1 /*
2  * validator/val_nsec3.c - validator NSEC3 denial of existance functions.
3  *
4  * Copyright (c) 2007, NLnet Labs. All rights reserved.
5  *
6  * This software is open source.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * Redistributions of source code must retain the above copyright notice,
13  * this list of conditions and the following disclaimer.
14  *
15  * Redistributions in binary form must reproduce the above copyright notice,
16  * this list of conditions and the following disclaimer in the documentation
17  * and/or other materials provided with the distribution.
18  *
19  * Neither the name of the NLNET LABS nor the names of its contributors may
20  * be used to endorse or promote products derived from this software without
21  * specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27  * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /**
37  * \file
38  *
39  * This file contains helper functions for the validator module.
40  * The functions help with NSEC3 checking, the different NSEC3 proofs
41  * for denial of existance, and proofs for presence of types.
42  */
43 #include "config.h"
44 #include <ctype.h>
45 #ifdef HAVE_OPENSSL_SSL_H
46 #include "openssl/ssl.h"
47 #endif
48 #ifdef HAVE_NSS
49 /* nss3 */
50 #include "sechash.h"
51 #endif
52 #include "validator/val_nsec3.h"
53 #include "validator/validator.h"
54 #include "validator/val_kentry.h"
55 #include "services/cache/rrset.h"
56 #include "util/regional.h"
57 #include "util/rbtree.h"
58 #include "util/module.h"
59 #include "util/net_help.h"
60 #include "util/data/packed_rrset.h"
61 #include "util/data/dname.h"
62 #include "util/data/msgreply.h"
63 /* we include nsec.h for the bitmap_has_type function */
64 #include "validator/val_nsec.h"
65 #include "ldns/sbuffer.h"
66 
67 /**
68  * This function we get from ldns-compat or from base system
69  * it returns the number of data bytes stored at the target, or <0 on error.
70  */
71 int sldns_b32_ntop_extended_hex(uint8_t const *src, size_t srclength,
72 	char *target, size_t targsize);
73 /**
74  * This function we get from ldns-compat or from base system
75  * it returns the number of data bytes stored at the target, or <0 on error.
76  */
77 int sldns_b32_pton_extended_hex(char const *src, size_t hashed_owner_str_len,
78 	uint8_t *target, size_t targsize);
79 
80 /**
81  * Closest encloser (ce) proof results
82  * Contains the ce and the next-closer (nc) proof.
83  */
84 struct ce_response {
85 	/** the closest encloser name */
86 	uint8_t* ce;
87 	/** length of ce */
88 	size_t ce_len;
89 	/** NSEC3 record that proved ce. rrset */
90 	struct ub_packed_rrset_key* ce_rrset;
91 	/** NSEC3 record that proved ce. rr number */
92 	int ce_rr;
93 	/** NSEC3 record that proved nc. rrset */
94 	struct ub_packed_rrset_key* nc_rrset;
95 	/** NSEC3 record that proved nc. rr*/
96 	int nc_rr;
97 };
98 
99 /**
100  * Filter conditions for NSEC3 proof
101  * Used to iterate over the applicable NSEC3 RRs.
102  */
103 struct nsec3_filter {
104 	/** Zone name, only NSEC3 records for this zone are considered */
105 	uint8_t* zone;
106 	/** length of the zonename */
107 	size_t zone_len;
108 	/** the list of NSEC3s to filter; array */
109 	struct ub_packed_rrset_key** list;
110 	/** number of rrsets in list */
111 	size_t num;
112 	/** class of records for the NSEC3, only this class applies */
113 	uint16_t fclass;
114 };
115 
116 /** return number of rrs in an rrset */
117 static size_t
118 rrset_get_count(struct ub_packed_rrset_key* rrset)
119 {
120         struct packed_rrset_data* d = (struct packed_rrset_data*)
121 	        rrset->entry.data;
122         if(!d) return 0;
123         return d->count;
124 }
125 
126 /** return if nsec3 RR has unknown flags */
127 static int
128 nsec3_unknown_flags(struct ub_packed_rrset_key* rrset, int r)
129 {
130         struct packed_rrset_data* d = (struct packed_rrset_data*)
131 	        rrset->entry.data;
132 	log_assert(d && r < (int)d->count);
133 	if(d->rr_len[r] < 2+2)
134 		return 0; /* malformed */
135 	return (int)(d->rr_data[r][2+1] & NSEC3_UNKNOWN_FLAGS);
136 }
137 
138 int
139 nsec3_has_optout(struct ub_packed_rrset_key* rrset, int r)
140 {
141         struct packed_rrset_data* d = (struct packed_rrset_data*)
142 	        rrset->entry.data;
143 	log_assert(d && r < (int)d->count);
144 	if(d->rr_len[r] < 2+2)
145 		return 0; /* malformed */
146 	return (int)(d->rr_data[r][2+1] & NSEC3_OPTOUT);
147 }
148 
149 /** return nsec3 RR algorithm */
150 static int
151 nsec3_get_algo(struct ub_packed_rrset_key* rrset, int r)
152 {
153         struct packed_rrset_data* d = (struct packed_rrset_data*)
154 	        rrset->entry.data;
155 	log_assert(d && r < (int)d->count);
156 	if(d->rr_len[r] < 2+1)
157 		return 0; /* malformed */
158 	return (int)(d->rr_data[r][2+0]);
159 }
160 
161 /** return if nsec3 RR has known algorithm */
162 static int
163 nsec3_known_algo(struct ub_packed_rrset_key* rrset, int r)
164 {
165         struct packed_rrset_data* d = (struct packed_rrset_data*)
166 	        rrset->entry.data;
167 	log_assert(d && r < (int)d->count);
168 	if(d->rr_len[r] < 2+1)
169 		return 0; /* malformed */
170 	switch(d->rr_data[r][2+0]) {
171 		case NSEC3_HASH_SHA1:
172 			return 1;
173 	}
174 	return 0;
175 }
176 
177 /** return nsec3 RR iteration count */
178 static size_t
179 nsec3_get_iter(struct ub_packed_rrset_key* rrset, int r)
180 {
181 	uint16_t i;
182         struct packed_rrset_data* d = (struct packed_rrset_data*)
183 	        rrset->entry.data;
184 	log_assert(d && r < (int)d->count);
185 	if(d->rr_len[r] < 2+4)
186 		return 0; /* malformed */
187 	memmove(&i, d->rr_data[r]+2+2, sizeof(i));
188 	i = ntohs(i);
189 	return (size_t)i;
190 }
191 
192 /** return nsec3 RR salt */
193 static int
194 nsec3_get_salt(struct ub_packed_rrset_key* rrset, int r,
195 	uint8_t** salt, size_t* saltlen)
196 {
197         struct packed_rrset_data* d = (struct packed_rrset_data*)
198 	        rrset->entry.data;
199 	log_assert(d && r < (int)d->count);
200 	if(d->rr_len[r] < 2+5) {
201 		*salt = 0;
202 		*saltlen = 0;
203 		return 0; /* malformed */
204 	}
205 	*saltlen = (size_t)d->rr_data[r][2+4];
206 	if(d->rr_len[r] < 2+5+(size_t)*saltlen) {
207 		*salt = 0;
208 		*saltlen = 0;
209 		return 0; /* malformed */
210 	}
211 	*salt = d->rr_data[r]+2+5;
212 	return 1;
213 }
214 
