len = write(fd, buf, len);
276 	if (len == -1)
277 		fprintf(stderr, "%s: write\n", __func__);
278 	if (len <= 0) {
279 		shutdown(fd, SHUT_WR);
280 		return;
281 	}
282 
283 	both->nread -= len;
284 	if (event_add(&both->ev, NULL) == -1)
285 		exit(1);
286 }
287 
288 /* These macros used to replicate the work of the legacy test wrapper code */
289 #define setup_test(x) do {						\
290 	if (!in_legacy_test_wrapper) {					\
291 		TT_FAIL(("Legacy test %s not wrapped properly", x));	\
292 		return;							\
293 	}								\
294 	} while (0)
295 #define cleanup_test() setup_test("cleanup")
296 
297 static void
298 test_simpleread(void)
299 {
300 	struct event ev;
301 
302 	/* Very simple read test */
303 	setup_test("Simple read: ");
304 
305 	if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
306 		tt_fail_perror("write");
307 	}
308 
309 	shutdown(pair[0], SHUT_WR);
310 
311 	event_set(&ev, pair[1], EV_READ, simple_read_cb, &ev);
312 	if (event_add(&ev, NULL) == -1)
313 		exit(1);
314 	event_dispatch();
315 
316 	cleanup_test();
317 }
318 
319 static void
320 test_simplewrite(void)
321 {
322 	struct event ev;
323 
324 	/* Very simple write test */
325 	setup_test("Simple write: ");
326 
327 	event_set(&ev, pair[0], EV_WRITE, simple_write_cb, &ev);
328 	if (event_add(&ev, NULL) == -1)
329 		exit(1);
330 	event_dispatch();
331 
332 	cleanup_test();
333 }
334 
335 static void
336 simpleread_multiple_cb(evutil_socket_t fd, short event, void *arg)
337 {
338 	if (++called == 2)
339 		test_ok = 1;
340 }
341 
342 static void
343 test_simpleread_multiple(void)
344 {
345 	struct event one, two;
346 
347 	/* Very simple read test */
348 	setup_test("Simple read to multiple evens: ");
349 
350 	if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
351 		tt_fail_perror("write");
352 	}
353 
354 	shutdown(pair[0], SHUT_WR);
355 
356 	event_set(&one, pair[1], EV_READ, simpleread_multiple_cb, NULL);
357 	if (event_add(&one, NULL) == -1)
358 		exit(1);
359 	event_set(&two, pair[1], EV_READ, simpleread_multiple_cb, NULL);
360 	if (event_add(&two, NULL) == -1)
361 		exit(1);
362 	event_dispatch();
363 
364 	cleanup_test();
365 }
366 
367 static int have_closed = 0;
368 static int premature_event = 0;
369 static void
370 simpleclose_close_fd_cb(evutil_socket_t s, short what, void *ptr)
371 {
372 	evutil_socket_t **fds = ptr;
373 	TT_BLATHER(("Closing"));
374 	evutil_closesocket(*fds[0]);
375 	evutil_closesocket(*fds[1]);
376 	*fds[0] = -1;
377 	*fds[1] = -1;
378 	have_closed = 1;
379 }
380 
381 static void
382 record_event_cb(evutil_socket_t s, short what, void *ptr)
383 {
384 	short *whatp = ptr;
385 	if (!have_closed)
386 		premature_event = 1;
387 	*whatp = what;
388 	TT_BLATHER(("Recorded %d on socket %d", (int)what, (int)s));
389 }
390 
391 static void
392 test_simpleclose(void *ptr)
393 {
394 	/* Test that a close of FD is detected as a read and as a write. */
395 	struct event_base *base = event_base_new();
396 	evutil_socket_t pair1[2]={-1,-1}, pair2[2] = {-1, -1};
397 	evutil_socket_t *to_close[2];
398 	struct event *rev=NULL, *wev=NULL, *closeev=NULL;
399 	struct timeval tv;
400 	short got_read_on_close = 0, got_write_on_close = 0;
401 	char buf[1024];
402 	memset(buf, 99, sizeof(buf));
403 #ifdef _WIN32
404 #define LOCAL_SOCKETPAIR_AF AF_INET
405 #else
406 #define LOCAL_SOCKETPAIR_AF AF_UNIX
407 #endif
408 	if (evutil_socketpair(LOCAL_SOCKETPAIR_AF, SOCK_STREAM, 0, pair1)<0)
409 		TT_DIE(("socketpair: %s", strerror(errno)));
410 	if (evutil_socketpair(LOCAL_SOCKETPAIR_AF, SOCK_STREAM, 0, pair2)<0)
411 		TT_DIE(("socketpair: %s", strerror(errno)));
412 	if (evutil_make_socket_nonblocking(pair1[1]) < 0)
413 		TT_DIE(("make_socket_nonblocking"));
414 	if (evutil_make_socket_nonblocking(pair2[1]) < 0)
415 		TT_DIE(("make_socket_nonblocking"));
416 
417 	/** Stuff pair2[1] full of data, until write fails */
418 	while (1) {
419 		int r = write(pair2[1], buf, sizeof(buf));
420 		if (r<0) {
421 			int err = evutil_socket_geterror(pair2[1]);
422 			if (! EVUTIL_ERR_RW_RETRIABLE(err))
423 				TT_DIE(("write failed strangely: %s",
424 					evutil_socket_error_to_string(err)));
425 			break;
426 		}
427 	}
428 	to_close[0] = &pair1[0];
429 	to_close[1] = &pair2[0];
430 
431 	closeev = event_new(base, -1, EV_TIMEOUT, simpleclose_close_fd_cb,
432 	    to_close);
433 	rev = event_new(base, pair1[1], EV_READ, record_event_cb,
434 	    &got_read_on_close);
435 	TT_BLATHER(("Waiting for read on %d", (int)pair1[1]));
436 	wev = event_new(base, pair2[1], EV_WRITE, record_event_cb,
437 	    &got_write_on_close);
438 	TT_BLATHER(("Waiting for write on %d", (int)pair2[1]));
439 	tv.tv_sec = 0;
440 	tv.tv_usec = 100*1000; /* Close pair1[0] after a little while, and make
441 			       * sure we get a read event. */
442 	event_add(closeev, &tv);
443 	event_add(rev, NULL);
444 	event_add(wev, NULL);
445 	/* Don't let the test go on too long. */
446 	tv.tv_sec = 0;
447 	tv.tv_usec = 200*1000;
448 	event_base_loopexit(base, &tv);
449 	event_base_loop(base, 0);
450 
451 	tt_int_op(got_read_on_close, ==, EV_READ);
452 	tt_int_op(got_write_on_close, ==, EV_WRITE);
453 	tt_int_op(premature_event, ==, 0);
454 
455 end:
456 	if (pair1[0] >= 0)
457 		evutil_closesocket(pair1[0]);
458 	if (pair1[1] >= 0)
459 		evutil_closesocket(pair1[1]);
460 	if (pair2[0] >= 0)
461 		evutil_closesocket(pair2[0]);
462 	if (pair2[1] >= 0)
463 		evutil_closesocket(pair2[1]);
464 	if (rev)
465 		event_free(rev);
466 	if (wev)
467 		event_free(wev);
468 	if (closeev)
469 		event_free(closeev);
470 	if (base)
471 		event_base_free(base);
472 }
473 
474 
475 static void
476 test_multiple(void)
477 {
478 	struct event ev, ev2;
479 	int i;
480 
481 	/* Multiple read and write test */
482 	setup_test("Multiple read/write: ");
483 	memset(rbuf, 0, sizeof(rbuf));
484 	for (i = 0; i < (int)sizeof(wbuf); i++)
485 		wbuf[i] = i;
486 
487 	roff = woff = 0;
488 	usepersist = 0;
489 
490 	event_set(&ev, pair[0], EV_WRITE, multiple_write_cb, &ev);
491 	if (event_add(&ev, NULL) == -1)
492 		exit(1);
493 	event_set(&ev2, pair[1], EV_READ, multiple_read_cb, &ev2);
494 	if (event_add(&ev2, NULL) == -1)
495 		exit(1);
496 	event_dispatch();
497 
498 	if (roff == woff)
499 		test_ok = memcmp(rbuf, wbuf, sizeof(wbuf)) == 0;
500 
501 	cleanup_test();
502 }
503 
504 static void
505 test_persistent(void)
506 {
507 	struct event ev, ev2;
508 	int i;
509 
510 	/* Multiple read and write test with persist */
511 	setup_test("Persist read/write: ");
512 	memset(rbuf, 0, sizeof(rbuf));
513 	for (i = 0; i < (int)sizeof(wbuf); i++)
514 		wbuf[i] = i;
515 
516 	roff = woff = 0;
517 	usepersist = 1;
518 
519 	event_set(&ev, pair[0], EV_WRITE|EV_PERSIST, multiple_write_cb, &ev);
520 	if (event_add(&ev, NULL) == -1)
521 		exit(1);
522 	event_set(&ev2, pair[1], EV_READ|EV_PERSIST, multiple_read_cb, &ev2);
523 	if (event_add(&ev2, NULL) == -1)
524 		exit(1);
525 	event_dispatch();
526 
527 	if (roff == woff)
528 		test_ok = memcmp(rbuf, wbuf, sizeof(wbuf)) == 0;
529 
530 	cleanup_test();
531 }
532 
533 static void
534 test_combined(void)
535 {
536 	struct both r1, r2, w1, w2;
537 
538 	setup_test("Combined read/write: ");
539 	memset(&r1, 0, sizeof(r1));
540 	memset(&r2, 0, sizeof(r2));
541 	memset(&w1, 0, sizeof(w1));
542 	memset(&w2, 0, sizeof(w2));
543 
544 	w1.nread = 4096;
545 	w2.nread = 8192;
546 
547 	event_set(&r1.ev, pair[0], EV_READ, combined_read_cb, &r1);
548 	event_set(&w1.ev, pair[0], EV_WRITE, combined_write_cb, &w1);
549 	event_set(&r2.ev, pair[1], EV_READ, combined_read_cb, &r2);
550 	event_set(&w2.ev, pair[1], EV_WRITE, combined_write_cb, &w2);
551 	tt_assert(event_add(&r1.ev, NULL) != -1);
552 	tt_assert(!event_add(&w1.ev, NULL));
553 	tt_assert(!event_add(&r2.ev, NULL));
554 	tt_assert(!event_add(&w2.ev, NULL));
555 	event_dispatch();
556 
557 	if (r1.nread == 8192 && r2.nread == 4096)
558 		test_ok = 1;
559 
560 end:
561 	cleanup_test();
562 }
563 
564 static void
565 test_simpletimeout(void)
566 {
567 	struct timeval tv;
568 	struct event ev;
569 
570 	setup_test("Simple timeout: ");
571 
572 	tv.tv_usec = 200*1000;
573 	tv.tv_sec = 0;
574 	evutil_timerclear(&tcalled);
575 	evtimer_set(&ev, timeout_cb, NULL);
576 	evtimer_add(&ev, &tv);
577 
578 	evutil_gettimeofday(&tset, NULL);
579 	event_dispatch();
580 	test_timeval_diff_eq(&tset, &tcalled, 200);
581 
582 	test_ok = 1;
583 end:
584 	cleanup_test();
585 }
586 
587 static void
588 periodic_timeout_cb(evutil_socket_t fd, short event, void *arg)
589 {
590 	int *count = arg;
591 
592 	(*count)++;
593 	if (*count == 6) {
594 		/* call loopexit only once - on slow machines(?), it is
595 		 * apparently possible for this to get called twice. */
596 		test_ok = 1;
597 		event_base_loopexit(global_base, NULL);
598 	}
599 }
600 
601 static void
602 test_persistent_timeout(void)
603 {
604 	struct timeval tv;
605 	struct event ev;
606 	int count = 0;
607 
608 	evutil_timerclear(&tv);
609 	tv.tv_usec = 10000;
610 
611 	event_assign(&ev, global_base, -1, EV_TIMEOUT|EV_PERSIST,
612 	    periodic_timeout_cb, &count);
613 	event_add(&ev, &tv);
614 
615 	event_dispatch();
616 
617 	event_del(&ev);
618 }
619 
620 static void
621 test_persistent_timeout_jump(void *ptr)
622 {
623 	struct basic_test_data *data = ptr;
624 	struct event ev;
625 	int count = 0;
626 	struct timeval msec100 = { 0, 100 * 1000 };
627 	struct timeval msec50 = { 0, 50 * 1000 };
628 	struct timeval msec300 = { 0, 300 * 1000 };
629 
630 	event_assign(&ev, data->base, -1, EV_PERSIST, periodic_timeout_cb, &count);
631 	event_add(&ev, &msec100);
632 	/* Wait for a bit */
633 	evutil_usleep_(&msec300);
634 	event_base_loopexit(data->base, &msec50);
635 	event_base_dispatch(data->base);
636 	tt_int_op(count, ==, 1);
637 
638 end:
639 	event_del(&ev);
640 }
641 
642 struct persist_active_timeout_called {
643 	int n;
644 	short events[16];
645 	struct timeval tvs[16];
646 };
647 
648 static void
649 activate_cb(evutil_socket_t fd, short event, void *arg)
650 {
651 	struct event *ev = arg;
652 	event_active(ev, EV_READ, 1);
653 }
654 
655 static void
656 persist_active_timeout_cb(evutil_socket_t fd, short event, void *arg)
657 {
658 	struct persist_active_timeout_called *c = arg;
659 	if (c->n < 15) {
660 		c->events[c->n] = event;
661 		evutil_gettimeofday(&c->tvs[c->n], NULL);
662 		++c->n;
663 	}
664 }
665 
666 static void
667 test_persistent_active_timeout(void *ptr)
668 {
669 	struct timeval tv, tv2, tv_exit, start;
670 	struct event ev;
671 	struct persist_active_timeout_called res;
672 
673 	struct basic_test_data *data = ptr;
674 	struct event_base *base = data->base;
675 
676 	memset(&res, 0, sizeof(res));
677 
678 	tv.tv_sec = 0;
679 	tv.tv_usec = 200 * 1000;
680 	event_assign(&ev, base, -1, EV_TIMEOUT|EV_PERSIST,
681 	    persist_active_timeout_cb, &res);
682 	event_add(&ev, &tv);
683 
684 	tv2.tv_sec = 0;
685 	tv2.tv_usec = 100 * 1000;
686 	event_base_once(base, -1, EV_TIMEOUT, activate_cb, &ev, &tv2);
687 
688 	tv_exit.tv_sec = 0;
689 	tv_exit.tv_usec = 600 * 1000;
690 	event_base_loopexit(base, &tv_exit);
691 
692 	event_base_assert_ok_(base);
693 	evutil_gettimeofday(&start, NULL);
694 
695 	event_base_dispatch(base);
696 	event_base_assert_ok_(base);
697 
698 	tt_int_op(res.n, ==, 3);
699 	tt_int_op(res.events[0], ==, EV_READ);
700 	tt_int_op(res.events[1], ==, EV_TIMEOUT);
701 	tt_int_op(res.events[2], ==, EV_TIMEOUT);
702 	test_timeval_diff_eq(&start, &res.tvs[0], 100);
703 	test_timeval_diff_eq(&start, &res.tvs[1], 300);
