1 /*
2  * iterator/iter_utils.c - iterative resolver module utility functions.
3  *
4  * Copyright (c) 2007, NLnet Labs. All rights reserved.
5  *
6  * This software is open source.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * Redistributions of source code must retain the above copyright notice,
13  * this list of conditions and the following disclaimer.
14  *
15  * Redistributions in binary form must reproduce the above copyright notice,
16  * this list of conditions and the following disclaimer in the documentation
17  * and/or other materials provided with the distribution.
18  *
19  * Neither the name of the NLNET LABS nor the names of its contributors may
20  * be used to endorse or promote products derived from this software without
21  * specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27  * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /**
37  * \file
38  *
39  * This file contains functions to assist the iterator module.
40  * Configuration options. Forward zones.
41  */
42 #include "config.h"
43 #include "iterator/iter_utils.h"
44 #include "iterator/iterator.h"
45 #include "iterator/iter_hints.h"
46 #include "iterator/iter_fwd.h"
47 #include "iterator/iter_donotq.h"
48 #include "iterator/iter_delegpt.h"
49 #include "iterator/iter_priv.h"
50 #include "services/cache/infra.h"
51 #include "services/cache/dns.h"
52 #include "services/cache/rrset.h"
53 #include "services/outside_network.h"
54 #include "util/net_help.h"
55 #include "util/module.h"
56 #include "util/log.h"
57 #include "util/config_file.h"
58 #include "util/regional.h"
59 #include "util/data/msgparse.h"
60 #include "util/data/dname.h"
61 #include "util/random.h"
62 #include "util/fptr_wlist.h"
63 #include "validator/val_anchor.h"
64 #include "validator/val_kcache.h"
65 #include "validator/val_kentry.h"
66 #include "validator/val_utils.h"
67 #include "validator/val_sigcrypt.h"
68 #include "sldns/sbuffer.h"
69 #include "sldns/str2wire.h"
70 
71 /** time when nameserver glue is said to be 'recent' */
72 #define SUSPICION_RECENT_EXPIRY 86400
73 
74 /** fillup fetch policy array */
75 static void
76 fetch_fill(struct iter_env* ie, const char* str)
77 {
78 	char* s = (char*)str, *e;
79 	int i;
80 	for(i=0; i<ie->max_dependency_depth+1; i++) {
81 		ie->target_fetch_policy[i] = strtol(s, &e, 10);
82 		if(s == e)
83 			fatal_exit("cannot parse fetch policy number %s", s);
84 		s = e;
85 	}
86 }
87 
88 /** Read config string that represents the target fetch policy */
89 static int
90 read_fetch_policy(struct iter_env* ie, const char* str)
91 {
92 	int count = cfg_count_numbers(str);
93 	if(count < 1) {
94 		log_err("Cannot parse target fetch policy: \"%s\"", str);
95 		return 0;
96 	}
97 	ie->max_dependency_depth = count - 1;
98 	ie->target_fetch_policy = (int*)calloc(
99 		(size_t)ie->max_dependency_depth+1, sizeof(int));
100 	if(!ie->target_fetch_policy) {
101 		log_err("alloc fetch policy: out of memory");
102 		return 0;
103 	}
104 	fetch_fill(ie, str);
105 	return 1;
106 }
107 
108 /** apply config caps whitelist items to name tree */
109 static int
110 caps_white_apply_cfg(rbtree_type* ntree, struct config_file* cfg)
111 {
112 	struct config_strlist* p;
113 	for(p=cfg->caps_whitelist; p; p=p->next) {
114 		struct name_tree_node* n;
115 		size_t len;
116 		uint8_t* nm = sldns_str2wire_dname(p->str, &len);
117 		if(!nm) {
118 			log_err("could not parse %s", p->str);
119 			return 0;
120 		}
121 		n = (struct name_tree_node*)calloc(1, sizeof(*n));
122 		if(!n) {
123 			log_err("out of memory");
124 			free(nm);
125 			return 0;
126 		}
127 		n->node.key = n;
128 		n->name = nm;
129 		n->len = len;
130 		n->labs = dname_count_labels(nm);
131 		n->dclass = LDNS_RR_CLASS_IN;
132 		if(!name_tree_insert(ntree, n, nm, len, n->labs, n->dclass)) {
133 			/* duplicate element ignored, idempotent */
134 			free(n->name);
135 			free(n);
136 		}
137 	}
138 	name_tree_init_parents(ntree);
139 	return 1;
140 }
141 
142 int
143 iter_apply_cfg(struct iter_env* iter_env, struct config_file* cfg)
144 {
145 	int i;
146 	/* target fetch policy */
147 	if(!read_fetch_policy(iter_env, cfg->target_fetch_policy))
148 		return 0;
149 	for(i=0; i<iter_env->max_dependency_depth+1; i++)
150 		verbose(VERB_QUERY, "target fetch policy for level %d is %d",
151 			i, iter_env->target_fetch_policy[i]);
152 
153 	if(!iter_env->donotq)
154 		iter_env->donotq = donotq_create();
155 	if(!iter_env->donotq || !donotq_apply_cfg(iter_env->donotq, cfg)) {
156 		log_err("Could not set donotqueryaddresses");
157 		return 0;
158 	}
159 	if(!iter_env->priv)
160 		iter_env->priv = priv_create();
161 	if(!iter_env->priv || !priv_apply_cfg(iter_env->priv, cfg)) {
162 		log_err("Could not set private addresses");
163 		return 0;
164 	}
165 	if(cfg->caps_whitelist) {
166 		if(!iter_env->caps_white)
167 			iter_env->caps_white = rbtree_create(name_tree_compare);
168 		if(!iter_env->caps_white || !caps_white_apply_cfg(
169 			iter_env->caps_white, cfg)) {
170 			log_err("Could not set capsforid whitelist");
171 			return 0;
172 		}
173 
174 	}
175 	iter_env->supports_ipv6 = cfg->do_ip6;
176 	iter_env->supports_ipv4 = cfg->do_ip4;
177 	iter_env->outbound_msg_retry = cfg->outbound_msg_retry;
178 	iter_env->max_sent_count = cfg->max_sent_count;
179 	iter_env->max_query_restarts = cfg->max_query_restarts;
180 	return 1;
181 }
182 
183 /** filter out unsuitable targets
184  * @param iter_env: iterator environment with ipv6-support flag.
185  * @param env: module environment with infra cache.
186  * @param name: zone name
187  * @param namelen: length of name
188  * @param qtype: query type (host order).
189  * @param now: current time
190  * @param a: address in delegation point we are examining.
191  * @return an integer that signals the target suitability.
192  *	as follows:
193  *	-1: The address should be omitted from the list.
194  *	    Because:
195  *		o The address is bogus (DNSSEC validation failure).
196  *		o Listed as donotquery
197  *		o is ipv6 but no ipv6 support (in operating system).
198  *		o is ipv4 but no ipv4 support (in operating system).
199  *		o is lame
200  *	Otherwise, an rtt in milliseconds.
201  *	0 .. USEFUL_SERVER_TOP_TIMEOUT-1
202  *		The roundtrip time timeout estimate. less than 2 minutes.
203  *		Note that util/rtt.c has a MIN_TIMEOUT of 50 msec, thus
204  *		values 0 .. 49 are not used, unless that is changed.
205  *	USEFUL_SERVER_TOP_TIMEOUT
206  *		This value exactly is given for unresponsive blacklisted.
207  *	USEFUL_SERVER_TOP_TIMEOUT+1
208  *		For non-blacklisted servers: huge timeout, but has traffic.
209  *	USEFUL_SERVER_TOP_TIMEOUT*1 ..
210  *		parent-side lame servers get this penalty. A dispreferential
211  *		server. (lame in delegpt).
212  *	USEFUL_SERVER_TOP_TIMEOUT*2 ..
