xref: /freebsd/crypto/openssl/crypto/aes/asm/aes-586.pl (revision 0957b409)
1#! /usr/bin/env perl
2# Copyright 2004-2016 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the OpenSSL license (the "License").  You may not use
5# this file except in compliance with the License.  You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9#
10# ====================================================================
11# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
12# project. The module is, however, dual licensed under OpenSSL and
13# CRYPTOGAMS licenses depending on where you obtain it. For further
14# details see http://www.openssl.org/~appro/cryptogams/.
15# ====================================================================
16#
17# Version 4.3.
18#
19# You might fail to appreciate this module performance from the first
20# try. If compared to "vanilla" linux-ia32-icc target, i.e. considered
21# to be *the* best Intel C compiler without -KPIC, performance appears
22# to be virtually identical... But try to re-configure with shared
23# library support... Aha! Intel compiler "suddenly" lags behind by 30%
24# [on P4, more on others]:-) And if compared to position-independent
25# code generated by GNU C, this code performs *more* than *twice* as
26# fast! Yes, all this buzz about PIC means that unlike other hand-
27# coded implementations, this one was explicitly designed to be safe
28# to use even in shared library context... This also means that this
29# code isn't necessarily absolutely fastest "ever," because in order
30# to achieve position independence an extra register has to be
31# off-loaded to stack, which affects the benchmark result.
32#
33# Special note about instruction choice. Do you recall RC4_INT code
34# performing poorly on P4? It might be the time to figure out why.
35# RC4_INT code implies effective address calculations in base+offset*4
36# form. Trouble is that it seems that offset scaling turned to be
37# critical path... At least eliminating scaling resulted in 2.8x RC4
38# performance improvement [as you might recall]. As AES code is hungry
39# for scaling too, I [try to] avoid the latter by favoring off-by-2
40# shifts and masking the result with 0xFF<<2 instead of "boring" 0xFF.
41#
42# As was shown by Dean Gaudet, the above note turned out to be
43# void. Performance improvement with off-by-2 shifts was observed on
44# intermediate implementation, which was spilling yet another register
45# to stack... Final offset*4 code below runs just a tad faster on P4,
46# but exhibits up to 10% improvement on other cores.
47#
48# Second version is "monolithic" replacement for aes_core.c, which in
49# addition to AES_[de|en]crypt implements AES_set_[de|en]cryption_key.
50# This made it possible to implement little-endian variant of the
51# algorithm without modifying the base C code. Motivating factor for
52# the undertaken effort was that it appeared that in tight IA-32
53# register window little-endian flavor could achieve slightly higher
54# Instruction Level Parallelism, and it indeed resulted in up to 15%
55# better performance on most recent µ-archs...
56#
57# Third version adds AES_cbc_encrypt implementation, which resulted in
58# up to 40% performance improvement of CBC benchmark results. 40% was
59# observed on P4 core, where "overall" improvement coefficient, i.e. if
60# compared to PIC generated by GCC and in CBC mode, was observed to be
61# as large as 4x:-) CBC performance is virtually identical to ECB now
62# and on some platforms even better, e.g. 17.6 "small" cycles/byte on
63# Opteron, because certain function prologues and epilogues are
64# effectively taken out of the loop...
65#
66# Version 3.2 implements compressed tables and prefetch of these tables
67# in CBC[!] mode. Former means that 3/4 of table references are now
68# misaligned, which unfortunately has negative impact on elder IA-32
69# implementations, Pentium suffered 30% penalty, PIII - 10%.
70#
71# Version 3.3 avoids L1 cache aliasing between stack frame and
72# S-boxes, and 3.4 - L1 cache aliasing even between key schedule. The
73# latter is achieved by copying the key schedule to controlled place in
74# stack. This unfortunately has rather strong impact on small block CBC
75# performance, ~2x deterioration on 16-byte block if compared to 3.3.
76#
77# Version 3.5 checks if there is L1 cache aliasing between user-supplied
78# key schedule and S-boxes and abstains from copying the former if
79# there is no. This allows end-user to consciously retain small block
80# performance by aligning key schedule in specific manner.
81#
82# Version 3.6 compresses Td4 to 256 bytes and prefetches it in ECB.
83#
84# Current ECB performance numbers for 128-bit key in CPU cycles per
85# processed byte [measure commonly used by AES benchmarkers] are:
86#
87#		small footprint		fully unrolled
88# P4		24			22
89# AMD K8	20			19
90# PIII		25			23
91# Pentium	81			78
92#
93# Version 3.7 reimplements outer rounds as "compact." Meaning that
94# first and last rounds reference compact 256 bytes S-box. This means
95# that first round consumes a lot more CPU cycles and that encrypt
96# and decrypt performance becomes asymmetric. Encrypt performance
97# drops by 10-12%, while decrypt - by 20-25%:-( 256 bytes S-box is
98# aggressively pre-fetched.
99#
100# Version 4.0 effectively rolls back to 3.6 and instead implements
101# additional set of functions, _[x86|sse]_AES_[en|de]crypt_compact,
102# which use exclusively 256 byte S-box. These functions are to be
103# called in modes not concealing plain text, such as ECB, or when
104# we're asked to process smaller amount of data [or unconditionally
105# on hyper-threading CPU]. Currently it's called unconditionally from
106# AES_[en|de]crypt, which affects all modes, but CBC. CBC routine
107# still needs to be modified to switch between slower and faster
108# mode when appropriate... But in either case benchmark landscape
109# changes dramatically and below numbers are CPU cycles per processed
110# byte for 128-bit key.
111#
112#		ECB encrypt	ECB decrypt	CBC large chunk
113# P4		52[54]		83[95]		23
114# AMD K8	46[41]		66[70]		18
115# PIII		41[50]		60[77]		24
116# Core 2	31[36]		45[64]		18.5
117# Atom		76[100]		96[138]		60
118# Pentium	115		150		77
119#
120# Version 4.1 switches to compact S-box even in key schedule setup.
121#
122# Version 4.2 prefetches compact S-box in every SSE round or in other
123# words every cache-line is *guaranteed* to be accessed within ~50
124# cycles window. Why just SSE? Because it's needed on hyper-threading
125# CPU! Which is also why it's prefetched with 64 byte stride. Best
126# part is that it has no negative effect on performance:-)
127#
128# Version 4.3 implements switch between compact and non-compact block
129# functions in AES_cbc_encrypt depending on how much data was asked
130# to be processed in one stroke.
131#
132######################################################################
133# Timing attacks are classified in two classes: synchronous when
134# attacker consciously initiates cryptographic operation and collects
135# timing data of various character afterwards, and asynchronous when
136# malicious code is executed on same CPU simultaneously with AES,
137# instruments itself and performs statistical analysis of this data.
138#
139# As far as synchronous attacks go the root to the AES timing
140# vulnerability is twofold. Firstly, of 256 S-box elements at most 160
141# are referred to in single 128-bit block operation. Well, in C
142# implementation with 4 distinct tables it's actually as little as 40
143# references per 256 elements table, but anyway... Secondly, even
144# though S-box elements are clustered into smaller amount of cache-
145# lines, smaller than 160 and even 40, it turned out that for certain
146# plain-text pattern[s] or simply put chosen plain-text and given key
147# few cache-lines remain unaccessed during block operation. Now, if
148# attacker can figure out this access pattern, he can deduct the key
149# [or at least part of it]. The natural way to mitigate this kind of
150# attacks is to minimize the amount of cache-lines in S-box and/or
151# prefetch them to ensure that every one is accessed for more uniform
152# timing. But note that *if* plain-text was concealed in such way that
153# input to block function is distributed *uniformly*, then attack
154# wouldn't apply. Now note that some encryption modes, most notably
155# CBC, do mask the plain-text in this exact way [secure cipher output
156# is distributed uniformly]. Yes, one still might find input that
157# would reveal the information about given key, but if amount of
158# candidate inputs to be tried is larger than amount of possible key
159# combinations then attack becomes infeasible. This is why revised
160# AES_cbc_encrypt "dares" to switch to larger S-box when larger chunk
161# of data is to be processed in one stroke. The current size limit of
162# 512 bytes is chosen to provide same [diminishingly low] probability
163# for cache-line to remain untouched in large chunk operation with
164# large S-box as for single block operation with compact S-box and
165# surely needs more careful consideration...
166#
167# As for asynchronous attacks. There are two flavours: attacker code
168# being interleaved with AES on hyper-threading CPU at *instruction*
169# level, and two processes time sharing single core. As for latter.
170# Two vectors. 1. Given that attacker process has higher priority,
171# yield execution to process performing AES just before timer fires
172# off the scheduler, immediately regain control of CPU and analyze the
173# cache state. For this attack to be efficient attacker would have to
174# effectively slow down the operation by several *orders* of magnitude,
175# by ratio of time slice to duration of handful of AES rounds, which
176# unlikely to remain unnoticed. Not to mention that this also means
177# that he would spend correspondingly more time to collect enough
178# statistical data to mount the attack. It's probably appropriate to
179# say that if adversary reckons that this attack is beneficial and
180# risks to be noticed, you probably have larger problems having him
181# mere opportunity. In other words suggested code design expects you
182# to preclude/mitigate this attack by overall system security design.
183# 2. Attacker manages to make his code interrupt driven. In order for
184# this kind of attack to be feasible, interrupt rate has to be high
185# enough, again comparable to duration of handful of AES rounds. But
186# is there interrupt source of such rate? Hardly, not even 1Gbps NIC
187# generates interrupts at such raging rate...
188#
189# And now back to the former, hyper-threading CPU or more specifically
190# Intel P4. Recall that asynchronous attack implies that malicious
191# code instruments itself. And naturally instrumentation granularity
192# has be noticeably lower than duration of codepath accessing S-box.
193# Given that all cache-lines are accessed during that time that is.
194# Current implementation accesses *all* cache-lines within ~50 cycles
195# window, which is actually *less* than RDTSC latency on Intel P4!
196
197$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
198push(@INC,"${dir}","${dir}../../perlasm");
199require "x86asm.pl";
200
201$output = pop;
202open OUT,">$output";
203*STDOUT=*OUT;
204
205&asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386");
206&static_label("AES_Te");
207&static_label("AES_Td");
208
209$s0="eax";
210$s1="ebx";
211$s2="ecx";
212$s3="edx";
213$key="edi";
214$acc="esi";
215$tbl="ebp";
216
217# stack frame layout in _[x86|sse]_AES_* routines, frame is allocated
218# by caller
219$__ra=&DWP(0,"esp");	# return address
220$__s0=&DWP(4,"esp");	# s0 backing store
221$__s1=&DWP(8,"esp");	# s1 backing store
222$__s2=&DWP(12,"esp");	# s2 backing store
223$__s3=&DWP(16,"esp");	# s3 backing store
224$__key=&DWP(20,"esp");	# pointer to key schedule
225$__end=&DWP(24,"esp");	# pointer to end of key schedule
226$__tbl=&DWP(28,"esp");	# %ebp backing store
227
228# stack frame layout in AES_[en|crypt] routines, which differs from
229# above by 4 and overlaps by %ebp backing store
230$_tbl=&DWP(24,"esp");
231$_esp=&DWP(28,"esp");
232
233sub _data_word() { my $i; while(defined($i=shift)) { &data_word($i,$i); } }
234
235$speed_limit=512;	# chunks smaller than $speed_limit are
236			# processed with compact routine in CBC mode
237$small_footprint=1;	# $small_footprint=1 code is ~5% slower [on
238			# recent µ-archs], but ~5 times smaller!
239			# I favor compact code to minimize cache
240			# contention and in hope to "collect" 5% back
241			# in real-life applications...
242
243$vertical_spin=0;	# shift "vertically" defaults to 0, because of
244			# its proof-of-concept status...
245# Note that there is no decvert(), as well as last encryption round is
246# performed with "horizontal" shifts. This is because this "vertical"
247# implementation [one which groups shifts on a given $s[i] to form a
248# "column," unlike "horizontal" one, which groups shifts on different
249# $s[i] to form a "row"] is work in progress. It was observed to run
250# few percents faster on Intel cores, but not AMD. On AMD K8 core it's
251# whole 12% slower:-( So we face a trade-off... Shall it be resolved
252# some day? Till then the code is considered experimental and by
253# default remains dormant...
254
255sub encvert()
256{ my ($te,@s) = @_;
257  my ($v0,$v1) = ($acc,$key);
258
259	&mov	($v0,$s[3]);				# copy s3
260	&mov	(&DWP(4,"esp"),$s[2]);			# save s2
261	&mov	($v1,$s[0]);				# copy s0
262	&mov	(&DWP(8,"esp"),$s[1]);			# save s1
263
264	&movz	($s[2],&HB($s[0]));
265	&and	($s[0],0xFF);
266	&mov	($s[0],&DWP(0,$te,$s[0],8));		# s0>>0
267	&shr	($v1,16);
268	&mov	($s[3],&DWP(3,$te,$s[2],8));		# s0>>8
269	&movz	($s[1],&HB($v1));
270	&and	($v1,0xFF);
271	&mov	($s[2],&DWP(2,$te,$v1,8));		# s0>>16
272	 &mov	($v1,$v0);
273	&mov	($s[1],&DWP(1,$te,$s[1],8));		# s0>>24
274
275	&and	($v0,0xFF);
276	&xor	($s[3],&DWP(0,$te,$v0,8));		# s3>>0
277	&movz	($v0,&HB($v1));
278	&shr	($v1,16);
279	&xor	($s[2],&DWP(3,$te,$v0,8));		# s3>>8
280	&movz	($v0,&HB($v1));
281	&and	($v1,0xFF);
282	&xor	($s[1],&DWP(2,$te,$v1,8));		# s3>>16
283	 &mov	($v1,&DWP(4,"esp"));			# restore s2
284	&xor	($s[0],&DWP(1,$te,$v0,8));		# s3>>24
285
286	&mov	($v0,$v1);
287	&and	($v1,0xFF);
288	&xor	($s[2],&DWP(0,$te,$v1,8));		# s2>>0
289	&movz	($v1,&HB($v0));
290	&shr	($v0,16);
291	&xor	($s[1],&DWP(3,$te,$v1,8));		# s2>>8
292	&movz	($v1,&HB($v0));
293	&and	($v0,0xFF);
294	&xor	($s[0],&DWP(2,$te,$v0,8));		# s2>>16
295	 &mov	($v0,&DWP(8,"esp"));			# restore s1
296	&xor	($s[3],&DWP(1,$te,$v1,8));		# s2>>24
297
298	&mov	($v1,$v0);
299	&and	($v0,0xFF);
300	&xor	($s[1],&DWP(0,$te,$v0,8));		# s1>>0
301	&movz	($v0,&HB($v1));
302	&shr	($v1,16);
303	&xor	($s[0],&DWP(3,$te,$v0,8));		# s1>>8
304	&movz	($v0,&HB($v1));
305	&and	($v1,0xFF);
306	&xor	($s[3],&DWP(2,$te,$v1,8));		# s1>>16
307	 &mov	($key,$__key);				# reincarnate v1 as key
308	&xor	($s[2],&DWP(1,$te,$v0,8));		# s1>>24
309}
310
311# Another experimental routine, which features "horizontal spin," but
312# eliminates one reference to stack. Strangely enough runs slower...