704 	test_timeval_diff_eq(&start, &res.tvs[2], 500);
705 end:
706 	event_del(&ev);
707 }
708 
709 struct common_timeout_info {
710 	struct event ev;
711 	struct timeval called_at;
712 	int which;
713 	int count;
714 };
715 
716 static void
717 common_timeout_cb(evutil_socket_t fd, short event, void *arg)
718 {
719 	struct common_timeout_info *ti = arg;
720 	++ti->count;
721 	evutil_gettimeofday(&ti->called_at, NULL);
722 	if (ti->count >= 4)
723 		event_del(&ti->ev);
724 }
725 
726 static void
727 test_common_timeout(void *ptr)
728 {
729 	struct basic_test_data *data = ptr;
730 
731 	struct event_base *base = data->base;
732 	int i;
733 	struct common_timeout_info info[100];
734 
735 	struct timeval start;
736 	struct timeval tmp_100_ms = { 0, 100*1000 };
737 	struct timeval tmp_200_ms = { 0, 200*1000 };
738 	struct timeval tmp_5_sec = { 5, 0 };
739 	struct timeval tmp_5M_usec = { 0, 5*1000*1000 };
740 
741 	const struct timeval *ms_100, *ms_200, *sec_5;
742 
743 	ms_100 = event_base_init_common_timeout(base, &tmp_100_ms);
744 	ms_200 = event_base_init_common_timeout(base, &tmp_200_ms);
745 	sec_5 = event_base_init_common_timeout(base, &tmp_5_sec);
746 	tt_assert(ms_100);
747 	tt_assert(ms_200);
748 	tt_assert(sec_5);
749 	tt_ptr_op(event_base_init_common_timeout(base, &tmp_200_ms),
750 	    ==, ms_200);
751 	tt_ptr_op(event_base_init_common_timeout(base, ms_200), ==, ms_200);
752 	tt_ptr_op(event_base_init_common_timeout(base, &tmp_5M_usec), ==, sec_5);
753 	tt_int_op(ms_100->tv_sec, ==, 0);
754 	tt_int_op(ms_200->tv_sec, ==, 0);
755 	tt_int_op(sec_5->tv_sec, ==, 5);
756 	tt_int_op(ms_100->tv_usec, ==, 100000|0x50000000);
757 	tt_int_op(ms_200->tv_usec, ==, 200000|0x50100000);
758 	tt_int_op(sec_5->tv_usec, ==, 0|0x50200000);
759 
760 	memset(info, 0, sizeof(info));
761 
762 	for (i=0; i<100; ++i) {
763 		info[i].which = i;
764 		event_assign(&info[i].ev, base, -1, EV_TIMEOUT|EV_PERSIST,
765 		    common_timeout_cb, &info[i]);
766 		if (i % 2) {
767 			if ((i%20)==1) {
768 				/* Glass-box test: Make sure we survive the
769 				 * transition to non-common timeouts. It's
770 				 * a little tricky. */
771 				event_add(&info[i].ev, ms_200);
772 				event_add(&info[i].ev, &tmp_100_ms);
773 			} else if ((i%20)==3) {
774 				/* Check heap-to-common too. */
775 				event_add(&info[i].ev, &tmp_200_ms);
776 				event_add(&info[i].ev, ms_100);
777 			} else if ((i%20)==5) {
778 				/* Also check common-to-common. */
779 				event_add(&info[i].ev, ms_200);
780 				event_add(&info[i].ev, ms_100);
781 			} else {
782 				event_add(&info[i].ev, ms_100);
783 			}
784 		} else {
785 			event_add(&info[i].ev, ms_200);
786 		}
787 	}
788 
789 	event_base_assert_ok_(base);
790 	evutil_gettimeofday(&start, NULL);
791 	event_base_dispatch(base);
792 
793 	event_base_assert_ok_(base);
794 
795 	for (i=0; i<10; ++i) {
796 		tt_int_op(info[i].count, ==, 4);
797 		if (i % 2) {
798 			test_timeval_diff_eq(&start, &info[i].called_at, 400);
799 		} else {
800 			test_timeval_diff_eq(&start, &info[i].called_at, 800);
801 		}
802 	}
803 
804 	/* Make sure we can free the base with some events in. */
805 	for (i=0; i<100; ++i) {
806 		if (i % 2) {
807 			event_add(&info[i].ev, ms_100);
808 		} else {
809 			event_add(&info[i].ev, ms_200);
810 		}
811 	}
812 
813 end:
814 	event_base_free(data->base); /* need to do this here before info is
815 				      * out-of-scope */
816 	data->base = NULL;
817 }
818 
819 #ifndef _WIN32
820 static void signal_cb(evutil_socket_t fd, short event, void *arg);
821 
822 #define current_base event_global_current_base_
823 extern struct event_base *current_base;
824 
825 static void
826 child_signal_cb(evutil_socket_t fd, short event, void *arg)
827 {
828 	struct timeval tv;
829 	int *pint = arg;
830 
831 	*pint = 1;
832 
833 	tv.tv_usec = 500000;
834 	tv.tv_sec = 0;
835 	event_loopexit(&tv);
836 }
837 
838 static void
839 test_fork(void)
840 {
841 	int status, got_sigchld = 0;
842 	struct event ev, sig_ev;
843 	pid_t pid;
844 
845 	setup_test("After fork: ");
846 
847 	tt_assert(current_base);
848 	evthread_make_base_notifiable(current_base);
849 
850 	if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
851 		tt_fail_perror("write");
852 	}
853 
854 	event_set(&ev, pair[1], EV_READ, simple_read_cb, &ev);
855 	if (event_add(&ev, NULL) == -1)
856 		exit(1);
857 
858 	evsignal_set(&sig_ev, SIGCHLD, child_signal_cb, &got_sigchld);
859 	evsignal_add(&sig_ev, NULL);
860 
861 	event_base_assert_ok_(current_base);
862 	TT_BLATHER(("Before fork"));
863 	if ((pid = regress_fork()) == 0) {
864 		/* in the child */
865 		TT_BLATHER(("In child, before reinit"));
866 		event_base_assert_ok_(current_base);
867 		if (event_reinit(current_base) == -1) {
868 			fprintf(stdout, "FAILED (reinit)\n");
869 			exit(1);
870 		}
871 		TT_BLATHER(("After reinit"));
872 		event_base_assert_ok_(current_base);
873 		TT_BLATHER(("After assert-ok"));
874 
875 		evsignal_del(&sig_ev);
876 
877 		called = 0;
878 
879 		event_dispatch();
880 
881 		event_base_free(current_base);
882 
883 		/* we do not send an EOF; simple_read_cb requires an EOF
884 		 * to set test_ok.  we just verify that the callback was
885 		 * called. */
886 		exit(test_ok != 0 || called != 2 ? -2 : 76);
887 	}
888 
889 	/* wait for the child to read the data */
890 	{
891 		const struct timeval tv = { 0, 100000 };
892 		evutil_usleep_(&tv);
893 	}
894 
895 	if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
896 		tt_fail_perror("write");
897 	}
898 
899 	TT_BLATHER(("Before waitpid"));
900 	if (waitpid(pid, &status, 0) == -1) {
901 		fprintf(stdout, "FAILED (fork)\n");
902 		exit(1);
903 	}
904 	TT_BLATHER(("After waitpid"));
905 
906 	if (WEXITSTATUS(status) != 76) {
907 		fprintf(stdout, "FAILED (exit): %d\n", WEXITSTATUS(status));
908 		exit(1);
909 	}
910 
911 	/* test that the current event loop still works */
912 	if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
913 		fprintf(stderr, "%s: write\n", __func__);
914 	}
915 
916 	shutdown(pair[0], SHUT_WR);
917 
918 	event_dispatch();
919 
920 	if (!got_sigchld) {
921 		fprintf(stdout, "FAILED (sigchld)\n");
922 		exit(1);
923 	}
924 
925 	evsignal_del(&sig_ev);
926 
927 	end:
928 	cleanup_test();
929 }
930 
931 static void
932 signal_cb_sa(int sig)
933 {
934 	test_ok = 2;
935 }
936 
937 static void
938 signal_cb(evutil_socket_t fd, short event, void *arg)
939 {
940 	struct event *ev = arg;
941 
942 	evsignal_del(ev);
943 	test_ok = 1;
944 }
945 
946 static void
947 test_simplesignal(void)
948 {
949 	struct event ev;
950 	struct itimerval itv;
951 
952 	setup_test("Simple signal: ");
953 	evsignal_set(&ev, SIGALRM, signal_cb, &ev);
954 	evsignal_add(&ev, NULL);
955 	/* find bugs in which operations are re-ordered */
956 	evsignal_del(&ev);
957 	evsignal_add(&ev, NULL);
958 
959 	memset(&itv, 0, sizeof(itv));
960 	itv.it_value.tv_sec = 0;
961 	itv.it_value.tv_usec = 100000;
962 	if (setitimer(ITIMER_REAL, &itv, NULL) == -1)
963 		goto skip_simplesignal;
964 
965 	event_dispatch();
966  skip_simplesignal:
967 	if (evsignal_del(&ev) == -1)
968 		test_ok = 0;
969 
970 	cleanup_test();
971 }
972 
973 static void
974 test_multiplesignal(void)
975 {
976 	struct event ev_one, ev_two;
977 	struct itimerval itv;
978 
979 	setup_test("Multiple signal: ");
980 
981 	evsignal_set(&ev_one, SIGALRM, signal_cb, &ev_one);
982 	evsignal_add(&ev_one, NULL);
983 
984 	evsignal_set(&ev_two, SIGALRM, signal_cb, &ev_two);
985 	evsignal_add(&ev_two, NULL);
986 
987 	memset(&itv, 0, sizeof(itv));
988 	itv.it_value.tv_sec = 0;
989 	itv.it_value.tv_usec = 100000;
990 	if (setitimer(ITIMER_REAL, &itv, NULL) == -1)
991 		goto skip_simplesignal;
992 
993 	event_dispatch();
994 
995  skip_simplesignal:
996 	if (evsignal_del(&ev_one) == -1)
997 		test_ok = 0;
998 	if (evsignal_del(&ev_two) == -1)
999 		test_ok = 0;
1000 
1001 	cleanup_test();
1002 }
1003 
1004 static void
1005 test_immediatesignal(void)
1006 {
1007 	struct event ev;
1008 
1009 	test_ok = 0;
1010 	evsignal_set(&ev, SIGUSR1, signal_cb, &ev);
1011 	evsignal_add(&ev, NULL);
1012 	raise(SIGUSR1);
1013 	event_loop(EVLOOP_NONBLOCK);
1014 	evsignal_del(&ev);
1015 	cleanup_test();
1016 }
1017 
1018 static void
1019 test_signal_dealloc(void)
1020 {
1021 	/* make sure that evsignal_event is event_del'ed and pipe closed */
1022 	struct event ev;
1023 	struct event_base *base = event_init();
1024 	evsignal_set(&ev, SIGUSR1, signal_cb, &ev);
1025 	evsignal_add(&ev, NULL);
1026 	evsignal_del(&ev);
1027 	event_base_free(base);
1028 	/* If we got here without asserting, we're fine. */
1029 	test_ok = 1;
1030 	cleanup_test();
1031 }
1032 
1033 static void
1034 test_signal_pipeloss(void)
1035 {
1036 	/* make sure that the base1 pipe is closed correctly. */
1037 	struct event_base *base1, *base2;
1038 	int pipe1;
1039 	test_ok = 0;
1040 	base1 = event_init();
1041 	pipe1 = base1->sig.ev_signal_pair[0];
1042 	base2 = event_init();
1043 	event_base_free(base2);
1044 	event_base_free(base1);
1045 	if (close(pipe1) != -1 || errno!=EBADF) {
1046 		/* fd must be closed, so second close gives -1, EBADF */
1047 		printf("signal pipe not closed. ");
1048 		test_ok = 0;
1049 	} else {
1050 		test_ok = 1;
1051 	}
1052 	cleanup_test();
1053 }
1054 
1055 /*
1056  * make two bases to catch signals, use both of them.  this only works
1057  * for event mechanisms that use our signal pipe trick.	 kqueue handles
1058  * signals internally, and all interested kqueues get all the signals.
1059  */
1060 static void
1061 test_signal_switchbase(void)
1062 {
1063 	struct event ev1, ev2;
1064 	struct event_base *base1, *base2;
1065 	int is_kqueue;
1066 	test_ok = 0;
1067 	base1 = event_init();
1068 	base2 = event_init();
1069 	is_kqueue = !strcmp(event_get_method(),"kqueue");
1070 	evsignal_set(&ev1, SIGUSR1, signal_cb, &ev1);
1071 	evsignal_set(&ev2, SIGUSR1, signal_cb, &ev2);
1072 	if (event_base_set(base1, &ev1) ||
1073 	    event_base_set(base2, &ev2) ||
1074 	    event_add(&ev1, NULL) ||
1075 	    event_add(&ev2, NULL)) {
1076 		fprintf(stderr, "%s: cannot set base, add\n", __func__);
1077 		exit(1);
1078 	}
1079 
1080 	tt_ptr_op(event_get_base(&ev1), ==, base1);
1081 	tt_ptr_op(event_get_base(&ev2), ==, base2);
1082 
1083 	test_ok = 0;
1084 	/* can handle signal before loop is called */
1085 	raise(SIGUSR1);
1086 	event_base_loop(base2, EVLOOP_NONBLOCK);
1087 	if (is_kqueue) {
1088 		if (!test_ok)
1089 			goto end;
1090 		test_ok = 0;
1091 	}
1092 	event_base_loop(base1, EVLOOP_NONBLOCK);
1093 	if (test_ok && !is_kqueue) {
1094 		test_ok = 0;
1095 
1096 		/* set base1 to handle signals */
1097 		event_base_loop(base1, EVLOOP_NONBLOCK);
1098 		raise(SIGUSR1);
1099 		event_base_loop(base1, EVLOOP_NONBLOCK);
1100 		event_base_loop(base2, EVLOOP_NONBLOCK);
1101 	}
1102 end:
1103 	event_base_free(base1);
1104 	event_base_free(base2);
1105 	cleanup_test();
1106 }
1107 
1108 /*
1109  * assert that a signal event removed from the event queue really is
1110  * removed - with no possibility of it's parent handler being fired.
1111  */
1112 static void
1113 test_signal_assert(void)
1114 {
1115 	struct event ev;
1116 	struct event_base *base = event_init();
1117 	test_ok = 0;
1118 	/* use SIGCONT so we don't kill ourselves when we signal to nowhere */
1119 	evsignal_set(&ev, SIGCONT, signal_cb, &ev);
1120 	evsignal_add(&ev, NULL);
1121 	/*
1122 	 * if evsignal_del() fails to reset the handler, it's current handler
1123 	 * will still point to evsig_handler().
