1 /*
2  * iterator/iter_utils.c - iterative resolver module utility functions.
3  *
4  * Copyright (c) 2007, NLnet Labs. All rights reserved.
5  *
6  * This software is open source.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * Redistributions of source code must retain the above copyright notice,
13  * this list of conditions and the following disclaimer.
14  *
15  * Redistributions in binary form must reproduce the above copyright notice,
16  * this list of conditions and the following disclaimer in the documentation
17  * and/or other materials provided with the distribution.
18  *
19  * Neither the name of the NLNET LABS nor the names of its contributors may
20  * be used to endorse or promote products derived from this software without
21  * specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27  * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /**
37  * \file
38  *
39  * This file contains functions to assist the iterator module.
40  * Configuration options. Forward zones.
41  */
42 #include "config.h"
43 #include "iterator/iter_utils.h"
44 #include "iterator/iterator.h"
45 #include "iterator/iter_hints.h"
46 #include "iterator/iter_fwd.h"
47 #include "iterator/iter_donotq.h"
48 #include "iterator/iter_delegpt.h"
49 #include "iterator/iter_priv.h"
50 #include "services/cache/infra.h"
51 #include "services/cache/dns.h"
52 #include "services/cache/rrset.h"
53 #include "util/net_help.h"
54 #include "util/module.h"
55 #include "util/log.h"
56 #include "util/config_file.h"
57 #include "util/regional.h"
58 #include "util/data/msgparse.h"
59 #include "util/data/dname.h"
60 #include "util/random.h"
61 #include "util/fptr_wlist.h"
62 #include "validator/val_anchor.h"
63 #include "validator/val_kcache.h"
64 #include "validator/val_kentry.h"
65 #include "validator/val_utils.h"
66 #include "validator/val_sigcrypt.h"
67 #include "sldns/sbuffer.h"
68 #include "sldns/str2wire.h"
69 
70 /** time when nameserver glue is said to be 'recent' */
71 #define SUSPICION_RECENT_EXPIRY 86400
72 /** penalty to validation failed blacklisted IPs */
73 #define BLACKLIST_PENALTY (USEFUL_SERVER_TOP_TIMEOUT*4)
74 
75 /** fillup fetch policy array */
76 static void
77 fetch_fill(struct iter_env* ie, const char* str)
78 {
79 	char* s = (char*)str, *e;
80 	int i;
81 	for(i=0; i<ie->max_dependency_depth+1; i++) {
82 		ie->target_fetch_policy[i] = strtol(s, &e, 10);
83 		if(s == e)
84 			fatal_exit("cannot parse fetch policy number %s", s);
85 		s = e;
86 	}
87 }
88 
89 /** Read config string that represents the target fetch policy */
90 static int
91 read_fetch_policy(struct iter_env* ie, const char* str)
92 {
93 	int count = cfg_count_numbers(str);
94 	if(count < 1) {
95 		log_err("Cannot parse target fetch policy: \"%s\"", str);
96 		return 0;
97 	}
98 	ie->max_dependency_depth = count - 1;
99 	ie->target_fetch_policy = (int*)calloc(
100 		(size_t)ie->max_dependency_depth+1, sizeof(int));
101 	if(!ie->target_fetch_policy) {
102 		log_err("alloc fetch policy: out of memory");
103 		return 0;
104 	}
105 	fetch_fill(ie, str);
106 	return 1;
107 }
108 
109 /** apply config caps whitelist items to name tree */
110 static int
111 caps_white_apply_cfg(rbtree_t* ntree, struct config_file* cfg)
112 {
113 	struct config_strlist* p;
114 	for(p=cfg->caps_whitelist; p; p=p->next) {
115 		struct name_tree_node* n;
116 		size_t len;
117 		uint8_t* nm = sldns_str2wire_dname(p->str, &len);
118 		if(!nm) {
119 			log_err("could not parse %s", p->str);
120 			return 0;
121 		}
122 		n = (struct name_tree_node*)calloc(1, sizeof(*n));
123 		if(!n) {
124 			log_err("out of memory");
125 			free(nm);
126 			return 0;
127 		}
128 		n->node.key = n;
129 		n->name = nm;
130 		n->len = len;
131 		n->labs = dname_count_labels(nm);
132 		n->dclass = LDNS_RR_CLASS_IN;
133 		if(!name_tree_insert(ntree, n, nm, len, n->labs, n->dclass)) {
134 			/* duplicate element ignored, idempotent */
135 			free(n->name);
136 			free(n);
137 		}
138 	}
139 	name_tree_init_parents(ntree);
140 	return 1;
141 }
142 
143 int
144 iter_apply_cfg(struct iter_env* iter_env, struct config_file* cfg)
145 {
146 	int i;
147 	/* target fetch policy */
148 	if(!read_fetch_policy(iter_env, cfg->target_fetch_policy))
149 		return 0;
150 	for(i=0; i<iter_env->max_dependency_depth+1; i++)
151 		verbose(VERB_QUERY, "target fetch policy for level %d is %d",
152 			i, iter_env->target_fetch_policy[i]);
153 
154 	if(!iter_env->donotq)
155 		iter_env->donotq = donotq_create();
156 	if(!iter_env->donotq || !donotq_apply_cfg(iter_env->donotq, cfg)) {
157 		log_err("Could not set donotqueryaddresses");
158 		return 0;
159 	}
160 	if(!iter_env->priv)
161 		iter_env->priv = priv_create();
162 	if(!iter_env->priv || !priv_apply_cfg(iter_env->priv, cfg)) {
163 		log_err("Could not set private addresses");
164 		return 0;
165 	}
166 	if(cfg->caps_whitelist) {
167 		if(!iter_env->caps_white)
168 			iter_env->caps_white = rbtree_create(name_tree_compare);
169 		if(!iter_env->caps_white || !caps_white_apply_cfg(
170 			iter_env->caps_white, cfg)) {
171 			log_err("Could not set capsforid whitelist");
172 			return 0;
173 		}
174 
175 	}
176 	iter_env->supports_ipv6 = cfg->do_ip6;
177 	iter_env->supports_ipv4 = cfg->do_ip4;
178 	return 1;
179 }
180 
181 /** filter out unsuitable targets
182  * @param iter_env: iterator environment with ipv6-support flag.