313sub enchoriz()
314{ my ($v0,$v1) = ($key,$acc);
315
316	&movz	($v0,&LB($s0));			#  3, 2, 1, 0*
317	&rotr	($s2,8);			#  8,11,10, 9
318	&mov	($v1,&DWP(0,$te,$v0,8));	#  0
319	&movz	($v0,&HB($s1));			#  7, 6, 5*, 4
320	&rotr	($s3,16);			# 13,12,15,14
321	&xor	($v1,&DWP(3,$te,$v0,8));	#  5
322	&movz	($v0,&HB($s2));			#  8,11,10*, 9
323	&rotr	($s0,16);			#  1, 0, 3, 2
324	&xor	($v1,&DWP(2,$te,$v0,8));	# 10
325	&movz	($v0,&HB($s3));			# 13,12,15*,14
326	&xor	($v1,&DWP(1,$te,$v0,8));	# 15, t[0] collected
327	&mov	($__s0,$v1);			# t[0] saved
328
329	&movz	($v0,&LB($s1));			#  7, 6, 5, 4*
330	&shr	($s1,16);			#  -, -, 7, 6
331	&mov	($v1,&DWP(0,$te,$v0,8));	#  4
332	&movz	($v0,&LB($s3));			# 13,12,15,14*
333	&xor	($v1,&DWP(2,$te,$v0,8));	# 14
334	&movz	($v0,&HB($s0));			#  1, 0, 3*, 2
335	&and	($s3,0xffff0000);		# 13,12, -, -
336	&xor	($v1,&DWP(1,$te,$v0,8));	#  3
337	&movz	($v0,&LB($s2));			#  8,11,10, 9*
338	&or	($s3,$s1);			# 13,12, 7, 6
339	&xor	($v1,&DWP(3,$te,$v0,8));	#  9, t[1] collected
340	&mov	($s1,$v1);			#  s[1]=t[1]
341
342	&movz	($v0,&LB($s0));			#  1, 0, 3, 2*
343	&shr	($s2,16);			#  -, -, 8,11
344	&mov	($v1,&DWP(2,$te,$v0,8));	#  2
345	&movz	($v0,&HB($s3));			# 13,12, 7*, 6
346	&xor	($v1,&DWP(1,$te,$v0,8));	#  7
347	&movz	($v0,&HB($s2));			#  -, -, 8*,11
348	&xor	($v1,&DWP(0,$te,$v0,8));	#  8
349	&mov	($v0,$s3);
350	&shr	($v0,24);			# 13
351	&xor	($v1,&DWP(3,$te,$v0,8));	# 13, t[2] collected
352
353	&movz	($v0,&LB($s2));			#  -, -, 8,11*
354	&shr	($s0,24);			#  1*
355	&mov	($s2,&DWP(1,$te,$v0,8));	# 11
356	&xor	($s2,&DWP(3,$te,$s0,8));	#  1
357	&mov	($s0,$__s0);			# s[0]=t[0]
358	&movz	($v0,&LB($s3));			# 13,12, 7, 6*
359	&shr	($s3,16);			#   ,  ,13,12
360	&xor	($s2,&DWP(2,$te,$v0,8));	#  6
361	&mov	($key,$__key);			# reincarnate v0 as key
362	&and	($s3,0xff);			#   ,  ,13,12*
363	&mov	($s3,&DWP(0,$te,$s3,8));	# 12
364	&xor	($s3,$s2);			# s[2]=t[3] collected
365	&mov	($s2,$v1);			# s[2]=t[2]
366}
367
368# More experimental code... SSE one... Even though this one eliminates
369# *all* references to stack, it's not faster...
370sub sse_encbody()
371{
372	&movz	($acc,&LB("eax"));		#  0
373	&mov	("ecx",&DWP(0,$tbl,$acc,8));	#  0
374	&pshufw	("mm2","mm0",0x0d);		#  7, 6, 3, 2
375	&movz	("edx",&HB("eax"));		#  1
376	&mov	("edx",&DWP(3,$tbl,"edx",8));	#  1
377	&shr	("eax",16);			#  5, 4
378
379	&movz	($acc,&LB("ebx"));		# 10
380	&xor	("ecx",&DWP(2,$tbl,$acc,8));	# 10
381	&pshufw	("mm6","mm4",0x08);		# 13,12, 9, 8
382	&movz	($acc,&HB("ebx"));		# 11
383	&xor	("edx",&DWP(1,$tbl,$acc,8));	# 11
384	&shr	("ebx",16);			# 15,14
385
386	&movz	($acc,&HB("eax"));		#  5
387	&xor	("ecx",&DWP(3,$tbl,$acc,8));	#  5
388	&movq	("mm3",QWP(16,$key));
389	&movz	($acc,&HB("ebx"));		# 15
390	&xor	("ecx",&DWP(1,$tbl,$acc,8));	# 15
391	&movd	("mm0","ecx");			# t[0] collected
392
393	&movz	($acc,&LB("eax"));		#  4
394	&mov	("ecx",&DWP(0,$tbl,$acc,8));	#  4
395	&movd	("eax","mm2");			#  7, 6, 3, 2
396	&movz	($acc,&LB("ebx"));		# 14
397	&xor	("ecx",&DWP(2,$tbl,$acc,8));	# 14
398	&movd	("ebx","mm6");			# 13,12, 9, 8
399
400	&movz	($acc,&HB("eax"));		#  3
401	&xor	("ecx",&DWP(1,$tbl,$acc,8));	#  3
402	&movz	($acc,&HB("ebx"));		#  9
403	&xor	("ecx",&DWP(3,$tbl,$acc,8));	#  9
404	&movd	("mm1","ecx");			# t[1] collected
405
406	&movz	($acc,&LB("eax"));		#  2
407	&mov	("ecx",&DWP(2,$tbl,$acc,8));	#  2
408	&shr	("eax",16);			#  7, 6
409	&punpckldq	("mm0","mm1");		# t[0,1] collected
410	&movz	($acc,&LB("ebx"));		#  8
411	&xor	("ecx",&DWP(0,$tbl,$acc,8));	#  8
412	&shr	("ebx",16);			# 13,12
413
414	&movz	($acc,&HB("eax"));		#  7
415	&xor	("ecx",&DWP(1,$tbl,$acc,8));	#  7
416	&pxor	("mm0","mm3");
417	&movz	("eax",&LB("eax"));		#  6
418	&xor	("edx",&DWP(2,$tbl,"eax",8));	#  6
419	&pshufw	("mm1","mm0",0x08);		#  5, 4, 1, 0
420	&movz	($acc,&HB("ebx"));		# 13
421	&xor	("ecx",&DWP(3,$tbl,$acc,8));	# 13
422	&xor	("ecx",&DWP(24,$key));		# t[2]
423	&movd	("mm4","ecx");			# t[2] collected
424	&movz	("ebx",&LB("ebx"));		# 12
425	&xor	("edx",&DWP(0,$tbl,"ebx",8));	# 12
426	&shr	("ecx",16);
427	&movd	("eax","mm1");			#  5, 4, 1, 0
428	&mov	("ebx",&DWP(28,$key));		# t[3]
429	&xor	("ebx","edx");
430	&movd	("mm5","ebx");			# t[3] collected
431	&and	("ebx",0xffff0000);
432	&or	("ebx","ecx");
433
434	&punpckldq	("mm4","mm5");		# t[2,3] collected
435}
436
437######################################################################
438# "Compact" block function
439######################################################################
440
441sub enccompact()
442{ my $Fn = \&mov;
443  while ($#_>5) { pop(@_); $Fn=sub{}; }
444  my ($i,$te,@s)=@_;
445  my $tmp = $key;
446  my $out = $i==3?$s[0]:$acc;
447
448	# $Fn is used in first compact round and its purpose is to
449	# void restoration of some values from stack, so that after
450	# 4xenccompact with extra argument $key value is left there...
451	if ($i==3)  {	&$Fn	($key,$__key);			}##%edx
452	else        {	&mov	($out,$s[0]);			}
453			&and	($out,0xFF);
454	if ($i==1)  {	&shr	($s[0],16);			}#%ebx[1]
455	if ($i==2)  {	&shr	($s[0],24);			}#%ecx[2]
456			&movz	($out,&BP(-128,$te,$out,1));
457
458	if ($i==3)  {	$tmp=$s[1];				}##%eax
459			&movz	($tmp,&HB($s[1]));
460			&movz	($tmp,&BP(-128,$te,$tmp,1));
461			&shl	($tmp,8);
462			&xor	($out,$tmp);
463
464	if ($i==3)  {	$tmp=$s[2]; &mov ($s[1],$__s0);		}##%ebx
465	else        {	&mov	($tmp,$s[2]);
466			&shr	($tmp,16);			}
467	if ($i==2)  {	&and	($s[1],0xFF);			}#%edx[2]
468			&and	($tmp,0xFF);
469			&movz	($tmp,&BP(-128,$te,$tmp,1));
470			&shl	($tmp,16);
471			&xor	($out,$tmp);
472
473	if ($i==3)  {	$tmp=$s[3]; &mov ($s[2],$__s1);		}##%ecx
474	elsif($i==2){	&movz	($tmp,&HB($s[3]));		}#%ebx[2]
475	else        {	&mov	($tmp,$s[3]);
476			&shr	($tmp,24);			}
477			&movz	($tmp,&BP(-128,$te,$tmp,1));
478			&shl	($tmp,24);
479			&xor	($out,$tmp);
480	if ($i<2)   {	&mov	(&DWP(4+4*$i,"esp"),$out);	}
481	if ($i==3)  {	&mov	($s[3],$acc);			}
482	&comment();
483}
484
485sub enctransform()
486{ my @s = ($s0,$s1,$s2,$s3);
487  my $i = shift;
488  my $tmp = $tbl;
489  my $r2  = $key ;
490
491	&and	($tmp,$s[$i]);
492	&lea	($r2,&DWP(0,$s[$i],$s[$i]));
493	&mov	($acc,$tmp);
494	&shr	($tmp,7);
495	&and	($r2,0xfefefefe);
496	&sub	($acc,$tmp);
497	&mov	($tmp,$s[$i]);
498	&and	($acc,0x1b1b1b1b);
499	&rotr	($tmp,16);
500	&xor	($acc,$r2);	# r2
501	&mov	($r2,$s[$i]);
502
503	&xor	($s[$i],$acc);	# r0 ^ r2
504	&rotr	($r2,16+8);
505	&xor	($acc,$tmp);
506	&rotl	($s[$i],24);
507	&xor	($acc,$r2);
508	&mov	($tmp,0x80808080)	if ($i!=1);
509	&xor	($s[$i],$acc);	# ROTATE(r2^r0,24) ^ r2
510}
511
512&function_begin_B("_x86_AES_encrypt_compact");
513	# note that caller is expected to allocate stack frame for me!
514	&mov	($__key,$key);			# save key
515
516	&xor	($s0,&DWP(0,$key));		# xor with key
517	&xor	($s1,&DWP(4,$key));
518	&xor	($s2,&DWP(8,$key));
519	&xor	($s3,&DWP(12,$key));
520
521	&mov	($acc,&DWP(240,$key));		# load key->rounds
522	&lea	($acc,&DWP(-2,$acc,$acc));
523	&lea	($acc,&DWP(0,$key,$acc,8));
524	&mov	($__end,$acc);			# end of key schedule
525
526	# prefetch Te4
527	&mov	($key,&DWP(0-128,$tbl));
528	&mov	($acc,&DWP(32-128,$tbl));
529	&mov	($key,&DWP(64-128,$tbl));
530	&mov	($acc,&DWP(96-128,$tbl));
531	&mov	($key,&DWP(128-128,$tbl));
532	&mov	($acc,&DWP(160-128,$tbl));
533	&mov	($key,&DWP(192-128,$tbl));
534	&mov	($acc,&DWP(224-128,$tbl));
535
536	&set_label("loop",16);
537
538		&enccompact(0,$tbl,$s0,$s1,$s2,$s3,1);
539		&enccompact(1,$tbl,$s1,$s2,$s3,$s0,1);
540		&enccompact(2,$tbl,$s2,$s3,$s0,$s1,1);
541		&enccompact(3,$tbl,$s3,$s0,$s1,$s2,1);
542		&mov	($tbl,0x80808080);
543		&enctransform(2);
544		&enctransform(3);
545		&enctransform(0);
546		&enctransform(1);
547		&mov 	($key,$__key);
548		&mov	($tbl,$__tbl);
549		&add	($key,16);		# advance rd_key
550		&xor	($s0,&DWP(0,$key));
551		&xor	($s1,&DWP(4,$key));
552		&xor	($s2,&DWP(8,$key));
553		&xor	($s3,&DWP(12,$key));
554
555	&cmp	($key,$__end);
556	&mov	($__key,$key);
557	&jb	(&label("loop"));
558
559	&enccompact(0,$tbl,$s0,$s1,$s2,$s3);
560	&enccompact(1,$tbl,$s1,$s2,$s3,$s0);
561	&enccompact(2,$tbl,$s2,$s3,$s0,$s1);
562	&enccompact(3,$tbl,$s3,$s0,$s1,$s2);
563
564	&xor	($s0,&DWP(16,$key));
565	&xor	($s1,&DWP(20,$key));
566	&xor	($s2,&DWP(24,$key));
567	&xor	($s3,&DWP(28,$key));
568
569	&ret	();
570&function_end_B("_x86_AES_encrypt_compact");
571
572######################################################################
573# "Compact" SSE block function.
574######################################################################
575#
576# Performance is not actually extraordinary in comparison to pure
577# x86 code. In particular encrypt performance is virtually the same.
578# Decrypt performance on the other hand is 15-20% better on newer
579# µ-archs [but we're thankful for *any* improvement here], and ~50%
580# better on PIII:-) And additionally on the pros side this code
581# eliminates redundant references to stack and thus relieves/
582# minimizes the pressure on the memory bus.
583#
584# MMX register layout                           lsb
585# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
586# |          mm4          |          mm0          |
587# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
588# |     s3    |     s2    |     s1    |     s0    |
589# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
590# |15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0|
591# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
592#
593# Indexes translate as s[N/4]>>(8*(N%4)), e.g. 5 means s1>>8.
594# In this terms encryption and decryption "compact" permutation
595# matrices can be depicted as following:
596#
597# encryption              lsb	# decryption              lsb
598# +----++----+----+----+----+	# +----++----+----+----+----+
599# | t0 || 15 | 10 |  5 |  0 |	# | t0 ||  7 | 10 | 13 |  0 |
600# +----++----+----+----+----+	# +----++----+----+----+----+
601# | t1 ||  3 | 14 |  9 |  4 |	# | t1 || 11 | 14 |  1 |  4 |
602# +----++----+----+----+----+	# +----++----+----+----+----+
603# | t2 ||  7 |  2 | 13 |  8 |	# | t2 || 15 |  2 |  5 |  8 |
604# +----++----+----+----+----+	# +----++----+----+----+----+
605# | t3 || 11 |  6 |  1 | 12 |	# | t3 ||  3 |  6 |  9 | 12 |
606# +----++----+----+----+----+	# +----++----+----+----+----+
607#
608######################################################################
609# Why not xmm registers? Short answer. It was actually tested and
610# was not any faster, but *contrary*, most notably on Intel CPUs.
611# Longer answer. Main advantage of using mm registers is that movd
612# latency is lower, especially on Intel P4. While arithmetic
613# instructions are twice as many, they can be scheduled every cycle
614# and not every second one when they are operating on xmm register,
615# so that "arithmetic throughput" remains virtually the same. And
616# finally the code can be executed even on elder SSE-only CPUs:-)
617
618sub sse_enccompact()
619{
620	&pshufw	("mm1","mm0",0x08);		#  5, 4, 1, 0
621	&pshufw	("mm5","mm4",0x0d);		# 15,14,11,10
622	&movd	("eax","mm1");			#  5, 4, 1, 0
623	&movd	("ebx","mm5");			# 15,14,11,10
624	&mov	($__key,$key);
625
626	&movz	($acc,&LB("eax"));		#  0
627	&movz	("edx",&HB("eax"));		#  1
628	&pshufw	("mm2","mm0",0x0d);		#  7, 6, 3, 2
629	&movz	("ecx",&BP(-128,$tbl,$acc,1));	#  0
630	&movz	($key,&LB("ebx"));		# 10
631	&movz	("edx",&BP(-128,$tbl,"edx",1));	#  1
632	&shr	("eax",16);			#  5, 4
633	&shl	("edx",8);			#  1
634
635	&movz	($acc,&BP(-128,$tbl,$key,1));	# 10
636	&movz	($key,&HB("ebx"));		# 11
637	&shl	($acc,16);			# 10
638	&pshufw	("mm6","mm4",0x08);		# 13,12, 9, 8
639	&or	("ecx",$acc);			# 10
640	&movz	($acc,&BP(-128,$tbl,$key,1));	# 11
641	&movz	($key,&HB("eax"));		#  5
642	&shl	($acc,24);			# 11
643	&shr	("ebx",16);			# 15,14
644	&or	("edx",$acc);			# 11
645
646	&movz	($acc,&BP(-128,$tbl,$key,1));	#  5
647	&movz	($key,&HB("ebx"));		# 15
648	&shl	($acc,8);			#  5
649	&or	("ecx",$acc);			#  5
650	&movz	($acc,&BP(-128,$tbl,$key,1));	# 15
651	&movz	($key,&LB("eax"));		#  4
652	&shl	($acc,24);			# 15
653	&or	("ecx",$acc);			# 15
654
655	&movz	($acc,&BP(-128,$tbl,$key,1));	#  4
656	&movz	($key,&LB("ebx"));		# 14
657	&movd	("eax","mm2");			#  7, 6, 3, 2
658	&movd	("mm0","ecx");			# t[0] collected
659	&movz	("ecx",&BP(-128,$tbl,$key,1));	# 14
660	&movz	($key,&HB("eax"));		#  3
661	&shl	("ecx",16);			# 14
662	&movd	("ebx","mm6");			# 13,12, 9, 8
663	&or	("ecx",$acc);			# 14
664
665	&movz	($acc,&BP(-128,$tbl,$key,1));	#  3
666	&movz	($key,&HB("ebx"));		#  9
667	&shl	($acc,24);			#  3
668	&or	("ecx",$acc);			#  3
669	&movz	($acc,&BP(-128,$tbl,$key,1));	#  9
670	&movz	($key,&LB("ebx"));		#  8
671	&shl	($acc,8);			#  9
672	&shr	("ebx",16);			# 13,12
673	&or	("ecx",$acc);			#  9
674
675	&movz	($acc,&BP(-128,$tbl,$key,1));	#  8
676	&movz	($key,&LB("eax"));		#  2
677	&shr	("eax",16);			#  7, 6
678	&movd	("mm1","ecx");			# t[1] collected
679	&movz	("ecx",&BP(-128,$tbl,$key,1));	#  2
680	&movz	($key,&HB("eax"));		#  7
681	&shl	("ecx",16);			#  2
682	&and	("eax",0xff);			#  6
683	&or	("ecx",$acc);			#  2
684
685	&punpckldq	("mm0","mm1");		# t[0,1] collected
686
687	&movz	($acc,&BP(-128,$tbl,$key,1));	#  7
688	&movz	($key,&HB("ebx"));		# 13
689	&shl	($acc,24);			#  7
690	&and	("ebx",0xff);			# 12
691	&movz	("eax",&BP(-128,$tbl,"eax",1));	#  6
692	&or	("ecx",$acc);			#  7
693	&shl	("eax",16);			#  6
694	&movz	($acc,&BP(-128,$tbl,$key,1));	# 13
695	&or	("edx","eax");			#  6
696	&shl	($acc,8);			# 13
697	&movz	("ebx",&BP(-128,$tbl,"ebx",1));	# 12
698	&or	("ecx",$acc);			# 13
699	&or	("edx","ebx");			# 12
700	&mov	($key,$__key);
701	&movd	("mm4","ecx");			# t[2] collected
702	&movd	("mm5","edx");			# t[3] collected
703
704	&punpckldq	("mm4","mm5");		# t[2,3] collected
705}
706
707					if (!$x86only) {
708&function_begin_B("_sse_AES_encrypt_compact");
709	&pxor	("mm0",&QWP(0,$key));	#  7, 6, 5, 4, 3, 2, 1, 0
710	&pxor	("mm4",&QWP(8,$key));	# 15,14,13,12,11,10, 9, 8
711
712	# note that caller is expected to allocate stack frame for me!
