xref: /freebsd/contrib/wpa/src/crypto/md4-internal.c (revision e28a4053)
1 /*
2  * MD4 hash implementation
3  * Copyright (c) 2006, Jouni Malinen <j@w1.fi>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * Alternatively, this software may be distributed under the terms of BSD
10  * license.
11  *
12  * See README and COPYING for more details.
13  */
14 
15 #include "includes.h"
16 
17 #include "common.h"
18 #include "crypto.h"
19 
20 #define	MD4_BLOCK_LENGTH		64
21 #define	MD4_DIGEST_LENGTH		16
22 
23 typedef struct MD4Context {
24 	u32 state[4];			/* state */
25 	u64 count;			/* number of bits, mod 2^64 */
26 	u8 buffer[MD4_BLOCK_LENGTH];	/* input buffer */
27 } MD4_CTX;
28 
29 
30 static void MD4Init(MD4_CTX *ctx);
31 static void MD4Update(MD4_CTX *ctx, const unsigned char *input, size_t len);
32 static void MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx);
33 
34 
35 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
36 {
37 	MD4_CTX ctx;
38 	size_t i;
39 
40 	MD4Init(&ctx);
41 	for (i = 0; i < num_elem; i++)
42 		MD4Update(&ctx, addr[i], len[i]);
43 	MD4Final(mac, &ctx);
44 	return 0;
45 }
46 
47 
48 /* ===== start - public domain MD4 implementation ===== */
49 /*	$OpenBSD: md4.c,v 1.7 2005/08/08 08:05:35 espie Exp $	*/
50 
51 /*
52  * This code implements the MD4 message-digest algorithm.
53  * The algorithm is due to Ron Rivest.	This code was
54  * written by Colin Plumb in 1993, no copyright is claimed.
55  * This code is in the public domain; do with it what you wish.
56  * Todd C. Miller modified the MD5 code to do MD4 based on RFC 1186.
57  *
58  * Equivalent code is available from RSA Data Security, Inc.
59  * This code has been tested against that, and is equivalent,
60  * except that you don't need to include two pages of legalese
61  * with every copy.
62  *
63  * To compute the message digest of a chunk of bytes, declare an
64  * MD4Context structure, pass it to MD4Init, call MD4Update as
65  * needed on buffers full of bytes, and then call MD4Final, which
66  * will fill a supplied 16-byte array with the digest.
67  */
68 
69 #define	MD4_DIGEST_STRING_LENGTH	(MD4_DIGEST_LENGTH * 2 + 1)
70 
71 
72 static void
73 MD4Transform(u32 state[4], const u8 block[MD4_BLOCK_LENGTH]);
74 
75 #define PUT_64BIT_LE(cp, value) do {					\
76 	(cp)[7] = (value) >> 56;					\
77 	(cp)[6] = (value) >> 48;					\
78 	(cp)[5] = (value) >> 40;					\
79 	(cp)[4] = (value) >> 32;					\
80 	(cp)[3] = (value) >> 24;					\
81 	(cp)[2] = (value) >> 16;					\
82 	(cp)[1] = (value) >> 8;						\
83 	(cp)[0] = (value); } while (0)
84 
85 #define PUT_32BIT_LE(cp, value) do {					\
86 	(cp)[3] = (value) >> 24;					\
87 	(cp)[2] = (value) >> 16;					\
88 	(cp)[1] = (value) >> 8;						\
89 	(cp)[0] = (value); } while (0)
90 
91 static u8 PADDING[MD4_BLOCK_LENGTH] = {
92 	0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
93 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
94 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
95 };
96 
97 /*
98  * Start MD4 accumulation.
99  * Set bit count to 0 and buffer to mysterious initialization constants.
100  */
101 static void MD4Init(MD4_CTX *ctx)
102 {
103 	ctx->count = 0;
104 	ctx->state[0] = 0x67452301;
105 	ctx->state[1] = 0xefcdab89;
106 	ctx->state[2] = 0x98badcfe;
107 	ctx->state[3] = 0x10325476;
108 }
109 
110 /*
111  * Update context to reflect the concatenation of another buffer full
112  * of bytes.