215 int nsec3_get_params(struct ub_packed_rrset_key* rrset, int r,
216 	int* algo, size_t* iter, uint8_t** salt, size_t* saltlen)
217 {
218 	if(!nsec3_known_algo(rrset, r) || nsec3_unknown_flags(rrset, r))
219 		return 0;
220 	if(!nsec3_get_salt(rrset, r, salt, saltlen))
221 		return 0;
222 	*algo = nsec3_get_algo(rrset, r);
223 	*iter = nsec3_get_iter(rrset, r);
224 	return 1;
225 }
226 
227 int
228 nsec3_get_nextowner(struct ub_packed_rrset_key* rrset, int r,
229 	uint8_t** next, size_t* nextlen)
230 {
231 	size_t saltlen;
232         struct packed_rrset_data* d = (struct packed_rrset_data*)
233 	        rrset->entry.data;
234 	log_assert(d && r < (int)d->count);
235 	if(d->rr_len[r] < 2+5) {
236 		*next = 0;
237 		*nextlen = 0;
238 		return 0; /* malformed */
239 	}
240 	saltlen = (size_t)d->rr_data[r][2+4];
241 	if(d->rr_len[r] < 2+5+saltlen+1) {
242 		*next = 0;
243 		*nextlen = 0;
244 		return 0; /* malformed */
245 	}
246 	*nextlen = (size_t)d->rr_data[r][2+5+saltlen];
247 	if(d->rr_len[r] < 2+5+saltlen+1+*nextlen) {
248 		*next = 0;
249 		*nextlen = 0;
250 		return 0; /* malformed */
251 	}
252 	*next = d->rr_data[r]+2+5+saltlen+1;
253 	return 1;
254 }
255 
256 size_t nsec3_hash_to_b32(uint8_t* hash, size_t hashlen, uint8_t* zone,
257 	size_t zonelen, uint8_t* buf, size_t max)
258 {
259 	/* write b32 of name, leave one for length */
260 	int ret;
261 	if(max < hashlen*2+1) /* quick approx of b32, as if hexb16 */
262 		return 0;
263 	ret = sldns_b32_ntop_extended_hex(hash, hashlen, (char*)buf+1, max-1);
264 	if(ret < 1)
265 		return 0;
266 	buf[0] = (uint8_t)ret; /* length of b32 label */
267 	ret++;
268 	if(max - ret < zonelen)
269 		return 0;
270 	memmove(buf+ret, zone, zonelen);
271 	return zonelen+(size_t)ret;
272 }
273 
274 size_t nsec3_get_nextowner_b32(struct ub_packed_rrset_key* rrset, int r,
275 	uint8_t* buf, size_t max)
276 {
277 	uint8_t* nm, *zone;
278 	size_t nmlen, zonelen;
279 	if(!nsec3_get_nextowner(rrset, r, &nm, &nmlen))
280 		return 0;
281 	/* append zone name; the owner name must be <b32>.zone */
282 	zone = rrset->rk.dname;
283 	zonelen = rrset->rk.dname_len;
284 	dname_remove_label(&zone, &zonelen);
285 	return nsec3_hash_to_b32(nm, nmlen, zone, zonelen, buf, max);
286 }
287 
288 int
289 nsec3_has_type(struct ub_packed_rrset_key* rrset, int r, uint16_t type)
290 {
291 	uint8_t* bitmap;
292 	size_t bitlen, skiplen;
293         struct packed_rrset_data* d = (struct packed_rrset_data*)
294 	        rrset->entry.data;
295 	log_assert(d && r < (int)d->count);
296 	skiplen = 2+4;
297 	/* skip salt */
298 	if(d->rr_len[r] < skiplen+1)
299 		return 0; /* malformed, too short */
300 	skiplen += 1+(size_t)d->rr_data[r][skiplen];
301 	/* skip next hashed owner */
302 	if(d->rr_len[r] < skiplen+1)
303 		return 0; /* malformed, too short */
304 	skiplen += 1+(size_t)d->rr_data[r][skiplen];
305 	if(d->rr_len[r] < skiplen)
306 		return 0; /* malformed, too short */
307 	bitlen = d->rr_len[r] - skiplen;
308 	bitmap = d->rr_data[r]+skiplen;
309 	return nsecbitmap_has_type_rdata(bitmap, bitlen, type);
310 }
311 
312 /**
313  * Iterate through NSEC3 list, per RR
314  * This routine gives the next RR in the list (or sets rrset null).
315  * Usage:
316  *
317  * size_t rrsetnum;
318  * int rrnum;
319  * struct ub_packed_rrset_key* rrset;
320  * for(rrset=filter_first(filter, &rrsetnum, &rrnum); rrset;
321  *	rrset=filter_next(filter, &rrsetnum, &rrnum))
322  *		do_stuff;
323  *
324  * Also filters out
325  * 	o unknown flag NSEC3s
326  * 	o unknown algorithm NSEC3s.
327  * @param filter: nsec3 filter structure.
328  * @param rrsetnum: in/out rrset number to look at.
329  * @param rrnum: in/out rr number in rrset to look at.
330  * @returns ptr to the next rrset (or NULL at end).
331  */
332 static struct ub_packed_rrset_key*
333 filter_next(struct nsec3_filter* filter, size_t* rrsetnum, int* rrnum)
334 {
335 	size_t i;
336 	int r;
337 	uint8_t* nm;
338 	size_t nmlen;
339 	if(!filter->zone) /* empty list */
340 		return NULL;
341 	for(i=*rrsetnum; i<filter->num; i++) {
342 		/* see if RRset qualifies */
343 		if(ntohs(filter->list[i]->rk.type) != LDNS_RR_TYPE_NSEC3 ||
344 			ntohs(filter->list[i]->rk.rrset_class) !=
345 			filter->fclass)
346 			continue;
347 		/* check RRset zone */
348 		nm = filter->list[i]->rk.dname;
349 		nmlen = filter->list[i]->rk.dname_len;
350 		dname_remove_label(&nm, &nmlen);
351 		if(query_dname_compare(nm, filter->zone) != 0)
352 			continue;
353 		if(i == *rrsetnum)
354 			r = (*rrnum) + 1; /* continue at next RR */
355 		else	r = 0;		/* new RRset start at first RR */
356 		for(; r < (int)rrset_get_count(filter->list[i]); r++) {
357 			/* skip unknown flags, algo */
358 			if(nsec3_unknown_flags(filter->list[i], r) ||
359 				!nsec3_known_algo(filter->list[i], r))
360 				continue;
361 			/* this one is a good target */
362 			*rrsetnum = i;
363 			*rrnum = r;
364 			return filter->list[i];
365 		}
366 	}
367 	return NULL;
368 }
369 
370 /**
371  * Start iterating over NSEC3 records.
372  * @param filter: the filter structure, must have been filter_init-ed.
373  * @param rrsetnum: can be undefined on call, inited.
374  * @param rrnum: can be undefined on call, inited.
375  * @return first rrset of an NSEC3, together with rrnum this points to
376  *	the first RR to examine. Is NULL on empty list.
377  */
378 static struct ub_packed_rrset_key*
379 filter_first(struct nsec3_filter* filter, size_t* rrsetnum, int* rrnum)
380 {
381 	*rrsetnum = 0;
382 	*rrnum = -1;
383 	return filter_next(filter, rrsetnum, rrnum);
384 }
385 
386 /** see if at least one RR is known (flags, algo) */
387 static int
388 nsec3_rrset_has_known(struct ub_packed_rrset_key* s)
389 {
390 	int r;
391 	for(r=0; r < (int)rrset_get_count(s); r++) {
392 		if(!nsec3_unknown_flags(s, r) && nsec3_known_algo(s, r))
393 			return 1;
394 	}
395 	return 0;
396 }
397 
398 /**
399  * Initialize the filter structure.
400  * Finds the zone by looking at available NSEC3 records and best match.
401  * 	(skips the unknown flag and unknown algo NSEC3s).
402  *
403  * @param filter: nsec3 filter structure.
404  * @param list: list of rrsets, an array of them.
405  * @param num: number of rrsets in list.
406  * @param qinfo:
407  *	query name to match a zone for.
408  *	query type (if DS a higher zone must be chosen)
409  *	qclass, to filter NSEC3s with.