713	&mov	($acc,&DWP(240,$key));		# load key->rounds
714	&lea	($acc,&DWP(-2,$acc,$acc));
715	&lea	($acc,&DWP(0,$key,$acc,8));
716	&mov	($__end,$acc);			# end of key schedule
717
718	&mov	($s0,0x1b1b1b1b);		# magic constant
719	&mov	(&DWP(8,"esp"),$s0);
720	&mov	(&DWP(12,"esp"),$s0);
721
722	# prefetch Te4
723	&mov	($s0,&DWP(0-128,$tbl));
724	&mov	($s1,&DWP(32-128,$tbl));
725	&mov	($s2,&DWP(64-128,$tbl));
726	&mov	($s3,&DWP(96-128,$tbl));
727	&mov	($s0,&DWP(128-128,$tbl));
728	&mov	($s1,&DWP(160-128,$tbl));
729	&mov	($s2,&DWP(192-128,$tbl));
730	&mov	($s3,&DWP(224-128,$tbl));
731
732	&set_label("loop",16);
733		&sse_enccompact();
734		&add	($key,16);
735		&cmp	($key,$__end);
736		&ja	(&label("out"));
737
738		&movq	("mm2",&QWP(8,"esp"));
739		&pxor	("mm3","mm3");		&pxor	("mm7","mm7");
740		&movq	("mm1","mm0");		&movq	("mm5","mm4");	# r0
741		&pcmpgtb("mm3","mm0");		&pcmpgtb("mm7","mm4");
742		&pand	("mm3","mm2");		&pand	("mm7","mm2");
743		&pshufw	("mm2","mm0",0xb1);	&pshufw	("mm6","mm4",0xb1);# ROTATE(r0,16)
744		&paddb	("mm0","mm0");		&paddb	("mm4","mm4");
745		&pxor	("mm0","mm3");		&pxor	("mm4","mm7");	# = r2
746		&pshufw	("mm3","mm2",0xb1);	&pshufw	("mm7","mm6",0xb1);# r0
747		&pxor	("mm1","mm0");		&pxor	("mm5","mm4");	# r0^r2
748		&pxor	("mm0","mm2");		&pxor	("mm4","mm6");	# ^= ROTATE(r0,16)
749
750		&movq	("mm2","mm3");		&movq	("mm6","mm7");
751		&pslld	("mm3",8);		&pslld	("mm7",8);
752		&psrld	("mm2",24);		&psrld	("mm6",24);
753		&pxor	("mm0","mm3");		&pxor	("mm4","mm7");	# ^= r0<<8
754		&pxor	("mm0","mm2");		&pxor	("mm4","mm6");	# ^= r0>>24
755
756		&movq	("mm3","mm1");		&movq	("mm7","mm5");
757		&movq	("mm2",&QWP(0,$key));	&movq	("mm6",&QWP(8,$key));
758		&psrld	("mm1",8);		&psrld	("mm5",8);
759		&mov	($s0,&DWP(0-128,$tbl));
760		&pslld	("mm3",24);		&pslld	("mm7",24);
761		&mov	($s1,&DWP(64-128,$tbl));
762		&pxor	("mm0","mm1");		&pxor	("mm4","mm5");	# ^= (r2^r0)<<8
763		&mov	($s2,&DWP(128-128,$tbl));
764		&pxor	("mm0","mm3");		&pxor	("mm4","mm7");	# ^= (r2^r0)>>24
765		&mov	($s3,&DWP(192-128,$tbl));
766
767		&pxor	("mm0","mm2");		&pxor	("mm4","mm6");
768	&jmp	(&label("loop"));
769
770	&set_label("out",16);
771	&pxor	("mm0",&QWP(0,$key));
772	&pxor	("mm4",&QWP(8,$key));
773
774	&ret	();
775&function_end_B("_sse_AES_encrypt_compact");
776					}
777
778######################################################################
779# Vanilla block function.
780######################################################################
781
782sub encstep()
783{ my ($i,$te,@s) = @_;
784  my $tmp = $key;
785  my $out = $i==3?$s[0]:$acc;
786
787	# lines marked with #%e?x[i] denote "reordered" instructions...
788	if ($i==3)  {	&mov	($key,$__key);			}##%edx
789	else        {	&mov	($out,$s[0]);
790			&and	($out,0xFF);			}
791	if ($i==1)  {	&shr	($s[0],16);			}#%ebx[1]
792	if ($i==2)  {	&shr	($s[0],24);			}#%ecx[2]
793			&mov	($out,&DWP(0,$te,$out,8));
794
795	if ($i==3)  {	$tmp=$s[1];				}##%eax
796			&movz	($tmp,&HB($s[1]));
797			&xor	($out,&DWP(3,$te,$tmp,8));
798
799	if ($i==3)  {	$tmp=$s[2]; &mov ($s[1],$__s0);		}##%ebx
800	else        {	&mov	($tmp,$s[2]);
801			&shr	($tmp,16);			}
802	if ($i==2)  {	&and	($s[1],0xFF);			}#%edx[2]
803			&and	($tmp,0xFF);
804			&xor	($out,&DWP(2,$te,$tmp,8));
805
806	if ($i==3)  {	$tmp=$s[3]; &mov ($s[2],$__s1);		}##%ecx
807	elsif($i==2){	&movz	($tmp,&HB($s[3]));		}#%ebx[2]
808	else        {	&mov	($tmp,$s[3]);
809			&shr	($tmp,24)			}
810			&xor	($out,&DWP(1,$te,$tmp,8));
811	if ($i<2)   {	&mov	(&DWP(4+4*$i,"esp"),$out);	}
812	if ($i==3)  {	&mov	($s[3],$acc);			}
813			&comment();
814}
815
816sub enclast()
817{ my ($i,$te,@s)=@_;
818  my $tmp = $key;
819  my $out = $i==3?$s[0]:$acc;
820
821	if ($i==3)  {	&mov	($key,$__key);			}##%edx
822	else        {	&mov	($out,$s[0]);			}
823			&and	($out,0xFF);
824	if ($i==1)  {	&shr	($s[0],16);			}#%ebx[1]
825	if ($i==2)  {	&shr	($s[0],24);			}#%ecx[2]
826			&mov	($out,&DWP(2,$te,$out,8));
827			&and	($out,0x000000ff);
828
829	if ($i==3)  {	$tmp=$s[1];				}##%eax
830			&movz	($tmp,&HB($s[1]));
831			&mov	($tmp,&DWP(0,$te,$tmp,8));
832			&and	($tmp,0x0000ff00);
833			&xor	($out,$tmp);
834
835	if ($i==3)  {	$tmp=$s[2]; &mov ($s[1],$__s0);		}##%ebx
836	else        {	&mov	($tmp,$s[2]);
837			&shr	($tmp,16);			}
838	if ($i==2)  {	&and	($s[1],0xFF);			}#%edx[2]
839			&and	($tmp,0xFF);
840			&mov	($tmp,&DWP(0,$te,$tmp,8));
841			&and	($tmp,0x00ff0000);
842			&xor	($out,$tmp);
843
844	if ($i==3)  {	$tmp=$s[3]; &mov ($s[2],$__s1);		}##%ecx
845	elsif($i==2){	&movz	($tmp,&HB($s[3]));		}#%ebx[2]
846	else        {	&mov	($tmp,$s[3]);
847			&shr	($tmp,24);			}
848			&mov	($tmp,&DWP(2,$te,$tmp,8));
849			&and	($tmp,0xff000000);
850			&xor	($out,$tmp);
851	if ($i<2)   {	&mov	(&DWP(4+4*$i,"esp"),$out);	}
852	if ($i==3)  {	&mov	($s[3],$acc);			}
853}
854
855&function_begin_B("_x86_AES_encrypt");
856	if ($vertical_spin) {
857		# I need high parts of volatile registers to be accessible...
858		&exch	($s1="edi",$key="ebx");
859		&mov	($s2="esi",$acc="ecx");
860	}
861
862	# note that caller is expected to allocate stack frame for me!
863	&mov	($__key,$key);			# save key
864
865	&xor	($s0,&DWP(0,$key));		# xor with key
866	&xor	($s1,&DWP(4,$key));
867	&xor	($s2,&DWP(8,$key));
868	&xor	($s3,&DWP(12,$key));
869
870	&mov	($acc,&DWP(240,$key));		# load key->rounds
871
872	if ($small_footprint) {
873	    &lea	($acc,&DWP(-2,$acc,$acc));
874	    &lea	($acc,&DWP(0,$key,$acc,8));
875	    &mov	($__end,$acc);		# end of key schedule
876
877	    &set_label("loop",16);
878		if ($vertical_spin) {
879		    &encvert($tbl,$s0,$s1,$s2,$s3);
880		} else {
881		    &encstep(0,$tbl,$s0,$s1,$s2,$s3);
882		    &encstep(1,$tbl,$s1,$s2,$s3,$s0);
883		    &encstep(2,$tbl,$s2,$s3,$s0,$s1);
884		    &encstep(3,$tbl,$s3,$s0,$s1,$s2);
885		}
886		&add	($key,16);		# advance rd_key
887		&xor	($s0,&DWP(0,$key));
888		&xor	($s1,&DWP(4,$key));
889		&xor	($s2,&DWP(8,$key));
890		&xor	($s3,&DWP(12,$key));
891	    &cmp	($key,$__end);
892	    &mov	($__key,$key);
893	    &jb		(&label("loop"));
894	}
895	else {
896	    &cmp	($acc,10);
897	    &jle	(&label("10rounds"));
898	    &cmp	($acc,12);
899	    &jle	(&label("12rounds"));
900
901	&set_label("14rounds",4);
902	    for ($i=1;$i<3;$i++) {
903		if ($vertical_spin) {
904		    &encvert($tbl,$s0,$s1,$s2,$s3);
905		} else {
906		    &encstep(0,$tbl,$s0,$s1,$s2,$s3);
907		    &encstep(1,$tbl,$s1,$s2,$s3,$s0);
908		    &encstep(2,$tbl,$s2,$s3,$s0,$s1);
909		    &encstep(3,$tbl,$s3,$s0,$s1,$s2);
910		}
911		&xor	($s0,&DWP(16*$i+0,$key));
912		&xor	($s1,&DWP(16*$i+4,$key));
913		&xor	($s2,&DWP(16*$i+8,$key));
914		&xor	($s3,&DWP(16*$i+12,$key));
915	    }
916	    &add	($key,32);
917	    &mov	($__key,$key);		# advance rd_key
918	&set_label("12rounds",4);
919	    for ($i=1;$i<3;$i++) {
920		if ($vertical_spin) {
921		    &encvert($tbl,$s0,$s1,$s2,$s3);
922		} else {
923		    &encstep(0,$tbl,$s0,$s1,$s2,$s3);
924		    &encstep(1,$tbl,$s1,$s2,$s3,$s0);
925		    &encstep(2,$tbl,$s2,$s3,$s0,$s1);
926		    &encstep(3,$tbl,$s3,$s0,$s1,$s2);
927		}
928		&xor	($s0,&DWP(16*$i+0,$key));
929		&xor	($s1,&DWP(16*$i+4,$key));
930		&xor	($s2,&DWP(16*$i+8,$key));
931		&xor	($s3,&DWP(16*$i+12,$key));
932	    }
933	    &add	($key,32);
934	    &mov	($__key,$key);		# advance rd_key
935	&set_label("10rounds",4);
936	    for ($i=1;$i<10;$i++) {
937		if ($vertical_spin) {
938		    &encvert($tbl,$s0,$s1,$s2,$s3);
939		} else {
940		    &encstep(0,$tbl,$s0,$s1,$s2,$s3);
941		    &encstep(1,$tbl,$s1,$s2,$s3,$s0);
942		    &encstep(2,$tbl,$s2,$s3,$s0,$s1);
943		    &encstep(3,$tbl,$s3,$s0,$s1,$s2);
944		}
945		&xor	($s0,&DWP(16*$i+0,$key));
946		&xor	($s1,&DWP(16*$i+4,$key));
947		&xor	($s2,&DWP(16*$i+8,$key));
948		&xor	($s3,&DWP(16*$i+12,$key));
949	    }
950	}
951
952	if ($vertical_spin) {
953	    # "reincarnate" some registers for "horizontal" spin...
954	    &mov	($s1="ebx",$key="edi");
955	    &mov	($s2="ecx",$acc="esi");
956	}
957	&enclast(0,$tbl,$s0,$s1,$s2,$s3);
958	&enclast(1,$tbl,$s1,$s2,$s3,$s0);
959	&enclast(2,$tbl,$s2,$s3,$s0,$s1);
960	&enclast(3,$tbl,$s3,$s0,$s1,$s2);
961
962	&add	($key,$small_footprint?16:160);
963	&xor	($s0,&DWP(0,$key));
964	&xor	($s1,&DWP(4,$key));
965	&xor	($s2,&DWP(8,$key));
966	&xor	($s3,&DWP(12,$key));
967
968	&ret	();
969
970&set_label("AES_Te",64);	# Yes! I keep it in the code segment!
