xref: /freebsd/contrib/xz/src/liblzma/api/lzma/base.h (revision 9768746b)
1 /**
2  * \file        lzma/base.h
3  * \brief       Data types and functions used in many places in liblzma API
4  */
5 
6 /*
7  * Author: Lasse Collin
8  *
9  * This file has been put into the public domain.
10  * You can do whatever you want with this file.
11  *
12  * See ../lzma.h for information about liblzma as a whole.
13  */
14 
15 #ifndef LZMA_H_INTERNAL
16 #	error Never include this file directly. Use <lzma.h> instead.
17 #endif
18 
19 
20 /**
21  * \brief       Boolean
22  *
23  * This is here because C89 doesn't have stdbool.h. To set a value for
24  * variables having type lzma_bool, you can use
25  *   - C99's `true' and `false' from stdbool.h;
26  *   - C++'s internal `true' and `false'; or
27  *   - integers one (true) and zero (false).
28  */
29 typedef unsigned char lzma_bool;
30 
31 
32 /**
33  * \brief       Type of reserved enumeration variable in structures
34  *
35  * To avoid breaking library ABI when new features are added, several
36  * structures contain extra variables that may be used in future. Since
37  * sizeof(enum) can be different than sizeof(int), and sizeof(enum) may
38  * even vary depending on the range of enumeration constants, we specify
39  * a separate type to be used for reserved enumeration variables. All
40  * enumeration constants in liblzma API will be non-negative and less
41  * than 128, which should guarantee that the ABI won't break even when
42  * new constants are added to existing enumerations.
43  */
44 typedef enum {
45 	LZMA_RESERVED_ENUM      = 0
46 } lzma_reserved_enum;
47 
48 
49 /**
50  * \brief       Return values used by several functions in liblzma
51  *
52  * Check the descriptions of specific functions to find out which return
53  * values they can return. With some functions the return values may have
54  * more specific meanings than described here; those differences are
55  * described per-function basis.
56  */
57 typedef enum {
58 	LZMA_OK                 = 0,
59 		/**<
60 		 * \brief       Operation completed successfully
61 		 */
62 
63 	LZMA_STREAM_END         = 1,
64 		/**<
65 		 * \brief       End of stream was reached
66 		 *
67 		 * In encoder, LZMA_SYNC_FLUSH, LZMA_FULL_FLUSH, or
68 		 * LZMA_FINISH was finished. In decoder, this indicates
69 		 * that all the data was successfully decoded.
70 		 *
71 		 * In all cases, when LZMA_STREAM_END is returned, the last
72 		 * output bytes should be picked from strm->next_out.
73 		 */
74 
75 	LZMA_NO_CHECK           = 2,
76 		/**<
77 		 * \brief       Input stream has no integrity check
78 		 *
79 		 * This return value can be returned only if the
80 		 * LZMA_TELL_NO_CHECK flag was used when initializing
81 		 * the decoder. LZMA_NO_CHECK is just a warning, and
82 		 * the decoding can be continued normally.
83 		 *
84 		 * It is possible to call lzma_get_check() immediately after
85 		 * lzma_code has returned LZMA_NO_CHECK. The result will
86 		 * naturally be LZMA_CHECK_NONE, but the possibility to call
87 		 * lzma_get_check() may be convenient in some applications.
88 		 */
89 
90 	LZMA_UNSUPPORTED_CHECK  = 3,
91 		/**<
92 		 * \brief       Cannot calculate the integrity check
93 		 *
94 		 * The usage of this return value is different in encoders
95 		 * and decoders.
96 		 *
97 		 * Encoders can return this value only from the initialization
98 		 * function. If initialization fails with this value, the
99 		 * encoding cannot be done, because there's no way to produce
100 		 * output with the correct integrity check.
101 		 *
102 		 * Decoders can return this value only from lzma_code() and
103 		 * only if the LZMA_TELL_UNSUPPORTED_CHECK flag was used when
104 		 * initializing the decoder. The decoding can still be
105 		 * continued normally even if the check type is unsupported,
106 		 * but naturally the check will not be validated, and possible
107 		 * errors may go undetected.
108 		 *
109 		 * With decoder, it is possible to call lzma_get_check()
110 		 * immediately after lzma_code() has returned
111 		 * LZMA_UNSUPPORTED_CHECK. This way it is possible to find
112 		 * out what the unsupported Check ID was.