183  * @param env: module environment with infra cache.
184  * @param name: zone name
185  * @param namelen: length of name
186  * @param qtype: query type (host order).
187  * @param now: current time
188  * @param a: address in delegation point we are examining.
189  * @return an integer that signals the target suitability.
190  *	as follows:
191  *	-1: The address should be omitted from the list.
192  *	    Because:
193  *		o The address is bogus (DNSSEC validation failure).
194  *		o Listed as donotquery
195  *		o is ipv6 but no ipv6 support (in operating system).
196  *		o is ipv4 but no ipv4 support (in operating system).
197  *		o is lame
198  *	Otherwise, an rtt in milliseconds.
199  *	0 .. USEFUL_SERVER_TOP_TIMEOUT-1
200  *		The roundtrip time timeout estimate. less than 2 minutes.
201  *		Note that util/rtt.c has a MIN_TIMEOUT of 50 msec, thus
202  *		values 0 .. 49 are not used, unless that is changed.
203  *	USEFUL_SERVER_TOP_TIMEOUT
204  *		This value exactly is given for unresponsive blacklisted.
205  *	USEFUL_SERVER_TOP_TIMEOUT+1
206  *		For non-blacklisted servers: huge timeout, but has traffic.
207  *	USEFUL_SERVER_TOP_TIMEOUT*1 ..
208  *		parent-side lame servers get this penalty. A dispreferential
209  *		server. (lame in delegpt).
210  *	USEFUL_SERVER_TOP_TIMEOUT*2 ..
211  *		dnsseclame servers get penalty
212  *	USEFUL_SERVER_TOP_TIMEOUT*3 ..
213  *		recursion lame servers get penalty
214  *	UNKNOWN_SERVER_NICENESS
215  *		If no information is known about the server, this is
216  *		returned. 376 msec or so.
217  *	+BLACKLIST_PENALTY (of USEFUL_TOP_TIMEOUT*4) for dnssec failed IPs.
218  *
219  * When a final value is chosen that is dnsseclame ; dnsseclameness checking
220  * is turned off (so we do not discard the reply).
221  * When a final value is chosen that is recursionlame; RD bit is set on query.
222  * Because of the numbers this means recursionlame also have dnssec lameness
223  * checking turned off.
224  */
225 static int
226 iter_filter_unsuitable(struct iter_env* iter_env, struct module_env* env,
227 	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
228 	struct delegpt_addr* a)
229 {
230 	int rtt, lame, reclame, dnsseclame;
231 	if(a->bogus)
232 		return -1; /* address of server is bogus */
233 	if(donotq_lookup(iter_env->donotq, &a->addr, a->addrlen)) {
234 		log_addr(VERB_ALGO, "skip addr on the donotquery list",
235 			&a->addr, a->addrlen);
236 		return -1; /* server is on the donotquery list */
237 	}
238 	if(!iter_env->supports_ipv6 && addr_is_ip6(&a->addr, a->addrlen)) {
239 		return -1; /* there is no ip6 available */
240 	}
241 	if(!iter_env->supports_ipv4 && !addr_is_ip6(&a->addr, a->addrlen)) {
242 		return -1; /* there is no ip4 available */
243 	}
244 	/* check lameness - need zone , class info */
245 	if(infra_get_lame_rtt(env->infra_cache, &a->addr, a->addrlen,
246 		name, namelen, qtype, &lame, &dnsseclame, &reclame,
247 		&rtt, now)) {
248 		log_addr(VERB_ALGO, "servselect", &a->addr, a->addrlen);
249 		verbose(VERB_ALGO, "   rtt=%d%s%s%s%s", rtt,
250 			lame?" LAME":"",
251 			dnsseclame?" DNSSEC_LAME":"",
252 			reclame?" REC_LAME":"",
253 			a->lame?" ADDR_LAME":"");
254 		if(lame)
255 			return -1; /* server is lame */
256 		else if(rtt >= USEFUL_SERVER_TOP_TIMEOUT)
257 			/* server is unresponsive,
258 			 * we used to return TOP_TIMEOUT, but fairly useless,
259 			 * because if == TOP_TIMEOUT is dropped because
260 			 * blacklisted later, instead, remove it here, so
261 			 * other choices (that are not blacklisted) can be
262 			 * tried */
263 			return -1;
264 		/* select remainder from worst to best */
265 		else if(reclame)
266 			return rtt+USEFUL_SERVER_TOP_TIMEOUT*3; /* nonpref */
267 		else if(dnsseclame || a->dnsseclame)
268 			return rtt+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */
269 		else if(a->lame)
270 			return rtt+USEFUL_SERVER_TOP_TIMEOUT+1; /* nonpref */
271 		else	return rtt;
272 	}
273 	/* no server information present */
274 	if(a->dnsseclame)
275 		return UNKNOWN_SERVER_NICENESS+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */
276 	else if(a->lame)
277 		return USEFUL_SERVER_TOP_TIMEOUT+1+UNKNOWN_SERVER_NICENESS; /* nonpref */
278 	return UNKNOWN_SERVER_NICENESS;
279 }
280 
281 /** lookup RTT information, and also store fastest rtt (if any) */
282 static int
283 iter_fill_rtt(struct iter_env* iter_env, struct module_env* env,
284 	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
285 	struct delegpt* dp, int* best_rtt, struct sock_list* blacklist)
286 {
287 	int got_it = 0;
288 	struct delegpt_addr* a;
289 	if(dp->bogus)
290 		return 0; /* NS bogus, all bogus, nothing found */
291 	for(a=dp->result_list; a; a = a->next_result) {
292 		a->sel_rtt = iter_filter_unsuitable(iter_env, env,
293 			name, namelen, qtype, now, a);
294 		if(a->sel_rtt != -1) {
295 			if(sock_list_find(blacklist, &a->addr, a->addrlen))
296 				a->sel_rtt += BLACKLIST_PENALTY;
297 
298 			if(!got_it) {
299 				*best_rtt = a->sel_rtt;
300 				got_it = 1;
301 			} else if(a->sel_rtt < *best_rtt) {
302 				*best_rtt = a->sel_rtt;
303 			}
304 		}
305 	}
306 	return got_it;
307 }
308 
309 /** filter the address list, putting best targets at front,
310  * returns number of best targets (or 0, no suitable targets) */
311 static int
312 iter_filter_order(struct iter_env* iter_env, struct module_env* env,
313 	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
314 	struct delegpt* dp, int* selected_rtt, int open_target,
315 	struct sock_list* blacklist)
316 {
317 	int got_num = 0, low_rtt = 0, swap_to_front;
318 	struct delegpt_addr* a, *n, *prev=NULL;
319 
320 	/* fillup sel_rtt and find best rtt in the bunch */
321 	got_num = iter_fill_rtt(iter_env, env, name, namelen, qtype, now, dp,
322 		&low_rtt, blacklist);
323 	if(got_num == 0)
324 		return 0;
325 	if(low_rtt >= USEFUL_SERVER_TOP_TIMEOUT &&
326 		(delegpt_count_missing_targets(dp) > 0 || open_target > 0)) {
327 		verbose(VERB_ALGO, "Bad choices, trying to get more choice");
328 		return 0; /* we want more choice. The best choice is a bad one.