971	&_data_word(0xa56363c6, 0x847c7cf8, 0x997777ee, 0x8d7b7bf6);
972	&_data_word(0x0df2f2ff, 0xbd6b6bd6, 0xb16f6fde, 0x54c5c591);
973	&_data_word(0x50303060, 0x03010102, 0xa96767ce, 0x7d2b2b56);
974	&_data_word(0x19fefee7, 0x62d7d7b5, 0xe6abab4d, 0x9a7676ec);
975	&_data_word(0x45caca8f, 0x9d82821f, 0x40c9c989, 0x877d7dfa);
976	&_data_word(0x15fafaef, 0xeb5959b2, 0xc947478e, 0x0bf0f0fb);
977	&_data_word(0xecadad41, 0x67d4d4b3, 0xfda2a25f, 0xeaafaf45);
978	&_data_word(0xbf9c9c23, 0xf7a4a453, 0x967272e4, 0x5bc0c09b);
979	&_data_word(0xc2b7b775, 0x1cfdfde1, 0xae93933d, 0x6a26264c);
980	&_data_word(0x5a36366c, 0x413f3f7e, 0x02f7f7f5, 0x4fcccc83);
981	&_data_word(0x5c343468, 0xf4a5a551, 0x34e5e5d1, 0x08f1f1f9);
982	&_data_word(0x937171e2, 0x73d8d8ab, 0x53313162, 0x3f15152a);
983	&_data_word(0x0c040408, 0x52c7c795, 0x65232346, 0x5ec3c39d);
984	&_data_word(0x28181830, 0xa1969637, 0x0f05050a, 0xb59a9a2f);
985	&_data_word(0x0907070e, 0x36121224, 0x9b80801b, 0x3de2e2df);
986	&_data_word(0x26ebebcd, 0x6927274e, 0xcdb2b27f, 0x9f7575ea);
987	&_data_word(0x1b090912, 0x9e83831d, 0x742c2c58, 0x2e1a1a34);
988	&_data_word(0x2d1b1b36, 0xb26e6edc, 0xee5a5ab4, 0xfba0a05b);
989	&_data_word(0xf65252a4, 0x4d3b3b76, 0x61d6d6b7, 0xceb3b37d);
990	&_data_word(0x7b292952, 0x3ee3e3dd, 0x712f2f5e, 0x97848413);
991	&_data_word(0xf55353a6, 0x68d1d1b9, 0x00000000, 0x2cededc1);
992	&_data_word(0x60202040, 0x1ffcfce3, 0xc8b1b179, 0xed5b5bb6);
993	&_data_word(0xbe6a6ad4, 0x46cbcb8d, 0xd9bebe67, 0x4b393972);
994	&_data_word(0xde4a4a94, 0xd44c4c98, 0xe85858b0, 0x4acfcf85);
995	&_data_word(0x6bd0d0bb, 0x2aefefc5, 0xe5aaaa4f, 0x16fbfbed);
996	&_data_word(0xc5434386, 0xd74d4d9a, 0x55333366, 0x94858511);
997	&_data_word(0xcf45458a, 0x10f9f9e9, 0x06020204, 0x817f7ffe);
998	&_data_word(0xf05050a0, 0x443c3c78, 0xba9f9f25, 0xe3a8a84b);
999	&_data_word(0xf35151a2, 0xfea3a35d, 0xc0404080, 0x8a8f8f05);
1000	&_data_word(0xad92923f, 0xbc9d9d21, 0x48383870, 0x04f5f5f1);
1001	&_data_word(0xdfbcbc63, 0xc1b6b677, 0x75dadaaf, 0x63212142);
1002	&_data_word(0x30101020, 0x1affffe5, 0x0ef3f3fd, 0x6dd2d2bf);
1003	&_data_word(0x4ccdcd81, 0x140c0c18, 0x35131326, 0x2fececc3);
1004	&_data_word(0xe15f5fbe, 0xa2979735, 0xcc444488, 0x3917172e);
1005	&_data_word(0x57c4c493, 0xf2a7a755, 0x827e7efc, 0x473d3d7a);
1006	&_data_word(0xac6464c8, 0xe75d5dba, 0x2b191932, 0x957373e6);
1007	&_data_word(0xa06060c0, 0x98818119, 0xd14f4f9e, 0x7fdcdca3);
1008	&_data_word(0x66222244, 0x7e2a2a54, 0xab90903b, 0x8388880b);
1009	&_data_word(0xca46468c, 0x29eeeec7, 0xd3b8b86b, 0x3c141428);
1010	&_data_word(0x79dedea7, 0xe25e5ebc, 0x1d0b0b16, 0x76dbdbad);
1011	&_data_word(0x3be0e0db, 0x56323264, 0x4e3a3a74, 0x1e0a0a14);
1012	&_data_word(0xdb494992, 0x0a06060c, 0x6c242448, 0xe45c5cb8);
1013	&_data_word(0x5dc2c29f, 0x6ed3d3bd, 0xefacac43, 0xa66262c4);
1014	&_data_word(0xa8919139, 0xa4959531, 0x37e4e4d3, 0x8b7979f2);
1015	&_data_word(0x32e7e7d5, 0x43c8c88b, 0x5937376e, 0xb76d6dda);
1016	&_data_word(0x8c8d8d01, 0x64d5d5b1, 0xd24e4e9c, 0xe0a9a949);
1017	&_data_word(0xb46c6cd8, 0xfa5656ac, 0x07f4f4f3, 0x25eaeacf);
1018	&_data_word(0xaf6565ca, 0x8e7a7af4, 0xe9aeae47, 0x18080810);
1019	&_data_word(0xd5baba6f, 0x887878f0, 0x6f25254a, 0x722e2e5c);
1020	&_data_word(0x241c1c38, 0xf1a6a657, 0xc7b4b473, 0x51c6c697);
1021	&_data_word(0x23e8e8cb, 0x7cdddda1, 0x9c7474e8, 0x211f1f3e);
1022	&_data_word(0xdd4b4b96, 0xdcbdbd61, 0x868b8b0d, 0x858a8a0f);
1023	&_data_word(0x907070e0, 0x423e3e7c, 0xc4b5b571, 0xaa6666cc);
1024	&_data_word(0xd8484890, 0x05030306, 0x01f6f6f7, 0x120e0e1c);
1025	&_data_word(0xa36161c2, 0x5f35356a, 0xf95757ae, 0xd0b9b969);
1026	&_data_word(0x91868617, 0x58c1c199, 0x271d1d3a, 0xb99e9e27);
1027	&_data_word(0x38e1e1d9, 0x13f8f8eb, 0xb398982b, 0x33111122);
1028	&_data_word(0xbb6969d2, 0x70d9d9a9, 0x898e8e07, 0xa7949433);
1029	&_data_word(0xb69b9b2d, 0x221e1e3c, 0x92878715, 0x20e9e9c9);
1030	&_data_word(0x49cece87, 0xff5555aa, 0x78282850, 0x7adfdfa5);
1031	&_data_word(0x8f8c8c03, 0xf8a1a159, 0x80898909, 0x170d0d1a);
1032	&_data_word(0xdabfbf65, 0x31e6e6d7, 0xc6424284, 0xb86868d0);
1033	&_data_word(0xc3414182, 0xb0999929, 0x772d2d5a, 0x110f0f1e);
1034	&_data_word(0xcbb0b07b, 0xfc5454a8, 0xd6bbbb6d, 0x3a16162c);
1035
1036#Te4	# four copies of Te4 to choose from to avoid L1 aliasing
1037	&data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
1038	&data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
1039	&data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
1040	&data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
1041	&data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
1042	&data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
1043	&data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
1044	&data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
1045	&data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
1046	&data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
1047	&data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
1048	&data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
1049	&data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
1050	&data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
1051	&data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
1052	&data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
1053	&data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
1054	&data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
1055	&data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
1056	&data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
1057	&data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
1058	&data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
1059	&data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
1060	&data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
1061	&data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
1062	&data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
1063	&data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
1064	&data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
1065	&data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
1066	&data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
1067	&data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
1068	&data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
1069
1070	&data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
1071	&data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
1072	&data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
1073	&data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
1074	&data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
1075	&data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
1076	&data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
1077	&data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
1078	&data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
1079	&data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
1080	&data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
1081	&data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
1082	&data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
1083	&data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
1084	&data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
1085	&data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
1086	&data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
1087	&data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
1088	&data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
1089	&data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
1090	&data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
1091	&data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
1092	&data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
1093	&data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
1094	&data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
1095	&data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
1096	&data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
1097	&data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
1098	&data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
1099	&data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
1100	&data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
1101	&data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
1102
1103	&data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
1104	&data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
1105	&data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
1106	&data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
1107	&data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
1108	&data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
1109	&data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
1110	&data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
1111	&data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
1112	&data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
1113	&data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
1114	&data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
1115	&data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
1116	&data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
1117	&data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
1118	&data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
1119	&data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
1120	&data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
1121	&data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
1122	&data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
1123	&data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
1124	&data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
1125	&data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
1126	&data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
1127	&data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
1128	&data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
1129	&data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
1130	&data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
1131	&data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
1132	&data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
1133	&data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
1134	&data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
1135
1136	&data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
1137	&data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
1138	&data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
1139	&data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
1140	&data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
1141	&data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
1142	&data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
1143	&data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
1144	&data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
1145	&data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
1146	&data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
1147	&data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
1148	&data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
1149	&data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
1150	&data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
1151	&data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
1152	&data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
1153	&data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
1154	&data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
1155	&data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
1156	&data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
1157	&data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
1158	&data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
1159	&data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
1160	&data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
1161	&data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
1162	&data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
1163	&data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
1164	&data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
1165	&data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
1166	&data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
1167	&data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
1168#rcon:
1169	&data_word(0x00000001, 0x00000002, 0x00000004, 0x00000008);
1170	&data_word(0x00000010, 0x00000020, 0x00000040, 0x00000080);
1171	&data_word(0x0000001b, 0x00000036, 0x00000000, 0x00000000);
1172	&data_word(0x00000000, 0x00000000, 0x00000000, 0x00000000);
1173&function_end_B("_x86_AES_encrypt");
1174
1175# void AES_encrypt (const void *inp,void *out,const AES_KEY *key);
1176&function_begin("AES_encrypt");
1177	&mov	($acc,&wparam(0));		# load inp
1178	&mov	($key,&wparam(2));		# load key
1179
1180	&mov	($s0,"esp");
1181	&sub	("esp",36);
1182	&and	("esp",-64);			# align to cache-line
1183
1184	# place stack frame just "above" the key schedule
1185	&lea	($s1,&DWP(-64-63,$key));
1186	&sub	($s1,"esp");
1187	&neg	($s1);
1188	&and	($s1,0x3C0);	# modulo 1024, but aligned to cache-line
1189	&sub	("esp",$s1);
1190	&add	("esp",4);	# 4 is reserved for caller's return address
1191	&mov	($_esp,$s0);			# save stack pointer
1192
1193	&call   (&label("pic_point"));          # make it PIC!
1194	&set_label("pic_point");
1195	&blindpop($tbl);
1196	&picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if (!$x86only);
1197	&lea    ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl));
1198
1199	# pick Te4 copy which can't "overlap" with stack frame or key schedule
1200	&lea	($s1,&DWP(768-4,"esp"));
1201	&sub	($s1,$tbl);
1202	&and	($s1,0x300);
1203	&lea	($tbl,&DWP(2048+128,$tbl,$s1));
1204
1205					if (!$x86only) {
1206	&bt	(&DWP(0,$s0),25);	# check for SSE bit
1207	&jnc	(&label("x86"));
1208
1209	&movq	("mm0",&QWP(0,$acc));
1210	&movq	("mm4",&QWP(8,$acc));
1211	&call	("_sse_AES_encrypt_compact");
1212	&mov	("esp",$_esp);			# restore stack pointer
1213	&mov	($acc,&wparam(1));		# load out
1214	&movq	(&QWP(0,$acc),"mm0");		# write output data
1215	&movq	(&QWP(8,$acc),"mm4");
1216	&emms	();
1217	&function_end_A();
1218					}
1219	&set_label("x86",16);
1220	&mov	($_tbl,$tbl);
1221	&mov	($s0,&DWP(0,$acc));		# load input data
1222	&mov	($s1,&DWP(4,$acc));
1223	&mov	($s2,&DWP(8,$acc));
1224	&mov	($s3,&DWP(12,$acc));
1225	&call	("_x86_AES_encrypt_compact");
1226	&mov	("esp",$_esp);			# restore stack pointer
1227	&mov	($acc,&wparam(1));		# load out
1228	&mov	(&DWP(0,$acc),$s0);		# write output data
1229	&mov	(&DWP(4,$acc),$s1);
1230	&mov	(&DWP(8,$acc),$s2);
1231	&mov	(&DWP(12,$acc),$s3);
1232&function_end("AES_encrypt");
1233
1234#--------------------------------------------------------------------#
1235
1236######################################################################
1237# "Compact" block function
1238######################################################################
1239
1240sub deccompact()
1241{ my $Fn = \&mov;
1242  while ($#_>5) { pop(@_); $Fn=sub{}; }
1243  my ($i,$td,@s)=@_;
1244  my $tmp = $key;
1245  my $out = $i==3?$s[0]:$acc;
1246
1247	# $Fn is used in first compact round and its purpose is to
1248	# void restoration of some values from stack, so that after
1249	# 4xdeccompact with extra argument $key, $s0 and $s1 values
1250	# are left there...
1251	if($i==3)   {	&$Fn	($key,$__key);			}
1252	else        {	&mov	($out,$s[0]);			}
1253			&and	($out,0xFF);
1254			&movz	($out,&BP(-128,$td,$out,1));
1255
1256	if ($i==3)  {	$tmp=$s[1];				}
1257			&movz	($tmp,&HB($s[1]));
1258			&movz	($tmp,&BP(-128,$td,$tmp,1));
1259			&shl	($tmp,8);
1260			&xor	($out,$tmp);
1261
1262	if ($i==3)  {	$tmp=$s[2]; &mov ($s[1],$acc);		}
1263	else        {	mov	($tmp,$s[2]);			}
1264			&shr	($tmp,16);
1265			&and	($tmp,0xFF);
1266			&movz	($tmp,&BP(-128,$td,$tmp,1));
1267			&shl	($tmp,16);
1268			&xor	($out,$tmp);
1269
1270	if ($i==3)  {	$tmp=$s[3]; &$Fn ($s[2],$__s1);		}
1271	else        {	&mov	($tmp,$s[3]);			}
1272			&shr	($tmp,24);
1273			&movz	($tmp,&BP(-128,$td,$tmp,1));
1274			&shl	($tmp,24);
1275			&xor	($out,$tmp);
1276	if ($i<2)   {	&mov	(&DWP(4+4*$i,"esp"),$out);	}
1277	if ($i==3)  {	&$Fn	($s[3],$__s0);			}
1278}
1279
1280# must be called with 2,3,0,1 as argument sequence!!!
1281sub dectransform()
1282{ my @s = ($s0,$s1,$s2,$s3);
1283  my $i = shift;
1284  my $tmp = $key;
1285  my $tp2 = @s[($i+2)%4]; $tp2 = @s[2] if ($i==1);
1286  my $tp4 = @s[($i+3)%4]; $tp4 = @s[3] if ($i==1);
1287  my $tp8 = $tbl;
1288
1289	&mov	($tmp,0x80808080);
1290	&and	($tmp,$s[$i]);
1291	&mov	($acc,$tmp);
1292	&shr	($tmp,7);
1293	&lea	($tp2,&DWP(0,$s[$i],$s[$i]));
1294	&sub	($acc,$tmp);
1295	&and	($tp2,0xfefefefe);
1296	&and	($acc,0x1b1b1b1b);
1297	&xor	($tp2,$acc);
1298	&mov	($tmp,0x80808080);
1299
1300	&and	($tmp,$tp2);
1301	&mov	($acc,$tmp);
1302	&shr	($tmp,7);
1303	&lea	($tp4,&DWP(0,$tp2,$tp2));
1304	&sub	($acc,$tmp);
1305	&and	($tp4,0xfefefefe);
1306	&and	($acc,0x1b1b1b1b);
1307	 &xor	($tp2,$s[$i]);	# tp2^tp1
1308	&xor	($tp4,$acc);
1309	&mov	($tmp,0x80808080);
1310
1311	&and	($tmp,$tp4);
1312	&mov	($acc,$tmp);
1313	&shr	($tmp,7);
1314	&lea	($tp8,&DWP(0,$tp4,$tp4));
1315	&sub	($acc,$tmp);
1316	&and	($tp8,0xfefefefe);
1317	&and	($acc,0x1b1b1b1b);
1318	 &xor	($tp4,$s[$i]);	# tp4^tp1
1319	 &rotl	($s[$i],8);	# = ROTATE(tp1,8)
1320	&xor	($tp8,$acc);
1321
1322	&xor	($s[$i],$tp2);
1323	&xor	($tp2,$tp8);
1324	&xor	($s[$i],$tp4);
1325	&xor	($tp4,$tp8);
1326	&rotl	($tp2,24);
1327	&xor	($s[$i],$tp8);	# ^= tp8^(tp4^tp1)^(tp2^tp1)
1328	&rotl	($tp4,16);
1329	&xor	($s[$i],$tp2);	# ^= ROTATE(tp8^tp2^tp1,24)
1330	&rotl	($tp8,8);
1331	&xor	($s[$i],$tp4);	# ^= ROTATE(tp8^tp4^tp1,16)
1332	 &mov	($s[0],$__s0)			if($i==2); #prefetch $s0
1333	 &mov	($s[1],$__s1)			if($i==3); #prefetch $s1
1334	 &mov	($s[2],$__s2)			if($i==1);
1335	&xor	($s[$i],$tp8);	# ^= ROTATE(tp8,8)
1336
1337	&mov	($s[3],$__s3)			if($i==1);
1338	&mov	(&DWP(4+4*$i,"esp"),$s[$i])	if($i>=2);
1339}
1340
1341&function_begin_B("_x86_AES_decrypt_compact");
1342	# note that caller is expected to allocate stack frame for me!
