1 /*
2  * validator/autotrust.c - RFC5011 trust anchor management for unbound.
3  *
4  * Copyright (c) 2009, NLnet Labs. All rights reserved.
5  *
6  * This software is open source.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * Redistributions of source code must retain the above copyright notice,
13  * this list of conditions and the following disclaimer.
14  *
15  * Redistributions in binary form must reproduce the above copyright notice,
16  * this list of conditions and the following disclaimer in the documentation
17  * and/or other materials provided with the distribution.
18  *
19  * Neither the name of the NLNET LABS nor the names of its contributors may
20  * be used to endorse or promote products derived from this software without
21  * specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE
27  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /**
37  * \file
38  *
39  * Contains autotrust implementation. The implementation was taken from
40  * the autotrust daemon (BSD licensed), written by Matthijs Mekking.
41  * It was modified to fit into unbound. The state table process is the same.
42  */
43 #include "config.h"
44 #include <ldns/ldns.h>
45 #include "validator/autotrust.h"
46 #include "validator/val_anchor.h"
47 #include "validator/val_utils.h"
48 #include "validator/val_sigcrypt.h"
49 #include "util/data/dname.h"
50 #include "util/data/packed_rrset.h"
51 #include "util/log.h"
52 #include "util/module.h"
53 #include "util/net_help.h"
54 #include "util/config_file.h"
55 #include "util/regional.h"
56 #include "util/random.h"
57 #include "util/data/msgparse.h"
58 #include "services/mesh.h"
59 #include "services/cache/rrset.h"
60 #include "validator/val_kcache.h"
61 
62 /** number of times a key must be seen before it can become valid */
63 #define MIN_PENDINGCOUNT 2
64 
65 /** Event: Revoked */
66 static void do_revoked(struct module_env* env, struct autr_ta* anchor, int* c);
67 
68 struct autr_global_data* autr_global_create(void)
69 {
70 	struct autr_global_data* global;
71 	global = (struct autr_global_data*)malloc(sizeof(*global));
72 	if(!global)
73 		return NULL;
74 	rbtree_init(&global->probe, &probetree_cmp);
75 	return global;
76 }
77 
78 void autr_global_delete(struct autr_global_data* global)
79 {
80 	if(!global)
81 		return;
82 	/* elements deleted by parent */
83 	memset(global, 0, sizeof(*global));
84 	free(global);
85 }
86 
87 int probetree_cmp(const void* x, const void* y)
88 {
89 	struct trust_anchor* a = (struct trust_anchor*)x;
90 	struct trust_anchor* b = (struct trust_anchor*)y;
91 	log_assert(a->autr && b->autr);
92 	if(a->autr->next_probe_time < b->autr->next_probe_time)
93 		return -1;
94 	if(a->autr->next_probe_time > b->autr->next_probe_time)
95 		return 1;
96 	/* time is equal, sort on trust point identity */
97 	return anchor_cmp(x, y);
98 }
99 
100 size_t
101 autr_get_num_anchors(struct val_anchors* anchors)
102 {
103 	size_t res = 0;
104 	if(!anchors)
105 		return 0;
106 	lock_basic_lock(&anchors->lock);
107 	if(anchors->autr)
108 		res = anchors->autr->probe.count;
109 	lock_basic_unlock(&anchors->lock);
110 	return res;
111 }
112 
113 /** Position in string */
114 static int
115 position_in_string(char *str, const char* sub)
116 {
117 	char* pos = strstr(str, sub);
118 	if(pos)
119 		return (int)(pos-str)+(int)strlen(sub);
120 	return -1;
121 }
122 
123 /** Debug routine to print pretty key information */
124 static void
125 verbose_key(struct autr_ta* ta, enum verbosity_value level,
126 	const char* format, ...) ATTR_FORMAT(printf, 3, 4);
127 
128 /**
129  * Implementation of debug pretty key print
130  * @param ta: trust anchor key with DNSKEY data.
131  * @param level: verbosity level to print at.
132  * @param format: printf style format string.
133  */
134 static void
135 verbose_key(struct autr_ta* ta, enum verbosity_value level,
136 	const char* format, ...)
137 {
138 	va_list args;
139 	va_start(args, format);
140 	if(verbosity >= level) {
141 		char* str = ldns_rdf2str(ldns_rr_owner(ta->rr));
142 		int keytag = (int)ldns_calc_keytag(ta->rr);
143 		char msg[MAXSYSLOGMSGLEN];
144 		vsnprintf(msg, sizeof(msg), format, args);
145 		verbose(level, "%s key %d %s", str?str:"??", keytag, msg);
146 		free(str);
147 	}
148 	va_end(args);
149 }
150 
151 /**
152  * Parse comments
153  * @param str: to parse
154  * @param ta: trust key autotrust metadata
155  * @return false on failure.
156  */
157 static int
158 parse_comments(char* str, struct autr_ta* ta)
159 {
160         int len = (int)strlen(str), pos = 0, timestamp = 0;
161         char* comment = (char*) malloc(sizeof(char)*len+1);
162         char* comments = comment;
163 	if(!comment) {
164 		log_err("malloc failure in parse");
165                 return 0;
166 	}
167 	/* skip over whitespace and data at start of line */
168         while (*str != '\0' && *str != ';')
169                 str++;
170         if (*str == ';')
171                 str++;
172         /* copy comments */
173         while (*str != '\0')
174         {
175                 *comments = *str;
176                 comments++;
177                 str++;
178         }
179         *comments = '\0';
180 
181         comments = comment;
182 
183         /* read state */
184         pos = position_in_string(comments, "state=");
185         if (pos >= (int) strlen(comments))
186         {
187 		log_err("parse error");
188                 free(comment);
189                 return 0;
190         }
191         if (pos <= 0)
192                 ta->s = AUTR_STATE_VALID;
193         else
194         {
195                 int s = (int) comments[pos] - '0';
196                 switch(s)
197                 {
198                         case AUTR_STATE_START:
199                         case AUTR_STATE_ADDPEND:
200                         case AUTR_STATE_VALID:
201                         case AUTR_STATE_MISSING:
202                         case AUTR_STATE_REVOKED:
203                         case AUTR_STATE_REMOVED:
204                                 ta->s = s;
205                                 break;
206                         default:
207 				verbose_key(ta, VERB_OPS, "has undefined "
208 					"state, considered NewKey");
209                                 ta->s = AUTR_STATE_START;
210                                 break;
211                 }
212         }
213         /* read pending count */
214         pos = position_in_string(comments, "count=");
215         if (pos >= (int) strlen(comments))
216         {
217 		log_err("parse error");
218                 free(comment);
219                 return 0;
220         }
221         if (pos <= 0)
222                 ta->pending_count = 0;
223         else
224         {
225                 comments += pos;
226                 ta->pending_count = (uint8_t)atoi(comments);
227         }
228 
229         /* read last change */
230         pos = position_in_string(comments, "lastchange=");
231         if (pos >= (int) strlen(comments))
232         {
233 		log_err("parse error");
234                 free(comment);
235                 return 0;
236         }
237         if (pos >= 0)
238         {
239                 comments += pos;
240                 timestamp = atoi(comments);
241         }
242         if (pos < 0 || !timestamp)
243 		ta->last_change = 0;
244         else
245                 ta->last_change = (uint32_t)timestamp;
246 
247         free(comment);
248         return 1;
249 }
250 
251 /** Check if a line contains data (besides comments) */
252 static int
253 str_contains_data(char* str, char comment)
254 {
255         while (*str != '\0') {
256                 if (*str == comment || *str == '\n')
257                         return 0;
258                 if (*str != ' ' && *str != '\t')
259                         return 1;
260                 str++;
261         }
262         return 0;
263 }
264 
265 /** Get DNSKEY flags */
266 static int
267 dnskey_flags(ldns_rr* rr)
268 {
269 	if(ldns_rr_get_type(rr) != LDNS_RR_TYPE_DNSKEY)
270 		return 0;
271 	return (int)ldns_read_uint16(ldns_rdf_data(ldns_rr_dnskey_flags(rr)));
272 }
273 
274 
275 /** Check if KSK DNSKEY */
276 static int
277 rr_is_dnskey_sep(ldns_rr* rr)
278 {
279 	return (dnskey_flags(rr)&DNSKEY_BIT_SEP);
280 }
281 
282 /** Check if REVOKED DNSKEY */
283 static int
284 rr_is_dnskey_revoked(ldns_rr* rr)
285 {
286 	return (dnskey_flags(rr)&LDNS_KEY_REVOKE_KEY);
287 }
288 
289 /** create ta */
290 static struct autr_ta*
291 autr_ta_create(ldns_rr* rr)
292 {
293 	struct autr_ta* ta = (struct autr_ta*)calloc(1, sizeof(*ta));
294 	if(!ta) {
295 		ldns_rr_free(rr);
296 		return NULL;
297 	}
298 	ta->rr = rr;
299 	return ta;
300 }
301 
302 /** create tp */
303 static struct trust_anchor*
304 autr_tp_create(struct val_anchors* anchors, ldns_rdf* own, uint16_t dc)
305 {
306 	struct trust_anchor* tp = (struct trust_anchor*)calloc(1, sizeof(*tp));
307 	if(!tp) return NULL;
308 	tp->name = memdup(ldns_rdf_data(own), ldns_rdf_size(own));
309 	if(!tp->name) {
310 		free(tp);
311 		return NULL;
312 	}
313 	tp->namelen = ldns_rdf_size(own);
314 	tp->namelabs = dname_count_labels(tp->name);
315 	tp->node.key = tp;
316 	tp->dclass = dc;
317 	tp->autr = (struct autr_point_data*)calloc(1, sizeof(*tp->autr));
318 	if(!tp->autr) {
319 		free(tp->name);
320 		free(tp);
321 		return NULL;
322 	}
323 	tp->autr->pnode.key = tp;
324 
325 	lock_basic_lock(&anchors->lock);
326 	if(!rbtree_insert(anchors->tree, &tp->node)) {
327 		lock_basic_unlock(&anchors->lock);
328 		log_err("trust anchor presented twice");
329 		free(tp->name);
330 		free(tp->autr);
331 		free(tp);
332 		return NULL;
333 	}
334 	if(!rbtree_insert(&anchors->autr->probe, &tp->autr->pnode)) {
335 		(void)rbtree_delete(anchors->tree, tp);
336 		lock_basic_unlock(&anchors->lock);
337 		log_err("trust anchor in probetree twice");
338 		free(tp->name);
339 		free(tp->autr);
340 		free(tp);
341 		return NULL;
342 	}
343 	lock_basic_unlock(&anchors->lock);
344 	lock_basic_init(&tp->lock);
345 	lock_protect(&tp->lock, tp, sizeof(*tp));
346 	lock_protect(&tp->lock, tp->autr, sizeof(*tp->autr));
347 	return tp;
348 }
349 
350 /** delete assembled rrsets */
351 static void
352 autr_rrset_delete(struct ub_packed_rrset_key* r)
353 {
354 	if(r) {
355 		free(r->rk.dname);
356 		free(r->entry.data);
357 		free(r);
358 	}
359 }
360 
361 void autr_point_delete(struct trust_anchor* tp)
362 {
363 	if(!tp)
364 		return;
365 	lock_unprotect(&tp->lock, tp);
366 	lock_unprotect(&tp->lock, tp->autr);
367 	lock_basic_destroy(&tp->lock);
368 	autr_rrset_delete(tp->ds_rrset);
369 	autr_rrset_delete(tp->dnskey_rrset);
370 	if(tp->autr) {
371 		struct autr_ta* p = tp->autr->keys, *np;
372 		while(p) {
373 			np = p->next;
374 			ldns_rr_free(p->rr);
375 			free(p);
376 			p = np;
377 		}
378 		free(tp->autr->file);
379 		free(tp->autr);
380 	}
381 	free(tp->name);
382 	free(tp);
383 }
384 
385 /** find or add a new trust point for autotrust */
386 static struct trust_anchor*
387 find_add_tp(struct val_anchors* anchors, ldns_rr* rr)
388 {
389 	struct trust_anchor* tp;
390 	ldns_rdf* own = ldns_rr_owner(rr);
391 	tp = anchor_find(anchors, ldns_rdf_data(own),
392 		dname_count_labels(ldns_rdf_data(own)),
393 		ldns_rdf_size(own), ldns_rr_get_class(rr));
394 	if(tp) {
395 		if(!tp->autr) {
396 			log_err("anchor cannot be with and without autotrust");
397 			lock_basic_unlock(&tp->lock);
398 			return NULL;
399 		}
400 		return tp;
401 	}
402 	tp = autr_tp_create(anchors, ldns_rr_owner(rr), ldns_rr_get_class(rr));
403 	lock_basic_lock(&tp->lock);
404 	return tp;
405 }
406 
407 /** Add trust anchor from RR */
408 static struct autr_ta*
409 add_trustanchor_frm_rr(struct val_anchors* anchors, ldns_rr* rr,
410 	struct trust_anchor** tp)
411 {
412 	struct autr_ta* ta = autr_ta_create(rr);
413 	if(!ta)
414 		return NULL;
415 	*tp = find_add_tp(anchors, rr);
416 	if(!*tp) {
417 		ldns_rr_free(ta->rr);
418 		free(ta);
419 		return NULL;
420 	}
421 	/* add ta to tp */
422 	ta->next = (*tp)->autr->keys;
423 	(*tp)->autr->keys = ta;
424 	lock_basic_unlock(&(*tp)->lock);
425 	return ta;
426 }
427 
428 /**
429  * Add new trust anchor from a string in file.