410  */
411 static void
412 filter_init(struct nsec3_filter* filter, struct ub_packed_rrset_key** list,
413 	size_t num, struct query_info* qinfo)
414 {
415 	size_t i;
416 	uint8_t* nm;
417 	size_t nmlen;
418 	filter->zone = NULL;
419 	filter->zone_len = 0;
420 	filter->list = list;
421 	filter->num = num;
422 	filter->fclass = qinfo->qclass;
423 	for(i=0; i<num; i++) {
424 		/* ignore other stuff in the list */
425 		if(ntohs(list[i]->rk.type) != LDNS_RR_TYPE_NSEC3 ||
426 			ntohs(list[i]->rk.rrset_class) != qinfo->qclass)
427 			continue;
428 		/* skip unknown flags, algo */
429 		if(!nsec3_rrset_has_known(list[i]))
430 			continue;
431 
432 		/* since NSEC3s are base32.zonename, we can find the zone
433 		 * name by stripping off the first label of the record */
434 		nm = list[i]->rk.dname;
435 		nmlen = list[i]->rk.dname_len;
436 		dname_remove_label(&nm, &nmlen);
437 		/* if we find a domain that can prove about the qname,
438 		 * and if this domain is closer to the qname */
439 		if(dname_subdomain_c(qinfo->qname, nm) && (!filter->zone ||
440 			dname_subdomain_c(nm, filter->zone))) {
441 			/* for a type DS do not accept a zone equal to qname*/
442 			if(qinfo->qtype == LDNS_RR_TYPE_DS &&
443 				query_dname_compare(qinfo->qname, nm) == 0 &&
444 				!dname_is_root(qinfo->qname))
445 				continue;
446 			filter->zone = nm;
447 			filter->zone_len = nmlen;
448 		}
449 	}
450 }
451 
452 /**
453  * Find max iteration count using config settings and key size
454  * @param ve: validator environment with iteration count config settings.
455  * @param bits: key size
456  * @return max iteration count
457  */
458 static size_t
459 get_max_iter(struct val_env* ve, size_t bits)
460 {
461 	int i;
462 	log_assert(ve->nsec3_keyiter_count > 0);
463 	/* round up to nearest config keysize, linear search, keep it small */
464 	for(i=0; i<ve->nsec3_keyiter_count; i++) {
465 		if(bits <= ve->nsec3_keysize[i])
466 			return ve->nsec3_maxiter[i];
467 	}
468 	/* else, use value for biggest key */
469 	return ve->nsec3_maxiter[ve->nsec3_keyiter_count-1];
470 }
471 
472 /**
473  * Determine if any of the NSEC3 rrs iteration count is too high, from key.
474  * @param ve: validator environment with iteration count config settings.
475  * @param filter: what NSEC3s to loop over.
476  * @param kkey: key entry used for verification; used for iteration counts.
477  * @return 1 if some nsec3s are above the max iteration count.
478  */
479 static int
480 nsec3_iteration_count_high(struct val_env* ve, struct nsec3_filter* filter,
481 	struct key_entry_key* kkey)
482 {
483 	size_t rrsetnum;
484 	int rrnum;
485 	struct ub_packed_rrset_key* rrset;
486 	/* first determine the max number of iterations */
487 	size_t bits = key_entry_keysize(kkey);
488 	size_t max_iter = get_max_iter(ve, bits);
489 	verbose(VERB_ALGO, "nsec3: keysize %d bits, max iterations %d",
490 		(int)bits, (int)max_iter);
491 
492 	for(rrset=filter_first(filter, &rrsetnum, &rrnum); rrset;
493 		rrset=filter_next(filter, &rrsetnum, &rrnum)) {
494 		if(nsec3_get_iter(rrset, rrnum) > max_iter)
495 			return 1;
496 	}
497 	return 0;
498 }
499 
500 /* nsec3_cache_compare for rbtree */
501 int
502 nsec3_hash_cmp(const void* c1, const void* c2)
503 {
504 	struct nsec3_cached_hash* h1 = (struct nsec3_cached_hash*)c1;
505 	struct nsec3_cached_hash* h2 = (struct nsec3_cached_hash*)c2;
506 	uint8_t* s1, *s2;
507 	size_t s1len, s2len;
508 	int c = query_dname_compare(h1->dname, h2->dname);
509 	if(c != 0)
510 		return c;
511 	/* compare parameters */
512 	/* if both malformed, its equal, robustness */
513 	if(nsec3_get_algo(h1->nsec3, h1->rr) !=
514 		nsec3_get_algo(h2->nsec3, h2->rr)) {
515 		if(nsec3_get_algo(h1->nsec3, h1->rr) <
516 			nsec3_get_algo(h2->nsec3, h2->rr))
517 			return -1;
518 		return 1;
519 	}
520 	if(nsec3_get_iter(h1->nsec3, h1->rr) !=
521 		nsec3_get_iter(h2->nsec3, h2->rr)) {
522 		if(nsec3_get_iter(h1->nsec3, h1->rr) <
523 			nsec3_get_iter(h2->nsec3, h2->rr))
524 			return -1;
525 		return 1;
526 	}
527 	(void)nsec3_get_salt(h1->nsec3, h1->rr, &s1, &s1len);
528 	(void)nsec3_get_salt(h2->nsec3, h2->rr, &s2, &s2len);
529 	if(s1len != s2len) {
530 		if(s1len < s2len)
531 			return -1;
532 		return 1;
533 	}
534 	return memcmp(s1, s2, s1len);
535 }
536 
537 size_t
538 nsec3_get_hashed(sldns_buffer* buf, uint8_t* nm, size_t nmlen, int algo,
539 	size_t iter, uint8_t* salt, size_t saltlen, uint8_t* res, size_t max)
540 {
541 	size_t i, hash_len;
542 	/* prepare buffer for first iteration */
543 	sldns_buffer_clear(buf);
544 	sldns_buffer_write(buf, nm, nmlen);
545 	query_dname_tolower(sldns_buffer_begin(buf));
546 	sldns_buffer_write(buf, salt, saltlen);
547 	sldns_buffer_flip(buf);
548 	switch(algo) {
549 #if defined(HAVE_EVP_SHA1) || defined(HAVE_NSS)
550 		case NSEC3_HASH_SHA1:
551 #ifdef HAVE_SSL
552 			hash_len = SHA_DIGEST_LENGTH;
553 #else
554 			hash_len = SHA1_LENGTH;
555 #endif
556 			if(hash_len > max)
557 				return 0;
558 #  ifdef HAVE_SSL
559 			(void)SHA1((unsigned char*)sldns_buffer_begin(buf),
560 				(unsigned long)sldns_buffer_limit(buf),
561 				(unsigned char*)res);
562 #  else
563 			(void)HASH_HashBuf(HASH_AlgSHA1, (unsigned char*)res,
564 				(unsigned char*)sldns_buffer_begin(buf),
565 				(unsigned long)sldns_buffer_limit(buf));
566 #  endif
567 			for(i=0; i<iter; i++) {
568 				sldns_buffer_clear(buf);
569 				sldns_buffer_write(buf, res, hash_len);
570 				sldns_buffer_write(buf, salt, saltlen);
571 				sldns_buffer_flip(buf);
572 #  ifdef HAVE_SSL
573 				(void)SHA1(
574 					(unsigned char*)sldns_buffer_begin(buf),
575 					(unsigned long)sldns_buffer_limit(buf),
576 					(unsigned char*)res);
577 #  else
578 				(void)HASH_HashBuf(HASH_AlgSHA1,
579 					(unsigned char*)res,
580 					(unsigned char*)sldns_buffer_begin(buf),
581 					(unsigned long)sldns_buffer_limit(buf));
582 #  endif
583 			}
584 			break;
585 #endif /* HAVE_EVP_SHA1 or NSS */
586 		default:
587 			log_err("nsec3 hash of unknown algo %d", algo);
588 			return 0;
589 	}
590 	return hash_len;
591 }
592 
593 /** perform hash of name */
594 static int
595 nsec3_calc_hash(struct regional* region, sldns_buffer* buf,
596 	struct nsec3_cached_hash* c)
597 {
598 	int algo = nsec3_get_algo(c->nsec3, c->rr);
599 	size_t iter = nsec3_get_iter(c->nsec3, c->rr);
600 	uint8_t* salt;
601 	size_t saltlen, i;
602 	if(!nsec3_get_salt(c->nsec3, c->rr, &salt, &saltlen))
603 		return -1;
604 	/* prepare buffer for first iteration */
605 	sldns_buffer_clear(buf);
606 	sldns_buffer_write(buf, c->dname, c->dname_len);
607 	query_dname_tolower(sldns_buffer_begin(buf));
608 	sldns_buffer_write(buf, salt, saltlen);
609 	sldns_buffer_flip(buf);
610 	switch(algo) {