113 		 */
114 
115 	LZMA_GET_CHECK          = 4,
116 		/**<
117 		 * \brief       Integrity check type is now available
118 		 *
119 		 * This value can be returned only by the lzma_code() function
120 		 * and only if the decoder was initialized with the
121 		 * LZMA_TELL_ANY_CHECK flag. LZMA_GET_CHECK tells the
122 		 * application that it may now call lzma_get_check() to find
123 		 * out the Check ID. This can be used, for example, to
124 		 * implement a decoder that accepts only files that have
125 		 * strong enough integrity check.
126 		 */
127 
128 	LZMA_MEM_ERROR          = 5,
129 		/**<
130 		 * \brief       Cannot allocate memory
131 		 *
132 		 * Memory allocation failed, or the size of the allocation
133 		 * would be greater than SIZE_MAX.
134 		 *
135 		 * Due to internal implementation reasons, the coding cannot
136 		 * be continued even if more memory were made available after
137 		 * LZMA_MEM_ERROR.
138 		 */
139 
140 	LZMA_MEMLIMIT_ERROR     = 6,
141 		/**
142 		 * \brief       Memory usage limit was reached
143 		 *
144 		 * Decoder would need more memory than allowed by the
145 		 * specified memory usage limit. To continue decoding,
146 		 * the memory usage limit has to be increased with
147 		 * lzma_memlimit_set().
148 		 *
149 		 * liblzma 5.2.6 and earlier had a bug in single-threaded .xz
150 		 * decoder (lzma_stream_decoder()) which made it impossible
151 		 * to continue decoding after LZMA_MEMLIMIT_ERROR even if
152 		 * the limit was increased using lzma_memlimit_set().
153 		 * Other decoders worked correctly.
154 		 */
155 
156 	LZMA_FORMAT_ERROR       = 7,
157 		/**<
158 		 * \brief       File format not recognized
159 		 *
160 		 * The decoder did not recognize the input as supported file
161 		 * format. This error can occur, for example, when trying to
162 		 * decode .lzma format file with lzma_stream_decoder,
163 		 * because lzma_stream_decoder accepts only the .xz format.
164 		 */
165 
166 	LZMA_OPTIONS_ERROR      = 8,
167 		/**<
168 		 * \brief       Invalid or unsupported options
169 		 *
170 		 * Invalid or unsupported options, for example
171 		 *  - unsupported filter(s) or filter options; or
172 		 *  - reserved bits set in headers (decoder only).
173 		 *
174 		 * Rebuilding liblzma with more features enabled, or
175 		 * upgrading to a newer version of liblzma may help.
176 		 */
177 
178 	LZMA_DATA_ERROR         = 9,
179 		/**<
180 		 * \brief       Data is corrupt
181 		 *
182 		 * The usage of this return value is different in encoders
183 		 * and decoders. In both encoder and decoder, the coding
184 		 * cannot continue after this error.
185 		 *
186 		 * Encoders return this if size limits of the target file
187 		 * format would be exceeded. These limits are huge, thus
188 		 * getting this error from an encoder is mostly theoretical.
189 		 * For example, the maximum compressed and uncompressed
190 		 * size of a .xz Stream is roughly 8 EiB (2^63 bytes).
191 		 *
192 		 * Decoders return this error if the input data is corrupt.
193 		 * This can mean, for example, invalid CRC32 in headers
194 		 * or invalid check of uncompressed data.
195 		 */
196 
197 	LZMA_BUF_ERROR          = 10,
198 		/**<
199 		 * \brief       No progress is possible
200 		 *
201 		 * This error code is returned when the coder cannot consume
202 		 * any new input and produce any new output. The most common
203 		 * reason for this error is that the input stream being
204 		 * decoded is truncated or corrupt.
205 		 *
206 		 * This error is not fatal. Coding can be continued normally
207 		 * by providing more input and/or more output space, if
208 		 * possible.
209 		 *
210 		 * Typically the first call to lzma_code() that can do no
211 		 * progress returns LZMA_OK instead of LZMA_BUF_ERROR. Only
212 		 * the second consecutive call doing no progress will return
213 		 * LZMA_BUF_ERROR. This is intentional.