430  * @param anchors: all anchors
431  * @param str: string with anchor and comments, if any comments.
432  * @param tp: trust point returned.
433  * @param origin: what to use for @
434  * @param prev: previous rr name
435  * @param skip: if true, the result is NULL, but not an error, skip it.
436  * @return new key in trust point.
437  */
438 static struct autr_ta*
439 add_trustanchor_frm_str(struct val_anchors* anchors, char* str,
440 	struct trust_anchor** tp, ldns_rdf* origin, ldns_rdf** prev, int* skip)
441 {
442         ldns_rr* rr;
443 	ldns_status lstatus;
444         if (!str_contains_data(str, ';')) {
445 		*skip = 1;
446                 return NULL; /* empty line */
447 	}
448         if (LDNS_STATUS_OK !=
449                 (lstatus = ldns_rr_new_frm_str(&rr, str, 0, origin, prev)))
450         {
451         	log_err("ldns error while converting string to RR: %s",
452 			ldns_get_errorstr_by_id(lstatus));
453                 return NULL;
454         }
455 	if(ldns_rr_get_type(rr) != LDNS_RR_TYPE_DNSKEY &&
456 		ldns_rr_get_type(rr) != LDNS_RR_TYPE_DS) {
457 		ldns_rr_free(rr);
458 		*skip = 1;
459 		return NULL; /* only DS and DNSKEY allowed */
460 	}
461         return add_trustanchor_frm_rr(anchors, rr, tp);
462 }
463 
464 /**
465  * Load single anchor
466  * @param anchors: all points.
467  * @param str: comments line
468  * @param fname: filename
469  * @param origin: the $ORIGIN.
470  * @param prev: passed to ldns.
471  * @param skip: if true, the result is NULL, but not an error, skip it.
472  * @return false on failure, otherwise the tp read.
473  */
474 static struct trust_anchor*
475 load_trustanchor(struct val_anchors* anchors, char* str, const char* fname,
476 	ldns_rdf* origin, ldns_rdf** prev, int* skip)
477 {
478         struct autr_ta* ta = NULL;
479         struct trust_anchor* tp = NULL;
480 
481         ta = add_trustanchor_frm_str(anchors, str, &tp, origin, prev, skip);
482 	if(!ta)
483 		return NULL;
484 	lock_basic_lock(&tp->lock);
485 	if(!parse_comments(str, ta)) {
486 		lock_basic_unlock(&tp->lock);
487 		return NULL;
488 	}
489 	if(!tp->autr->file) {
490 		tp->autr->file = strdup(fname);
491 		if(!tp->autr->file) {
492 			lock_basic_unlock(&tp->lock);
493 			log_err("malloc failure");
494 			return NULL;
495 		}
496 	}
497 	lock_basic_unlock(&tp->lock);
498         return tp;
499 }
500 
501 /**
502  * Assemble the trust anchors into DS and DNSKEY packed rrsets.
503  * Uses only VALID and MISSING DNSKEYs.
504  * Read the ldns_rrs and builds packed rrsets
505  * @param tp: the trust point. Must be locked.
506  * @return false on malloc failure.
507  */
508 static int
509 autr_assemble(struct trust_anchor* tp)
510 {
511 	ldns_rr_list* ds, *dnskey;
512 	struct autr_ta* ta;
513 	struct ub_packed_rrset_key* ubds=NULL, *ubdnskey=NULL;
514 
515 	ds = ldns_rr_list_new();
516 	dnskey = ldns_rr_list_new();
517 	if(!ds || !dnskey) {
518 		ldns_rr_list_free(ds);
519 		ldns_rr_list_free(dnskey);
520 		return 0;
521 	}
522 	for(ta = tp->autr->keys; ta; ta = ta->next) {
523 		if(ldns_rr_get_type(ta->rr) == LDNS_RR_TYPE_DS) {
524 			if(!ldns_rr_list_push_rr(ds, ta->rr)) {
525 				ldns_rr_list_free(ds);
526 				ldns_rr_list_free(dnskey);
527 				return 0;
528 			}
529 		} else if(ta->s == AUTR_STATE_VALID ||
530 			ta->s == AUTR_STATE_MISSING) {
531 			if(!ldns_rr_list_push_rr(dnskey, ta->rr)) {
532 				ldns_rr_list_free(ds);
533 				ldns_rr_list_free(dnskey);
534 				return 0;
535 			}
536 		}
537 	}
538 
539 	/* make packed rrset keys - malloced with no ID number, they
540 	 * are not in the cache */
541 	/* make packed rrset data (if there is a key) */
542 
543 	if(ldns_rr_list_rr_count(ds) > 0) {
544 		ubds = ub_packed_rrset_heap_key(ds);
545 		if(!ubds)
546 			goto error_cleanup;
547 		ubds->entry.data = packed_rrset_heap_data(ds);
548 		if(!ubds->entry.data)
549 			goto error_cleanup;
550 	}
551 	if(ldns_rr_list_rr_count(dnskey) > 0) {
552 		ubdnskey = ub_packed_rrset_heap_key(dnskey);
553 		if(!ubdnskey)
554 			goto error_cleanup;
555 		ubdnskey->entry.data = packed_rrset_heap_data(dnskey);
556 		if(!ubdnskey->entry.data) {
557 		error_cleanup:
558 			autr_rrset_delete(ubds);
559 			autr_rrset_delete(ubdnskey);
560 			ldns_rr_list_free(ds);
561 			ldns_rr_list_free(dnskey);
562 			return 0;
563 		}
564 	}
565 	/* we have prepared the new keys so nothing can go wrong any more.
566 	 * And we are sure we cannot be left without trustanchor after
567 	 * any errors. Put in the new keys and remove old ones. */
568 
569 	/* free the old data */
570 	autr_rrset_delete(tp->ds_rrset);
571 	autr_rrset_delete(tp->dnskey_rrset);
572 
573 	/* assign the data to replace the old */
574 	tp->ds_rrset = ubds;
575 	tp->dnskey_rrset = ubdnskey;
576 	tp->numDS = ldns_rr_list_rr_count(ds);
577 	tp->numDNSKEY = ldns_rr_list_rr_count(dnskey);
578 
579 	ldns_rr_list_free(ds);
580 	ldns_rr_list_free(dnskey);
581 	return 1;
582 }
583 
584 /** parse integer */
585 static unsigned int
586 parse_int(char* line, int* ret)
587 {
588 	char *e;
589 	unsigned int x = (unsigned int)strtol(line, &e, 10);
590 	if(line == e) {
591 		*ret = -1; /* parse error */
592 		return 0;
593 	}
594 	*ret = 1; /* matched */
595 	return x;
596 }
597 
598 /** parse id sequence for anchor */
599 static struct trust_anchor*
600 parse_id(struct val_anchors* anchors, char* line)
601 {
602 	struct trust_anchor *tp;
603 	int r;
604 	ldns_rdf* rdf;
605 	uint16_t dclass;
606 	/* read the owner name */
607 	char* next = strchr(line, ' ');
608 	if(!next)
609 		return NULL;
610 	next[0] = 0;
611 	rdf = ldns_dname_new_frm_str(line);
612 	if(!rdf)
613 		return NULL;
614 
615 	/* read the class */
616 	dclass = parse_int(next+1, &r);
617 	if(r == -1) {
618 		ldns_rdf_deep_free(rdf);
619 		return NULL;
620 	}
621 
622 	/* find the trust point */
623 	tp = autr_tp_create(anchors, rdf, dclass);
624 	ldns_rdf_deep_free(rdf);
625 	return tp;
626 }
627 
628 /**
629  * Parse variable from trustanchor header
630  * @param line: to parse
631  * @param anchors: the anchor is added to this, if "id:" is seen.
632  * @param anchor: the anchor as result value or previously returned anchor
633  * 	value to read the variable lines into.
634  * @return: 0 no match, -1 failed syntax error, +1 success line read.
635  * 	+2 revoked trust anchor file.