1343	&mov	($__key,$key);			# save key
1344
1345	&xor	($s0,&DWP(0,$key));		# xor with key
1346	&xor	($s1,&DWP(4,$key));
1347	&xor	($s2,&DWP(8,$key));
1348	&xor	($s3,&DWP(12,$key));
1349
1350	&mov	($acc,&DWP(240,$key));		# load key->rounds
1351
1352	&lea	($acc,&DWP(-2,$acc,$acc));
1353	&lea	($acc,&DWP(0,$key,$acc,8));
1354	&mov	($__end,$acc);			# end of key schedule
1355
1356	# prefetch Td4
1357	&mov	($key,&DWP(0-128,$tbl));
1358	&mov	($acc,&DWP(32-128,$tbl));
1359	&mov	($key,&DWP(64-128,$tbl));
1360	&mov	($acc,&DWP(96-128,$tbl));
1361	&mov	($key,&DWP(128-128,$tbl));
1362	&mov	($acc,&DWP(160-128,$tbl));
1363	&mov	($key,&DWP(192-128,$tbl));
1364	&mov	($acc,&DWP(224-128,$tbl));
1365
1366	&set_label("loop",16);
1367
1368		&deccompact(0,$tbl,$s0,$s3,$s2,$s1,1);
1369		&deccompact(1,$tbl,$s1,$s0,$s3,$s2,1);
1370		&deccompact(2,$tbl,$s2,$s1,$s0,$s3,1);
1371		&deccompact(3,$tbl,$s3,$s2,$s1,$s0,1);
1372		&dectransform(2);
1373		&dectransform(3);
1374		&dectransform(0);
1375		&dectransform(1);
1376		&mov 	($key,$__key);
1377		&mov	($tbl,$__tbl);
1378		&add	($key,16);		# advance rd_key
1379		&xor	($s0,&DWP(0,$key));
1380		&xor	($s1,&DWP(4,$key));
1381		&xor	($s2,&DWP(8,$key));
1382		&xor	($s3,&DWP(12,$key));
1383
1384	&cmp	($key,$__end);
1385	&mov	($__key,$key);
1386	&jb	(&label("loop"));
1387
1388	&deccompact(0,$tbl,$s0,$s3,$s2,$s1);
1389	&deccompact(1,$tbl,$s1,$s0,$s3,$s2);
1390	&deccompact(2,$tbl,$s2,$s1,$s0,$s3);
1391	&deccompact(3,$tbl,$s3,$s2,$s1,$s0);
1392
1393	&xor	($s0,&DWP(16,$key));
1394	&xor	($s1,&DWP(20,$key));
1395	&xor	($s2,&DWP(24,$key));
1396	&xor	($s3,&DWP(28,$key));
1397
1398	&ret	();
1399&function_end_B("_x86_AES_decrypt_compact");
1400
1401######################################################################
1402# "Compact" SSE block function.
1403######################################################################
1404
1405sub sse_deccompact()
1406{
1407	&pshufw	("mm1","mm0",0x0c);		#  7, 6, 1, 0
1408	&pshufw	("mm5","mm4",0x09);		# 13,12,11,10
1409	&movd	("eax","mm1");			#  7, 6, 1, 0
1410	&movd	("ebx","mm5");			# 13,12,11,10
1411	&mov	($__key,$key);
1412
1413	&movz	($acc,&LB("eax"));		#  0
1414	&movz	("edx",&HB("eax"));		#  1
1415	&pshufw	("mm2","mm0",0x06);		#  3, 2, 5, 4
1416	&movz	("ecx",&BP(-128,$tbl,$acc,1));	#  0
1417	&movz	($key,&LB("ebx"));		# 10
1418	&movz	("edx",&BP(-128,$tbl,"edx",1));	#  1
1419	&shr	("eax",16);			#  7, 6
1420	&shl	("edx",8);			#  1
1421
1422	&movz	($acc,&BP(-128,$tbl,$key,1));	# 10
1423	&movz	($key,&HB("ebx"));		# 11
1424	&shl	($acc,16);			# 10
1425	&pshufw	("mm6","mm4",0x03);		# 9, 8,15,14
1426	&or	("ecx",$acc);			# 10
1427	&movz	($acc,&BP(-128,$tbl,$key,1));	# 11
1428	&movz	($key,&HB("eax"));		#  7
1429	&shl	($acc,24);			# 11
1430	&shr	("ebx",16);			# 13,12
1431	&or	("edx",$acc);			# 11
1432
1433	&movz	($acc,&BP(-128,$tbl,$key,1));	#  7
1434	&movz	($key,&HB("ebx"));		# 13
1435	&shl	($acc,24);			#  7
1436	&or	("ecx",$acc);			#  7
1437	&movz	($acc,&BP(-128,$tbl,$key,1));	# 13
1438	&movz	($key,&LB("eax"));		#  6
1439	&shl	($acc,8);			# 13
1440	&movd	("eax","mm2");			#  3, 2, 5, 4
1441	&or	("ecx",$acc);			# 13
1442
1443	&movz	($acc,&BP(-128,$tbl,$key,1));	#  6
1444	&movz	($key,&LB("ebx"));		# 12
1445	&shl	($acc,16);			#  6
1446	&movd	("ebx","mm6");			#  9, 8,15,14
1447	&movd	("mm0","ecx");			# t[0] collected
1448	&movz	("ecx",&BP(-128,$tbl,$key,1));	# 12
1449	&movz	($key,&LB("eax"));		#  4
1450	&or	("ecx",$acc);			# 12
1451
1452	&movz	($acc,&BP(-128,$tbl,$key,1));	#  4
1453	&movz	($key,&LB("ebx"));		# 14
1454	&or	("edx",$acc);			#  4
1455	&movz	($acc,&BP(-128,$tbl,$key,1));	# 14
1456	&movz	($key,&HB("eax"));		#  5
1457	&shl	($acc,16);			# 14
1458	&shr	("eax",16);			#  3, 2
1459	&or	("edx",$acc);			# 14
1460
1461	&movz	($acc,&BP(-128,$tbl,$key,1));	#  5
1462	&movz	($key,&HB("ebx"));		# 15
1463	&shr	("ebx",16);			#  9, 8
1464	&shl	($acc,8);			#  5
1465	&movd	("mm1","edx");			# t[1] collected
1466	&movz	("edx",&BP(-128,$tbl,$key,1));	# 15
1467	&movz	($key,&HB("ebx"));		#  9
1468	&shl	("edx",24);			# 15
1469	&and	("ebx",0xff);			#  8
1470	&or	("edx",$acc);			# 15
1471
1472	&punpckldq	("mm0","mm1");		# t[0,1] collected
1473
1474	&movz	($acc,&BP(-128,$tbl,$key,1));	#  9
1475	&movz	($key,&LB("eax"));		#  2
1476	&shl	($acc,8);			#  9
1477	&movz	("eax",&HB("eax"));		#  3
1478	&movz	("ebx",&BP(-128,$tbl,"ebx",1));	#  8
1479	&or	("ecx",$acc);			#  9
1480	&movz	($acc,&BP(-128,$tbl,$key,1));	#  2
1481	&or	("edx","ebx");			#  8
1482	&shl	($acc,16);			#  2
1483	&movz	("eax",&BP(-128,$tbl,"eax",1));	#  3
1484	&or	("edx",$acc);			#  2
1485	&shl	("eax",24);			#  3
1486	&or	("ecx","eax");			#  3
1487	&mov	($key,$__key);
1488	&movd	("mm4","edx");			# t[2] collected
1489	&movd	("mm5","ecx");			# t[3] collected
1490
1491	&punpckldq	("mm4","mm5");		# t[2,3] collected
1492}
1493
1494					if (!$x86only) {
1495&function_begin_B("_sse_AES_decrypt_compact");
1496	&pxor	("mm0",&QWP(0,$key));	#  7, 6, 5, 4, 3, 2, 1, 0
1497	&pxor	("mm4",&QWP(8,$key));	# 15,14,13,12,11,10, 9, 8
1498
1499	# note that caller is expected to allocate stack frame for me!
1500	&mov	($acc,&DWP(240,$key));		# load key->rounds
1501	&lea	($acc,&DWP(-2,$acc,$acc));
1502	&lea	($acc,&DWP(0,$key,$acc,8));
1503	&mov	($__end,$acc);			# end of key schedule
1504
1505	&mov	($s0,0x1b1b1b1b);		# magic constant
1506	&mov	(&DWP(8,"esp"),$s0);
1507	&mov	(&DWP(12,"esp"),$s0);
1508
1509	# prefetch Td4
1510	&mov	($s0,&DWP(0-128,$tbl));
1511	&mov	($s1,&DWP(32-128,$tbl));
1512	&mov	($s2,&DWP(64-128,$tbl));
1513	&mov	($s3,&DWP(96-128,$tbl));
1514	&mov	($s0,&DWP(128-128,$tbl));
1515	&mov	($s1,&DWP(160-128,$tbl));
1516	&mov	($s2,&DWP(192-128,$tbl));
1517	&mov	($s3,&DWP(224-128,$tbl));
1518
1519	&set_label("loop",16);
1520		&sse_deccompact();
1521		&add	($key,16);
1522		&cmp	($key,$__end);
1523		&ja	(&label("out"));
1524
1525		# ROTATE(x^y,N) == ROTATE(x,N)^ROTATE(y,N)
1526		&movq	("mm3","mm0");		&movq	("mm7","mm4");
1527		&movq	("mm2","mm0",1);	&movq	("mm6","mm4",1);
1528		&movq	("mm1","mm0");		&movq	("mm5","mm4");
1529		&pshufw	("mm0","mm0",0xb1);	&pshufw	("mm4","mm4",0xb1);# = ROTATE(tp0,16)
1530		&pslld	("mm2",8);		&pslld	("mm6",8);
1531		&psrld	("mm3",8);		&psrld	("mm7",8);
1532		&pxor	("mm0","mm2");		&pxor	("mm4","mm6");	# ^= tp0<<8
1533		&pxor	("mm0","mm3");		&pxor	("mm4","mm7");	# ^= tp0>>8
1534		&pslld	("mm2",16);		&pslld	("mm6",16);
1535		&psrld	("mm3",16);		&psrld	("mm7",16);
1536		&pxor	("mm0","mm2");		&pxor	("mm4","mm6");	# ^= tp0<<24
1537		&pxor	("mm0","mm3");		&pxor	("mm4","mm7");	# ^= tp0>>24
1538
1539		&movq	("mm3",&QWP(8,"esp"));
1540		&pxor	("mm2","mm2");		&pxor	("mm6","mm6");
1541		&pcmpgtb("mm2","mm1");		&pcmpgtb("mm6","mm5");
1542		&pand	("mm2","mm3");		&pand	("mm6","mm3");
1543		&paddb	("mm1","mm1");		&paddb	("mm5","mm5");
1544		&pxor	("mm1","mm2");		&pxor	("mm5","mm6");	# tp2
1545		&movq	("mm3","mm1");		&movq	("mm7","mm5");
1546		&movq	("mm2","mm1");		&movq	("mm6","mm5");
1547		&pxor	("mm0","mm1");		&pxor	("mm4","mm5");	# ^= tp2
1548		&pslld	("mm3",24);		&pslld	("mm7",24);
1549		&psrld	("mm2",8);		&psrld	("mm6",8);
1550		&pxor	("mm0","mm3");		&pxor	("mm4","mm7");	# ^= tp2<<24
1551		&pxor	("mm0","mm2");		&pxor	("mm4","mm6");	# ^= tp2>>8
1552
1553		&movq	("mm2",&QWP(8,"esp"));
1554		&pxor	("mm3","mm3");		&pxor	("mm7","mm7");
1555		&pcmpgtb("mm3","mm1");		&pcmpgtb("mm7","mm5");
1556		&pand	("mm3","mm2");		&pand	("mm7","mm2");
1557		&paddb	("mm1","mm1");		&paddb	("mm5","mm5");
1558		&pxor	("mm1","mm3");		&pxor	("mm5","mm7");	# tp4
1559		&pshufw	("mm3","mm1",0xb1);	&pshufw	("mm7","mm5",0xb1);
1560		&pxor	("mm0","mm1");		&pxor	("mm4","mm5");	# ^= tp4
1561		&pxor	("mm0","mm3");		&pxor	("mm4","mm7");	# ^= ROTATE(tp4,16)
1562
1563		&pxor	("mm3","mm3");		&pxor	("mm7","mm7");
1564		&pcmpgtb("mm3","mm1");		&pcmpgtb("mm7","mm5");
1565		&pand	("mm3","mm2");		&pand	("mm7","mm2");
1566		&paddb	("mm1","mm1");		&paddb	("mm5","mm5");
1567		&pxor	("mm1","mm3");		&pxor	("mm5","mm7");	# tp8
1568		&pxor	("mm0","mm1");		&pxor	("mm4","mm5");	# ^= tp8
1569		&movq	("mm3","mm1");		&movq	("mm7","mm5");
1570		&pshufw	("mm2","mm1",0xb1);	&pshufw	("mm6","mm5",0xb1);
1571		&pxor	("mm0","mm2");		&pxor	("mm4","mm6");	# ^= ROTATE(tp8,16)
1572		&pslld	("mm1",8);		&pslld	("mm5",8);
1573		&psrld	("mm3",8);		&psrld	("mm7",8);
1574		&movq	("mm2",&QWP(0,$key));	&movq	("mm6",&QWP(8,$key));
1575		&pxor	("mm0","mm1");		&pxor	("mm4","mm5");	# ^= tp8<<8
1576		&pxor	("mm0","mm3");		&pxor	("mm4","mm7");	# ^= tp8>>8
1577		&mov	($s0,&DWP(0-128,$tbl));
1578		&pslld	("mm1",16);		&pslld	("mm5",16);
1579		&mov	($s1,&DWP(64-128,$tbl));
1580		&psrld	("mm3",16);		&psrld	("mm7",16);
1581		&mov	($s2,&DWP(128-128,$tbl));
1582		&pxor	("mm0","mm1");		&pxor	("mm4","mm5");	# ^= tp8<<24
1583		&mov	($s3,&DWP(192-128,$tbl));
1584		&pxor	("mm0","mm3");		&pxor	("mm4","mm7");	# ^= tp8>>24
1585
1586		&pxor	("mm0","mm2");		&pxor	("mm4","mm6");
1587	&jmp	(&label("loop"));
1588
1589	&set_label("out",16);
1590	&pxor	("mm0",&QWP(0,$key));
1591	&pxor	("mm4",&QWP(8,$key));
1592
1593	&ret	();
1594&function_end_B("_sse_AES_decrypt_compact");
1595					}
1596
1597######################################################################
1598# Vanilla block function.
1599######################################################################
1600
1601sub decstep()
1602{ my ($i,$td,@s) = @_;
1603  my $tmp = $key;
1604  my $out = $i==3?$s[0]:$acc;
1605
1606	# no instructions are reordered, as performance appears
1607	# optimal... or rather that all attempts to reorder didn't
1608	# result in better performance [which by the way is not a
1609	# bit lower than encryption].