213  *		dnsseclame servers get penalty
214  *	USEFUL_SERVER_TOP_TIMEOUT*3 ..
215  *		recursion lame servers get penalty
216  *	UNKNOWN_SERVER_NICENESS
217  *		If no information is known about the server, this is
218  *		returned. 376 msec or so.
219  *	+BLACKLIST_PENALTY (of USEFUL_TOP_TIMEOUT*4) for dnssec failed IPs.
220  *
221  * When a final value is chosen that is dnsseclame ; dnsseclameness checking
222  * is turned off (so we do not discard the reply).
223  * When a final value is chosen that is recursionlame; RD bit is set on query.
224  * Because of the numbers this means recursionlame also have dnssec lameness
225  * checking turned off.
226  */
227 static int
228 iter_filter_unsuitable(struct iter_env* iter_env, struct module_env* env,
229 	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
230 	struct delegpt_addr* a)
231 {
232 	int rtt, lame, reclame, dnsseclame;
233 	if(a->bogus)
234 		return -1; /* address of server is bogus */
235 	if(donotq_lookup(iter_env->donotq, &a->addr, a->addrlen)) {
236 		log_addr(VERB_ALGO, "skip addr on the donotquery list",
237 			&a->addr, a->addrlen);
238 		return -1; /* server is on the donotquery list */
239 	}
240 	if(!iter_env->supports_ipv6 && addr_is_ip6(&a->addr, a->addrlen)) {
241 		return -1; /* there is no ip6 available */
242 	}
243 	if(!iter_env->supports_ipv4 && !addr_is_ip6(&a->addr, a->addrlen)) {
244 		return -1; /* there is no ip4 available */
245 	}
246 	/* check lameness - need zone , class info */
247 	if(infra_get_lame_rtt(env->infra_cache, &a->addr, a->addrlen,
248 		name, namelen, qtype, &lame, &dnsseclame, &reclame,
249 		&rtt, now)) {
250 		log_addr(VERB_ALGO, "servselect", &a->addr, a->addrlen);
251 		verbose(VERB_ALGO, "   rtt=%d%s%s%s%s", rtt,
252 			lame?" LAME":"",
253 			dnsseclame?" DNSSEC_LAME":"",
254 			reclame?" REC_LAME":"",
255 			a->lame?" ADDR_LAME":"");
256 		if(lame)
257 			return -1; /* server is lame */
258 		else if(rtt >= USEFUL_SERVER_TOP_TIMEOUT)
259 			/* server is unresponsive,
260 			 * we used to return TOP_TIMEOUT, but fairly useless,
261 			 * because if == TOP_TIMEOUT is dropped because
262 			 * blacklisted later, instead, remove it here, so
263 			 * other choices (that are not blacklisted) can be
264 			 * tried */
265 			return -1;
266 		/* select remainder from worst to best */
267 		else if(reclame)
268 			return rtt+USEFUL_SERVER_TOP_TIMEOUT*3; /* nonpref */
269 		else if(dnsseclame || a->dnsseclame)
270 			return rtt+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */
271 		else if(a->lame)
272 			return rtt+USEFUL_SERVER_TOP_TIMEOUT+1; /* nonpref */
273 		else	return rtt;
274 	}
275 	/* no server information present */
276 	if(a->dnsseclame)
277 		return UNKNOWN_SERVER_NICENESS+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */
278 	else if(a->lame)
279 		return USEFUL_SERVER_TOP_TIMEOUT+1+UNKNOWN_SERVER_NICENESS; /* nonpref */
280 	return UNKNOWN_SERVER_NICENESS;
281 }
282 
283 /** lookup RTT information, and also store fastest rtt (if any) */
284 static int
285 iter_fill_rtt(struct iter_env* iter_env, struct module_env* env,
286 	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
287 	struct delegpt* dp, int* best_rtt, struct sock_list* blacklist,
288 	size_t* num_suitable_results)
289 {
290 	int got_it = 0;
291 	struct delegpt_addr* a;
292 	*num_suitable_results = 0;
293 
294 	if(dp->bogus)
295 		return 0; /* NS bogus, all bogus, nothing found */
296 	for(a=dp->result_list; a; a = a->next_result) {
297 		a->sel_rtt = iter_filter_unsuitable(iter_env, env,
298 			name, namelen, qtype, now, a);
299 		if(a->sel_rtt != -1) {
300 			if(sock_list_find(blacklist, &a->addr, a->addrlen))
301 				a->sel_rtt += BLACKLIST_PENALTY;
302 
303 			if(!got_it) {
304 				*best_rtt = a->sel_rtt;
305 				got_it = 1;
306 			} else if(a->sel_rtt < *best_rtt) {
307 				*best_rtt = a->sel_rtt;
308 			}
309 			(*num_suitable_results)++;
310 		}
311 	}
312 	return got_it;
313 }
314 
315 /** compare two rtts, return -1, 0 or 1 */
316 static int
317 rtt_compare(const void* x, const void* y)
318 {
319 	if(*(int*)x == *(int*)y)
320 		return 0;
321 	if(*(int*)x > *(int*)y)
322 		return 1;
323 	return -1;
324 }
325 
326 /** get RTT for the Nth fastest server */
327 static int
328 nth_rtt(struct delegpt_addr* result_list, size_t num_results, size_t n)
329 {
330 	int rtt_band;
331 	size_t i;
332 	int* rtt_list, *rtt_index;
333 
334 	if(num_results < 1 || n >= num_results) {
335 		return -1;
336 	}
337 
338 	rtt_list = calloc(num_results, sizeof(int));
339 	if(!rtt_list) {
340 		log_err("malloc failure: allocating rtt_list");
341 		return -1;
342 	}
343 	rtt_index = rtt_list;
344 
345 	for(i=0; i<num_results && result_list; i++) {
346 		if(result_list->sel_rtt != -1) {
347 			*rtt_index = result_list->sel_rtt;
348 			rtt_index++;
349 		}
350 		result_list=result_list->next_result;
351 	}
352 	qsort(rtt_list, num_results, sizeof(*rtt_list), rtt_compare);
353 
354 	log_assert(n > 0);
355 	rtt_band = rtt_list[n-1];
356 	free(rtt_list);
357 
358 	return rtt_band;
359 }
360 
361 /** filter the address list, putting best targets at front,
362  * returns number of best targets (or 0, no suitable targets) */
363 static int
364 iter_filter_order(struct iter_env* iter_env, struct module_env* env,
365 	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
366 	struct delegpt* dp, int* selected_rtt, int open_target,
367 	struct sock_list* blacklist, time_t prefetch)
368 {
369 	int got_num = 0, low_rtt = 0, swap_to_front, rtt_band = RTT_BAND, nth;
370 	int alllame = 0;
371 	size_t num_results;
372 	struct delegpt_addr* a, *n, *prev=NULL;
373 
374 	/* fillup sel_rtt and find best rtt in the bunch */
375 	got_num = iter_fill_rtt(iter_env, env, name, namelen, qtype, now, dp,
376 		&low_rtt, blacklist, &num_results);
377 	if(got_num == 0)
378 		return 0;
379 	if(low_rtt >= USEFUL_SERVER_TOP_TIMEOUT &&
380 		/* If all missing (or not fully resolved) targets are lame,
381 		 * then use the remaining lame address. */
382 		((delegpt_count_missing_targets(dp, &alllame) > 0 && !alllame) ||
383 		open_target > 0)) {
384 		verbose(VERB_ALGO, "Bad choices, trying to get more choice");
385 		return 0; /* we want more choice. The best choice is a bad one.