636  */
637 static int
638 parse_var_line(char* line, struct val_anchors* anchors,
639 	struct trust_anchor** anchor)
640 {
641 	struct trust_anchor* tp = *anchor;
642 	int r = 0;
643 	if(strncmp(line, ";;id: ", 6) == 0) {
644 		*anchor = parse_id(anchors, line+6);
645 		if(!*anchor) return -1;
646 		else return 1;
647 	} else if(strncmp(line, ";;REVOKED", 9) == 0) {
648 		if(tp) {
649 			log_err("REVOKED statement must be at start of file");
650 			return -1;
651 		}
652 		return 2;
653 	} else if(strncmp(line, ";;last_queried: ", 16) == 0) {
654 		if(!tp) return -1;
655 		lock_basic_lock(&tp->lock);
656 		tp->autr->last_queried = (time_t)parse_int(line+16, &r);
657 		lock_basic_unlock(&tp->lock);
658 	} else if(strncmp(line, ";;last_success: ", 16) == 0) {
659 		if(!tp) return -1;
660 		lock_basic_lock(&tp->lock);
661 		tp->autr->last_success = (time_t)parse_int(line+16, &r);
662 		lock_basic_unlock(&tp->lock);
663 	} else if(strncmp(line, ";;next_probe_time: ", 19) == 0) {
664 		if(!tp) return -1;
665 		lock_basic_lock(&anchors->lock);
666 		lock_basic_lock(&tp->lock);
667 		(void)rbtree_delete(&anchors->autr->probe, tp);
668 		tp->autr->next_probe_time = (time_t)parse_int(line+19, &r);
669 		(void)rbtree_insert(&anchors->autr->probe, &tp->autr->pnode);
670 		lock_basic_unlock(&tp->lock);
671 		lock_basic_unlock(&anchors->lock);
672 	} else if(strncmp(line, ";;query_failed: ", 16) == 0) {
673 		if(!tp) return -1;
674 		lock_basic_lock(&tp->lock);
675 		tp->autr->query_failed = (uint8_t)parse_int(line+16, &r);
676 		lock_basic_unlock(&tp->lock);
677 	} else if(strncmp(line, ";;query_interval: ", 18) == 0) {
678 		if(!tp) return -1;
679 		lock_basic_lock(&tp->lock);
680 		tp->autr->query_interval = (uint32_t)parse_int(line+18, &r);
681 		lock_basic_unlock(&tp->lock);
682 	} else if(strncmp(line, ";;retry_time: ", 14) == 0) {
683 		if(!tp) return -1;
684 		lock_basic_lock(&tp->lock);
685 		tp->autr->retry_time = (uint32_t)parse_int(line+14, &r);
686 		lock_basic_unlock(&tp->lock);
687 	}
688 	return r;
689 }
690 
691 /** handle origin lines */
692 static int
693 handle_origin(char* line, ldns_rdf** origin)
694 {
695 	while(isspace((int)*line))
696 		line++;
697 	if(strncmp(line, "$ORIGIN", 7) != 0)
698 		return 0;
699 	ldns_rdf_deep_free(*origin);
700 	line += 7;
701 	while(isspace((int)*line))
702 		line++;
703 	*origin = ldns_dname_new_frm_str(line);
704 	if(!*origin)
705 		log_warn("malloc failure or parse error in $ORIGIN");
706 	return 1;
707 }
708 
709 /** Read one line and put multiline RRs onto one line string */
710 static int
711 read_multiline(char* buf, size_t len, FILE* in, int* linenr)
712 {
713 	char* pos = buf;
714 	size_t left = len;
715 	int depth = 0;
716 	buf[len-1] = 0;
717 	while(left > 0 && fgets(pos, (int)left, in) != NULL) {
718 		size_t i, poslen = strlen(pos);
719 		(*linenr)++;
720 
721 		/* check what the new depth is after the line */
722 		/* this routine cannot handle braces inside quotes,
723 		   say for TXT records, but this routine only has to read keys */
724 		for(i=0; i<poslen; i++) {
725 			if(pos[i] == '(') {
726 				depth++;
727 			} else if(pos[i] == ')') {
728 				if(depth == 0) {
729 					log_err("mismatch: too many ')'");
730 					return -1;
731 				}
732 				depth--;
733 			} else if(pos[i] == ';') {
734 				break;
735 			}
736 		}
737 
738 		/* normal oneline or last line: keeps newline and comments */
739 		if(depth == 0) {
740 			return 1;
741 		}
742 
743 		/* more lines expected, snip off comments and newline */
744 		if(poslen>0)
745 			pos[poslen-1] = 0; /* strip newline */
746 		if(strchr(pos, ';'))
747 			strchr(pos, ';')[0] = 0; /* strip comments */
748 
749 		/* move to paste other lines behind this one */
750 		poslen = strlen(pos);
751 		pos += poslen;
752 		left -= poslen;
753 		/* the newline is changed into a space */
754 		if(left <= 2 /* space and eos */) {
755 			log_err("line too long");
756 			return -1;
757 		}
758 		pos[0] = ' ';
759 		pos[1] = 0;
760 		pos += 1;
761 		left -= 1;
762 	}
763 	if(depth != 0) {
764 		log_err("mismatch: too many '('");
765 		return -1;
766 	}
767 	if(pos != buf)
768 		return 1;
769 	return 0;
770 }
771 
772 int autr_read_file(struct val_anchors* anchors, const char* nm)
773 {
774         /* the file descriptor */
775         FILE* fd;
776         /* keep track of line numbers */
777         int line_nr = 0;
778         /* single line */
779         char line[10240];
780 	/* trust point being read */
781 	struct trust_anchor *tp = NULL, *tp2;
782 	int r;
783 	/* for $ORIGIN parsing */
784 	ldns_rdf *origin=NULL, *prev=NULL;
785 
786         if (!(fd = fopen(nm, "r"))) {
787                 log_err("unable to open %s for reading: %s",
788 			nm, strerror(errno));
789                 return 0;
790         }
791         verbose(VERB_ALGO, "reading autotrust anchor file %s", nm);
792         while ( (r=read_multiline(line, sizeof(line), fd, &line_nr)) != 0) {
793 		if(r == -1 || (r = parse_var_line(line, anchors, &tp)) == -1) {
794 			log_err("could not parse auto-trust-anchor-file "
795 				"%s line %d", nm, line_nr);
796 			fclose(fd);
797 			ldns_rdf_deep_free(origin);
798 			ldns_rdf_deep_free(prev);
799 			return 0;
800 		} else if(r == 1) {
801 			continue;
802 		} else if(r == 2) {
803 			log_warn("trust anchor %s has been revoked", nm);
804 			fclose(fd);
805 			ldns_rdf_deep_free(origin);
806 			ldns_rdf_deep_free(prev);
807 			return 1;
808 		}
809         	if (!str_contains_data(line, ';'))
810                 	continue; /* empty lines allowed */
811  		if(handle_origin(line, &origin))
812 			continue;
813 		r = 0;
814                 if(!(tp2=load_trustanchor(anchors, line, nm, origin, &prev,
815 			&r))) {
816 			if(!r) log_err("failed to load trust anchor from %s "
817 				"at line %i, skipping", nm, line_nr);
818                         /* try to do the rest */
819 			continue;
820                 }
821 		if(tp && tp != tp2) {
822 			log_err("file %s has mismatching data inside: "
823 				"the file may only contain keys for one name, "
824 				"remove keys for other domain names", nm);
825         		fclose(fd);
826 			ldns_rdf_deep_free(origin);
827 			ldns_rdf_deep_free(prev);
828 			return 0;
829 		}
830 		tp = tp2;
831         }
832         fclose(fd);
833 	ldns_rdf_deep_free(origin);
834 	ldns_rdf_deep_free(prev);
835 	if(!tp) {
836 		log_err("failed to read %s", nm);
837 		return 0;
838 	}
839 
840 	/* now assemble the data into DNSKEY and DS packed rrsets */
841 	lock_basic_lock(&tp->lock);
842 	if(!autr_assemble(tp)) {
843 		lock_basic_unlock(&tp->lock);
844 		log_err("malloc failure assembling %s", nm);
845 		return 0;
846 	}
847 	lock_basic_unlock(&tp->lock);
848 	return 1;
849 }
850 
851 /** string for a trustanchor state */
852 static const char*
853 trustanchor_state2str(autr_state_t s)
854 {
855         switch (s) {
856                 case AUTR_STATE_START:       return "  START  ";
857                 case AUTR_STATE_ADDPEND:     return " ADDPEND ";
858                 case AUTR_STATE_VALID:       return "  VALID  ";
859                 case AUTR_STATE_MISSING:     return " MISSING ";
860                 case AUTR_STATE_REVOKED:     return " REVOKED ";
861                 case AUTR_STATE_REMOVED:     return " REMOVED ";
862         }
863         return " UNKNOWN ";
864 }
865 
866 /** print ID to file */
867 static int
868 print_id(FILE* out, char* fname, struct module_env* env,
869 	uint8_t* nm, size_t nmlen, uint16_t dclass)
870 {
871 	ldns_rdf rdf;
872 #ifdef UNBOUND_DEBUG
873 	ldns_status s;
874 #endif
875 
876 	memset(&rdf, 0, sizeof(rdf));
877 	ldns_rdf_set_data(&rdf, nm);
878 	ldns_rdf_set_size(&rdf, nmlen);
879 	ldns_rdf_set_type(&rdf, LDNS_RDF_TYPE_DNAME);
880 
881 	ldns_buffer_clear(env->scratch_buffer);
882 #ifdef UNBOUND_DEBUG
883 	s =
884 #endif
885 	ldns_rdf2buffer_str_dname(env->scratch_buffer, &rdf);
886 	log_assert(s == LDNS_STATUS_OK);
887 	ldns_buffer_write_u8(env->scratch_buffer, 0);
888 	ldns_buffer_flip(env->scratch_buffer);
889 	if(fprintf(out, ";;id: %s %d\n",
890 		(char*)ldns_buffer_begin(env->scratch_buffer),
891 		(int)dclass) < 0) {
892 		log_err("could not write to %s: %s", fname, strerror(errno));
893 		return 0;
894 	}
895 	return 1;
896 }
897 
898 static int
899 autr_write_contents(FILE* out, char* fn, struct module_env* env,
900 	struct trust_anchor* tp)
901 {
902 	char tmi[32];
903 	struct autr_ta* ta;
904 	char* str;
905 
906 	/* write pretty header */
907 	if(fprintf(out, "; autotrust trust anchor file\n") < 0) {
908 		log_err("could not write to %s: %s", fn, strerror(errno));
909 		return 0;
910 	}
911 	if(tp->autr->revoked) {
912 		if(fprintf(out, ";;REVOKED\n") < 0 ||
913 		   fprintf(out, "; The zone has all keys revoked, and is\n"
914 			"; considered as if it has no trust anchors.\n"
915 			"; the remainder of the file is the last probe.\n"
916 			"; to restart the trust anchor, overwrite this file.\n"
917 			"; with one containing valid DNSKEYs or DSes.\n") < 0) {
918 		   log_err("could not write to %s: %s", fn, strerror(errno));
919 		   return 0;
920 		}
921 	}
922 	if(!print_id(out, fn, env, tp->name, tp->namelen, tp->dclass)) {
923 		return 0;
924 	}
925 	if(fprintf(out, ";;last_queried: %u ;;%s",
926 		(unsigned int)tp->autr->last_queried,
927 		ctime_r(&(tp->autr->last_queried), tmi)) < 0 ||
928 	   fprintf(out, ";;last_success: %u ;;%s",
929 		(unsigned int)tp->autr->last_success,
930 		ctime_r(&(tp->autr->last_success), tmi)) < 0 ||
931 	   fprintf(out, ";;next_probe_time: %u ;;%s",
932 		(unsigned int)tp->autr->next_probe_time,
933 		ctime_r(&(tp->autr->next_probe_time), tmi)) < 0 ||
934 	   fprintf(out, ";;query_failed: %d\n", (int)tp->autr->query_failed)<0
935 	   || fprintf(out, ";;query_interval: %d\n",
936 	   (int)tp->autr->query_interval) < 0 ||
937 	   fprintf(out, ";;retry_time: %d\n", (int)tp->autr->retry_time) < 0) {
938 		log_err("could not write to %s: %s", fn, strerror(errno));
939 		return 0;
940 	}
941 
942 	/* write anchors */
943 	for(ta=tp->autr->keys; ta; ta=ta->next) {
944 		/* by default do not store START and REMOVED keys */
945 		if(ta->s == AUTR_STATE_START)
946 			continue;
947 		if(ta->s == AUTR_STATE_REMOVED)
948 			continue;
949 		/* only store keys */
950 		if(ldns_rr_get_type(ta->rr) != LDNS_RR_TYPE_DNSKEY)
951 			continue;
952 		str = ldns_rr2str(ta->rr);
953 		if(!str || !str[0]) {
954 			free(str);
955 			log_err("malloc failure writing %s", fn);
956 			return 0;
957 		}
958 		str[strlen(str)-1] = 0; /* remove newline */
959 		if(fprintf(out, "%s ;;state=%d [%s] ;;count=%d "
960 			";;lastchange=%u ;;%s", str, (int)ta->s,
961 			trustanchor_state2str(ta->s), (int)ta->pending_count,
962 			(unsigned int)ta->last_change,
963 			ctime_r(&(ta->last_change), tmi)) < 0) {
964 		   log_err("could not write to %s: %s", fn, strerror(errno));
965 		   free(str);
966 		   return 0;
967 		}
968 		free(str);
969 	}
970 	return 1;
971 }
972 
973 void autr_write_file(struct module_env* env, struct trust_anchor* tp)
974 {
975 	FILE* out;
976 	char* fname = tp->autr->file;
977 	char tempf[2048];
978 	log_assert(tp->autr);
979 	/* unique name with pid number and thread number */
980 	snprintf(tempf, sizeof(tempf), "%s.%d-%d", fname, (int)getpid(),
981 		env&&env->worker?*(int*)env->worker:0);
982 	verbose(VERB_ALGO, "autotrust: write to disk: %s", tempf);
983 	out = fopen(tempf, "w");
984 	if(!out) {
985 		log_err("could not open autotrust file for writing, %s: %s",
986 			tempf, strerror(errno));
987 		return;
988 	}
989 	if(!autr_write_contents(out, tempf, env, tp)) {
990 		/* failed to write contents (completely) */
991 		fclose(out);
992 		unlink(tempf);
993 		log_err("could not completely write: %s", fname);
994 		return;
995 	}
996 	/* success; overwrite actual file */
997 	fclose(out);
998 	verbose(VERB_ALGO, "autotrust: replaced %s", fname);
999 #ifdef UB_ON_WINDOWS
1000 	(void)unlink(fname); /* windows does not replace file with rename() */
1001 #endif
1002 	if(rename(tempf, fname) < 0) {
1003 		log_err("rename(%s to %s): %s", tempf, fname, strerror(errno));
1004 	}
1005 }
1006 
1007 /**
1008  * Verify if dnskey works for trust point
1009  * @param env: environment (with time) for verification
1010  * @param ve: validator environment (with options) for verification.