611 #if defined(HAVE_EVP_SHA1) || defined(HAVE_NSS)
612 		case NSEC3_HASH_SHA1:
613 #ifdef HAVE_SSL
614 			c->hash_len = SHA_DIGEST_LENGTH;
615 #else
616 			c->hash_len = SHA1_LENGTH;
617 #endif
618 			c->hash = (uint8_t*)regional_alloc(region,
619 				c->hash_len);
620 			if(!c->hash)
621 				return 0;
622 #  ifdef HAVE_SSL
623 			(void)SHA1((unsigned char*)sldns_buffer_begin(buf),
624 				(unsigned long)sldns_buffer_limit(buf),
625 				(unsigned char*)c->hash);
626 #  else
627 			(void)HASH_HashBuf(HASH_AlgSHA1,
628 				(unsigned char*)c->hash,
629 				(unsigned char*)sldns_buffer_begin(buf),
630 				(unsigned long)sldns_buffer_limit(buf));
631 #  endif
632 			for(i=0; i<iter; i++) {
633 				sldns_buffer_clear(buf);
634 				sldns_buffer_write(buf, c->hash, c->hash_len);
635 				sldns_buffer_write(buf, salt, saltlen);
636 				sldns_buffer_flip(buf);
637 #  ifdef HAVE_SSL
638 				(void)SHA1(
639 					(unsigned char*)sldns_buffer_begin(buf),
640 					(unsigned long)sldns_buffer_limit(buf),
641 					(unsigned char*)c->hash);
642 #  else
643 				(void)HASH_HashBuf(HASH_AlgSHA1,
644 					(unsigned char*)c->hash,
645 					(unsigned char*)sldns_buffer_begin(buf),
646 					(unsigned long)sldns_buffer_limit(buf));
647 #  endif
648 			}
649 			break;
650 #endif /* HAVE_EVP_SHA1 or NSS */
651 		default:
652 			log_err("nsec3 hash of unknown algo %d", algo);
653 			return -1;
654 	}
655 	return 1;
656 }
657 
658 /** perform b32 encoding of hash */
659 static int
660 nsec3_calc_b32(struct regional* region, sldns_buffer* buf,
661 	struct nsec3_cached_hash* c)
662 {
663 	int r;
664 	sldns_buffer_clear(buf);
665 	r = sldns_b32_ntop_extended_hex(c->hash, c->hash_len,
666 		(char*)sldns_buffer_begin(buf), sldns_buffer_limit(buf));
667 	if(r < 1) {
668 		log_err("b32_ntop_extended_hex: error in encoding: %d", r);
669 		return 0;
670 	}
671 	c->b32_len = (size_t)r;
672 	c->b32 = regional_alloc_init(region, sldns_buffer_begin(buf),
673 		c->b32_len);
674 	if(!c->b32)
675 		return 0;
676 	return 1;
677 }
678 
679 int
680 nsec3_hash_name(rbtree_t* table, struct regional* region, sldns_buffer* buf,
681 	struct ub_packed_rrset_key* nsec3, int rr, uint8_t* dname,
682 	size_t dname_len, struct nsec3_cached_hash** hash)
683 {
684 	struct nsec3_cached_hash* c;
685 	struct nsec3_cached_hash looki;
686 #ifdef UNBOUND_DEBUG
687 	rbnode_t* n;
688 #endif
689 	int r;
690 	looki.node.key = &looki;
691 	looki.nsec3 = nsec3;
692 	looki.rr = rr;
693 	looki.dname = dname;
694 	looki.dname_len = dname_len;
695 	/* lookup first in cache */
696 	c = (struct nsec3_cached_hash*)rbtree_search(table, &looki);
697 	if(c) {
698 		*hash = c;
699 		return 1;
700 	}
701 	/* create a new entry */
702 	c = (struct nsec3_cached_hash*)regional_alloc(region, sizeof(*c));
703 	if(!c) return 0;
704 	c->node.key = c;
705 	c->nsec3 = nsec3;
706 	c->rr = rr;
707 	c->dname = dname;
708 	c->dname_len = dname_len;
709 	r = nsec3_calc_hash(region, buf, c);
710 	if(r != 1)
711 		return r;
712 	r = nsec3_calc_b32(region, buf, c);
713 	if(r != 1)
714 		return r;
715 #ifdef UNBOUND_DEBUG
716 	n =
717 #else
718 	(void)
719 #endif
720 	rbtree_insert(table, &c->node);
721 	log_assert(n); /* cannot be duplicate, just did lookup */
722 	*hash = c;
723 	return 1;
724 }
725 
726 /**
727  * compare a label lowercased
728  */
729 static int
730 label_compare_lower(uint8_t* lab1, uint8_t* lab2, size_t lablen)
731 {
732 	size_t i;
733 	for(i=0; i<lablen; i++) {
734 		if(tolower((unsigned char)*lab1) != tolower((unsigned char)*lab2)) {
735 			if(tolower((unsigned char)*lab1) < tolower((unsigned char)*lab2))
736 				return -1;
737 			return 1;
738 		}
739 		lab1++;
740 		lab2++;
741 	}
742 	return 0;
743 }
744 
745 /**
746  * Compare a hashed name with the owner name of an NSEC3 RRset.
747  * @param flt: filter with zone name.
748  * @param hash: the hashed name.
749  * @param s: rrset with owner name.
750  * @return true if matches exactly, false if not.
751  */
752 static int
753 nsec3_hash_matches_owner(struct nsec3_filter* flt,
754 	struct nsec3_cached_hash* hash, struct ub_packed_rrset_key* s)
755 {
756 	uint8_t* nm = s->rk.dname;
757 	/* compare, does hash of name based on params in this NSEC3
758 	 * match the owner name of this NSEC3?
759 	 * name must be: <hashlength>base32 . zone name
760 	 * so; first label must not be root label (not zero length),
761 	 * and match the b32 encoded hash length,
762 	 * and the label content match the b32 encoded hash
763 	 * and the rest must be the zone name.
764 	 */
765 	if(hash->b32_len != 0 && (size_t)nm[0] == hash->b32_len &&
766 		label_compare_lower(nm+1, hash->b32, hash->b32_len) == 0 &&
767 		query_dname_compare(nm+(size_t)nm[0]+1, flt->zone) == 0) {
768 		return 1;
769 	}
770 	return 0;
771 }
772 
773 /**
774  * Find matching NSEC3
775  * Find the NSEC3Record that matches a hash of a name.
776  * @param env: module environment with temporary region and buffer.
777  * @param flt: the NSEC3 RR filter, contains zone name and RRs.
778  * @param ct: cached hashes table.
779  * @param nm: name to look for.
780  * @param nmlen: length of name.
781  * @param rrset: nsec3 that matches is returned here.
782  * @param rr: rr number in nsec3 rrset that matches.
783  * @return true if a matching NSEC3 is found, false if not.
784  */
785 static int
786 find_matching_nsec3(struct module_env* env, struct nsec3_filter* flt,
787 	rbtree_t* ct, uint8_t* nm, size_t nmlen,
788 	struct ub_packed_rrset_key** rrset, int* rr)
789 {
790 	size_t i_rs;
791 	int i_rr;
792 	struct ub_packed_rrset_key* s;
793 	struct nsec3_cached_hash* hash;
794 	int r;
795 
796 	/* this loop skips other-zone and unknown NSEC3s, also non-NSEC3 RRs */
797 	for(s=filter_first(flt, &i_rs, &i_rr); s;
798 		s=filter_next(flt, &i_rs, &i_rr)) {
799 		/* get name hashed for this NSEC3 RR */
800 		r = nsec3_hash_name(ct, env->scratch, env->scratch_buffer,
801 			s, i_rr, nm, nmlen, &hash);
802 		if(r == 0) {
803 			log_err("nsec3: malloc failure");
804 			break; /* alloc failure */
805 		} else if(r < 0)
806 			continue; /* malformed NSEC3 */
807 		else if(nsec3_hash_matches_owner(flt, hash, s)) {
808 			*rrset = s; /* rrset with this name */
809 			*rr = i_rr; /* matches hash with these parameters */
810 			return 1;
811 		}
812 	}
813 	*rrset = NULL;
814 	*rr = 0;
815 	return 0;
816 }
817 
818 int
819 nsec3_covers(uint8_t* zone, struct nsec3_cached_hash* hash,
820 	struct ub_packed_rrset_key* rrset, int rr, sldns_buffer* buf)
821 {
822 	uint8_t* next, *owner;
823 	size_t nextlen;
824 	int len;
825 	if(!nsec3_get_nextowner(rrset, rr, &next, &nextlen))
826 		return 0; /* malformed RR proves nothing */
827 
828 	/* check the owner name is a hashed value . apex
829 	 * base32 encoded values must have equal length.
