1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 /// \file       memcmplen.h
4 /// \brief      Optimized comparison of two buffers
5 //
6 //  Author:     Lasse Collin
7 //
8 //  This file has been put into the public domain.
9 //  You can do whatever you want with this file.
10 //
11 ///////////////////////////////////////////////////////////////////////////////
12 
13 #ifndef LZMA_MEMCMPLEN_H
14 #define LZMA_MEMCMPLEN_H
15 
16 #include "common.h"
17 
18 #ifdef HAVE_IMMINTRIN_H
19 #	include <immintrin.h>
20 #endif
21 
22 // Only include <intrin.h> if it is needed. The header is only needed
23 // on Windows when using an MSVC compatible compiler. The Intel compiler
24 // can use the intrinsics without the header file.
25 #if defined(TUKLIB_FAST_UNALIGNED_ACCESS) \
26 		&& defined(_MSC_VER) \
27 		&& defined(_M_X64) \
28 		&& !defined(__INTEL_COMPILER)
29 #	include <intrin.h>
30 #endif
31 
32 
33 /// Find out how many equal bytes the two buffers have.
34 ///
35 /// \param      buf1    First buffer
36 /// \param      buf2    Second buffer
37 /// \param      len     How many bytes have already been compared and will
38 ///                     be assumed to match
39 /// \param      limit   How many bytes to compare at most, including the
40 ///                     already-compared bytes. This must be significantly
41 ///                     smaller than UINT32_MAX to avoid integer overflows.
42 ///                     Up to LZMA_MEMCMPLEN_EXTRA bytes may be read past
43 ///                     the specified limit from both buf1 and buf2.
44 ///
45 /// \return     Number of equal bytes in the buffers is returned.
46 ///             This is always at least len and at most limit.
47 ///
48 /// \note       LZMA_MEMCMPLEN_EXTRA defines how many extra bytes may be read.
49 ///             It's rounded up to 2^n. This extra amount needs to be
50 ///             allocated in the buffers being used. It needs to be
51 ///             initialized too to keep Valgrind quiet.
52 static lzma_always_inline uint32_t
53 lzma_memcmplen(const uint8_t *buf1, const uint8_t *buf2,
54 		uint32_t len, uint32_t limit)
55 {
56 	assert(len <= limit);
57 	assert(limit <= UINT32_MAX / 2);
58 
59 #if defined(TUKLIB_FAST_UNALIGNED_ACCESS) \
60 		&& ((TUKLIB_GNUC_REQ(3, 4) && defined(__x86_64__)) \
61 			|| (defined(__INTEL_COMPILER) && defined(__x86_64__)) \
62 			|| (defined(__INTEL_COMPILER) && defined(_M_X64)) \
63 			|| (defined(_MSC_VER) && defined(_M_X64)))
64 	// I keep this x86-64 only for now since that's where I know this
65 	// to be a good method. This may be fine on other 64-bit CPUs too.
66 	// On big endian one should use xor instead of subtraction and switch
67 	// to __builtin_clzll().
68 #define LZMA_MEMCMPLEN_EXTRA 8
69 	while (len < limit) {
70 		const uint64_t x = read64ne(buf1 + len) - read64ne(buf2 + len);
71 		if (x != 0) {
72 	// MSVC or Intel C compiler on Windows
73 #	if (defined(_MSC_VER) || defined(__INTEL_COMPILER)) && defined(_M_X64)
74 			unsigned long tmp;
75 			_BitScanForward64(&tmp, x);
76 			len += (uint32_t)tmp >> 3;
77 	// GCC, Clang, or Intel C compiler
78 #	else
79 			len += (uint32_t)__builtin_ctzll(x) >> 3;
80 #	endif
81 			return my_min(len, limit);
82 		}
83 
84 		len += 8;
85 	}
86 
87 	return limit;
88 
89 #elif defined(TUKLIB_FAST_UNALIGNED_ACCESS) \
90 		&& defined(HAVE__MM_MOVEMASK_EPI8) \
91 		&& (defined(__SSE2__) \
92 			|| (defined(_MSC_VER) && defined(_M_IX86_FP) \
93 				&& _M_IX86_FP >= 2))
94 	// NOTE: This will use 128-bit unaligned access which
95 	// TUKLIB_FAST_UNALIGNED_ACCESS wasn't meant to permit,
96 	// but it's convenient here since this is x86-only.
97 	//
98 	// SSE2 version for 32-bit and 64-bit x86. On x86-64 the above
99 	// version is sometimes significantly faster and sometimes
100 	// slightly slower than this SSE2 version, so this SSE2
101 	// version isn't used on x86-64.
102 #	define LZMA_MEMCMPLEN_EXTRA 16
103 	while (len < limit) {
104 		const uint32_t x = 0xFFFF ^ (uint32_t)_mm_movemask_epi8(
105 			_mm_cmpeq_epi8(
106 			_mm_loadu_si128((const __m128i *)(buf1 + len)),
107 			_mm_loadu_si128((const __m128i *)(buf2 + len))));
108 
109 		if (x != 0) {
110 			len += ctz32(x);
111 			return my_min(len, limit);
112 		}
113 
114 		len += 16;
115 	}
116 
117 	return limit;
118 
119 #elif defined(TUKLIB_FAST_UNALIGNED_ACCESS) && !defined(WORDS_BIGENDIAN)
120 	// Generic 32-bit little endian method
121 #	define LZMA_MEMCMPLEN_EXTRA 4
122 	while (len < limit) {
123 		uint32_t x = read32ne(buf1 + len) - read32ne(buf2 + len);
124 		if (x != 0) {
125 			if ((x & 0xFFFF) == 0) {
126 				len += 2;
127 				x >>= 16;
128 			}
129 
130 			if ((x & 0xFF) == 0)
131 				++len;
132 
133 			return my_min(len, limit);
134 		}
135 
136 		len += 4;
137 	}
138 
139 	return limit;
140 
141 #elif defined(TUKLIB_FAST_UNALIGNED_ACCESS) && defined(WORDS_BIGENDIAN)
142 	// Generic 32-bit big endian method
143 #	define LZMA_MEMCMPLEN_EXTRA 4
144 	while (len < limit) {
145 		uint32_t x = read32ne(buf1 + len) ^ read32ne(buf2 + len);
146 		if (x != 0) {
147 			if ((x & 0xFFFF0000) == 0) {
148 				len += 2;
149 				x <<= 16;
150 			}
151 
152 			if ((x & 0xFF000000) == 0)
153 				++len;
154 
155 			return my_min(len, limit);
156 		}
157 
158 		len += 4;
159 	}
160 
161 	return limit;
162 
163 #else
164 	// Simple portable version that doesn't use unaligned access.
165 #	define LZMA_MEMCMPLEN_EXTRA 0
166 	while (len < limit && buf1[len] == buf2[len])
167 		++len;
168 
169 	return len;
170 #endif
171 }
172 
173 #endif
174