1011  * @param tp: trust point to verify with
1012  * @param rrset: DNSKEY rrset to verify.
1013  * @return false on failure, true if verification successful.
1014  */
1015 static int
1016 verify_dnskey(struct module_env* env, struct val_env* ve,
1017         struct trust_anchor* tp, struct ub_packed_rrset_key* rrset)
1018 {
1019 	char* reason = NULL;
1020 	uint8_t sigalg[ALGO_NEEDS_MAX+1];
1021 	int downprot = 1;
1022 	enum sec_status sec = val_verify_DNSKEY_with_TA(env, ve, rrset,
1023 		tp->ds_rrset, tp->dnskey_rrset, downprot?sigalg:NULL, &reason);
1024 	/* sigalg is ignored, it returns algorithms signalled to exist, but
1025 	 * in 5011 there are no other rrsets to check.  if downprot is
1026 	 * enabled, then it checks that the DNSKEY is signed with all
1027 	 * algorithms available in the trust store. */
1028 	verbose(VERB_ALGO, "autotrust: validate DNSKEY with anchor: %s",
1029 		sec_status_to_string(sec));
1030 	return sec == sec_status_secure;
1031 }
1032 
1033 /** Find minimum expiration interval from signatures */
1034 static uint32_t
1035 min_expiry(struct module_env* env, ldns_rr_list* rrset)
1036 {
1037 	size_t i;
1038 	uint32_t t, r = 15 * 24 * 3600; /* 15 days max */
1039 	for(i=0; i<ldns_rr_list_rr_count(rrset); i++) {
1040 		ldns_rr* rr = ldns_rr_list_rr(rrset, i);
1041 		if(ldns_rr_get_type(rr) != LDNS_RR_TYPE_RRSIG)
1042 			continue;
1043 		t = ldns_rdf2native_int32(ldns_rr_rrsig_expiration(rr));
1044 		if(t - *env->now > 0) {
1045 			t -= *env->now;
1046 			if(t < r)
1047 				r = t;
1048 		}
1049 	}
1050 	return r;
1051 }
1052 
1053 /** Is rr self-signed revoked key */
1054 static int
1055 rr_is_selfsigned_revoked(struct module_env* env, struct val_env* ve,
1056 	struct ub_packed_rrset_key* dnskey_rrset, size_t i)
1057 {
1058 	enum sec_status sec;
1059 	char* reason = NULL;
1060 	verbose(VERB_ALGO, "seen REVOKE flag, check self-signed, rr %d",
1061 		(int)i);
1062 	/* no algorithm downgrade protection necessary, if it is selfsigned
1063 	 * revoked it can be removed. */
1064 	sec = dnskey_verify_rrset(env, ve, dnskey_rrset, dnskey_rrset, i,
1065 		&reason);
1066 	return (sec == sec_status_secure);
1067 }
1068 
1069 /** Set fetched value */
1070 static void
1071 seen_trustanchor(struct autr_ta* ta, uint8_t seen)
1072 {
1073 	ta->fetched = seen;
1074 	if(ta->pending_count < 250) /* no numerical overflow, please */
1075 		ta->pending_count++;
1076 }
1077 
1078 /** set revoked value */
1079 static void
1080 seen_revoked_trustanchor(struct autr_ta* ta, uint8_t revoked)
1081 {
1082 	ta->revoked = revoked;
1083 }
1084 
1085 /** revoke a trust anchor */
1086 static void
1087 revoke_dnskey(struct autr_ta* ta, int off)
1088 {
1089         ldns_rdf* rdf;
1090         uint16_t flags;
1091 	log_assert(ta && ta->rr);
1092 	if(ldns_rr_get_type(ta->rr) != LDNS_RR_TYPE_DNSKEY)
1093 		return;
1094 	rdf = ldns_rr_dnskey_flags(ta->rr);
1095 	flags = ldns_read_uint16(ldns_rdf_data(rdf));
1096 
1097 	if (off && (flags&LDNS_KEY_REVOKE_KEY))
1098 		flags ^= LDNS_KEY_REVOKE_KEY; /* flip */
1099 	else
1100 		flags |= LDNS_KEY_REVOKE_KEY;
1101 	ldns_write_uint16(ldns_rdf_data(rdf), flags);
1102 }
1103 
1104 /** Compare two RR buffers skipping the REVOKED bit */
1105 static int
1106 ldns_rr_compare_wire_skip_revbit(ldns_buffer* rr1_buf, ldns_buffer* rr2_buf)
1107 {
1108 	size_t rr1_len, rr2_len, min_len, i, offset;
1109 	rr1_len = ldns_buffer_capacity(rr1_buf);
1110 	rr2_len = ldns_buffer_capacity(rr2_buf);
1111 	/* jump past dname (checked in earlier part) and especially past TTL */
1112 	offset = 0;
1113 	while (offset < rr1_len && *ldns_buffer_at(rr1_buf, offset) != 0)
1114 		offset += *ldns_buffer_at(rr1_buf, offset) + 1;
1115 	/* jump to rdata section (PAST the rdata length field) */
1116 	offset += 11; /* 0-dname-end + type + class + ttl + rdatalen */
1117 	min_len = (rr1_len < rr2_len) ? rr1_len : rr2_len;
1118 	/* compare RRs RDATA byte for byte. */
1119 	for(i = offset; i < min_len; i++)
1120 	{
1121 		uint8_t *rdf1, *rdf2;
1122 		rdf1 = ldns_buffer_at(rr1_buf, i);
1123 		rdf2 = ldns_buffer_at(rr2_buf, i);
1124 		if (i==(offset+1))
1125 		{
1126 			/* this is the second part of the flags field */
1127 			*rdf1 = *rdf1 | LDNS_KEY_REVOKE_KEY;
1128 			*rdf2 = *rdf2 | LDNS_KEY_REVOKE_KEY;
1129 		}
1130 		if (*rdf1 < *rdf2)	return -1;
1131 		else if (*rdf1 > *rdf2)	return 1;
1132         }
1133 	return 0;
1134 }
1135 
1136 /** Compare two RRs skipping the REVOKED bit */
1137 static int
1138 ldns_rr_compare_skip_revbit(const ldns_rr* rr1, const ldns_rr* rr2, int* result)
1139 {
1140 	size_t rr1_len, rr2_len;
1141 	ldns_buffer* rr1_buf;
1142 	ldns_buffer* rr2_buf;
1143 
1144 	*result = ldns_rr_compare_no_rdata(rr1, rr2);
1145 	if (*result == 0)
1146 	{
1147 		rr1_len = ldns_rr_uncompressed_size(rr1);
1148 		rr2_len = ldns_rr_uncompressed_size(rr2);
1149 		rr1_buf = ldns_buffer_new(rr1_len);
1150 		rr2_buf = ldns_buffer_new(rr2_len);
1151 		if(!rr1_buf || !rr2_buf) {
1152 			ldns_buffer_free(rr1_buf);
1153 			ldns_buffer_free(rr2_buf);
1154 			return 0;
1155 		}
1156 		if (ldns_rr2buffer_wire_canonical(rr1_buf, rr1,
1157 			LDNS_SECTION_ANY) != LDNS_STATUS_OK)
1158 		{
1159 			ldns_buffer_free(rr1_buf);
1160 			ldns_buffer_free(rr2_buf);
1161 			return 0;
1162 		}
1163 		if (ldns_rr2buffer_wire_canonical(rr2_buf, rr2,
1164 			LDNS_SECTION_ANY) != LDNS_STATUS_OK) {
1165 			ldns_buffer_free(rr1_buf);
1166 			ldns_buffer_free(rr2_buf);
1167 			return 0;
1168 		}
1169 		*result = ldns_rr_compare_wire_skip_revbit(rr1_buf, rr2_buf);
1170 		ldns_buffer_free(rr1_buf);
1171 		ldns_buffer_free(rr2_buf);
1172 	}
1173 	return 1;
1174 }
1175 
1176 
1177 /** compare two trust anchors */
1178 static int
1179 ta_compare(ldns_rr* a, ldns_rr* b, int* result)
1180 {
1181 	if (!a && !b)	*result = 0;
1182 	else if (!a)	*result = -1;
1183 	else if (!b)	*result = 1;
1184 	else if (ldns_rr_get_type(a) != ldns_rr_get_type(b))
1185 		*result = (int)ldns_rr_get_type(a) - (int)ldns_rr_get_type(b);
1186 	else if (ldns_rr_get_type(a) == LDNS_RR_TYPE_DNSKEY) {
1187 		if(!ldns_rr_compare_skip_revbit(a, b, result))
1188 			return 0;
1189 	}
1190 	else if (ldns_rr_get_type(a) == LDNS_RR_TYPE_DS)
1191 		*result = ldns_rr_compare(a, b);
1192 	else    *result = -1;
1193 	return 1;
1194 }
1195 
1196 /**
1197  * Find key
1198  * @param tp: to search in
1199  * @param rr: to look for
1200  * @param result: returns NULL or the ta key looked for.