386 			     return 0 to force the caller to fetch more */
387 	}
388 
389 	if(env->cfg->fast_server_permil != 0 && prefetch == 0 &&
390 		num_results > env->cfg->fast_server_num &&
391 		ub_random_max(env->rnd, 1000) < env->cfg->fast_server_permil) {
392 		/* the query is not prefetch, but for a downstream client,
393 		 * there are more servers available then the fastest N we want
394 		 * to choose from. Limit our choice to the fastest servers. */
395 		nth = nth_rtt(dp->result_list, num_results,
396 			env->cfg->fast_server_num);
397 		if(nth > 0) {
398 			rtt_band = nth - low_rtt;
399 			if(rtt_band > RTT_BAND)
400 				rtt_band = RTT_BAND;
401 		}
402 	}
403 
404 	got_num = 0;
405 	a = dp->result_list;
406 	while(a) {
407 		/* skip unsuitable targets */
408 		if(a->sel_rtt == -1) {
409 			prev = a;
410 			a = a->next_result;
411 			continue;
412 		}
413 		/* classify the server address and determine what to do */
414 		swap_to_front = 0;
415 		if(a->sel_rtt >= low_rtt && a->sel_rtt - low_rtt <= rtt_band) {
416 			got_num++;
417 			swap_to_front = 1;
418 		} else if(a->sel_rtt<low_rtt && low_rtt-a->sel_rtt<=rtt_band) {
419 			got_num++;
420 			swap_to_front = 1;
421 		}
422 		/* swap to front if necessary, or move to next result */
423 		if(swap_to_front && prev) {
424 			n = a->next_result;
425 			prev->next_result = n;
426 			a->next_result = dp->result_list;
427 			dp->result_list = a;
428 			a = n;
429 		} else {
430 			prev = a;
431 			a = a->next_result;
432 		}
433 	}
434 	*selected_rtt = low_rtt;
435 
436 	if (env->cfg->prefer_ip6) {
437 		int got_num6 = 0;
438 		int low_rtt6 = 0;
439 		int i;
440 		int attempt = -1; /* filter to make sure addresses have
441 		  less attempts on them than the first, to force round
442 		  robin when all the IPv6 addresses fail */
443 		int num4ok = 0; /* number ip4 at low attempt count */
444 		int num4_lowrtt = 0;
445 		prev = NULL;
446 		a = dp->result_list;
447 		for(i = 0; i < got_num; i++) {
448 			if(!a) break; /* robustness */
449 			swap_to_front = 0;
450 			if(a->addr.ss_family != AF_INET6 && attempt == -1) {
451 				/* if we only have ip4 at low attempt count,
452 				 * then ip6 is failing, and we need to
453 				 * select one of the remaining IPv4 addrs */
454 				attempt = a->attempts;
455 				num4ok++;
456 				num4_lowrtt = a->sel_rtt;
457 			} else if(a->addr.ss_family != AF_INET6 && attempt == a->attempts) {
458 				num4ok++;
459 				if(num4_lowrtt == 0 || a->sel_rtt < num4_lowrtt) {
460 					num4_lowrtt = a->sel_rtt;
461 				}
462 			}
463 			if(a->addr.ss_family == AF_INET6) {
464 				if(attempt == -1) {
465 					attempt = a->attempts;
466 				} else if(a->attempts > attempt) {
467 					break;
468 				}
469 				got_num6++;
470 				swap_to_front = 1;
471 				if(low_rtt6 == 0 || a->sel_rtt < low_rtt6) {
472 					low_rtt6 = a->sel_rtt;
473 				}
474 			}
475 			/* swap to front if IPv6, or move to next result */
476 			if(swap_to_front && prev) {
477 				n = a->next_result;
478 				prev->next_result = n;
479 				a->next_result = dp->result_list;
480 				dp->result_list = a;
481 				a = n;
482 			} else {
483 				prev = a;
484 				a = a->next_result;
485 			}
486 		}
487 		if(got_num6 > 0) {
488 			got_num = got_num6;
489 			*selected_rtt = low_rtt6;
490 		} else if(num4ok > 0) {
491 			got_num = num4ok;
492 			*selected_rtt = num4_lowrtt;
493 		}
494 	} else if (env->cfg->prefer_ip4) {
495 		int got_num4 = 0;
496 		int low_rtt4 = 0;
497 		int i;
498 		int attempt = -1; /* filter to make sure addresses have
499 		  less attempts on them than the first, to force round
500 		  robin when all the IPv4 addresses fail */
501 		int num6ok = 0; /* number ip6 at low attempt count */
502 		int num6_lowrtt = 0;
503 		prev = NULL;
504 		a = dp->result_list;
505 		for(i = 0; i < got_num; i++) {
506 			if(!a) break; /* robustness */
507 			swap_to_front = 0;
508 			if(a->addr.ss_family != AF_INET && attempt == -1) {
509 				/* if we only have ip6 at low attempt count,
510 				 * then ip4 is failing, and we need to
511 				 * select one of the remaining IPv6 addrs */
512 				attempt = a->attempts;
513 				num6ok++;
514 				num6_lowrtt = a->sel_rtt;
515 			} else if(a->addr.ss_family != AF_INET && attempt == a->attempts) {
516 				num6ok++;
517 				if(num6_lowrtt == 0 || a->sel_rtt < num6_lowrtt) {
518 					num6_lowrtt = a->sel_rtt;
519 				}
520 			}
521 			if(a->addr.ss_family == AF_INET) {
522 				if(attempt == -1) {
523 					attempt = a->attempts;
524 				} else if(a->attempts > attempt) {
525 					break;
526 				}
527 				got_num4++;
528 				swap_to_front = 1;
529 				if(low_rtt4 == 0 || a->sel_rtt < low_rtt4) {
530 					low_rtt4 = a->sel_rtt;
531 				}
532 			}
533 			/* swap to front if IPv4, or move to next result */
534 			if(swap_to_front && prev) {
535 				n = a->next_result;
536 				prev->next_result = n;
537 				a->next_result = dp->result_list;
538 				dp->result_list = a;
539 				a = n;
540 			} else {
541 				prev = a;
542 				a = a->next_result;
543 			}
544 		}
545 		if(got_num4 > 0) {
546 			got_num = got_num4;
547 			*selected_rtt = low_rtt4;
548 		} else if(num6ok > 0) {
549 			got_num = num6ok;
550 			*selected_rtt = num6_lowrtt;
551 		}
552 	}
553 	return got_num;
554 }
555 
556 struct delegpt_addr*
557 iter_server_selection(struct iter_env* iter_env,
558 	struct module_env* env, struct delegpt* dp,
559 	uint8_t* name, size_t namelen, uint16_t qtype, int* dnssec_lame,
560 	int* chase_to_rd, int open_target, struct sock_list* blacklist,
561 	time_t prefetch)
562 {
563 	int sel;
564 	int selrtt;
565 	struct delegpt_addr* a, *prev;
566 	int num = iter_filter_order(iter_env, env, name, namelen, qtype,
567 		*env->now, dp, &selrtt, open_target, blacklist, prefetch);
568 
569 	if(num == 0)
570 		return NULL;
571 	verbose(VERB_ALGO, "selrtt %d", selrtt);
572 	if(selrtt > BLACKLIST_PENALTY) {
573 		if(selrtt-BLACKLIST_PENALTY > USEFUL_SERVER_TOP_TIMEOUT*3) {
574 			verbose(VERB_ALGO, "chase to "
575 				"blacklisted recursion lame server");
576 			*chase_to_rd = 1;
577 		}
578 		if(selrtt-BLACKLIST_PENALTY > USEFUL_SERVER_TOP_TIMEOUT*2) {
579 			verbose(VERB_ALGO, "chase to "
580 				"blacklisted dnssec lame server");
581 			*dnssec_lame = 1;
582 		}
583 	} else {
584 		if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*3) {
585 			verbose(VERB_ALGO, "chase to recursion lame server");
586 			*chase_to_rd = 1;
587 		}
588 		if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*2) {
589 			verbose(VERB_ALGO, "chase to dnssec lame server");
590 			*dnssec_lame = 1;
591 		}
592 		if(selrtt == USEFUL_SERVER_TOP_TIMEOUT) {
593 			verbose(VERB_ALGO, "chase to blacklisted lame server");
594 			return NULL;
595 		}
596 	}
597 
598 	if(num == 1) {
599 		a = dp->result_list;
600 		if(++a->attempts < iter_env->outbound_msg_retry)
601 			return a;
602 		dp->result_list = a->next_result;
603 		return a;
604 	}
605 
606 	/* randomly select a target from the list */
607 	log_assert(num > 1);
608 	/* grab secure random number, to pick unexpected server.