830 	 * hash_value and next hash value must have equal length. */
831 	if(nextlen != hash->hash_len || hash->hash_len==0||hash->b32_len==0||
832 		(size_t)*rrset->rk.dname != hash->b32_len ||
833 		query_dname_compare(rrset->rk.dname+1+
834 			(size_t)*rrset->rk.dname, zone) != 0)
835 		return 0; /* bad lengths or owner name */
836 
837 	/* This is the "normal case: owner < next and owner < hash < next */
838 	if(label_compare_lower(rrset->rk.dname+1, hash->b32,
839 		hash->b32_len) < 0 &&
840 		memcmp(hash->hash, next, nextlen) < 0)
841 		return 1;
842 
843 	/* convert owner name from text to binary */
844 	sldns_buffer_clear(buf);
845 	owner = sldns_buffer_begin(buf);
846 	len = sldns_b32_pton_extended_hex((char*)rrset->rk.dname+1,
847 		hash->b32_len, owner, sldns_buffer_limit(buf));
848 	if(len<1)
849 		return 0; /* bad owner name in some way */
850 	if((size_t)len != hash->hash_len || (size_t)len != nextlen)
851 		return 0; /* wrong length */
852 
853 	/* this is the end of zone case: next <= owner &&
854 	 * 	(hash > owner || hash < next)
855 	 * this also covers the only-apex case of next==owner.
856 	 */
857 	if(memcmp(next, owner, nextlen) <= 0 &&
858 		( memcmp(hash->hash, owner, nextlen) > 0 ||
859 		  memcmp(hash->hash, next, nextlen) < 0)) {
860 		return 1;
861 	}
862 	return 0;
863 }
864 
865 /**
866  * findCoveringNSEC3
867  * Given a name, find a covering NSEC3 from among a list of NSEC3s.
868  *
869  * @param env: module environment with temporary region and buffer.
870  * @param flt: the NSEC3 RR filter, contains zone name and RRs.
871  * @param ct: cached hashes table.
872  * @param nm: name to check if covered.
873  * @param nmlen: length of name.
874  * @param rrset: covering NSEC3 rrset is returned here.
875  * @param rr: rr of cover is returned here.
876  * @return true if a covering NSEC3 is found, false if not.
877  */
878 static int
879 find_covering_nsec3(struct module_env* env, struct nsec3_filter* flt,
880         rbtree_t* ct, uint8_t* nm, size_t nmlen,
881 	struct ub_packed_rrset_key** rrset, int* rr)
882 {
883 	size_t i_rs;
884 	int i_rr;
885 	struct ub_packed_rrset_key* s;
886 	struct nsec3_cached_hash* hash;
887 	int r;
888 
889 	/* this loop skips other-zone and unknown NSEC3s, also non-NSEC3 RRs */
890 	for(s=filter_first(flt, &i_rs, &i_rr); s;
891 		s=filter_next(flt, &i_rs, &i_rr)) {
892 		/* get name hashed for this NSEC3 RR */
893 		r = nsec3_hash_name(ct, env->scratch, env->scratch_buffer,
894 			s, i_rr, nm, nmlen, &hash);
895 		if(r == 0) {
896 			log_err("nsec3: malloc failure");
897 			break; /* alloc failure */
898 		} else if(r < 0)
899 			continue; /* malformed NSEC3 */
900 		else if(nsec3_covers(flt->zone, hash, s, i_rr,
901 			env->scratch_buffer)) {
902 			*rrset = s; /* rrset with this name */
903 			*rr = i_rr; /* covers hash with these parameters */
904 			return 1;
905 		}
906 	}
907 	*rrset = NULL;
908 	*rr = 0;
909 	return 0;
910 }
911 
912 /**
913  * findClosestEncloser
914  * Given a name and a list of NSEC3s, find the candidate closest encloser.
915  * This will be the first ancestor of 'name' (including itself) to have a
916  * matching NSEC3 RR.
917  * @param env: module environment with temporary region and buffer.
918  * @param flt: the NSEC3 RR filter, contains zone name and RRs.
919  * @param ct: cached hashes table.
920  * @param qinfo: query that is verified for.
921  * @param ce: closest encloser information is returned in here.
922  * @return true if a closest encloser candidate is found, false if not.
923  */
924 static int
925 nsec3_find_closest_encloser(struct module_env* env, struct nsec3_filter* flt,
926 	rbtree_t* ct, struct query_info* qinfo, struct ce_response* ce)
927 {
928 	uint8_t* nm = qinfo->qname;
929 	size_t nmlen = qinfo->qname_len;
930 
931 	/* This scans from longest name to shortest, so the first match
932 	 * we find is the only viable candidate. */
933 
934 	/* (David:) FIXME: modify so that the NSEC3 matching the zone apex need
935 	 * not be present. (Mark Andrews idea).
936 	 * (Wouter:) But make sure you check for DNAME bit in zone apex,
937 	 * if the NSEC3 you find is the only NSEC3 in the zone, then this
938 	 * may be the case. */
939 
940 	while(dname_subdomain_c(nm, flt->zone)) {
941 		if(find_matching_nsec3(env, flt, ct, nm, nmlen,
942 			&ce->ce_rrset, &ce->ce_rr)) {
943 			ce->ce = nm;
944 			ce->ce_len = nmlen;
945 			return 1;
946 		}
947 		dname_remove_label(&nm, &nmlen);
948 	}
949 	return 0;
950 }
951 
952 /**
953  * Given a qname and its proven closest encloser, calculate the "next
954  * closest" name. Basically, this is the name that is one label longer than
955  * the closest encloser that is still a subdomain of qname.
956  *
957  * @param qname: query name.
958  * @param qnamelen: length of qname.
959  * @param ce: closest encloser
960  * @param nm: result name.
961  * @param nmlen: length of nm.
962  */
963 static void
964 next_closer(uint8_t* qname, size_t qnamelen, uint8_t* ce,
965 	uint8_t** nm, size_t* nmlen)
966 {
967 	int strip = dname_count_labels(qname) - dname_count_labels(ce) -1;
968 	*nm = qname;
969 	*nmlen = qnamelen;
970 	if(strip>0)
971 		dname_remove_labels(nm, nmlen, strip);
972 }
973 
974 /**
975  * proveClosestEncloser
976  * Given a List of nsec3 RRs, find and prove the closest encloser to qname.
977  * @param env: module environment with temporary region and buffer.
978  * @param flt: the NSEC3 RR filter, contains zone name and RRs.
979  * @param ct: cached hashes table.
980  * @param qinfo: query that is verified for.
981  * @param prove_does_not_exist: If true, then if the closest encloser
982  * 	turns out to be qname, then null is returned.
983  * 	If set true, and the return value is true, then you can be
984  * 	certain that the ce.nc_rrset and ce.nc_rr are set properly.
985  * @param ce: closest encloser information is returned in here.
986  * @return bogus if no closest encloser could be proven.
987  * 	secure if a closest encloser could be proven, ce is set.
988  * 	insecure if the closest-encloser candidate turns out to prove
989  * 		that an insecure delegation exists above the qname.