1610	if($i==3)   {	&mov	($key,$__key);			}
1611	else        {	&mov	($out,$s[0]);			}
1612			&and	($out,0xFF);
1613			&mov	($out,&DWP(0,$td,$out,8));
1614
1615	if ($i==3)  {	$tmp=$s[1];				}
1616			&movz	($tmp,&HB($s[1]));
1617			&xor	($out,&DWP(3,$td,$tmp,8));
1618
1619	if ($i==3)  {	$tmp=$s[2]; &mov ($s[1],$acc);		}
1620	else        {	&mov	($tmp,$s[2]);			}
1621			&shr	($tmp,16);
1622			&and	($tmp,0xFF);
1623			&xor	($out,&DWP(2,$td,$tmp,8));
1624
1625	if ($i==3)  {	$tmp=$s[3]; &mov ($s[2],$__s1);		}
1626	else        {	&mov	($tmp,$s[3]);			}
1627			&shr	($tmp,24);
1628			&xor	($out,&DWP(1,$td,$tmp,8));
1629	if ($i<2)   {	&mov	(&DWP(4+4*$i,"esp"),$out);	}
1630	if ($i==3)  {	&mov	($s[3],$__s0);			}
1631			&comment();
1632}
1633
1634sub declast()
1635{ my ($i,$td,@s)=@_;
1636  my $tmp = $key;
1637  my $out = $i==3?$s[0]:$acc;
1638
1639	if($i==0)   {	&lea	($td,&DWP(2048+128,$td));
1640			&mov	($tmp,&DWP(0-128,$td));
1641			&mov	($acc,&DWP(32-128,$td));
1642			&mov	($tmp,&DWP(64-128,$td));
1643			&mov	($acc,&DWP(96-128,$td));
1644			&mov	($tmp,&DWP(128-128,$td));
1645			&mov	($acc,&DWP(160-128,$td));
1646			&mov	($tmp,&DWP(192-128,$td));
1647			&mov	($acc,&DWP(224-128,$td));
1648			&lea	($td,&DWP(-128,$td));		}
1649	if($i==3)   {	&mov	($key,$__key);			}
1650	else        {	&mov	($out,$s[0]);			}
1651			&and	($out,0xFF);
1652			&movz	($out,&BP(0,$td,$out,1));
1653
1654	if ($i==3)  {	$tmp=$s[1];				}
1655			&movz	($tmp,&HB($s[1]));
1656			&movz	($tmp,&BP(0,$td,$tmp,1));
1657			&shl	($tmp,8);
1658			&xor	($out,$tmp);
1659
1660	if ($i==3)  {	$tmp=$s[2]; &mov ($s[1],$acc);		}
1661	else        {	mov	($tmp,$s[2]);			}
1662			&shr	($tmp,16);
1663			&and	($tmp,0xFF);
1664			&movz	($tmp,&BP(0,$td,$tmp,1));
1665			&shl	($tmp,16);
1666			&xor	($out,$tmp);
1667
1668	if ($i==3)  {	$tmp=$s[3]; &mov ($s[2],$__s1);		}
1669	else        {	&mov	($tmp,$s[3]);			}
1670			&shr	($tmp,24);
1671			&movz	($tmp,&BP(0,$td,$tmp,1));
1672			&shl	($tmp,24);
1673			&xor	($out,$tmp);
1674	if ($i<2)   {	&mov	(&DWP(4+4*$i,"esp"),$out);	}
1675	if ($i==3)  {	&mov	($s[3],$__s0);
1676			&lea	($td,&DWP(-2048,$td));		}
1677}
1678
1679&function_begin_B("_x86_AES_decrypt");
1680	# note that caller is expected to allocate stack frame for me!
1681	&mov	($__key,$key);			# save key
1682
1683	&xor	($s0,&DWP(0,$key));		# xor with key
1684	&xor	($s1,&DWP(4,$key));
1685	&xor	($s2,&DWP(8,$key));
1686	&xor	($s3,&DWP(12,$key));
1687
1688	&mov	($acc,&DWP(240,$key));		# load key->rounds
1689
1690	if ($small_footprint) {
1691	    &lea	($acc,&DWP(-2,$acc,$acc));
1692	    &lea	($acc,&DWP(0,$key,$acc,8));
1693	    &mov	($__end,$acc);		# end of key schedule
1694	    &set_label("loop",16);
1695		&decstep(0,$tbl,$s0,$s3,$s2,$s1);
1696		&decstep(1,$tbl,$s1,$s0,$s3,$s2);
1697		&decstep(2,$tbl,$s2,$s1,$s0,$s3);
1698		&decstep(3,$tbl,$s3,$s2,$s1,$s0);
1699		&add	($key,16);		# advance rd_key
1700		&xor	($s0,&DWP(0,$key));
1701		&xor	($s1,&DWP(4,$key));
1702		&xor	($s2,&DWP(8,$key));
1703		&xor	($s3,&DWP(12,$key));
1704	    &cmp	($key,$__end);
1705	    &mov	($__key,$key);
1706	    &jb		(&label("loop"));
1707	}
1708	else {
1709	    &cmp	($acc,10);
1710	    &jle	(&label("10rounds"));
1711	    &cmp	($acc,12);
1712	    &jle	(&label("12rounds"));
1713
1714	&set_label("14rounds",4);
1715	    for ($i=1;$i<3;$i++) {
1716		&decstep(0,$tbl,$s0,$s3,$s2,$s1);
1717		&decstep(1,$tbl,$s1,$s0,$s3,$s2);
1718		&decstep(2,$tbl,$s2,$s1,$s0,$s3);
1719		&decstep(3,$tbl,$s3,$s2,$s1,$s0);
1720		&xor	($s0,&DWP(16*$i+0,$key));
1721		&xor	($s1,&DWP(16*$i+4,$key));
1722		&xor	($s2,&DWP(16*$i+8,$key));
1723		&xor	($s3,&DWP(16*$i+12,$key));
1724	    }
1725	    &add	($key,32);
1726	    &mov	($__key,$key);		# advance rd_key
1727	&set_label("12rounds",4);
1728	    for ($i=1;$i<3;$i++) {
1729		&decstep(0,$tbl,$s0,$s3,$s2,$s1);
1730		&decstep(1,$tbl,$s1,$s0,$s3,$s2);
1731		&decstep(2,$tbl,$s2,$s1,$s0,$s3);
1732		&decstep(3,$tbl,$s3,$s2,$s1,$s0);
1733		&xor	($s0,&DWP(16*$i+0,$key));
1734		&xor	($s1,&DWP(16*$i+4,$key));
1735		&xor	($s2,&DWP(16*$i+8,$key));
1736		&xor	($s3,&DWP(16*$i+12,$key));
1737	    }
1738	    &add	($key,32);
1739	    &mov	($__key,$key);		# advance rd_key
1740	&set_label("10rounds",4);
1741	    for ($i=1;$i<10;$i++) {
1742		&decstep(0,$tbl,$s0,$s3,$s2,$s1);
1743		&decstep(1,$tbl,$s1,$s0,$s3,$s2);
1744		&decstep(2,$tbl,$s2,$s1,$s0,$s3);
1745		&decstep(3,$tbl,$s3,$s2,$s1,$s0);
1746		&xor	($s0,&DWP(16*$i+0,$key));
1747		&xor	($s1,&DWP(16*$i+4,$key));
1748		&xor	($s2,&DWP(16*$i+8,$key));
1749		&xor	($s3,&DWP(16*$i+12,$key));
1750	    }
1751	}
1752
1753	&declast(0,$tbl,$s0,$s3,$s2,$s1);
1754	&declast(1,$tbl,$s1,$s0,$s3,$s2);
1755	&declast(2,$tbl,$s2,$s1,$s0,$s3);
1756	&declast(3,$tbl,$s3,$s2,$s1,$s0);
1757
1758	&add	($key,$small_footprint?16:160);
1759	&xor	($s0,&DWP(0,$key));
1760	&xor	($s1,&DWP(4,$key));
1761	&xor	($s2,&DWP(8,$key));
1762	&xor	($s3,&DWP(12,$key));
1763
1764	&ret	();
1765
1766&set_label("AES_Td",64);	# Yes! I keep it in the code segment!
1767	&_data_word(0x50a7f451, 0x5365417e, 0xc3a4171a, 0x965e273a);
1768	&_data_word(0xcb6bab3b, 0xf1459d1f, 0xab58faac, 0x9303e34b);
1769	&_data_word(0x55fa3020, 0xf66d76ad, 0x9176cc88, 0x254c02f5);
1770	&_data_word(0xfcd7e54f, 0xd7cb2ac5, 0x80443526, 0x8fa362b5);
1771	&_data_word(0x495ab1de, 0x671bba25, 0x980eea45, 0xe1c0fe5d);
1772	&_data_word(0x02752fc3, 0x12f04c81, 0xa397468d, 0xc6f9d36b);
1773	&_data_word(0xe75f8f03, 0x959c9215, 0xeb7a6dbf, 0xda595295);
1774	&_data_word(0x2d83bed4, 0xd3217458, 0x2969e049, 0x44c8c98e);
1775	&_data_word(0x6a89c275, 0x78798ef4, 0x6b3e5899, 0xdd71b927);
1776	&_data_word(0xb64fe1be, 0x17ad88f0, 0x66ac20c9, 0xb43ace7d);
1777	&_data_word(0x184adf63, 0x82311ae5, 0x60335197, 0x457f5362);
1778	&_data_word(0xe07764b1, 0x84ae6bbb, 0x1ca081fe, 0x942b08f9);
1779	&_data_word(0x58684870, 0x19fd458f, 0x876cde94, 0xb7f87b52);
1780	&_data_word(0x23d373ab, 0xe2024b72, 0x578f1fe3, 0x2aab5566);
1781	&_data_word(0x0728ebb2, 0x03c2b52f, 0x9a7bc586, 0xa50837d3);
1782	&_data_word(0xf2872830, 0xb2a5bf23, 0xba6a0302, 0x5c8216ed);
1783	&_data_word(0x2b1ccf8a, 0x92b479a7, 0xf0f207f3, 0xa1e2694e);
1784	&_data_word(0xcdf4da65, 0xd5be0506, 0x1f6234d1, 0x8afea6c4);
1785	&_data_word(0x9d532e34, 0xa055f3a2, 0x32e18a05, 0x75ebf6a4);
1786	&_data_word(0x39ec830b, 0xaaef6040, 0x069f715e, 0x51106ebd);
1787	&_data_word(0xf98a213e, 0x3d06dd96, 0xae053edd, 0x46bde64d);
1788	&_data_word(0xb58d5491, 0x055dc471, 0x6fd40604, 0xff155060);
1789	&_data_word(0x24fb9819, 0x97e9bdd6, 0xcc434089, 0x779ed967);
1790	&_data_word(0xbd42e8b0, 0x888b8907, 0x385b19e7, 0xdbeec879);
1791	&_data_word(0x470a7ca1, 0xe90f427c, 0xc91e84f8, 0x00000000);
1792	&_data_word(0x83868009, 0x48ed2b32, 0xac70111e, 0x4e725a6c);
1793	&_data_word(0xfbff0efd, 0x5638850f, 0x1ed5ae3d, 0x27392d36);
1794	&_data_word(0x64d90f0a, 0x21a65c68, 0xd1545b9b, 0x3a2e3624);
1795	&_data_word(0xb1670a0c, 0x0fe75793, 0xd296eeb4, 0x9e919b1b);
1796	&_data_word(0x4fc5c080, 0xa220dc61, 0x694b775a, 0x161a121c);
1797	&_data_word(0x0aba93e2, 0xe52aa0c0, 0x43e0223c, 0x1d171b12);
1798	&_data_word(0x0b0d090e, 0xadc78bf2, 0xb9a8b62d, 0xc8a91e14);
1799	&_data_word(0x8519f157, 0x4c0775af, 0xbbdd99ee, 0xfd607fa3);
1800	&_data_word(0x9f2601f7, 0xbcf5725c, 0xc53b6644, 0x347efb5b);
1801	&_data_word(0x7629438b, 0xdcc623cb, 0x68fcedb6, 0x63f1e4b8);
1802	&_data_word(0xcadc31d7, 0x10856342, 0x40229713, 0x2011c684);
1803	&_data_word(0x7d244a85, 0xf83dbbd2, 0x1132f9ae, 0x6da129c7);
1804	&_data_word(0x4b2f9e1d, 0xf330b2dc, 0xec52860d, 0xd0e3c177);
1805	&_data_word(0x6c16b32b, 0x99b970a9, 0xfa489411, 0x2264e947);
1806	&_data_word(0xc48cfca8, 0x1a3ff0a0, 0xd82c7d56, 0xef903322);
1807	&_data_word(0xc74e4987, 0xc1d138d9, 0xfea2ca8c, 0x360bd498);
1808	&_data_word(0xcf81f5a6, 0x28de7aa5, 0x268eb7da, 0xa4bfad3f);
1809	&_data_word(0xe49d3a2c, 0x0d927850, 0x9bcc5f6a, 0x62467e54);
1810	&_data_word(0xc2138df6, 0xe8b8d890, 0x5ef7392e, 0xf5afc382);
1811	&_data_word(0xbe805d9f, 0x7c93d069, 0xa92dd56f, 0xb31225cf);
1812	&_data_word(0x3b99acc8, 0xa77d1810, 0x6e639ce8, 0x7bbb3bdb);
1813	&_data_word(0x097826cd, 0xf418596e, 0x01b79aec, 0xa89a4f83);
1814	&_data_word(0x656e95e6, 0x7ee6ffaa, 0x08cfbc21, 0xe6e815ef);
1815	&_data_word(0xd99be7ba, 0xce366f4a, 0xd4099fea, 0xd67cb029);
1816	&_data_word(0xafb2a431, 0x31233f2a, 0x3094a5c6, 0xc066a235);
1817	&_data_word(0x37bc4e74, 0xa6ca82fc, 0xb0d090e0, 0x15d8a733);
1818	&_data_word(0x4a9804f1, 0xf7daec41, 0x0e50cd7f, 0x2ff69117);
1819	&_data_word(0x8dd64d76, 0x4db0ef43, 0x544daacc, 0xdf0496e4);
1820	&_data_word(0xe3b5d19e, 0x1b886a4c, 0xb81f2cc1, 0x7f516546);
1821	&_data_word(0x04ea5e9d, 0x5d358c01, 0x737487fa, 0x2e410bfb);
1822	&_data_word(0x5a1d67b3, 0x52d2db92, 0x335610e9, 0x1347d66d);
1823	&_data_word(0x8c61d79a, 0x7a0ca137, 0x8e14f859, 0x893c13eb);
1824	&_data_word(0xee27a9ce, 0x35c961b7, 0xede51ce1, 0x3cb1477a);
1825	&_data_word(0x59dfd29c, 0x3f73f255, 0x79ce1418, 0xbf37c773);
1826	&_data_word(0xeacdf753, 0x5baafd5f, 0x146f3ddf, 0x86db4478);
1827	&_data_word(0x81f3afca, 0x3ec468b9, 0x2c342438, 0x5f40a3c2);
1828	&_data_word(0x72c31d16, 0x0c25e2bc, 0x8b493c28, 0x41950dff);
1829	&_data_word(0x7101a839, 0xdeb30c08, 0x9ce4b4d8, 0x90c15664);
1830	&_data_word(0x6184cb7b, 0x70b632d5, 0x745c6c48, 0x4257b8d0);
1831
1832#Td4:	# four copies of Td4 to choose from to avoid L1 aliasing
1833	&data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
1834	&data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
1835	&data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
1836	&data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
1837	&data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
1838	&data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
1839	&data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
1840	&data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
1841	&data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
1842	&data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
1843	&data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
1844	&data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
1845	&data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
1846	&data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
1847	&data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
1848	&data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
1849	&data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
1850	&data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
1851	&data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
1852	&data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
1853	&data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
1854	&data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
1855	&data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
1856	&data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
1857	&data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
1858	&data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
1859	&data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
1860	&data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
1861	&data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
1862	&data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
1863	&data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
1864	&data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
1865
1866	&data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
1867	&data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
1868	&data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
1869	&data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
1870	&data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
1871	&data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
1872	&data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
1873	&data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
1874	&data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
1875	&data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
1876	&data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
1877	&data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
1878	&data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
1879	&data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
1880	&data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
1881	&data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
1882	&data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
1883	&data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
1884	&data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
1885	&data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
1886	&data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
1887	&data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
1888	&data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
1889	&data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
1890	&data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
1891	&data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
1892	&data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
1893	&data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
1894	&data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
1895	&data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
1896	&data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
1897	&data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
1898
1899	&data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
1900	&data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
1901	&data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
1902	&data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
1903	&data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
1904	&data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
1905	&data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
1906	&data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
1907	&data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
1908	&data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
1909	&data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
1910	&data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
1911	&data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
1912	&data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
1913	&data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
1914	&data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
1915	&data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
1916	&data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
1917	&data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
1918	&data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
1919	&data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
1920	&data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
1921	&data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
1922	&data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
1923	&data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
1924	&data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
1925	&data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
1926	&data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
1927	&data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
1928	&data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
1929	&data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
1930	&data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
1931
1932	&data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
1933	&data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
1934	&data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
1935	&data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
1936	&data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
1937	&data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
1938	&data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
1939	&data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
1940	&data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
1941	&data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
1942	&data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
1943	&data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
1944	&data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
1945	&data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
1946	&data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
1947	&data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
1948	&data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
1949	&data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
1950	&data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
1951	&data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
1952	&data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
1953	&data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
1954	&data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
1955	&data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
1956	&data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
1957	&data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
1958	&data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
1959	&data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
1960	&data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
1961	&data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
1962	&data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
1963	&data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
1964&function_end_B("_x86_AES_decrypt");
1965
1966# void AES_decrypt (const void *inp,void *out,const AES_KEY *key);
1967&function_begin("AES_decrypt");
1968	&mov	($acc,&wparam(0));		# load inp
1969	&mov	($key,&wparam(2));		# load key
1970
1971	&mov	($s0,"esp");
1972	&sub	("esp",36);
1973	&and	("esp",-64);			# align to cache-line
1974
1975	# place stack frame just "above" the key schedule
1976	&lea	($s1,&DWP(-64-63,$key));
1977	&sub	($s1,"esp");
1978	&neg	($s1);
1979	&and	($s1,0x3C0);	# modulo 1024, but aligned to cache-line
1980	&sub	("esp",$s1);
1981	&add	("esp",4);	# 4 is reserved for caller's return address
1982	&mov	($_esp,$s0);	# save stack pointer
1983
1984	&call   (&label("pic_point"));          # make it PIC!