214 		 *
215 		 * With zlib, Z_BUF_ERROR may be returned even if the
216 		 * application is doing nothing wrong, so apps will need
217 		 * to handle Z_BUF_ERROR specially. The above hack
218 		 * guarantees that liblzma never returns LZMA_BUF_ERROR
219 		 * to properly written applications unless the input file
220 		 * is truncated or corrupt. This should simplify the
221 		 * applications a little.
222 		 */
223 
224 	LZMA_PROG_ERROR         = 11,
225 		/**<
226 		 * \brief       Programming error
227 		 *
228 		 * This indicates that the arguments given to the function are
229 		 * invalid or the internal state of the decoder is corrupt.
230 		 *   - Function arguments are invalid or the structures
231 		 *     pointed by the argument pointers are invalid
232 		 *     e.g. if strm->next_out has been set to NULL and
233 		 *     strm->avail_out > 0 when calling lzma_code().
234 		 *   - lzma_* functions have been called in wrong order
235 		 *     e.g. lzma_code() was called right after lzma_end().
236 		 *   - If errors occur randomly, the reason might be flaky
237 		 *     hardware.
238 		 *
239 		 * If you think that your code is correct, this error code
240 		 * can be a sign of a bug in liblzma. See the documentation
241 		 * how to report bugs.
242 		 */
243 
244 	LZMA_SEEK_NEEDED        = 12,
245 		/**<
246 		 * \brief       Request to change the input file position
247 		 *
248 		 * Some coders can do random access in the input file. The
249 		 * initialization functions of these coders take the file size
250 		 * as an argument. No other coders can return LZMA_SEEK_NEEDED.
251 		 *
252 		 * When this value is returned, the application must seek to
253 		 * the file position given in lzma_stream.seek_pos. This value
254 		 * is guaranteed to never exceed the file size that was
255 		 * specified at the coder initialization.
256 		 *
257 		 * After seeking the application should read new input and
258 		 * pass it normally via lzma_stream.next_in and .avail_in.
259 		 */
260 
261 	/*
262 	 * These eumerations may be used internally by liblzma
263 	 * but they will never be returned to applications.
264 	 */
265 	LZMA_RET_INTERNAL1      = 101,
266 	LZMA_RET_INTERNAL2      = 102,
267 	LZMA_RET_INTERNAL3      = 103,
268 	LZMA_RET_INTERNAL4      = 104,
269 	LZMA_RET_INTERNAL5      = 105,
270 	LZMA_RET_INTERNAL6      = 106,
271 	LZMA_RET_INTERNAL7      = 107,
272 	LZMA_RET_INTERNAL8      = 108
273 } lzma_ret;
274 
275 
276 /**
277  * \brief       The `action' argument for lzma_code()
278  *
279  * After the first use of LZMA_SYNC_FLUSH, LZMA_FULL_FLUSH, LZMA_FULL_BARRIER,
280  * or LZMA_FINISH, the same `action' must is used until lzma_code() returns
281  * LZMA_STREAM_END. Also, the amount of input (that is, strm->avail_in) must
282  * not be modified by the application until lzma_code() returns
283  * LZMA_STREAM_END. Changing the `action' or modifying the amount of input
284  * will make lzma_code() return LZMA_PROG_ERROR.
285  */
286 typedef enum {
287 	LZMA_RUN = 0,
288 		/**<
289 		 * \brief       Continue coding
290 		 *
291 		 * Encoder: Encode as much input as possible. Some internal
292 		 * buffering will probably be done (depends on the filter
293 		 * chain in use), which causes latency: the input used won't
294 		 * usually be decodeable from the output of the same
295 		 * lzma_code() call.
296 		 *
297 		 * Decoder: Decode as much input as possible and produce as
298 		 * much output as possible.
299 		 */
300 
301 	LZMA_SYNC_FLUSH = 1,
302 		/**<
303 		 * \brief       Make all the input available at output
304 		 *
305 		 * Normally the encoder introduces some latency.
306 		 * LZMA_SYNC_FLUSH forces all the buffered data to be
307 		 * available at output without resetting the internal
308 		 * state of the encoder. This way it is possible to use
309 		 * compressed stream for example for communication over
310 		 * network.
311 		 *
312 		 * Only some filters support LZMA_SYNC_FLUSH. Trying to use
313 		 * LZMA_SYNC_FLUSH with filters that don't support it will
314 		 * make lzma_code() return LZMA_OPTIONS_ERROR. For example,
315 		 * LZMA1 doesn't support LZMA_SYNC_FLUSH but LZMA2 does.