1124 	 */
1125 	evsignal_del(&ev);
1126 
1127 	raise(SIGCONT);
1128 #if 0
1129 	/* only way to verify we were in evsig_handler() */
1130 	/* XXXX Now there's no longer a good way. */
1131 	if (base->sig.evsig_caught)
1132 		test_ok = 0;
1133 	else
1134 		test_ok = 1;
1135 #else
1136 	test_ok = 1;
1137 #endif
1138 
1139 	event_base_free(base);
1140 	cleanup_test();
1141 	return;
1142 }
1143 
1144 /*
1145  * assert that we restore our previous signal handler properly.
1146  */
1147 static void
1148 test_signal_restore(void)
1149 {
1150 	struct event ev;
1151 	struct event_base *base = event_init();
1152 #ifdef EVENT__HAVE_SIGACTION
1153 	struct sigaction sa;
1154 #endif
1155 
1156 	test_ok = 0;
1157 #ifdef EVENT__HAVE_SIGACTION
1158 	sa.sa_handler = signal_cb_sa;
1159 	sa.sa_flags = 0x0;
1160 	sigemptyset(&sa.sa_mask);
1161 	if (sigaction(SIGUSR1, &sa, NULL) == -1)
1162 		goto out;
1163 #else
1164 	if (signal(SIGUSR1, signal_cb_sa) == SIG_ERR)
1165 		goto out;
1166 #endif
1167 	evsignal_set(&ev, SIGUSR1, signal_cb, &ev);
1168 	evsignal_add(&ev, NULL);
1169 	evsignal_del(&ev);
1170 
1171 	raise(SIGUSR1);
1172 	/* 1 == signal_cb, 2 == signal_cb_sa, we want our previous handler */
1173 	if (test_ok != 2)
1174 		test_ok = 0;
1175 out:
1176 	event_base_free(base);
1177 	cleanup_test();
1178 	return;
1179 }
1180 
1181 static void
1182 signal_cb_swp(int sig, short event, void *arg)
1183 {
1184 	called++;
1185 	if (called < 5)
1186 		raise(sig);
1187 	else
1188 		event_loopexit(NULL);
1189 }
1190 static void
1191 timeout_cb_swp(evutil_socket_t fd, short event, void *arg)
1192 {
1193 	if (called == -1) {
1194 		struct timeval tv = {5, 0};
1195 
1196 		called = 0;
1197 		evtimer_add((struct event *)arg, &tv);
1198 		raise(SIGUSR1);
1199 		return;
1200 	}
1201 	test_ok = 0;
1202 	event_loopexit(NULL);
1203 }
1204 
1205 static void
1206 test_signal_while_processing(void)
1207 {
1208 	struct event_base *base = event_init();
1209 	struct event ev, ev_timer;
1210 	struct timeval tv = {0, 0};
1211 
1212 	setup_test("Receiving a signal while processing other signal: ");
1213 
1214 	called = -1;
1215 	test_ok = 1;
1216 	signal_set(&ev, SIGUSR1, signal_cb_swp, NULL);
1217 	signal_add(&ev, NULL);
1218 	evtimer_set(&ev_timer, timeout_cb_swp, &ev_timer);
1219 	evtimer_add(&ev_timer, &tv);
1220 	event_dispatch();
1221 
1222 	event_base_free(base);
1223 	cleanup_test();
1224 	return;
1225 }
1226 #endif
1227 
1228 static void
1229 test_free_active_base(void *ptr)
1230 {
1231 	struct basic_test_data *data = ptr;
1232 	struct event_base *base1;
1233 	struct event ev1;
1234 
1235 	base1 = event_init();
1236 	if (base1) {
1237 		event_assign(&ev1, base1, data->pair[1], EV_READ,
1238 			     dummy_read_cb, NULL);
1239 		event_add(&ev1, NULL);
1240 		event_base_free(base1);	 /* should not crash */
1241 	} else {
1242 		tt_fail_msg("failed to create event_base for test");
1243 	}
1244 
1245 	base1 = event_init();
1246 	tt_assert(base1);
1247 	event_assign(&ev1, base1, 0, 0, dummy_read_cb, NULL);
1248 	event_active(&ev1, EV_READ, 1);
1249 	event_base_free(base1);
1250 end:
1251 	;
1252 }
1253 
1254 static void
1255 test_manipulate_active_events(void *ptr)
1256 {
1257 	struct basic_test_data *data = ptr;
1258 	struct event_base *base = data->base;
1259 	struct event ev1;
1260 
1261 	event_assign(&ev1, base, -1, EV_TIMEOUT, dummy_read_cb, NULL);
1262 
1263 	/* Make sure an active event is pending. */
1264 	event_active(&ev1, EV_READ, 1);
1265 	tt_int_op(event_pending(&ev1, EV_READ|EV_TIMEOUT|EV_WRITE, NULL),
1266 	    ==, EV_READ);
1267 
1268 	/* Make sure that activating an event twice works. */
1269 	event_active(&ev1, EV_WRITE, 1);
1270 	tt_int_op(event_pending(&ev1, EV_READ|EV_TIMEOUT|EV_WRITE, NULL),
1271 	    ==, EV_READ|EV_WRITE);
1272 
1273 end:
1274 	event_del(&ev1);
1275 }
1276 
1277 static void
1278 event_selfarg_cb(evutil_socket_t fd, short event, void *arg)
1279 {
1280 	struct event *ev = arg;
1281 	struct event_base *base = event_get_base(ev);
1282 	event_base_assert_ok_(base);
1283 	event_base_loopexit(base, NULL);
1284 	tt_want(ev == event_base_get_running_event(base));
1285 }
1286 
1287 static void
1288 test_event_new_selfarg(void *ptr)
1289 {
1290 	struct basic_test_data *data = ptr;
1291 	struct event_base *base = data->base;
1292 	struct event *ev = event_new(base, -1, EV_READ, event_selfarg_cb,
1293                                      event_self_cbarg());
1294 
1295 	event_active(ev, EV_READ, 1);
1296 	event_base_dispatch(base);
1297 
1298 	event_free(ev);
1299 }
1300 
1301 static void
1302 test_event_assign_selfarg(void *ptr)
1303 {
1304 	struct basic_test_data *data = ptr;
1305 	struct event_base *base = data->base;
1306 	struct event ev;
1307 
1308 	event_assign(&ev, base, -1, EV_READ, event_selfarg_cb,
1309                      event_self_cbarg());
1310 	event_active(&ev, EV_READ, 1);
1311 	event_base_dispatch(base);
1312 }
1313 
1314 static void
1315 test_event_base_get_num_events(void *ptr)
1316 {
1317 	struct basic_test_data *data = ptr;
1318 	struct event_base *base = data->base;
1319 	struct event ev;
1320 	int event_count_active;
1321 	int event_count_virtual;
1322 	int event_count_added;
1323 	int event_count_active_virtual;
1324 	int event_count_active_added;
1325 	int event_count_virtual_added;
1326 	int event_count_active_added_virtual;
1327 
1328 	struct timeval qsec = {0, 100000};
1329 
1330 	event_assign(&ev, base, -1, EV_READ, event_selfarg_cb,
1331 	    event_self_cbarg());
1332 
1333 	event_add(&ev, &qsec);
1334 	event_count_active = event_base_get_num_events(base,
1335 	    EVENT_BASE_COUNT_ACTIVE);
1336 	event_count_virtual = event_base_get_num_events(base,
1337 	    EVENT_BASE_COUNT_VIRTUAL);
1338 	event_count_added = event_base_get_num_events(base,
1339 	    EVENT_BASE_COUNT_ADDED);
1340 	event_count_active_virtual = event_base_get_num_events(base,
1341 	    EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_VIRTUAL);
1342 	event_count_active_added = event_base_get_num_events(base,
1343 	    EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_ADDED);
1344 	event_count_virtual_added = event_base_get_num_events(base,
1345 	    EVENT_BASE_COUNT_VIRTUAL|EVENT_BASE_COUNT_ADDED);
1346 	event_count_active_added_virtual = event_base_get_num_events(base,
1347 	    EVENT_BASE_COUNT_ACTIVE|
1348 	    EVENT_BASE_COUNT_ADDED|
1349 	    EVENT_BASE_COUNT_VIRTUAL);
1350 	tt_int_op(event_count_active, ==, 0);
1351 	tt_int_op(event_count_virtual, ==, 0);
1352 	/* libevent itself adds a timeout event, so the event_count is 2 here */
1353 	tt_int_op(event_count_added, ==, 2);
1354 	tt_int_op(event_count_active_virtual, ==, 0);
1355 	tt_int_op(event_count_active_added, ==, 2);
1356 	tt_int_op(event_count_virtual_added, ==, 2);
1357 	tt_int_op(event_count_active_added_virtual, ==, 2);
1358 
1359 	event_active(&ev, EV_READ, 1);
1360 	event_count_active = event_base_get_num_events(base,
1361 	    EVENT_BASE_COUNT_ACTIVE);
1362 	event_count_virtual = event_base_get_num_events(base,
1363 	    EVENT_BASE_COUNT_VIRTUAL);
1364 	event_count_added = event_base_get_num_events(base,
1365 	    EVENT_BASE_COUNT_ADDED);
1366 	event_count_active_virtual = event_base_get_num_events(base,
1367 	    EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_VIRTUAL);
1368 	event_count_active_added = event_base_get_num_events(base,
1369 	    EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_ADDED);
1370 	event_count_virtual_added = event_base_get_num_events(base,
1371 	    EVENT_BASE_COUNT_VIRTUAL|EVENT_BASE_COUNT_ADDED);
1372 	event_count_active_added_virtual = event_base_get_num_events(base,
1373 	    EVENT_BASE_COUNT_ACTIVE|
1374 	    EVENT_BASE_COUNT_ADDED|
1375 	    EVENT_BASE_COUNT_VIRTUAL);
1376 	tt_int_op(event_count_active, ==, 1);
1377 	tt_int_op(event_count_virtual, ==, 0);
1378 	tt_int_op(event_count_added, ==, 3);
1379 	tt_int_op(event_count_active_virtual, ==, 1);
1380 	tt_int_op(event_count_active_added, ==, 4);
1381 	tt_int_op(event_count_virtual_added, ==, 3);
1382 	tt_int_op(event_count_active_added_virtual, ==, 4);
1383 
1384        event_base_loop(base, 0);
1385        event_count_active = event_base_get_num_events(base,
1386 	   EVENT_BASE_COUNT_ACTIVE);
1387        event_count_virtual = event_base_get_num_events(base,
1388 	   EVENT_BASE_COUNT_VIRTUAL);
1389        event_count_added = event_base_get_num_events(base,
1390 	   EVENT_BASE_COUNT_ADDED);
1391        event_count_active_virtual = event_base_get_num_events(base,
1392 	   EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_VIRTUAL);
1393        event_count_active_added = event_base_get_num_events(base,
1394 	   EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_ADDED);
1395        event_count_virtual_added = event_base_get_num_events(base,
1396 	   EVENT_BASE_COUNT_VIRTUAL|EVENT_BASE_COUNT_ADDED);
1397        event_count_active_added_virtual = event_base_get_num_events(base,
1398 	   EVENT_BASE_COUNT_ACTIVE|
1399 	   EVENT_BASE_COUNT_ADDED|
1400 	   EVENT_BASE_COUNT_VIRTUAL);
1401        tt_int_op(event_count_active, ==, 0);
1402        tt_int_op(event_count_virtual, ==, 0);
1403        tt_int_op(event_count_added, ==, 0);
1404        tt_int_op(event_count_active_virtual, ==, 0);
1405        tt_int_op(event_count_active_added, ==, 0);
1406        tt_int_op(event_count_virtual_added, ==, 0);
1407        tt_int_op(event_count_active_added_virtual, ==, 0);
1408 
1409        event_base_add_virtual_(base);
1410        event_count_active = event_base_get_num_events(base,
1411 	   EVENT_BASE_COUNT_ACTIVE);
1412        event_count_virtual = event_base_get_num_events(base,
1413 	   EVENT_BASE_COUNT_VIRTUAL);
1414        event_count_added = event_base_get_num_events(base,
1415 	   EVENT_BASE_COUNT_ADDED);
1416        event_count_active_virtual = event_base_get_num_events(base,
1417 	   EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_VIRTUAL);
1418        event_count_active_added = event_base_get_num_events(base,
1419 	   EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_ADDED);
1420        event_count_virtual_added = event_base_get_num_events(base,
1421 	   EVENT_BASE_COUNT_VIRTUAL|EVENT_BASE_COUNT_ADDED);
1422        event_count_active_added_virtual = event_base_get_num_events(base,
1423 	   EVENT_BASE_COUNT_ACTIVE|
1424 	   EVENT_BASE_COUNT_ADDED|
1425 	   EVENT_BASE_COUNT_VIRTUAL);
1426        tt_int_op(event_count_active, ==, 0);
1427        tt_int_op(event_count_virtual, ==, 1);
1428        tt_int_op(event_count_added, ==, 0);
1429        tt_int_op(event_count_active_virtual, ==, 1);
1430        tt_int_op(event_count_active_added, ==, 0);
1431        tt_int_op(event_count_virtual_added, ==, 1);
1432        tt_int_op(event_count_active_added_virtual, ==, 1);
1433 
1434 end:
1435        ;
1436 }
1437 
1438 static void
1439 test_event_base_get_max_events(void *ptr)
1440 {
1441 	struct basic_test_data *data = ptr;
1442 	struct event_base *base = data->base;
1443 	struct event ev;
1444 	struct event ev2;
1445 	int event_count_active;
1446 	int event_count_virtual;
1447 	int event_count_added;
1448 	int event_count_active_virtual;
1449 	int event_count_active_added;