609 	 * also we need it to be threadsafe. */
610 	sel = ub_random_max(env->rnd, num);
611 	a = dp->result_list;
612 	prev = NULL;
613 	while(sel > 0 && a) {
614 		prev = a;
615 		a = a->next_result;
616 		sel--;
617 	}
618 	if(!a)  /* robustness */
619 		return NULL;
620 	if(++a->attempts < iter_env->outbound_msg_retry)
621 		return a;
622 	/* remove it from the delegation point result list */
623 	if(prev)
624 		prev->next_result = a->next_result;
625 	else	dp->result_list = a->next_result;
626 	return a;
627 }
628 
629 struct dns_msg*
630 dns_alloc_msg(sldns_buffer* pkt, struct msg_parse* msg,
631 	struct regional* region)
632 {
633 	struct dns_msg* m = (struct dns_msg*)regional_alloc(region,
634 		sizeof(struct dns_msg));
635 	if(!m)
636 		return NULL;
637 	memset(m, 0, sizeof(*m));
638 	if(!parse_create_msg(pkt, msg, NULL, &m->qinfo, &m->rep, region)) {
639 		log_err("malloc failure: allocating incoming dns_msg");
640 		return NULL;
641 	}
642 	return m;
643 }
644 
645 struct dns_msg*
646 dns_copy_msg(struct dns_msg* from, struct regional* region)
647 {
648 	struct dns_msg* m = (struct dns_msg*)regional_alloc(region,
649 		sizeof(struct dns_msg));
650 	if(!m)
651 		return NULL;
652 	m->qinfo = from->qinfo;
653 	if(!(m->qinfo.qname = regional_alloc_init(region, from->qinfo.qname,
654 		from->qinfo.qname_len)))
655 		return NULL;
656 	if(!(m->rep = reply_info_copy(from->rep, NULL, region)))
657 		return NULL;
658 	return m;
659 }
660 
661 void
662 iter_dns_store(struct module_env* env, struct query_info* msgqinf,
663 	struct reply_info* msgrep, int is_referral, time_t leeway, int pside,
664 	struct regional* region, uint16_t flags, time_t qstarttime)
665 {
666 	if(!dns_cache_store(env, msgqinf, msgrep, is_referral, leeway,
667 		pside, region, flags, qstarttime))
668 		log_err("out of memory: cannot store data in cache");
669 }
670 
671 int
672 iter_ns_probability(struct ub_randstate* rnd, int n, int m)
673 {
674 	int sel;
675 	if(n == m) /* 100% chance */
676 		return 1;
677 	/* we do not need secure random numbers here, but
678 	 * we do need it to be threadsafe, so we use this */
679 	sel = ub_random_max(rnd, m);
680 	return (sel < n);
681 }
682 
683 /** detect dependency cycle for query and target */
684 static int
685 causes_cycle(struct module_qstate* qstate, uint8_t* name, size_t namelen,
686 	uint16_t t, uint16_t c)
687 {
688 	struct query_info qinf;
689 	qinf.qname = name;
690 	qinf.qname_len = namelen;
691 	qinf.qtype = t;
692 	qinf.qclass = c;
693 	qinf.local_alias = NULL;
694 	fptr_ok(fptr_whitelist_modenv_detect_cycle(
695 		qstate->env->detect_cycle));
696 	return (*qstate->env->detect_cycle)(qstate, &qinf,
697 		(uint16_t)(BIT_RD|BIT_CD), qstate->is_priming,
698 		qstate->is_valrec);
699 }
700 
701 void
702 iter_mark_cycle_targets(struct module_qstate* qstate, struct delegpt* dp)
703 {
704 	struct delegpt_ns* ns;
705 	for(ns = dp->nslist; ns; ns = ns->next) {
706 		if(ns->resolved)
707 			continue;
708 		/* see if this ns as target causes dependency cycle */
709 		if(causes_cycle(qstate, ns->name, ns->namelen,
710 			LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass) ||
711 		   causes_cycle(qstate, ns->name, ns->namelen,
712 			LDNS_RR_TYPE_A, qstate->qinfo.qclass)) {
713 			log_nametypeclass(VERB_QUERY, "skipping target due "
714 			 	"to dependency cycle (harden-glue: no may "
715 				"fix some of the cycles)",
716 				ns->name, LDNS_RR_TYPE_A,
717 				qstate->qinfo.qclass);
718 			ns->resolved = 1;
719 		}
720 	}
721 }
722 
723 void
724 iter_mark_pside_cycle_targets(struct module_qstate* qstate, struct delegpt* dp)
725 {
726 	struct delegpt_ns* ns;
727 	for(ns = dp->nslist; ns; ns = ns->next) {
728 		if(ns->done_pside4 && ns->done_pside6)
729 			continue;
730 		/* see if this ns as target causes dependency cycle */
731 		if(causes_cycle(qstate, ns->name, ns->namelen,
732 			LDNS_RR_TYPE_A, qstate->qinfo.qclass)) {
733 			log_nametypeclass(VERB_QUERY, "skipping target due "
734 			 	"to dependency cycle", ns->name,
735 				LDNS_RR_TYPE_A, qstate->qinfo.qclass);
736 			ns->done_pside4 = 1;
737 		}
738 		if(causes_cycle(qstate, ns->name, ns->namelen,
739 			LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass)) {
740 			log_nametypeclass(VERB_QUERY, "skipping target due "
741 			 	"to dependency cycle", ns->name,
742 				LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass);
743 			ns->done_pside6 = 1;
744 		}
745 	}
746 }
747 
748 int
749 iter_dp_is_useless(struct query_info* qinfo, uint16_t qflags,
750 	struct delegpt* dp, int supports_ipv4, int supports_ipv6)
751 {
752 	struct delegpt_ns* ns;
753 	struct delegpt_addr* a;
754 	/* check:
755 	 *      o RD qflag is on.
756 	 *      o no addresses are provided.
757 	 *      o all NS items are required glue.
758 	 * OR
759 	 *      o RD qflag is on.
760 	 *      o no addresses are provided.
761 	 *      o the query is for one of the nameservers in dp,
762 	 *        and that nameserver is a glue-name for this dp.
