xref: /freebsd/contrib/wpa/src/crypto/crypto.h (revision 0957b409)
1 /*
2  * Wrapper functions for crypto libraries
3  * Copyright (c) 2004-2017, Jouni Malinen <j@w1.fi>
4  *
5  * This software may be distributed under the terms of the BSD license.
6  * See README for more details.
7  *
8  * This file defines the cryptographic functions that need to be implemented
9  * for wpa_supplicant and hostapd. When TLS is not used, internal
10  * implementation of MD5, SHA1, and AES is used and no external libraries are
11  * required. When TLS is enabled (e.g., by enabling EAP-TLS or EAP-PEAP), the
12  * crypto library used by the TLS implementation is expected to be used for
13  * non-TLS needs, too, in order to save space by not implementing these
14  * functions twice.
15  *
16  * Wrapper code for using each crypto library is in its own file (crypto*.c)
17  * and one of these files is build and linked in to provide the functions
18  * defined here.
19  */
20 
21 #ifndef CRYPTO_H
22 #define CRYPTO_H
23 
24 /**
25  * md4_vector - MD4 hash for data vector
26  * @num_elem: Number of elements in the data vector
27  * @addr: Pointers to the data areas
28  * @len: Lengths of the data blocks
29  * @mac: Buffer for the hash
30  * Returns: 0 on success, -1 on failure
31  */
32 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac);
33 
34 /**
35  * md5_vector - MD5 hash for data vector
36  * @num_elem: Number of elements in the data vector
37  * @addr: Pointers to the data areas
38  * @len: Lengths of the data blocks
39  * @mac: Buffer for the hash
40  * Returns: 0 on success, -1 on failure
41  */
42 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac);
43 
44 
45 /**
46  * sha1_vector - SHA-1 hash for data vector
47  * @num_elem: Number of elements in the data vector
48  * @addr: Pointers to the data areas
49  * @len: Lengths of the data blocks
50  * @mac: Buffer for the hash
51  * Returns: 0 on success, -1 on failure
52  */
53 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len,
54 		u8 *mac);
55 
56 /**
57  * fips186_2-prf - NIST FIPS Publication 186-2 change notice 1 PRF
58  * @seed: Seed/key for the PRF
59  * @seed_len: Seed length in bytes
60  * @x: Buffer for PRF output
61  * @xlen: Output length in bytes
62  * Returns: 0 on success, -1 on failure
63  *
64  * This function implements random number generation specified in NIST FIPS
65  * Publication 186-2 for EAP-SIM. This PRF uses a function that is similar to
66  * SHA-1, but has different message padding.
67  */
68 int __must_check fips186_2_prf(const u8 *seed, size_t seed_len, u8 *x,
69 			       size_t xlen);
70 
71 /**
72  * sha256_vector - SHA256 hash for data vector
73  * @num_elem: Number of elements in the data vector
74  * @addr: Pointers to the data areas
75  * @len: Lengths of the data blocks
76  * @mac: Buffer for the hash
77  * Returns: 0 on success, -1 on failure
78  */
79 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
80 		  u8 *mac);
81 
82 /**
83  * sha384_vector - SHA384 hash for data vector
84  * @num_elem: Number of elements in the data vector
85  * @addr: Pointers to the data areas
86  * @len: Lengths of the data blocks
87  * @mac: Buffer for the hash
88  * Returns: 0 on success, -1 on failure
89  */
90 int sha384_vector(size_t num_elem, const u8 *addr[], const size_t *len,
91 		  u8 *mac);
92 
93 /**
94  * sha512_vector - SHA512 hash for data vector
95  * @num_elem: Number of elements in the data vector
96  * @addr: Pointers to the data areas
97  * @len: Lengths of the data blocks
98  * @mac: Buffer for the hash
99  * Returns: 0 on success, -1 on failure
100  */
101 int sha512_vector(size_t num_elem, const u8 *addr[], const size_t *len,
102 		  u8 *mac);
103 
104 /**
105  * des_encrypt - Encrypt one block with DES
106  * @clear: 8 octets (in)
107  * @key: 7 octets (in) (no parity bits included)