1450 	int event_count_virtual_added;
1451 	int event_count_active_added_virtual;
1452 
1453 	struct timeval qsec = {0, 100000};
1454 
1455 	event_assign(&ev, base, -1, EV_READ, event_selfarg_cb,
1456 	    event_self_cbarg());
1457 	event_assign(&ev2, base, -1, EV_READ, event_selfarg_cb,
1458 	    event_self_cbarg());
1459 
1460 	event_add(&ev, &qsec);
1461 	event_add(&ev2, &qsec);
1462 	event_del(&ev2);
1463 
1464 	event_count_active = event_base_get_max_events(base,
1465 	    EVENT_BASE_COUNT_ACTIVE, 0);
1466 	event_count_virtual = event_base_get_max_events(base,
1467 	    EVENT_BASE_COUNT_VIRTUAL, 0);
1468 	event_count_added = event_base_get_max_events(base,
1469 	    EVENT_BASE_COUNT_ADDED, 0);
1470 	event_count_active_virtual = event_base_get_max_events(base,
1471 	    EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_VIRTUAL, 0);
1472 	event_count_active_added = event_base_get_max_events(base,
1473 	    EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_ADDED, 0);
1474 	event_count_virtual_added = event_base_get_max_events(base,
1475 	    EVENT_BASE_COUNT_VIRTUAL | EVENT_BASE_COUNT_ADDED, 0);
1476 	event_count_active_added_virtual = event_base_get_max_events(base,
1477 	    EVENT_BASE_COUNT_ACTIVE |
1478 	    EVENT_BASE_COUNT_ADDED |
1479 	    EVENT_BASE_COUNT_VIRTUAL, 0);
1480 
1481 	tt_int_op(event_count_active, ==, 0);
1482 	tt_int_op(event_count_virtual, ==, 0);
1483 	/* libevent itself adds a timeout event, so the event_count is 4 here */
1484 	tt_int_op(event_count_added, ==, 4);
1485 	tt_int_op(event_count_active_virtual, ==, 0);
1486 	tt_int_op(event_count_active_added, ==, 4);
1487 	tt_int_op(event_count_virtual_added, ==, 4);
1488 	tt_int_op(event_count_active_added_virtual, ==, 4);
1489 
1490 	event_active(&ev, EV_READ, 1);
1491 	event_count_active = event_base_get_max_events(base,
1492 	    EVENT_BASE_COUNT_ACTIVE, 0);
1493 	event_count_virtual = event_base_get_max_events(base,
1494 	    EVENT_BASE_COUNT_VIRTUAL, 0);
1495 	event_count_added = event_base_get_max_events(base,
1496 	    EVENT_BASE_COUNT_ADDED, 0);
1497 	event_count_active_virtual = event_base_get_max_events(base,
1498 	    EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_VIRTUAL, 0);
1499 	event_count_active_added = event_base_get_max_events(base,
1500 	    EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_ADDED, 0);
1501 	event_count_virtual_added = event_base_get_max_events(base,
1502 	    EVENT_BASE_COUNT_VIRTUAL | EVENT_BASE_COUNT_ADDED, 0);
1503 	event_count_active_added_virtual = event_base_get_max_events(base,
1504 	    EVENT_BASE_COUNT_ACTIVE |
1505 	    EVENT_BASE_COUNT_ADDED |
1506 	    EVENT_BASE_COUNT_VIRTUAL, 0);
1507 
1508 	tt_int_op(event_count_active, ==, 1);
1509 	tt_int_op(event_count_virtual, ==, 0);
1510 	tt_int_op(event_count_added, ==, 4);
1511 	tt_int_op(event_count_active_virtual, ==, 1);
1512 	tt_int_op(event_count_active_added, ==, 5);
1513 	tt_int_op(event_count_virtual_added, ==, 4);
1514 	tt_int_op(event_count_active_added_virtual, ==, 5);
1515 
1516 	event_base_loop(base, 0);
1517 	event_count_active = event_base_get_max_events(base,
1518 	    EVENT_BASE_COUNT_ACTIVE, 1);
1519 	event_count_virtual = event_base_get_max_events(base,
1520 	    EVENT_BASE_COUNT_VIRTUAL, 1);
1521 	event_count_added = event_base_get_max_events(base,
1522 	    EVENT_BASE_COUNT_ADDED, 1);
1523 	event_count_active_virtual = event_base_get_max_events(base,
1524 	    EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_VIRTUAL, 0);
1525 	event_count_active_added = event_base_get_max_events(base,
1526 	    EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_ADDED, 0);
1527 	event_count_virtual_added = event_base_get_max_events(base,
1528 	    EVENT_BASE_COUNT_VIRTUAL | EVENT_BASE_COUNT_ADDED, 0);
1529 	event_count_active_added_virtual = event_base_get_max_events(base,
1530 	    EVENT_BASE_COUNT_ACTIVE |
1531 	    EVENT_BASE_COUNT_ADDED |
1532 	    EVENT_BASE_COUNT_VIRTUAL, 1);
1533 
1534 	tt_int_op(event_count_active, ==, 1);
1535 	tt_int_op(event_count_virtual, ==, 0);
1536 	tt_int_op(event_count_added, ==, 4);
1537 	tt_int_op(event_count_active_virtual, ==, 0);
1538 	tt_int_op(event_count_active_added, ==, 0);
1539 	tt_int_op(event_count_virtual_added, ==, 0);
1540 	tt_int_op(event_count_active_added_virtual, ==, 0);
1541 
1542 	event_count_active = event_base_get_max_events(base,
1543 	    EVENT_BASE_COUNT_ACTIVE, 0);
1544 	event_count_virtual = event_base_get_max_events(base,
1545 	    EVENT_BASE_COUNT_VIRTUAL, 0);
1546 	event_count_added = event_base_get_max_events(base,
1547 	    EVENT_BASE_COUNT_ADDED, 0);
1548 	tt_int_op(event_count_active, ==, 0);
1549 	tt_int_op(event_count_virtual, ==, 0);
1550 	tt_int_op(event_count_added, ==, 0);
1551 
1552 	event_base_add_virtual_(base);
1553 	event_count_active = event_base_get_max_events(base,
1554 	    EVENT_BASE_COUNT_ACTIVE, 0);
1555 	event_count_virtual = event_base_get_max_events(base,
1556 	    EVENT_BASE_COUNT_VIRTUAL, 0);
1557 	event_count_added = event_base_get_max_events(base,
1558 	    EVENT_BASE_COUNT_ADDED, 0);
1559 	event_count_active_virtual = event_base_get_max_events(base,
1560 	    EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_VIRTUAL, 0);
1561 	event_count_active_added = event_base_get_max_events(base,
1562 	    EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_ADDED, 0);
1563 	event_count_virtual_added = event_base_get_max_events(base,
1564 	    EVENT_BASE_COUNT_VIRTUAL | EVENT_BASE_COUNT_ADDED, 0);
1565 	event_count_active_added_virtual = event_base_get_max_events(base,
1566 	    EVENT_BASE_COUNT_ACTIVE |
1567 	    EVENT_BASE_COUNT_ADDED |
1568 	    EVENT_BASE_COUNT_VIRTUAL, 0);
1569 
1570 	tt_int_op(event_count_active, ==, 0);
1571 	tt_int_op(event_count_virtual, ==, 1);
1572 	tt_int_op(event_count_added, ==, 0);
1573 	tt_int_op(event_count_active_virtual, ==, 1);
1574 	tt_int_op(event_count_active_added, ==, 0);
1575 	tt_int_op(event_count_virtual_added, ==, 1);
1576 	tt_int_op(event_count_active_added_virtual, ==, 1);
1577 
1578 end:
1579        ;
1580 }
1581 
1582 static void
1583 test_bad_assign(void *ptr)
1584 {
1585 	struct event ev;
1586 	int r;
1587 	/* READ|SIGNAL is not allowed */
1588 	r = event_assign(&ev, NULL, -1, EV_SIGNAL|EV_READ, dummy_read_cb, NULL);
1589 	tt_int_op(r,==,-1);
1590 
1591 end:
1592 	;
1593 }
1594 
1595 static int reentrant_cb_run = 0;
1596 
1597 static void
1598 bad_reentrant_run_loop_cb(evutil_socket_t fd, short what, void *ptr)
1599 {
1600 	struct event_base *base = ptr;
1601 	int r;
1602 	reentrant_cb_run = 1;
1603 	/* This reentrant call to event_base_loop should be detected and
1604 	 * should fail */
1605 	r = event_base_loop(base, 0);
1606 	tt_int_op(r, ==, -1);
1607 end:
1608 	;
1609 }
1610 
1611 static void
1612 test_bad_reentrant(void *ptr)
1613 {
1614 	struct basic_test_data *data = ptr;
1615 	struct event_base *base = data->base;
1616 	struct event ev;
1617 	int r;
1618 	event_assign(&ev, base, -1,
1619 	    0, bad_reentrant_run_loop_cb, base);
1620 
1621 	event_active(&ev, EV_WRITE, 1);
1622 	r = event_base_loop(base, 0);
1623 	tt_int_op(r, ==, 1);
1624 	tt_int_op(reentrant_cb_run, ==, 1);
1625 end:
1626 	;
1627 }
1628 
1629 static int n_write_a_byte_cb=0;
1630 static int n_read_and_drain_cb=0;
1631 static int n_activate_other_event_cb=0;
1632 static void
1633 write_a_byte_cb(evutil_socket_t fd, short what, void *arg)
1634 {
1635 	char buf[] = "x";
1636 	if (write(fd, buf, 1) == 1)
1637 		++n_write_a_byte_cb;
1638 }
1639 static void
1640 read_and_drain_cb(evutil_socket_t fd, short what, void *arg)
1641 {
1642 	char buf[128];
1643 	int n;
1644 	++n_read_and_drain_cb;
1645 	while ((n = read(fd, buf, sizeof(buf))) > 0)
1646 		;
1647 }
1648 
1649 static void
1650 activate_other_event_cb(evutil_socket_t fd, short what, void *other_)
1651 {
1652 	struct event *ev_activate = other_;
1653 	++n_activate_other_event_cb;
1654 	event_active_later_(ev_activate, EV_READ);
1655 }
1656 
1657 static void
1658 test_active_later(void *ptr)
1659 {
1660 	struct basic_test_data *data = ptr;
1661 	struct event *ev1, *ev2;
1662 	struct event ev3, ev4;
1663 	struct timeval qsec = {0, 100000};
1664 	ev1 = event_new(data->base, data->pair[0], EV_READ|EV_PERSIST, read_and_drain_cb, NULL);
1665 	ev2 = event_new(data->base, data->pair[1], EV_WRITE|EV_PERSIST, write_a_byte_cb, NULL);
1666 	event_assign(&ev3, data->base, -1, 0, activate_other_event_cb, &ev4);
1667 	event_assign(&ev4, data->base, -1, 0, activate_other_event_cb, &ev3);
1668 	event_add(ev1, NULL);
1669 	event_add(ev2, NULL);
1670 	event_active_later_(&ev3, EV_READ);
1671 
1672 	event_base_loopexit(data->base, &qsec);
1673 
1674 	event_base_loop(data->base, 0);
1675 
1676 	TT_BLATHER(("%d write calls, %d read calls, %d activate-other calls.",
1677 		n_write_a_byte_cb, n_read_and_drain_cb, n_activate_other_event_cb));
1678 	event_del(&ev3);
1679 	event_del(&ev4);
1680 
1681 	tt_int_op(n_write_a_byte_cb, ==, n_activate_other_event_cb);
1682 	tt_int_op(n_write_a_byte_cb, >, 100);
1683 	tt_int_op(n_read_and_drain_cb, >, 100);
1684 	tt_int_op(n_activate_other_event_cb, >, 100);
1685 
1686 	event_active_later_(&ev4, EV_READ);
1687 	event_active(&ev4, EV_READ, 1); /* This should make the event
1688 					   active immediately. */
1689 	tt_assert((ev4.ev_flags & EVLIST_ACTIVE) != 0);
1690 	tt_assert((ev4.ev_flags & EVLIST_ACTIVE_LATER) == 0);
1691 
1692 	/* Now leave this one around, so that event_free sees it and removes
1693 	 * it. */
1694 	event_active_later_(&ev3, EV_READ);
1695 	event_base_assert_ok_(data->base);
1696 	event_base_free(data->base);
1697 	data->base = NULL;
1698 end:
1699 	;
1700 }
1701 
1702 
1703 static void incr_arg_cb(evutil_socket_t fd, short what, void *arg)
1704 {
1705 	int *intptr = arg;
1706 	(void) fd; (void) what;
1707 	++*intptr;
1708 }
1709 static void remove_timers_cb(evutil_socket_t fd, short what, void *arg)
1710 {
1711 	struct event **ep = arg;
1712 	(void) fd; (void) what;
1713 	event_remove_timer(ep[0]);
1714 	event_remove_timer(ep[1]);
1715 }
1716 static void send_a_byte_cb(evutil_socket_t fd, short what, void *arg)
1717 {
1718 	evutil_socket_t *sockp = arg;
1719 	(void) fd; (void) what;
1720 	(void) write(*sockp, "A", 1);
1721 }
1722 struct read_not_timeout_param
1723 {
1724 	struct event **ev;
1725 	int events;
1726 	int count;
1727 };
1728 static void read_not_timeout_cb(evutil_socket_t fd, short what, void *arg)
1729 {
1730 	struct read_not_timeout_param *rntp = arg;
1731 	char c;
1732 	ev_ssize_t n;
1733 	(void) fd; (void) what;
1734 	n = read(fd, &c, 1);
1735 	tt_int_op(n, ==, 1);
1736 	rntp->events |= what;
1737 	++rntp->count;
1738 	if(2 == rntp->count) event_del(rntp->ev[0]);
1739 end:
1740 	;
1741 }
1742 
1743 static void
1744 test_event_remove_timeout(void *ptr)
1745 {
1746 	struct basic_test_data *data = ptr;
1747 	struct event_base *base = data->base;
1748 	struct event *ev[5];
1749 	int ev1_fired=0;
1750 	struct timeval ms25 = { 0, 25*1000 },
1751 		ms40 = { 0, 40*1000 },
1752 		ms75 = { 0, 75*1000 },
1753 		ms125 = { 0, 125*1000 };
1754 	struct read_not_timeout_param rntp = { ev, 0, 0 };
1755 