329 			     return 0 to force the caller to fetch more */
330 	}
331 
332 	got_num = 0;
333 	a = dp->result_list;
334 	while(a) {
335 		/* skip unsuitable targets */
336 		if(a->sel_rtt == -1) {
337 			prev = a;
338 			a = a->next_result;
339 			continue;
340 		}
341 		/* classify the server address and determine what to do */
342 		swap_to_front = 0;
343 		if(a->sel_rtt >= low_rtt && a->sel_rtt - low_rtt <= RTT_BAND) {
344 			got_num++;
345 			swap_to_front = 1;
346 		} else if(a->sel_rtt<low_rtt && low_rtt-a->sel_rtt<=RTT_BAND) {
347 			got_num++;
348 			swap_to_front = 1;
349 		}
350 		/* swap to front if necessary, or move to next result */
351 		if(swap_to_front && prev) {
352 			n = a->next_result;
353 			prev->next_result = n;
354 			a->next_result = dp->result_list;
355 			dp->result_list = a;
356 			a = n;
357 		} else {
358 			prev = a;
359 			a = a->next_result;
360 		}
361 	}
362 	*selected_rtt = low_rtt;
363 
364 	if (env->cfg->prefer_ip6) {
365 		int got_num6 = 0;
366 		int low_rtt6 = 0;
367 		int i;
368 		prev = NULL;
369 		a = dp->result_list;
370 		for(i = 0; i < got_num; i++) {
371 			swap_to_front = 0;
372 			if(a->addr.ss_family == AF_INET6) {
373 				got_num6++;
374 				swap_to_front = 1;
375 				if(low_rtt6 == 0 || a->sel_rtt < low_rtt6) {
376 					low_rtt6 = a->sel_rtt;
377 				}
378 			}
379 			/* swap to front if IPv6, or move to next result */
380 			if(swap_to_front && prev) {
381 				n = a->next_result;
382 				prev->next_result = n;
383 				a->next_result = dp->result_list;
384 				dp->result_list = a;
385 				a = n;
386 			} else {
387 				prev = a;
388 				a = a->next_result;
389 			}
390 		}
391 		if(got_num6 > 0) {
392 			got_num = got_num6;
393 			*selected_rtt = low_rtt6;
394 		}
395 	}
396 	return got_num;
397 }
398 
399 struct delegpt_addr*
400 iter_server_selection(struct iter_env* iter_env,
401 	struct module_env* env, struct delegpt* dp,
402 	uint8_t* name, size_t namelen, uint16_t qtype, int* dnssec_lame,
403 	int* chase_to_rd, int open_target, struct sock_list* blacklist)
404 {
405 	int sel;
406 	int selrtt;
407 	struct delegpt_addr* a, *prev;
408 	int num = iter_filter_order(iter_env, env, name, namelen, qtype,
409 		*env->now, dp, &selrtt, open_target, blacklist);
410 
411 	if(num == 0)
412 		return NULL;
413 	verbose(VERB_ALGO, "selrtt %d", selrtt);
414 	if(selrtt > BLACKLIST_PENALTY) {
415 		if(selrtt-BLACKLIST_PENALTY > USEFUL_SERVER_TOP_TIMEOUT*3) {
416 			verbose(VERB_ALGO, "chase to "
417 				"blacklisted recursion lame server");
418 			*chase_to_rd = 1;
419 		}
420 		if(selrtt-BLACKLIST_PENALTY > USEFUL_SERVER_TOP_TIMEOUT*2) {
421 			verbose(VERB_ALGO, "chase to "
422 				"blacklisted dnssec lame server");
423 			*dnssec_lame = 1;
424 		}
425 	} else {
426 		if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*3) {
427 			verbose(VERB_ALGO, "chase to recursion lame server");
428 			*chase_to_rd = 1;
429 		}
430 		if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*2) {
431 			verbose(VERB_ALGO, "chase to dnssec lame server");
432 			*dnssec_lame = 1;
433 		}
434 		if(selrtt == USEFUL_SERVER_TOP_TIMEOUT) {
435 			verbose(VERB_ALGO, "chase to blacklisted lame server");
436 			return NULL;
437 		}
438 	}
439 
440 	if(num == 1) {
441 		a = dp->result_list;
442 		if(++a->attempts < OUTBOUND_MSG_RETRY)
443 			return a;
444 		dp->result_list = a->next_result;
445 		return a;
446 	}
447 
448 	/* randomly select a target from the list */
449 	log_assert(num > 1);
450 	/* grab secure random number, to pick unexpected server.