990  */
991 static enum sec_status
992 nsec3_prove_closest_encloser(struct module_env* env, struct nsec3_filter* flt,
993 	rbtree_t* ct, struct query_info* qinfo, int prove_does_not_exist,
994 	struct ce_response* ce)
995 {
996 	uint8_t* nc;
997 	size_t nc_len;
998 	/* robust: clean out ce, in case it gets abused later */
999 	memset(ce, 0, sizeof(*ce));
1000 
1001 	if(!nsec3_find_closest_encloser(env, flt, ct, qinfo, ce)) {
1002 		verbose(VERB_ALGO, "nsec3 proveClosestEncloser: could "
1003 			"not find a candidate for the closest encloser.");
1004 		return sec_status_bogus;
1005 	}
1006 	log_nametypeclass(VERB_ALGO, "ce candidate", ce->ce, 0, 0);
1007 
1008 	if(query_dname_compare(ce->ce, qinfo->qname) == 0) {
1009 		if(prove_does_not_exist) {
1010 			verbose(VERB_ALGO, "nsec3 proveClosestEncloser: "
1011 				"proved that qname existed, bad");
1012 			return sec_status_bogus;
1013 		}
1014 		/* otherwise, we need to nothing else to prove that qname
1015 		 * is its own closest encloser. */
1016 		return sec_status_secure;
1017 	}
1018 
1019 	/* If the closest encloser is actually a delegation, then the
1020 	 * response should have been a referral. If it is a DNAME, then
1021 	 * it should have been a DNAME response. */
1022 	if(nsec3_has_type(ce->ce_rrset, ce->ce_rr, LDNS_RR_TYPE_NS) &&
1023 		!nsec3_has_type(ce->ce_rrset, ce->ce_rr, LDNS_RR_TYPE_SOA)) {
1024 		if(!nsec3_has_type(ce->ce_rrset, ce->ce_rr, LDNS_RR_TYPE_DS)) {
1025 			verbose(VERB_ALGO, "nsec3 proveClosestEncloser: "
1026 				"closest encloser is insecure delegation");
1027 			return sec_status_insecure;
1028 		}
1029 		verbose(VERB_ALGO, "nsec3 proveClosestEncloser: closest "
1030 			"encloser was a delegation, bad");
1031 		return sec_status_bogus;
1032 	}
1033 	if(nsec3_has_type(ce->ce_rrset, ce->ce_rr, LDNS_RR_TYPE_DNAME)) {
1034 		verbose(VERB_ALGO, "nsec3 proveClosestEncloser: closest "
1035 			"encloser was a DNAME, bad");
1036 		return sec_status_bogus;
1037 	}
1038 
1039 	/* Otherwise, we need to show that the next closer name is covered. */
1040 	next_closer(qinfo->qname, qinfo->qname_len, ce->ce, &nc, &nc_len);
1041 	if(!find_covering_nsec3(env, flt, ct, nc, nc_len,
1042 		&ce->nc_rrset, &ce->nc_rr)) {
1043 		verbose(VERB_ALGO, "nsec3: Could not find proof that the "
1044 		          "candidate encloser was the closest encloser");
1045 		return sec_status_bogus;
1046 	}
1047 	return sec_status_secure;
1048 }
1049 
1050 /** allocate a wildcard for the closest encloser */
1051 static uint8_t*
1052 nsec3_ce_wildcard(struct regional* region, uint8_t* ce, size_t celen,
1053 	size_t* len)
1054 {
1055 	uint8_t* nm;
1056 	if(celen > LDNS_MAX_DOMAINLEN - 2)
1057 		return 0; /* too long */
1058 	nm = (uint8_t*)regional_alloc(region, celen+2);
1059 	if(!nm) {
1060 		log_err("nsec3 wildcard: out of memory");
1061 		return 0; /* alloc failure */
1062 	}
1063 	nm[0] = 1;
1064 	nm[1] = (uint8_t)'*'; /* wildcard label */
1065 	memmove(nm+2, ce, celen);
1066 	*len = celen+2;
1067 	return nm;
1068 }
1069 
1070 /** Do the name error proof */
1071 static enum sec_status
1072 nsec3_do_prove_nameerror(struct module_env* env, struct nsec3_filter* flt,
1073 	rbtree_t* ct, struct query_info* qinfo)
1074 {
1075 	struct ce_response ce;
1076 	uint8_t* wc;
1077 	size_t wclen;
1078 	struct ub_packed_rrset_key* wc_rrset;
1079 	int wc_rr;
1080 	enum sec_status sec;
1081 
1082 	/* First locate and prove the closest encloser to qname. We will
1083 	 * use the variant that fails if the closest encloser turns out
1084 	 * to be qname. */
1085 	sec = nsec3_prove_closest_encloser(env, flt, ct, qinfo, 1, &ce);
1086 	if(sec != sec_status_secure) {
1087 		if(sec == sec_status_bogus)
1088 			verbose(VERB_ALGO, "nsec3 nameerror proof: failed "
1089 				"to prove a closest encloser");
1090 		else 	verbose(VERB_ALGO, "nsec3 nameerror proof: closest "
1091 				"nsec3 is an insecure delegation");
1092 		return sec;
1093 	}
1094 	log_nametypeclass(VERB_ALGO, "nsec3 namerror: proven ce=", ce.ce,0,0);
1095 
1096 	/* At this point, we know that qname does not exist. Now we need
1097 	 * to prove that the wildcard does not exist. */
1098 	log_assert(ce.ce);
1099 	wc = nsec3_ce_wildcard(env->scratch, ce.ce, ce.ce_len, &wclen);
1100 	if(!wc || !find_covering_nsec3(env, flt, ct, wc, wclen,
1101 		&wc_rrset, &wc_rr)) {
1102 		verbose(VERB_ALGO, "nsec3 nameerror proof: could not prove "
1103 			"that the applicable wildcard did not exist.");
1104 		return sec_status_bogus;
1105 	}
1106 
1107 	if(ce.nc_rrset && nsec3_has_optout(ce.nc_rrset, ce.nc_rr)) {
1108 		verbose(VERB_ALGO, "nsec3 nameerror proof: nc has optout");
1109 		return sec_status_insecure;
1110 	}
1111 	return sec_status_secure;
1112 }
1113 
1114 enum sec_status
1115 nsec3_prove_nameerror(struct module_env* env, struct val_env* ve,
1116 	struct ub_packed_rrset_key** list, size_t num,
1117 	struct query_info* qinfo, struct key_entry_key* kkey)
1118 {
1119 	rbtree_t ct;
1120 	struct nsec3_filter flt;
1121 
1122 	if(!list || num == 0 || !kkey || !key_entry_isgood(kkey))
1123 		return sec_status_bogus; /* no valid NSEC3s, bogus */
1124 	rbtree_init(&ct, &nsec3_hash_cmp); /* init names-to-hash cache */
1125 	filter_init(&flt, list, num, qinfo); /* init RR iterator */
1126 	if(!flt.zone)
1127 		return sec_status_bogus; /* no RRs */
1128 	if(nsec3_iteration_count_high(ve, &flt, kkey))
1129 		return sec_status_insecure; /* iteration count too high */
1130 	log_nametypeclass(VERB_ALGO, "start nsec3 nameerror proof, zone",
1131 		flt.zone, 0, 0);
1132 	return nsec3_do_prove_nameerror(env, &flt, &ct, qinfo);
1133 }
1134 
1135 /*
1136  * No code to handle qtype=NSEC3 specially.
1137  * This existed in early drafts, but was later (-05) removed.
1138  */
1139 
1140 /** Do the nodata proof */
1141 static enum sec_status
1142 nsec3_do_prove_nodata(struct module_env* env, struct nsec3_filter* flt,
1143 	rbtree_t* ct, struct query_info* qinfo)
1144 {
1145 	struct ce_response ce;
1146 	uint8_t* wc;
1147 	size_t wclen;
1148 	struct ub_packed_rrset_key* rrset;
1149 	int rr;
1150 	enum sec_status sec;
1151 
1152 	if(find_matching_nsec3(env, flt, ct, qinfo->qname, qinfo->qname_len,
1153 		&rrset, &rr)) {
1154 		/* cases 1 and 2 */
1155 		if(nsec3_has_type(rrset, rr, qinfo->qtype)) {
1156 			verbose(VERB_ALGO, "proveNodata: Matching NSEC3 "
1157 				"proved that type existed, bogus");
1158 			return sec_status_bogus;
1159 		} else if(nsec3_has_type(rrset, rr, LDNS_RR_TYPE_CNAME)) {
1160 			verbose(VERB_ALGO, "proveNodata: Matching NSEC3 "
1161 				"proved that a CNAME existed, bogus");
1162 			return sec_status_bogus;
1163 		}
1164 
1165 		/*
1166 		 * If type DS: filter_init zone find already found a parent
1167 		 *   zone, so this nsec3 is from a parent zone.
1168 		 *   o can be not a delegation (unusual query for normal name,
1169 		 *   	no DS anyway, but we can verify that).
1170 		 *   o can be a delegation (which is the usual DS check).
1171 		 *   o may not have the SOA bit set (only the top of the
1172 		 *   	zone, which must have been above the name, has that).
1173 		 *   	Except for the root; which is checked by itself.
1174 		 *
1175 		 * If not type DS: matching nsec3 must not be a delegation.