1201  * @return false on malloc failure during search. if true examine result.
1202  */
1203 static int
1204 find_key(struct trust_anchor* tp, ldns_rr* rr, struct autr_ta** result)
1205 {
1206 	struct autr_ta* ta;
1207 	int ret;
1208 	if(!tp || !rr)
1209 		return 0;
1210 	for(ta=tp->autr->keys; ta; ta=ta->next) {
1211 		if(!ta_compare(ta->rr, rr, &ret))
1212 			return 0;
1213 		if(ret == 0) {
1214 			*result = ta;
1215 			return 1;
1216 		}
1217 	}
1218 	*result = NULL;
1219 	return 1;
1220 }
1221 
1222 /** add key and clone RR and tp already locked */
1223 static struct autr_ta*
1224 add_key(struct trust_anchor* tp, ldns_rr* rr)
1225 {
1226 	ldns_rr* c;
1227 	struct autr_ta* ta;
1228 	c = ldns_rr_clone(rr);
1229 	if(!c) return NULL;
1230 	ta = autr_ta_create(c);
1231 	if(!ta) {
1232 		ldns_rr_free(c);
1233 		return NULL;
1234 	}
1235 	/* link in, tp already locked */
1236 	ta->next = tp->autr->keys;
1237 	tp->autr->keys = ta;
1238 	return ta;
1239 }
1240 
1241 /** get TTL from DNSKEY rrset */
1242 static uint32_t
1243 key_ttl(struct ub_packed_rrset_key* k)
1244 {
1245 	struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
1246 	return d->ttl;
1247 }
1248 
1249 /** update the time values for the trustpoint */
1250 static void
1251 set_tp_times(struct trust_anchor* tp, uint32_t rrsig_exp_interval,
1252 	uint32_t origttl, int* changed)
1253 {
1254 	uint32_t x, qi = tp->autr->query_interval, rt = tp->autr->retry_time;
1255 
1256 	/* x = MIN(15days, ttl/2, expire/2) */
1257 	x = 15 * 24 * 3600;
1258 	if(origttl/2 < x)
1259 		x = origttl/2;
1260 	if(rrsig_exp_interval/2 < x)
1261 		x = rrsig_exp_interval/2;
1262 	/* MAX(1hr, x) */
1263 	if(x < 3600)
1264 		tp->autr->query_interval = 3600;
1265 	else	tp->autr->query_interval = x;
1266 
1267 	/* x= MIN(1day, ttl/10, expire/10) */
1268 	x = 24 * 3600;
1269 	if(origttl/10 < x)
1270 		x = origttl/10;
1271 	if(rrsig_exp_interval/10 < x)
1272 		x = rrsig_exp_interval/10;
1273 	/* MAX(1hr, x) */
1274 	if(x < 3600)
1275 		tp->autr->retry_time = 3600;
1276 	else	tp->autr->retry_time = x;
1277 
1278 	if(qi != tp->autr->query_interval || rt != tp->autr->retry_time) {
1279 		*changed = 1;
1280 		verbose(VERB_ALGO, "orig_ttl is %d", (int)origttl);
1281 		verbose(VERB_ALGO, "rrsig_exp_interval is %d",
1282 			(int)rrsig_exp_interval);
1283 		verbose(VERB_ALGO, "query_interval: %d, retry_time: %d",
1284 			(int)tp->autr->query_interval,
1285 			(int)tp->autr->retry_time);
1286 	}
1287 }
1288 
1289 /** init events to zero */
1290 static void
1291 init_events(struct trust_anchor* tp)
1292 {
1293 	struct autr_ta* ta;
1294 	for(ta=tp->autr->keys; ta; ta=ta->next) {
1295 		ta->fetched = 0;
1296 	}
1297 }
1298 
1299 /** check for revoked keys without trusting any other information */
1300 static void
1301 check_contains_revoked(struct module_env* env, struct val_env* ve,
1302 	struct trust_anchor* tp, struct ub_packed_rrset_key* dnskey_rrset,
1303 	int* changed)
1304 {
1305 	ldns_rr_list* r = packed_rrset_to_rr_list(dnskey_rrset,
1306 		env->scratch_buffer);
1307 	size_t i;
1308 	if(!r) {
1309 		log_err("malloc failure");
1310 		return;
1311 	}
1312 	for(i=0; i<ldns_rr_list_rr_count(r); i++) {
1313 		ldns_rr* rr = ldns_rr_list_rr(r, i);
1314 		struct autr_ta* ta = NULL;
1315 		if(ldns_rr_get_type(rr) != LDNS_RR_TYPE_DNSKEY)
1316 			continue;
1317 		if(!rr_is_dnskey_sep(rr) || !rr_is_dnskey_revoked(rr))
1318 			continue; /* not a revoked KSK */
1319 		if(!find_key(tp, rr, &ta)) {
1320 			log_err("malloc failure");
1321 			continue; /* malloc fail in compare*/
1322 		}
1323 		if(!ta)
1324 			continue; /* key not found */
1325 		if(rr_is_selfsigned_revoked(env, ve, dnskey_rrset, i)) {
1326 			/* checked if there is an rrsig signed by this key. */
1327 			log_assert(dnskey_calc_keytag(dnskey_rrset, i) ==
1328 				ldns_calc_keytag(rr)); /* checks conversion*/
1329 			verbose_key(ta, VERB_ALGO, "is self-signed revoked");
1330 			if(!ta->revoked)
1331 				*changed = 1;
1332 			seen_revoked_trustanchor(ta, 1);
1333 			do_revoked(env, ta, changed);
1334 		}
1335 	}
1336 	ldns_rr_list_deep_free(r);
1337 }
1338 
1339 /** See if a DNSKEY is verified by one of the DSes */
1340 static int
1341 key_matches_a_ds(struct module_env* env, struct val_env* ve,
1342 	struct ub_packed_rrset_key* dnskey_rrset, size_t key_idx,
1343 	struct ub_packed_rrset_key* ds_rrset)
1344 {
1345 	struct packed_rrset_data* dd = (struct packed_rrset_data*)
1346 	                ds_rrset->entry.data;
1347 	size_t ds_idx, num = dd->count;
1348 	int d = val_favorite_ds_algo(ds_rrset);
1349 	char* reason = "";
1350 	for(ds_idx=0; ds_idx<num; ds_idx++) {
1351 		if(!ds_digest_algo_is_supported(ds_rrset, ds_idx) ||
1352 			!ds_key_algo_is_supported(ds_rrset, ds_idx) ||
1353 			ds_get_digest_algo(ds_rrset, ds_idx) != d)
1354 			continue;
1355 		if(ds_get_key_algo(ds_rrset, ds_idx)
1356 		   != dnskey_get_algo(dnskey_rrset, key_idx)
1357 		   || dnskey_calc_keytag(dnskey_rrset, key_idx)
1358 		   != ds_get_keytag(ds_rrset, ds_idx)) {
1359 			continue;
1360 		}
1361 		if(!ds_digest_match_dnskey(env, dnskey_rrset, key_idx,
1362 			ds_rrset, ds_idx)) {
1363 			verbose(VERB_ALGO, "DS match attempt failed");
1364 			continue;
1365 		}
1366 		if(dnskey_verify_rrset(env, ve, dnskey_rrset,
1367 			dnskey_rrset, key_idx, &reason) == sec_status_secure) {
1368 			return 1;
1369 		} else {
1370 			verbose(VERB_ALGO, "DS match failed because the key "
1371 				"does not verify the keyset: %s", reason);
1372 		}
1373 	}
1374 	return 0;
1375 }
1376 
1377 /** Set update events */
1378 static int
1379 update_events(struct module_env* env, struct val_env* ve,
1380 	struct trust_anchor* tp, struct ub_packed_rrset_key* dnskey_rrset,
1381 	int* changed)
1382 {
1383 	ldns_rr_list* r = packed_rrset_to_rr_list(dnskey_rrset,
1384 		env->scratch_buffer);
1385 	size_t i;
1386 	if(!r)
1387 		return 0;
1388 	init_events(tp);
1389 	for(i=0; i<ldns_rr_list_rr_count(r); i++) {
1390 		ldns_rr* rr = ldns_rr_list_rr(r, i);
1391 		struct autr_ta* ta = NULL;
1392 		if(ldns_rr_get_type(rr) != LDNS_RR_TYPE_DNSKEY)
1393 			continue;
1394 		if(!rr_is_dnskey_sep(rr))
1395 			continue;
1396 		if(rr_is_dnskey_revoked(rr)) {
1397 			/* self-signed revoked keys already detected before,
1398 			 * other revoked keys are not 'added' again */
1399 			continue;
1400 		}
1401 		/* is a key of this type supported?. Note rr_list and
1402 		 * packed_rrset are in the same order. */
1403 		if(!dnskey_algo_is_supported(dnskey_rrset, i)) {
1404 			/* skip unknown algorithm key, it is useless to us */
1405 			log_nametypeclass(VERB_DETAIL, "trust point has "
1406 				"unsupported algorithm at",
1407 				tp->name, LDNS_RR_TYPE_DNSKEY, tp->dclass);
1408 			continue;
1409 		}
1410 
1411 		/* is it new? if revocation bit set, find the unrevoked key */
1412 		if(!find_key(tp, rr, &ta)) {
1413 			ldns_rr_list_deep_free(r); /* malloc fail in compare*/
1414 			return 0;
1415 		}
1416 		if(!ta) {
1417 			ta = add_key(tp, rr);
1418 			*changed = 1;
1419 			/* first time seen, do we have DSes? if match: VALID */
1420 			if(ta && tp->ds_rrset && key_matches_a_ds(env, ve,
1421 				dnskey_rrset, i, tp->ds_rrset)) {
1422 				verbose_key(ta, VERB_ALGO, "verified by DS");
1423 				ta->s = AUTR_STATE_VALID;
1424 			}
1425 		}
1426 		if(!ta) {
1427 			ldns_rr_list_deep_free(r);
1428 			return 0;
1429 		}
1430 		seen_trustanchor(ta, 1);
1431 		verbose_key(ta, VERB_ALGO, "in DNS response");
1432 	}
1433 	set_tp_times(tp, min_expiry(env, r), key_ttl(dnskey_rrset), changed);
1434 	ldns_rr_list_deep_free(r);
1435 	return 1;
1436 }
1437 
1438 /**
1439  * Check if the holddown time has already exceeded
1440  * setting: add-holddown: add holddown timer
1441  * setting: del-holddown: del holddown timer
1442  * @param env: environment with current time
1443  * @param ta: trust anchor to check for.
1444  * @param holddown: the timer value
1445  * @return number of seconds the holddown has passed.