1756 	event_base_assert_ok_(base);
1757 
1758 	ev[0] = event_new(base, data->pair[0], EV_READ|EV_PERSIST,
1759 	    read_not_timeout_cb, &rntp);
1760 	ev[1] = evtimer_new(base, incr_arg_cb, &ev1_fired);
1761 	ev[2] = evtimer_new(base, remove_timers_cb, ev);
1762 	ev[3] = evtimer_new(base, send_a_byte_cb, &data->pair[1]);
1763 	ev[4] = evtimer_new(base, send_a_byte_cb, &data->pair[1]);
1764 	tt_assert(base);
1765 	event_add(ev[2], &ms25); /* remove timers */
1766 	event_add(ev[4], &ms40); /* write to test if timer re-activates */
1767 	event_add(ev[0], &ms75); /* read */
1768 	event_add(ev[1], &ms75); /* timer */
1769 	event_add(ev[3], &ms125); /* timeout. */
1770 	event_base_assert_ok_(base);
1771 
1772 	event_base_dispatch(base);
1773 
1774 	tt_int_op(ev1_fired, ==, 0);
1775 	tt_int_op(rntp.events, ==, EV_READ);
1776 
1777 	event_base_assert_ok_(base);
1778 end:
1779 	event_free(ev[0]);
1780 	event_free(ev[1]);
1781 	event_free(ev[2]);
1782 	event_free(ev[3]);
1783 	event_free(ev[4]);
1784 }
1785 
1786 static void
1787 test_event_base_new(void *ptr)
1788 {
1789 	struct basic_test_data *data = ptr;
1790 	struct event_base *base = 0;
1791 	struct event ev1;
1792 	struct basic_cb_args args;
1793 
1794 	int towrite = (int)strlen(TEST1)+1;
1795 	int len = write(data->pair[0], TEST1, towrite);
1796 
1797 	if (len < 0)
1798 		tt_abort_perror("initial write");
1799 	else if (len != towrite)
1800 		tt_abort_printf(("initial write fell short (%d of %d bytes)",
1801 				 len, towrite));
1802 
1803 	if (shutdown(data->pair[0], SHUT_WR))
1804 		tt_abort_perror("initial write shutdown");
1805 
1806 	base = event_base_new();
1807 	if (!base)
1808 		tt_abort_msg("failed to create event base");
1809 
1810 	args.eb = base;
1811 	args.ev = &ev1;
1812 	args.callcount = 0;
1813 	event_assign(&ev1, base, data->pair[1],
1814 		     EV_READ|EV_PERSIST, basic_read_cb, &args);
1815 
1816 	if (event_add(&ev1, NULL))
1817 		tt_abort_perror("initial event_add");
1818 
1819 	if (event_base_loop(base, 0))
1820 		tt_abort_msg("unsuccessful exit from event loop");
1821 
1822 end:
1823 	if (base)
1824 		event_base_free(base);
1825 }
1826 
1827 static void
1828 test_loopexit(void)
1829 {
1830 	struct timeval tv, tv_start, tv_end;
1831 	struct event ev;
1832 
1833 	setup_test("Loop exit: ");
1834 
1835 	tv.tv_usec = 0;
1836 	tv.tv_sec = 60*60*24;
1837 	evtimer_set(&ev, timeout_cb, NULL);
1838 	evtimer_add(&ev, &tv);
1839 
1840 	tv.tv_usec = 300*1000;
1841 	tv.tv_sec = 0;
1842 	event_loopexit(&tv);
1843 
1844 	evutil_gettimeofday(&tv_start, NULL);
1845 	event_dispatch();
1846 	evutil_gettimeofday(&tv_end, NULL);
1847 
1848 	evtimer_del(&ev);
1849 
1850 	tt_assert(event_base_got_exit(global_base));
1851 	tt_assert(!event_base_got_break(global_base));
1852 
1853 	test_timeval_diff_eq(&tv_start, &tv_end, 300);
1854 
1855 	test_ok = 1;
1856 end:
1857 	cleanup_test();
1858 }
1859 
1860 static void
1861 test_loopexit_multiple(void)
1862 {
1863 	struct timeval tv, tv_start, tv_end;
1864 	struct event_base *base;
1865 
1866 	setup_test("Loop Multiple exit: ");
1867 
1868 	base = event_base_new();
1869 
1870 	tv.tv_usec = 200*1000;
1871 	tv.tv_sec = 0;
1872 	event_base_loopexit(base, &tv);
1873 
1874 	tv.tv_usec = 0;
1875 	tv.tv_sec = 3;
1876 	event_base_loopexit(base, &tv);
1877 
1878 	evutil_gettimeofday(&tv_start, NULL);
1879 	event_base_dispatch(base);
1880 	evutil_gettimeofday(&tv_end, NULL);
1881 
1882 	tt_assert(event_base_got_exit(base));
1883 	tt_assert(!event_base_got_break(base));
1884 
1885 	event_base_free(base);
1886 
1887 	test_timeval_diff_eq(&tv_start, &tv_end, 200);
1888 
1889 	test_ok = 1;
1890 
1891 end:
1892 	cleanup_test();
1893 }
1894 
1895 static void
1896 break_cb(evutil_socket_t fd, short events, void *arg)
1897 {
1898 	test_ok = 1;
1899 	event_loopbreak();
1900 }
1901 
1902 static void
1903 fail_cb(evutil_socket_t fd, short events, void *arg)
1904 {
1905 	test_ok = 0;
1906 }
1907 
1908 static void
1909 test_loopbreak(void)
1910 {
1911 	struct event ev1, ev2;
1912 	struct timeval tv;
1913 
1914 	setup_test("Loop break: ");
1915 
1916 	tv.tv_sec = 0;
1917 	tv.tv_usec = 0;
1918 	evtimer_set(&ev1, break_cb, NULL);
1919 	evtimer_add(&ev1, &tv);
1920 	evtimer_set(&ev2, fail_cb, NULL);
1921 	evtimer_add(&ev2, &tv);
1922 
1923 	event_dispatch();
1924 
1925 	tt_assert(!event_base_got_exit(global_base));
1926 	tt_assert(event_base_got_break(global_base));
1927 
1928 	evtimer_del(&ev1);
1929 	evtimer_del(&ev2);
1930 
1931 end:
1932 	cleanup_test();
1933 }
1934 
1935 static struct event *readd_test_event_last_added = NULL;
1936 static void
1937 re_add_read_cb(evutil_socket_t fd, short event, void *arg)
1938 {
1939 	char buf[256];
1940 	struct event *ev_other = arg;
1941 	ev_ssize_t n_read;
1942 
1943 	readd_test_event_last_added = ev_other;
1944 
1945 	n_read = read(fd, buf, sizeof(buf));
1946 
1947 	if (n_read < 0) {
1948 		tt_fail_perror("read");
1949 		event_base_loopbreak(event_get_base(ev_other));
1950 		return;
1951 	} else {
1952 		event_add(ev_other, NULL);
1953 		++test_ok;
1954 	}
1955 }
1956 
1957 static void
1958 test_nonpersist_readd(void)
1959 {
1960 	struct event ev1, ev2;
1961 
1962 	setup_test("Re-add nonpersistent events: ");
1963 	event_set(&ev1, pair[0], EV_READ, re_add_read_cb, &ev2);
1964 	event_set(&ev2, pair[1], EV_READ, re_add_read_cb, &ev1);
1965 
1966 	if (write(pair[0], "Hello", 5) < 0) {
1967 		tt_fail_perror("write(pair[0])");
1968 	}
1969 
1970 	if (write(pair[1], "Hello", 5) < 0) {
1971 		tt_fail_perror("write(pair[1])\n");
1972 	}
1973 
1974 	if (event_add(&ev1, NULL) == -1 ||
1975 	    event_add(&ev2, NULL) == -1) {
1976 		test_ok = 0;
1977 	}
1978 	if (test_ok != 0)
1979 		exit(1);
1980 	event_loop(EVLOOP_ONCE);
1981 	if (test_ok != 2)
1982 		exit(1);
1983 	/* At this point, we executed both callbacks.  Whichever one got
1984 	 * called first added the second, but the second then immediately got
1985 	 * deleted before its callback was called.  At this point, though, it
1986 	 * re-added the first.
1987 	 */
1988 	if (!readd_test_event_last_added) {
1989 		test_ok = 0;
1990 	} else if (readd_test_event_last_added == &ev1) {
1991 		if (!event_pending(&ev1, EV_READ, NULL) ||
1992 		    event_pending(&ev2, EV_READ, NULL))
1993 			test_ok = 0;
1994 	} else {
1995 		if (event_pending(&ev1, EV_READ, NULL) ||
1996 		    !event_pending(&ev2, EV_READ, NULL))
1997 			test_ok = 0;
1998 	}
1999 
2000 	event_del(&ev1);
2001 	event_del(&ev2);
2002 
2003 	cleanup_test();
2004 }
2005 
2006 struct test_pri_event {
2007 	struct event ev;
2008 	int count;
2009 };
2010 
2011 static void
2012 test_priorities_cb(evutil_socket_t fd, short what, void *arg)
2013 {
2014 	struct test_pri_event *pri = arg;
2015 	struct timeval tv;
2016 
2017 	if (pri->count == 3) {
2018 		event_loopexit(NULL);
2019 		return;
2020 	}
2021 
2022 	pri->count++;
2023 
2024 	evutil_timerclear(&tv);
2025 	event_add(&pri->ev, &tv);
2026 }
2027 
2028 static void
2029 test_priorities_impl(int npriorities)
2030 {
2031 	struct test_pri_event one, two;
2032 	struct timeval tv;
2033 
2034 	TT_BLATHER(("Testing Priorities %d: ", npriorities));
2035 
2036 	event_base_priority_init(global_base, npriorities);
2037 
2038 	memset(&one, 0, sizeof(one));
2039 	memset(&two, 0, sizeof(two));
2040 
2041 	timeout_set(&one.ev, test_priorities_cb, &one);
2042 	if (event_priority_set(&one.ev, 0) == -1) {
2043 		fprintf(stderr, "%s: failed to set priority", __func__);
2044 		exit(1);
2045 	}
2046 
2047 	timeout_set(&two.ev, test_priorities_cb, &two);
2048 	if (event_priority_set(&two.ev, npriorities - 1) == -1) {
2049 		fprintf(stderr, "%s: failed to set priority", __func__);
2050 		exit(1);
2051 	}
2052 
2053 	evutil_timerclear(&tv);
2054 
2055 	if (event_add(&one.ev, &tv) == -1)
2056 		exit(1);
2057 	if (event_add(&two.ev, &tv) == -1)
2058 		exit(1);
2059 
2060 	event_dispatch();
2061 
2062 	event_del(&one.ev);
2063 	event_del(&two.ev);
2064 
2065 	if (npriorities == 1) {
2066 		if (one.count == 3 && two.count == 3)
2067 			test_ok = 1;
2068 	} else if (npriorities == 2) {
2069 		/* Two is called once because event_loopexit is priority 1 */
2070 		if (one.count == 3 && two.count == 1)
2071 			test_ok = 1;
2072 	} else {
2073 		if (one.count == 3 && two.count == 0)
2074 			test_ok = 1;
2075 	}
2076 }
2077 
2078 static void
2079 test_priorities(void)
2080 {
2081 	test_priorities_impl(1);
2082 	if (test_ok)
2083 		test_priorities_impl(2);
2084 	if (test_ok)
2085 		test_priorities_impl(3);
2086 }
2087 
2088 /* priority-active-inversion: activate a higher-priority event, and make sure
2089  * it keeps us from running a lower-priority event first. */
2090 static int n_pai_calls = 0;
2091 static struct event pai_events[3];
2092 
2093 static void
2094 prio_active_inversion_cb(evutil_socket_t fd, short what, void *arg)
2095 {
2096 	int *call_order = arg;
2097 	*call_order = n_pai_calls++;
2098 	if (n_pai_calls == 1) {
2099 		/* This should activate later, even though it shares a
2100 		   priority with us. */
2101 		event_active(&pai_events[1], EV_READ, 1);
2102 		/* This should activate next, since its priority is higher,
2103 		   even though we activated it second. */
2104 		event_active(&pai_events[2], EV_TIMEOUT, 1);
2105 	}
2106 }
2107 
2108 static void
2109 test_priority_active_inversion(void *data_)
2110 {
2111 	struct basic_test_data *data = data_;
2112 	struct event_base *base = data->base;
2113 	int call_order[3];
2114 	int i;
2115 	tt_int_op(event_base_priority_init(base, 8), ==, 0);
2116 
2117 	n_pai_calls = 0;
2118 	memset(call_order, 0, sizeof(call_order));
2119 
2120 	for (i=0;i<3;++i) {
2121 		event_assign(&pai_events[i], data->base, -1, 0,
2122 		    prio_active_inversion_cb, &call_order[i]);
2123 	}
2124 
2125 	event_priority_set(&pai_events[0], 4);
2126 	event_priority_set(&pai_events[1], 4);
2127 	event_priority_set(&pai_events[2], 0);
2128 
2129 	event_active(&pai_events[0], EV_WRITE, 1);
2130 
2131 	event_base_dispatch(base);
2132 	tt_int_op(n_pai_calls, ==, 3);
2133 	tt_int_op(call_order[0], ==, 0);
2134 	tt_int_op(call_order[1], ==, 2);
2135 	tt_int_op(call_order[2], ==, 1);
2136 end:
2137 	;
2138 }
2139 
2140 
2141 static void
2142 test_multiple_cb(evutil_socket_t fd, short event, void *arg)
2143 {
2144 	if (event & EV_READ)
2145 		test_ok |= 1;
2146 	else if (event & EV_WRITE)
2147 		test_ok |= 2;
2148 }
2149 
2150 static void
2151 test_multiple_events_for_same_fd(void)
2152 {
2153    struct event e1, e2;
2154 
2155    setup_test("Multiple events for same fd: ");
2156 
2157    event_set(&e1, pair[0], EV_READ, test_multiple_cb, NULL);
2158    event_add(&e1, NULL);
2159    event_set(&e2, pair[0], EV_WRITE, test_multiple_cb, NULL);
2160    event_add(&e2, NULL);
2161    event_loop(EVLOOP_ONCE);
2162    event_del(&e2);
2163 
2164    if (write(pair[1], TEST1, strlen(TEST1)+1) < 0) {
2165 	   tt_fail_perror("write");
2166    }
2167 
2168    event_loop(EVLOOP_ONCE);
2169    event_del(&e1);
2170 
2171    if (test_ok != 3)
2172 	   test_ok = 0;
2173 
2174    cleanup_test();
2175 }
2176 
2177 int evtag_decode_int(ev_uint32_t *pnumber, struct evbuffer *evbuf);