1176 		 */
1177 		if(qinfo->qtype == LDNS_RR_TYPE_DS && qinfo->qname_len != 1
1178 			&& nsec3_has_type(rrset, rr, LDNS_RR_TYPE_SOA) &&
1179 			!dname_is_root(qinfo->qname)) {
1180 			verbose(VERB_ALGO, "proveNodata: apex NSEC3 "
1181 				"abused for no DS proof, bogus");
1182 			return sec_status_bogus;
1183 		} else if(qinfo->qtype != LDNS_RR_TYPE_DS &&
1184 			nsec3_has_type(rrset, rr, LDNS_RR_TYPE_NS) &&
1185 			!nsec3_has_type(rrset, rr, LDNS_RR_TYPE_SOA)) {
1186 			if(!nsec3_has_type(rrset, rr, LDNS_RR_TYPE_DS)) {
1187 				verbose(VERB_ALGO, "proveNodata: matching "
1188 					"NSEC3 is insecure delegation");
1189 				return sec_status_insecure;
1190 			}
1191 			verbose(VERB_ALGO, "proveNodata: matching "
1192 				"NSEC3 is a delegation, bogus");
1193 			return sec_status_bogus;
1194 		}
1195 		return sec_status_secure;
1196 	}
1197 
1198 	/* For cases 3 - 5, we need the proven closest encloser, and it
1199 	 * can't match qname. Although, at this point, we know that it
1200 	 * won't since we just checked that. */
1201 	sec = nsec3_prove_closest_encloser(env, flt, ct, qinfo, 1, &ce);
1202 	if(sec == sec_status_bogus) {
1203 		verbose(VERB_ALGO, "proveNodata: did not match qname, "
1204 		          "nor found a proven closest encloser.");
1205 		return sec_status_bogus;
1206 	} else if(sec==sec_status_insecure && qinfo->qtype!=LDNS_RR_TYPE_DS){
1207 		verbose(VERB_ALGO, "proveNodata: closest nsec3 is insecure "
1208 		          "delegation.");
1209 		return sec_status_insecure;
1210 	}
1211 
1212 	/* Case 3: removed */
1213 
1214 	/* Case 4: */
1215 	log_assert(ce.ce);
1216 	wc = nsec3_ce_wildcard(env->scratch, ce.ce, ce.ce_len, &wclen);
1217 	if(wc && find_matching_nsec3(env, flt, ct, wc, wclen, &rrset, &rr)) {
1218 		/* found wildcard */
1219 		if(nsec3_has_type(rrset, rr, qinfo->qtype)) {
1220 			verbose(VERB_ALGO, "nsec3 nodata proof: matching "
1221 				"wildcard had qtype, bogus");
1222 			return sec_status_bogus;
1223 		} else if(nsec3_has_type(rrset, rr, LDNS_RR_TYPE_CNAME)) {
1224 			verbose(VERB_ALGO, "nsec3 nodata proof: matching "
1225 				"wildcard had a CNAME, bogus");
1226 			return sec_status_bogus;
1227 		}
1228 		if(qinfo->qtype == LDNS_RR_TYPE_DS && qinfo->qname_len != 1
1229 			&& nsec3_has_type(rrset, rr, LDNS_RR_TYPE_SOA)) {
1230 			verbose(VERB_ALGO, "nsec3 nodata proof: matching "
1231 				"wildcard for no DS proof has a SOA, bogus");
1232 			return sec_status_bogus;
1233 		} else if(qinfo->qtype != LDNS_RR_TYPE_DS &&
1234 			nsec3_has_type(rrset, rr, LDNS_RR_TYPE_NS) &&
1235 			!nsec3_has_type(rrset, rr, LDNS_RR_TYPE_SOA)) {
1236 			verbose(VERB_ALGO, "nsec3 nodata proof: matching "
1237 				"wilcard is a delegation, bogus");
1238 			return sec_status_bogus;
1239 		}
1240 		/* everything is peachy keen, except for optout spans */
1241 		if(ce.nc_rrset && nsec3_has_optout(ce.nc_rrset, ce.nc_rr)) {
1242 			verbose(VERB_ALGO, "nsec3 nodata proof: matching "
1243 				"wildcard is in optout range, insecure");
1244 			return sec_status_insecure;
1245 		}
1246 		return sec_status_secure;
1247 	}
1248 
1249 	/* Case 5: */
1250 	/* Due to forwarders, cnames, and other collating effects, we
1251 	 * can see the ordinary unsigned data from a zone beneath an
1252 	 * insecure delegation under an optout here */
1253 	if(!ce.nc_rrset) {
1254 		verbose(VERB_ALGO, "nsec3 nodata proof: no next closer nsec3");
1255 		return sec_status_bogus;
1256 	}
1257 
1258 	/* We need to make sure that the covering NSEC3 is opt-out. */
1259 	log_assert(ce.nc_rrset);
1260 	if(!nsec3_has_optout(ce.nc_rrset, ce.nc_rr)) {
1261 		if(qinfo->qtype == LDNS_RR_TYPE_DS)
1262 		  verbose(VERB_ALGO, "proveNodata: covering NSEC3 was not "
1263 			"opt-out in an opt-out DS NOERROR/NODATA case.");
1264 		else verbose(VERB_ALGO, "proveNodata: could not find matching "
1265 			"NSEC3, nor matching wildcard, nor optout NSEC3 "
1266 			"-- no more options, bogus.");
1267 		return sec_status_bogus;
1268 	}
1269 	/* RFC5155 section 9.2: if nc has optout then no AD flag set */
1270 	return sec_status_insecure;
1271 }
1272 
1273 enum sec_status
1274 nsec3_prove_nodata(struct module_env* env, struct val_env* ve,
1275 	struct ub_packed_rrset_key** list, size_t num,
1276 	struct query_info* qinfo, struct key_entry_key* kkey)
1277 {
1278 	rbtree_t ct;
1279 	struct nsec3_filter flt;
1280 
1281 	if(!list || num == 0 || !kkey || !key_entry_isgood(kkey))
1282 		return sec_status_bogus; /* no valid NSEC3s, bogus */
1283 	rbtree_init(&ct, &nsec3_hash_cmp); /* init names-to-hash cache */
1284 	filter_init(&flt, list, num, qinfo); /* init RR iterator */
1285 	if(!flt.zone)
1286 		return sec_status_bogus; /* no RRs */
1287 	if(nsec3_iteration_count_high(ve, &flt, kkey))
1288 		return sec_status_insecure; /* iteration count too high */
1289 	return nsec3_do_prove_nodata(env, &flt, &ct, qinfo);
1290 }
1291 
1292 enum sec_status
1293 nsec3_prove_wildcard(struct module_env* env, struct val_env* ve,
1294         struct ub_packed_rrset_key** list, size_t num,
1295 	struct query_info* qinfo, struct key_entry_key* kkey, uint8_t* wc)
1296 {
1297 	rbtree_t ct;
1298 	struct nsec3_filter flt;
1299 	struct ce_response ce;
1300 	uint8_t* nc;
1301 	size_t nc_len;
1302 	size_t wclen;
1303 	(void)dname_count_size_labels(wc, &wclen);
1304 
1305 	if(!list || num == 0 || !kkey || !key_entry_isgood(kkey))
1306 		return sec_status_bogus; /* no valid NSEC3s, bogus */
1307 	rbtree_init(&ct, &nsec3_hash_cmp); /* init names-to-hash cache */
1308 	filter_init(&flt, list, num, qinfo); /* init RR iterator */
1309 	if(!flt.zone)
1310 		return sec_status_bogus; /* no RRs */
1311 	if(nsec3_iteration_count_high(ve, &flt, kkey))
1312 		return sec_status_insecure; /* iteration count too high */
1313 
1314 	/* We know what the (purported) closest encloser is by just
1315 	 * looking at the supposed generating wildcard.
1316 	 * The *. has already been removed from the wc name.
1317 	 */
1318 	memset(&ce, 0, sizeof(ce));
1319 	ce.ce = wc;
1320 	ce.ce_len = wclen;
1321 
1322 	/* Now we still need to prove that the original data did not exist.
