xref: /freebsd/contrib/ntp/sntp/libevent/test/regress.c (revision c697fb7f)
1 /*
2  * Copyright (c) 2003-2007 Niels Provos <provos@citi.umich.edu>
3  * Copyright (c) 2007-2012 Niels Provos and Nick Mathewson
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. The name of the author may not be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 #include "util-internal.h"
28 
29 #ifdef _WIN32
30 #include <winsock2.h>
31 #include <windows.h>
32 #endif
33 
34 #include "event2/event-config.h"
35 
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #ifdef EVENT__HAVE_SYS_TIME_H
39 #include <sys/time.h>
40 #endif
41 #include <sys/queue.h>
42 #ifndef _WIN32
43 #include <sys/socket.h>
44 #include <sys/wait.h>
45 #include <signal.h>
46 #include <unistd.h>
47 #include <netdb.h>
48 #endif
49 #include <fcntl.h>
50 #include <signal.h>
51 #include <stdlib.h>
52 #include <stdio.h>
53 #include <string.h>
54 #include <errno.h>
55 #include <assert.h>
56 #include <ctype.h>
57 
58 #include "event2/event.h"
59 #include "event2/event_struct.h"
60 #include "event2/event_compat.h"
61 #include "event2/tag.h"
62 #include "event2/buffer.h"
63 #include "event2/buffer_compat.h"
64 #include "event2/util.h"
65 #include "event-internal.h"
66 #include "evthread-internal.h"
67 #include "log-internal.h"
68 #include "time-internal.h"
69 
70 #include "regress.h"
71 
72 #ifndef _WIN32
73 #include "regress.gen.h"
74 #endif
75 
76 evutil_socket_t pair[2];
77 int test_ok;
78 int called;
79 struct event_base *global_base;
80 
81 static char wbuf[4096];
82 static char rbuf[4096];
83 static int woff;
84 static int roff;
85 static int usepersist;
86 static struct timeval tset;
87 static struct timeval tcalled;
88 
89 
90 #define TEST1	"this is a test"
91 
92 #ifndef SHUT_WR
93 #define SHUT_WR 1
94 #endif
95 
96 #ifdef _WIN32
97 #define write(fd,buf,len) send((fd),(buf),(int)(len),0)
98 #define read(fd,buf,len) recv((fd),(buf),(int)(len),0)
99 #endif
100 
101 struct basic_cb_args
102 {
103 	struct event_base *eb;
104 	struct event *ev;
105 	unsigned int callcount;
106 };
107 
108 static void
109 simple_read_cb(evutil_socket_t fd, short event, void *arg)
110 {
111 	char buf[256];
112 	int len;
113 
114 	len = read(fd, buf, sizeof(buf));
115 
116 	if (len) {
117 		if (!called) {
118 			if (event_add(arg, NULL) == -1)
119 				exit(1);
120 		}
121 	} else if (called == 1)
122 		test_ok = 1;
123 
124 	called++;
125 }
126 
127 static void
128 basic_read_cb(evutil_socket_t fd, short event, void *data)
129 {
130 	char buf[256];
131 	int len;
132 	struct basic_cb_args *arg = data;
133 
134 	len = read(fd, buf, sizeof(buf));
135 
136 	if (len < 0) {
137 		tt_fail_perror("read (callback)");
138 	} else {
139 		switch (arg->callcount++) {
140 		case 0:	 /* first call: expect to read data; cycle */
141 			if (len > 0)
142 				return;
143 
144 			tt_fail_msg("EOF before data read");
145 			break;
146 
147 		case 1:	 /* second call: expect EOF; stop */
148 			if (len > 0)
149 				tt_fail_msg("not all data read on first cycle");
150 			break;
151 
152 		default:  /* third call: should not happen */
153 			tt_fail_msg("too many cycles");
154 		}
155 	}
156 
157 	event_del(arg->ev);
158 	event_base_loopexit(arg->eb, NULL);
159 }
160 
161 static void
162 dummy_read_cb(evutil_socket_t fd, short event, void *arg)
163 {
164 }
165 
166 static void
167 simple_write_cb(evutil_socket_t fd, short event, void *arg)
168 {
169 	int len;
170 
171 	len = write(fd, TEST1, strlen(TEST1) + 1);
172 	if (len == -1)
173 		test_ok = 0;
174 	else
175 		test_ok = 1;
176 }
177 
178 static void
179 multiple_write_cb(evutil_socket_t fd, short event, void *arg)
180 {
181 	struct event *ev = arg;
182 	int len;
183 
184 	len = 128;
185 	if (woff + len >= (int)sizeof(wbuf))
186 		len = sizeof(wbuf) - woff;
187 
188 	len = write(fd, wbuf + woff, len);
189 	if (len == -1) {
190 		fprintf(stderr, "%s: write\n", __func__);
191 		if (usepersist)
192 			event_del(ev);
193 		return;
194 	}
195 
196 	woff += len;
197 
198 	if (woff >= (int)sizeof(wbuf)) {
199 		shutdown(fd, SHUT_WR);
200 		if (usepersist)
201 			event_del(ev);
202 		return;
203 	}
204 
205 	if (!usepersist) {
206 		if (event_add(ev, NULL) == -1)
207 			exit(1);
208 	}
209 }
210 
211 static void
212 multiple_read_cb(evutil_socket_t fd, short event, void *arg)
213 {
214 	struct event *ev = arg;
215 	int len;
216 
217 	len = read(fd, rbuf + roff, sizeof(rbuf) - roff);
218 	if (len == -1)
219 		fprintf(stderr, "%s: read\n", __func__);
220 	if (len <= 0) {
221 		if (usepersist)
222 			event_del(ev);
223 		return;
224 	}
225 
226 	roff += len;
227 	if (!usepersist) {
228 		if (event_add(ev, NULL) == -1)
229 			exit(1);
230 	}
231 }
232 
233 static void
234 timeout_cb(evutil_socket_t fd, short event, void *arg)
235 {
236 	evutil_gettimeofday(&tcalled, NULL);
237 }
238 
239 struct both {
240 	struct event ev;
241 	int nread;
242 };
243 
244 static void
245 combined_read_cb(evutil_socket_t fd, short event, void *arg)
246 {
247 	struct both *both = arg;
248 	char buf[128];
249 	int len;
250 
251 	len = read(fd, buf, sizeof(buf));
252 	if (len == -1)
253 		fprintf(stderr, "%s: read\n", __func__);
254 	if (len <= 0)
255 		return;
256 
257 	both->nread += len;
258 	if (event_add(&both->ev, NULL) == -1)
259 		exit(1);
260 }
261 
262 static void
263 combined_write_cb(evutil_socket_t fd, short event, void *arg)
264 {
265 	struct both *both = arg;
266 	char buf[128];
267 	int len;
268 
269 	len = sizeof(buf);
270 	if (len > both->nread)
271 		len = both->nread;
272 
273 	memset(buf, 'q', len);
274 
275 	len = write(fd, buf, len);
276 	if (len == -1)
277 		fprintf(stderr, "%s: write\n", __func__);
278 	if (len <= 0) {
279 		shutdown(fd, SHUT_WR);
280 		return;
281 	}
282 
283 	both->nread -= len;
284 	if (event_add(&both->ev, NULL) == -1)
285 		exit(1);
286 }
287 
288 /* These macros used to replicate the work of the legacy test wrapper code */
289 #define setup_test(x) do {						\
290 	if (!in_legacy_test_wrapper) {					\
291 		TT_FAIL(("Legacy test %s not wrapped properly", x));	\
292 		return;							\
293 	}								\
294 	} while (0)
295 #define cleanup_test() setup_test("cleanup")
296 
297 static void
298 test_simpleread(void)
299 {
300 	struct event ev;
301 
302 	/* Very simple read test */
303 	setup_test("Simple read: ");
304 
305 	if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
306 		tt_fail_perror("write");
307 	}
308 
309 	shutdown(pair[0], SHUT_WR);
310 
311 	event_set(&ev, pair[1], EV_READ, simple_read_cb, &ev);
312 	if (event_add(&ev, NULL) == -1)
313 		exit(1);
314 	event_dispatch();
315 
316 	cleanup_test();
317 }
318 
319 static void
320 test_simplewrite(void)
321 {
322 	struct event ev;
323 
324 	/* Very simple write test */
325 	setup_test("Simple write: ");
326 
327 	event_set(&ev, pair[0], EV_WRITE, simple_write_cb, &ev);
328 	if (event_add(&ev, NULL) == -1)
329 		exit(1);
330 	event_dispatch();
331 
332 	cleanup_test();
333 }
334 
335 static void
336 simpleread_multiple_cb(evutil_socket_t fd, short event, void *arg)
337 {
338 	if (++called == 2)
339 		test_ok = 1;
340 }
341 
342 static void
343 test_simpleread_multiple(void)
344 {
345 	struct event one, two;
346 
347 	/* Very simple read test */
348 	setup_test("Simple read to multiple evens: ");
349 
350 	if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
351 		tt_fail_perror("write");
352 	}
353 
354 	shutdown(pair[0], SHUT_WR);
355 
356 	event_set(&one, pair[1], EV_READ, simpleread_multiple_cb, NULL);
357 	if (event_add(&one, NULL) == -1)
358 		exit(1);
359 	event_set(&two, pair[1], EV_READ, simpleread_multiple_cb, NULL);
360 	if (event_add(&two, NULL) == -1)
361 		exit(1);
362 	event_dispatch();
363 
364 	cleanup_test();
365 }
366 
367 static int have_closed = 0;
368 static int premature_event = 0;
369 static void
370 simpleclose_close_fd_cb(evutil_socket_t s, short what, void *ptr)
371 {
372 	evutil_socket_t **fds = ptr;
373 	TT_BLATHER(("Closing"));
374 	evutil_closesocket(*fds[0]);
375 	evutil_closesocket(*fds[1]);
376 	*fds[0] = -1;
377 	*fds[1] = -1;
378 	have_closed = 1;
379 }
380 
381 static void
382 record_event_cb(evutil_socket_t s, short what, void *ptr)
383 {
384 	short *whatp = ptr;
385 	if (!have_closed)
386 		premature_event = 1;
387 	*whatp = what;
388 	TT_BLATHER(("Recorded %d on socket %d", (int)what, (int)s));
389 }
390 
391 static void
392 test_simpleclose(void *ptr)
393 {
394 	/* Test that a close of FD is detected as a read and as a write. */
395 	struct event_base *base = event_base_new();
396 	evutil_socket_t pair1[2]={-1,-1}, pair2[2] = {-1, -1};
397 	evutil_socket_t *to_close[2];
398 	struct event *rev=NULL, *wev=NULL, *closeev=NULL;
399 	struct timeval tv;
400 	short got_read_on_close = 0, got_write_on_close = 0;
401 	char buf[1024];
402 	memset(buf, 99, sizeof(buf));
403 #ifdef _WIN32
404 #define LOCAL_SOCKETPAIR_AF AF_INET
405 #else
406 #define LOCAL_SOCKETPAIR_AF AF_UNIX
407 #endif
408 	if (evutil_socketpair(LOCAL_SOCKETPAIR_AF, SOCK_STREAM, 0, pair1)<0)
409 		TT_DIE(("socketpair: %s", strerror(errno)));
410 	if (evutil_socketpair(LOCAL_SOCKETPAIR_AF, SOCK_STREAM, 0, pair2)<0)
411 		TT_DIE(("socketpair: %s", strerror(errno)));
412 	if (evutil_make_socket_nonblocking(pair1[1]) < 0)
413 		TT_DIE(("make_socket_nonblocking"));
414 	if (evutil_make_socket_nonblocking(pair2[1]) < 0)
415 		TT_DIE(("make_socket_nonblocking"));
416 
417 	/** Stuff pair2[1] full of data, until write fails */
418 	while (1) {
419 		int r = write(pair2[1], buf, sizeof(buf));
420 		if (r<0) {
421 			int err = evutil_socket_geterror(pair2[1]);
422 			if (! EVUTIL_ERR_RW_RETRIABLE(err))
423 				TT_DIE(("write failed strangely: %s",
424 					evutil_socket_error_to_string(err)));
425 			break;
426 		}
427 	}
428 	to_close[0] = &pair1[0];
429 	to_close[1] = &pair2[0];
430 
431 	closeev = event_new(base, -1, EV_TIMEOUT, simpleclose_close_fd_cb,
432 	    to_close);
433 	rev = event_new(base, pair1[1], EV_READ, record_event_cb,
434 	    &got_read_on_close);
435 	TT_BLATHER(("Waiting for read on %d", (int)pair1[1]));
436 	wev = event_new(base, pair2[1], EV_WRITE, record_event_cb,
437 	    &got_write_on_close);
438 	TT_BLATHER(("Waiting for write on %d", (int)pair2[1]));
439 	tv.tv_sec = 0;
440 	tv.tv_usec = 100*1000; /* Close pair1[0] after a little while, and make
441 			       * sure we get a read event. */
442 	event_add(closeev, &tv);
443 	event_add(rev, NULL);
444 	event_add(wev, NULL);
445 	/* Don't let the test go on too long. */
446 	tv.tv_sec = 0;
447 	tv.tv_usec = 200*1000;
448 	event_base_loopexit(base, &tv);
449 	event_base_loop(base, 0);
450 
451 	tt_int_op(got_read_on_close, ==, EV_READ);
452 	tt_int_op(got_write_on_close, ==, EV_WRITE);
453 	tt_int_op(premature_event, ==, 0);
454 
455 end:
456 	if (pair1[0] >= 0)
457 		evutil_closesocket(pair1[0]);
458 	if (pair1[1] >= 0)
459 		evutil_closesocket(pair1[1]);
460 	if (pair2[0] >= 0)
461 		evutil_closesocket(pair2[0]);
462 	if (pair2[1] >= 0)
463 		evutil_closesocket(pair2[1]);
464 	if (rev)
465 		event_free(rev);
466 	if (wev)
467 		event_free(wev);
468 	if (closeev)
469 		event_free(closeev);
470 	if (base)
471 		event_base_free(base);
472 }
473 
474 
475 static void
476 test_multiple(void)
477 {
478 	struct event ev, ev2;
479 	int i;
480 
481 	/* Multiple read and write test */
482 	setup_test("Multiple read/write: ");
483 	memset(rbuf, 0, sizeof(rbuf));
484 	for (i = 0; i < (int)sizeof(wbuf); i++)
485 		wbuf[i] = i;
486 
487 	roff = woff = 0;
488 	usepersist = 0;
489 
490 	event_set(&ev, pair[0], EV_WRITE, multiple_write_cb, &ev);
491 	if (event_add(&ev, NULL) == -1)
492 		exit(1);
493 	event_set(&ev2, pair[1], EV_READ, multiple_read_cb, &ev2);
494 	if (event_add(&ev2, NULL) == -1)
495 		exit(1);
496 	event_dispatch();
497 
498 	if (roff == woff)
499 		test_ok = memcmp(rbuf, wbuf, sizeof(wbuf)) == 0;
500 
501 	cleanup_test();
502 }
503 
504 static void
505 test_persistent(void)
506 {
507 	struct event ev, ev2;
508 	int i;
509 
510 	/* Multiple read and write test with persist */
511 	setup_test("Persist read/write: ");
512 	memset(rbuf, 0, sizeof(rbuf));
513 	for (i = 0; i < (int)sizeof(wbuf); i++)
514 		wbuf[i] = i;
515 
516 	roff = woff = 0;
517 	usepersist = 1;
518 
519 	event_set(&ev, pair[0], EV_WRITE|EV_PERSIST, multiple_write_cb, &ev);
520 	if (event_add(&ev, NULL) == -1)
521 		exit(1);
522 	event_set(&ev2, pair[1], EV_READ|EV_PERSIST, multiple_read_cb, &ev2);
523 	if (event_add(&ev2, NULL) == -1)
524 		exit(1);
525 	event_dispatch();
526 
527 	if (roff == woff)
528 		test_ok = memcmp(rbuf, wbuf, sizeof(wbuf)) == 0;
529 
530 	cleanup_test();
531 }
532 
533 static void
534 test_combined(void)
535 {
536 	struct both r1, r2, w1, w2;
537 
538 	setup_test("Combined read/write: ");
539 	memset(&r1, 0, sizeof(r1));
540 	memset(&r2, 0, sizeof(r2));
541 	memset(&w1, 0, sizeof(w1));
542 	memset(&w2, 0, sizeof(w2));
543 
544 	w1.nread = 4096;
545 	w2.nread = 8192;
546 
547 	event_set(&r1.ev, pair[0], EV_READ, combined_read_cb, &r1);
548 	event_set(&w1.ev, pair[0], EV_WRITE, combined_write_cb, &w1);
549 	event_set(&r2.ev, pair[1], EV_READ, combined_read_cb, &r2);
550 	event_set(&w2.ev, pair[1], EV_WRITE, combined_write_cb, &w2);
551 	tt_assert(event_add(&r1.ev, NULL) != -1);
552 	tt_assert(!event_add(&w1.ev, NULL));
553 	tt_assert(!event_add(&r2.ev, NULL));
554 	tt_assert(!event_add(&w2.ev, NULL));
555 	event_dispatch();
556 
557 	if (r1.nread == 8192 && r2.nread == 4096)