113  */
114 static void MD4Update(MD4_CTX *ctx, const unsigned char *input, size_t len)
115 {
116 	size_t have, need;
117 
118 	/* Check how many bytes we already have and how many more we need. */
119 	have = (size_t)((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1));
120 	need = MD4_BLOCK_LENGTH - have;
121 
122 	/* Update bitcount */
123 	ctx->count += (u64)len << 3;
124 
125 	if (len >= need) {
126 		if (have != 0) {
127 			os_memcpy(ctx->buffer + have, input, need);
128 			MD4Transform(ctx->state, ctx->buffer);
129 			input += need;
130 			len -= need;
131 			have = 0;
132 		}
133 
134 		/* Process data in MD4_BLOCK_LENGTH-byte chunks. */
135 		while (len >= MD4_BLOCK_LENGTH) {
136 			MD4Transform(ctx->state, input);
137 			input += MD4_BLOCK_LENGTH;
138 			len -= MD4_BLOCK_LENGTH;
139 		}
140 	}
141 
142 	/* Handle any remaining bytes of data. */
143 	if (len != 0)
144 		os_memcpy(ctx->buffer + have, input, len);
145 }
146 
147 /*
148  * Pad pad to 64-byte boundary with the bit pattern
149  * 1 0* (64-bit count of bits processed, MSB-first)
150  */
151 static void MD4Pad(MD4_CTX *ctx)
152 {
153 	u8 count[8];
154 	size_t padlen;
155 
156 	/* Convert count to 8 bytes in little endian order. */
157 	PUT_64BIT_LE(count, ctx->count);
158 
159 	/* Pad out to 56 mod 64. */
160 	padlen = MD4_BLOCK_LENGTH -
161 	    ((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1));
162 	if (padlen < 1 + 8)
163 		padlen += MD4_BLOCK_LENGTH;
164 	MD4Update(ctx, PADDING, padlen - 8);		/* padlen - 8 <= 64 */
165 	MD4Update(ctx, count, 8);
166 }
167 
168 /*
169  * Final wrapup--call MD4Pad, fill in digest and zero out ctx.
170  */
171 static void MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx)
172 {
173 	int i;
174 
175 	MD4Pad(ctx);
176 	if (digest != NULL) {
177 		for (i = 0; i < 4; i++)
178 			PUT_32BIT_LE(digest + i * 4, ctx->state[i]);
179 		os_memset(ctx, 0, sizeof(*ctx));
180 	}
181 }
182 
183 
184 /* The three core functions - F1 is optimized somewhat */
185 
186 /* #define F1(x, y, z) (x & y | ~x & z) */
187 #define F1(x, y, z) (z ^ (x & (y ^ z)))
188 #define F2(x, y, z) ((x & y) | (x & z) | (y & z))
189 #define F3(x, y, z) (x ^ y ^ z)
190 
191 /* This is the central step in the MD4 algorithm. */
192 #define MD4STEP(f, w, x, y, z, data, s) \
193 	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s) )
194 
195 /*
196  * The core of the MD4 algorithm, this alters an existing MD4 hash to
197  * reflect the addition of 16 longwords of new data.  MD4Update blocks
198  * the data and converts bytes into longwords for this routine.
199  */
200 static void
201 MD4Transform(u32 state[4], const u8 block[MD4_BLOCK_LENGTH])
202 {
203 	u32 a, b, c, d, in[MD4_BLOCK_LENGTH / 4];
204 
205 #if BYTE_ORDER == LITTLE_ENDIAN
206 	os_memcpy(in, block, sizeof(in));
207 #else
208 	for (a = 0; a < MD4_BLOCK_LENGTH / 4; a++) {