451 	 * also we need it to be threadsafe. */
452 	sel = ub_random_max(env->rnd, num);
453 	a = dp->result_list;
454 	prev = NULL;
455 	while(sel > 0 && a) {
456 		prev = a;
457 		a = a->next_result;
458 		sel--;
459 	}
460 	if(!a)  /* robustness */
461 		return NULL;
462 	if(++a->attempts < OUTBOUND_MSG_RETRY)
463 		return a;
464 	/* remove it from the delegation point result list */
465 	if(prev)
466 		prev->next_result = a->next_result;
467 	else	dp->result_list = a->next_result;
468 	return a;
469 }
470 
471 struct dns_msg*
472 dns_alloc_msg(sldns_buffer* pkt, struct msg_parse* msg,
473 	struct regional* region)
474 {
475 	struct dns_msg* m = (struct dns_msg*)regional_alloc(region,
476 		sizeof(struct dns_msg));
477 	if(!m)
478 		return NULL;
479 	memset(m, 0, sizeof(*m));
480 	if(!parse_create_msg(pkt, msg, NULL, &m->qinfo, &m->rep, region)) {
481 		log_err("malloc failure: allocating incoming dns_msg");
482 		return NULL;
483 	}
484 	return m;
485 }
486 
487 struct dns_msg*
488 dns_copy_msg(struct dns_msg* from, struct regional* region)
489 {
490 	struct dns_msg* m = (struct dns_msg*)regional_alloc(region,
491 		sizeof(struct dns_msg));
492 	if(!m)
493 		return NULL;
494 	m->qinfo = from->qinfo;
495 	if(!(m->qinfo.qname = regional_alloc_init(region, from->qinfo.qname,
496 		from->qinfo.qname_len)))
497 		return NULL;
498 	if(!(m->rep = reply_info_copy(from->rep, NULL, region)))
499 		return NULL;
500 	return m;
501 }
502 
503 void
504 iter_dns_store(struct module_env* env, struct query_info* msgqinf,
505 	struct reply_info* msgrep, int is_referral, time_t leeway, int pside,
506 	struct regional* region, uint16_t flags)
507 {
508 	if(!dns_cache_store(env, msgqinf, msgrep, is_referral, leeway,
509 		pside, region, flags))
510 		log_err("out of memory: cannot store data in cache");
511 }
512 
513 int
514 iter_ns_probability(struct ub_randstate* rnd, int n, int m)
515 {
516 	int sel;
517 	if(n == m) /* 100% chance */
518 		return 1;
519 	/* we do not need secure random numbers here, but
520 	 * we do need it to be threadsafe, so we use this */
521 	sel = ub_random_max(rnd, m);
522 	return (sel < n);
523 }
524 
525 /** detect dependency cycle for query and target */
526 static int
527 causes_cycle(struct module_qstate* qstate, uint8_t* name, size_t namelen,
528 	uint16_t t, uint16_t c)
529 {
530 	struct query_info qinf;
531 	qinf.qname = name;
532 	qinf.qname_len = namelen;
533 	qinf.qtype = t;
534 	qinf.qclass = c;
535 	fptr_ok(fptr_whitelist_modenv_detect_cycle(
536 		qstate->env->detect_cycle));
537 	return (*qstate->env->detect_cycle)(qstate, &qinf,
538 		(uint16_t)(BIT_RD|BIT_CD), qstate->is_priming,
539 		qstate->is_valrec);
540 }
541 
542 void
543 iter_mark_cycle_targets(struct module_qstate* qstate, struct delegpt* dp)
544 {
545 	struct delegpt_ns* ns;
546 	for(ns = dp->nslist; ns; ns = ns->next) {
547 		if(ns->resolved)
548 			continue;
549 		/* see if this ns as target causes dependency cycle */
550 		if(causes_cycle(qstate, ns->name, ns->namelen,
551 			LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass) ||
552 		   causes_cycle(qstate, ns->name, ns->namelen,
553 			LDNS_RR_TYPE_A, qstate->qinfo.qclass)) {
554 			log_nametypeclass(VERB_QUERY, "skipping target due "
555 			 	"to dependency cycle (harden-glue: no may "
556 				"fix some of the cycles)",
557 				ns->name, LDNS_RR_TYPE_A,
558 				qstate->qinfo.qclass);
559 			ns->resolved = 1;
560 		}
561 	}
562 }
563 
564 void
565 iter_mark_pside_cycle_targets(struct module_qstate* qstate, struct delegpt* dp)
566 {
567 	struct delegpt_ns* ns;
568 	for(ns = dp->nslist; ns; ns = ns->next) {
569 		if(ns->done_pside4 && ns->done_pside6)
570 			continue;
571 		/* see if this ns as target causes dependency cycle */
572 		if(causes_cycle(qstate, ns->name, ns->namelen,
573 			LDNS_RR_TYPE_A, qstate->qinfo.qclass)) {
574 			log_nametypeclass(VERB_QUERY, "skipping target due "
575 			 	"to dependency cycle", ns->name,
576 				LDNS_RR_TYPE_A, qstate->qinfo.qclass);
577 			ns->done_pside4 = 1;
578 		}
579 		if(causes_cycle(qstate, ns->name, ns->namelen,
580 			LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass)) {
581 			log_nametypeclass(VERB_QUERY, "skipping target due "
582 			 	"to dependency cycle", ns->name,
583 				LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass);
584 			ns->done_pside6 = 1;
585 		}
586 	}
587 }
588 
589 int
590 iter_dp_is_useless(struct query_info* qinfo, uint16_t qflags,
591 	struct delegpt* dp)
592 {
593 	struct delegpt_ns* ns;
594 	/* check:
595 	 *      o RD qflag is on.
596 	 *      o no addresses are provided.
597 	 *      o all NS items are required glue.
598 	 * OR
599 	 *      o RD qflag is on.
600 	 *      o no addresses are provided.
601 	 *      o the query is for one of the nameservers in dp,
602 	 *        and that nameserver is a glue-name for this dp.