763 	 */
764 	if(!(qflags&BIT_RD))
765 		return 0;
766 	/* either available or unused targets,
767 	 * if they exist, the dp is not useless. */
768 	for(a = dp->usable_list; a; a = a->next_usable) {
769 		if(!addr_is_ip6(&a->addr, a->addrlen) && supports_ipv4)
770 			return 0;
771 		else if(addr_is_ip6(&a->addr, a->addrlen) && supports_ipv6)
772 			return 0;
773 	}
774 	for(a = dp->result_list; a; a = a->next_result) {
775 		if(!addr_is_ip6(&a->addr, a->addrlen) && supports_ipv4)
776 			return 0;
777 		else if(addr_is_ip6(&a->addr, a->addrlen) && supports_ipv6)
778 			return 0;
779 	}
780 
781 	/* see if query is for one of the nameservers, which is glue */
782 	if( ((qinfo->qtype == LDNS_RR_TYPE_A && supports_ipv4) ||
783 		(qinfo->qtype == LDNS_RR_TYPE_AAAA && supports_ipv6)) &&
784 		dname_subdomain_c(qinfo->qname, dp->name) &&
785 		delegpt_find_ns(dp, qinfo->qname, qinfo->qname_len))
786 		return 1;
787 
788 	for(ns = dp->nslist; ns; ns = ns->next) {
789 		if(ns->resolved) /* skip failed targets */
790 			continue;
791 		if(!dname_subdomain_c(ns->name, dp->name))
792 			return 0; /* one address is not required glue */
793 	}
794 	return 1;
795 }
796 
797 int
798 iter_qname_indicates_dnssec(struct module_env* env, struct query_info *qinfo)
799 {
800 	struct trust_anchor* a;
801 	if(!env || !env->anchors || !qinfo || !qinfo->qname)
802 		return 0;
803 	/* a trust anchor exists above the name? */
804 	if((a=anchors_lookup(env->anchors, qinfo->qname, qinfo->qname_len,
805 		qinfo->qclass))) {
806 		if(a->numDS == 0 && a->numDNSKEY == 0) {
807 			/* insecure trust point */
808 			lock_basic_unlock(&a->lock);
809 			return 0;
810 		}
811 		lock_basic_unlock(&a->lock);
812 		return 1;
813 	}
814 	/* no trust anchor above it. */
815 	return 0;
816 }
817 
818 int
819 iter_indicates_dnssec(struct module_env* env, struct delegpt* dp,
820         struct dns_msg* msg, uint16_t dclass)
821 {
822 	struct trust_anchor* a;
823 	/* information not available, !env->anchors can be common */
824 	if(!env || !env->anchors || !dp || !dp->name)
825 		return 0;
826 	/* a trust anchor exists with this name, RRSIGs expected */
827 	if((a=anchor_find(env->anchors, dp->name, dp->namelabs, dp->namelen,
828 		dclass))) {
829 		if(a->numDS == 0 && a->numDNSKEY == 0) {
830 			/* insecure trust point */
831 			lock_basic_unlock(&a->lock);
832 			return 0;
833 		}
834 		lock_basic_unlock(&a->lock);
835 		return 1;
836 	}
837 	/* see if DS rrset was given, in AUTH section */
838 	if(msg && msg->rep &&
839 		reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
840 		LDNS_RR_TYPE_DS, dclass))
841 		return 1;
842 	/* look in key cache */
843 	if(env->key_cache) {
844 		struct key_entry_key* kk = key_cache_obtain(env->key_cache,
845 			dp->name, dp->namelen, dclass, env->scratch, *env->now);
846 		if(kk) {
847 			if(query_dname_compare(kk->name, dp->name) == 0) {
848 			  if(key_entry_isgood(kk) || key_entry_isbad(kk)) {
849 				regional_free_all(env->scratch);
850 				return 1;
851 			  } else if(key_entry_isnull(kk)) {
852 				regional_free_all(env->scratch);
853 				return 0;
854 			  }
855 			}
856 			regional_free_all(env->scratch);
857 		}
858 	}
859 	return 0;
860 }
861 
862 int
863 iter_msg_has_dnssec(struct dns_msg* msg)
864 {
865 	size_t i;
866 	if(!msg || !msg->rep)
867 		return 0;
868 	for(i=0; i<msg->rep->an_numrrsets + msg->rep->ns_numrrsets; i++) {
869 		if(((struct packed_rrset_data*)msg->rep->rrsets[i]->
870 			entry.data)->rrsig_count > 0)
871 			return 1;
872 	}
873 	/* empty message has no DNSSEC info, with DNSSEC the reply is
874 	 * not empty (NSEC) */
875 	return 0;
876 }
877 
878 int iter_msg_from_zone(struct dns_msg* msg, struct delegpt* dp,
879         enum response_type type, uint16_t dclass)
880 {
881 	if(!msg || !dp || !msg->rep || !dp->name)
882 		return 0;
883 	/* SOA RRset - always from reply zone */
884 	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
885 		LDNS_RR_TYPE_SOA, dclass) ||
886 	   reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
887 		LDNS_RR_TYPE_SOA, dclass))
888 		return 1;
889 	if(type == RESPONSE_TYPE_REFERRAL) {
890 		size_t i;
891 		/* if it adds a single label, i.e. we expect .com,
892 		 * and referral to example.com. NS ... , then origin zone
893 		 * is .com. For a referral to sub.example.com. NS ... then
894 		 * we do not know, since example.com. may be in between. */
895 		for(i=0; i<msg->rep->an_numrrsets+msg->rep->ns_numrrsets;
896 			i++) {
897 			struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
898 			if(ntohs(s->rk.type) == LDNS_RR_TYPE_NS &&
899 				ntohs(s->rk.rrset_class) == dclass) {
900 				int l = dname_count_labels(s->rk.dname);
901 				if(l == dp->namelabs + 1 &&
902 					dname_strict_subdomain(s->rk.dname,
903 					l, dp->name, dp->namelabs))
904 					return 1;
905 			}
906 		}
907 		return 0;
908 	}
909 	log_assert(type==RESPONSE_TYPE_ANSWER || type==RESPONSE_TYPE_CNAME);
910 	/* not a referral, and not lame delegation (upwards), so,
911 	 * any NS rrset must be from the zone itself */
912 	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
913 		LDNS_RR_TYPE_NS, dclass) ||
914 	   reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
915 		LDNS_RR_TYPE_NS, dclass))
916 		return 1;
917 	/* a DNSKEY set is expected at the zone apex as well */
918 	/* this is for 'minimal responses' for DNSKEYs */
919 	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
920 		LDNS_RR_TYPE_DNSKEY, dclass))
921 		return 1;
922 	return 0;
923 }
924 
925 /**
926  * check equality of two rrsets
927  * @param k1: rrset
928  * @param k2: rrset
929  * @return true if equal
930  */
931 static int
932 rrset_equal(struct ub_packed_rrset_key* k1, struct ub_packed_rrset_key* k2)
933 {
934 	struct packed_rrset_data* d1 = (struct packed_rrset_data*)
935 		k1->entry.data;
936 	struct packed_rrset_data* d2 = (struct packed_rrset_data*)
937 		k2->entry.data;
938 	size_t i, t;
939 	if(k1->rk.dname_len != k2->rk.dname_len ||
940 		k1->rk.flags != k2->rk.flags ||
941 		k1->rk.type != k2->rk.type ||
942 		k1->rk.rrset_class != k2->rk.rrset_class ||
943 		query_dname_compare(k1->rk.dname, k2->rk.dname) != 0)
944 		return 0;
945 	if(	/* do not check ttl: d1->ttl != d2->ttl || */
946 		d1->count != d2->count ||
947 		d1->rrsig_count != d2->rrsig_count ||
948 		d1->trust != d2->trust ||
949 		d1->security != d2->security)
950 		return 0;
951 	t = d1->count + d1->rrsig_count;
952 	for(i=0; i<t; i++) {
953 		if(d1->rr_len[i] != d2->rr_len[i] ||
954 			/* no ttl check: d1->rr_ttl[i] != d2->rr_ttl[i] ||*/
955 			memcmp(d1->rr_data[i], d2->rr_data[i],
956 				d1->rr_len[i]) != 0)
957 			return 0;
958 	}
959 	return 1;
960 }
961 
962 /** compare rrsets and sort canonically.  Compares rrset name, type, class.
963  * return 0 if equal, +1 if x > y, and -1 if x < y.