108  * @cypher: 8 octets (out)
109  * Returns: 0 on success, -1 on failure
110  */
111 int des_encrypt(const u8 *clear, const u8 *key, u8 *cypher);
112 
113 /**
114  * aes_encrypt_init - Initialize AES for encryption
115  * @key: Encryption key
116  * @len: Key length in bytes (usually 16, i.e., 128 bits)
117  * Returns: Pointer to context data or %NULL on failure
118  */
119 void * aes_encrypt_init(const u8 *key, size_t len);
120 
121 /**
122  * aes_encrypt - Encrypt one AES block
123  * @ctx: Context pointer from aes_encrypt_init()
124  * @plain: Plaintext data to be encrypted (16 bytes)
125  * @crypt: Buffer for the encrypted data (16 bytes)
126  * Returns: 0 on success, -1 on failure
127  */
128 int aes_encrypt(void *ctx, const u8 *plain, u8 *crypt);
129 
130 /**
131  * aes_encrypt_deinit - Deinitialize AES encryption
132  * @ctx: Context pointer from aes_encrypt_init()
133  */
134 void aes_encrypt_deinit(void *ctx);
135 
136 /**
137  * aes_decrypt_init - Initialize AES for decryption
138  * @key: Decryption key
139  * @len: Key length in bytes (usually 16, i.e., 128 bits)
140  * Returns: Pointer to context data or %NULL on failure
141  */
142 void * aes_decrypt_init(const u8 *key, size_t len);
143 
144 /**
145  * aes_decrypt - Decrypt one AES block
146  * @ctx: Context pointer from aes_encrypt_init()
147  * @crypt: Encrypted data (16 bytes)
148  * @plain: Buffer for the decrypted data (16 bytes)
149  * Returns: 0 on success, -1 on failure
150  */
151 int aes_decrypt(void *ctx, const u8 *crypt, u8 *plain);
152 
153 /**
154  * aes_decrypt_deinit - Deinitialize AES decryption
155  * @ctx: Context pointer from aes_encrypt_init()
156  */
157 void aes_decrypt_deinit(void *ctx);
158 
159 
160 enum crypto_hash_alg {
161 	CRYPTO_HASH_ALG_MD5, CRYPTO_HASH_ALG_SHA1,
162 	CRYPTO_HASH_ALG_HMAC_MD5, CRYPTO_HASH_ALG_HMAC_SHA1,
163 	CRYPTO_HASH_ALG_SHA256, CRYPTO_HASH_ALG_HMAC_SHA256,
164 	CRYPTO_HASH_ALG_SHA384, CRYPTO_HASH_ALG_SHA512
165 };
166 
167 struct crypto_hash;
168 
169 /**
170  * crypto_hash_init - Initialize hash/HMAC function
171  * @alg: Hash algorithm
172  * @key: Key for keyed hash (e.g., HMAC) or %NULL if not needed
173  * @key_len: Length of the key in bytes
174  * Returns: Pointer to hash context to use with other hash functions or %NULL
175  * on failure
176  *
177  * This function is only used with internal TLSv1 implementation
178  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
179  * to implement this.
180  */
181 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
182 				      size_t key_len);
183 
184 /**
185  * crypto_hash_update - Add data to hash calculation
186  * @ctx: Context pointer from crypto_hash_init()
187  * @data: Data buffer to add
188  * @len: Length of the buffer
189  *
190  * This function is only used with internal TLSv1 implementation
191  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
192  * to implement this.
193  */
194 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len);
195 
196 /**
197  * crypto_hash_finish - Complete hash calculation
198  * @ctx: Context pointer from crypto_hash_init()
199  * @hash: Buffer for hash value or %NULL if caller is just freeing the hash
200  * context
201  * @len: Pointer to length of the buffer or %NULL if caller is just freeing the
202  * hash context; on return, this is set to the actual length of the hash value
203  * Returns: 0 on success, -1 if buffer is too small (len set to needed length),
204  * or -2 on other failures (including failed crypto_hash_update() operations)
205  *
206  * This function calculates the hash value and frees the context buffer that
207  * was used for hash calculation.
208  *
209  * This function is only used with internal TLSv1 implementation
210  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
211  * to implement this.