2178 int evtag_decode_int64(ev_uint64_t *pnumber, struct evbuffer *evbuf);
2179 int evtag_encode_tag(struct evbuffer *evbuf, ev_uint32_t number);
2180 int evtag_decode_tag(ev_uint32_t *pnumber, struct evbuffer *evbuf);
2181 
2182 static void
2183 read_once_cb(evutil_socket_t fd, short event, void *arg)
2184 {
2185 	char buf[256];
2186 	int len;
2187 
2188 	len = read(fd, buf, sizeof(buf));
2189 
2190 	if (called) {
2191 		test_ok = 0;
2192 	} else if (len) {
2193 		/* Assumes global pair[0] can be used for writing */
2194 		if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
2195 			tt_fail_perror("write");
2196 			test_ok = 0;
2197 		} else {
2198 			test_ok = 1;
2199 		}
2200 	}
2201 
2202 	called++;
2203 }
2204 
2205 static void
2206 test_want_only_once(void)
2207 {
2208 	struct event ev;
2209 	struct timeval tv;
2210 
2211 	/* Very simple read test */
2212 	setup_test("Want read only once: ");
2213 
2214 	if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
2215 		tt_fail_perror("write");
2216 	}
2217 
2218 	/* Setup the loop termination */
2219 	evutil_timerclear(&tv);
2220 	tv.tv_usec = 300*1000;
2221 	event_loopexit(&tv);
2222 
2223 	event_set(&ev, pair[1], EV_READ, read_once_cb, &ev);
2224 	if (event_add(&ev, NULL) == -1)
2225 		exit(1);
2226 	event_dispatch();
2227 
2228 	cleanup_test();
2229 }
2230 
2231 #define TEST_MAX_INT	6
2232 
2233 static void
2234 evtag_int_test(void *ptr)
2235 {
2236 	struct evbuffer *tmp = evbuffer_new();
2237 	ev_uint32_t integers[TEST_MAX_INT] = {
2238 		0xaf0, 0x1000, 0x1, 0xdeadbeef, 0x00, 0xbef000
2239 	};
2240 	ev_uint32_t integer;
2241 	ev_uint64_t big_int;
2242 	int i;
2243 
2244 	evtag_init();
2245 
2246 	for (i = 0; i < TEST_MAX_INT; i++) {
2247 		int oldlen, newlen;
2248 		oldlen = (int)EVBUFFER_LENGTH(tmp);
2249 		evtag_encode_int(tmp, integers[i]);
2250 		newlen = (int)EVBUFFER_LENGTH(tmp);
2251 		TT_BLATHER(("encoded 0x%08x with %d bytes",
2252 			(unsigned)integers[i], newlen - oldlen));
2253 		big_int = integers[i];
2254 		big_int *= 1000000000; /* 1 billion */
2255 		evtag_encode_int64(tmp, big_int);
2256 	}
2257 
2258 	for (i = 0; i < TEST_MAX_INT; i++) {
2259 		tt_int_op(evtag_decode_int(&integer, tmp), !=, -1);
2260 		tt_uint_op(integer, ==, integers[i]);
2261 		tt_int_op(evtag_decode_int64(&big_int, tmp), !=, -1);
2262 		tt_assert((big_int / 1000000000) == integers[i]);
2263 	}
2264 
2265 	tt_uint_op(EVBUFFER_LENGTH(tmp), ==, 0);
2266 end:
2267 	evbuffer_free(tmp);
2268 }
2269 
2270 static void
2271 evtag_fuzz(void *ptr)
2272 {
2273 	u_char buffer[4096];
2274 	struct evbuffer *tmp = evbuffer_new();
2275 	struct timeval tv;
2276 	int i, j;
2277 
2278 	int not_failed = 0;
2279 
2280 	evtag_init();
2281 
2282 	for (j = 0; j < 100; j++) {
2283 		for (i = 0; i < (int)sizeof(buffer); i++)
2284 			buffer[i] = rand();
2285 		evbuffer_drain(tmp, -1);
2286 		evbuffer_add(tmp, buffer, sizeof(buffer));
2287 
2288 		if (evtag_unmarshal_timeval(tmp, 0, &tv) != -1)
2289 			not_failed++;
2290 	}
2291 
2292 	/* The majority of decodes should fail */
2293 	tt_int_op(not_failed, <, 10);
2294 
2295 	/* Now insert some corruption into the tag length field */
2296 	evbuffer_drain(tmp, -1);
2297 	evutil_timerclear(&tv);
2298 	tv.tv_sec = 1;
2299 	evtag_marshal_timeval(tmp, 0, &tv);
2300 	evbuffer_add(tmp, buffer, sizeof(buffer));
2301 
2302 	((char *)EVBUFFER_DATA(tmp))[1] = '\xff';
2303 	if (evtag_unmarshal_timeval(tmp, 0, &tv) != -1) {
2304 		tt_abort_msg("evtag_unmarshal_timeval should have failed");
2305 	}
2306 
2307 end:
2308 	evbuffer_free(tmp);
2309 }
2310 
2311 static void
2312 evtag_tag_encoding(void *ptr)
2313 {
2314 	struct evbuffer *tmp = evbuffer_new();
2315 	ev_uint32_t integers[TEST_MAX_INT] = {
2316 		0xaf0, 0x1000, 0x1, 0xdeadbeef, 0x00, 0xbef000
2317 	};
2318 	ev_uint32_t integer;
2319 	int i;
2320 
2321 	evtag_init();
2322 
2323 	for (i = 0; i < TEST_MAX_INT; i++) {
2324 		int oldlen, newlen;
2325 		oldlen = (int)EVBUFFER_LENGTH(tmp);
2326 		evtag_encode_tag(tmp, integers[i]);
2327 		newlen = (int)EVBUFFER_LENGTH(tmp);
2328 		TT_BLATHER(("encoded 0x%08x with %d bytes",
2329 			(unsigned)integers[i], newlen - oldlen));
2330 	}
2331 
2332 	for (i = 0; i < TEST_MAX_INT; i++) {
2333 		tt_int_op(evtag_decode_tag(&integer, tmp), !=, -1);
2334 		tt_uint_op(integer, ==, integers[i]);
2335 	}
2336 
2337 	tt_uint_op(EVBUFFER_LENGTH(tmp), ==, 0);
2338 
2339 end:
2340 	evbuffer_free(tmp);
2341 }
2342 
2343 static void
2344 evtag_test_peek(void *ptr)
2345 {
2346 	struct evbuffer *tmp = evbuffer_new();
2347 	ev_uint32_t u32;
2348 
2349 	evtag_marshal_int(tmp, 30, 0);
2350 	evtag_marshal_string(tmp, 40, "Hello world");
2351 
2352 	tt_int_op(evtag_peek(tmp, &u32), ==, 1);
2353 	tt_int_op(u32, ==, 30);
2354 	tt_int_op(evtag_peek_length(tmp, &u32), ==, 0);
2355 	tt_int_op(u32, ==, 1+1+1);
2356 	tt_int_op(evtag_consume(tmp), ==, 0);
2357 
2358 	tt_int_op(evtag_peek(tmp, &u32), ==, 1);
2359 	tt_int_op(u32, ==, 40);
2360 	tt_int_op(evtag_peek_length(tmp, &u32), ==, 0);
2361 	tt_int_op(u32, ==, 1+1+11);
2362 	tt_int_op(evtag_payload_length(tmp, &u32), ==, 0);
2363 	tt_int_op(u32, ==, 11);
2364 
2365 end:
2366 	evbuffer_free(tmp);
2367 }
2368 
2369 
2370 static void
2371 test_methods(void *ptr)
2372 {
2373 	const char **methods = event_get_supported_methods();
2374 	struct event_config *cfg = NULL;
2375 	struct event_base *base = NULL;
2376 	const char *backend;
2377 	int n_methods = 0;
2378 
2379 	tt_assert(methods);
2380 
2381 	backend = methods[0];
2382 	while (*methods != NULL) {
2383 		TT_BLATHER(("Support method: %s", *methods));
2384 		++methods;
2385 		++n_methods;
2386 	}
2387 
2388 	cfg = event_config_new();
2389 	assert(cfg != NULL);
2390 
2391 	tt_int_op(event_config_avoid_method(cfg, backend), ==, 0);
2392 	event_config_set_flag(cfg, EVENT_BASE_FLAG_IGNORE_ENV);
2393 
2394 	base = event_base_new_with_config(cfg);
2395 	if (n_methods > 1) {
2396 		tt_assert(base);
2397 		tt_str_op(backend, !=, event_base_get_method(base));
2398 	} else {
2399 		tt_assert(base == NULL);
2400 	}
2401 
2402 end:
2403 	if (base)
2404 		event_base_free(base);
2405 	if (cfg)
2406 		event_config_free(cfg);
2407 }
2408 
2409 static void
2410 test_version(void *arg)
2411 {
2412 	const char *vstr;
2413 	ev_uint32_t vint;
2414 	int major, minor, patch, n;
2415 
2416 	vstr = event_get_version();
2417 	vint = event_get_version_number();
2418 
2419 	tt_assert(vstr);
2420 	tt_assert(vint);
2421 
2422 	tt_str_op(vstr, ==, LIBEVENT_VERSION);
2423 	tt_int_op(vint, ==, LIBEVENT_VERSION_NUMBER);
2424 
2425 	n = sscanf(vstr, "%d.%d.%d", &major, &minor, &patch);
2426 	tt_assert(3 == n);
2427 	tt_int_op((vint&0xffffff00), ==, ((major<<24)|(minor<<16)|(patch<<8)));
2428 end:
2429 	;
2430 }
2431 
2432 static void
2433 test_base_features(void *arg)
2434 {
2435 	struct event_base *base = NULL;
2436 	struct event_config *cfg = NULL;
2437 
2438 	cfg = event_config_new();
2439 
2440 	tt_assert(0 == event_config_require_features(cfg, EV_FEATURE_ET));
2441 
2442 	base = event_base_new_with_config(cfg);
2443 	if (base) {
2444 		tt_int_op(EV_FEATURE_ET, ==,
2445 		    event_base_get_features(base) & EV_FEATURE_ET);
2446 	} else {
2447 		base = event_base_new();
2448 		tt_int_op(0, ==, event_base_get_features(base) & EV_FEATURE_ET);
2449 	}
2450 
2451 end:
2452 	if (base)
2453 		event_base_free(base);
2454 	if (cfg)
2455 		event_config_free(cfg);
2456 }
2457 
2458 #ifdef EVENT__HAVE_SETENV
2459 #define SETENV_OK
2460 #elif !defined(EVENT__HAVE_SETENV) && defined(EVENT__HAVE_PUTENV)
2461 static void setenv(const char *k, const char *v, int o_)
2462 {
2463 	char b[256];
2464 	evutil_snprintf(b, sizeof(b), "%s=%s",k,v);
2465 	putenv(b);
2466 }
2467 #define SETENV_OK
2468 #endif
2469 
2470 #ifdef EVENT__HAVE_UNSETENV
2471 #define UNSETENV_OK
2472 #elif !defined(EVENT__HAVE_UNSETENV) && defined(EVENT__HAVE_PUTENV)
2473 static void unsetenv(const char *k)
2474 {
2475 	char b[256];
2476 	evutil_snprintf(b, sizeof(b), "%s=",k);
2477 	putenv(b);
2478 }
2479 #define UNSETENV_OK
2480 #endif
2481 
2482 #if defined(SETENV_OK) && defined(UNSETENV_OK)
2483 static void
2484 methodname_to_envvar(const char *mname, char *buf, size_t buflen)
2485 {
2486 	char *cp;
2487 	evutil_snprintf(buf, buflen, "EVENT_NO%s", mname);
2488 	for (cp = buf; *cp; ++cp) {
2489 		*cp = EVUTIL_TOUPPER_(*cp);
2490 	}
2491 }
2492 #endif
2493 
2494 static void
2495 test_base_environ(void *arg)
2496 {
2497 	struct event_base *base = NULL;
2498 	struct event_config *cfg = NULL;
2499 
2500 #if defined(SETENV_OK) && defined(UNSETENV_OK)
2501 	const char **basenames;
2502 	int i, n_methods=0;
2503 	char varbuf[128];
2504 	const char *defaultname, *ignoreenvname;
2505 
2506 	/* See if unsetenv works before we rely on it. */
2507 	setenv("EVENT_NOWAFFLES", "1", 1);
2508 	unsetenv("EVENT_NOWAFFLES");
2509 	if (getenv("EVENT_NOWAFFLES") != NULL) {
2510 #ifndef EVENT__HAVE_UNSETENV
2511 		TT_DECLARE("NOTE", ("Can't fake unsetenv; skipping test"));
2512 #else
2513 		TT_DECLARE("NOTE", ("unsetenv doesn't work; skipping test"));
2514 #endif
2515 		tt_skip();
2516 	}
2517 
2518 	basenames = event_get_supported_methods();
2519 	for (i = 0; basenames[i]; ++i) {
2520 		methodname_to_envvar(basenames[i], varbuf, sizeof(varbuf));
2521 		unsetenv(varbuf);
2522 		++n_methods;
2523 	}
2524 
2525 	base = event_base_new();
2526 	tt_assert(base);
2527 
2528 	defaultname = event_base_get_method(base);
2529 	TT_BLATHER(("default is <%s>", defaultname));
2530 	event_base_free(base);
2531 	base = NULL;
2532 
2533 	/* Can we disable the method with EVENT_NOfoo ? */
2534 	if (!strcmp(defaultname, "epoll (with changelist)")) {
2535  		setenv("EVENT_NOEPOLL", "1", 1);
2536 		ignoreenvname = "epoll";
2537 	} else {
2538 		methodname_to_envvar(defaultname, varbuf, sizeof(varbuf));
2539 		setenv(varbuf, "1", 1);
2540 		ignoreenvname = defaultname;
2541 	}
2542 
2543 	/* Use an empty cfg rather than NULL so a failure doesn't exit() */
2544 	cfg = event_config_new();
2545 	base = event_base_new_with_config(cfg);
2546 	event_config_free(cfg);
2547 	cfg = NULL;
2548 	if (n_methods == 1) {
2549 		tt_assert(!base);
2550 	} else {
2551 		tt_assert(base);
2552 		tt_str_op(defaultname, !=, event_base_get_method(base));
2553 		event_base_free(base);
2554 		base = NULL;
2555 	}
2556 
2557 	/* Can we disable looking at the environment with IGNORE_ENV ? */
2558 	cfg = event_config_new();
2559 	event_config_set_flag(cfg, EVENT_BASE_FLAG_IGNORE_ENV);
2560 	base = event_base_new_with_config(cfg);
2561 	tt_assert(base);
2562 	tt_str_op(ignoreenvname, ==, event_base_get_method(base));
2563 #else
2564 	tt_skip();
2565 #endif
2566 
2567 end:
2568 	if (base)
2569 		event_base_free(base);
2570 	if (cfg)
2571 		event_config_free(cfg);
2572 }
2573 
2574 static void
2575 read_called_once_cb(evutil_socket_t fd, short event, void *arg)
2576 {
2577 	tt_int_op(event, ==, EV_READ);
2578 	called += 1;
2579 end:
2580 	;
2581 }
2582 
2583 static void
2584 timeout_called_once_cb(evutil_socket_t fd, short event, void *arg)
2585 {
2586 	tt_int_op(event, ==, EV_TIMEOUT);
2587 	called += 100;
2588 end:
2589 	;
2590 }
2591 
2592 static void