558 		test_ok = 1;
559 
560 end:
561 	cleanup_test();
562 }
563 
564 static void
565 test_simpletimeout(void)
566 {
567 	struct timeval tv;
568 	struct event ev;
569 
570 	setup_test("Simple timeout: ");
571 
572 	tv.tv_usec = 200*1000;
573 	tv.tv_sec = 0;
574 	evutil_timerclear(&tcalled);
575 	evtimer_set(&ev, timeout_cb, NULL);
576 	evtimer_add(&ev, &tv);
577 
578 	evutil_gettimeofday(&tset, NULL);
579 	event_dispatch();
580 	test_timeval_diff_eq(&tset, &tcalled, 200);
581 
582 	test_ok = 1;
583 end:
584 	cleanup_test();
585 }
586 
587 static void
588 periodic_timeout_cb(evutil_socket_t fd, short event, void *arg)
589 {
590 	int *count = arg;
591 
592 	(*count)++;
593 	if (*count == 6) {
594 		/* call loopexit only once - on slow machines(?), it is
595 		 * apparently possible for this to get called twice. */
596 		test_ok = 1;
597 		event_base_loopexit(global_base, NULL);
598 	}
599 }
600 
601 static void
602 test_persistent_timeout(void)
603 {
604 	struct timeval tv;
605 	struct event ev;
606 	int count = 0;
607 
608 	evutil_timerclear(&tv);
609 	tv.tv_usec = 10000;
610 
611 	event_assign(&ev, global_base, -1, EV_TIMEOUT|EV_PERSIST,
612 	    periodic_timeout_cb, &count);
613 	event_add(&ev, &tv);
614 
615 	event_dispatch();
616 
617 	event_del(&ev);
618 }
619 
620 static void
621 test_persistent_timeout_jump(void *ptr)
622 {
623 	struct basic_test_data *data = ptr;
624 	struct event ev;
625 	int count = 0;
626 	struct timeval msec100 = { 0, 100 * 1000 };
627 	struct timeval msec50 = { 0, 50 * 1000 };
628 	struct timeval msec300 = { 0, 300 * 1000 };
629 
630 	event_assign(&ev, data->base, -1, EV_PERSIST, periodic_timeout_cb, &count);
631 	event_add(&ev, &msec100);
632 	/* Wait for a bit */
633 	evutil_usleep_(&msec300);
634 	event_base_loopexit(data->base, &msec50);
635 	event_base_dispatch(data->base);
636 	tt_int_op(count, ==, 1);
637 
638 end:
639 	event_del(&ev);
640 }
641 
642 struct persist_active_timeout_called {
643 	int n;
644 	short events[16];
645 	struct timeval tvs[16];
646 };
647 
648 static void
649 activate_cb(evutil_socket_t fd, short event, void *arg)
650 {
651 	struct event *ev = arg;
652 	event_active(ev, EV_READ, 1);
653 }
654 
655 static void
656 persist_active_timeout_cb(evutil_socket_t fd, short event, void *arg)
657 {
658 	struct persist_active_timeout_called *c = arg;
659 	if (c->n < 15) {
660 		c->events[c->n] = event;
661 		evutil_gettimeofday(&c->tvs[c->n], NULL);
662 		++c->n;
663 	}
664 }
665 
666 static void
667 test_persistent_active_timeout(void *ptr)
668 {
669 	struct timeval tv, tv2, tv_exit, start;
670 	struct event ev;
671 	struct persist_active_timeout_called res;
672 
673 	struct basic_test_data *data = ptr;
674 	struct event_base *base = data->base;
675 
676 	memset(&res, 0, sizeof(res));
677 
678 	tv.tv_sec = 0;
679 	tv.tv_usec = 200 * 1000;
680 	event_assign(&ev, base, -1, EV_TIMEOUT|EV_PERSIST,
681 	    persist_active_timeout_cb, &res);
682 	event_add(&ev, &tv);
683 
684 	tv2.tv_sec = 0;
685 	tv2.tv_usec = 100 * 1000;
686 	event_base_once(base, -1, EV_TIMEOUT, activate_cb, &ev, &tv2);
687 
688 	tv_exit.tv_sec = 0;
689 	tv_exit.tv_usec = 600 * 1000;
690 	event_base_loopexit(base, &tv_exit);
691 
692 	event_base_assert_ok_(base);
693 	evutil_gettimeofday(&start, NULL);
694 
695 	event_base_dispatch(base);
696 	event_base_assert_ok_(base);
697 
698 	tt_int_op(res.n, ==, 3);
699 	tt_int_op(res.events[0], ==, EV_READ);
700 	tt_int_op(res.events[1], ==, EV_TIMEOUT);
701 	tt_int_op(res.events[2], ==, EV_TIMEOUT);
702 	test_timeval_diff_eq(&start, &res.tvs[0], 100);
703 	test_timeval_diff_eq(&start, &res.tvs[1], 300);
704 	test_timeval_diff_eq(&start, &res.tvs[2], 500);
705 end:
706 	event_del(&ev);
707 }
708 
709 struct common_timeout_info {
710 	struct event ev;
711 	struct timeval called_at;
712 	int which;
713 	int count;
714 };
715 
716 static void
717 common_timeout_cb(evutil_socket_t fd, short event, void *arg)
718 {
719 	struct common_timeout_info *ti = arg;
720 	++ti->count;
721 	evutil_gettimeofday(&ti->called_at, NULL);
722 	if (ti->count >= 4)
723 		event_del(&ti->ev);
724 }
725 
726 static void
727 test_common_timeout(void *ptr)
728 {
729 	struct basic_test_data *data = ptr;
730 
731 	struct event_base *base = data->base;
732 	int i;
733 	struct common_timeout_info info[100];
734 
735 	struct timeval start;
736 	struct timeval tmp_100_ms = { 0, 100*1000 };
737 	struct timeval tmp_200_ms = { 0, 200*1000 };
738 	struct timeval tmp_5_sec = { 5, 0 };
739 	struct timeval tmp_5M_usec = { 0, 5*1000*1000 };
740 
741 	const struct timeval *ms_100, *ms_200, *sec_5;
742 
743 	ms_100 = event_base_init_common_timeout(base, &tmp_100_ms);
744 	ms_200 = event_base_init_common_timeout(base, &tmp_200_ms);
745 	sec_5 = event_base_init_common_timeout(base, &tmp_5_sec);
746 	tt_assert(ms_100);
747 	tt_assert(ms_200);
748 	tt_assert(sec_5);
749 	tt_ptr_op(event_base_init_common_timeout(base, &tmp_200_ms),
750 	    ==, ms_200);
751 	tt_ptr_op(event_base_init_common_timeout(base, ms_200), ==, ms_200);
752 	tt_ptr_op(event_base_init_common_timeout(base, &tmp_5M_usec), ==, sec_5);
753 	tt_int_op(ms_100->tv_sec, ==, 0);
754 	tt_int_op(ms_200->tv_sec, ==, 0);
755 	tt_int_op(sec_5->tv_sec, ==, 5);
756 	tt_int_op(ms_100->tv_usec, ==, 100000|0x50000000);
757 	tt_int_op(ms_200->tv_usec, ==, 200000|0x50100000);
758 	tt_int_op(sec_5->tv_usec, ==, 0|0x50200000);
759 
760 	memset(info, 0, sizeof(info));
761 
762 	for (i=0; i<100; ++i) {
763 		info[i].which = i;
764 		event_assign(&info[i].ev, base, -1, EV_TIMEOUT|EV_PERSIST,
765 		    common_timeout_cb, &info[i]);
766 		if (i % 2) {
767 			if ((i%20)==1) {
768 				/* Glass-box test: Make sure we survive the
769 				 * transition to non-common timeouts. It's
770 				 * a little tricky. */
771 				event_add(&info[i].ev, ms_200);
772 				event_add(&info[i].ev, &tmp_100_ms);
773 			} else if ((i%20)==3) {
774 				/* Check heap-to-common too. */
775 				event_add(&info[i].ev, &tmp_200_ms);
776 				event_add(&info[i].ev, ms_100);
777 			} else if ((i%20)==5) {
778 				/* Also check common-to-common. */
779 				event_add(&info[i].ev, ms_200);
780 				event_add(&info[i].ev, ms_100);
781 			} else {
782 				event_add(&info[i].ev, ms_100);
783 			}
784 		} else {
785 			event_add(&info[i].ev, ms_200);
786 		}
787 	}
788 
789 	event_base_assert_ok_(base);
790 	evutil_gettimeofday(&start, NULL);
791 	event_base_dispatch(base);
792 
793 	event_base_assert_ok_(base);
794 
795 	for (i=0; i<10; ++i) {
796 		tt_int_op(info[i].count, ==, 4);
797 		if (i % 2) {
798 			test_timeval_diff_eq(&start, &info[i].called_at, 400);
799 		} else {
800 			test_timeval_diff_eq(&start, &info[i].called_at, 800);
801 		}
802 	}
803 
804 	/* Make sure we can free the base with some events in. */
805 	for (i=0; i<100; ++i) {
806 		if (i % 2) {
807 			event_add(&info[i].ev, ms_100);
808 		} else {
809 			event_add(&info[i].ev, ms_200);
810 		}
811 	}
812 
813 end:
814 	event_base_free(data->base); /* need to do this here before info is
815 				      * out-of-scope */
816 	data->base = NULL;
817 }
818 
819 #ifndef _WIN32
820 static void signal_cb(evutil_socket_t fd, short event, void *arg);
821 
822 #define current_base event_global_current_base_
823 extern struct event_base *current_base;
824 
825 static void
826 child_signal_cb(evutil_socket_t fd, short event, void *arg)
827 {
828 	struct timeval tv;
829 	int *pint = arg;
830 
831 	*pint = 1;
832 
833 	tv.tv_usec = 500000;
834 	tv.tv_sec = 0;
835 	event_loopexit(&tv);
836 }
837 
838 static void
839 test_fork(void)
840 {
841 	int status, got_sigchld = 0;
842 	struct event ev, sig_ev;
843 	pid_t pid;
844 
845 	setup_test("After fork: ");
846 
847 	tt_assert(current_base);
848 	evthread_make_base_notifiable(current_base);
849 
850 	if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
851 		tt_fail_perror("write");
852 	}
853 
854 	event_set(&ev, pair[1], EV_READ, simple_read_cb, &ev);
855 	if (event_add(&ev, NULL) == -1)
856 		exit(1);
857 
858 	evsignal_set(&sig_ev, SIGCHLD, child_signal_cb, &got_sigchld);
859 	evsignal_add(&sig_ev, NULL);
860 
861 	event_base_assert_ok_(current_base);
862 	TT_BLATHER(("Before fork"));
863 	if ((pid = regress_fork()) == 0) {
864 		/* in the child */
865 		TT_BLATHER(("In child, before reinit"));
866 		event_base_assert_ok_(current_base);
867 		if (event_reinit(current_base) == -1) {
868 			fprintf(stdout, "FAILED (reinit)\n");
869 			exit(1);
870 		}
871 		TT_BLATHER(("After reinit"));
872 		event_base_assert_ok_(current_base);
873 		TT_BLATHER(("After assert-ok"));
874 
875 		evsignal_del(&sig_ev);
876 
877 		called = 0;
878 
879 		event_dispatch();
880 
881 		event_base_free(current_base);
882 
883 		/* we do not send an EOF; simple_read_cb requires an EOF
884 		 * to set test_ok.  we just verify that the callback was
885 		 * called. */
886 		exit(test_ok != 0 || called != 2 ? -2 : 76);
887 	}
888 
889 	/* wait for the child to read the data */
890 	{
891 		const struct timeval tv = { 0, 100000 };
892 		evutil_usleep_(&tv);
893 	}
894 
895 	if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
896 		tt_fail_perror("write");
897 	}
898 
899 	TT_BLATHER(("Before waitpid"));
900 	if (waitpid(pid, &status, 0) == -1) {
901 		fprintf(stdout, "FAILED (fork)\n");
902 		exit(1);
903 	}
904 	TT_BLATHER(("After waitpid"));
905 
906 	if (WEXITSTATUS(status) != 76) {
907 		fprintf(stdout, "FAILED (exit): %d\n", WEXITSTATUS(status));
908 		exit(1);
909 	}
910 
911 	/* test that the current event loop still works */
912 	if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
913 		fprintf(stderr, "%s: write\n", __func__);
914 	}
915 
916 	shutdown(pair[0], SHUT_WR);
917 
918 	event_dispatch();
919 
920 	if (!got_sigchld) {
921 		fprintf(stdout, "FAILED (sigchld)\n");
922 		exit(1);
923 	}
924 
925 	evsignal_del(&sig_ev);
926 
927 	end:
928 	cleanup_test();
929 }
930 
931 static void
932 signal_cb_sa(int sig)
933 {
934 	test_ok = 2;
935 }
936 
937 static void
938 signal_cb(evutil_socket_t fd, short event, void *arg)
939 {
940 	struct event *ev = arg;
941 
942 	evsignal_del(ev);
943 	test_ok = 1;
944 }
945 
946 static void
947 test_simplesignal_impl(int find_reorder)
948 {
949 	struct event ev;
950 	struct itimerval itv;
951 
952 	evsignal_set(&ev, SIGALRM, signal_cb, &ev);
953 	evsignal_add(&ev, NULL);
954 	/* find bugs in which operations are re-ordered */
955 	if (find_reorder) {
956 		evsignal_del(&ev);
957 		evsignal_add(&ev, NULL);
958 	}
959 
960 	memset(&itv, 0, sizeof(itv));
961 	itv.it_value.tv_sec = 0;
962 	itv.it_value.tv_usec = 100000;
963 	if (setitimer(ITIMER_REAL, &itv, NULL) == -1)
964 		goto skip_simplesignal;
965 
966 	event_dispatch();
967  skip_simplesignal:
968 	if (evsignal_del(&ev) == -1)
969 		test_ok = 0;
970 
971 	cleanup_test();
972 }
973 
974 static void
975 test_simplestsignal(void)
976 {
977 	setup_test("Simplest one signal: ");
978 	test_simplesignal_impl(0);
979 }
980 
981 static void
982 test_simplesignal(void)
983 {
984 	setup_test("Simple signal: ");
985 	test_simplesignal_impl(1);
986 }
987 
988 static void
989 test_multiplesignal(void)
990 {
991 	struct event ev_one, ev_two;
992 	struct itimerval itv;
993 
994 	setup_test("Multiple signal: ");
995 
996 	evsignal_set(&ev_one, SIGALRM, signal_cb, &ev_one);
997 	evsignal_add(&ev_one, NULL);
998 
999 	evsignal_set(&ev_two, SIGALRM, signal_cb, &ev_two);
1000 	evsignal_add(&ev_two, NULL);
1001 
1002 	memset(&itv, 0, sizeof(itv));
1003 	itv.it_value.tv_sec = 0;
1004 	itv.it_value.tv_usec = 100000;
1005 	if (setitimer(ITIMER_REAL, &itv, NULL) == -1)
1006 		goto skip_simplesignal;
1007 
1008 	event_dispatch();
1009 
1010  skip_simplesignal:
1011 	if (evsignal_del(&ev_one) == -1)
1012 		test_ok = 0;
1013 	if (evsignal_del(&ev_two) == -1)
1014 		test_ok = 0;
1015 
1016 	cleanup_test();
1017 }
1018 
1019 static void
1020 test_immediatesignal(void)
1021 {
1022 	struct event ev;
1023 
1024 	test_ok = 0;
1025 	evsignal_set(&ev, SIGUSR1, signal_cb, &ev);
1026 	evsignal_add(&ev, NULL);
1027 	raise(SIGUSR1);
1028 	event_loop(EVLOOP_NONBLOCK);
1029 	evsignal_del(&ev);
1030 	cleanup_test();
1031 }
1032 
1033 static void
1034 test_signal_dealloc(void)
1035 {
1036 	/* make sure that evsignal_event is event_del'ed and pipe closed */
1037 	struct event ev;
1038 	struct event_base *base = event_init();
1039 	evsignal_set(&ev, SIGUSR1, signal_cb, &ev);
1040 	evsignal_add(&ev, NULL);
1041 	evsignal_del(&ev);
1042 	event_base_free(base);
1043 	/* If we got here without asserting, we're fine. */
1044 	test_ok = 1;
1045 	cleanup_test();
1046 }
1047 
1048 static void
1049 test_signal_pipeloss(void)
1050 {
1051 	/* make sure that the base1 pipe is closed correctly. */
1052 	struct event_base *base1, *base2;
1053 	int pipe1;
1054 	test_ok = 0;
1055 	base1 = event_init();
1056 	pipe1 = base1->sig.ev_signal_pair[0];
1057 	base2 = event_init();
1058 	event_base_free(base2);
1059 	event_base_free(base1);
1060 	if (close(pipe1) != -1 || errno!=EBADF) {
1061 		/* fd must be closed, so second close gives -1, EBADF */
1062 		printf("signal pipe not closed. ");
1063 		test_ok = 0;
1064 	} else {
1065 		test_ok = 1;
1066 	}
1067 	cleanup_test();
1068 }
1069 
1070 /*
1071  * make two bases to catch signals, use both of them.  this only works
1072  * for event mechanisms that use our signal pipe trick.	 kqueue handles
1073  * signals internally, and all interested kqueues get all the signals.