209 		in[a] = (u32)(
210 		    (u32)(block[a * 4 + 0]) |
211 		    (u32)(block[a * 4 + 1]) <<  8 |
212 		    (u32)(block[a * 4 + 2]) << 16 |
213 		    (u32)(block[a * 4 + 3]) << 24);
214 	}
215 #endif
216 
217 	a = state[0];
218 	b = state[1];
219 	c = state[2];
220 	d = state[3];
221 
222 	MD4STEP(F1, a, b, c, d, in[ 0],  3);
223 	MD4STEP(F1, d, a, b, c, in[ 1],  7);
224 	MD4STEP(F1, c, d, a, b, in[ 2], 11);
225 	MD4STEP(F1, b, c, d, a, in[ 3], 19);
226 	MD4STEP(F1, a, b, c, d, in[ 4],  3);
227 	MD4STEP(F1, d, a, b, c, in[ 5],  7);
228 	MD4STEP(F1, c, d, a, b, in[ 6], 11);
229 	MD4STEP(F1, b, c, d, a, in[ 7], 19);
230 	MD4STEP(F1, a, b, c, d, in[ 8],  3);
231 	MD4STEP(F1, d, a, b, c, in[ 9],  7);
232 	MD4STEP(F1, c, d, a, b, in[10], 11);
233 	MD4STEP(F1, b, c, d, a, in[11], 19);
234 	MD4STEP(F1, a, b, c, d, in[12],  3);
235 	MD4STEP(F1, d, a, b, c, in[13],  7);
236 	MD4STEP(F1, c, d, a, b, in[14], 11);
237 	MD4STEP(F1, b, c, d, a, in[15], 19);
238 
239 	MD4STEP(F2, a, b, c, d, in[ 0] + 0x5a827999,  3);
240 	MD4STEP(F2, d, a, b, c, in[ 4] + 0x5a827999,  5);
241 	MD4STEP(F2, c, d, a, b, in[ 8] + 0x5a827999,  9);
242 	MD4STEP(F2, b, c, d, a, in[12] + 0x5a827999, 13);
243 	MD4STEP(F2, a, b, c, d, in[ 1] + 0x5a827999,  3);
244 	MD4STEP(F2, d, a, b, c, in[ 5] + 0x5a827999,  5);
245 	MD4STEP(F2, c, d, a, b, in[ 9] + 0x5a827999,  9);
246 	MD4STEP(F2, b, c, d, a, in[13] + 0x5a827999, 13);
247 	MD4STEP(F2, a, b, c, d, in[ 2] + 0x5a827999,  3);
248 	MD4STEP(F2, d, a, b, c, in[ 6] + 0x5a827999,  5);
249 	MD4STEP(F2, c, d, a, b, in[10] + 0x5a827999,  9);
250 	MD4STEP(F2, b, c, d, a, in[14] + 0x5a827999, 13);
251 	MD4STEP(F2, a, b, c, d, in[ 3] + 0x5a827999,  3);
252 	MD4STEP(F2, d, a, b, c, in[ 7] + 0x5a827999,  5);
253 	MD4STEP(F2, c, d, a, b, in[11] + 0x5a827999,  9);
254 	MD4STEP(F2, b, c, d, a, in[15] + 0x5a827999, 13);
255 
256 	MD4STEP(F3, a, b, c, d, in[ 0] + 0x6ed9eba1,  3);
257 	MD4STEP(F3, d, a, b, c, in[ 8] + 0x6ed9eba1,  9);
258 	MD4STEP(F3, c, d, a, b, in[ 4] + 0x6ed9eba1, 11);
259 	MD4STEP(F3, b, c, d, a, in[12] + 0x6ed9eba1, 15);
260 	MD4STEP(F3, a, b, c, d, in[ 2] + 0x6ed9eba1,  3);
261 	MD4STEP(F3, d, a, b, c, in[10] + 0x6ed9eba1,  9);
262 	MD4STEP(F3, c, d, a, b, in[ 6] + 0x6ed9eba1, 11);
263 	MD4STEP(F3, b, c, d, a, in[14] + 0x6ed9eba1, 15);
264 	MD4STEP(F3, a, b, c, d, in[ 1] + 0x6ed9eba1,  3);
265 	MD4STEP(F3, d, a, b, c, in[ 9] + 0x6ed9eba1,  9);
266 	MD4STEP(F3, c, d, a, b, in[ 5] + 0x6ed9eba1, 11);
267 	MD4STEP(F3, b, c, d, a, in[13] + 0x6ed9eba1, 15);
268 	MD4STEP(F3, a, b, c, d, in[ 3] + 0x6ed9eba1,  3);
269 	MD4STEP(F3, d, a, b, c, in[11] + 0x6ed9eba1,  9);
270 	MD4STEP(F3, c, d, a, b, in[ 7] + 0x6ed9eba1, 11);
271 	MD4STEP(F3, b, c, d, a, in[15] + 0x6ed9eba1, 15);
272 
273 	state[0] += a;
274 	state[1] += b;
275 	state[2] += c;
276 	state[3] += d;
277 }
278 /* ===== end - public domain MD4 implementation ===== */
279