2593 immediate_called_twice_cb(evutil_socket_t fd, short event, void *arg)
2594 {
2595 	tt_int_op(event, ==, EV_TIMEOUT);
2596 	called += 1000;
2597 end:
2598 	;
2599 }
2600 
2601 static void
2602 test_event_once(void *ptr)
2603 {
2604 	struct basic_test_data *data = ptr;
2605 	struct timeval tv;
2606 	int r;
2607 
2608 	tv.tv_sec = 0;
2609 	tv.tv_usec = 50*1000;
2610 	called = 0;
2611 	r = event_base_once(data->base, data->pair[0], EV_READ,
2612 	    read_called_once_cb, NULL, NULL);
2613 	tt_int_op(r, ==, 0);
2614 	r = event_base_once(data->base, -1, EV_TIMEOUT,
2615 	    timeout_called_once_cb, NULL, &tv);
2616 	tt_int_op(r, ==, 0);
2617 	r = event_base_once(data->base, -1, 0, NULL, NULL, NULL);
2618 	tt_int_op(r, <, 0);
2619 	r = event_base_once(data->base, -1, EV_TIMEOUT,
2620 	    immediate_called_twice_cb, NULL, NULL);
2621 	tt_int_op(r, ==, 0);
2622 	tv.tv_sec = 0;
2623 	tv.tv_usec = 0;
2624 	r = event_base_once(data->base, -1, EV_TIMEOUT,
2625 	    immediate_called_twice_cb, NULL, &tv);
2626 	tt_int_op(r, ==, 0);
2627 
2628 	if (write(data->pair[1], TEST1, strlen(TEST1)+1) < 0) {
2629 		tt_fail_perror("write");
2630 	}
2631 
2632 	shutdown(data->pair[1], SHUT_WR);
2633 
2634 	event_base_dispatch(data->base);
2635 
2636 	tt_int_op(called, ==, 2101);
2637 end:
2638 	;
2639 }
2640 
2641 static void
2642 test_event_once_never(void *ptr)
2643 {
2644 	struct basic_test_data *data = ptr;
2645 	struct timeval tv;
2646 
2647 	/* Have one trigger in 10 seconds (don't worry, because) */
2648 	tv.tv_sec = 10;
2649 	tv.tv_usec = 0;
2650 	called = 0;
2651 	event_base_once(data->base, -1, EV_TIMEOUT,
2652 	    timeout_called_once_cb, NULL, &tv);
2653 
2654 	/* But shut down the base in 75 msec. */
2655 	tv.tv_sec = 0;
2656 	tv.tv_usec = 75*1000;
2657 	event_base_loopexit(data->base, &tv);
2658 
2659 	event_base_dispatch(data->base);
2660 
2661 	tt_int_op(called, ==, 0);
2662 end:
2663 	;
2664 }
2665 
2666 static void
2667 test_event_pending(void *ptr)
2668 {
2669 	struct basic_test_data *data = ptr;
2670 	struct event *r=NULL, *w=NULL, *t=NULL;
2671 	struct timeval tv, now, tv2;
2672 
2673 	tv.tv_sec = 0;
2674 	tv.tv_usec = 500 * 1000;
2675 	r = event_new(data->base, data->pair[0], EV_READ, simple_read_cb,
2676 	    NULL);
2677 	w = event_new(data->base, data->pair[1], EV_WRITE, simple_write_cb,
2678 	    NULL);
2679 	t = evtimer_new(data->base, timeout_cb, NULL);
2680 
2681 	tt_assert(r);
2682 	tt_assert(w);
2683 	tt_assert(t);
2684 
2685 	evutil_gettimeofday(&now, NULL);
2686 	event_add(r, NULL);
2687 	event_add(t, &tv);
2688 
2689 	tt_assert( event_pending(r, EV_READ, NULL));
2690 	tt_assert(!event_pending(w, EV_WRITE, NULL));
2691 	tt_assert(!event_pending(r, EV_WRITE, NULL));
2692 	tt_assert( event_pending(r, EV_READ|EV_WRITE, NULL));
2693 	tt_assert(!event_pending(r, EV_TIMEOUT, NULL));
2694 	tt_assert( event_pending(t, EV_TIMEOUT, NULL));
2695 	tt_assert( event_pending(t, EV_TIMEOUT, &tv2));
2696 
2697 	tt_assert(evutil_timercmp(&tv2, &now, >));
2698 
2699 	test_timeval_diff_eq(&now, &tv2, 500);
2700 
2701 end:
2702 	if (r) {
2703 		event_del(r);
2704 		event_free(r);
2705 	}
2706 	if (w) {
2707 		event_del(w);
2708 		event_free(w);
2709 	}
2710 	if (t) {
2711 		event_del(t);
2712 		event_free(t);
2713 	}
2714 }
2715 
2716 #ifndef _WIN32
2717 /* You can't do this test on windows, since dup2 doesn't work on sockets */
2718 
2719 static void
2720 dfd_cb(evutil_socket_t fd, short e, void *data)
2721 {
2722 	*(int*)data = (int)e;
2723 }
2724 
2725 /* Regression test for our workaround for a fun epoll/linux related bug
2726  * where fd2 = dup(fd1); add(fd2); close(fd2); dup2(fd1,fd2); add(fd2)
2727  * will get you an EEXIST */
2728 static void
2729 test_dup_fd(void *arg)
2730 {
2731 	struct basic_test_data *data = arg;
2732 	struct event_base *base = data->base;
2733 	struct event *ev1=NULL, *ev2=NULL;
2734 	int fd, dfd=-1;
2735 	int ev1_got, ev2_got;
2736 
2737 	tt_int_op(write(data->pair[0], "Hello world",
2738 		strlen("Hello world")), >, 0);
2739 	fd = data->pair[1];
2740 
2741 	dfd = dup(fd);
2742 	tt_int_op(dfd, >=, 0);
2743 
2744 	ev1 = event_new(base, fd, EV_READ|EV_PERSIST, dfd_cb, &ev1_got);
2745 	ev2 = event_new(base, dfd, EV_READ|EV_PERSIST, dfd_cb, &ev2_got);
2746 	ev1_got = ev2_got = 0;
2747 	event_add(ev1, NULL);
2748 	event_add(ev2, NULL);
2749 	event_base_loop(base, EVLOOP_ONCE);
2750 	tt_int_op(ev1_got, ==, EV_READ);
2751 	tt_int_op(ev2_got, ==, EV_READ);
2752 
2753 	/* Now close and delete dfd then dispatch.  We need to do the
2754 	 * dispatch here so that when we add it later, we think there
2755 	 * was an intermediate delete. */
2756 	close(dfd);
2757 	event_del(ev2);
2758 	ev1_got = ev2_got = 0;
2759 	event_base_loop(base, EVLOOP_ONCE);
2760 	tt_want_int_op(ev1_got, ==, EV_READ);
2761 	tt_int_op(ev2_got, ==, 0);
2762 
2763 	/* Re-duplicate the fd.  We need to get the same duplicated
2764 	 * value that we closed to provoke the epoll quirk.  Also, we
2765 	 * need to change the events to write, or else the old lingering
2766 	 * read event will make the test pass whether the change was
2767 	 * successful or not. */
2768 	tt_int_op(dup2(fd, dfd), ==, dfd);
2769 	event_free(ev2);
2770 	ev2 = event_new(base, dfd, EV_WRITE|EV_PERSIST, dfd_cb, &ev2_got);
2771 	event_add(ev2, NULL);
2772 	ev1_got = ev2_got = 0;
2773 	event_base_loop(base, EVLOOP_ONCE);
2774 	tt_want_int_op(ev1_got, ==, EV_READ);
2775 	tt_int_op(ev2_got, ==, EV_WRITE);
2776 
2777 end:
2778 	if (ev1)
2779 		event_free(ev1);
2780 	if (ev2)
2781 		event_free(ev2);
2782 	if (dfd >= 0)
2783 		close(dfd);
2784 }
2785 #endif
2786 
2787 #ifdef EVENT__DISABLE_MM_REPLACEMENT
2788 static void
2789 test_mm_functions(void *arg)
2790 {
2791 	tinytest_set_test_skipped_();
2792 }
2793 #else
2794 static int
2795 check_dummy_mem_ok(void *mem_)
2796 {
2797 	char *mem = mem_;
2798 	mem -= 16;
2799 	return !memcmp(mem, "{[<guardedram>]}", 16);
2800 }
2801 
2802 static void *
2803 dummy_malloc(size_t len)
2804 {
2805 	char *mem = malloc(len+16);
2806 	memcpy(mem, "{[<guardedram>]}", 16);
2807 	return mem+16;
2808 }
2809 
2810 static void *
2811 dummy_realloc(void *mem_, size_t len)
2812 {
2813 	char *mem = mem_;
2814 	if (!mem)
2815 		return dummy_malloc(len);
2816 	tt_want(check_dummy_mem_ok(mem_));
2817 	mem -= 16;
2818 	mem = realloc(mem, len+16);
2819 	return mem+16;
2820 }
2821 
2822 static void
2823 dummy_free(void *mem_)
2824 {
2825 	char *mem = mem_;
2826 	tt_want(check_dummy_mem_ok(mem_));
2827 	mem -= 16;
2828 	free(mem);
2829 }
2830 
2831 static void
2832 test_mm_functions(void *arg)
2833 {
2834 	struct event_base *b = NULL;
2835 	struct event_config *cfg = NULL;
2836 	event_set_mem_functions(dummy_malloc, dummy_realloc, dummy_free);
2837 	cfg = event_config_new();
2838 	event_config_avoid_method(cfg, "Nonesuch");
2839 	b = event_base_new_with_config(cfg);
2840 	tt_assert(b);
2841 	tt_assert(check_dummy_mem_ok(b));
2842 end:
2843 	if (cfg)
2844 		event_config_free(cfg);
2845 	if (b)
2846 		event_base_free(b);
2847 }
2848 #endif
2849 
2850 static void
2851 many_event_cb(evutil_socket_t fd, short event, void *arg)
2852 {
2853 	int *calledp = arg;
2854 	*calledp += 1;
2855 }
2856 
2857 static void
2858 test_many_events(void *arg)
2859 {
2860 	/* Try 70 events that should all be ready at once.  This will
2861 	 * exercise the "resize" code on most of the backends, and will make
2862 	 * sure that we can get past the 64-handle limit of some windows
2863 	 * functions. */
2864 #define MANY 70
2865 
2866 	struct basic_test_data *data = arg;
2867 	struct event_base *base = data->base;
2868 	int one_at_a_time = data->setup_data != NULL;
2869 	evutil_socket_t sock[MANY];
2870 	struct event *ev[MANY];
2871 	int called[MANY];
2872 	int i;
2873 	int loopflags = EVLOOP_NONBLOCK, evflags=0;
2874 	if (one_at_a_time) {
2875 		loopflags |= EVLOOP_ONCE;
2876 		evflags = EV_PERSIST;
2877 	}
2878 
2879 	memset(sock, 0xff, sizeof(sock));
2880 	memset(ev, 0, sizeof(ev));
2881 	memset(called, 0, sizeof(called));
2882 
2883 	for (i = 0; i < MANY; ++i) {
2884 		/* We need an event that will hit the backend, and that will
2885 		 * be ready immediately.  "Send a datagram" is an easy
2886 		 * instance of that. */
2887 		sock[i] = socket(AF_INET, SOCK_DGRAM, 0);
2888 		tt_assert(sock[i] >= 0);
2889 		called[i] = 0;
2890 		ev[i] = event_new(base, sock[i], EV_WRITE|evflags,
2891 		    many_event_cb, &called[i]);
2892 		event_add(ev[i], NULL);
2893 		if (one_at_a_time)
2894 			event_base_loop(base, EVLOOP_NONBLOCK|EVLOOP_ONCE);
2895 	}
2896 
2897 	event_base_loop(base, loopflags);
2898 
2899 	for (i = 0; i < MANY; ++i) {
2900 		if (one_at_a_time)
2901 			tt_int_op(called[i], ==, MANY - i + 1);
2902 		else
2903 			tt_int_op(called[i], ==, 1);
2904 	}
2905 
2906 end:
2907 	for (i = 0; i < MANY; ++i) {
2908 		if (ev[i])
2909 			event_free(ev[i]);
2910 		if (sock[i] >= 0)
2911 			evutil_closesocket(sock[i]);
2912 	}
2913 #undef MANY
2914 }
2915 
2916 static void
2917 test_struct_event_size(void *arg)
2918 {
2919 	tt_int_op(event_get_struct_event_size(), <=, sizeof(struct event));
2920 end:
2921 	;
2922 }
2923 
2924 static void
2925 test_get_assignment(void *arg)
2926 {
2927 	struct basic_test_data *data = arg;
2928 	struct event_base *base = data->base;
2929 	struct event *ev1 = NULL;
2930 	const char *str = "foo";
2931 
2932 	struct event_base *b;
2933 	evutil_socket_t s;
2934 	short what;
2935 	event_callback_fn cb;
2936 	void *cb_arg;
2937 
2938 	ev1 = event_new(base, data->pair[1], EV_READ, dummy_read_cb, (void*)str);
2939 	event_get_assignment(ev1, &b, &s, &what, &cb, &cb_arg);
2940 
2941 	tt_ptr_op(b, ==, base);
2942 	tt_int_op(s, ==, data->pair[1]);
2943 	tt_int_op(what, ==, EV_READ);
2944 	tt_ptr_op(cb, ==, dummy_read_cb);
2945 	tt_ptr_op(cb_arg, ==, str);
2946 
2947 	/* Now make sure this doesn't crash. */
2948 	event_get_assignment(ev1, NULL, NULL, NULL, NULL, NULL);
2949 
2950 end:
2951 	if (ev1)
2952 		event_free(ev1);
2953 }
2954 
2955 struct foreach_helper {
2956 	int count;
2957 	const struct event *ev;
2958 };
2959 
2960 static int
2961 foreach_count_cb(const struct event_base *base, const struct event *ev, void *arg)
2962 {
2963 	struct foreach_helper *h = event_get_callback_arg(ev);
2964 	struct timeval *tv = arg;
2965 	if (event_get_callback(ev) != timeout_cb)
2966 		return 0;
2967 	tt_ptr_op(event_get_base(ev), ==, base);
2968 	tt_int_op(tv->tv_sec, ==, 10);
2969 	h->ev = ev;
2970 	h->count++;
2971 	return 0;
2972 end:
2973 	return -1;
2974 }
2975 
2976 static int
2977 foreach_find_cb(const struct event_base *base, const struct event *ev, void *arg)
2978 {
2979 	const struct event **ev_out = arg;
2980 	struct foreach_helper *h = event_get_callback_arg(ev);
2981 	if (event_get_callback(ev) != timeout_cb)
2982 		return 0;
2983 	if (h->count == 99) {
2984 		*ev_out = ev;
2985 		return 101;
2986 	}
2987 	return 0;
2988 }
2989 
2990 static void
2991 test_event_foreach(void *arg)
2992 {
2993 	struct basic_test_data *data = arg;
2994 	struct event_base *base = data->base;
2995 	struct event *ev[5];
2996 	struct foreach_helper visited[5];
2997 	int i;
2998 	struct timeval ten_sec = {10,0};
2999 	const struct event *ev_found = NULL;