1074  */
1075 static void
1076 test_signal_switchbase(void)
1077 {
1078 	struct event ev1, ev2;
1079 	struct event_base *base1, *base2;
1080 	int is_kqueue;
1081 	test_ok = 0;
1082 	base1 = event_init();
1083 	base2 = event_init();
1084 	is_kqueue = !strcmp(event_get_method(),"kqueue");
1085 	evsignal_set(&ev1, SIGUSR1, signal_cb, &ev1);
1086 	evsignal_set(&ev2, SIGUSR1, signal_cb, &ev2);
1087 	if (event_base_set(base1, &ev1) ||
1088 	    event_base_set(base2, &ev2) ||
1089 	    event_add(&ev1, NULL) ||
1090 	    event_add(&ev2, NULL)) {
1091 		fprintf(stderr, "%s: cannot set base, add\n", __func__);
1092 		exit(1);
1093 	}
1094 
1095 	tt_ptr_op(event_get_base(&ev1), ==, base1);
1096 	tt_ptr_op(event_get_base(&ev2), ==, base2);
1097 
1098 	test_ok = 0;
1099 	/* can handle signal before loop is called */
1100 	raise(SIGUSR1);
1101 	event_base_loop(base2, EVLOOP_NONBLOCK);
1102 	if (is_kqueue) {
1103 		if (!test_ok)
1104 			goto end;
1105 		test_ok = 0;
1106 	}
1107 	event_base_loop(base1, EVLOOP_NONBLOCK);
1108 	if (test_ok && !is_kqueue) {
1109 		test_ok = 0;
1110 
1111 		/* set base1 to handle signals */
1112 		event_base_loop(base1, EVLOOP_NONBLOCK);
1113 		raise(SIGUSR1);
1114 		event_base_loop(base1, EVLOOP_NONBLOCK);
1115 		event_base_loop(base2, EVLOOP_NONBLOCK);
1116 	}
1117 end:
1118 	event_base_free(base1);
1119 	event_base_free(base2);
1120 	cleanup_test();
1121 }
1122 
1123 /*
1124  * assert that a signal event removed from the event queue really is
1125  * removed - with no possibility of it's parent handler being fired.
1126  */
1127 static void
1128 test_signal_assert(void)
1129 {
1130 	struct event ev;
1131 	struct event_base *base = event_init();
1132 	test_ok = 0;
1133 	/* use SIGCONT so we don't kill ourselves when we signal to nowhere */
1134 	evsignal_set(&ev, SIGCONT, signal_cb, &ev);
1135 	evsignal_add(&ev, NULL);
1136 	/*
1137 	 * if evsignal_del() fails to reset the handler, it's current handler
1138 	 * will still point to evsig_handler().
1139 	 */
1140 	evsignal_del(&ev);
1141 
1142 	raise(SIGCONT);
1143 #if 0
1144 	/* only way to verify we were in evsig_handler() */
1145 	/* XXXX Now there's no longer a good way. */
1146 	if (base->sig.evsig_caught)
1147 		test_ok = 0;
1148 	else
1149 		test_ok = 1;
1150 #else
1151 	test_ok = 1;
1152 #endif
1153 
1154 	event_base_free(base);
1155 	cleanup_test();
1156 	return;
1157 }
1158 
1159 /*
1160  * assert that we restore our previous signal handler properly.
1161  */
1162 static void
1163 test_signal_restore(void)
1164 {
1165 	struct event ev;
1166 	struct event_base *base = event_init();
1167 #ifdef EVENT__HAVE_SIGACTION
1168 	struct sigaction sa;
1169 #endif
1170 
1171 	test_ok = 0;
1172 #ifdef EVENT__HAVE_SIGACTION
1173 	sa.sa_handler = signal_cb_sa;
1174 	sa.sa_flags = 0x0;
1175 	sigemptyset(&sa.sa_mask);
1176 	if (sigaction(SIGUSR1, &sa, NULL) == -1)
1177 		goto out;
1178 #else
1179 	if (signal(SIGUSR1, signal_cb_sa) == SIG_ERR)
1180 		goto out;
1181 #endif
1182 	evsignal_set(&ev, SIGUSR1, signal_cb, &ev);
1183 	evsignal_add(&ev, NULL);
1184 	evsignal_del(&ev);
1185 
1186 	raise(SIGUSR1);
1187 	/* 1 == signal_cb, 2 == signal_cb_sa, we want our previous handler */
1188 	if (test_ok != 2)
1189 		test_ok = 0;
1190 out:
1191 	event_base_free(base);
1192 	cleanup_test();
1193 	return;
1194 }
1195 
1196 static void
1197 signal_cb_swp(int sig, short event, void *arg)
1198 {
1199 	called++;
1200 	if (called < 5)
1201 		raise(sig);
1202 	else
1203 		event_loopexit(NULL);
1204 }
1205 static void
1206 timeout_cb_swp(evutil_socket_t fd, short event, void *arg)
1207 {
1208 	if (called == -1) {
1209 		struct timeval tv = {5, 0};
1210 
1211 		called = 0;
1212 		evtimer_add((struct event *)arg, &tv);
1213 		raise(SIGUSR1);
1214 		return;
1215 	}
1216 	test_ok = 0;
1217 	event_loopexit(NULL);
1218 }
1219 
1220 static void
1221 test_signal_while_processing(void)
1222 {
1223 	struct event_base *base = event_init();
1224 	struct event ev, ev_timer;
1225 	struct timeval tv = {0, 0};
1226 
1227 	setup_test("Receiving a signal while processing other signal: ");
1228 
1229 	called = -1;
1230 	test_ok = 1;
1231 	signal_set(&ev, SIGUSR1, signal_cb_swp, NULL);
1232 	signal_add(&ev, NULL);
1233 	evtimer_set(&ev_timer, timeout_cb_swp, &ev_timer);
1234 	evtimer_add(&ev_timer, &tv);
1235 	event_dispatch();
1236 
1237 	event_base_free(base);
1238 	cleanup_test();
1239 	return;
1240 }
1241 #endif
1242 
1243 static void
1244 test_free_active_base(void *ptr)
1245 {
1246 	struct basic_test_data *data = ptr;
1247 	struct event_base *base1;
1248 	struct event ev1;
1249 
1250 	base1 = event_init();
1251 	if (base1) {
1252 		event_assign(&ev1, base1, data->pair[1], EV_READ,
1253 			     dummy_read_cb, NULL);
1254 		event_add(&ev1, NULL);
1255 		event_base_free(base1);	 /* should not crash */
1256 	} else {
1257 		tt_fail_msg("failed to create event_base for test");
1258 	}
1259 
1260 	base1 = event_init();
1261 	tt_assert(base1);
1262 	event_assign(&ev1, base1, 0, 0, dummy_read_cb, NULL);
1263 	event_active(&ev1, EV_READ, 1);
1264 	event_base_free(base1);
1265 end:
1266 	;
1267 }
1268 
1269 static void
1270 test_manipulate_active_events(void *ptr)
1271 {
1272 	struct basic_test_data *data = ptr;
1273 	struct event_base *base = data->base;
1274 	struct event ev1;
1275 
1276 	event_assign(&ev1, base, -1, EV_TIMEOUT, dummy_read_cb, NULL);
1277 
1278 	/* Make sure an active event is pending. */
1279 	event_active(&ev1, EV_READ, 1);
1280 	tt_int_op(event_pending(&ev1, EV_READ|EV_TIMEOUT|EV_WRITE, NULL),
1281 	    ==, EV_READ);
1282 
1283 	/* Make sure that activating an event twice works. */
1284 	event_active(&ev1, EV_WRITE, 1);
1285 	tt_int_op(event_pending(&ev1, EV_READ|EV_TIMEOUT|EV_WRITE, NULL),
1286 	    ==, EV_READ|EV_WRITE);
1287 
1288 end:
1289 	event_del(&ev1);
1290 }
1291 
1292 static void
1293 event_selfarg_cb(evutil_socket_t fd, short event, void *arg)
1294 {
1295 	struct event *ev = arg;
1296 	struct event_base *base = event_get_base(ev);
1297 	event_base_assert_ok_(base);
1298 	event_base_loopexit(base, NULL);
1299 	tt_want(ev == event_base_get_running_event(base));
1300 }
1301 
1302 static void
1303 test_event_new_selfarg(void *ptr)
1304 {
1305 	struct basic_test_data *data = ptr;
1306 	struct event_base *base = data->base;
1307 	struct event *ev = event_new(base, -1, EV_READ, event_selfarg_cb,
1308                                      event_self_cbarg());
1309 
1310 	event_active(ev, EV_READ, 1);
1311 	event_base_dispatch(base);
1312 
1313 	event_free(ev);
1314 }
1315 
1316 static void
1317 test_event_assign_selfarg(void *ptr)
1318 {
1319 	struct basic_test_data *data = ptr;
1320 	struct event_base *base = data->base;
1321 	struct event ev;
1322 
1323 	event_assign(&ev, base, -1, EV_READ, event_selfarg_cb,
1324                      event_self_cbarg());
1325 	event_active(&ev, EV_READ, 1);
1326 	event_base_dispatch(base);
1327 }
1328 
1329 static void
1330 test_event_base_get_num_events(void *ptr)
1331 {
1332 	struct basic_test_data *data = ptr;
1333 	struct event_base *base = data->base;
1334 	struct event ev;
1335 	int event_count_active;
1336 	int event_count_virtual;
1337 	int event_count_added;
1338 	int event_count_active_virtual;
1339 	int event_count_active_added;
1340 	int event_count_virtual_added;
1341 	int event_count_active_added_virtual;
1342 
1343 	struct timeval qsec = {0, 100000};
1344 
1345 	event_assign(&ev, base, -1, EV_READ, event_selfarg_cb,
1346 	    event_self_cbarg());
1347 
1348 	event_add(&ev, &qsec);
1349 	event_count_active = event_base_get_num_events(base,
1350 	    EVENT_BASE_COUNT_ACTIVE);
1351 	event_count_virtual = event_base_get_num_events(base,
1352 	    EVENT_BASE_COUNT_VIRTUAL);
1353 	event_count_added = event_base_get_num_events(base,
1354 	    EVENT_BASE_COUNT_ADDED);
1355 	event_count_active_virtual = event_base_get_num_events(base,
1356 	    EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_VIRTUAL);
1357 	event_count_active_added = event_base_get_num_events(base,
1358 	    EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_ADDED);
1359 	event_count_virtual_added = event_base_get_num_events(base,
1360 	    EVENT_BASE_COUNT_VIRTUAL|EVENT_BASE_COUNT_ADDED);
1361 	event_count_active_added_virtual = event_base_get_num_events(base,
1362 	    EVENT_BASE_COUNT_ACTIVE|
1363 	    EVENT_BASE_COUNT_ADDED|
1364 	    EVENT_BASE_COUNT_VIRTUAL);
1365 	tt_int_op(event_count_active, ==, 0);
1366 	tt_int_op(event_count_virtual, ==, 0);
1367 	/* libevent itself adds a timeout event, so the event_count is 2 here */
1368 	tt_int_op(event_count_added, ==, 2);
1369 	tt_int_op(event_count_active_virtual, ==, 0);
1370 	tt_int_op(event_count_active_added, ==, 2);
1371 	tt_int_op(event_count_virtual_added, ==, 2);
1372 	tt_int_op(event_count_active_added_virtual, ==, 2);
1373 
1374 	event_active(&ev, EV_READ, 1);
1375 	event_count_active = event_base_get_num_events(base,
1376 	    EVENT_BASE_COUNT_ACTIVE);
1377 	event_count_virtual = event_base_get_num_events(base,
1378 	    EVENT_BASE_COUNT_VIRTUAL);
1379 	event_count_added = event_base_get_num_events(base,
1380 	    EVENT_BASE_COUNT_ADDED);
1381 	event_count_active_virtual = event_base_get_num_events(base,
1382 	    EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_VIRTUAL);
1383 	event_count_active_added = event_base_get_num_events(base,
1384 	    EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_ADDED);
1385 	event_count_virtual_added = event_base_get_num_events(base,
1386 	    EVENT_BASE_COUNT_VIRTUAL|EVENT_BASE_COUNT_ADDED);
1387 	event_count_active_added_virtual = event_base_get_num_events(base,
1388 	    EVENT_BASE_COUNT_ACTIVE|
1389 	    EVENT_BASE_COUNT_ADDED|
1390 	    EVENT_BASE_COUNT_VIRTUAL);
1391 	tt_int_op(event_count_active, ==, 1);
1392 	tt_int_op(event_count_virtual, ==, 0);
1393 	tt_int_op(event_count_added, ==, 3);
1394 	tt_int_op(event_count_active_virtual, ==, 1);
1395 	tt_int_op(event_count_active_added, ==, 4);
1396 	tt_int_op(event_count_virtual_added, ==, 3);
1397 	tt_int_op(event_count_active_added_virtual, ==, 4);
1398 
1399        event_base_loop(base, 0);
1400        event_count_active = event_base_get_num_events(base,
1401 	   EVENT_BASE_COUNT_ACTIVE);
1402        event_count_virtual = event_base_get_num_events(base,
1403 	   EVENT_BASE_COUNT_VIRTUAL);
1404        event_count_added = event_base_get_num_events(base,
1405 	   EVENT_BASE_COUNT_ADDED);
1406        event_count_active_virtual = event_base_get_num_events(base,
1407 	   EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_VIRTUAL);
1408        event_count_active_added = event_base_get_num_events(base,
1409 	   EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_ADDED);
1410        event_count_virtual_added = event_base_get_num_events(base,
1411 	   EVENT_BASE_COUNT_VIRTUAL|EVENT_BASE_COUNT_ADDED);
1412        event_count_active_added_virtual = event_base_get_num_events(base,
1413 	   EVENT_BASE_COUNT_ACTIVE|
1414 	   EVENT_BASE_COUNT_ADDED|
1415 	   EVENT_BASE_COUNT_VIRTUAL);
1416        tt_int_op(event_count_active, ==, 0);
1417        tt_int_op(event_count_virtual, ==, 0);
1418        tt_int_op(event_count_added, ==, 0);
1419        tt_int_op(event_count_active_virtual, ==, 0);
1420        tt_int_op(event_count_active_added, ==, 0);
1421        tt_int_op(event_count_virtual_added, ==, 0);
1422        tt_int_op(event_count_active_added_virtual, ==, 0);
1423 
1424        event_base_add_virtual_(base);
1425        event_count_active = event_base_get_num_events(base,