1323 	 * Otherwise, we need to show that the next closer name is covered. */
1324 	next_closer(qinfo->qname, qinfo->qname_len, ce.ce, &nc, &nc_len);
1325 	if(!find_covering_nsec3(env, &flt, &ct, nc, nc_len,
1326 		&ce.nc_rrset, &ce.nc_rr)) {
1327 		verbose(VERB_ALGO, "proveWildcard: did not find a covering "
1328 			"NSEC3 that covered the next closer name.");
1329 		return sec_status_bogus;
1330 	}
1331 	if(ce.nc_rrset && nsec3_has_optout(ce.nc_rrset, ce.nc_rr)) {
1332 		verbose(VERB_ALGO, "proveWildcard: NSEC3 optout");
1333 		return sec_status_insecure;
1334 	}
1335 	return sec_status_secure;
1336 }
1337 
1338 /** test if list is all secure */
1339 static int
1340 list_is_secure(struct module_env* env, struct val_env* ve,
1341 	struct ub_packed_rrset_key** list, size_t num,
1342 	struct key_entry_key* kkey, char** reason)
1343 {
1344 	struct packed_rrset_data* d;
1345 	size_t i;
1346 	for(i=0; i<num; i++) {
1347 		d = (struct packed_rrset_data*)list[i]->entry.data;
1348 		if(list[i]->rk.type != htons(LDNS_RR_TYPE_NSEC3))
1349 			continue;
1350 		if(d->security == sec_status_secure)
1351 			continue;
1352 		rrset_check_sec_status(env->rrset_cache, list[i], *env->now);
1353 		if(d->security == sec_status_secure)
1354 			continue;
1355 		d->security = val_verify_rrset_entry(env, ve, list[i], kkey,
1356 			reason);
1357 		if(d->security != sec_status_secure) {
1358 			verbose(VERB_ALGO, "NSEC3 did not verify");
1359 			return 0;
1360 		}
1361 		rrset_update_sec_status(env->rrset_cache, list[i], *env->now);
1362 	}
1363 	return 1;
1364 }
1365 
1366 enum sec_status
1367 nsec3_prove_nods(struct module_env* env, struct val_env* ve,
1368 	struct ub_packed_rrset_key** list, size_t num,
1369 	struct query_info* qinfo, struct key_entry_key* kkey, char** reason)
1370 {
1371 	rbtree_t ct;
1372 	struct nsec3_filter flt;
1373 	struct ce_response ce;
1374 	struct ub_packed_rrset_key* rrset;
1375 	int rr;
1376 	log_assert(qinfo->qtype == LDNS_RR_TYPE_DS);
1377 
1378 	if(!list || num == 0 || !kkey || !key_entry_isgood(kkey)) {
1379 		*reason = "no valid NSEC3s";
1380 		return sec_status_bogus; /* no valid NSEC3s, bogus */
1381 	}
1382 	if(!list_is_secure(env, ve, list, num, kkey, reason))
1383 		return sec_status_bogus; /* not all NSEC3 records secure */
1384 	rbtree_init(&ct, &nsec3_hash_cmp); /* init names-to-hash cache */
1385 	filter_init(&flt, list, num, qinfo); /* init RR iterator */
1386 	if(!flt.zone) {
1387 		*reason = "no NSEC3 records";
1388 		return sec_status_bogus; /* no RRs */
1389 	}
1390 	if(nsec3_iteration_count_high(ve, &flt, kkey))
1391 		return sec_status_insecure; /* iteration count too high */
1392 
1393 	/* Look for a matching NSEC3 to qname -- this is the normal
1394 	 * NODATA case. */
1395 	if(find_matching_nsec3(env, &flt, &ct, qinfo->qname, qinfo->qname_len,
1396 		&rrset, &rr)) {
1397 		/* If the matching NSEC3 has the SOA bit set, it is from
1398 		 * the wrong zone (the child instead of the parent). If
1399 		 * it has the DS bit set, then we were lied to. */
1400 		if(nsec3_has_type(rrset, rr, LDNS_RR_TYPE_SOA) &&
1401 			qinfo->qname_len != 1) {
1402 			verbose(VERB_ALGO, "nsec3 provenods: NSEC3 is from"
1403 				" child zone, bogus");
1404 			*reason = "NSEC3 from child zone";
1405 			return sec_status_bogus;
1406 		} else if(nsec3_has_type(rrset, rr, LDNS_RR_TYPE_DS)) {
1407 			verbose(VERB_ALGO, "nsec3 provenods: NSEC3 has qtype"
1408 				" DS, bogus");
1409 			*reason = "NSEC3 has DS in bitmap";
1410 			return sec_status_bogus;
1411 		}
1412 		/* If the NSEC3 RR doesn't have the NS bit set, then
1413 		 * this wasn't a delegation point. */
1414 		if(!nsec3_has_type(rrset, rr, LDNS_RR_TYPE_NS))
1415 			return sec_status_indeterminate;
1416 		/* Otherwise, this proves no DS. */
1417 		return sec_status_secure;
1418 	}
1419 
1420 	/* Otherwise, we are probably in the opt-out case. */
1421 	if(nsec3_prove_closest_encloser(env, &flt, &ct, qinfo, 1, &ce)
1422 		!= sec_status_secure) {
1423 		/* an insecure delegation *above* the qname does not prove
1424 		 * anything about this qname exactly, and bogus is bogus */
1425 		verbose(VERB_ALGO, "nsec3 provenods: did not match qname, "
1426 		          "nor found a proven closest encloser.");
1427 		*reason = "no NSEC3 closest encloser";
1428 		return sec_status_bogus;
1429 	}
1430 
1431 	/* robust extra check */
1432 	if(!ce.nc_rrset) {
1433 		verbose(VERB_ALGO, "nsec3 nods proof: no next closer nsec3");
1434 		*reason = "no NSEC3 next closer";
1435 		return sec_status_bogus;
1436 	}
1437 
1438 	/* we had the closest encloser proof, then we need to check that the
1439 	 * covering NSEC3 was opt-out -- the proveClosestEncloser step already
1440 	 * checked to see if the closest encloser was a delegation or DNAME.
1441 	 */
1442 	log_assert(ce.nc_rrset);
1443 	if(!nsec3_has_optout(ce.nc_rrset, ce.nc_rr)) {
1444 		verbose(VERB_ALGO, "nsec3 provenods: covering NSEC3 was not "
1445 			"opt-out in an opt-out DS NOERROR/NODATA case.");
1446 		*reason = "covering NSEC3 was not opt-out in an opt-out "
1447 			"DS NOERROR/NODATA case";
1448 		return sec_status_bogus;
1449 	}
1450 	/* RFC5155 section 9.2: if nc has optout then no AD flag set */
1451 	return sec_status_insecure;
1452 }
1453 
1454 enum sec_status
1455 nsec3_prove_nxornodata(struct module_env* env, struct val_env* ve,
1456 	struct ub_packed_rrset_key** list, size_t num,
1457 	struct query_info* qinfo, struct key_entry_key* kkey, int* nodata)
1458 {
1459 	enum sec_status sec, secnx;
1460 	rbtree_t ct;
1461 	struct nsec3_filter flt;
1462 	*nodata = 0;
1463 
1464 	if(!list || num == 0 || !kkey || !key_entry_isgood(kkey))
1465 		return sec_status_bogus; /* no valid NSEC3s, bogus */
1466 	rbtree_init(&ct, &nsec3_hash_cmp); /* init names-to-hash cache */
1467 	filter_init(&flt, list, num, qinfo); /* init RR iterator */
1468 	if(!flt.zone)
1469 		return sec_status_bogus; /* no RRs */
1470 	if(nsec3_iteration_count_high(ve, &flt, kkey))
1471 		return sec_status_insecure; /* iteration count too high */
1472 
1473 	/* try nxdomain and nodata after another, while keeping the
1474 	 * hash cache intact */
1475 
1476 	secnx = nsec3_do_prove_nameerror(env, &flt, &ct, qinfo);
1477 	if(secnx==sec_status_secure)
1478 		return sec_status_secure;
1479 	sec = nsec3_do_prove_nodata(env, &flt, &ct, qinfo);
1480 	if(sec==sec_status_secure) {
1481 		*nodata = 1;
1482 	} else if(sec == sec_status_insecure) {
1483 		*nodata = 1;
1484 	} else if(secnx == sec_status_insecure) {
1485 		sec = sec_status_insecure;
1486 	}
1487 	return sec;
1488 }
1489