1985	&set_label("pic_point");
1986	&blindpop($tbl);
1987	&picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if(!$x86only);
1988	&lea    ($tbl,&DWP(&label("AES_Td")."-".&label("pic_point"),$tbl));
1989
1990	# pick Td4 copy which can't "overlap" with stack frame or key schedule
1991	&lea	($s1,&DWP(768-4,"esp"));
1992	&sub	($s1,$tbl);
1993	&and	($s1,0x300);
1994	&lea	($tbl,&DWP(2048+128,$tbl,$s1));
1995
1996					if (!$x86only) {
1997	&bt	(&DWP(0,$s0),25);	# check for SSE bit
1998	&jnc	(&label("x86"));
1999
2000	&movq	("mm0",&QWP(0,$acc));
2001	&movq	("mm4",&QWP(8,$acc));
2002	&call	("_sse_AES_decrypt_compact");
2003	&mov	("esp",$_esp);			# restore stack pointer
2004	&mov	($acc,&wparam(1));		# load out
2005	&movq	(&QWP(0,$acc),"mm0");		# write output data
2006	&movq	(&QWP(8,$acc),"mm4");
2007	&emms	();
2008	&function_end_A();
2009					}
2010	&set_label("x86",16);
2011	&mov	($_tbl,$tbl);
2012	&mov	($s0,&DWP(0,$acc));		# load input data
2013	&mov	($s1,&DWP(4,$acc));
2014	&mov	($s2,&DWP(8,$acc));
2015	&mov	($s3,&DWP(12,$acc));
2016	&call	("_x86_AES_decrypt_compact");
2017	&mov	("esp",$_esp);			# restore stack pointer
2018	&mov	($acc,&wparam(1));		# load out
2019	&mov	(&DWP(0,$acc),$s0);		# write output data
2020	&mov	(&DWP(4,$acc),$s1);
2021	&mov	(&DWP(8,$acc),$s2);
2022	&mov	(&DWP(12,$acc),$s3);
2023&function_end("AES_decrypt");
2024
2025# void AES_cbc_encrypt (const void char *inp, unsigned char *out,
2026#			size_t length, const AES_KEY *key,
2027#			unsigned char *ivp,const int enc);
2028{
2029# stack frame layout
2030#             -4(%esp)		# return address	 0(%esp)
2031#              0(%esp)		# s0 backing store	 4(%esp)
2032#              4(%esp)		# s1 backing store	 8(%esp)
2033#              8(%esp)		# s2 backing store	12(%esp)
2034#             12(%esp)		# s3 backing store	16(%esp)
2035#             16(%esp)		# key backup		20(%esp)
2036#             20(%esp)		# end of key schedule	24(%esp)
2037#             24(%esp)		# %ebp backup		28(%esp)
2038#             28(%esp)		# %esp backup
2039my $_inp=&DWP(32,"esp");	# copy of wparam(0)
2040my $_out=&DWP(36,"esp");	# copy of wparam(1)
2041my $_len=&DWP(40,"esp");	# copy of wparam(2)
2042my $_key=&DWP(44,"esp");	# copy of wparam(3)
2043my $_ivp=&DWP(48,"esp");	# copy of wparam(4)
2044my $_tmp=&DWP(52,"esp");	# volatile variable
2045#
2046my $ivec=&DWP(60,"esp");	# ivec[16]
2047my $aes_key=&DWP(76,"esp");	# copy of aes_key
2048my $mark=&DWP(76+240,"esp");	# copy of aes_key->rounds
2049
2050&function_begin("AES_cbc_encrypt");
2051	&mov	($s2 eq "ecx"? $s2 : "",&wparam(2));	# load len
2052	&cmp	($s2,0);
2053	&je	(&label("drop_out"));
2054
2055	&call   (&label("pic_point"));		# make it PIC!
2056	&set_label("pic_point");
2057	&blindpop($tbl);
2058	&picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if(!$x86only);
2059
2060	&cmp	(&wparam(5),0);
2061	&lea    ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl));
2062	&jne	(&label("picked_te"));
2063	&lea	($tbl,&DWP(&label("AES_Td")."-".&label("AES_Te"),$tbl));
2064	&set_label("picked_te");
2065
2066	# one can argue if this is required
2067	&pushf	();
2068	&cld	();
2069
2070	&cmp	($s2,$speed_limit);
2071	&jb	(&label("slow_way"));
2072	&test	($s2,15);
2073	&jnz	(&label("slow_way"));
2074					if (!$x86only) {
2075	&bt	(&DWP(0,$s0),28);	# check for hyper-threading bit
2076	&jc	(&label("slow_way"));
2077					}
2078	# pre-allocate aligned stack frame...
2079	&lea	($acc,&DWP(-80-244,"esp"));
2080	&and	($acc,-64);
2081
2082	# ... and make sure it doesn't alias with $tbl modulo 4096
2083	&mov	($s0,$tbl);
2084	&lea	($s1,&DWP(2048+256,$tbl));
2085	&mov	($s3,$acc);
2086	&and	($s0,0xfff);		# s = %ebp&0xfff
2087	&and	($s1,0xfff);		# e = (%ebp+2048+256)&0xfff
2088	&and	($s3,0xfff);		# p = %esp&0xfff
2089
2090	&cmp	($s3,$s1);		# if (p>=e) %esp =- (p-e);
2091	&jb	(&label("tbl_break_out"));
2092	&sub	($s3,$s1);
2093	&sub	($acc,$s3);
2094	&jmp	(&label("tbl_ok"));
2095	&set_label("tbl_break_out",4);	# else %esp -= (p-s)&0xfff + framesz;
2096	&sub	($s3,$s0);
2097	&and	($s3,0xfff);
2098	&add	($s3,384);
2099	&sub	($acc,$s3);
2100	&set_label("tbl_ok",4);
2101
2102	&lea	($s3,&wparam(0));	# obtain pointer to parameter block
2103	&exch	("esp",$acc);		# allocate stack frame
2104	&add	("esp",4);		# reserve for return address!
2105	&mov	($_tbl,$tbl);		# save %ebp
2106	&mov	($_esp,$acc);		# save %esp
2107
2108	&mov	($s0,&DWP(0,$s3));	# load inp
2109	&mov	($s1,&DWP(4,$s3));	# load out
2110	#&mov	($s2,&DWP(8,$s3));	# load len
2111	&mov	($key,&DWP(12,$s3));	# load key
2112	&mov	($acc,&DWP(16,$s3));	# load ivp
2113	&mov	($s3,&DWP(20,$s3));	# load enc flag
2114
2115	&mov	($_inp,$s0);		# save copy of inp
2116	&mov	($_out,$s1);		# save copy of out
2117	&mov	($_len,$s2);		# save copy of len
2118	&mov	($_key,$key);		# save copy of key
2119	&mov	($_ivp,$acc);		# save copy of ivp
2120
2121	&mov	($mark,0);		# copy of aes_key->rounds = 0;
2122	# do we copy key schedule to stack?
2123	&mov	($s1 eq "ebx" ? $s1 : "",$key);
2124	&mov	($s2 eq "ecx" ? $s2 : "",244/4);
2125	&sub	($s1,$tbl);
2126	&mov	("esi",$key);
2127	&and	($s1,0xfff);
2128	&lea	("edi",$aes_key);
2129	&cmp	($s1,2048+256);
2130	&jb	(&label("do_copy"));
2131	&cmp	($s1,4096-244);
2132	&jb	(&label("skip_copy"));
2133	&set_label("do_copy",4);
2134		&mov	($_key,"edi");
2135		&data_word(0xA5F3F689);	# rep movsd
2136	&set_label("skip_copy");
2137
2138	&mov	($key,16);
2139	&set_label("prefetch_tbl",4);
2140		&mov	($s0,&DWP(0,$tbl));
2141		&mov	($s1,&DWP(32,$tbl));
2142		&mov	($s2,&DWP(64,$tbl));
2143		&mov	($acc,&DWP(96,$tbl));
2144		&lea	($tbl,&DWP(128,$tbl));
2145		&sub	($key,1);
2146	&jnz	(&label("prefetch_tbl"));
2147	&sub	($tbl,2048);
2148
2149	&mov	($acc,$_inp);
2150	&mov	($key,$_ivp);
2151
2152	&cmp	($s3,0);
2153	&je	(&label("fast_decrypt"));
2154
2155#----------------------------- ENCRYPT -----------------------------#
2156	&mov	($s0,&DWP(0,$key));		# load iv
2157	&mov	($s1,&DWP(4,$key));
2158
2159	&set_label("fast_enc_loop",16);
2160		&mov	($s2,&DWP(8,$key));
2161		&mov	($s3,&DWP(12,$key));
2162
2163		&xor	($s0,&DWP(0,$acc));	# xor input data
2164		&xor	($s1,&DWP(4,$acc));
2165		&xor	($s2,&DWP(8,$acc));
2166		&xor	($s3,&DWP(12,$acc));
2167
2168		&mov	($key,$_key);		# load key
2169		&call	("_x86_AES_encrypt");
2170
2171		&mov	($acc,$_inp);		# load inp
2172		&mov	($key,$_out);		# load out
2173
2174		&mov	(&DWP(0,$key),$s0);	# save output data
2175		&mov	(&DWP(4,$key),$s1);
2176		&mov	(&DWP(8,$key),$s2);
2177		&mov	(&DWP(12,$key),$s3);
2178
2179		&lea	($acc,&DWP(16,$acc));	# advance inp
2180		&mov	($s2,$_len);		# load len
2181		&mov	($_inp,$acc);		# save inp
2182		&lea	($s3,&DWP(16,$key));	# advance out
2183		&mov	($_out,$s3);		# save out
2184		&sub	($s2,16);		# decrease len
2185		&mov	($_len,$s2);		# save len
2186	&jnz	(&label("fast_enc_loop"));
2187	&mov	($acc,$_ivp);		# load ivp
2188	&mov	($s2,&DWP(8,$key));	# restore last 2 dwords
2189	&mov	($s3,&DWP(12,$key));
2190	&mov	(&DWP(0,$acc),$s0);	# save ivec
2191	&mov	(&DWP(4,$acc),$s1);
2192	&mov	(&DWP(8,$acc),$s2);
2193	&mov	(&DWP(12,$acc),$s3);
2194
2195	&cmp	($mark,0);		# was the key schedule copied?
2196	&mov	("edi",$_key);
2197	&je	(&label("skip_ezero"));
2198	# zero copy of key schedule
2199	&mov	("ecx",240/4);
2200	&xor	("eax","eax");
2201	&align	(4);
2202	&data_word(0xABF3F689);		# rep stosd
2203	&set_label("skip_ezero");
2204	&mov	("esp",$_esp);
2205	&popf	();
2206    &set_label("drop_out");
2207	&function_end_A();
2208	&pushf	();			# kludge, never executed
2209
2210#----------------------------- DECRYPT -----------------------------#
2211&set_label("fast_decrypt",16);
2212
2213	&cmp	($acc,$_out);
2214	&je	(&label("fast_dec_in_place"));	# in-place processing...
2215
2216	&mov	($_tmp,$key);
2217
2218	&align	(4);
2219	&set_label("fast_dec_loop",16);
2220		&mov	($s0,&DWP(0,$acc));	# read input
2221		&mov	($s1,&DWP(4,$acc));
2222		&mov	($s2,&DWP(8,$acc));
2223		&mov	($s3,&DWP(12,$acc));
2224
2225		&mov	($key,$_key);		# load key
2226		&call	("_x86_AES_decrypt");
2227
2228		&mov	($key,$_tmp);		# load ivp
2229		&mov	($acc,$_len);		# load len
2230		&xor	($s0,&DWP(0,$key));	# xor iv
2231		&xor	($s1,&DWP(4,$key));
2232		&xor	($s2,&DWP(8,$key));
2233		&xor	($s3,&DWP(12,$key));
2234
2235		&mov	($key,$_out);		# load out
2236		&mov	($acc,$_inp);		# load inp
2237
2238		&mov	(&DWP(0,$key),$s0);	# write output
2239		&mov	(&DWP(4,$key),$s1);
2240		&mov	(&DWP(8,$key),$s2);
2241		&mov	(&DWP(12,$key),$s3);
2242
2243		&mov	($s2,$_len);		# load len
2244		&mov	($_tmp,$acc);		# save ivp
2245		&lea	($acc,&DWP(16,$acc));	# advance inp
2246		&mov	($_inp,$acc);		# save inp
2247		&lea	($key,&DWP(16,$key));	# advance out
2248		&mov	($_out,$key);		# save out
2249		&sub	($s2,16);		# decrease len
2250		&mov	($_len,$s2);		# save len
2251	&jnz	(&label("fast_dec_loop"));
2252	&mov	($key,$_tmp);		# load temp ivp
2253	&mov	($acc,$_ivp);		# load user ivp
2254	&mov	($s0,&DWP(0,$key));	# load iv
2255	&mov	($s1,&DWP(4,$key));
2256	&mov	($s2,&DWP(8,$key));
2257	&mov	($s3,&DWP(12,$key));
2258	&mov	(&DWP(0,$acc),$s0);	# copy back to user
2259	&mov	(&DWP(4,$acc),$s1);
2260	&mov	(&DWP(8,$acc),$s2);
2261	&mov	(&DWP(12,$acc),$s3);
2262	&jmp	(&label("fast_dec_out"));
2263
2264    &set_label("fast_dec_in_place",16);
2265	&set_label("fast_dec_in_place_loop");
2266		&mov	($s0,&DWP(0,$acc));	# read input
2267		&mov	($s1,&DWP(4,$acc));
2268		&mov	($s2,&DWP(8,$acc));
2269		&mov	($s3,&DWP(12,$acc));
2270
2271		&lea	($key,$ivec);
2272		&mov	(&DWP(0,$key),$s0);	# copy to temp
2273		&mov	(&DWP(4,$key),$s1);
2274		&mov	(&DWP(8,$key),$s2);
2275		&mov	(&DWP(12,$key),$s3);
2276
2277		&mov	($key,$_key);		# load key
2278		&call	("_x86_AES_decrypt");
2279
2280		&mov	($key,$_ivp);		# load ivp
2281		&mov	($acc,$_out);		# load out
2282		&xor	($s0,&DWP(0,$key));	# xor iv
2283		&xor	($s1,&DWP(4,$key));
2284		&xor	($s2,&DWP(8,$key));
2285		&xor	($s3,&DWP(12,$key));
2286
2287		&mov	(&DWP(0,$acc),$s0);	# write output
2288		&mov	(&DWP(4,$acc),$s1);
2289		&mov	(&DWP(8,$acc),$s2);
2290		&mov	(&DWP(12,$acc),$s3);
2291
2292		&lea	($acc,&DWP(16,$acc));	# advance out
2293		&mov	($_out,$acc);		# save out
2294
2295		&lea	($acc,$ivec);
2296		&mov	($s0,&DWP(0,$acc));	# read temp
2297		&mov	($s1,&DWP(4,$acc));
2298		&mov	($s2,&DWP(8,$acc));
2299		&mov	($s3,&DWP(12,$acc));
2300
2301		&mov	(&DWP(0,$key),$s0);	# copy iv
2302		&mov	(&DWP(4,$key),$s1);
2303		&mov	(&DWP(8,$key),$s2);
2304		&mov	(&DWP(12,$key),$s3);
2305
2306		&mov	($acc,$_inp);		# load inp
2307		&mov	($s2,$_len);		# load len
2308		&lea	($acc,&DWP(16,$acc));	# advance inp
2309		&mov	($_inp,$acc);		# save inp
2310		&sub	($s2,16);		# decrease len
2311		&mov	($_len,$s2);		# save len
2312	&jnz	(&label("fast_dec_in_place_loop"));
2313
2314    &set_label("fast_dec_out",4);
2315	&cmp	($mark,0);		# was the key schedule copied?
2316	&mov	("edi",$_key);
2317	&je	(&label("skip_dzero"));
2318	# zero copy of key schedule
2319	&mov	("ecx",240/4);
2320	&xor	("eax","eax");
2321	&align	(4);
2322	&data_word(0xABF3F689);		# rep stosd
2323	&set_label("skip_dzero");
2324	&mov	("esp",$_esp);
2325	&popf	();
2326	&function_end_A();
2327	&pushf	();			# kludge, never executed
2328
2329#--------------------------- SLOW ROUTINE ---------------------------#
2330&set_label("slow_way",16);
2331
2332	&mov	($s0,&DWP(0,$s0)) if (!$x86only);# load OPENSSL_ia32cap
2333	&mov	($key,&wparam(3));	# load key
2334
2335	# pre-allocate aligned stack frame...