1426 	   EVENT_BASE_COUNT_ACTIVE);
1427        event_count_virtual = event_base_get_num_events(base,
1428 	   EVENT_BASE_COUNT_VIRTUAL);
1429        event_count_added = event_base_get_num_events(base,
1430 	   EVENT_BASE_COUNT_ADDED);
1431        event_count_active_virtual = event_base_get_num_events(base,
1432 	   EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_VIRTUAL);
1433        event_count_active_added = event_base_get_num_events(base,
1434 	   EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_ADDED);
1435        event_count_virtual_added = event_base_get_num_events(base,
1436 	   EVENT_BASE_COUNT_VIRTUAL|EVENT_BASE_COUNT_ADDED);
1437        event_count_active_added_virtual = event_base_get_num_events(base,
1438 	   EVENT_BASE_COUNT_ACTIVE|
1439 	   EVENT_BASE_COUNT_ADDED|
1440 	   EVENT_BASE_COUNT_VIRTUAL);
1441        tt_int_op(event_count_active, ==, 0);
1442        tt_int_op(event_count_virtual, ==, 1);
1443        tt_int_op(event_count_added, ==, 0);
1444        tt_int_op(event_count_active_virtual, ==, 1);
1445        tt_int_op(event_count_active_added, ==, 0);
1446        tt_int_op(event_count_virtual_added, ==, 1);
1447        tt_int_op(event_count_active_added_virtual, ==, 1);
1448 
1449 end:
1450        ;
1451 }
1452 
1453 static void
1454 test_event_base_get_max_events(void *ptr)
1455 {
1456 	struct basic_test_data *data = ptr;
1457 	struct event_base *base = data->base;
1458 	struct event ev;
1459 	struct event ev2;
1460 	int event_count_active;
1461 	int event_count_virtual;
1462 	int event_count_added;
1463 	int event_count_active_virtual;
1464 	int event_count_active_added;
1465 	int event_count_virtual_added;
1466 	int event_count_active_added_virtual;
1467 
1468 	struct timeval qsec = {0, 100000};
1469 
1470 	event_assign(&ev, base, -1, EV_READ, event_selfarg_cb,
1471 	    event_self_cbarg());
1472 	event_assign(&ev2, base, -1, EV_READ, event_selfarg_cb,
1473 	    event_self_cbarg());
1474 
1475 	event_add(&ev, &qsec);
1476 	event_add(&ev2, &qsec);
1477 	event_del(&ev2);
1478 
1479 	event_count_active = event_base_get_max_events(base,
1480 	    EVENT_BASE_COUNT_ACTIVE, 0);
1481 	event_count_virtual = event_base_get_max_events(base,
1482 	    EVENT_BASE_COUNT_VIRTUAL, 0);
1483 	event_count_added = event_base_get_max_events(base,
1484 	    EVENT_BASE_COUNT_ADDED, 0);
1485 	event_count_active_virtual = event_base_get_max_events(base,
1486 	    EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_VIRTUAL, 0);
1487 	event_count_active_added = event_base_get_max_events(base,
1488 	    EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_ADDED, 0);
1489 	event_count_virtual_added = event_base_get_max_events(base,
1490 	    EVENT_BASE_COUNT_VIRTUAL | EVENT_BASE_COUNT_ADDED, 0);
1491 	event_count_active_added_virtual = event_base_get_max_events(base,
1492 	    EVENT_BASE_COUNT_ACTIVE |
1493 	    EVENT_BASE_COUNT_ADDED |
1494 	    EVENT_BASE_COUNT_VIRTUAL, 0);
1495 
1496 	tt_int_op(event_count_active, ==, 0);
1497 	tt_int_op(event_count_virtual, ==, 0);
1498 	/* libevent itself adds a timeout event, so the event_count is 4 here */
1499 	tt_int_op(event_count_added, ==, 4);
1500 	tt_int_op(event_count_active_virtual, ==, 0);
1501 	tt_int_op(event_count_active_added, ==, 4);
1502 	tt_int_op(event_count_virtual_added, ==, 4);
1503 	tt_int_op(event_count_active_added_virtual, ==, 4);
1504 
1505 	event_active(&ev, EV_READ, 1);
1506 	event_count_active = event_base_get_max_events(base,
1507 	    EVENT_BASE_COUNT_ACTIVE, 0);
1508 	event_count_virtual = event_base_get_max_events(base,
1509 	    EVENT_BASE_COUNT_VIRTUAL, 0);
1510 	event_count_added = event_base_get_max_events(base,
1511 	    EVENT_BASE_COUNT_ADDED, 0);
1512 	event_count_active_virtual = event_base_get_max_events(base,
1513 	    EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_VIRTUAL, 0);
1514 	event_count_active_added = event_base_get_max_events(base,
1515 	    EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_ADDED, 0);
1516 	event_count_virtual_added = event_base_get_max_events(base,
1517 	    EVENT_BASE_COUNT_VIRTUAL | EVENT_BASE_COUNT_ADDED, 0);
1518 	event_count_active_added_virtual = event_base_get_max_events(base,
1519 	    EVENT_BASE_COUNT_ACTIVE |
1520 	    EVENT_BASE_COUNT_ADDED |
1521 	    EVENT_BASE_COUNT_VIRTUAL, 0);
1522 
1523 	tt_int_op(event_count_active, ==, 1);
1524 	tt_int_op(event_count_virtual, ==, 0);
1525 	tt_int_op(event_count_added, ==, 4);
1526 	tt_int_op(event_count_active_virtual, ==, 1);
1527 	tt_int_op(event_count_active_added, ==, 5);
1528 	tt_int_op(event_count_virtual_added, ==, 4);
1529 	tt_int_op(event_count_active_added_virtual, ==, 5);
1530 
1531 	event_base_loop(base, 0);
1532 	event_count_active = event_base_get_max_events(base,
1533 	    EVENT_BASE_COUNT_ACTIVE, 1);
1534 	event_count_virtual = event_base_get_max_events(base,
1535 	    EVENT_BASE_COUNT_VIRTUAL, 1);
1536 	event_count_added = event_base_get_max_events(base,
1537 	    EVENT_BASE_COUNT_ADDED, 1);
1538 	event_count_active_virtual = event_base_get_max_events(base,
1539 	    EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_VIRTUAL, 0);
1540 	event_count_active_added = event_base_get_max_events(base,
1541 	    EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_ADDED, 0);
1542 	event_count_virtual_added = event_base_get_max_events(base,
1543 	    EVENT_BASE_COUNT_VIRTUAL | EVENT_BASE_COUNT_ADDED, 0);
1544 	event_count_active_added_virtual = event_base_get_max_events(base,
1545 	    EVENT_BASE_COUNT_ACTIVE |
1546 	    EVENT_BASE_COUNT_ADDED |
1547 	    EVENT_BASE_COUNT_VIRTUAL, 1);
1548 
1549 	tt_int_op(event_count_active, ==, 1);
1550 	tt_int_op(event_count_virtual, ==, 0);
1551 	tt_int_op(event_count_added, ==, 4);
1552 	tt_int_op(event_count_active_virtual, ==, 0);
1553 	tt_int_op(event_count_active_added, ==, 0);
1554 	tt_int_op(event_count_virtual_added, ==, 0);
1555 	tt_int_op(event_count_active_added_virtual, ==, 0);
1556 
1557 	event_count_active = event_base_get_max_events(base,
1558 	    EVENT_BASE_COUNT_ACTIVE, 0);
1559 	event_count_virtual = event_base_get_max_events(base,
1560 	    EVENT_BASE_COUNT_VIRTUAL, 0);
1561 	event_count_added = event_base_get_max_events(base,
1562 	    EVENT_BASE_COUNT_ADDED, 0);
1563 	tt_int_op(event_count_active, ==, 0);
1564 	tt_int_op(event_count_virtual, ==, 0);
1565 	tt_int_op(event_count_added, ==, 0);
1566 
1567 	event_base_add_virtual_(base);
1568 	event_count_active = event_base_get_max_events(base,
1569 	    EVENT_BASE_COUNT_ACTIVE, 0);
1570 	event_count_virtual = event_base_get_max_events(base,
1571 	    EVENT_BASE_COUNT_VIRTUAL, 0);
1572 	event_count_added = event_base_get_max_events(base,
1573 	    EVENT_BASE_COUNT_ADDED, 0);
1574 	event_count_active_virtual = event_base_get_max_events(base,
1575 	    EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_VIRTUAL, 0);
1576 	event_count_active_added = event_base_get_max_events(base,
1577 	    EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_ADDED, 0);
1578 	event_count_virtual_added = event_base_get_max_events(base,
1579 	    EVENT_BASE_COUNT_VIRTUAL | EVENT_BASE_COUNT_ADDED, 0);
1580 	event_count_active_added_virtual = event_base_get_max_events(base,
1581 	    EVENT_BASE_COUNT_ACTIVE |
1582 	    EVENT_BASE_COUNT_ADDED |
1583 	    EVENT_BASE_COUNT_VIRTUAL, 0);
1584 
1585 	tt_int_op(event_count_active, ==, 0);
1586 	tt_int_op(event_count_virtual, ==, 1);
1587 	tt_int_op(event_count_added, ==, 0);
1588 	tt_int_op(event_count_active_virtual, ==, 1);
1589 	tt_int_op(event_count_active_added, ==, 0);
1590 	tt_int_op(event_count_virtual_added, ==, 1);
1591 	tt_int_op(event_count_active_added_virtual, ==, 1);
1592 
1593 end:
1594        ;
1595 }
1596 
1597 static void
1598 test_bad_assign(void *ptr)
1599 {
1600 	struct event ev;
1601 	int r;
1602 	/* READ|SIGNAL is not allowed */
1603 	r = event_assign(&ev, NULL, -1, EV_SIGNAL|EV_READ, dummy_read_cb, NULL);
1604 	tt_int_op(r,==,-1);
1605 
1606 end:
1607 	;
1608 }
1609 
1610 static int reentrant_cb_run = 0;
1611 
1612 static void
1613 bad_reentrant_run_loop_cb(evutil_socket_t fd, short what, void *ptr)
1614 {
1615 	struct event_base *base = ptr;
1616 	int r;
1617 	reentrant_cb_run = 1;
1618 	/* This reentrant call to event_base_loop should be detected and
1619 	 * should fail */
1620 	r = event_base_loop(base, 0);
1621 	tt_int_op(r, ==, -1);
1622 end:
1623 	;
1624 }
1625 
1626 static void
1627 test_bad_reentrant(void *ptr)
1628 {
1629 	struct basic_test_data *data = ptr;
1630 	struct event_base *base = data->base;
1631 	struct event ev;
1632 	int r;
1633 	event_assign(&ev, base, -1,
1634 	    0, bad_reentrant_run_loop_cb, base);
1635 
1636 	event_active(&ev, EV_WRITE, 1);
1637 	r = event_base_loop(base, 0);
1638 	tt_int_op(r, ==, 1);
1639 	tt_int_op(reentrant_cb_run, ==, 1);
1640 end:
1641 	;
1642 }
1643 
1644 static int n_write_a_byte_cb=0;
1645 static int n_read_and_drain_cb=0;
1646 static int n_activate_other_event_cb=0;
1647 static void
1648 write_a_byte_cb(evutil_socket_t fd, short what, void *arg)
1649 {
1650 	char buf[] = "x";
1651 	if (write(fd, buf, 1) == 1)
1652 		++n_write_a_byte_cb;
1653 }
1654 static void
1655 read_and_drain_cb(evutil_socket_t fd, short what, void *arg)
1656 {
1657 	char buf[128];
1658 	int n;
1659 	++n_read_and_drain_cb;
1660 	while ((n = read(fd, buf, sizeof(buf))) > 0)
1661 		;
1662 }
1663 
1664 static void
1665 activate_other_event_cb(evutil_socket_t fd, short what, void *other_)
1666 {
1667 	struct event *ev_activate = other_;
1668 	++n_activate_other_event_cb;
1669 	event_active_later_(ev_activate, EV_READ);
1670 }
1671 
1672 static void
1673 test_active_later(void *ptr)
1674 {
1675 	struct basic_test_data *data = ptr;
1676 	struct event *ev1 = NULL, *ev2 = NULL;
1677 	struct event ev3, ev4;
1678 	struct timeval qsec = {0, 100000};
1679 	ev1 = event_new(data->base, data->pair[0], EV_READ|EV_PERSIST, read_and_drain_cb, NULL);
1680 	ev2 = event_new(data->base, data->pair[1], EV_WRITE|EV_PERSIST, write_a_byte_cb, NULL);
1681 	event_assign(&ev3, data->base, -1, 0, activate_other_event_cb, &ev4);
1682 	event_assign(&ev4, data->base, -1, 0, activate_other_event_cb, &ev3);
1683 	event_add(ev1, NULL);
1684 	event_add(ev2, NULL);
1685 	event_active_later_(&ev3, EV_READ);
1686 
1687 	event_base_loopexit(data->base, &qsec);
1688 
1689 	event_base_loop(data->base, 0);
1690 
1691 	TT_BLATHER(("%d write calls, %d read calls, %d activate-other calls.",
1692 		n_write_a_byte_cb, n_read_and_drain_cb, n_activate_other_event_cb));
1693 	event_del(&ev3);
1694 	event_del(&ev4);
1695 
1696 	tt_int_op(n_write_a_byte_cb, ==, n_activate_other_event_cb);
1697 	tt_int_op(n_write_a_byte_cb, >, 100);
1698 	tt_int_op(n_read_and_drain_cb, >, 100);
1699 	tt_int_op(n_activate_other_event_cb, >, 100);
1700 
1701 	event_active_later_(&ev4, EV_READ);
1702 	event_active(&ev4, EV_READ, 1); /* This should make the event
1703 					   active immediately. */
1704 	tt_assert((ev4.ev_flags & EVLIST_ACTIVE) != 0);
1705 	tt_assert((ev4.ev_flags & EVLIST_ACTIVE_LATER) == 0);
1706 
1707 	/* Now leave this one around, so that event_free sees it and removes
1708 	 * it. */
1709 	event_active_later_(&ev3, EV_READ);
1710 	event_base_assert_ok_(data->base);
1711 
1712 end:
1713 	if (ev1)
1714 		event_free(ev1);
1715 	if (ev2)
1716 		event_free(ev2);
1717 
1718 	event_base_free(data->base);
1719 	data->base = NULL;
1720 }
1721 
1722 
1723 static void incr_arg_cb(evutil_socket_t fd, short what, void *arg)
1724 {
1725 	int *intptr = arg;
1726 	(void) fd; (void) what;