316 		 *
317 		 * Using LZMA_SYNC_FLUSH very often can dramatically reduce
318 		 * the compression ratio. With some filters (for example,
319 		 * LZMA2), fine-tuning the compression options may help
320 		 * mitigate this problem significantly (for example,
321 		 * match finder with LZMA2).
322 		 *
323 		 * Decoders don't support LZMA_SYNC_FLUSH.
324 		 */
325 
326 	LZMA_FULL_FLUSH = 2,
327 		/**<
328 		 * \brief       Finish encoding of the current Block
329 		 *
330 		 * All the input data going to the current Block must have
331 		 * been given to the encoder (the last bytes can still be
332 		 * pending in *next_in). Call lzma_code() with LZMA_FULL_FLUSH
333 		 * until it returns LZMA_STREAM_END. Then continue normally
334 		 * with LZMA_RUN or finish the Stream with LZMA_FINISH.
335 		 *
336 		 * This action is currently supported only by Stream encoder
337 		 * and easy encoder (which uses Stream encoder). If there is
338 		 * no unfinished Block, no empty Block is created.
339 		 */
340 
341 	LZMA_FULL_BARRIER = 4,
342 		/**<
343 		 * \brief       Finish encoding of the current Block
344 		 *
345 		 * This is like LZMA_FULL_FLUSH except that this doesn't
346 		 * necessarily wait until all the input has been made
347 		 * available via the output buffer. That is, lzma_code()
348 		 * might return LZMA_STREAM_END as soon as all the input
349 		 * has been consumed (avail_in == 0).
350 		 *
351 		 * LZMA_FULL_BARRIER is useful with a threaded encoder if
352 		 * one wants to split the .xz Stream into Blocks at specific
353 		 * offsets but doesn't care if the output isn't flushed
354 		 * immediately. Using LZMA_FULL_BARRIER allows keeping
355 		 * the threads busy while LZMA_FULL_FLUSH would make
356 		 * lzma_code() wait until all the threads have finished
357 		 * until more data could be passed to the encoder.
358 		 *
359 		 * With a lzma_stream initialized with the single-threaded
360 		 * lzma_stream_encoder() or lzma_easy_encoder(),
361 		 * LZMA_FULL_BARRIER is an alias for LZMA_FULL_FLUSH.
362 		 */
363 
364 	LZMA_FINISH = 3
365 		/**<
366 		 * \brief       Finish the coding operation
367 		 *
368 		 * All the input data must have been given to the encoder
369 		 * (the last bytes can still be pending in next_in).
370 		 * Call lzma_code() with LZMA_FINISH until it returns
371 		 * LZMA_STREAM_END. Once LZMA_FINISH has been used,
372 		 * the amount of input must no longer be changed by
373 		 * the application.
374 		 *
375 		 * When decoding, using LZMA_FINISH is optional unless the
376 		 * LZMA_CONCATENATED flag was used when the decoder was
377 		 * initialized. When LZMA_CONCATENATED was not used, the only
378 		 * effect of LZMA_FINISH is that the amount of input must not
379 		 * be changed just like in the encoder.
380 		 */
381 } lzma_action;
382 
383 
384 /**
385  * \brief       Custom functions for memory handling
386  *
387  * A pointer to lzma_allocator may be passed via lzma_stream structure
388  * to liblzma, and some advanced functions take a pointer to lzma_allocator
389  * as a separate function argument. The library will use the functions
390  * specified in lzma_allocator for memory handling instead of the default
391  * malloc() and free(). C++ users should note that the custom memory
392  * handling functions must not throw exceptions.
393  *
394  * Single-threaded mode only: liblzma doesn't make an internal copy of
395  * lzma_allocator. Thus, it is OK to change these function pointers in
396  * the middle of the coding process, but obviously it must be done
397  * carefully to make sure that the replacement `free' can deallocate
398  * memory allocated by the earlier `alloc' function(s).
399  *
400  * Multithreaded mode: liblzma might internally store pointers to the
401  * lzma_allocator given via the lzma_stream structure. The application
402  * must not change the allocator pointer in lzma_stream or the contents
403  * of the pointed lzma_allocator structure until lzma_end() has been used
404  * to free the memory associated with that lzma_stream. The allocation
405  * functions might be called simultaneously from multiple threads, and
406  * thus they must be thread safe.