964  */
965 static int
966 rrset_canonical_sort_cmp(const void* x, const void* y)
967 {
968 	struct ub_packed_rrset_key* rrx = *(struct ub_packed_rrset_key**)x;
969 	struct ub_packed_rrset_key* rry = *(struct ub_packed_rrset_key**)y;
970 	int r = dname_canonical_compare(rrx->rk.dname, rry->rk.dname);
971 	if(r != 0)
972 		return r;
973 	if(rrx->rk.type != rry->rk.type) {
974 		if(ntohs(rrx->rk.type) > ntohs(rry->rk.type))
975 			return 1;
976 		else	return -1;
977 	}
978 	if(rrx->rk.rrset_class != rry->rk.rrset_class) {
979 		if(ntohs(rrx->rk.rrset_class) > ntohs(rry->rk.rrset_class))
980 			return 1;
981 		else	return -1;
982 	}
983 	return 0;
984 }
985 
986 int
987 reply_equal(struct reply_info* p, struct reply_info* q, struct regional* region)
988 {
989 	size_t i;
990 	struct ub_packed_rrset_key** sorted_p, **sorted_q;
991 	if(p->flags != q->flags ||
992 		p->qdcount != q->qdcount ||
993 		/* do not check TTL, this may differ */
994 		/*
995 		p->ttl != q->ttl ||
996 		p->prefetch_ttl != q->prefetch_ttl ||
997 		*/
998 		p->security != q->security ||
999 		p->an_numrrsets != q->an_numrrsets ||
1000 		p->ns_numrrsets != q->ns_numrrsets ||
1001 		p->ar_numrrsets != q->ar_numrrsets ||
1002 		p->rrset_count != q->rrset_count)
1003 		return 0;
1004 	/* sort the rrsets in the authority and additional sections before
1005 	 * compare, the query and answer sections are ordered in the sequence
1006 	 * they should have (eg. one after the other for aliases). */
1007 	sorted_p = (struct ub_packed_rrset_key**)regional_alloc_init(
1008 		region, p->rrsets, sizeof(*sorted_p)*p->rrset_count);
1009 	if(!sorted_p) return 0;
1010 	log_assert(p->an_numrrsets + p->ns_numrrsets + p->ar_numrrsets <=
1011 		p->rrset_count);
1012 	qsort(sorted_p + p->an_numrrsets, p->ns_numrrsets,
1013 		sizeof(*sorted_p), rrset_canonical_sort_cmp);
1014 	qsort(sorted_p + p->an_numrrsets + p->ns_numrrsets, p->ar_numrrsets,
1015 		sizeof(*sorted_p), rrset_canonical_sort_cmp);
1016 
1017 	sorted_q = (struct ub_packed_rrset_key**)regional_alloc_init(
1018 		region, q->rrsets, sizeof(*sorted_q)*q->rrset_count);
1019 	if(!sorted_q) {
1020 		regional_free_all(region);
1021 		return 0;
1022 	}
1023 	log_assert(q->an_numrrsets + q->ns_numrrsets + q->ar_numrrsets <=
1024 		q->rrset_count);
1025 	qsort(sorted_q + q->an_numrrsets, q->ns_numrrsets,
1026 		sizeof(*sorted_q), rrset_canonical_sort_cmp);
1027 	qsort(sorted_q + q->an_numrrsets + q->ns_numrrsets, q->ar_numrrsets,
1028 		sizeof(*sorted_q), rrset_canonical_sort_cmp);
1029 
1030 	/* compare the rrsets */
1031 	for(i=0; i<p->rrset_count; i++) {
1032 		if(!rrset_equal(sorted_p[i], sorted_q[i])) {
1033 			if(!rrset_canonical_equal(region, sorted_p[i],
1034 				sorted_q[i])) {
1035 				regional_free_all(region);
1036 				return 0;
1037 			}
1038 		}
1039 	}
1040 	regional_free_all(region);
1041 	return 1;
1042 }
1043 
1044 void
1045 caps_strip_reply(struct reply_info* rep)
1046 {
1047 	size_t i;
1048 	if(!rep) return;
1049 	/* see if message is a referral, in which case the additional and
1050 	 * NS record cannot be removed */
1051 	/* referrals have the AA flag unset (strict check, not elsewhere in
1052 	 * unbound, but for 0x20 this is very convenient). */
1053 	if(!(rep->flags&BIT_AA))
1054 		return;
1055 	/* remove the additional section from the reply */
1056 	if(rep->ar_numrrsets != 0) {
1057 		verbose(VERB_ALGO, "caps fallback: removing additional section");
1058 		rep->rrset_count -= rep->ar_numrrsets;
1059 		rep->ar_numrrsets = 0;
1060 	}
1061 	/* is there an NS set in the authority section to remove? */
1062 	/* the failure case (Cisco firewalls) only has one rrset in authsec */
1063 	for(i=rep->an_numrrsets; i<rep->an_numrrsets+rep->ns_numrrsets; i++) {
1064 		struct ub_packed_rrset_key* s = rep->rrsets[i];
1065 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_NS) {
1066 			/* remove NS rrset and break from loop (loop limits
1067 			 * have changed) */
1068 			/* move last rrset into this position (there is no
1069 			 * additional section any more) */
1070 			verbose(VERB_ALGO, "caps fallback: removing NS rrset");
1071 			if(i < rep->rrset_count-1)
1072 				rep->rrsets[i]=rep->rrsets[rep->rrset_count-1];
1073 			rep->rrset_count --;
1074 			rep->ns_numrrsets --;
1075 			break;
1076 		}
1077 	}
1078 }
1079 
1080 int caps_failed_rcode(struct reply_info* rep)
1081 {
1082 	return !(FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NOERROR ||
1083 		FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NXDOMAIN);
1084 }
1085 
1086 void
1087 iter_store_parentside_rrset(struct module_env* env,
1088 	struct ub_packed_rrset_key* rrset)
1089 {
1090 	struct rrset_ref ref;
1091 	rrset = packed_rrset_copy_alloc(rrset, env->alloc, *env->now);
1092 	if(!rrset) {
1093 		log_err("malloc failure in store_parentside_rrset");
1094 		return;
1095 	}
1096 	rrset->rk.flags |= PACKED_RRSET_PARENT_SIDE;
1097 	rrset->entry.hash = rrset_key_hash(&rrset->rk);
1098 	ref.key = rrset;
1099 	ref.id = rrset->id;
1100 	/* ignore ret: if it was in the cache, ref updated */
1101 	(void)rrset_cache_update(env->rrset_cache, &ref, env->alloc, *env->now);
1102 }
1103 
1104 /** fetch NS record from reply, if any */
1105 static struct ub_packed_rrset_key*
1106 reply_get_NS_rrset(struct reply_info* rep)
1107 {
1108 	size_t i;
1109 	for(i=0; i<rep->rrset_count; i++) {
1110 		if(rep->rrsets[i]->rk.type == htons(LDNS_RR_TYPE_NS)) {
1111 			return rep->rrsets[i];
1112 		}
1113 	}
1114 	return NULL;
1115 }
1116 
1117 void
1118 iter_store_parentside_NS(struct module_env* env, struct reply_info* rep)
1119 {
1120 	struct ub_packed_rrset_key* rrset = reply_get_NS_rrset(rep);
1121 	if(rrset) {
1122 		log_rrset_key(VERB_ALGO, "store parent-side NS", rrset);
1123 		iter_store_parentside_rrset(env, rrset);
1124 	}
1125 }
1126 
1127 void iter_store_parentside_neg(struct module_env* env,
1128         struct query_info* qinfo, struct reply_info* rep)
1129 {
1130 	/* TTL: NS from referral in iq->deleg_msg,
1131 	 *      or first RR from iq->response,
1132 	 *      or servfail5secs if !iq->response */
1133 	time_t ttl = NORR_TTL;
1134 	struct ub_packed_rrset_key* neg;
1135 	struct packed_rrset_data* newd;
1136 	if(rep) {
1137 		struct ub_packed_rrset_key* rrset = reply_get_NS_rrset(rep);
1138 		if(!rrset && rep->rrset_count != 0) rrset = rep->rrsets[0];
1139 		if(rrset) ttl = ub_packed_rrset_ttl(rrset);
1140 	}
1141 	/* create empty rrset to store */
1142 	neg = (struct ub_packed_rrset_key*)regional_alloc(env->scratch,
1143 	                sizeof(struct ub_packed_rrset_key));
1144 	if(!neg) {
1145 		log_err("out of memory in store_parentside_neg");
1146 		return;
1147 	}
1148 	memset(&neg->entry, 0, sizeof(neg->entry));
1149 	neg->entry.key = neg;
1150 	neg->rk.type = htons(qinfo->qtype);
1151 	neg->rk.rrset_class = htons(qinfo->qclass);
1152 	neg->rk.flags = 0;
1153 	neg->rk.dname = regional_alloc_init(env->scratch, qinfo->qname,
1154 		qinfo->qname_len);
1155 	if(!neg->rk.dname) {
1156 		log_err("out of memory in store_parentside_neg");
1157 		return;
1158 	}
1159 	neg->rk.dname_len = qinfo->qname_len;
1160 	neg->entry.hash = rrset_key_hash(&neg->rk);
1161 	newd = (struct packed_rrset_data*)regional_alloc_zero(env->scratch,
1162 		sizeof(struct packed_rrset_data) + sizeof(size_t) +
1163 		sizeof(uint8_t*) + sizeof(time_t) + sizeof(uint16_t));
1164 	if(!newd) {
1165 		log_err("out of memory in store_parentside_neg");
1166 		return;
1167 	}
1168 	neg->entry.data = newd;
1169 	newd->ttl = ttl;
1170 	/* entry must have one RR, otherwise not valid in cache.