1727 	++*intptr;
1728 }
1729 static void remove_timers_cb(evutil_socket_t fd, short what, void *arg)
1730 {
1731 	struct event **ep = arg;
1732 	(void) fd; (void) what;
1733 	event_remove_timer(ep[0]);
1734 	event_remove_timer(ep[1]);
1735 }
1736 static void send_a_byte_cb(evutil_socket_t fd, short what, void *arg)
1737 {
1738 	evutil_socket_t *sockp = arg;
1739 	(void) fd; (void) what;
1740 	(void) write(*sockp, "A", 1);
1741 }
1742 struct read_not_timeout_param
1743 {
1744 	struct event **ev;
1745 	int events;
1746 	int count;
1747 };
1748 static void read_not_timeout_cb(evutil_socket_t fd, short what, void *arg)
1749 {
1750 	struct read_not_timeout_param *rntp = arg;
1751 	char c;
1752 	ev_ssize_t n;
1753 	(void) fd; (void) what;
1754 	n = read(fd, &c, 1);
1755 	tt_int_op(n, ==, 1);
1756 	rntp->events |= what;
1757 	++rntp->count;
1758 	if(2 == rntp->count) event_del(rntp->ev[0]);
1759 end:
1760 	;
1761 }
1762 
1763 static void
1764 test_event_remove_timeout(void *ptr)
1765 {
1766 	struct basic_test_data *data = ptr;
1767 	struct event_base *base = data->base;
1768 	struct event *ev[5];
1769 	int ev1_fired=0;
1770 	struct timeval ms25 = { 0, 25*1000 },
1771 		ms40 = { 0, 40*1000 },
1772 		ms75 = { 0, 75*1000 },
1773 		ms125 = { 0, 125*1000 };
1774 	struct read_not_timeout_param rntp = { ev, 0, 0 };
1775 
1776 	event_base_assert_ok_(base);
1777 
1778 	ev[0] = event_new(base, data->pair[0], EV_READ|EV_PERSIST,
1779 	    read_not_timeout_cb, &rntp);
1780 	ev[1] = evtimer_new(base, incr_arg_cb, &ev1_fired);
1781 	ev[2] = evtimer_new(base, remove_timers_cb, ev);
1782 	ev[3] = evtimer_new(base, send_a_byte_cb, &data->pair[1]);
1783 	ev[4] = evtimer_new(base, send_a_byte_cb, &data->pair[1]);
1784 	tt_assert(base);
1785 	event_add(ev[2], &ms25); /* remove timers */
1786 	event_add(ev[4], &ms40); /* write to test if timer re-activates */
1787 	event_add(ev[0], &ms75); /* read */
1788 	event_add(ev[1], &ms75); /* timer */
1789 	event_add(ev[3], &ms125); /* timeout. */
1790 	event_base_assert_ok_(base);
1791 
1792 	event_base_dispatch(base);
1793 
1794 	tt_int_op(ev1_fired, ==, 0);
1795 	tt_int_op(rntp.events, ==, EV_READ);
1796 
1797 	event_base_assert_ok_(base);
1798 end:
1799 	event_free(ev[0]);
1800 	event_free(ev[1]);
1801 	event_free(ev[2]);
1802 	event_free(ev[3]);
1803 	event_free(ev[4]);
1804 }
1805 
1806 static void
1807 test_event_base_new(void *ptr)
1808 {
1809 	struct basic_test_data *data = ptr;
1810 	struct event_base *base = 0;
1811 	struct event ev1;
1812 	struct basic_cb_args args;
1813 
1814 	int towrite = (int)strlen(TEST1)+1;
1815 	int len = write(data->pair[0], TEST1, towrite);
1816 
1817 	if (len < 0)
1818 		tt_abort_perror("initial write");
1819 	else if (len != towrite)
1820 		tt_abort_printf(("initial write fell short (%d of %d bytes)",
1821 				 len, towrite));
1822 
1823 	if (shutdown(data->pair[0], SHUT_WR))
1824 		tt_abort_perror("initial write shutdown");
1825 
1826 	base = event_base_new();
1827 	if (!base)
1828 		tt_abort_msg("failed to create event base");
1829 
1830 	args.eb = base;
1831 	args.ev = &ev1;
1832 	args.callcount = 0;
1833 	event_assign(&ev1, base, data->pair[1],
1834 		     EV_READ|EV_PERSIST, basic_read_cb, &args);
1835 
1836 	if (event_add(&ev1, NULL))
1837 		tt_abort_perror("initial event_add");
1838 
1839 	if (event_base_loop(base, 0))
1840 		tt_abort_msg("unsuccessful exit from event loop");
1841 
1842 end:
1843 	if (base)
1844 		event_base_free(base);
1845 }
1846 
1847 static void
1848 test_loopexit(void)
1849 {
1850 	struct timeval tv, tv_start, tv_end;
1851 	struct event ev;
1852 
1853 	setup_test("Loop exit: ");
1854 
1855 	tv.tv_usec = 0;
1856 	tv.tv_sec = 60*60*24;
1857 	evtimer_set(&ev, timeout_cb, NULL);
1858 	evtimer_add(&ev, &tv);
1859 
1860 	tv.tv_usec = 300*1000;
1861 	tv.tv_sec = 0;
1862 	event_loopexit(&tv);
1863 
1864 	evutil_gettimeofday(&tv_start, NULL);
1865 	event_dispatch();
1866 	evutil_gettimeofday(&tv_end, NULL);
1867 
1868 	evtimer_del(&ev);
1869 
1870 	tt_assert(event_base_got_exit(global_base));
1871 	tt_assert(!event_base_got_break(global_base));
1872 
1873 	test_timeval_diff_eq(&tv_start, &tv_end, 300);
1874 
1875 	test_ok = 1;
1876 end:
1877 	cleanup_test();
1878 }
1879 
1880 static void
1881 test_loopexit_multiple(void)
1882 {
1883 	struct timeval tv, tv_start, tv_end;
1884 	struct event_base *base;
1885 
1886 	setup_test("Loop Multiple exit: ");
1887 
1888 	base = event_base_new();
1889 
1890 	tv.tv_usec = 200*1000;
1891 	tv.tv_sec = 0;
1892 	event_base_loopexit(base, &tv);
1893 
1894 	tv.tv_usec = 0;
1895 	tv.tv_sec = 3;
1896 	event_base_loopexit(base, &tv);
1897 
1898 	evutil_gettimeofday(&tv_start, NULL);
1899 	event_base_dispatch(base);
1900 	evutil_gettimeofday(&tv_end, NULL);
1901 
1902 	tt_assert(event_base_got_exit(base));
1903 	tt_assert(!event_base_got_break(base));
1904 
1905 	event_base_free(base);
1906 
1907 	test_timeval_diff_eq(&tv_start, &tv_end, 200);
1908 
1909 	test_ok = 1;
1910 
1911 end:
1912 	cleanup_test();
1913 }
1914 
1915 static void
1916 break_cb(evutil_socket_t fd, short events, void *arg)
1917 {
1918 	test_ok = 1;
1919 	event_loopbreak();
1920 }
1921 
1922 static void
1923 fail_cb(evutil_socket_t fd, short events, void *arg)
1924 {
1925 	test_ok = 0;
1926 }
1927 
1928 static void
1929 test_loopbreak(void)
1930 {
1931 	struct event ev1, ev2;
1932 	struct timeval tv;
1933 
1934 	setup_test("Loop break: ");
1935 
1936 	tv.tv_sec = 0;
1937 	tv.tv_usec = 0;
1938 	evtimer_set(&ev1, break_cb, NULL);
1939 	evtimer_add(&ev1, &tv);
1940 	evtimer_set(&ev2, fail_cb, NULL);
1941 	evtimer_add(&ev2, &tv);
1942 
1943 	event_dispatch();
1944 
1945 	tt_assert(!event_base_got_exit(global_base));
1946 	tt_assert(event_base_got_break(global_base));
1947 
1948 	evtimer_del(&ev1);
1949 	evtimer_del(&ev2);
1950 
1951 end:
1952 	cleanup_test();
1953 }
1954 
1955 static struct event *readd_test_event_last_added = NULL;
1956 static void
1957 re_add_read_cb(evutil_socket_t fd, short event, void *arg)
1958 {
1959 	char buf[256];
1960 	struct event *ev_other = arg;
1961 	ev_ssize_t n_read;
1962 
1963 	readd_test_event_last_added = ev_other;
1964 
1965 	n_read = read(fd, buf, sizeof(buf));
1966 
1967 	if (n_read < 0) {
1968 		tt_fail_perror("read");
1969 		event_base_loopbreak(event_get_base(ev_other));
1970 		return;
1971 	} else {
1972 		event_add(ev_other, NULL);
1973 		++test_ok;
1974 	}
1975 }
1976 
1977 static void
1978 test_nonpersist_readd(void)
1979 {
1980 	struct event ev1, ev2;
1981 
1982 	setup_test("Re-add nonpersistent events: ");
1983 	event_set(&ev1, pair[0], EV_READ, re_add_read_cb, &ev2);
1984 	event_set(&ev2, pair[1], EV_READ, re_add_read_cb, &ev1);
1985 
1986 	if (write(pair[0], "Hello", 5) < 0) {
1987 		tt_fail_perror("write(pair[0])");
1988 	}
1989 
1990 	if (write(pair[1], "Hello", 5) < 0) {
1991 		tt_fail_perror("write(pair[1])\n");
1992 	}
1993 
1994 	if (event_add(&ev1, NULL) == -1 ||
1995 	    event_add(&ev2, NULL) == -1) {
1996 		test_ok = 0;
1997 	}
1998 	if (test_ok != 0)
1999 		exit(1);
2000 	event_loop(EVLOOP_ONCE);
2001 	if (test_ok != 2)
2002 		exit(1);
2003 	/* At this point, we executed both callbacks.  Whichever one got
2004 	 * called first added the second, but the second then immediately got
2005 	 * deleted before its callback was called.  At this point, though, it
2006 	 * re-added the first.
2007 	 */
2008 	if (!readd_test_event_last_added) {
2009 		test_ok = 0;
2010 	} else if (readd_test_event_last_added == &ev1) {
2011 		if (!event_pending(&ev1, EV_READ, NULL) ||
2012 		    event_pending(&ev2, EV_READ, NULL))
2013 			test_ok = 0;
2014 	} else {
2015 		if (event_pending(&ev1, EV_READ, NULL) ||
2016 		    !event_pending(&ev2, EV_READ, NULL))
2017 			test_ok = 0;
2018 	}
2019 
2020 	event_del(&ev1);
2021 	event_del(&ev2);
2022 
2023 	cleanup_test();
2024 }
2025 
2026 struct test_pri_event {
2027 	struct event ev;
2028 	int count;
2029 };
2030 
2031 static void
2032 test_priorities_cb(evutil_socket_t fd, short what, void *arg)
2033 {
2034 	struct test_pri_event *pri = arg;
2035 	struct timeval tv;
2036 
2037 	if (pri->count == 3) {
2038 		event_loopexit(NULL);
2039 		return;
2040 	}
2041 
2042 	pri->count++;
2043 
2044 	evutil_timerclear(&tv);
2045 	event_add(&pri->ev, &tv);
2046 }
2047 
2048 static void
2049 test_priorities_impl(int npriorities)
2050 {
2051 	struct test_pri_event one, two;
2052 	struct timeval tv;
2053 
2054 	TT_BLATHER(("Testing Priorities %d: ", npriorities));
2055 
2056 	event_base_priority_init(global_base, npriorities);
2057 
2058 	memset(&one, 0, sizeof(one));
2059 	memset(&two, 0, sizeof(two));
2060 
2061 	timeout_set(&one.ev, test_priorities_cb, &one);
2062 	if (event_priority_set(&one.ev, 0) == -1) {
2063 		fprintf(stderr, "%s: failed to set priority", __func__);
2064 		exit(1);
2065 	}
2066 
2067 	timeout_set(&two.ev, test_priorities_cb, &two);
2068 	if (event_priority_set(&two.ev, npriorities - 1) == -1) {
2069 		fprintf(stderr, "%s: failed to set priority", __func__);
2070 		exit(1);
2071 	}
2072 
2073 	evutil_timerclear(&tv);
2074 
2075 	if (event_add(&one.ev, &tv) == -1)
2076 		exit(1);
2077 	if (event_add(&two.ev, &tv) == -1)
2078 		exit(1);
2079 
2080 	event_dispatch();
2081 
2082 	event_del(&one.ev);
2083 	event_del(&two.ev);
2084 
2085 	if (npriorities == 1) {
2086 		if (one.count == 3 && two.count == 3)
2087 			test_ok = 1;
2088 	} else if (npriorities == 2) {
2089 		/* Two is called once because event_loopexit is priority 1 */
2090 		if (one.count == 3 && two.count == 1)
2091 			test_ok = 1;
2092 	} else {
2093 		if (one.count == 3 && two.count == 0)
2094 			test_ok = 1;
2095 	}
2096 }
2097 
2098 static void
2099 test_priorities(void)
2100 {
2101 	test_priorities_impl(1);
2102 	if (test_ok)
2103 		test_priorities_impl(2);
2104 	if (test_ok)
2105 		test_priorities_impl(3);
2106 }
2107 
2108 /* priority-active-inversion: activate a higher-priority event, and make sure
2109  * it keeps us from running a lower-priority event first. */
2110 static int n_pai_calls = 0;
2111 static struct event pai_events[3];
2112 
2113 static void
2114 prio_active_inversion_cb(evutil_socket_t fd, short what, void *arg)
2115 {
2116 	int *call_order = arg;
2117 	*call_order = n_pai_calls++;
2118 	if (n_pai_calls == 1) {
2119 		/* This should activate later, even though it shares a
2120 		   priority with us. */
2121 		event_active(&pai_events[1], EV_READ, 1);
2122 		/* This should activate next, since its priority is higher,
2123 		   even though we activated it second. */
2124 		event_active(&pai_events[2], EV_TIMEOUT, 1);
2125 	}
2126 }
2127 
2128 static void
2129 test_priority_active_inversion(void *data_)
2130 {
2131 	struct basic_test_data *data = data_;
2132 	struct event_base *base = data->base;
2133 	int call_order[3];
2134 	int i;
2135 	tt_int_op(event_base_priority_init(base, 8), ==, 0);
2136 
2137 	n_pai_calls = 0;
2138 	memset(call_order, 0, sizeof(call_order));
2139 
2140 	for (i=0;i<3;++i) {
2141 		event_assign(&pai_events[i], data->base, -1, 0,
2142 		    prio_active_inversion_cb, &call_order[i]);
2143 	}
2144 
2145 	event_priority_set(&pai_events[0], 4);
2146 	event_priority_set(&pai_events[1], 4);
2147 	event_priority_set(&pai_events[2], 0);
2148 
2149 	event_active(&pai_events[0], EV_WRITE, 1);
2150 
2151 	event_base_dispatch(base);
2152 	tt_int_op(n_pai_calls, ==, 3);
2153 	tt_int_op(call_order[0], ==, 0);
2154 	tt_int_op(call_order[1], ==, 2);
2155 	tt_int_op(call_order[2], ==, 1);
2156 end:
2157 	;
2158 }
2159 
2160 
2161 static void