603 	 */
604 	if(!(qflags&BIT_RD))
605 		return 0;
606 	/* either available or unused targets */
607 	if(dp->usable_list || dp->result_list)
608 		return 0;
609 
610 	/* see if query is for one of the nameservers, which is glue */
611 	if( (qinfo->qtype == LDNS_RR_TYPE_A ||
612 		qinfo->qtype == LDNS_RR_TYPE_AAAA) &&
613 		dname_subdomain_c(qinfo->qname, dp->name) &&
614 		delegpt_find_ns(dp, qinfo->qname, qinfo->qname_len))
615 		return 1;
616 
617 	for(ns = dp->nslist; ns; ns = ns->next) {
618 		if(ns->resolved) /* skip failed targets */
619 			continue;
620 		if(!dname_subdomain_c(ns->name, dp->name))
621 			return 0; /* one address is not required glue */
622 	}
623 	return 1;
624 }
625 
626 int
627 iter_indicates_dnssec_fwd(struct module_env* env, struct query_info *qinfo)
628 {
629 	struct trust_anchor* a;
630 	if(!env || !env->anchors || !qinfo || !qinfo->qname)
631 		return 0;
632 	/* a trust anchor exists above the name? */
633 	if((a=anchors_lookup(env->anchors, qinfo->qname, qinfo->qname_len,
634 		qinfo->qclass))) {
635 		if(a->numDS == 0 && a->numDNSKEY == 0) {
636 			/* insecure trust point */
637 			lock_basic_unlock(&a->lock);
638 			return 0;
639 		}
640 		lock_basic_unlock(&a->lock);
641 		return 1;
642 	}
643 	/* no trust anchor above it. */
644 	return 0;
645 }
646 
647 int
648 iter_indicates_dnssec(struct module_env* env, struct delegpt* dp,
649         struct dns_msg* msg, uint16_t dclass)
650 {
651 	struct trust_anchor* a;
652 	/* information not available, !env->anchors can be common */
653 	if(!env || !env->anchors || !dp || !dp->name)
654 		return 0;
655 	/* a trust anchor exists with this name, RRSIGs expected */
656 	if((a=anchor_find(env->anchors, dp->name, dp->namelabs, dp->namelen,
657 		dclass))) {
658 		lock_basic_unlock(&a->lock);
659 		return 1;
660 	}
661 	/* see if DS rrset was given, in AUTH section */
662 	if(msg && msg->rep &&
663 		reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
664 		LDNS_RR_TYPE_DS, dclass))
665 		return 1;
666 	/* look in key cache */
667 	if(env->key_cache) {
668 		struct key_entry_key* kk = key_cache_obtain(env->key_cache,
669 			dp->name, dp->namelen, dclass, env->scratch, *env->now);
670 		if(kk) {
671 			if(query_dname_compare(kk->name, dp->name) == 0) {
672 			  if(key_entry_isgood(kk) || key_entry_isbad(kk)) {
673 				regional_free_all(env->scratch);
674 				return 1;
675 			  } else if(key_entry_isnull(kk)) {
676 				regional_free_all(env->scratch);
677 				return 0;
678 			  }
679 			}
680 			regional_free_all(env->scratch);
681 		}
682 	}
683 	return 0;
684 }
685 
686 int
687 iter_msg_has_dnssec(struct dns_msg* msg)
688 {
689 	size_t i;
690 	if(!msg || !msg->rep)
691 		return 0;
692 	for(i=0; i<msg->rep->an_numrrsets + msg->rep->ns_numrrsets; i++) {
693 		if(((struct packed_rrset_data*)msg->rep->rrsets[i]->
694 			entry.data)->rrsig_count > 0)
695 			return 1;
696 	}
697 	/* empty message has no DNSSEC info, with DNSSEC the reply is
698 	 * not empty (NSEC) */
699 	return 0;
700 }
701 
702 int iter_msg_from_zone(struct dns_msg* msg, struct delegpt* dp,
703         enum response_type type, uint16_t dclass)
704 {
705 	if(!msg || !dp || !msg->rep || !dp->name)
706 		return 0;
707 	/* SOA RRset - always from reply zone */
708 	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
709 		LDNS_RR_TYPE_SOA, dclass) ||
710 	   reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
711 		LDNS_RR_TYPE_SOA, dclass))
712 		return 1;
713 	if(type == RESPONSE_TYPE_REFERRAL) {
714 		size_t i;
715 		/* if it adds a single label, i.e. we expect .com,
716 		 * and referral to example.com. NS ... , then origin zone
717 		 * is .com. For a referral to sub.example.com. NS ... then
718 		 * we do not know, since example.com. may be in between. */
719 		for(i=0; i<msg->rep->an_numrrsets+msg->rep->ns_numrrsets;
720 			i++) {
721 			struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
722 			if(ntohs(s->rk.type) == LDNS_RR_TYPE_NS &&
723 				ntohs(s->rk.rrset_class) == dclass) {
724 				int l = dname_count_labels(s->rk.dname);
725 				if(l == dp->namelabs + 1 &&
726 					dname_strict_subdomain(s->rk.dname,
727 					l, dp->name, dp->namelabs))
728 					return 1;
729 			}
730 		}
731 		return 0;
732 	}
733 	log_assert(type==RESPONSE_TYPE_ANSWER || type==RESPONSE_TYPE_CNAME);
734 	/* not a referral, and not lame delegation (upwards), so,
735 	 * any NS rrset must be from the zone itself */
736 	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
737 		LDNS_RR_TYPE_NS, dclass) ||
738 	   reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
739 		LDNS_RR_TYPE_NS, dclass))
740 		return 1;
741 	/* a DNSKEY set is expected at the zone apex as well */
742 	/* this is for 'minimal responses' for DNSKEYs */
743 	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
744 		LDNS_RR_TYPE_DNSKEY, dclass))
745 		return 1;
746 	return 0;
747 }
748 
749 /**
750  * check equality of two rrsets
751  * @param k1: rrset
752  * @param k2: rrset
753  * @return true if equal
754  */
755 static int
756 rrset_equal(struct ub_packed_rrset_key* k1, struct ub_packed_rrset_key* k2)
757 {
758 	struct packed_rrset_data* d1 = (struct packed_rrset_data*)
759 		k1->entry.data;
760 	struct packed_rrset_data* d2 = (struct packed_rrset_data*)
761 		k2->entry.data;
762 	size_t i, t;
763 	if(k1->rk.dname_len != k2->rk.dname_len ||
764 		k1->rk.flags != k2->rk.flags ||
765 		k1->rk.type != k2->rk.type ||
766 		k1->rk.rrset_class != k2->rk.rrset_class ||
767 		query_dname_compare(k1->rk.dname, k2->rk.dname) != 0)
768 		return 0;
769 	if(	/* do not check ttl: d1->ttl != d2->ttl || */
770 		d1->count != d2->count ||
771 		d1->rrsig_count != d2->rrsig_count ||
772 		d1->trust != d2->trust ||
773 		d1->security != d2->security)