1171 	 * put in one RR with empty rdata: those are ignored as nameserver */
1172 	newd->count = 1;
1173 	newd->rrsig_count = 0;
1174 	newd->trust = rrset_trust_ans_noAA;
1175 	newd->rr_len = (size_t*)((uint8_t*)newd +
1176 		sizeof(struct packed_rrset_data));
1177 	newd->rr_len[0] = 0 /* zero len rdata */ + sizeof(uint16_t);
1178 	packed_rrset_ptr_fixup(newd);
1179 	newd->rr_ttl[0] = newd->ttl;
1180 	sldns_write_uint16(newd->rr_data[0], 0 /* zero len rdata */);
1181 	/* store it */
1182 	log_rrset_key(VERB_ALGO, "store parent-side negative", neg);
1183 	iter_store_parentside_rrset(env, neg);
1184 }
1185 
1186 int
1187 iter_lookup_parent_NS_from_cache(struct module_env* env, struct delegpt* dp,
1188 	struct regional* region, struct query_info* qinfo)
1189 {
1190 	struct ub_packed_rrset_key* akey;
1191 	akey = rrset_cache_lookup(env->rrset_cache, dp->name,
1192 		dp->namelen, LDNS_RR_TYPE_NS, qinfo->qclass,
1193 		PACKED_RRSET_PARENT_SIDE, *env->now, 0);
1194 	if(akey) {
1195 		log_rrset_key(VERB_ALGO, "found parent-side NS in cache", akey);
1196 		dp->has_parent_side_NS = 1;
1197 		/* and mark the new names as lame */
1198 		if(!delegpt_rrset_add_ns(dp, region, akey, 1)) {
1199 			lock_rw_unlock(&akey->entry.lock);
1200 			return 0;
1201 		}
1202 		lock_rw_unlock(&akey->entry.lock);
1203 	}
1204 	return 1;
1205 }
1206 
1207 int iter_lookup_parent_glue_from_cache(struct module_env* env,
1208         struct delegpt* dp, struct regional* region, struct query_info* qinfo)
1209 {
1210 	struct ub_packed_rrset_key* akey;
1211 	struct delegpt_ns* ns;
1212 	size_t num = delegpt_count_targets(dp);
1213 	for(ns = dp->nslist; ns; ns = ns->next) {
1214 		if(ns->cache_lookup_count > ITERATOR_NAME_CACHELOOKUP_MAX_PSIDE)
1215 			continue;
1216 		ns->cache_lookup_count++;
1217 		/* get cached parentside A */
1218 		akey = rrset_cache_lookup(env->rrset_cache, ns->name,
1219 			ns->namelen, LDNS_RR_TYPE_A, qinfo->qclass,
1220 			PACKED_RRSET_PARENT_SIDE, *env->now, 0);
1221 		if(akey) {
1222 			log_rrset_key(VERB_ALGO, "found parent-side", akey);
1223 			ns->done_pside4 = 1;
1224 			/* a negative-cache-element has no addresses it adds */
1225 			if(!delegpt_add_rrset_A(dp, region, akey, 1, NULL))
1226 				log_err("malloc failure in lookup_parent_glue");
1227 			lock_rw_unlock(&akey->entry.lock);
1228 		}
1229 		/* get cached parentside AAAA */
1230 		akey = rrset_cache_lookup(env->rrset_cache, ns->name,
1231 			ns->namelen, LDNS_RR_TYPE_AAAA, qinfo->qclass,
1232 			PACKED_RRSET_PARENT_SIDE, *env->now, 0);
1233 		if(akey) {
1234 			log_rrset_key(VERB_ALGO, "found parent-side", akey);
1235 			ns->done_pside6 = 1;
1236 			/* a negative-cache-element has no addresses it adds */
1237 			if(!delegpt_add_rrset_AAAA(dp, region, akey, 1, NULL))
1238 				log_err("malloc failure in lookup_parent_glue");
1239 			lock_rw_unlock(&akey->entry.lock);
1240 		}
1241 	}
1242 	/* see if new (but lame) addresses have become available */
1243 	return delegpt_count_targets(dp) != num;
1244 }
1245 
1246 int
1247 iter_get_next_root(struct iter_hints* hints, struct iter_forwards* fwd,
1248 	uint16_t* c)
1249 {
1250 	uint16_t c1 = *c, c2 = *c;
1251 	int r1 = hints_next_root(hints, &c1);
1252 	int r2 = forwards_next_root(fwd, &c2);
1253 	if(!r1 && !r2) /* got none, end of list */
1254 		return 0;
1255 	else if(!r1) /* got one, return that */
1256 		*c = c2;
1257 	else if(!r2)
1258 		*c = c1;
1259 	else if(c1 < c2) /* got both take smallest */
1260 		*c = c1;
1261 	else	*c = c2;
1262 	return 1;
1263 }
1264 
1265 void
1266 iter_scrub_ds(struct dns_msg* msg, struct ub_packed_rrset_key* ns, uint8_t* z)
1267 {
1268 	/* Only the DS record for the delegation itself is expected.
1269 	 * We allow DS for everything between the bailiwick and the
1270 	 * zonecut, thus DS records must be at or above the zonecut.
1271 	 * And the DS records must be below the server authority zone.