2162 test_multiple_cb(evutil_socket_t fd, short event, void *arg)
2163 {
2164 	if (event & EV_READ)
2165 		test_ok |= 1;
2166 	else if (event & EV_WRITE)
2167 		test_ok |= 2;
2168 }
2169 
2170 static void
2171 test_multiple_events_for_same_fd(void)
2172 {
2173    struct event e1, e2;
2174 
2175    setup_test("Multiple events for same fd: ");
2176 
2177    event_set(&e1, pair[0], EV_READ, test_multiple_cb, NULL);
2178    event_add(&e1, NULL);
2179    event_set(&e2, pair[0], EV_WRITE, test_multiple_cb, NULL);
2180    event_add(&e2, NULL);
2181    event_loop(EVLOOP_ONCE);
2182    event_del(&e2);
2183 
2184    if (write(pair[1], TEST1, strlen(TEST1)+1) < 0) {
2185 	   tt_fail_perror("write");
2186    }
2187 
2188    event_loop(EVLOOP_ONCE);
2189    event_del(&e1);
2190 
2191    if (test_ok != 3)
2192 	   test_ok = 0;
2193 
2194    cleanup_test();
2195 }
2196 
2197 int evtag_decode_int(ev_uint32_t *pnumber, struct evbuffer *evbuf);
2198 int evtag_decode_int64(ev_uint64_t *pnumber, struct evbuffer *evbuf);
2199 int evtag_encode_tag(struct evbuffer *evbuf, ev_uint32_t number);
2200 int evtag_decode_tag(ev_uint32_t *pnumber, struct evbuffer *evbuf);
2201 
2202 static void
2203 read_once_cb(evutil_socket_t fd, short event, void *arg)
2204 {
2205 	char buf[256];
2206 	int len;
2207 
2208 	len = read(fd, buf, sizeof(buf));
2209 
2210 	if (called) {
2211 		test_ok = 0;
2212 	} else if (len) {
2213 		/* Assumes global pair[0] can be used for writing */
2214 		if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
2215 			tt_fail_perror("write");
2216 			test_ok = 0;
2217 		} else {
2218 			test_ok = 1;
2219 		}
2220 	}
2221 
2222 	called++;
2223 }
2224 
2225 static void
2226 test_want_only_once(void)
2227 {
2228 	struct event ev;
2229 	struct timeval tv;
2230 
2231 	/* Very simple read test */
2232 	setup_test("Want read only once: ");
2233 
2234 	if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
2235 		tt_fail_perror("write");
2236 	}
2237 
2238 	/* Setup the loop termination */
2239 	evutil_timerclear(&tv);
2240 	tv.tv_usec = 300*1000;
2241 	event_loopexit(&tv);
2242 
2243 	event_set(&ev, pair[1], EV_READ, read_once_cb, &ev);
2244 	if (event_add(&ev, NULL) == -1)
2245 		exit(1);
2246 	event_dispatch();
2247 
2248 	cleanup_test();
2249 }
2250 
2251 #define TEST_MAX_INT	6
2252 
2253 static void
2254 evtag_int_test(void *ptr)
2255 {
2256 	struct evbuffer *tmp = evbuffer_new();
2257 	ev_uint32_t integers[TEST_MAX_INT] = {
2258 		0xaf0, 0x1000, 0x1, 0xdeadbeef, 0x00, 0xbef000
2259 	};
2260 	ev_uint32_t integer;
2261 	ev_uint64_t big_int;
2262 	int i;
2263 
2264 	evtag_init();
2265 
2266 	for (i = 0; i < TEST_MAX_INT; i++) {
2267 		int oldlen, newlen;
2268 		oldlen = (int)EVBUFFER_LENGTH(tmp);
2269 		evtag_encode_int(tmp, integers[i]);
2270 		newlen = (int)EVBUFFER_LENGTH(tmp);
2271 		TT_BLATHER(("encoded 0x%08x with %d bytes",
2272 			(unsigned)integers[i], newlen - oldlen));
2273 		big_int = integers[i];
2274 		big_int *= 1000000000; /* 1 billion */
2275 		evtag_encode_int64(tmp, big_int);
2276 	}
2277 
2278 	for (i = 0; i < TEST_MAX_INT; i++) {
2279 		tt_int_op(evtag_decode_int(&integer, tmp), !=, -1);
2280 		tt_uint_op(integer, ==, integers[i]);
2281 		tt_int_op(evtag_decode_int64(&big_int, tmp), !=, -1);
2282 		tt_assert((big_int / 1000000000) == integers[i]);
2283 	}
2284 
2285 	tt_uint_op(EVBUFFER_LENGTH(tmp), ==, 0);
2286 end:
2287 	evbuffer_free(tmp);
2288 }
2289 
2290 static void
2291 evtag_fuzz(void *ptr)
2292 {
2293 	u_char buffer[4096];
2294 	struct evbuffer *tmp = evbuffer_new();
2295 	struct timeval tv;
2296 	int i, j;
2297 
2298 	int not_failed = 0;
2299 
2300 	evtag_init();
2301 
2302 	for (j = 0; j < 100; j++) {
2303 		for (i = 0; i < (int)sizeof(buffer); i++)
2304 			buffer[i] = test_weakrand();
2305 		evbuffer_drain(tmp, -1);
2306 		evbuffer_add(tmp, buffer, sizeof(buffer));
2307 
2308 		if (evtag_unmarshal_timeval(tmp, 0, &tv) != -1)
2309 			not_failed++;
2310 	}
2311 
2312 	/* The majority of decodes should fail */
2313 	tt_int_op(not_failed, <, 10);
2314 
2315 	/* Now insert some corruption into the tag length field */
2316 	evbuffer_drain(tmp, -1);
2317 	evutil_timerclear(&tv);
2318 	tv.tv_sec = 1;
2319 	evtag_marshal_timeval(tmp, 0, &tv);
2320 	evbuffer_add(tmp, buffer, sizeof(buffer));
2321 
2322 	((char *)EVBUFFER_DATA(tmp))[1] = '\xff';
2323 	if (evtag_unmarshal_timeval(tmp, 0, &tv) != -1) {
2324 		tt_abort_msg("evtag_unmarshal_timeval should have failed");
2325 	}
2326 
2327 end:
2328 	evbuffer_free(tmp);
2329 }
2330 
2331 static void
2332 evtag_tag_encoding(void *ptr)
2333 {
2334 	struct evbuffer *tmp = evbuffer_new();
2335 	ev_uint32_t integers[TEST_MAX_INT] = {
2336 		0xaf0, 0x1000, 0x1, 0xdeadbeef, 0x00, 0xbef000
2337 	};
2338 	ev_uint32_t integer;
2339 	int i;
2340 
2341 	evtag_init();
2342 
2343 	for (i = 0; i < TEST_MAX_INT; i++) {
2344 		int oldlen, newlen;
2345 		oldlen = (int)EVBUFFER_LENGTH(tmp);
2346 		evtag_encode_tag(tmp, integers[i]);
2347 		newlen = (int)EVBUFFER_LENGTH(tmp);
2348 		TT_BLATHER(("encoded 0x%08x with %d bytes",
2349 			(unsigned)integers[i], newlen - oldlen));
2350 	}
2351 
2352 	for (i = 0; i < TEST_MAX_INT; i++) {
2353 		tt_int_op(evtag_decode_tag(&integer, tmp), !=, -1);
2354 		tt_uint_op(integer, ==, integers[i]);
2355 	}
2356 
2357 	tt_uint_op(EVBUFFER_LENGTH(tmp), ==, 0);
2358 
2359 end:
2360 	evbuffer_free(tmp);
2361 }
2362 
2363 static void
2364 evtag_test_peek(void *ptr)
2365 {
2366 	struct evbuffer *tmp = evbuffer_new();
2367 	ev_uint32_t u32;
2368 
2369 	evtag_marshal_int(tmp, 30, 0);
2370 	evtag_marshal_string(tmp, 40, "Hello world");
2371 
2372 	tt_int_op(evtag_peek(tmp, &u32), ==, 1);
2373 	tt_int_op(u32, ==, 30);
2374 	tt_int_op(evtag_peek_length(tmp, &u32), ==, 0);
2375 	tt_int_op(u32, ==, 1+1+1);
2376 	tt_int_op(evtag_consume(tmp), ==, 0);
2377 
2378 	tt_int_op(evtag_peek(tmp, &u32), ==, 1);
2379 	tt_int_op(u32, ==, 40);
2380 	tt_int_op(evtag_peek_length(tmp, &u32), ==, 0);
2381 	tt_int_op(u32, ==, 1+1+11);
2382 	tt_int_op(evtag_payload_length(tmp, &u32), ==, 0);
2383 	tt_int_op(u32, ==, 11);
2384 
2385 end:
2386 	evbuffer_free(tmp);
2387 }
2388 
2389 
2390 static void
2391 test_methods(void *ptr)
2392 {
2393 	const char **methods = event_get_supported_methods();
2394 	struct event_config *cfg = NULL;
2395 	struct event_base *base = NULL;
2396 	const char *backend;
2397 	int n_methods = 0;
2398 
2399 	tt_assert(methods);
2400 
2401 	backend = methods[0];
2402 	while (*methods != NULL) {
2403 		TT_BLATHER(("Support method: %s", *methods));
2404 		++methods;
2405 		++n_methods;
2406 	}
2407 
2408 	cfg = event_config_new();
2409 	assert(cfg != NULL);
2410 
2411 	tt_int_op(event_config_avoid_method(cfg, backend), ==, 0);
2412 	event_config_set_flag(cfg, EVENT_BASE_FLAG_IGNORE_ENV);
2413 
2414 	base = event_base_new_with_config(cfg);
2415 	if (n_methods > 1) {
2416 		tt_assert(base);
2417 		tt_str_op(backend, !=, event_base_get_method(base));
2418 	} else {
2419 		tt_assert(base == NULL);
2420 	}
2421 
2422 end:
2423 	if (base)
2424 		event_base_free(base);
2425 	if (cfg)
2426 		event_config_free(cfg);
2427 }
2428 
2429 static void
2430 test_version(void *arg)
2431 {
2432 	const char *vstr;
2433 	ev_uint32_t vint;
2434 	int major, minor, patch, n;
2435 
2436 	vstr = event_get_version();
2437 	vint = event_get_version_number();
2438 
2439 	tt_assert(vstr);
2440 	tt_assert(vint);
2441 
2442 	tt_str_op(vstr, ==, LIBEVENT_VERSION);
2443 	tt_int_op(vint, ==, LIBEVENT_VERSION_NUMBER);
2444 
2445 	n = sscanf(vstr, "%d.%d.%d", &major, &minor, &patch);
2446 	tt_assert(3 == n);
2447 	tt_int_op((vint&0xffffff00), ==, ((major<<24)|(minor<<16)|(patch<<8)));
2448 end:
2449 	;
2450 }
2451 
2452 static void
2453 test_base_features(void *arg)
2454 {
2455 	struct event_base *base = NULL;
2456 	struct event_config *cfg = NULL;
2457 
2458 	cfg = event_config_new();
2459 
2460 	tt_assert(0 == event_config_require_features(cfg, EV_FEATURE_ET));
2461 
2462 	base = event_base_new_with_config(cfg);
2463 	if (base) {
2464 		tt_int_op(EV_FEATURE_ET, ==,
2465 		    event_base_get_features(base) & EV_FEATURE_ET);
2466 	} else {
2467 		base = event_base_new();
2468 		tt_int_op(0, ==, event_base_get_features(base) & EV_FEATURE_ET);
2469 	}
2470 
2471 end:
2472 	if (base)
2473 		event_base_free(base);
2474 	if (cfg)
2475 		event_config_free(cfg);
2476 }
2477 
2478 #ifdef EVENT__HAVE_SETENV
2479 #define SETENV_OK
2480 #elif !defined(EVENT__HAVE_SETENV) && defined(EVENT__HAVE_PUTENV)
2481 static void setenv(const char *k, const char *v, int o_)
2482 {
2483 	char b[256];
2484 	evutil_snprintf(b, sizeof(b), "%s=%s",k,v);
2485 	putenv(b);
2486 }
2487 #define SETENV_OK
2488 #endif
2489 
2490 #ifdef EVENT__HAVE_UNSETENV
2491 #define UNSETENV_OK
2492 #elif !defined(EVENT__HAVE_UNSETENV) && defined(EVENT__HAVE_PUTENV)
2493 static void unsetenv(const char *k)
2494 {
2495 	char b[256];
2496 	evutil_snprintf(b, sizeof(b), "%s=",k);
2497 	putenv(b);
2498 }
2499 #define UNSETENV_OK
2500 #endif
2501 
2502 #if defined(SETENV_OK) && defined(UNSETENV_OK)
2503 static void
2504 methodname_to_envvar(const char *mname, char *buf, size_t buflen)
2505 {
2506 	char *cp;
2507 	evutil_snprintf(buf, buflen, "EVENT_NO%s", mname);
2508 	for (cp = buf; *cp; ++cp) {
2509 		*cp = EVUTIL_TOUPPER_(*cp);
2510 	}
2511 }
2512 #endif
2513 
2514 static void
2515 test_base_environ(void *arg)
2516 {
2517 	struct event_base *base = NULL;
2518 	struct event_config *cfg = NULL;
2519 
2520 #if defined(SETENV_OK) && defined(UNSETENV_OK)
2521 	const char **basenames;
2522 	int i, n_methods=0;
2523 	char varbuf[128];
2524 	const char *defaultname, *ignoreenvname;
2525 
2526 	/* See if unsetenv works before we rely on it. */
2527 	setenv("EVENT_NOWAFFLES", "1", 1);
2528 	unsetenv("EVENT_NOWAFFLES");
2529 	if (getenv("EVENT_NOWAFFLES") != NULL) {
2530 #ifndef EVENT__HAVE_UNSETENV
2531 		TT_DECLARE("NOTE", ("Can't fake unsetenv; skipping test"));
2532 #else
2533 		TT_DECLARE("NOTE", ("unsetenv doesn't work; skipping test"));
2534 #endif
2535 		tt_skip();
2536 	}
2537 
2538 	basenames = event_get_supported_methods();
2539 	for (i = 0; basenames[i]; ++i) {
2540 		methodname_to_envvar(basenames[i], varbuf, sizeof(varbuf));
2541 		unsetenv(varbuf);
2542 		++n_methods;
2543 	}
2544 
2545 	base = event_base_new();
2546 	tt_assert(base);
2547 
2548 	defaultname = event_base_get_method(base);
2549 	TT_BLATHER(("default is <%s>", defaultname));
2550 	event_base_free(base);
2551 	base = NULL;
2552 
2553 	/* Can we disable the method with EVENT_NOfoo ? */
2554 	if (!strcmp(defaultname, "epoll (with changelist)")) {
2555  		setenv("EVENT_NOEPOLL", "1", 1);
2556 		ignoreenvname = "epoll";
2557 	} else {
2558 		methodname_to_envvar(defaultname, varbuf, sizeof(varbuf));
2559 		setenv(varbuf, "1", 1);
2560 		ignoreenvname = defaultname;
2561 	}
2562 
2563 	/* Use an empty cfg rather than NULL so a failure doesn't exit() */
2564 	cfg = event_config_new();
2565 	base = event_base_new_with_config(cfg);
2566 	event_config_free(cfg);
2567 	cfg = NULL;
2568 	if (n_methods == 1) {
2569 		tt_assert(!base);
2570 	} else {
2571 		tt_assert(base);
2572 		tt_str_op(defaultname, !=, event_base_get_method(base));
2573 		event_base_free(base);
2574 		base = NULL;
2575 	}
2576 
2577 	/* Can we disable looking at the environment with IGNORE_ENV ? */
2578 	cfg = event_config_new();
2579 	event_config_set_flag(cfg, EVENT_BASE_FLAG_IGNORE_ENV);
2580 	base = event_base_new_with_config(cfg);
2581 	tt_assert(base);
2582 	tt_str_op(ignoreenvname, ==, event_base_get_method(base));