1446  */
1447 static int
1448 check_holddown(struct module_env* env, struct autr_ta* ta,
1449 	unsigned int holddown)
1450 {
1451         unsigned int elapsed;
1452 	if((unsigned)*env->now < (unsigned)ta->last_change) {
1453 		log_warn("time goes backwards. delaying key holddown");
1454 		return 0;
1455 	}
1456 	elapsed = (unsigned)*env->now - (unsigned)ta->last_change;
1457         if (elapsed > holddown) {
1458                 return (int) (elapsed-holddown);
1459         }
1460 	verbose_key(ta, VERB_ALGO, "holddown time %d seconds to go",
1461 		(int) (holddown-elapsed));
1462         return 0;
1463 }
1464 
1465 
1466 /** Set last_change to now */
1467 static void
1468 reset_holddown(struct module_env* env, struct autr_ta* ta, int* changed)
1469 {
1470 	ta->last_change = *env->now;
1471 	*changed = 1;
1472 }
1473 
1474 /** Set the state for this trust anchor */
1475 static void
1476 set_trustanchor_state(struct module_env* env, struct autr_ta* ta, int* changed,
1477 	autr_state_t s)
1478 {
1479 	verbose_key(ta, VERB_ALGO, "update: %s to %s",
1480 		trustanchor_state2str(ta->s), trustanchor_state2str(s));
1481 	ta->s = s;
1482 	reset_holddown(env, ta, changed);
1483 }
1484 
1485 
1486 /** Event: NewKey */
1487 static void
1488 do_newkey(struct module_env* env, struct autr_ta* anchor, int* c)
1489 {
1490 	if (anchor->s == AUTR_STATE_START)
1491 		set_trustanchor_state(env, anchor, c, AUTR_STATE_ADDPEND);
1492 }
1493 
1494 /** Event: AddTime */
1495 static void
1496 do_addtime(struct module_env* env, struct autr_ta* anchor, int* c)
1497 {
1498 	/* This not according to RFC, this is 30 days, but the RFC demands
1499 	 * MAX(30days, TTL expire time of first DNSKEY set with this key),
1500 	 * The value may be too small if a very large TTL was used. */
1501 	int exceeded = check_holddown(env, anchor, env->cfg->add_holddown);
1502 	if (exceeded && anchor->s == AUTR_STATE_ADDPEND) {
1503 		verbose_key(anchor, VERB_ALGO, "add-holddown time exceeded "
1504 			"%d seconds ago, and pending-count %d", exceeded,
1505 			anchor->pending_count);
1506 		if(anchor->pending_count >= MIN_PENDINGCOUNT) {
1507 			set_trustanchor_state(env, anchor, c, AUTR_STATE_VALID);
1508 			anchor->pending_count = 0;
1509 			return;
1510 		}
1511 		verbose_key(anchor, VERB_ALGO, "add-holddown time sanity check "
1512 			"failed (pending count: %d)", anchor->pending_count);
1513 	}
1514 }
1515 
1516 /** Event: RemTime */
1517 static void
1518 do_remtime(struct module_env* env, struct autr_ta* anchor, int* c)
1519 {
1520 	int exceeded = check_holddown(env, anchor, env->cfg->del_holddown);
1521 	if(exceeded && anchor->s == AUTR_STATE_REVOKED) {
1522 		verbose_key(anchor, VERB_ALGO, "del-holddown time exceeded "
1523 			"%d seconds ago", exceeded);
1524 		set_trustanchor_state(env, anchor, c, AUTR_STATE_REMOVED);
1525 	}
1526 }
1527 
1528 /** Event: KeyRem */
1529 static void
1530 do_keyrem(struct module_env* env, struct autr_ta* anchor, int* c)
1531 {
1532 	if(anchor->s == AUTR_STATE_ADDPEND) {
1533 		set_trustanchor_state(env, anchor, c, AUTR_STATE_START);
1534 		anchor->pending_count = 0;
1535 	} else if(anchor->s == AUTR_STATE_VALID)
1536 		set_trustanchor_state(env, anchor, c, AUTR_STATE_MISSING);
1537 }
1538 
1539 /** Event: KeyPres */
1540 static void
1541 do_keypres(struct module_env* env, struct autr_ta* anchor, int* c)
1542 {
1543 	if(anchor->s == AUTR_STATE_MISSING)
1544 		set_trustanchor_state(env, anchor, c, AUTR_STATE_VALID);
1545 }
1546 
1547 /* Event: Revoked */
1548 static void
1549 do_revoked(struct module_env* env, struct autr_ta* anchor, int* c)
1550 {
1551 	if(anchor->s == AUTR_STATE_VALID || anchor->s == AUTR_STATE_MISSING) {
1552                 set_trustanchor_state(env, anchor, c, AUTR_STATE_REVOKED);
1553 		verbose_key(anchor, VERB_ALGO, "old id, prior to revocation");
1554                 revoke_dnskey(anchor, 0);
1555 		verbose_key(anchor, VERB_ALGO, "new id, after revocation");
1556 	}
1557 }
1558 
1559 /** Do statestable transition matrix for anchor */
1560 static void
1561 anchor_state_update(struct module_env* env, struct autr_ta* anchor, int* c)
1562 {
1563 	log_assert(anchor);
1564 	switch(anchor->s) {
1565 	/* START */
1566 	case AUTR_STATE_START:
1567 		/* NewKey: ADDPEND */
1568 		if (anchor->fetched)
1569 			do_newkey(env, anchor, c);
1570 		break;
1571 	/* ADDPEND */
1572 	case AUTR_STATE_ADDPEND:
1573 		/* KeyRem: START */
1574 		if (!anchor->fetched)
1575 			do_keyrem(env, anchor, c);
1576 		/* AddTime: VALID */
1577 		else	do_addtime(env, anchor, c);
1578 		break;
1579 	/* VALID */
1580 	case AUTR_STATE_VALID:
1581 		/* RevBit: REVOKED */
1582 		if (anchor->revoked)
1583 			do_revoked(env, anchor, c);
1584 		/* KeyRem: MISSING */
1585 		else if (!anchor->fetched)
1586 			do_keyrem(env, anchor, c);
1587 		else if(!anchor->last_change) {
1588 			verbose_key(anchor, VERB_ALGO, "first seen");
1589 			reset_holddown(env, anchor, c);
1590 		}
1591 		break;
1592 	/* MISSING */
1593 	case AUTR_STATE_MISSING:
1594 		/* RevBit: REVOKED */
1595 		if (anchor->revoked)
1596 			do_revoked(env, anchor, c);
1597 		/* KeyPres */
1598 		else if (anchor->fetched)
1599 			do_keypres(env, anchor, c);
1600 		break;
1601 	/* REVOKED */
1602 	case AUTR_STATE_REVOKED:
1603 		if (anchor->fetched)
1604 			reset_holddown(env, anchor, c);
1605 		/* RemTime: REMOVED */
1606 		else	do_remtime(env, anchor, c);
1607 		break;
1608 	/* REMOVED */
1609 	case AUTR_STATE_REMOVED:
1610 	default:
1611 		break;
1612 	}
1613 }
1614 
1615 /** if ZSK init then trust KSKs */
1616 static int
1617 init_zsk_to_ksk(struct module_env* env, struct trust_anchor* tp, int* changed)
1618 {
1619 	/* search for VALID ZSKs */
1620 	struct autr_ta* anchor;
1621 	int validzsk = 0;
1622 	int validksk = 0;
1623 	for(anchor = tp->autr->keys; anchor; anchor = anchor->next) {
1624 		/* last_change test makes sure it was manually configured */
1625                 if (ldns_rr_get_type(anchor->rr) == LDNS_RR_TYPE_DNSKEY &&
1626 			anchor->last_change == 0 &&
1627 			!rr_is_dnskey_sep(anchor->rr) &&
1628 			anchor->s == AUTR_STATE_VALID)
1629                         validzsk++;
1630 	}
1631 	if(validzsk == 0)
1632 		return 0;
1633 	for(anchor = tp->autr->keys; anchor; anchor = anchor->next) {
1634                 if (rr_is_dnskey_sep(anchor->rr) &&
1635 			anchor->s == AUTR_STATE_ADDPEND) {
1636 			verbose_key(anchor, VERB_ALGO, "trust KSK from "
1637 				"ZSK(config)");
1638 			set_trustanchor_state(env, anchor, changed,
1639 				AUTR_STATE_VALID);
1640 			validksk++;
1641 		}
1642 	}
1643 	return validksk;
1644 }
1645 
1646 /** Remove missing trustanchors so the list does not grow forever */
1647 static void
1648 remove_missing_trustanchors(struct module_env* env, struct trust_anchor* tp,
1649 	int* changed)
1650 {
1651 	struct autr_ta* anchor;
1652 	int exceeded;
1653 	int valid = 0;
1654 	/* see if we have anchors that are valid */
1655 	for(anchor = tp->autr->keys; anchor; anchor = anchor->next) {
1656 		/* Only do KSKs */
1657                 if (!rr_is_dnskey_sep(anchor->rr))
1658                         continue;
1659                 if (anchor->s == AUTR_STATE_VALID)
1660                         valid++;
1661 	}
1662 	/* if there are no SEP Valid anchors, see if we started out with
1663 	 * a ZSK (last-change=0) anchor, which is VALID and there are KSKs
1664 	 * now that can be made valid.  Do this immediately because there
1665 	 * is no guarantee that the ZSKs get announced long enough.  Usually
1666 	 * this is immediately after init with a ZSK trusted, unless the domain
1667 	 * was not advertising any KSKs at all.  In which case we perfectly
1668 	 * track the zero number of KSKs. */
1669 	if(valid == 0) {
1670 		valid = init_zsk_to_ksk(env, tp, changed);
1671 		if(valid == 0)
1672 			return;
1673 	}
1674 
1675 	for(anchor = tp->autr->keys; anchor; anchor = anchor->next) {
1676 		/* ignore ZSKs if newly added */
1677 		if(anchor->s == AUTR_STATE_START)
1678 			continue;
1679 		/* remove ZSKs if a KSK is present */
1680                 if (!rr_is_dnskey_sep(anchor->rr)) {
1681 			if(valid > 0) {
1682 				verbose_key(anchor, VERB_ALGO, "remove ZSK "
1683 					"[%d key(s) VALID]", valid);
1684 				set_trustanchor_state(env, anchor, changed,
1685 					AUTR_STATE_REMOVED);
1686 			}
1687                         continue;
1688 		}
1689                 /* Only do MISSING keys */
1690                 if (anchor->s != AUTR_STATE_MISSING)
1691                         continue;
1692 		if(env->cfg->keep_missing == 0)
1693 			continue; /* keep forever */
1694 
1695 		exceeded = check_holddown(env, anchor, env->cfg->keep_missing);
1696 		/* If keep_missing has exceeded and we still have more than
1697 		 * one valid KSK: remove missing trust anchor */
1698                 if (exceeded && valid > 0) {
1699 			verbose_key(anchor, VERB_ALGO, "keep-missing time "
1700 				"exceeded %d seconds ago, [%d key(s) VALID]",
1701 				exceeded, valid);
1702 			set_trustanchor_state(env, anchor, changed,
1703 				AUTR_STATE_REMOVED);
1704 		}
1705 	}
1706 }
1707 
1708 /** Do the statetable from RFC5011 transition matrix */
1709 static int
1710 do_statetable(struct module_env* env, struct trust_anchor* tp, int* changed)
1711 {