774 		return 0;
775 	t = d1->count + d1->rrsig_count;
776 	for(i=0; i<t; i++) {
777 		if(d1->rr_len[i] != d2->rr_len[i] ||
778 			/* no ttl check: d1->rr_ttl[i] != d2->rr_ttl[i] ||*/
779 			memcmp(d1->rr_data[i], d2->rr_data[i],
780 				d1->rr_len[i]) != 0)
781 			return 0;
782 	}
783 	return 1;
784 }
785 
786 int
787 reply_equal(struct reply_info* p, struct reply_info* q, struct regional* region)
788 {
789 	size_t i;
790 	if(p->flags != q->flags ||
791 		p->qdcount != q->qdcount ||
792 		/* do not check TTL, this may differ */
793 		/*
794 		p->ttl != q->ttl ||
795 		p->prefetch_ttl != q->prefetch_ttl ||
796 		*/
797 		p->security != q->security ||
798 		p->an_numrrsets != q->an_numrrsets ||
799 		p->ns_numrrsets != q->ns_numrrsets ||
800 		p->ar_numrrsets != q->ar_numrrsets ||
801 		p->rrset_count != q->rrset_count)
802 		return 0;
803 	for(i=0; i<p->rrset_count; i++) {
804 		if(!rrset_equal(p->rrsets[i], q->rrsets[i])) {
805 			if(!rrset_canonical_equal(region, p->rrsets[i],
806 				q->rrsets[i])) {
807 				regional_free_all(region);
808 				return 0;
809 			}
810 			regional_free_all(region);
811 		}
812 	}
813 	return 1;
814 }
815 
816 void
817 caps_strip_reply(struct reply_info* rep)
818 {
819 	size_t i;
820 	if(!rep) return;
821 	/* see if message is a referral, in which case the additional and
822 	 * NS record cannot be removed */
823 	/* referrals have the AA flag unset (strict check, not elsewhere in
824 	 * unbound, but for 0x20 this is very convenient). */
825 	if(!(rep->flags&BIT_AA))
826 		return;
827 	/* remove the additional section from the reply */
828 	if(rep->ar_numrrsets != 0) {
829 		verbose(VERB_ALGO, "caps fallback: removing additional section");
830 		rep->rrset_count -= rep->ar_numrrsets;
831 		rep->ar_numrrsets = 0;
832 	}
833 	/* is there an NS set in the authority section to remove? */
834 	/* the failure case (Cisco firewalls) only has one rrset in authsec */
835 	for(i=rep->an_numrrsets; i<rep->an_numrrsets+rep->ns_numrrsets; i++) {
836 		struct ub_packed_rrset_key* s = rep->rrsets[i];
837 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_NS) {
838 			/* remove NS rrset and break from loop (loop limits
839 			 * have changed) */
840 			/* move last rrset into this position (there is no
841 			 * additional section any more) */
842 			verbose(VERB_ALGO, "caps fallback: removing NS rrset");
843 			if(i < rep->rrset_count-1)
844 				rep->rrsets[i]=rep->rrsets[rep->rrset_count-1];
845 			rep->rrset_count --;
846 			rep->ns_numrrsets --;
847 			break;
848 		}
849 	}
850 }
851 
852 int caps_failed_rcode(struct reply_info* rep)
853 {
854 	return !(FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NOERROR ||
855 		FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NXDOMAIN);
856 }
857 
858 void
859 iter_store_parentside_rrset(struct module_env* env,
860 	struct ub_packed_rrset_key* rrset)
861 {
862 	struct rrset_ref ref;
863 	rrset = packed_rrset_copy_alloc(rrset, env->alloc, *env->now);
864 	if(!rrset) {
865 		log_err("malloc failure in store_parentside_rrset");
866 		return;
867 	}
868 	rrset->rk.flags |= PACKED_RRSET_PARENT_SIDE;
869 	rrset->entry.hash = rrset_key_hash(&rrset->rk);
870 	ref.key = rrset;
871 	ref.id = rrset->id;
872 	/* ignore ret: if it was in the cache, ref updated */
873 	(void)rrset_cache_update(env->rrset_cache, &ref, env->alloc, *env->now);
874 }
875 
876 /** fetch NS record from reply, if any */
877 static struct ub_packed_rrset_key*
878 reply_get_NS_rrset(struct reply_info* rep)
879 {
880 	size_t i;
881 	for(i=0; i<rep->rrset_count; i++) {
882 		if(rep->rrsets[i]->rk.type == htons(LDNS_RR_TYPE_NS)) {
883 			return rep->rrsets[i];
884 		}
885 	}
886 	return NULL;
887 }
888 
889 void
890 iter_store_parentside_NS(struct module_env* env, struct reply_info* rep)
891 {
892 	struct ub_packed_rrset_key* rrset = reply_get_NS_rrset(rep);
893 	if(rrset) {
894 		log_rrset_key(VERB_ALGO, "store parent-side NS", rrset);
895 		iter_store_parentside_rrset(env, rrset);
896 	}
897 }
898 
899 void iter_store_parentside_neg(struct module_env* env,
900         struct query_info* qinfo, struct reply_info* rep)
901 {
902 	/* TTL: NS from referral in iq->deleg_msg,
903 	 *      or first RR from iq->response,
904 	 *      or servfail5secs if !iq->response */
905 	time_t ttl = NORR_TTL;
906 	struct ub_packed_rrset_key* neg;
907 	struct packed_rrset_data* newd;
908 	if(rep) {
909 		struct ub_packed_rrset_key* rrset = reply_get_NS_rrset(rep);
910 		if(!rrset && rep->rrset_count != 0) rrset = rep->rrsets[0];
911 		if(rrset) ttl = ub_packed_rrset_ttl(rrset);
912 	}
913 	/* create empty rrset to store */
914 	neg = (struct ub_packed_rrset_key*)regional_alloc(env->scratch,
915 	                sizeof(struct ub_packed_rrset_key));
916 	if(!neg) {
917 		log_err("out of memory in store_parentside_neg");
918 		return;
919 	}
920 	memset(&neg->entry, 0, sizeof(neg->entry));
921 	neg->entry.key = neg;
922 	neg->rk.type = htons(qinfo->qtype);
923 	neg->rk.rrset_class = htons(qinfo->qclass);
924 	neg->rk.flags = 0;
925 	neg->rk.dname = regional_alloc_init(env->scratch, qinfo->qname,
926 		qinfo->qname_len);
927 	if(!neg->rk.dname) {
928 		log_err("out of memory in store_parentside_neg");
929 		return;
930 	}
931 	neg->rk.dname_len = qinfo->qname_len;
932 	neg->entry.hash = rrset_key_hash(&neg->rk);
933 	newd = (struct packed_rrset_data*)regional_alloc_zero(env->scratch,
934 		sizeof(struct packed_rrset_data) + sizeof(size_t) +
935 		sizeof(uint8_t*) + sizeof(time_t) + sizeof(uint16_t));
936 	if(!newd) {
937 		log_err("out of memory in store_parentside_neg");
938 		return;
939 	}
940 	neg->entry.data = newd;
941 	newd->ttl = ttl;
942 	/* entry must have one RR, otherwise not valid in cache.