2583 #else
2584 	tt_skip();
2585 #endif
2586 
2587 end:
2588 	if (base)
2589 		event_base_free(base);
2590 	if (cfg)
2591 		event_config_free(cfg);
2592 }
2593 
2594 static void
2595 read_called_once_cb(evutil_socket_t fd, short event, void *arg)
2596 {
2597 	tt_int_op(event, ==, EV_READ);
2598 	called += 1;
2599 end:
2600 	;
2601 }
2602 
2603 static void
2604 timeout_called_once_cb(evutil_socket_t fd, short event, void *arg)
2605 {
2606 	tt_int_op(event, ==, EV_TIMEOUT);
2607 	called += 100;
2608 end:
2609 	;
2610 }
2611 
2612 static void
2613 immediate_called_twice_cb(evutil_socket_t fd, short event, void *arg)
2614 {
2615 	tt_int_op(event, ==, EV_TIMEOUT);
2616 	called += 1000;
2617 end:
2618 	;
2619 }
2620 
2621 static void
2622 test_event_once(void *ptr)
2623 {
2624 	struct basic_test_data *data = ptr;
2625 	struct timeval tv;
2626 	int r;
2627 
2628 	tv.tv_sec = 0;
2629 	tv.tv_usec = 50*1000;
2630 	called = 0;
2631 	r = event_base_once(data->base, data->pair[0], EV_READ,
2632 	    read_called_once_cb, NULL, NULL);
2633 	tt_int_op(r, ==, 0);
2634 	r = event_base_once(data->base, -1, EV_TIMEOUT,
2635 	    timeout_called_once_cb, NULL, &tv);
2636 	tt_int_op(r, ==, 0);
2637 	r = event_base_once(data->base, -1, 0, NULL, NULL, NULL);
2638 	tt_int_op(r, <, 0);
2639 	r = event_base_once(data->base, -1, EV_TIMEOUT,
2640 	    immediate_called_twice_cb, NULL, NULL);
2641 	tt_int_op(r, ==, 0);
2642 	tv.tv_sec = 0;
2643 	tv.tv_usec = 0;
2644 	r = event_base_once(data->base, -1, EV_TIMEOUT,
2645 	    immediate_called_twice_cb, NULL, &tv);
2646 	tt_int_op(r, ==, 0);
2647 
2648 	if (write(data->pair[1], TEST1, strlen(TEST1)+1) < 0) {
2649 		tt_fail_perror("write");
2650 	}
2651 
2652 	shutdown(data->pair[1], SHUT_WR);
2653 
2654 	event_base_dispatch(data->base);
2655 
2656 	tt_int_op(called, ==, 2101);
2657 end:
2658 	;
2659 }
2660 
2661 static void
2662 test_event_once_never(void *ptr)
2663 {
2664 	struct basic_test_data *data = ptr;
2665 	struct timeval tv;
2666 
2667 	/* Have one trigger in 10 seconds (don't worry, because) */
2668 	tv.tv_sec = 10;
2669 	tv.tv_usec = 0;
2670 	called = 0;
2671 	event_base_once(data->base, -1, EV_TIMEOUT,
2672 	    timeout_called_once_cb, NULL, &tv);
2673 
2674 	/* But shut down the base in 75 msec. */
2675 	tv.tv_sec = 0;
2676 	tv.tv_usec = 75*1000;
2677 	event_base_loopexit(data->base, &tv);
2678 
2679 	event_base_dispatch(data->base);
2680 
2681 	tt_int_op(called, ==, 0);
2682 end:
2683 	;
2684 }
2685 
2686 static void
2687 test_event_pending(void *ptr)
2688 {
2689 	struct basic_test_data *data = ptr;
2690 	struct event *r=NULL, *w=NULL, *t=NULL;
2691 	struct timeval tv, now, tv2;
2692 
2693 	tv.tv_sec = 0;
2694 	tv.tv_usec = 500 * 1000;
2695 	r = event_new(data->base, data->pair[0], EV_READ, simple_read_cb,
2696 	    NULL);
2697 	w = event_new(data->base, data->pair[1], EV_WRITE, simple_write_cb,
2698 	    NULL);
2699 	t = evtimer_new(data->base, timeout_cb, NULL);
2700 
2701 	tt_assert(r);
2702 	tt_assert(w);
2703 	tt_assert(t);
2704 
2705 	evutil_gettimeofday(&now, NULL);
2706 	event_add(r, NULL);
2707 	event_add(t, &tv);
2708 
2709 	tt_assert( event_pending(r, EV_READ, NULL));
2710 	tt_assert(!event_pending(w, EV_WRITE, NULL));
2711 	tt_assert(!event_pending(r, EV_WRITE, NULL));
2712 	tt_assert( event_pending(r, EV_READ|EV_WRITE, NULL));
2713 	tt_assert(!event_pending(r, EV_TIMEOUT, NULL));
2714 	tt_assert( event_pending(t, EV_TIMEOUT, NULL));
2715 	tt_assert( event_pending(t, EV_TIMEOUT, &tv2));
2716 
2717 	tt_assert(evutil_timercmp(&tv2, &now, >));
2718 
2719 	test_timeval_diff_eq(&now, &tv2, 500);
2720 
2721 end:
2722 	if (r) {
2723 		event_del(r);
2724 		event_free(r);
2725 	}
2726 	if (w) {
2727 		event_del(w);
2728 		event_free(w);
2729 	}
2730 	if (t) {
2731 		event_del(t);
2732 		event_free(t);
2733 	}
2734 }
2735 
2736 #ifndef _WIN32
2737 /* You can't do this test on windows, since dup2 doesn't work on sockets */
2738 
2739 static void
2740 dfd_cb(evutil_socket_t fd, short e, void *data)
2741 {
2742 	*(int*)data = (int)e;
2743 }
2744 
2745 /* Regression test for our workaround for a fun epoll/linux related bug
2746  * where fd2 = dup(fd1); add(fd2); close(fd2); dup2(fd1,fd2); add(fd2)
2747  * will get you an EEXIST */
2748 static void
2749 test_dup_fd(void *arg)
2750 {
2751 	struct basic_test_data *data = arg;
2752 	struct event_base *base = data->base;
2753 	struct event *ev1=NULL, *ev2=NULL;
2754 	int fd, dfd=-1;
2755 	int ev1_got, ev2_got;
2756 
2757 	tt_int_op(write(data->pair[0], "Hello world",
2758 		strlen("Hello world")), >, 0);
2759 	fd = data->pair[1];
2760 
2761 	dfd = dup(fd);
2762 	tt_int_op(dfd, >=, 0);
2763 
2764 	ev1 = event_new(base, fd, EV_READ|EV_PERSIST, dfd_cb, &ev1_got);
2765 	ev2 = event_new(base, dfd, EV_READ|EV_PERSIST, dfd_cb, &ev2_got);
2766 	ev1_got = ev2_got = 0;
2767 	event_add(ev1, NULL);
2768 	event_add(ev2, NULL);
2769 	event_base_loop(base, EVLOOP_ONCE);
2770 	tt_int_op(ev1_got, ==, EV_READ);
2771 	tt_int_op(ev2_got, ==, EV_READ);
2772 
2773 	/* Now close and delete dfd then dispatch.  We need to do the
2774 	 * dispatch here so that when we add it later, we think there
2775 	 * was an intermediate delete. */
2776 	close(dfd);
2777 	event_del(ev2);
2778 	ev1_got = ev2_got = 0;
2779 	event_base_loop(base, EVLOOP_ONCE);
2780 	tt_want_int_op(ev1_got, ==, EV_READ);
2781 	tt_int_op(ev2_got, ==, 0);
2782 
2783 	/* Re-duplicate the fd.  We need to get the same duplicated
2784 	 * value that we closed to provoke the epoll quirk.  Also, we
2785 	 * need to change the events to write, or else the old lingering
2786 	 * read event will make the test pass whether the change was
2787 	 * successful or not. */
2788 	tt_int_op(dup2(fd, dfd), ==, dfd);
2789 	event_free(ev2);
2790 	ev2 = event_new(base, dfd, EV_WRITE|EV_PERSIST, dfd_cb, &ev2_got);
2791 	event_add(ev2, NULL);
2792 	ev1_got = ev2_got = 0;
2793 	event_base_loop(base, EVLOOP_ONCE);
2794 	tt_want_int_op(ev1_got, ==, EV_READ);
2795 	tt_int_op(ev2_got, ==, EV_WRITE);
2796 
2797 end:
2798 	if (ev1)
2799 		event_free(ev1);
2800 	if (ev2)
2801 		event_free(ev2);
2802 	if (dfd >= 0)
2803 		close(dfd);
2804 }
2805 #endif
2806 
2807 #ifdef EVENT__DISABLE_MM_REPLACEMENT
2808 static void
2809 test_mm_functions(void *arg)
2810 {
2811 	tinytest_set_test_skipped_();
2812 }
2813 #else
2814 static int
2815 check_dummy_mem_ok(void *mem_)
2816 {
2817 	char *mem = mem_;
2818 	mem -= 16;
2819 	return !memcmp(mem, "{[<guardedram>]}", 16);
2820 }
2821 
2822 static void *
2823 dummy_malloc(size_t len)
2824 {
2825 	char *mem = malloc(len+16);
2826 	if (mem == NULL) {
2827 		fprintf(stderr, "Unable to allocate memory in dummy_malloc()\n");
2828 		return NULL;
2829 	}
2830 	memcpy(mem, "{[<guardedram>]}", 16);
2831 	return mem+16;
2832 }
2833 
2834 static void *
2835 dummy_realloc(void *mem_, size_t len)
2836 {
2837 	char *mem = mem_;
2838 	if (!mem)
2839 		return dummy_malloc(len);
2840 	tt_want(check_dummy_mem_ok(mem_));
2841 	mem -= 16;
2842 	mem = realloc(mem, len+16);
2843 	return mem+16;
2844 }
2845 
2846 static void
2847 dummy_free(void *mem_)
2848 {
2849 	char *mem = mem_;
2850 	tt_want(check_dummy_mem_ok(mem_));
2851 	mem -= 16;
2852 	free(mem);
2853 }
2854 
2855 static void
2856 test_mm_functions(void *arg)
2857 {
2858 	struct event_base *b = NULL;
2859 	struct event_config *cfg = NULL;
2860 	event_set_mem_functions(dummy_malloc, dummy_realloc, dummy_free);
2861 	cfg = event_config_new();
2862 	event_config_avoid_method(cfg, "Nonesuch");
2863 	b = event_base_new_with_config(cfg);
2864 	tt_assert(b);
2865 	tt_assert(check_dummy_mem_ok(b));
2866 end:
2867 	if (cfg)
2868 		event_config_free(cfg);
2869 	if (b)
2870 		event_base_free(b);
2871 }
2872 #endif
2873 
2874 static void
2875 many_event_cb(evutil_socket_t fd, short event, void *arg)
2876 {
2877 	int *calledp = arg;
2878 	*calledp += 1;
2879 }
2880 
2881 static void
2882 test_many_events(void *arg)
2883 {
2884 	/* Try 70 events that should all be ready at once.  This will
2885 	 * exercise the "resize" code on most of the backends, and will make
2886 	 * sure that we can get past the 64-handle limit of some windows
2887 	 * functions. */
2888 #define MANY 70
2889 
2890 	struct basic_test_data *data = arg;
2891 	struct event_base *base = data->base;
2892 	int one_at_a_time = data->setup_data != NULL;
2893 	evutil_socket_t sock[MANY];
2894 	struct event *ev[MANY];
2895 	int called[MANY];
2896 	int i;
2897 	int loopflags = EVLOOP_NONBLOCK, evflags=0;
2898 	if (one_at_a_time) {
2899 		loopflags |= EVLOOP_ONCE;
2900 		evflags = EV_PERSIST;
2901 	}
2902 
2903 	memset(sock, 0xff, sizeof(sock));
2904 	memset(ev, 0, sizeof(ev));
2905 	memset(called, 0, sizeof(called));
2906 
2907 	for (i = 0; i < MANY; ++i) {
2908 		/* We need an event that will hit the backend, and that will
2909 		 * be ready immediately.  "Send a datagram" is an easy
2910 		 * instance of that. */
2911 		sock[i] = socket(AF_INET, SOCK_DGRAM, 0);
2912 		tt_assert(sock[i] >= 0);
2913 		called[i] = 0;
2914 		ev[i] = event_new(base, sock[i], EV_WRITE|evflags,
2915 		    many_event_cb, &called[i]);
2916 		event_add(ev[i], NULL);
2917 		if (one_at_a_time)
2918 			event_base_loop(base, EVLOOP_NONBLOCK|EVLOOP_ONCE);
2919 	}
2920 
2921 	event_base_loop(base, loopflags);
2922 
2923 	for (i = 0; i < MANY; ++i) {
2924 		if (one_at_a_time)
2925 			tt_int_op(called[i], ==, MANY - i + 1);
2926 		else
2927 			tt_int_op(called[i], ==, 1);
2928 	}
2929 
2930 end:
2931 	for (i = 0; i < MANY; ++i) {
2932 		if (ev[i])
2933 			event_free(ev[i]);
2934 		if (sock[i] >= 0)
2935 			evutil_closesocket(sock[i]);
2936 	}
2937 #undef MANY
2938 }
2939 
2940 static void
2941 test_struct_event_size(void *arg)
2942 {
2943 	tt_int_op(event_get_struct_event_size(), <=, sizeof(struct event));
2944 end:
2945 	;
2946 }
2947 
2948 static void
2949 test_get_assignment(void *arg)
2950 {
2951 	struct basic_test_data *data = arg;
2952 	struct event_base *base = data->base;
2953 	struct event *ev1 = NULL;
2954 	const char *str = "foo";
2955 
2956 	struct event_base *b;
2957 	evutil_socket_t s;
2958 	short what;
2959 	event_callback_fn cb;
2960 	void *cb_arg;
2961 
2962 	ev1 = event_new(base, data->pair[1], EV_READ, dummy_read_cb, (void*)str);
2963 	event_get_assignment(ev1, &b, &s, &what, &cb, &cb_arg);
2964 
2965 	tt_ptr_op(b, ==, base);
2966 	tt_int_op(s, ==, data->pair[1]);
2967 	tt_int_op(what, ==, EV_READ);
2968 	tt_ptr_op(cb, ==, dummy_read_cb);
2969 	tt_ptr_op(cb_arg, ==, str);
2970 
2971 	/* Now make sure this doesn't crash. */
2972 	event_get_assignment(ev1, NULL, NULL, NULL, NULL, NULL);
2973 
2974 end:
2975 	if (ev1)
2976 		event_free(ev1);
2977 }
2978 
2979 struct foreach_helper {
2980 	int count;
2981 	const struct event *ev;
2982 };
2983 
2984 static int
2985 foreach_count_cb(const struct event_base *base, const struct event *ev, void *arg)
2986 {
2987 	struct foreach_helper *h = event_get_callback_arg(ev);
2988 	struct timeval *tv = arg;
2989 	if (event_get_callback(ev) != timeout_cb)
2990 		return 0;
2991 	tt_ptr_op(event_get_base(ev), ==, base);
2992 	tt_int_op(tv->tv_sec, ==, 10);
2993 	h->ev = ev;
2994 	h->count++;
2995 	return 0;
2996 end:
2997 	return -1;
2998 }
2999 
3000 static int
3001 foreach_find_cb(const struct event_base *base, const struct event *ev, void *arg)
3002 {
3003 	const struct event **ev_out = arg;
3004 	struct foreach_helper *h = event_get_callback_arg(ev);
3005 	if (event_get_callback(ev) != timeout_cb)
3006 		return 0;
3007 	if (h->count == 99) {
3008 		*ev_out = ev;