1712 	struct autr_ta* anchor;
1713 	for(anchor = tp->autr->keys; anchor; anchor = anchor->next) {
1714 		/* Only do KSKs */
1715 		if(!rr_is_dnskey_sep(anchor->rr))
1716 			continue;
1717 		anchor_state_update(env, anchor, changed);
1718 	}
1719 	remove_missing_trustanchors(env, tp, changed);
1720 	return 1;
1721 }
1722 
1723 /** See if time alone makes ADDPEND to VALID transition */
1724 static void
1725 autr_holddown_exceed(struct module_env* env, struct trust_anchor* tp, int* c)
1726 {
1727 	struct autr_ta* anchor;
1728 	for(anchor = tp->autr->keys; anchor; anchor = anchor->next) {
1729 		if(rr_is_dnskey_sep(anchor->rr) &&
1730 			anchor->s == AUTR_STATE_ADDPEND)
1731 			do_addtime(env, anchor, c);
1732 	}
1733 }
1734 
1735 /** cleanup key list */
1736 static void
1737 autr_cleanup_keys(struct trust_anchor* tp)
1738 {
1739 	struct autr_ta* p, **prevp;
1740 	prevp = &tp->autr->keys;
1741 	p = tp->autr->keys;
1742 	while(p) {
1743 		/* do we want to remove this key? */
1744 		if(p->s == AUTR_STATE_START || p->s == AUTR_STATE_REMOVED ||
1745 			ldns_rr_get_type(p->rr) != LDNS_RR_TYPE_DNSKEY) {
1746 			struct autr_ta* np = p->next;
1747 			/* remove */
1748 			ldns_rr_free(p->rr);
1749 			free(p);
1750 			/* snip and go to next item */
1751 			*prevp = np;
1752 			p = np;
1753 			continue;
1754 		}
1755 		/* remove pending counts if no longer pending */
1756 		if(p->s != AUTR_STATE_ADDPEND)
1757 			p->pending_count = 0;
1758 		prevp = &p->next;
1759 		p = p->next;
1760 	}
1761 }
1762 
1763 /** calculate next probe time */
1764 static time_t
1765 calc_next_probe(struct module_env* env, uint32_t wait)
1766 {
1767 	/* make it random, 90-100% */
1768 	uint32_t rnd, rest;
1769 	if(wait < 3600)
1770 		wait = 3600;
1771 	rnd = wait/10;
1772 	rest = wait-rnd;
1773 	rnd = (uint32_t)ub_random_max(env->rnd, (long int)rnd);
1774 	return (time_t)(*env->now + rest + rnd);
1775 }
1776 
1777 /** what is first probe time (anchors must be locked) */
1778 static time_t
1779 wait_probe_time(struct val_anchors* anchors)
1780 {
1781 	rbnode_t* t = rbtree_first(&anchors->autr->probe);
1782 	if(t != RBTREE_NULL)
1783 		return ((struct trust_anchor*)t->key)->autr->next_probe_time;
1784 	return 0;
1785 }
1786 
1787 /** reset worker timer */
1788 static void
1789 reset_worker_timer(struct module_env* env)
1790 {
1791 	struct timeval tv;
1792 #ifndef S_SPLINT_S
1793 	uint32_t next = (uint32_t)wait_probe_time(env->anchors);
1794 	/* in case this is libunbound, no timer */
1795 	if(!env->probe_timer)
1796 		return;
1797 	if(next > *env->now)
1798 		tv.tv_sec = (time_t)(next - *env->now);
1799 	else	tv.tv_sec = 0;
1800 #endif
1801 	tv.tv_usec = 0;
1802 	comm_timer_set(env->probe_timer, &tv);
1803 	verbose(VERB_ALGO, "scheduled next probe in %d sec", (int)tv.tv_sec);
1804 }
1805 
1806 /** set next probe for trust anchor */
1807 static int
1808 set_next_probe(struct module_env* env, struct trust_anchor* tp,
1809 	struct ub_packed_rrset_key* dnskey_rrset)
1810 {
1811 	struct trust_anchor key, *tp2;
1812 	time_t mold, mnew;
1813 	/* use memory allocated in rrset for temporary name storage */
1814 	key.node.key = &key;
1815 	key.name = dnskey_rrset->rk.dname;
1816 	key.namelen = dnskey_rrset->rk.dname_len;
1817 	key.namelabs = dname_count_labels(key.name);
1818 	key.dclass = tp->dclass;
1819 	lock_basic_unlock(&tp->lock);
1820 
1821 	/* fetch tp again and lock anchors, so that we can modify the trees */
1822 	lock_basic_lock(&env->anchors->lock);
1823 	tp2 = (struct trust_anchor*)rbtree_search(env->anchors->tree, &key);
1824 	if(!tp2) {
1825 		verbose(VERB_ALGO, "trustpoint was deleted in set_next_probe");
1826 		lock_basic_unlock(&env->anchors->lock);
1827 		return 0;
1828 	}
1829 	log_assert(tp == tp2);
1830 	lock_basic_lock(&tp->lock);
1831 
1832 	/* schedule */
1833 	mold = wait_probe_time(env->anchors);
1834 	(void)rbtree_delete(&env->anchors->autr->probe, tp);
1835 	tp->autr->next_probe_time = calc_next_probe(env,
1836 		tp->autr->query_interval);
1837 	(void)rbtree_insert(&env->anchors->autr->probe, &tp->autr->pnode);
1838 	mnew = wait_probe_time(env->anchors);
1839 
1840 	lock_basic_unlock(&env->anchors->lock);
1841 	verbose(VERB_ALGO, "next probe set in %d seconds",
1842 		(int)tp->autr->next_probe_time - (int)*env->now);
1843 	if(mold != mnew) {
1844 		reset_worker_timer(env);
1845 	}
1846 	return 1;
1847 }
1848 
1849 /** Revoke and Delete a trust point */
1850 static void
1851 autr_tp_remove(struct module_env* env, struct trust_anchor* tp,
1852 	struct ub_packed_rrset_key* dnskey_rrset)
1853 {
1854 	struct trust_anchor* del_tp;
1855 	struct trust_anchor key;
1856 	struct autr_point_data pd;
1857 	time_t mold, mnew;
1858 
1859 	log_nametypeclass(VERB_OPS, "trust point was revoked",
1860 		tp->name, LDNS_RR_TYPE_DNSKEY, tp->dclass);
1861 	tp->autr->revoked = 1;
1862 
1863 	/* use space allocated for dnskey_rrset to save name of anchor */
1864 	memset(&key, 0, sizeof(key));
1865 	memset(&pd, 0, sizeof(pd));
1866 	key.autr = &pd;
1867 	key.node.key = &key;
1868 	pd.pnode.key = &key;
1869 	pd.next_probe_time = tp->autr->next_probe_time;
1870 	key.name = dnskey_rrset->rk.dname;
1871 	key.namelen = tp->namelen;
1872 	key.namelabs = tp->namelabs;
1873 	key.dclass = tp->dclass;
1874 
1875 	/* unlock */
1876 	lock_basic_unlock(&tp->lock);
1877 
1878 	/* take from tree. It could be deleted by someone else,hence (void). */
1879 	lock_basic_lock(&env->anchors->lock);
1880 	del_tp = (struct trust_anchor*)rbtree_delete(env->anchors->tree, &key);
1881 	mold = wait_probe_time(env->anchors);
1882 	(void)rbtree_delete(&env->anchors->autr->probe, &key);
1883 	mnew = wait_probe_time(env->anchors);
1884 	anchors_init_parents_locked(env->anchors);
1885 	lock_basic_unlock(&env->anchors->lock);
1886 
1887 	/* if !del_tp then the trust point is no longer present in the tree,
1888 	 * it was deleted by someone else, who will write the zonefile and
1889 	 * clean up the structure */
1890 	if(del_tp) {
1891 		/* save on disk */
1892 		del_tp->autr->next_probe_time = 0; /* no more probing for it */
1893 		autr_write_file(env, del_tp);
1894 
1895 		/* delete */
1896 		autr_point_delete(del_tp);
1897 	}
1898 	if(mold != mnew) {
1899 		reset_worker_timer(env);
1900 	}
1901 }
1902 
1903 int autr_process_prime(struct module_env* env, struct val_env* ve,
1904 	struct trust_anchor* tp, struct ub_packed_rrset_key* dnskey_rrset)
1905 {
1906 	int changed = 0;
1907 	log_assert(tp && tp->autr);
1908 	/* autotrust update trust anchors */
1909 	/* the tp is locked, and stays locked unless it is deleted */
1910 
1911 	/* we could just catch the anchor here while another thread
1912 	 * is busy deleting it. Just unlock and let the other do its job */
1913 	if(tp->autr->revoked) {
1914 		log_nametypeclass(VERB_ALGO, "autotrust not processed, "
1915 			"trust point revoked", tp->name,
1916 			LDNS_RR_TYPE_DNSKEY, tp->dclass);
1917 		lock_basic_unlock(&tp->lock);
1918 		return 0; /* it is revoked */
1919 	}
1920 
1921 	/* query_dnskeys(): */
1922 	tp->autr->last_queried = *env->now;
1923 
1924 	log_nametypeclass(VERB_ALGO, "autotrust process for",
1925 		tp->name, LDNS_RR_TYPE_DNSKEY, tp->dclass);
1926 	/* see if time alone makes some keys valid */
1927 	autr_holddown_exceed(env, tp, &changed);
1928 	if(changed) {
1929 		verbose(VERB_ALGO, "autotrust: morekeys, reassemble");
1930 		if(!autr_assemble(tp)) {
1931 			log_err("malloc failure assembling autotrust keys");
1932 			return 1; /* unchanged */
1933 		}
1934 	}
1935 	/* did we get any data? */
1936 	if(!dnskey_rrset) {
1937 		verbose(VERB_ALGO, "autotrust: no dnskey rrset");
1938 		/* no update of query_failed, because then we would have
1939 		 * to write to disk. But we cannot because we maybe are
1940 		 * still 'initialising' with DS records, that we cannot write
1941 		 * in the full format (which only contains KSKs). */
1942 		return 1; /* trust point exists */
1943 	}
1944 	/* check for revoked keys to remove immediately */
1945 	check_contains_revoked(env, ve, tp, dnskey_rrset, &changed);
1946 	if(changed) {
1947 		verbose(VERB_ALGO, "autotrust: revokedkeys, reassemble");
1948 		if(!autr_assemble(tp)) {
1949 			log_err("malloc failure assembling autotrust keys");
1950 			return 1; /* unchanged */
1951 		}
1952 		if(!tp->ds_rrset && !tp->dnskey_rrset) {
1953 			/* no more keys, all are revoked */
1954 			/* this is a success for this probe attempt */
1955 			tp->autr->last_success = *env->now;
1956 			autr_tp_remove(env, tp, dnskey_rrset);
1957 			return 0; /* trust point removed */
1958 		}
1959 	}
1960 	/* verify the dnskey rrset and see if it is valid. */
1961 	if(!verify_dnskey(env, ve, tp, dnskey_rrset)) {
1962 		verbose(VERB_ALGO, "autotrust: dnskey did not verify.");
1963 		/* only increase failure count if this is not the first prime,
1964 		 * this means there was a previous succesful probe */
1965 		if(tp->autr->last_success) {
1966 			tp->autr->query_failed += 1;
1967 			autr_write_file(env, tp);
1968 		}
1969 		return 1; /* trust point exists */
1970 	}
1971 
1972 	tp->autr->last_success = *env->now;
1973 	tp->autr->query_failed = 0;
1974 
1975 	/* Add new trust anchors to the data structure
1976 	 * - note which trust anchors are seen this probe.