943 	 * put in one RR with empty rdata: those are ignored as nameserver */
944 	newd->count = 1;
945 	newd->rrsig_count = 0;
946 	newd->trust = rrset_trust_ans_noAA;
947 	newd->rr_len = (size_t*)((uint8_t*)newd +
948 		sizeof(struct packed_rrset_data));
949 	newd->rr_len[0] = 0 /* zero len rdata */ + sizeof(uint16_t);
950 	packed_rrset_ptr_fixup(newd);
951 	newd->rr_ttl[0] = newd->ttl;
952 	sldns_write_uint16(newd->rr_data[0], 0 /* zero len rdata */);
953 	/* store it */
954 	log_rrset_key(VERB_ALGO, "store parent-side negative", neg);
955 	iter_store_parentside_rrset(env, neg);
956 }
957 
958 int
959 iter_lookup_parent_NS_from_cache(struct module_env* env, struct delegpt* dp,
960 	struct regional* region, struct query_info* qinfo)
961 {
962 	struct ub_packed_rrset_key* akey;
963 	akey = rrset_cache_lookup(env->rrset_cache, dp->name,
964 		dp->namelen, LDNS_RR_TYPE_NS, qinfo->qclass,
965 		PACKED_RRSET_PARENT_SIDE, *env->now, 0);
966 	if(akey) {
967 		log_rrset_key(VERB_ALGO, "found parent-side NS in cache", akey);
968 		dp->has_parent_side_NS = 1;
969 		/* and mark the new names as lame */
970 		if(!delegpt_rrset_add_ns(dp, region, akey, 1)) {
971 			lock_rw_unlock(&akey->entry.lock);
972 			return 0;
973 		}
974 		lock_rw_unlock(&akey->entry.lock);
975 	}
976 	return 1;
977 }
978 
979 int iter_lookup_parent_glue_from_cache(struct module_env* env,
980         struct delegpt* dp, struct regional* region, struct query_info* qinfo)
981 {
982 	struct ub_packed_rrset_key* akey;
983 	struct delegpt_ns* ns;
984 	size_t num = delegpt_count_targets(dp);
985 	for(ns = dp->nslist; ns; ns = ns->next) {
986 		/* get cached parentside A */
987 		akey = rrset_cache_lookup(env->rrset_cache, ns->name,
988 			ns->namelen, LDNS_RR_TYPE_A, qinfo->qclass,
989 			PACKED_RRSET_PARENT_SIDE, *env->now, 0);
990 		if(akey) {
991 			log_rrset_key(VERB_ALGO, "found parent-side", akey);
992 			ns->done_pside4 = 1;
993 			/* a negative-cache-element has no addresses it adds */
994 			if(!delegpt_add_rrset_A(dp, region, akey, 1))
995 				log_err("malloc failure in lookup_parent_glue");
996 			lock_rw_unlock(&akey->entry.lock);
997 		}
998 		/* get cached parentside AAAA */
999 		akey = rrset_cache_lookup(env->rrset_cache, ns->name,
1000 			ns->namelen, LDNS_RR_TYPE_AAAA, qinfo->qclass,
1001 			PACKED_RRSET_PARENT_SIDE, *env->now, 0);
1002 		if(akey) {
1003 			log_rrset_key(VERB_ALGO, "found parent-side", akey);
1004 			ns->done_pside6 = 1;
1005 			/* a negative-cache-element has no addresses it adds */
1006 			if(!delegpt_add_rrset_AAAA(dp, region, akey, 1))
1007 				log_err("malloc failure in lookup_parent_glue");
1008 			lock_rw_unlock(&akey->entry.lock);
1009 		}
1010 	}
1011 	/* see if new (but lame) addresses have become available */
1012 	return delegpt_count_targets(dp) != num;
1013 }
1014 
1015 int
1016 iter_get_next_root(struct iter_hints* hints, struct iter_forwards* fwd,
1017 	uint16_t* c)
1018 {
1019 	uint16_t c1 = *c, c2 = *c;
1020 	int r1 = hints_next_root(hints, &c1);
1021 	int r2 = forwards_next_root(fwd, &c2);
1022 	if(!r1 && !r2) /* got none, end of list */
1023 		return 0;
1024 	else if(!r1) /* got one, return that */
1025 		*c = c2;
1026 	else if(!r2)
1027 		*c = c1;
1028 	else if(c1 < c2) /* got both take smallest */
1029 		*c = c1;
1030 	else	*c = c2;
1031 	return 1;
1032 }
1033 
1034 void
1035 iter_scrub_ds(struct dns_msg* msg, struct ub_packed_rrset_key* ns, uint8_t* z)
1036 {
1037 	/* Only the DS record for the delegation itself is expected.