3009 		return 101;
3010 	}
3011 	return 0;
3012 }
3013 
3014 static void
3015 test_event_foreach(void *arg)
3016 {
3017 	struct basic_test_data *data = arg;
3018 	struct event_base *base = data->base;
3019 	struct event *ev[5];
3020 	struct foreach_helper visited[5];
3021 	int i;
3022 	struct timeval ten_sec = {10,0};
3023 	const struct event *ev_found = NULL;
3024 
3025 	for (i = 0; i < 5; ++i) {
3026 		visited[i].count = 0;
3027 		visited[i].ev = NULL;
3028 		ev[i] = event_new(base, -1, 0, timeout_cb, &visited[i]);
3029 	}
3030 
3031 	tt_int_op(-1, ==, event_base_foreach_event(NULL, foreach_count_cb, NULL));
3032 	tt_int_op(-1, ==, event_base_foreach_event(base, NULL, NULL));
3033 
3034 	event_add(ev[0], &ten_sec);
3035 	event_add(ev[1], &ten_sec);
3036 	event_active(ev[1], EV_TIMEOUT, 1);
3037 	event_active(ev[2], EV_TIMEOUT, 1);
3038 	event_add(ev[3], &ten_sec);
3039 	/* Don't touch ev[4]. */
3040 
3041 	tt_int_op(0, ==, event_base_foreach_event(base, foreach_count_cb,
3042 		&ten_sec));
3043 	tt_int_op(1, ==, visited[0].count);
3044 	tt_int_op(1, ==, visited[1].count);
3045 	tt_int_op(1, ==, visited[2].count);
3046 	tt_int_op(1, ==, visited[3].count);
3047 	tt_ptr_op(ev[0], ==, visited[0].ev);
3048 	tt_ptr_op(ev[1], ==, visited[1].ev);
3049 	tt_ptr_op(ev[2], ==, visited[2].ev);
3050 	tt_ptr_op(ev[3], ==, visited[3].ev);
3051 
3052 	visited[2].count = 99;
3053 	tt_int_op(101, ==, event_base_foreach_event(base, foreach_find_cb,
3054 		&ev_found));
3055 	tt_ptr_op(ev_found, ==, ev[2]);
3056 
3057 end:
3058 	for (i=0; i<5; ++i) {
3059 		event_free(ev[i]);
3060 	}
3061 }
3062 
3063 static struct event_base *cached_time_base = NULL;
3064 static int cached_time_reset = 0;
3065 static int cached_time_sleep = 0;
3066 static void
3067 cache_time_cb(evutil_socket_t fd, short what, void *arg)
3068 {
3069 	struct timeval *tv = arg;
3070 	tt_int_op(0, ==, event_base_gettimeofday_cached(cached_time_base, tv));
3071 	if (cached_time_sleep) {
3072 		struct timeval delay = { 0, 30*1000 };
3073 		evutil_usleep_(&delay);
3074 	}
3075 	if (cached_time_reset) {
3076 		event_base_update_cache_time(cached_time_base);
3077 	}
3078 end:
3079 	;
3080 }
3081 
3082 static void
3083 test_gettimeofday_cached(void *arg)
3084 {
3085 	struct basic_test_data *data = arg;
3086 	struct event_config *cfg = NULL;
3087 	struct event_base *base = NULL;
3088 	struct timeval tv1, tv2, tv3, now;
3089 	struct event *ev1=NULL, *ev2=NULL, *ev3=NULL;
3090 	int cached_time_disable = strstr(data->setup_data, "disable") != NULL;
3091 
3092 	cfg = event_config_new();
3093 	if (cached_time_disable) {
3094 		event_config_set_flag(cfg, EVENT_BASE_FLAG_NO_CACHE_TIME);
3095 	}
3096 	cached_time_base = base = event_base_new_with_config(cfg);
3097 	tt_assert(base);
3098 
3099 	/* Try gettimeofday_cached outside of an event loop. */
3100 	evutil_gettimeofday(&now, NULL);
3101 	tt_int_op(0, ==, event_base_gettimeofday_cached(NULL, &tv1));
3102 	tt_int_op(0, ==, event_base_gettimeofday_cached(base, &tv2));
3103 	tt_int_op(timeval_msec_diff(&tv1, &tv2), <, 10);
3104 	tt_int_op(timeval_msec_diff(&tv1, &now), <, 10);
3105 
3106 	cached_time_reset = strstr(data->setup_data, "reset") != NULL;
3107 	cached_time_sleep = strstr(data->setup_data, "sleep") != NULL;
3108 
3109 	ev1 = event_new(base, -1, 0, cache_time_cb, &tv1);
3110 	ev2 = event_new(base, -1, 0, cache_time_cb, &tv2);
3111 	ev3 = event_new(base, -1, 0, cache_time_cb, &tv3);
3112 
3113 	event_active(ev1, EV_TIMEOUT, 1);
3114 	event_active(ev2, EV_TIMEOUT, 1);
3115 	event_active(ev3, EV_TIMEOUT, 1);
3116 
3117 	event_base_dispatch(base);
3118 
3119 	if (cached_time_reset && cached_time_sleep) {
3120 		tt_int_op(labs(timeval_msec_diff(&tv1,&tv2)), >, 10);
3121 		tt_int_op(labs(timeval_msec_diff(&tv2,&tv3)), >, 10);
3122 	} else if (cached_time_disable && cached_time_sleep) {
3123 		tt_int_op(labs(timeval_msec_diff(&tv1,&tv2)), >, 10);
3124 		tt_int_op(labs(timeval_msec_diff(&tv2,&tv3)), >, 10);
3125 	} else if (! cached_time_disable) {
3126 		tt_assert(evutil_timercmp(&tv1, &tv2, ==));
3127 		tt_assert(evutil_timercmp(&tv2, &tv3, ==));
3128 	}
3129 
3130 end:
3131 	if (ev1)
3132 		event_free(ev1);
3133 	if (ev2)
3134 		event_free(ev2);
3135 	if (ev3)
3136 		event_free(ev3);
3137 	if (base)
3138 		event_base_free(base);
3139 	if (cfg)
3140 		event_config_free(cfg);
3141 }
3142 
3143 static void
3144 tabf_cb(evutil_socket_t fd, short what, void *arg)
3145 {
3146 	int *ptr = arg;
3147 	*ptr = what;
3148 	*ptr += 0x10000;
3149 }
3150 
3151 static void
3152 test_active_by_fd(void *arg)
3153 {
3154 	struct basic_test_data *data = arg;
3155 	struct event_base *base = data->base;
3156 	struct event *ev1 = NULL, *ev2 = NULL, *ev3 = NULL, *ev4 = NULL;
3157 	int e1,e2,e3,e4;
3158 #ifndef _WIN32
3159 	struct event *evsig = NULL;
3160 	int es;
3161 #endif
3162 	struct timeval tenmin = { 600, 0 };
3163 
3164 	/* Ensure no crash on nonexistent FD. */
3165 	event_base_active_by_fd(base, 1000, EV_READ);
3166 
3167 	/* Ensure no crash on bogus FD. */
3168 	event_base_active_by_fd(base, -1, EV_READ);
3169 
3170 	/* Ensure no crash on nonexistent/bogus signal. */
3171 	event_base_active_by_signal(base, 1000);
3172 	event_base_active_by_signal(base, -1);
3173 
3174 	event_base_assert_ok_(base);
3175 
3176 	e1 = e2 = e3 = e4 = 0;
3177 	ev1 = event_new(base, data->pair[0], EV_READ, tabf_cb, &e1);
3178 	ev2 = event_new(base, data->pair[0], EV_WRITE, tabf_cb, &e2);
3179 	ev3 = event_new(base, data->pair[1], EV_READ, tabf_cb, &e3);
3180 	ev4 = event_new(base, data->pair[1], EV_READ, tabf_cb, &e4);
3181 	tt_assert(ev1);
3182 	tt_assert(ev2);
3183 	tt_assert(ev3);
3184 	tt_assert(ev4);
3185 #ifndef _WIN32
3186 	evsig = event_new(base, SIGHUP, EV_SIGNAL, tabf_cb, &es);
3187 	tt_assert(evsig);
3188 	event_add(evsig, &tenmin);
3189 #endif
3190 
3191 	event_add(ev1, &tenmin);
3192 	event_add(ev2, NULL);
3193 	event_add(ev3, NULL);
3194 	event_add(ev4, &tenmin);
3195 
3196 
3197 	event_base_assert_ok_(base);
3198 
3199 	/* Trigger 2, 3, 4 */
3200 	event_base_active_by_fd(base, data->pair[0], EV_WRITE);
3201 	event_base_active_by_fd(base, data->pair[1], EV_READ);
3202 #ifndef _WIN32
3203 	event_base_active_by_signal(base, SIGHUP);
3204 #endif
3205 
3206 	event_base_assert_ok_(base);
3207 
3208 	event_base_loop(base, EVLOOP_ONCE);
3209 
3210 	tt_int_op(e1, ==, 0);
3211 	tt_int_op(e2, ==, EV_WRITE | 0x10000);
3212 	tt_int_op(e3, ==, EV_READ | 0x10000);
3213 	/* Mask out EV_WRITE here, since it could be genuinely writeable. */
3214 	tt_int_op((e4 & ~EV_WRITE), ==, EV_READ | 0x10000);
3215 #ifndef _WIN32
3216 	tt_int_op(es, ==, EV_SIGNAL | 0x10000);
3217 #endif
3218 
3219 end:
3220 	if (ev1)
3221 		event_free(ev1);
3222 	if (ev2)
3223 		event_free(ev2);
3224 	if (ev3)
3225 		event_free(ev3);
3226 	if (ev4)
3227 		event_free(ev4);
3228 #ifndef _WIN32
3229 	if (evsig)
3230 		event_free(evsig);
3231 #endif
3232 }
3233 
3234 struct testcase_t main_testcases[] = {
3235 	/* Some converted-over tests */
3236 	{ "methods", test_methods, TT_FORK, NULL, NULL },
3237 	{ "version", test_version, 0, NULL, NULL },
3238 	BASIC(base_features, TT_FORK|TT_NO_LOGS),
3239 	{ "base_environ", test_base_environ, TT_FORK, NULL, NULL },
3240 
3241 	BASIC(event_base_new, TT_FORK|TT_NEED_SOCKETPAIR),
3242 	BASIC(free_active_base, TT_FORK|TT_NEED_SOCKETPAIR),
3243 
3244 	BASIC(manipulate_active_events, TT_FORK|TT_NEED_BASE),
3245 	BASIC(event_new_selfarg, TT_FORK|TT_NEED_BASE),
3246 	BASIC(event_assign_selfarg, TT_FORK|TT_NEED_BASE),
3247 	BASIC(event_base_get_num_events, TT_FORK|TT_NEED_BASE),
3248 	BASIC(event_base_get_max_events, TT_FORK|TT_NEED_BASE),
3249 
3250 	BASIC(bad_assign, TT_FORK|TT_NEED_BASE|TT_NO_LOGS),
3251 	BASIC(bad_reentrant, TT_FORK|TT_NEED_BASE|TT_NO_LOGS),
3252 	BASIC(active_later, TT_FORK|TT_NEED_BASE|TT_NEED_SOCKETPAIR),
3253 	BASIC(event_remove_timeout, TT_FORK|TT_NEED_BASE|TT_NEED_SOCKETPAIR),
3254 
3255 	/* These are still using the old API */
3256 	LEGACY(persistent_timeout, TT_FORK|TT_NEED_BASE),
3257 	{ "persistent_timeout_jump", test_persistent_timeout_jump, TT_FORK|TT_NEED_BASE, &basic_setup, NULL },
3258 	{ "persistent_active_timeout", test_persistent_active_timeout,
3259 	  TT_FORK|TT_NEED_BASE, &basic_setup, NULL },
3260 	LEGACY(priorities, TT_FORK|TT_NEED_BASE),
3261 	BASIC(priority_active_inversion, TT_FORK|TT_NEED_BASE),
3262 	{ "common_timeout", test_common_timeout, TT_FORK|TT_NEED_BASE,
3263 	  &basic_setup, NULL },
3264 
3265 	/* These legacy tests may not all need all of these flags. */
3266 	LEGACY(simpleread, TT_ISOLATED),
3267 	LEGACY(simpleread_multiple, TT_ISOLATED),
3268 	LEGACY(simplewrite, TT_ISOLATED),
3269 	{ "simpleclose", test_simpleclose, TT_FORK, &basic_setup,
3270 	  NULL },
3271 	LEGACY(multiple, TT_ISOLATED),
3272 	LEGACY(persistent, TT_ISOLATED),
3273 	LEGACY(combined, TT_ISOLATED),
3274 	LEGACY(simpletimeout, TT_ISOLATED),
3275 	LEGACY(loopbreak, TT_ISOLATED),
3276 	LEGACY(loopexit, TT_ISOLATED),
3277 	LEGACY(loopexit_multiple, TT_ISOLATED),
3278 	LEGACY(nonpersist_readd, TT_ISOLATED),
3279 	LEGACY(multiple_events_for_same_fd, TT_ISOLATED),
3280 	LEGACY(want_only_once, TT_ISOLATED),
3281 	{ "event_once", test_event_once, TT_ISOLATED, &basic_setup, NULL },
3282 	{ "event_once_never", test_event_once_never, TT_ISOLATED, &basic_setup, NULL },
3283 	{ "event_pending", test_event_pending, TT_ISOLATED, &basic_setup,
3284 	  NULL },
3285 #ifndef _WIN32
3286 	{ "dup_fd", test_dup_fd, TT_ISOLATED, &basic_setup, NULL },
3287 #endif
3288 	{ "mm_functions", test_mm_functions, TT_FORK, NULL, NULL },
3289 	{ "many_events", test_many_events, TT_ISOLATED, &basic_setup, NULL },
3290 	{ "many_events_slow_add", test_many_events, TT_ISOLATED, &basic_setup, (void*)1 },
3291 
3292 	{ "struct_event_size", test_struct_event_size, 0, NULL, NULL },
3293 	BASIC(get_assignment, TT_FORK|TT_NEED_BASE|TT_NEED_SOCKETPAIR),
3294 
3295 	BASIC(event_foreach, TT_FORK|TT_NEED_BASE),
3296 	{ "gettimeofday_cached", test_gettimeofday_cached, TT_FORK, &basic_setup, (void*)"" },
3297 	{ "gettimeofday_cached_sleep", test_gettimeofday_cached, TT_FORK, &basic_setup, (void*)"sleep" },
3298 	{ "gettimeofday_cached_reset", test_gettimeofday_cached, TT_FORK, &basic_setup, (void*)"sleep reset" },
3299 	{ "gettimeofday_cached_disabled", test_gettimeofday_cached, TT_FORK, &basic_setup, (void*)"sleep disable" },
3300 	{ "gettimeofday_cached_disabled_nosleep", test_gettimeofday_cached, TT_FORK, &basic_setup, (void*)"disable" },
3301 
3302 	BASIC(active_by_fd, TT_FORK|TT_NEED_BASE|TT_NEED_SOCKETPAIR),
3303 
3304 #ifndef _WIN32
3305 	LEGACY(fork, TT_ISOLATED),
3306 #endif
3307 	END_OF_TESTCASES
3308 };
3309 
3310 struct testcase_t evtag_testcases[] = {
3311 	{ "int", evtag_int_test, TT_FORK, NULL, NULL },
3312 	{ "fuzz", evtag_fuzz, TT_FORK, NULL, NULL },
3313 	{ "encoding", evtag_tag_encoding, TT_FORK, NULL, NULL },
3314 	{ "peek", evtag_test_peek, 0, NULL, NULL },
3315 
3316 	END_OF_TESTCASES
3317 };
3318 
3319 struct testcase_t signal_testcases[] = {
3320 #ifndef _WIN32
3321 	LEGACY(simplestsignal, TT_ISOLATED),
3322 	LEGACY(simplesignal, TT_ISOLATED),
3323 	LEGACY(multiplesignal, TT_ISOLATED),
3324 	LEGACY(immediatesignal, TT_ISOLATED),
3325 	LEGACY(signal_dealloc, TT_ISOLATED),
3326 	LEGACY(signal_pipeloss, TT_ISOLATED),
3327 	LEGACY(signal_switchbase, TT_ISOLATED|TT_NO_LOGS),
3328 	LEGACY(signal_restore, TT_ISOLATED),
3329 	LEGACY(signal_assert, TT_ISOLATED),
3330 	LEGACY(signal_while_processing, TT_ISOLATED),
3331 #endif
3332 	END_OF_TESTCASES
3333 };
3334 
3335