407  */
408 typedef struct {
409 	/**
410 	 * \brief       Pointer to a custom memory allocation function
411 	 *
412 	 * If you don't want a custom allocator, but still want
413 	 * custom free(), set this to NULL and liblzma will use
414 	 * the standard malloc().
415 	 *
416 	 * \param       opaque  lzma_allocator.opaque (see below)
417 	 * \param       nmemb   Number of elements like in calloc(). liblzma
418 	 *                      will always set nmemb to 1, so it is safe to
419 	 *                      ignore nmemb in a custom allocator if you like.
420 	 *                      The nmemb argument exists only for
421 	 *                      compatibility with zlib and libbzip2.
422 	 * \param       size    Size of an element in bytes.
423 	 *                      liblzma never sets this to zero.
424 	 *
425 	 * \return      Pointer to the beginning of a memory block of
426 	 *              `size' bytes, or NULL if allocation fails
427 	 *              for some reason. When allocation fails, functions
428 	 *              of liblzma return LZMA_MEM_ERROR.
429 	 *
430 	 * The allocator should not waste time zeroing the allocated buffers.
431 	 * This is not only about speed, but also memory usage, since the
432 	 * operating system kernel doesn't necessarily allocate the requested
433 	 * memory in physical memory until it is actually used. With small
434 	 * input files, liblzma may actually need only a fraction of the
435 	 * memory that it requested for allocation.
436 	 *
437 	 * \note        LZMA_MEM_ERROR is also used when the size of the
438 	 *              allocation would be greater than SIZE_MAX. Thus,
439 	 *              don't assume that the custom allocator must have
440 	 *              returned NULL if some function from liblzma
441 	 *              returns LZMA_MEM_ERROR.
442 	 */
443 	void *(LZMA_API_CALL *alloc)(void *opaque, size_t nmemb, size_t size);
444 
445 	/**
446 	 * \brief       Pointer to a custom memory freeing function
447 	 *
448 	 * If you don't want a custom freeing function, but still
449 	 * want a custom allocator, set this to NULL and liblzma
450 	 * will use the standard free().
451 	 *
452 	 * \param       opaque  lzma_allocator.opaque (see below)
453 	 * \param       ptr     Pointer returned by lzma_allocator.alloc(),
454 	 *                      or when it is set to NULL, a pointer returned
455 	 *                      by the standard malloc().
456 	 */
457 	void (LZMA_API_CALL *free)(void *opaque, void *ptr);
458 
459 	/**
460 	 * \brief       Pointer passed to .alloc() and .free()
461 	 *
462 	 * opaque is passed as the first argument to lzma_allocator.alloc()
463 	 * and lzma_allocator.free(). This intended to ease implementing
464 	 * custom memory allocation functions for use with liblzma.
465 	 *
466 	 * If you don't need this, you should set this to NULL.
467 	 */
468 	void *opaque;
469 
470 } lzma_allocator;
471 
472 
473 /**
474  * \brief       Internal data structure
475  *
476  * The contents of this structure is not visible outside the library.
477  */
478 typedef struct lzma_internal_s lzma_internal;
479 
480 
481 /**
482  * \brief       Passing data to and from liblzma
483  *
484  * The lzma_stream structure is used for
485  *  - passing pointers to input and output buffers to liblzma;
486  *  - defining custom memory handler functions; and
487  *  - holding a pointer to coder-specific internal data structures.
488  *
489  * Typical usage:
490  *
491  *  - After allocating lzma_stream (on stack or with malloc()), it must be
492  *    initialized to LZMA_STREAM_INIT (see LZMA_STREAM_INIT for details).
493  *
494  *  - Initialize a coder to the lzma_stream, for example by using
495  *    lzma_easy_encoder() or lzma_auto_decoder(). Some notes:
496  *      - In contrast to zlib, strm->next_in and strm->next_out are
497  *        ignored by all initialization functions, thus it is safe
498  *        to not initialize them yet.
499  *      - The initialization functions always set strm->total_in and
500  *        strm->total_out to zero.
501  *      - If the initialization function fails, no memory is left allocated
502  *        that would require freeing with lzma_end() even if some memory was
503  *        associated with the lzma_stream structure when the initialization
504  *        function was called.
505  *
506  *  - Use lzma_code() to do the actual work.