212  */
213 int crypto_hash_finish(struct crypto_hash *ctx, u8 *hash, size_t *len);
214 
215 
216 enum crypto_cipher_alg {
217 	CRYPTO_CIPHER_NULL = 0, CRYPTO_CIPHER_ALG_AES, CRYPTO_CIPHER_ALG_3DES,
218 	CRYPTO_CIPHER_ALG_DES, CRYPTO_CIPHER_ALG_RC2, CRYPTO_CIPHER_ALG_RC4
219 };
220 
221 struct crypto_cipher;
222 
223 /**
224  * crypto_cipher_init - Initialize block/stream cipher function
225  * @alg: Cipher algorithm
226  * @iv: Initialization vector for block ciphers or %NULL for stream ciphers
227  * @key: Cipher key
228  * @key_len: Length of key in bytes
229  * Returns: Pointer to cipher context to use with other cipher functions or
230  * %NULL on failure
231  *
232  * This function is only used with internal TLSv1 implementation
233  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
234  * to implement this.
235  */
236 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
237 					  const u8 *iv, const u8 *key,
238 					  size_t key_len);
239 
240 /**
241  * crypto_cipher_encrypt - Cipher encrypt
242  * @ctx: Context pointer from crypto_cipher_init()
243  * @plain: Plaintext to cipher
244  * @crypt: Resulting ciphertext
245  * @len: Length of the plaintext
246  * Returns: 0 on success, -1 on failure
247  *
248  * This function is only used with internal TLSv1 implementation
249  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
250  * to implement this.
251  */
252 int __must_check crypto_cipher_encrypt(struct crypto_cipher *ctx,
253 				       const u8 *plain, u8 *crypt, size_t len);
254 
255 /**
256  * crypto_cipher_decrypt - Cipher decrypt
257  * @ctx: Context pointer from crypto_cipher_init()
258  * @crypt: Ciphertext to decrypt
259  * @plain: Resulting plaintext
260  * @len: Length of the cipher text
261  * Returns: 0 on success, -1 on failure
262  *
263  * This function is only used with internal TLSv1 implementation
264  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
265  * to implement this.
266  */
267 int __must_check crypto_cipher_decrypt(struct crypto_cipher *ctx,
268 				       const u8 *crypt, u8 *plain, size_t len);
269 
270 /**
271  * crypto_cipher_decrypt - Free cipher context
272  * @ctx: Context pointer from crypto_cipher_init()
273  *
274  * This function is only used with internal TLSv1 implementation
275  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
276  * to implement this.
277  */
278 void crypto_cipher_deinit(struct crypto_cipher *ctx);
279 
280 
281 struct crypto_public_key;
282 struct crypto_private_key;
283 
284 /**
285  * crypto_public_key_import - Import an RSA public key
286  * @key: Key buffer (DER encoded RSA public key)
287  * @len: Key buffer length in bytes
288  * Returns: Pointer to the public key or %NULL on failure
289  *
290  * This function can just return %NULL if the crypto library supports X.509
291  * parsing. In that case, crypto_public_key_from_cert() is used to import the
292  * public key from a certificate.
293  *
294  * This function is only used with internal TLSv1 implementation
295  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
296  * to implement this.
297  */
298 struct crypto_public_key * crypto_public_key_import(const u8 *key, size_t len);
299 
300 struct crypto_public_key *
301 crypto_public_key_import_parts(const u8 *n, size_t n_len,
302 			       const u8 *e, size_t e_len);
303 
304 /**
305  * crypto_private_key_import - Import an RSA private key
306  * @key: Key buffer (DER encoded RSA private key)
307  * @len: Key buffer length in bytes
308  * @passwd: Key encryption password or %NULL if key is not encrypted
309  * Returns: Pointer to the private key or %NULL on failure
310  *
311  * This function is only used with internal TLSv1 implementation
312  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
313  * to implement this.
314  */
315 struct crypto_private_key * crypto_private_key_import(const u8 *key,
316 						      size_t len,
317 						      const char *passwd);
318 
319 /**
320  * crypto_public_key_from_cert - Import an RSA public key from a certificate
321  * @buf: DER encoded X.509 certificate
322  * @len: Certificate buffer length in bytes
323  * Returns: Pointer to public key or %NULL on failure
324  *
325  * This function can just return %NULL if the crypto library does not support
326  * X.509 parsing. In that case, internal code will be used to parse the
327  * certificate and public key is imported using crypto_public_key_import().
328  *
329  * This function is only used with internal TLSv1 implementation
330  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
331  * to implement this.