1272 	 * The answer section is already scrubbed. */
1273 	size_t i = msg->rep->an_numrrsets;
1274 	while(i < (msg->rep->an_numrrsets + msg->rep->ns_numrrsets)) {
1275 		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1276 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DS &&
1277 			(!ns || !dname_subdomain_c(ns->rk.dname, s->rk.dname)
1278 			|| query_dname_compare(z, s->rk.dname) == 0)) {
1279 			log_nametypeclass(VERB_ALGO, "removing irrelevant DS",
1280 				s->rk.dname, ntohs(s->rk.type),
1281 				ntohs(s->rk.rrset_class));
1282 			memmove(msg->rep->rrsets+i, msg->rep->rrsets+i+1,
1283 				sizeof(struct ub_packed_rrset_key*) *
1284 				(msg->rep->rrset_count-i-1));
1285 			msg->rep->ns_numrrsets--;
1286 			msg->rep->rrset_count--;
1287 			/* stay at same i, but new record */
1288 			continue;
1289 		}
1290 		i++;
1291 	}
1292 }
1293 
1294 void
1295 iter_scrub_nxdomain(struct dns_msg* msg)
1296 {
1297 	if(msg->rep->an_numrrsets == 0)
1298 		return;
1299 
1300 	memmove(msg->rep->rrsets, msg->rep->rrsets+msg->rep->an_numrrsets,
1301 		sizeof(struct ub_packed_rrset_key*) *
1302 		(msg->rep->rrset_count-msg->rep->an_numrrsets));
1303 	msg->rep->rrset_count -= msg->rep->an_numrrsets;
1304 	msg->rep->an_numrrsets = 0;
1305 }
1306 
1307 void iter_dec_attempts(struct delegpt* dp, int d, int outbound_msg_retry)
1308 {
1309 	struct delegpt_addr* a;
1310 	for(a=dp->target_list; a; a = a->next_target) {
1311 		if(a->attempts >= outbound_msg_retry) {
1312 			/* add back to result list */
1313 			a->next_result = dp->result_list;
1314 			dp->result_list = a;
1315 		}
1316 		if(a->attempts > d)
1317 			a->attempts -= d;
1318 		else a->attempts = 0;
1319 	}
1320 }
1321 
1322 void iter_merge_retry_counts(struct delegpt* dp, struct delegpt* old,
1323 	int outbound_msg_retry)
1324 {
1325 	struct delegpt_addr* a, *o, *prev;
1326 	for(a=dp->target_list; a; a = a->next_target) {
1327 		o = delegpt_find_addr(old, &a->addr, a->addrlen);
1328 		if(o) {
1329 			log_addr(VERB_ALGO, "copy attempt count previous dp",
1330 				&a->addr, a->addrlen);
1331 			a->attempts = o->attempts;
1332 		}
1333 	}
1334 	prev = NULL;
1335 	a = dp->usable_list;
1336 	while(a) {
1337 		if(a->attempts >= outbound_msg_retry) {
1338 			log_addr(VERB_ALGO, "remove from usable list dp",
1339 				&a->addr, a->addrlen);
1340 			/* remove from result list */
1341 			if(prev)
1342 				prev->next_usable = a->next_usable;
1343 			else	dp->usable_list = a->next_usable;
1344 			/* prev stays the same */
1345 			a = a->next_usable;
1346 			continue;
1347 		}
1348 		prev = a;
1349 		a = a->next_usable;
1350 	}
1351 }
1352 
1353 int
1354 iter_ds_toolow(struct dns_msg* msg, struct delegpt* dp)
1355 {
1356 	/* if for query example.com, there is example.com SOA or a subdomain
1357 	 * of example.com, then we are too low and need to fetch NS. */
1358 	size_t i;
1359 	/* if we have a DNAME or CNAME we are probably wrong */
1360 	/* if we have a qtype DS in the answer section, its fine */
1361 	for(i=0; i < msg->rep->an_numrrsets; i++) {
1362 		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1363 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DNAME ||
1364 			ntohs(s->rk.type) == LDNS_RR_TYPE_CNAME) {
1365 			/* not the right answer, maybe too low, check the
1366 			 * RRSIG signer name (if there is any) for a hint
1367 			 * that it is from the dp zone anyway */
1368 			uint8_t* sname;
1369 			size_t slen;
1370 			val_find_rrset_signer(s, &sname, &slen);
1371 			if(sname && query_dname_compare(dp->name, sname)==0)
1372 				return 0; /* it is fine, from the right dp */
1373 			return 1;
1374 		}
1375 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DS)
1376 			return 0; /* fine, we have a DS record */
1377 	}
1378 	for(i=msg->rep->an_numrrsets;
1379 		i < msg->rep->an_numrrsets + msg->rep->ns_numrrsets; i++) {
1380 		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1381 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_SOA) {
1382 			if(dname_subdomain_c(s->rk.dname, msg->qinfo.qname))
1383 				return 1; /* point is too low */
1384 			if(query_dname_compare(s->rk.dname, dp->name)==0)
1385 				return 0; /* right dp */
1386 		}
1387 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC ||
1388 			ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC3) {
1389 			uint8_t* sname;
1390 			size_t slen;
1391 			val_find_rrset_signer(s, &sname, &slen);
1392 			if(sname && query_dname_compare(dp->name, sname)==0)
1393 				return 0; /* it is fine, from the right dp */
1394 			return 1;
1395 		}
1396 	}
1397 	/* we do not know */
1398 	return 1;
1399 }
1400 
1401 int iter_dp_cangodown(struct query_info* qinfo, struct delegpt* dp)
1402 {
1403 	/* no delegation point, do not see how we can go down,
1404 	 * robust check, it should really exist */
1405 	if(!dp) return 0;
1406 
1407 	/* see if dp equals the qname, then we cannot go down further */
1408 	if(query_dname_compare(qinfo->qname, dp->name) == 0)
1409 		return 0;
1410 	/* if dp is one label above the name we also cannot go down further */
1411 	if(dname_count_labels(qinfo->qname) == dp->namelabs+1)
1412 		return 0;
1413 	return 1;
1414 }
1415 
1416 int
1417 iter_stub_fwd_no_cache(struct module_qstate *qstate, struct query_info *qinf,
1418 	uint8_t** retdpname, size_t* retdpnamelen)
1419 {
1420 	struct iter_hints_stub *stub;
1421 	struct delegpt *dp;
1422 
1423 	/* Check for stub. */
1424 	stub = hints_lookup_stub(qstate->env->hints, qinf->qname,
1425 	    qinf->qclass, NULL);
1426 	dp = forwards_lookup(qstate->env->fwds, qinf->qname, qinf->qclass);
1427 
1428 	/* see if forward or stub is more pertinent */
1429 	if(stub && stub->dp && dp) {
1430 		if(dname_strict_subdomain(dp->name, dp->namelabs,
1431 			stub->dp->name, stub->dp->namelabs)) {
1432 			stub = NULL; /* ignore stub, forward is lower */
1433 		} else {
1434 			dp = NULL; /* ignore forward, stub is lower */
1435 		}
1436 	}
1437 
1438 	/* check stub */
1439 	if (stub != NULL && stub->dp != NULL) {
1440 		if(stub->dp->no_cache) {
1441 			char qname[255+1];
1442 			char dpname[255+1];
1443 			dname_str(qinf->qname, qname);
1444 			dname_str(stub->dp->name, dpname);
1445 			verbose(VERB_ALGO, "stub for %s %s has no_cache", qname, dpname);
1446 		}
1447 		if(retdpname) {
1448 			*retdpname = stub->dp->name;
1449 			*retdpnamelen = stub->dp->namelen;
1450 		}
1451 		return (stub->dp->no_cache);
1452 	}
1453 
1454 	/* Check for forward. */
1455 	if (dp) {
1456 		if(dp->no_cache) {
1457 			char qname[255+1];
1458 			char dpname[255+1];
1459 			dname_str(qinf->qname, qname);
1460 			dname_str(dp->name, dpname);
1461 			verbose(VERB_ALGO, "forward for %s %s has no_cache", qname, dpname);
1462 		}
1463 		if(retdpname) {
1464 			*retdpname = dp->name;
1465 			*retdpnamelen = dp->namelen;
1466 		}
1467 		return (dp->no_cache);
1468 	}
1469 	if(retdpname) {
1470 		*retdpname = NULL;
1471 		*retdpnamelen = 0;
1472 	}
1473 	return 0;
1474 }
1475 
1476 void iterator_set_ip46_support(struct module_stack* mods,
1477 	struct module_env* env, struct outside_network* outnet)
1478 {
1479 	int m = modstack_find(mods, "iterator");
1480 	struct iter_env* ie = NULL;
1481 	if(m == -1)
1482 		return;
1483 	ie = (struct iter_env*)env->modinfo[m];
1484 	if(outnet->pending == NULL)
1485 		return; /* we are in testbound, no rbtree for UDP */
1486 	if(outnet->num_ip4 == 0)
1487 		ie->supports_ipv4 = 0;
1488 	if(outnet->num_ip6 == 0)
1489 		ie->supports_ipv6 = 0;
1490 }
1491