507  *
508  *  - Once the coding has been finished, the existing lzma_stream can be
509  *    reused. It is OK to reuse lzma_stream with different initialization
510  *    function without calling lzma_end() first. Old allocations are
511  *    automatically freed.
512  *
513  *  - Finally, use lzma_end() to free the allocated memory. lzma_end() never
514  *    frees the lzma_stream structure itself.
515  *
516  * Application may modify the values of total_in and total_out as it wants.
517  * They are updated by liblzma to match the amount of data read and
518  * written but aren't used for anything else except as a possible return
519  * values from lzma_get_progress().
520  */
521 typedef struct {
522 	const uint8_t *next_in; /**< Pointer to the next input byte. */
523 	size_t avail_in;    /**< Number of available input bytes in next_in. */
524 	uint64_t total_in;  /**< Total number of bytes read by liblzma. */
525 
526 	uint8_t *next_out;  /**< Pointer to the next output position. */
527 	size_t avail_out;   /**< Amount of free space in next_out. */
528 	uint64_t total_out; /**< Total number of bytes written by liblzma. */
529 
530 	/**
531 	 * \brief       Custom memory allocation functions
532 	 *
533 	 * In most cases this is NULL which makes liblzma use
534 	 * the standard malloc() and free().
535 	 *
536 	 * \note        In 5.0.x this is not a const pointer.
537 	 */
538 	const lzma_allocator *allocator;
539 
540 	/** Internal state is not visible to applications. */
541 	lzma_internal *internal;
542 
543 	/*
544 	 * Reserved space to allow possible future extensions without
545 	 * breaking the ABI. Excluding the initialization of this structure,
546 	 * you should not touch these, because the names of these variables
547 	 * may change.
548 	 */
549 	void *reserved_ptr1;
550 	void *reserved_ptr2;
551 	void *reserved_ptr3;
552 	void *reserved_ptr4;
553 
554 	/**
555 	 * \brief       New seek input position for LZMA_SEEK_NEEDED
556 	 *
557 	 * When lzma_code() returns LZMA_SEEK_NEEDED, the new input position
558 	 * needed by liblzma will be available seek_pos. The value is
559 	 * guaranteed to not exceed the file size that was specified when
560 	 * this lzma_stream was initialized.
561 	 *
562 	 * In all other situations the value of this variable is undefined.
563 	 */
564 	uint64_t seek_pos;
565 
566 	uint64_t reserved_int2;
567 	size_t reserved_int3;
568 	size_t reserved_int4;
569 	lzma_reserved_enum reserved_enum1;
570 	lzma_reserved_enum reserved_enum2;
571 
572 } lzma_stream;
573 
574 
575 /**
576  * \brief       Initialization for lzma_stream
577  *
578  * When you declare an instance of lzma_stream, you can immediately
579  * initialize it so that initialization functions know that no memory
580  * has been allocated yet:
581  *
582  *     lzma_stream strm = LZMA_STREAM_INIT;
583  *
584  * If you need to initialize a dynamically allocated lzma_stream, you can use
585  * memset(strm_pointer, 0, sizeof(lzma_stream)). Strictly speaking, this
586  * violates the C standard since NULL may have different internal
587  * representation than zero, but it should be portable enough in practice.
588  * Anyway, for maximum portability, you can use something like this:
589  *
590  *     lzma_stream tmp = LZMA_STREAM_INIT;
591  *     *strm = tmp;
592  */
593 #define LZMA_STREAM_INIT \
594 	{ NULL, 0, 0, NULL, 0, 0, NULL, NULL, \
595 	NULL, NULL, NULL, NULL, 0, 0, 0, 0, \
596 	LZMA_RESERVED_ENUM, LZMA_RESERVED_ENUM }
597 
598 
599 /**
600  * \brief       Encode or decode data
601  *
602  * Once the lzma_stream has been successfully initialized (e.g. with
603  * lzma_stream_encoder()), the actual encoding or decoding is done
604  * using this function. The application has to update strm->next_in,
605  * strm->avail_in, strm->next_out, and strm->avail_out to pass input
606  * to and get output from liblzma.
607  *
608  * See the description of the coder-specific initialization function to find
609  * out what `action' values are supported by the coder.