332  */
333 struct crypto_public_key * crypto_public_key_from_cert(const u8 *buf,
334 						       size_t len);
335 
336 /**
337  * crypto_public_key_encrypt_pkcs1_v15 - Public key encryption (PKCS #1 v1.5)
338  * @key: Public key
339  * @in: Plaintext buffer
340  * @inlen: Length of plaintext buffer in bytes
341  * @out: Output buffer for encrypted data
342  * @outlen: Length of output buffer in bytes; set to used length on success
343  * Returns: 0 on success, -1 on failure
344  *
345  * This function is only used with internal TLSv1 implementation
346  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
347  * to implement this.
348  */
349 int __must_check crypto_public_key_encrypt_pkcs1_v15(
350 	struct crypto_public_key *key, const u8 *in, size_t inlen,
351 	u8 *out, size_t *outlen);
352 
353 /**
354  * crypto_private_key_decrypt_pkcs1_v15 - Private key decryption (PKCS #1 v1.5)
355  * @key: Private key
356  * @in: Encrypted buffer
357  * @inlen: Length of encrypted buffer in bytes
358  * @out: Output buffer for encrypted data
359  * @outlen: Length of output buffer in bytes; set to used length on success
360  * Returns: 0 on success, -1 on failure
361  *
362  * This function is only used with internal TLSv1 implementation
363  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
364  * to implement this.
365  */
366 int __must_check crypto_private_key_decrypt_pkcs1_v15(
367 	struct crypto_private_key *key, const u8 *in, size_t inlen,
368 	u8 *out, size_t *outlen);
369 
370 /**
371  * crypto_private_key_sign_pkcs1 - Sign with private key (PKCS #1)
372  * @key: Private key from crypto_private_key_import()
373  * @in: Plaintext buffer
374  * @inlen: Length of plaintext buffer in bytes
375  * @out: Output buffer for encrypted (signed) data
376  * @outlen: Length of output buffer in bytes; set to used length on success
377  * Returns: 0 on success, -1 on failure
378  *
379  * This function is only used with internal TLSv1 implementation
380  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
381  * to implement this.
382  */
383 int __must_check crypto_private_key_sign_pkcs1(struct crypto_private_key *key,
384 					       const u8 *in, size_t inlen,
385 					       u8 *out, size_t *outlen);
386 
387 /**
388  * crypto_public_key_free - Free public key
389  * @key: Public key
390  *
391  * This function is only used with internal TLSv1 implementation
392  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
393  * to implement this.
394  */
395 void crypto_public_key_free(struct crypto_public_key *key);
396 
397 /**
398  * crypto_private_key_free - Free private key
399  * @key: Private key from crypto_private_key_import()
400  *
401  * This function is only used with internal TLSv1 implementation
402  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
403  * to implement this.
404  */
405 void crypto_private_key_free(struct crypto_private_key *key);
406 
407 /**
408  * crypto_public_key_decrypt_pkcs1 - Decrypt PKCS #1 signature
409  * @key: Public key
410  * @crypt: Encrypted signature data (using the private key)
411  * @crypt_len: Encrypted signature data length
412  * @plain: Buffer for plaintext (at least crypt_len bytes)
413  * @plain_len: Plaintext length (max buffer size on input, real len on output);
414  * Returns: 0 on success, -1 on failure
415  */
416 int __must_check crypto_public_key_decrypt_pkcs1(
417 	struct crypto_public_key *key, const u8 *crypt, size_t crypt_len,
418 	u8 *plain, size_t *plain_len);
419 
420 int crypto_dh_init(u8 generator, const u8 *prime, size_t prime_len, u8 *privkey,
421 		   u8 *pubkey);
422 int crypto_dh_derive_secret(u8 generator, const u8 *prime, size_t prime_len,
423 			    const u8 *privkey, size_t privkey_len,
424 			    const u8 *pubkey, size_t pubkey_len,
425 			    u8 *secret, size_t *len);
426 
427 /**
428  * crypto_global_init - Initialize crypto wrapper
429  *
430  * This function is only used with internal TLSv1 implementation
431  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
432  * to implement this.
433  */
434 int __must_check crypto_global_init(void);
435 
436 /**
437  * crypto_global_deinit - Deinitialize crypto wrapper
438  *
439  * This function is only used with internal TLSv1 implementation
440  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
441  * to implement this.