1038 	 * We allow DS for everything between the bailiwick and the
1039 	 * zonecut, thus DS records must be at or above the zonecut.
1040 	 * And the DS records must be below the server authority zone.
1041 	 * The answer section is already scrubbed. */
1042 	size_t i = msg->rep->an_numrrsets;
1043 	while(i < (msg->rep->an_numrrsets + msg->rep->ns_numrrsets)) {
1044 		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1045 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DS &&
1046 			(!ns || !dname_subdomain_c(ns->rk.dname, s->rk.dname)
1047 			|| query_dname_compare(z, s->rk.dname) == 0)) {
1048 			log_nametypeclass(VERB_ALGO, "removing irrelevant DS",
1049 				s->rk.dname, ntohs(s->rk.type),
1050 				ntohs(s->rk.rrset_class));
1051 			memmove(msg->rep->rrsets+i, msg->rep->rrsets+i+1,
1052 				sizeof(struct ub_packed_rrset_key*) *
1053 				(msg->rep->rrset_count-i-1));
1054 			msg->rep->ns_numrrsets--;
1055 			msg->rep->rrset_count--;
1056 			/* stay at same i, but new record */
1057 			continue;
1058 		}
1059 		i++;
1060 	}
1061 }
1062 
1063 void iter_dec_attempts(struct delegpt* dp, int d)
1064 {
1065 	struct delegpt_addr* a;
1066 	for(a=dp->target_list; a; a = a->next_target) {
1067 		if(a->attempts >= OUTBOUND_MSG_RETRY) {
1068 			/* add back to result list */
1069 			a->next_result = dp->result_list;
1070 			dp->result_list = a;
1071 		}
1072 		if(a->attempts > d)
1073 			a->attempts -= d;
1074 		else a->attempts = 0;
1075 	}
1076 }
1077 
1078 void iter_merge_retry_counts(struct delegpt* dp, struct delegpt* old)
1079 {
1080 	struct delegpt_addr* a, *o, *prev;
1081 	for(a=dp->target_list; a; a = a->next_target) {
1082 		o = delegpt_find_addr(old, &a->addr, a->addrlen);
1083 		if(o) {
1084 			log_addr(VERB_ALGO, "copy attempt count previous dp",
1085 				&a->addr, a->addrlen);
1086 			a->attempts = o->attempts;
1087 		}
1088 	}
1089 	prev = NULL;
1090 	a = dp->usable_list;
1091 	while(a) {
1092 		if(a->attempts >= OUTBOUND_MSG_RETRY) {
1093 			log_addr(VERB_ALGO, "remove from usable list dp",
1094 				&a->addr, a->addrlen);
1095 			/* remove from result list */
1096 			if(prev)
1097 				prev->next_usable = a->next_usable;
1098 			else	dp->usable_list = a->next_usable;
1099 			/* prev stays the same */
1100 			a = a->next_usable;
1101 			continue;
1102 		}
1103 		prev = a;
1104 		a = a->next_usable;
1105 	}
1106 }
1107 
1108 int
1109 iter_ds_toolow(struct dns_msg* msg, struct delegpt* dp)
1110 {
1111 	/* if for query example.com, there is example.com SOA or a subdomain
1112 	 * of example.com, then we are too low and need to fetch NS. */
1113 	size_t i;
1114 	/* if we have a DNAME or CNAME we are probably wrong */
1115 	/* if we have a qtype DS in the answer section, its fine */
1116 	for(i=0; i < msg->rep->an_numrrsets; i++) {
1117 		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1118 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DNAME ||
1119 			ntohs(s->rk.type) == LDNS_RR_TYPE_CNAME) {
1120 			/* not the right answer, maybe too low, check the
1121 			 * RRSIG signer name (if there is any) for a hint
1122 			 * that it is from the dp zone anyway */
1123 			uint8_t* sname;
1124 			size_t slen;
1125 			val_find_rrset_signer(s, &sname, &slen);
1126 			if(sname && query_dname_compare(dp->name, sname)==0)
1127 				return 0; /* it is fine, from the right dp */
1128 			return 1;
1129 		}
1130 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DS)
1131 			return 0; /* fine, we have a DS record */
1132 	}
1133 	for(i=msg->rep->an_numrrsets;
1134 		i < msg->rep->an_numrrsets + msg->rep->ns_numrrsets; i++) {
1135 		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1136 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_SOA) {
1137 			if(dname_subdomain_c(s->rk.dname, msg->qinfo.qname))
1138 				return 1; /* point is too low */
1139 			if(query_dname_compare(s->rk.dname, dp->name)==0)
1140 				return 0; /* right dp */
1141 		}
1142 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC ||
1143 			ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC3) {
1144 			uint8_t* sname;
1145 			size_t slen;
1146 			val_find_rrset_signer(s, &sname, &slen);
1147 			if(sname && query_dname_compare(dp->name, sname)==0)
1148 				return 0; /* it is fine, from the right dp */
1149 			return 1;
1150 		}
1151 	}
1152 	/* we do not know */
1153 	return 1;
1154 }
1155 
1156 int iter_dp_cangodown(struct query_info* qinfo, struct delegpt* dp)
1157 {
1158 	/* no delegation point, do not see how we can go down,
1159 	 * robust check, it should really exist */
1160 	if(!dp) return 0;
1161 
1162 	/* see if dp equals the qname, then we cannot go down further */
1163 	if(query_dname_compare(qinfo->qname, dp->name) == 0)
1164 		return 0;
1165 	/* if dp is one label above the name we also cannot go down further */
1166 	if(dname_count_labels(qinfo->qname) == dp->namelabs+1)
1167 		return 0;
1168 	return 1;
1169 }
1170