3000 
3001 	for (i = 0; i < 5; ++i) {
3002 		visited[i].count = 0;
3003 		visited[i].ev = NULL;
3004 		ev[i] = event_new(base, -1, 0, timeout_cb, &visited[i]);
3005 	}
3006 
3007 	tt_int_op(-1, ==, event_base_foreach_event(NULL, foreach_count_cb, NULL));
3008 	tt_int_op(-1, ==, event_base_foreach_event(base, NULL, NULL));
3009 
3010 	event_add(ev[0], &ten_sec);
3011 	event_add(ev[1], &ten_sec);
3012 	event_active(ev[1], EV_TIMEOUT, 1);
3013 	event_active(ev[2], EV_TIMEOUT, 1);
3014 	event_add(ev[3], &ten_sec);
3015 	/* Don't touch ev[4]. */
3016 
3017 	tt_int_op(0, ==, event_base_foreach_event(base, foreach_count_cb,
3018 		&ten_sec));
3019 	tt_int_op(1, ==, visited[0].count);
3020 	tt_int_op(1, ==, visited[1].count);
3021 	tt_int_op(1, ==, visited[2].count);
3022 	tt_int_op(1, ==, visited[3].count);
3023 	tt_ptr_op(ev[0], ==, visited[0].ev);
3024 	tt_ptr_op(ev[1], ==, visited[1].ev);
3025 	tt_ptr_op(ev[2], ==, visited[2].ev);
3026 	tt_ptr_op(ev[3], ==, visited[3].ev);
3027 
3028 	visited[2].count = 99;
3029 	tt_int_op(101, ==, event_base_foreach_event(base, foreach_find_cb,
3030 		&ev_found));
3031 	tt_ptr_op(ev_found, ==, ev[2]);
3032 
3033 end:
3034 	for (i=0; i<5; ++i) {
3035 		event_free(ev[i]);
3036 	}
3037 }
3038 
3039 static struct event_base *cached_time_base = NULL;
3040 static int cached_time_reset = 0;
3041 static int cached_time_sleep = 0;
3042 static void
3043 cache_time_cb(evutil_socket_t fd, short what, void *arg)
3044 {
3045 	struct timeval *tv = arg;
3046 	tt_int_op(0, ==, event_base_gettimeofday_cached(cached_time_base, tv));
3047 	if (cached_time_sleep) {
3048 		struct timeval delay = { 0, 30*1000 };
3049 		evutil_usleep_(&delay);
3050 	}
3051 	if (cached_time_reset) {
3052 		event_base_update_cache_time(cached_time_base);
3053 	}
3054 end:
3055 	;
3056 }
3057 
3058 static void
3059 test_gettimeofday_cached(void *arg)
3060 {
3061 	struct basic_test_data *data = arg;
3062 	struct event_config *cfg = NULL;
3063 	struct event_base *base = NULL;
3064 	struct timeval tv1, tv2, tv3, now;
3065 	struct event *ev1=NULL, *ev2=NULL, *ev3=NULL;
3066 	int cached_time_disable = strstr(data->setup_data, "disable") != NULL;
3067 
3068 	cfg = event_config_new();
3069 	if (cached_time_disable) {
3070 		event_config_set_flag(cfg, EVENT_BASE_FLAG_NO_CACHE_TIME);
3071 	}
3072 	cached_time_base = base = event_base_new_with_config(cfg);
3073 	tt_assert(base);
3074 
3075 	/* Try gettimeofday_cached outside of an event loop. */
3076 	evutil_gettimeofday(&now, NULL);
3077 	tt_int_op(0, ==, event_base_gettimeofday_cached(NULL, &tv1));
3078 	tt_int_op(0, ==, event_base_gettimeofday_cached(base, &tv2));
3079 	tt_int_op(timeval_msec_diff(&tv1, &tv2), <, 10);
3080 	tt_int_op(timeval_msec_diff(&tv1, &now), <, 10);
3081 
3082 	cached_time_reset = strstr(data->setup_data, "reset") != NULL;
3083 	cached_time_sleep = strstr(data->setup_data, "sleep") != NULL;
3084 
3085 	ev1 = event_new(base, -1, 0, cache_time_cb, &tv1);
3086 	ev2 = event_new(base, -1, 0, cache_time_cb, &tv2);
3087 	ev3 = event_new(base, -1, 0, cache_time_cb, &tv3);
3088 
3089 	event_active(ev1, EV_TIMEOUT, 1);
3090 	event_active(ev2, EV_TIMEOUT, 1);
3091 	event_active(ev3, EV_TIMEOUT, 1);
3092 
3093 	event_base_dispatch(base);
3094 
3095 	if (cached_time_reset && cached_time_sleep) {
3096 		tt_int_op(labs(timeval_msec_diff(&tv1,&tv2)), >, 10);
3097 		tt_int_op(labs(timeval_msec_diff(&tv2,&tv3)), >, 10);
3098 	} else if (cached_time_disable && cached_time_sleep) {
3099 		tt_int_op(labs(timeval_msec_diff(&tv1,&tv2)), >, 10);
3100 		tt_int_op(labs(timeval_msec_diff(&tv2,&tv3)), >, 10);
3101 	} else if (! cached_time_disable) {
3102 		tt_assert(evutil_timercmp(&tv1, &tv2, ==));
3103 		tt_assert(evutil_timercmp(&tv2, &tv3, ==));
3104 	}
3105 
3106 end:
3107 	if (ev1)
3108 		event_free(ev1);
3109 	if (ev2)
3110 		event_free(ev2);
3111 	if (ev3)
3112 		event_free(ev3);
3113 	if (base)
3114 		event_base_free(base);
3115 	if (cfg)
3116 		event_config_free(cfg);
3117 }
3118 
3119 static void
3120 tabf_cb(evutil_socket_t fd, short what, void *arg)
3121 {
3122 	int *ptr = arg;
3123 	*ptr = what;
3124 	*ptr += 0x10000;
3125 }
3126 
3127 static void
3128 test_active_by_fd(void *arg)
3129 {
3130 	struct basic_test_data *data = arg;
3131 	struct event_base *base = data->base;
3132 	struct event *ev1 = NULL, *ev2 = NULL, *ev3 = NULL, *ev4 = NULL;
3133 	int e1,e2,e3,e4;
3134 #ifndef _WIN32
3135 	struct event *evsig = NULL;
3136 	int es;
3137 #endif
3138 	struct timeval tenmin = { 600, 0 };
3139 
3140 	/* Ensure no crash on nonexistent FD. */
3141 	event_base_active_by_fd(base, 1000, EV_READ);
3142 
3143 	/* Ensure no crash on bogus FD. */
3144 	event_base_active_by_fd(base, -1, EV_READ);
3145 
3146 	/* Ensure no crash on nonexistent/bogus signal. */
3147 	event_base_active_by_signal(base, 1000);
3148 	event_base_active_by_signal(base, -1);
3149 
3150 	event_base_assert_ok_(base);
3151 
3152 	e1 = e2 = e3 = e4 = 0;
3153 	ev1 = event_new(base, data->pair[0], EV_READ, tabf_cb, &e1);
3154 	ev2 = event_new(base, data->pair[0], EV_WRITE, tabf_cb, &e2);
3155 	ev3 = event_new(base, data->pair[1], EV_READ, tabf_cb, &e3);
3156 	ev4 = event_new(base, data->pair[1], EV_READ, tabf_cb, &e4);
3157 	tt_assert(ev1);
3158 	tt_assert(ev2);
3159 	tt_assert(ev3);
3160 	tt_assert(ev4);
3161 #ifndef _WIN32
3162 	evsig = event_new(base, SIGHUP, EV_SIGNAL, tabf_cb, &es);
3163 	tt_assert(evsig);
3164 	event_add(evsig, &tenmin);
3165 #endif
3166 
3167 	event_add(ev1, &tenmin);
3168 	event_add(ev2, NULL);
3169 	event_add(ev3, NULL);
3170 	event_add(ev4, &tenmin);
3171 
3172 
3173 	event_base_assert_ok_(base);
3174 
3175 	/* Trigger 2, 3, 4 */
3176 	event_base_active_by_fd(base, data->pair[0], EV_WRITE);
3177 	event_base_active_by_fd(base, data->pair[1], EV_READ);
3178 #ifndef _WIN32
3179 	event_base_active_by_signal(base, SIGHUP);
3180 #endif
3181 
3182 	event_base_assert_ok_(base);
3183 
3184 	event_base_loop(base, EVLOOP_ONCE);
3185 
3186 	tt_int_op(e1, ==, 0);
3187 	tt_int_op(e2, ==, EV_WRITE | 0x10000);
3188 	tt_int_op(e3, ==, EV_READ | 0x10000);
3189 	/* Mask out EV_WRITE here, since it could be genuinely writeable. */
3190 	tt_int_op((e4 & ~EV_WRITE), ==, EV_READ | 0x10000);
3191 #ifndef _WIN32
3192 	tt_int_op(es, ==, EV_SIGNAL | 0x10000);
3193 #endif
3194 
3195 end:
3196 	if (ev1)
3197 		event_free(ev1);
3198 	if (ev2)
3199 		event_free(ev2);
3200 	if (ev3)
3201 		event_free(ev3);
3202 	if (ev4)
3203 		event_free(ev4);
3204 #ifndef _WIN32
3205 	if (evsig)
3206 		event_free(evsig);
3207 #endif
3208 }
3209 
3210 struct testcase_t main_testcases[] = {
3211 	/* Some converted-over tests */
3212 	{ "methods", test_methods, TT_FORK, NULL, NULL },
3213 	{ "version", test_version, 0, NULL, NULL },
3214 	BASIC(base_features, TT_FORK|TT_NO_LOGS),
3215 	{ "base_environ", test_base_environ, TT_FORK, NULL, NULL },
3216 
3217 	BASIC(event_base_new, TT_FORK|TT_NEED_SOCKETPAIR),
3218 	BASIC(free_active_base, TT_FORK|TT_NEED_SOCKETPAIR),
3219 
3220 	BASIC(manipulate_active_events, TT_FORK|TT_NEED_BASE),
3221 	BASIC(event_new_selfarg, TT_FORK|TT_NEED_BASE),
3222 	BASIC(event_assign_selfarg, TT_FORK|TT_NEED_BASE),
3223 	BASIC(event_base_get_num_events, TT_FORK|TT_NEED_BASE),
3224 	BASIC(event_base_get_max_events, TT_FORK|TT_NEED_BASE),
3225 
3226 	BASIC(bad_assign, TT_FORK|TT_NEED_BASE|TT_NO_LOGS),
3227 	BASIC(bad_reentrant, TT_FORK|TT_NEED_BASE|TT_NO_LOGS),
3228 	BASIC(active_later, TT_FORK|TT_NEED_BASE|TT_NEED_SOCKETPAIR),
3229 	BASIC(event_remove_timeout, TT_FORK|TT_NEED_BASE|TT_NEED_SOCKETPAIR),
3230 
3231 	/* These are still using the old API */
3232 	LEGACY(persistent_timeout, TT_FORK|TT_NEED_BASE),
3233 	{ "persistent_timeout_jump", test_persistent_timeout_jump, TT_FORK|TT_NEED_BASE, &basic_setup, NULL },
3234 	{ "persistent_active_timeout", test_persistent_active_timeout,
3235 	  TT_FORK|TT_NEED_BASE, &basic_setup, NULL },
3236 	LEGACY(priorities, TT_FORK|TT_NEED_BASE),
3237 	BASIC(priority_active_inversion, TT_FORK|TT_NEED_BASE),
3238 	{ "common_timeout", test_common_timeout, TT_FORK|TT_NEED_BASE,
3239 	  &basic_setup, NULL },
3240 
3241 	/* These legacy tests may not all need all of these flags. */
3242 	LEGACY(simpleread, TT_ISOLATED),
3243 	LEGACY(simpleread_multiple, TT_ISOLATED),
3244 	LEGACY(simplewrite, TT_ISOLATED),
3245 	{ "simpleclose", test_simpleclose, TT_FORK, &basic_setup,
3246 	  NULL },
3247 	LEGACY(multiple, TT_ISOLATED),
3248 	LEGACY(persistent, TT_ISOLATED),
3249 	LEGACY(combined, TT_ISOLATED),
3250 	LEGACY(simpletimeout, TT_ISOLATED),
3251 	LEGACY(loopbreak, TT_ISOLATED),
3252 	LEGACY(loopexit, TT_ISOLATED),
3253 	LEGACY(loopexit_multiple, TT_ISOLATED),
3254 	LEGACY(nonpersist_readd, TT_ISOLATED),
3255 	LEGACY(multiple_events_for_same_fd, TT_ISOLATED),
3256 	LEGACY(want_only_once, TT_ISOLATED),
3257 	{ "event_once", test_event_once, TT_ISOLATED, &basic_setup, NULL },
3258 	{ "event_once_never", test_event_once_never, TT_ISOLATED, &basic_setup, NULL },
3259 	{ "event_pending", test_event_pending, TT_ISOLATED, &basic_setup,
3260 	  NULL },
3261 #ifndef _WIN32
3262 	{ "dup_fd", test_dup_fd, TT_ISOLATED, &basic_setup, NULL },
3263 #endif
3264 	{ "mm_functions", test_mm_functions, TT_FORK, NULL, NULL },
3265 	{ "many_events", test_many_events, TT_ISOLATED, &basic_setup, NULL },
3266 	{ "many_events_slow_add", test_many_events, TT_ISOLATED, &basic_setup, (void*)1 },
3267 
3268 	{ "struct_event_size", test_struct_event_size, 0, NULL, NULL },
3269 	BASIC(get_assignment, TT_FORK|TT_NEED_BASE|TT_NEED_SOCKETPAIR),
3270 
3271 	BASIC(event_foreach, TT_FORK|TT_NEED_BASE),
3272 	{ "gettimeofday_cached", test_gettimeofday_cached, TT_FORK, &basic_setup, (void*)"" },
3273 	{ "gettimeofday_cached_sleep", test_gettimeofday_cached, TT_FORK, &basic_setup, (void*)"sleep" },
3274 	{ "gettimeofday_cached_reset", test_gettimeofday_cached, TT_FORK, &basic_setup, (void*)"sleep reset" },
3275 	{ "gettimeofday_cached_disabled", test_gettimeofday_cached, TT_FORK, &basic_setup, (void*)"sleep disable" },
3276 	{ "gettimeofday_cached_disabled_nosleep", test_gettimeofday_cached, TT_FORK, &basic_setup, (void*)"disable" },
3277 
3278 	BASIC(active_by_fd, TT_FORK|TT_NEED_BASE|TT_NEED_SOCKETPAIR),
3279 
3280 #ifndef _WIN32
3281 	LEGACY(fork, TT_ISOLATED),
3282 #endif
3283 	END_OF_TESTCASES
3284 };
3285 
3286 struct testcase_t evtag_testcases[] = {
3287 	{ "int", evtag_int_test, TT_FORK, NULL, NULL },
3288 	{ "fuzz", evtag_fuzz, TT_FORK, NULL, NULL },
3289 	{ "encoding", evtag_tag_encoding, TT_FORK, NULL, NULL },
3290 	{ "peek", evtag_test_peek, 0, NULL, NULL },
3291 
3292 	END_OF_TESTCASES
3293 };
3294 
3295 struct testcase_t signal_testcases[] = {
3296 #ifndef _WIN32
3297 	LEGACY(simplesignal, TT_ISOLATED),
3298 	LEGACY(multiplesignal, TT_ISOLATED),
3299 	LEGACY(immediatesignal, TT_ISOLATED),
3300 	LEGACY(signal_dealloc, TT_ISOLATED),
3301 	LEGACY(signal_pipeloss, TT_ISOLATED),
3302 	LEGACY(signal_switchbase, TT_ISOLATED|TT_NO_LOGS),
3303 	LEGACY(signal_restore, TT_ISOLATED),
3304 	LEGACY(signal_assert, TT_ISOLATED),
3305 	LEGACY(signal_while_processing, TT_ISOLATED),
3306 #endif
3307 	END_OF_TESTCASES
3308 };
3309 
3310