442  */
443 void crypto_global_deinit(void);
444 
445 /**
446  * crypto_mod_exp - Modular exponentiation of large integers
447  * @base: Base integer (big endian byte array)
448  * @base_len: Length of base integer in bytes
449  * @power: Power integer (big endian byte array)
450  * @power_len: Length of power integer in bytes
451  * @modulus: Modulus integer (big endian byte array)
452  * @modulus_len: Length of modulus integer in bytes
453  * @result: Buffer for the result
454  * @result_len: Result length (max buffer size on input, real len on output)
455  * Returns: 0 on success, -1 on failure
456  *
457  * This function calculates result = base ^ power mod modulus. modules_len is
458  * used as the maximum size of modulus buffer. It is set to the used size on
459  * success.
460  *
461  * This function is only used with internal TLSv1 implementation
462  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
463  * to implement this.
464  */
465 int __must_check crypto_mod_exp(const u8 *base, size_t base_len,
466 				const u8 *power, size_t power_len,
467 				const u8 *modulus, size_t modulus_len,
468 				u8 *result, size_t *result_len);
469 
470 /**
471  * rc4_skip - XOR RC4 stream to given data with skip-stream-start
472  * @key: RC4 key
473  * @keylen: RC4 key length
474  * @skip: number of bytes to skip from the beginning of the RC4 stream
475  * @data: data to be XOR'ed with RC4 stream
476  * @data_len: buf length
477  * Returns: 0 on success, -1 on failure
478  *
479  * Generate RC4 pseudo random stream for the given key, skip beginning of the
480  * stream, and XOR the end result with the data buffer to perform RC4
481  * encryption/decryption.
482  */
483 int rc4_skip(const u8 *key, size_t keylen, size_t skip,
484 	     u8 *data, size_t data_len);
485 
486 /**
487  * crypto_get_random - Generate cryptographically strong pseudy-random bytes
488  * @buf: Buffer for data
489  * @len: Number of bytes to generate
490  * Returns: 0 on success, -1 on failure
491  *
492  * If the PRNG does not have enough entropy to ensure unpredictable byte
493  * sequence, this functions must return -1.
494  */
495 int crypto_get_random(void *buf, size_t len);
496 
497 
498 /**
499  * struct crypto_bignum - bignum
500  *
501  * Internal data structure for bignum implementation. The contents is specific
502  * to the used crypto library.
503  */
504 struct crypto_bignum;
505 
506 /**
507  * crypto_bignum_init - Allocate memory for bignum
508  * Returns: Pointer to allocated bignum or %NULL on failure
509  */
510 struct crypto_bignum * crypto_bignum_init(void);
511 
512 /**
513  * crypto_bignum_init_set - Allocate memory for bignum and set the value
514  * @buf: Buffer with unsigned binary value
515  * @len: Length of buf in octets
516  * Returns: Pointer to allocated bignum or %NULL on failure
517  */
518 struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len);
519 
520 /**
521  * crypto_bignum_deinit - Free bignum
522  * @n: Bignum from crypto_bignum_init() or crypto_bignum_init_set()
523  * @clear: Whether to clear the value from memory
524  */
525 void crypto_bignum_deinit(struct crypto_bignum *n, int clear);
526 
527 /**
528  * crypto_bignum_to_bin - Set binary buffer to unsigned bignum
529  * @a: Bignum
530  * @buf: Buffer for the binary number
531  * @len: Length of @buf in octets
532  * @padlen: Length in octets to pad the result to or 0 to indicate no padding
533  * Returns: Number of octets written on success, -1 on failure
534  */
535 int crypto_bignum_to_bin(const struct crypto_bignum *a,
536 			 u8 *buf, size_t buflen, size_t padlen);
537 
538 /**
539  * crypto_bignum_rand - Create a random number in range of modulus
540  * @r: Bignum; set to a random value
541  * @m: Bignum; modulus
542  * Returns: 0 on success, -1 on failure
543  */
544 int crypto_bignum_rand(struct crypto_bignum *r, const struct crypto_bignum *m);
545 
546 /**
547  * crypto_bignum_add - c = a + b
548  * @a: Bignum
549  * @b: Bignum
550  * @c: Bignum; used to store the result of a + b
551  * Returns: 0 on success, -1 on failure
552  */
553 int crypto_bignum_add(const struct crypto_bignum *a,