1977 	 * Set trustpoint query_interval and retry_time.
1978 	 * - find minimum rrsig expiration interval
1979 	 */
1980 	if(!update_events(env, ve, tp, dnskey_rrset, &changed)) {
1981 		log_err("malloc failure in autotrust update_events. "
1982 			"trust point unchanged.");
1983 		return 1; /* trust point unchanged, so exists */
1984 	}
1985 
1986 	/* - for every SEP key do the 5011 statetable.
1987 	 * - remove missing trustanchors (if veryold and we have new anchors).
1988 	 */
1989 	if(!do_statetable(env, tp, &changed)) {
1990 		log_err("malloc failure in autotrust do_statetable. "
1991 			"trust point unchanged.");
1992 		return 1; /* trust point unchanged, so exists */
1993 	}
1994 
1995 	autr_cleanup_keys(tp);
1996 	if(!set_next_probe(env, tp, dnskey_rrset))
1997 		return 0; /* trust point does not exist */
1998 	autr_write_file(env, tp);
1999 	if(changed) {
2000 		verbose(VERB_ALGO, "autotrust: changed, reassemble");
2001 		if(!autr_assemble(tp)) {
2002 			log_err("malloc failure assembling autotrust keys");
2003 			return 1; /* unchanged */
2004 		}
2005 		if(!tp->ds_rrset && !tp->dnskey_rrset) {
2006 			/* no more keys, all are revoked */
2007 			autr_tp_remove(env, tp, dnskey_rrset);
2008 			return 0; /* trust point removed */
2009 		}
2010 	} else verbose(VERB_ALGO, "autotrust: no changes");
2011 
2012 	return 1; /* trust point exists */
2013 }
2014 
2015 /** debug print a trust anchor key */
2016 static void
2017 autr_debug_print_ta(struct autr_ta* ta)
2018 {
2019 	char buf[32];
2020 	char* str = ldns_rr2str(ta->rr);
2021 	if(!str) {
2022 		log_info("out of memory in debug_print_ta");
2023 		return;
2024 	}
2025 	if(str && str[0]) str[strlen(str)-1]=0; /* remove newline */
2026 	ctime_r(&ta->last_change, buf);
2027 	if(buf[0]) buf[strlen(buf)-1]=0; /* remove newline */
2028 	log_info("[%s] %s ;;state:%d ;;pending_count:%d%s%s last:%s",
2029 		trustanchor_state2str(ta->s), str, ta->s, ta->pending_count,
2030 		ta->fetched?" fetched":"", ta->revoked?" revoked":"", buf);
2031 	free(str);
2032 }
2033 
2034 /** debug print a trust point */
2035 static void
2036 autr_debug_print_tp(struct trust_anchor* tp)
2037 {
2038 	struct autr_ta* ta;
2039 	char buf[257];
2040 	if(!tp->autr)
2041 		return;
2042 	dname_str(tp->name, buf);
2043 	log_info("trust point %s : %d", buf, (int)tp->dclass);
2044 	log_info("assembled %d DS and %d DNSKEYs",
2045 		(int)tp->numDS, (int)tp->numDNSKEY);
2046 	if(0) { /* turned off because it prints to stderr */
2047 		ldns_buffer* bf = ldns_buffer_new(70000);
2048 		ldns_rr_list* list;
2049 		if(tp->ds_rrset) {
2050 			list = packed_rrset_to_rr_list(tp->ds_rrset, bf);
2051 			ldns_rr_list_print(stderr, list);
2052 			ldns_rr_list_deep_free(list);
2053 		}
2054 		if(tp->dnskey_rrset) {
2055 			list = packed_rrset_to_rr_list(tp->dnskey_rrset, bf);
2056 			ldns_rr_list_print(stderr, list);
2057 			ldns_rr_list_deep_free(list);
2058 		}
2059 		ldns_buffer_free(bf);
2060 	}
2061 	log_info("file %s", tp->autr->file);
2062 	ctime_r(&tp->autr->last_queried, buf);
2063 	if(buf[0]) buf[strlen(buf)-1]=0; /* remove newline */
2064 	log_info("last_queried: %u %s", (unsigned)tp->autr->last_queried, buf);
2065 	ctime_r(&tp->autr->last_success, buf);
2066 	if(buf[0]) buf[strlen(buf)-1]=0; /* remove newline */
2067 	log_info("last_success: %u %s", (unsigned)tp->autr->last_success, buf);
2068 	ctime_r(&tp->autr->next_probe_time, buf);
2069 	if(buf[0]) buf[strlen(buf)-1]=0; /* remove newline */
2070 	log_info("next_probe_time: %u %s", (unsigned)tp->autr->next_probe_time,
2071 		buf);
2072 	log_info("query_interval: %u", (unsigned)tp->autr->query_interval);
2073 	log_info("retry_time: %u", (unsigned)tp->autr->retry_time);
2074 	log_info("query_failed: %u", (unsigned)tp->autr->query_failed);
2075 
2076 	for(ta=tp->autr->keys; ta; ta=ta->next) {
2077 		autr_debug_print_ta(ta);
2078 	}
2079 }
2080 
2081 void
2082 autr_debug_print(struct val_anchors* anchors)
2083 {
2084 	struct trust_anchor* tp;
2085 	lock_basic_lock(&anchors->lock);
2086 	RBTREE_FOR(tp, struct trust_anchor*, anchors->tree) {
2087 		lock_basic_lock(&tp->lock);
2088 		autr_debug_print_tp(tp);
2089 		lock_basic_unlock(&tp->lock);
2090 	}
2091 	lock_basic_unlock(&anchors->lock);
2092 }
2093 
2094 void probe_answer_cb(void* arg, int ATTR_UNUSED(rcode),
2095 	ldns_buffer* ATTR_UNUSED(buf), enum sec_status ATTR_UNUSED(sec),
2096 	char* ATTR_UNUSED(why_bogus))
2097 {
2098 	/* retry was set before the query was done,
2099 	 * re-querytime is set when query succeeded, but that may not
2100 	 * have reset this timer because the query could have been
2101 	 * handled by another thread. In that case, this callback would
2102 	 * get called after the original timeout is done.
2103 	 * By not resetting the timer, it may probe more often, but not
2104 	 * less often.
2105 	 * Unless the new lookup resulted in smaller TTLs and thus smaller
2106 	 * timeout values. In that case one old TTL could be mistakenly done.
2107 	 */
2108 	struct module_env* env = (struct module_env*)arg;
2109 	verbose(VERB_ALGO, "autotrust probe answer cb");
2110 	reset_worker_timer(env);
2111 }
2112 
2113 /** probe a trust anchor DNSKEY and unlocks tp */
2114 static void
2115 probe_anchor(struct module_env* env, struct trust_anchor* tp)
2116 {
2117 	struct query_info qinfo;
2118 	uint16_t qflags = BIT_RD;
2119 	struct edns_data edns;
2120 	ldns_buffer* buf = env->scratch_buffer;
2121 	qinfo.qname = regional_alloc_init(env->scratch, tp->name, tp->namelen);
2122 	if(!qinfo.qname) {
2123 		log_err("out of memory making 5011 probe");
2124 		return;
2125 	}
2126 	qinfo.qname_len = tp->namelen;
2127 	qinfo.qtype = LDNS_RR_TYPE_DNSKEY;
2128 	qinfo.qclass = tp->dclass;
2129 	log_query_info(VERB_ALGO, "autotrust probe", &qinfo);
2130 	verbose(VERB_ALGO, "retry probe set in %d seconds",
2131 		(int)tp->autr->next_probe_time - (int)*env->now);
2132 	edns.edns_present = 1;
2133 	edns.ext_rcode = 0;
2134 	edns.edns_version = 0;
2135 	edns.bits = EDNS_DO;
2136 	if(ldns_buffer_capacity(buf) < 65535)
2137 		edns.udp_size = (uint16_t)ldns_buffer_capacity(buf);
2138 	else	edns.udp_size = 65535;
2139 
2140 	/* can't hold the lock while mesh_run is processing */
2141 	lock_basic_unlock(&tp->lock);
2142 
2143 	/* delete the DNSKEY from rrset and key cache so an active probe
2144 	 * is done. First the rrset so another thread does not use it
2145 	 * to recreate the key entry in a race condition. */
2146 	rrset_cache_remove(env->rrset_cache, qinfo.qname, qinfo.qname_len,
2147 		qinfo.qtype, qinfo.qclass, 0);
2148 	key_cache_remove(env->key_cache, qinfo.qname, qinfo.qname_len,
2149 		qinfo.qclass);
2150 
2151 	if(!mesh_new_callback(env->mesh, &qinfo, qflags, &edns, buf, 0,
2152 		&probe_answer_cb, env)) {
2153 		log_err("out of memory making 5011 probe");
2154 	}
2155 }
2156 
2157 /** fetch first to-probe trust-anchor and lock it and set retrytime */
2158 static struct trust_anchor*
2159 todo_probe(struct module_env* env, uint32_t* next)
2160 {
2161 	struct trust_anchor* tp;
2162 	rbnode_t* el;
2163 	/* get first one */
2164 	lock_basic_lock(&env->anchors->lock);
2165 	if( (el=rbtree_first(&env->anchors->autr->probe)) == RBTREE_NULL) {
2166 		/* in case of revoked anchors */
2167 		lock_basic_unlock(&env->anchors->lock);
2168 		return NULL;
2169 	}
2170 	tp = (struct trust_anchor*)el->key;
2171 	lock_basic_lock(&tp->lock);
2172 
2173 	/* is it eligible? */
2174 	if((uint32_t)tp->autr->next_probe_time > *env->now) {
2175 		/* no more to probe */
2176 		*next = (uint32_t)tp->autr->next_probe_time - *env->now;
2177 		lock_basic_unlock(&tp->lock);
2178 		lock_basic_unlock(&env->anchors->lock);
2179 		return NULL;
2180 	}
2181 
2182 	/* reset its next probe time */
2183 	(void)rbtree_delete(&env->anchors->autr->probe, tp);
2184 	tp->autr->next_probe_time = calc_next_probe(env, tp->autr->retry_time);
2185 	(void)rbtree_insert(&env->anchors->autr->probe, &tp->autr->pnode);
2186 	lock_basic_unlock(&env->anchors->lock);
2187 
2188 	return tp;
2189 }
2190 
2191 uint32_t
2192 autr_probe_timer(struct module_env* env)
2193 {
2194 	struct trust_anchor* tp;
2195 	uint32_t next_probe = 3600;
2196 	int num = 0;
2197 	verbose(VERB_ALGO, "autotrust probe timer callback");
2198 	/* while there are still anchors to probe */
2199 	while( (tp = todo_probe(env, &next_probe)) ) {
2200 		/* make a probe for this anchor */
2201 		probe_anchor(env, tp);
2202 		num++;
2203 	}
2204 	regional_free_all(env->scratch);
2205 	if(num == 0)
2206 		return 0; /* no trust points to probe */
2207 	verbose(VERB_ALGO, "autotrust probe timer %d callbacks done", num);
2208 	return next_probe;
2209 }
2210