610  */
611 extern LZMA_API(lzma_ret) lzma_code(lzma_stream *strm, lzma_action action)
612 		lzma_nothrow lzma_attr_warn_unused_result;
613 
614 
615 /**
616  * \brief       Free memory allocated for the coder data structures
617  *
618  * \param       strm    Pointer to lzma_stream that is at least initialized
619  *                      with LZMA_STREAM_INIT.
620  *
621  * After lzma_end(strm), strm->internal is guaranteed to be NULL. No other
622  * members of the lzma_stream structure are touched.
623  *
624  * \note        zlib indicates an error if application end()s unfinished
625  *              stream structure. liblzma doesn't do this, and assumes that
626  *              application knows what it is doing.
627  */
628 extern LZMA_API(void) lzma_end(lzma_stream *strm) lzma_nothrow;
629 
630 
631 /**
632  * \brief       Get progress information
633  *
634  * In single-threaded mode, applications can get progress information from
635  * strm->total_in and strm->total_out. In multi-threaded mode this is less
636  * useful because a significant amount of both input and output data gets
637  * buffered internally by liblzma. This makes total_in and total_out give
638  * misleading information and also makes the progress indicator updates
639  * non-smooth.
640  *
641  * This function gives realistic progress information also in multi-threaded
642  * mode by taking into account the progress made by each thread. In
643  * single-threaded mode *progress_in and *progress_out are set to
644  * strm->total_in and strm->total_out, respectively.
645  */
646 extern LZMA_API(void) lzma_get_progress(lzma_stream *strm,
647 		uint64_t *progress_in, uint64_t *progress_out) lzma_nothrow;
648 
649 
650 /**
651  * \brief       Get the memory usage of decoder filter chain
652  *
653  * This function is currently supported only when *strm has been initialized
654  * with a function that takes a memlimit argument. With other functions, you
655  * should use e.g. lzma_raw_encoder_memusage() or lzma_raw_decoder_memusage()
656  * to estimate the memory requirements.
657  *
658  * This function is useful e.g. after LZMA_MEMLIMIT_ERROR to find out how big
659  * the memory usage limit should have been to decode the input. Note that
660  * this may give misleading information if decoding .xz Streams that have
661  * multiple Blocks, because each Block can have different memory requirements.
662  *
663  * \return      How much memory is currently allocated for the filter
664  *              decoders. If no filter chain is currently allocated,
665  *              some non-zero value is still returned, which is less than
666  *              or equal to what any filter chain would indicate as its
667  *              memory requirement.
668  *
669  *              If this function isn't supported by *strm or some other error
670  *              occurs, zero is returned.
671  */
672 extern LZMA_API(uint64_t) lzma_memusage(const lzma_stream *strm)
673 		lzma_nothrow lzma_attr_pure;
674 
675 
676 /**
677  * \brief       Get the current memory usage limit
678  *
679  * This function is supported only when *strm has been initialized with
680  * a function that takes a memlimit argument.
681  *
682  * \return      On success, the current memory usage limit is returned
683  *              (always non-zero). On error, zero is returned.
684  */
685 extern LZMA_API(uint64_t) lzma_memlimit_get(const lzma_stream *strm)
686 		lzma_nothrow lzma_attr_pure;
687 
688 
689 /**
690  * \brief       Set the memory usage limit
691  *
692  * This function is supported only when *strm has been initialized with
693  * a function that takes a memlimit argument.
694  *
695  * liblzma 5.2.3 and earlier has a bug where memlimit value of 0 causes
696  * this function to do nothing (leaving the limit unchanged) and still
697  * return LZMA_OK. Later versions treat 0 as if 1 had been specified (so
698  * lzma_memlimit_get() will return 1 even if you specify 0 here).
699  *
700  * liblzma 5.2.6 and earlier had a bug in single-threaded .xz decoder
701  * (lzma_stream_decoder()) which made it impossible to continue decoding
702  * after LZMA_MEMLIMIT_ERROR even if the limit was increased using
703  * lzma_memlimit_set(). Other decoders worked correctly.
704  *
705  * \return      - LZMA_OK: New memory usage limit successfully set.
706  *              - LZMA_MEMLIMIT_ERROR: The new limit is too small.
707  *                The limit was not changed.
708  *              - LZMA_PROG_ERROR: Invalid arguments, e.g. *strm doesn't
709  *                support memory usage limit.
710  */
711 extern LZMA_API(lzma_ret) lzma_memlimit_set(
712 		lzma_stream *strm, uint64_t memlimit) lzma_nothrow;
713