554 		      const struct crypto_bignum *b,
555 		      struct crypto_bignum *c);
556 
557 /**
558  * crypto_bignum_mod - c = a % b
559  * @a: Bignum
560  * @b: Bignum
561  * @c: Bignum; used to store the result of a % b
562  * Returns: 0 on success, -1 on failure
563  */
564 int crypto_bignum_mod(const struct crypto_bignum *a,
565 		      const struct crypto_bignum *b,
566 		      struct crypto_bignum *c);
567 
568 /**
569  * crypto_bignum_exptmod - Modular exponentiation: d = a^b (mod c)
570  * @a: Bignum; base
571  * @b: Bignum; exponent
572  * @c: Bignum; modulus
573  * @d: Bignum; used to store the result of a^b (mod c)
574  * Returns: 0 on success, -1 on failure
575  */
576 int crypto_bignum_exptmod(const struct crypto_bignum *a,
577 			  const struct crypto_bignum *b,
578 			  const struct crypto_bignum *c,
579 			  struct crypto_bignum *d);
580 
581 /**
582  * crypto_bignum_inverse - Inverse a bignum so that a * c = 1 (mod b)
583  * @a: Bignum
584  * @b: Bignum
585  * @c: Bignum; used to store the result
586  * Returns: 0 on success, -1 on failure
587  */
588 int crypto_bignum_inverse(const struct crypto_bignum *a,
589 			  const struct crypto_bignum *b,
590 			  struct crypto_bignum *c);
591 
592 /**
593  * crypto_bignum_sub - c = a - b
594  * @a: Bignum
595  * @b: Bignum
596  * @c: Bignum; used to store the result of a - b
597  * Returns: 0 on success, -1 on failure
598  */
599 int crypto_bignum_sub(const struct crypto_bignum *a,
600 		      const struct crypto_bignum *b,
601 		      struct crypto_bignum *c);
602 
603 /**
604  * crypto_bignum_div - c = a / b
605  * @a: Bignum
606  * @b: Bignum
607  * @c: Bignum; used to store the result of a / b
608  * Returns: 0 on success, -1 on failure
609  */
610 int crypto_bignum_div(const struct crypto_bignum *a,
611 		      const struct crypto_bignum *b,
612 		      struct crypto_bignum *c);
613 
614 /**
615  * crypto_bignum_mulmod - d = a * b (mod c)
616  * @a: Bignum
617  * @b: Bignum
618  * @c: Bignum
619  * @d: Bignum; used to store the result of (a * b) % c
620  * Returns: 0 on success, -1 on failure
621  */
622 int crypto_bignum_mulmod(const struct crypto_bignum *a,
623 			 const struct crypto_bignum *b,
624 			 const struct crypto_bignum *c,
625 			 struct crypto_bignum *d);
626 
627 /**
628  * crypto_bignum_rshift - r = a >> n
629  * @a: Bignum
630  * @n: Number of bits
631  * @r: Bignum; used to store the result of a >> n
632  * Returns: 0 on success, -1 on failure
633  */
634 int crypto_bignum_rshift(const struct crypto_bignum *a, int n,
635 			 struct crypto_bignum *r);
636 
637 /**
638  * crypto_bignum_cmp - Compare two bignums
639  * @a: Bignum
640  * @b: Bignum
641  * Returns: -1 if a < b, 0 if a == b, or 1 if a > b
642  */
643 int crypto_bignum_cmp(const struct crypto_bignum *a,
644 		      const struct crypto_bignum *b);
645 
646 /**
647  * crypto_bignum_bits - Get size of a bignum in bits
648  * @a: Bignum
649  * Returns: Number of bits in the bignum
650  */
651 int crypto_bignum_bits(const struct crypto_bignum *a);
652 
653 /**
654  * crypto_bignum_is_zero - Is the given bignum zero
655  * @a: Bignum
656  * Returns: 1 if @a is zero or 0 if not
657  */
658 int crypto_bignum_is_zero(const struct crypto_bignum *a);
659 
660 /**
661  * crypto_bignum_is_one - Is the given bignum one
662  * @a: Bignum
663  * Returns: 1 if @a is one or 0 if not
664  */
665 int crypto_bignum_is_one(const struct crypto_bignum *a);
666 
667 /**
668  * crypto_bignum_is_odd - Is the given bignum odd
669  * @a: Bignum
670  * Returns: 1 if @a is odd or 0 if not
671  */
672 int crypto_bignum_is_odd(const struct crypto_bignum *a);
673 
674 /**
675  * crypto_bignum_legendre - Compute the Legendre symbol (a/p)
676  * @a: Bignum
677  * @p: Bignum
678  * Returns: Legendre symbol -1,0,1 on success; -2 on calculation failure
679  */
680 int crypto_bignum_legendre(const struct crypto_bignum *a,
681 			   const struct crypto_bignum *p);
682 
683 /**
684  * struct crypto_ec - Elliptic curve context
685  *
686  * Internal data structure for EC implementation. The contents is specific
687  * to the used crypto library.
688  */
689 struct crypto_ec;
690 
691 /**
692  * crypto_ec_init - Initialize elliptic curve context
693  * @group: Identifying number for the ECC group (IANA "Group Description"
694  *	attribute registrty for RFC 2409)
695  * Returns: Pointer to EC context or %NULL on failure
696  */
697 struct crypto_ec * crypto_ec_init(int group);
698 
699 /**
700  * crypto_ec_deinit - Deinitialize elliptic curve context
701  * @e: EC context from crypto_ec_init()
702  */
703 void crypto_ec_deinit(struct crypto_ec *e);
704 
705 /**
706  * crypto_ec_cofactor - Set the cofactor into the big number
707  * @e: EC context from crypto_ec_init()
708  * @cofactor: Cofactor of curve.
709  * Returns: 0 on success, -1 on failure
710  */
711 int crypto_ec_cofactor(struct crypto_ec *e, struct crypto_bignum *cofactor);
712 
713 /**
714  * crypto_ec_prime_len - Get length of the prime in octets
715  * @e: EC context from crypto_ec_init()
716  * Returns: Length of the prime defining the group
717  */
718 size_t crypto_ec_prime_len(struct crypto_ec *e);
719 
720 /**
721  * crypto_ec_prime_len_bits - Get length of the prime in bits
722  * @e: EC context from crypto_ec_init()
723  * Returns: Length of the prime defining the group in bits
724  */
725 size_t crypto_ec_prime_len_bits(struct crypto_ec *e);
726 
727 /**
728  * crypto_ec_order_len - Get length of the order in octets
729  * @e: EC context from crypto_ec_init()
730  * Returns: Length of the order defining the group
731  */
732 size_t crypto_ec_order_len(struct crypto_ec *e);
733 
734 /**
735  * crypto_ec_get_prime - Get prime defining an EC group
736  * @e: EC context from crypto_ec_init()
737  * Returns: Prime (bignum) defining the group
738  */
739 const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e);
740 
741 /**
742  * crypto_ec_get_order - Get order of an EC group
743  * @e: EC context from crypto_ec_init()
744  * Returns: Order (bignum) of the group
745  */
746 const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e);
747 
748 /**
749  * struct crypto_ec_point - Elliptic curve point
750  *
751  * Internal data structure for EC implementation to represent a point. The
752  * contents is specific to the used crypto library.
753  */
754 struct crypto_ec_point;
755 
756 /**
757  * crypto_ec_point_init - Initialize data for an EC point
758  * @e: EC context from crypto_ec_init()
759  * Returns: Pointer to EC point data or %NULL on failure
760  */
761 struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e);
762 
763 /**
764  * crypto_ec_point_deinit - Deinitialize EC point data
765  * @p: EC point data from crypto_ec_point_init()
766  * @clear: Whether to clear the EC point value from memory
767  */
768 void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear);
769 
770 /**
771  * crypto_ec_point_x - Copies the x-ordinate point into big number
772  * @e: EC context from crypto_ec_init()
773  * @p: EC point data
774  * @x: Big number to set to the copy of x-ordinate
775  * Returns: 0 on success, -1 on failure
776  */
777 int crypto_ec_point_x(struct crypto_ec *e, const struct crypto_ec_point *p,
778 		      struct crypto_bignum *x);
779 
780 /**
781  * crypto_ec_point_to_bin - Write EC point value as binary data
782  * @e: EC context from crypto_ec_init()
783  * @p: EC point data from crypto_ec_point_init()
784  * @x: Buffer for writing the binary data for x coordinate or %NULL if not used
785  * @y: Buffer for writing the binary data for y coordinate or %NULL if not used
786  * Returns: 0 on success, -1 on failure
787  *
788  * This function can be used to write an EC point as binary data in a format
789  * that has the x and y coordinates in big endian byte order fields padded to
790  * the length of the prime defining the group.
791  */
792 int crypto_ec_point_to_bin(struct crypto_ec *e,
793 			   const struct crypto_ec_point *point, u8 *x, u8 *y);
794 
795 /**
796  * crypto_ec_point_from_bin - Create EC point from binary data
797  * @e: EC context from crypto_ec_init()
798  * @val: Binary data to read the EC point from
799  * Returns: Pointer to EC point data or %NULL on failure
800  *
801  * This function readers x and y coordinates of the EC point from the provided
802  * buffer assuming the values are in big endian byte order with fields padded to
803  * the length of the prime defining the group.
804  */
805 struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
806 						  const u8 *val);
807 
808 /**
809  * crypto_ec_point_add - c = a + b
810  * @e: EC context from crypto_ec_init()
811  * @a: Bignum
812  * @b: Bignum
813  * @c: Bignum; used to store the result of a + b
814  * Returns: 0 on success, -1 on failure
815  */
816 int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
817 			const struct crypto_ec_point *b,
818 			struct crypto_ec_point *c);
819 
820 /**
821  * crypto_ec_point_mul - res = b * p
822  * @e: EC context from crypto_ec_init()
823  * @p: EC point
824  * @b: Bignum
825  * @res: EC point; used to store the result of b * p
826  * Returns: 0 on success, -1 on failure
827  */
828 int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
829 			const struct crypto_bignum *b,
830 			struct crypto_ec_point *res);
831 
832 /**
833  * crypto_ec_point_invert - Compute inverse of an EC point
834  * @e: EC context from crypto_ec_init()
835  * @p: EC point to invert (and result of the operation)
836  * Returns: 0 on success, -1 on failure
837  */
838 int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p);
839 
840 /**
841  * crypto_ec_point_solve_y_coord - Solve y coordinate for an x coordinate
842  * @e: EC context from crypto_ec_init()
843  * @p: EC point to use for the returning the result
844  * @x: x coordinate
845  * @y_bit: y-bit (0 or 1) for selecting the y value to use
846  * Returns: 0 on success, -1 on failure
847  */
848 int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
849 				  struct crypto_ec_point *p,
850 				  const struct crypto_bignum *x, int y_bit);
851 
852 /**
853  * crypto_ec_point_compute_y_sqr - Compute y^2 = x^3 + ax + b
854  * @e: EC context from crypto_ec_init()
855  * @x: x coordinate
856  * Returns: y^2 on success, %NULL failure
857  */
858 struct crypto_bignum *
859 crypto_ec_point_compute_y_sqr(struct crypto_ec *e,
860 			      const struct crypto_bignum *x);
861 
862 /**
863  * crypto_ec_point_is_at_infinity - Check whether EC point is neutral element
864  * @e: EC context from crypto_ec_init()
865  * @p: EC point
866  * Returns: 1 if the specified EC point is the neutral element of the group or
867  *	0 if not
868  */
869 int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
870 				   const struct crypto_ec_point *p);
871 
872 /**
873  * crypto_ec_point_is_on_curve - Check whether EC point is on curve
874  * @e: EC context from crypto_ec_init()
875  * @p: EC point
876  * Returns: 1 if the specified EC point is on the curve or 0 if not
877  */
878 int crypto_ec_point_is_on_curve(struct crypto_ec *e,
879 				const struct crypto_ec_point *p);
880 
881 /**
882  * crypto_ec_point_cmp - Compare two EC points
883  * @e: EC context from crypto_ec_init()
884  * @a: EC point
885  * @b: EC point
886  * Returns: 0 on equal, non-zero otherwise
887  */
888 int crypto_ec_point_cmp(const struct crypto_ec *e,
889 			const struct crypto_ec_point *a,
890 			const struct crypto_ec_point *b);
891 
892 struct crypto_ecdh;
893 
894 struct crypto_ecdh * crypto_ecdh_init(int group);
895 struct wpabuf * crypto_ecdh_get_pubkey(struct crypto_ecdh *ecdh, int inc_y);
896 struct wpabuf * crypto_ecdh_set_peerkey(struct crypto_ecdh *ecdh, int inc_y,
897 					const u8 *key, size_t len);
898 void crypto_ecdh_deinit(struct crypto_ecdh *ecdh);
899 
900 #endif /* CRYPTO_H */
901