2336	&lea	($acc,&DWP(-80,"esp"));
2337	&and	($acc,-64);
2338
2339	# ... and make sure it doesn't alias with $key modulo 1024
2340	&lea	($s1,&DWP(-80-63,$key));
2341	&sub	($s1,$acc);
2342	&neg	($s1);
2343	&and	($s1,0x3C0);	# modulo 1024, but aligned to cache-line
2344	&sub	($acc,$s1);
2345
2346	# pick S-box copy which can't overlap with stack frame or $key
2347	&lea	($s1,&DWP(768,$acc));
2348	&sub	($s1,$tbl);
2349	&and	($s1,0x300);
2350	&lea	($tbl,&DWP(2048+128,$tbl,$s1));
2351
2352	&lea	($s3,&wparam(0));	# pointer to parameter block
2353
2354	&exch	("esp",$acc);
2355	&add	("esp",4);		# reserve for return address!
2356	&mov	($_tbl,$tbl);		# save %ebp
2357	&mov	($_esp,$acc);		# save %esp
2358	&mov	($_tmp,$s0);		# save OPENSSL_ia32cap
2359
2360	&mov	($s0,&DWP(0,$s3));	# load inp
2361	&mov	($s1,&DWP(4,$s3));	# load out
2362	#&mov	($s2,&DWP(8,$s3));	# load len
2363	#&mov	($key,&DWP(12,$s3));	# load key
2364	&mov	($acc,&DWP(16,$s3));	# load ivp
2365	&mov	($s3,&DWP(20,$s3));	# load enc flag
2366
2367	&mov	($_inp,$s0);		# save copy of inp
2368	&mov	($_out,$s1);		# save copy of out
2369	&mov	($_len,$s2);		# save copy of len
2370	&mov	($_key,$key);		# save copy of key
2371	&mov	($_ivp,$acc);		# save copy of ivp
2372
2373	&mov	($key,$acc);
2374	&mov	($acc,$s0);
2375
2376	&cmp	($s3,0);
2377	&je	(&label("slow_decrypt"));
2378
2379#--------------------------- SLOW ENCRYPT ---------------------------#
2380	&cmp	($s2,16);
2381	&mov	($s3,$s1);
2382	&jb	(&label("slow_enc_tail"));
2383
2384					if (!$x86only) {
2385	&bt	($_tmp,25);		# check for SSE bit
2386	&jnc	(&label("slow_enc_x86"));
2387
2388	&movq	("mm0",&QWP(0,$key));	# load iv
2389	&movq	("mm4",&QWP(8,$key));
2390
2391	&set_label("slow_enc_loop_sse",16);
2392		&pxor	("mm0",&QWP(0,$acc));	# xor input data
2393		&pxor	("mm4",&QWP(8,$acc));
2394
2395		&mov	($key,$_key);
2396		&call	("_sse_AES_encrypt_compact");
2397
2398		&mov	($acc,$_inp);		# load inp
2399		&mov	($key,$_out);		# load out
2400		&mov	($s2,$_len);		# load len
2401
2402		&movq	(&QWP(0,$key),"mm0");	# save output data
2403		&movq	(&QWP(8,$key),"mm4");
2404
2405		&lea	($acc,&DWP(16,$acc));	# advance inp
2406		&mov	($_inp,$acc);		# save inp
2407		&lea	($s3,&DWP(16,$key));	# advance out
2408		&mov	($_out,$s3);		# save out
2409		&sub	($s2,16);		# decrease len
2410		&cmp	($s2,16);
2411		&mov	($_len,$s2);		# save len
2412	&jae	(&label("slow_enc_loop_sse"));
2413	&test	($s2,15);
2414	&jnz	(&label("slow_enc_tail"));
2415	&mov	($acc,$_ivp);		# load ivp
2416	&movq	(&QWP(0,$acc),"mm0");	# save ivec
2417	&movq	(&QWP(8,$acc),"mm4");
2418	&emms	();
2419	&mov	("esp",$_esp);
2420	&popf	();
2421	&function_end_A();
2422	&pushf	();			# kludge, never executed
2423					}
2424    &set_label("slow_enc_x86",16);
2425	&mov	($s0,&DWP(0,$key));	# load iv
2426	&mov	($s1,&DWP(4,$key));
2427
2428	&set_label("slow_enc_loop_x86",4);
2429		&mov	($s2,&DWP(8,$key));
2430		&mov	($s3,&DWP(12,$key));
2431
2432		&xor	($s0,&DWP(0,$acc));	# xor input data
2433		&xor	($s1,&DWP(4,$acc));
2434		&xor	($s2,&DWP(8,$acc));
2435		&xor	($s3,&DWP(12,$acc));
2436
2437		&mov	($key,$_key);		# load key
2438		&call	("_x86_AES_encrypt_compact");
2439
2440		&mov	($acc,$_inp);		# load inp
2441		&mov	($key,$_out);		# load out
2442
2443		&mov	(&DWP(0,$key),$s0);	# save output data
2444		&mov	(&DWP(4,$key),$s1);
2445		&mov	(&DWP(8,$key),$s2);
2446		&mov	(&DWP(12,$key),$s3);
2447
2448		&mov	($s2,$_len);		# load len
2449		&lea	($acc,&DWP(16,$acc));	# advance inp
2450		&mov	($_inp,$acc);		# save inp
2451		&lea	($s3,&DWP(16,$key));	# advance out
2452		&mov	($_out,$s3);		# save out
2453		&sub	($s2,16);		# decrease len
2454		&cmp	($s2,16);
2455		&mov	($_len,$s2);		# save len
2456	&jae	(&label("slow_enc_loop_x86"));
2457	&test	($s2,15);
2458	&jnz	(&label("slow_enc_tail"));
2459	&mov	($acc,$_ivp);		# load ivp
2460	&mov	($s2,&DWP(8,$key));	# restore last dwords
2461	&mov	($s3,&DWP(12,$key));
2462	&mov	(&DWP(0,$acc),$s0);	# save ivec
2463	&mov	(&DWP(4,$acc),$s1);
2464	&mov	(&DWP(8,$acc),$s2);
2465	&mov	(&DWP(12,$acc),$s3);
2466
2467	&mov	("esp",$_esp);
2468	&popf	();
2469	&function_end_A();
2470	&pushf	();			# kludge, never executed
2471
2472    &set_label("slow_enc_tail",16);
2473	&emms	()	if (!$x86only);
2474	&mov	($key eq "edi"? $key:"",$s3);	# load out to edi
2475	&mov	($s1,16);
2476	&sub	($s1,$s2);
2477	&cmp	($key,$acc eq "esi"? $acc:"");	# compare with inp
2478	&je	(&label("enc_in_place"));
2479	&align	(4);
2480	&data_word(0xA4F3F689);	# rep movsb	# copy input
2481	&jmp	(&label("enc_skip_in_place"));
2482    &set_label("enc_in_place");
2483	&lea	($key,&DWP(0,$key,$s2));
2484    &set_label("enc_skip_in_place");
2485	&mov	($s2,$s1);
2486	&xor	($s0,$s0);
2487	&align	(4);
2488	&data_word(0xAAF3F689);	# rep stosb	# zero tail
2489
2490	&mov	($key,$_ivp);			# restore ivp
2491	&mov	($acc,$s3);			# output as input
2492	&mov	($s0,&DWP(0,$key));
2493	&mov	($s1,&DWP(4,$key));
2494	&mov	($_len,16);			# len=16
2495	&jmp	(&label("slow_enc_loop_x86"));	# one more spin...
2496
2497#--------------------------- SLOW DECRYPT ---------------------------#
2498&set_label("slow_decrypt",16);
2499					if (!$x86only) {
2500	&bt	($_tmp,25);		# check for SSE bit
2501	&jnc	(&label("slow_dec_loop_x86"));
2502
2503	&set_label("slow_dec_loop_sse",4);
2504		&movq	("mm0",&QWP(0,$acc));	# read input
2505		&movq	("mm4",&QWP(8,$acc));
2506
2507		&mov	($key,$_key);
2508		&call	("_sse_AES_decrypt_compact");
2509
2510		&mov	($acc,$_inp);		# load inp
2511		&lea	($s0,$ivec);
2512		&mov	($s1,$_out);		# load out
2513		&mov	($s2,$_len);		# load len
2514		&mov	($key,$_ivp);		# load ivp
2515
2516		&movq	("mm1",&QWP(0,$acc));	# re-read input
2517		&movq	("mm5",&QWP(8,$acc));
2518
2519		&pxor	("mm0",&QWP(0,$key));	# xor iv
2520		&pxor	("mm4",&QWP(8,$key));
2521
2522		&movq	(&QWP(0,$key),"mm1");	# copy input to iv
2523		&movq	(&QWP(8,$key),"mm5");
2524
2525		&sub	($s2,16);		# decrease len
2526		&jc	(&label("slow_dec_partial_sse"));
2527
2528		&movq	(&QWP(0,$s1),"mm0");	# write output
2529		&movq	(&QWP(8,$s1),"mm4");
2530
2531		&lea	($s1,&DWP(16,$s1));	# advance out
2532		&mov	($_out,$s1);		# save out
2533		&lea	($acc,&DWP(16,$acc));	# advance inp
2534		&mov	($_inp,$acc);		# save inp
2535		&mov	($_len,$s2);		# save len
2536	&jnz	(&label("slow_dec_loop_sse"));
2537	&emms	();
2538	&mov	("esp",$_esp);
2539	&popf	();
2540	&function_end_A();
2541	&pushf	();			# kludge, never executed
2542
2543    &set_label("slow_dec_partial_sse",16);
2544	&movq	(&QWP(0,$s0),"mm0");	# save output to temp
2545	&movq	(&QWP(8,$s0),"mm4");
2546	&emms	();
2547
2548	&add	($s2 eq "ecx" ? "ecx":"",16);
2549	&mov	("edi",$s1);		# out
2550	&mov	("esi",$s0);		# temp
2551	&align	(4);
2552	&data_word(0xA4F3F689);		# rep movsb # copy partial output
2553
2554	&mov	("esp",$_esp);
2555	&popf	();
2556	&function_end_A();
2557	&pushf	();			# kludge, never executed
2558					}
2559	&set_label("slow_dec_loop_x86",16);
2560		&mov	($s0,&DWP(0,$acc));	# read input
2561		&mov	($s1,&DWP(4,$acc));
2562		&mov	($s2,&DWP(8,$acc));
2563		&mov	($s3,&DWP(12,$acc));
2564
2565		&lea	($key,$ivec);
2566		&mov	(&DWP(0,$key),$s0);	# copy to temp
2567		&mov	(&DWP(4,$key),$s1);
2568		&mov	(&DWP(8,$key),$s2);
2569		&mov	(&DWP(12,$key),$s3);
2570
2571		&mov	($key,$_key);		# load key
2572		&call	("_x86_AES_decrypt_compact");
2573
2574		&mov	($key,$_ivp);		# load ivp
2575		&mov	($acc,$_len);		# load len
2576		&xor	($s0,&DWP(0,$key));	# xor iv
2577		&xor	($s1,&DWP(4,$key));
2578		&xor	($s2,&DWP(8,$key));
2579		&xor	($s3,&DWP(12,$key));
2580
2581		&sub	($acc,16);
2582		&jc	(&label("slow_dec_partial_x86"));
2583
2584		&mov	($_len,$acc);		# save len
2585		&mov	($acc,$_out);		# load out
2586
2587		&mov	(&DWP(0,$acc),$s0);	# write output
2588		&mov	(&DWP(4,$acc),$s1);
2589		&mov	(&DWP(8,$acc),$s2);
2590		&mov	(&DWP(12,$acc),$s3);
2591
2592		&lea	($acc,&DWP(16,$acc));	# advance out
2593		&mov	($_out,$acc);		# save out
2594
2595		&lea	($acc,$ivec);
2596		&mov	($s0,&DWP(0,$acc));	# read temp
2597		&mov	($s1,&DWP(4,$acc));
2598		&mov	($s2,&DWP(8,$acc));
2599		&mov	($s3,&DWP(12,$acc));
2600
2601		&mov	(&DWP(0,$key),$s0);	# copy it to iv
2602		&mov	(&DWP(4,$key),$s1);
2603		&mov	(&DWP(8,$key),$s2);
2604		&mov	(&DWP(12,$key),$s3);
2605
2606		&mov	($acc,$_inp);		# load inp
2607		&lea	($acc,&DWP(16,$acc));	# advance inp
2608		&mov	($_inp,$acc);		# save inp
2609	&jnz	(&label("slow_dec_loop_x86"));
2610	&mov	("esp",$_esp);
2611	&popf	();
2612	&function_end_A();
2613	&pushf	();			# kludge, never executed
2614
2615    &set_label("slow_dec_partial_x86",16);
2616	&lea	($acc,$ivec);
2617	&mov	(&DWP(0,$acc),$s0);	# save output to temp
2618	&mov	(&DWP(4,$acc),$s1);
2619	&mov	(&DWP(8,$acc),$s2);
2620	&mov	(&DWP(12,$acc),$s3);
2621
2622	&mov	($acc,$_inp);
2623	&mov	($s0,&DWP(0,$acc));	# re-read input
2624	&mov	($s1,&DWP(4,$acc));
2625	&mov	($s2,&DWP(8,$acc));
2626	&mov	($s3,&DWP(12,$acc));
2627
2628	&mov	(&DWP(0,$key),$s0);	# copy it to iv
2629	&mov	(&DWP(4,$key),$s1);
2630	&mov	(&DWP(8,$key),$s2);
2631	&mov	(&DWP(12,$key),$s3);
2632
2633	&mov	("ecx",$_len);
2634	&mov	("edi",$_out);
2635	&lea	("esi",$ivec);
2636	&align	(4);
2637	&data_word(0xA4F3F689);		# rep movsb # copy partial output
2638
2639	&mov	("esp",$_esp);
2640	&popf	();
2641&function_end("AES_cbc_encrypt");
2642}
2643
2644#------------------------------------------------------------------#
2645
2646sub enckey()
2647{
2648	&movz	("esi",&LB("edx"));		# rk[i]>>0
2649	&movz	("ebx",&BP(-128,$tbl,"esi",1));
2650	&movz	("esi",&HB("edx"));		# rk[i]>>8
2651	&shl	("ebx",24);
2652	&xor	("eax","ebx");
2653
2654	&movz	("ebx",&BP(-128,$tbl,"esi",1));
2655	&shr	("edx",16);
2656	&movz	("esi",&LB("edx"));		# rk[i]>>16
2657	&xor	("eax","ebx");
2658
2659	&movz	("ebx",&BP(-128,$tbl,"esi",1));
2660	&movz	("esi",&HB("edx"));		# rk[i]>>24
2661	&shl	("ebx",8);
2662	&xor	("eax","ebx");
2663
2664	&movz	("ebx",&BP(-128,$tbl,"esi",1));
2665	&shl	("ebx",16);
2666	&xor	("eax","ebx");
2667
2668	&xor	("eax",&DWP(1024-128,$tbl,"ecx",4));	# rcon
2669}
2670
2671&function_begin("_x86_AES_set_encrypt_key");
2672	&mov	("esi",&wparam(1));		# user supplied key
2673	&mov	("edi",&wparam(3));		# private key schedule
2674
2675	&test	("esi",-1);
2676	&jz	(&label("badpointer"));
2677	&test	("edi",-1);
2678	&jz	(&label("badpointer"));
2679
2680	&call	(&label("pic_point"));
2681	&set_label("pic_point");
2682	&blindpop($tbl);
2683	&lea	($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl));
2684	&lea	($tbl,&DWP(2048+128,$tbl));
2685
2686	# prefetch Te4
2687	&mov	("eax",&DWP(0-128,$tbl));
2688	&mov	("ebx",&DWP(32-128,$tbl));
2689	&mov	("ecx",&DWP(64-128,$tbl));
2690	&mov	("edx",&DWP(96-128,$tbl));
2691	&mov	("eax",&DWP(128-128,$tbl));
2692	&mov	("ebx",&DWP(160-128,$tbl));
2693	&mov	("ecx",&DWP(192-128,$tbl));
2694	&mov	("edx",&DWP(224-128,$tbl));
2695
2696	&mov	("ecx",&wparam(2));		# number of bits in key
2697	&cmp	("ecx",128);
2698	&je	(&label("10rounds"));
2699	&cmp	("ecx",192);
2700	&je	(&label("12rounds"));
2701	&cmp	("ecx",256);
2702	&je	(&label("14rounds"));
2703	&mov	("eax",-2);			# invalid number of bits
2704	&jmp	(&label("exit"));
2705
2706    &set_label("10rounds");
2707	&mov	("eax",&DWP(0,"esi"));		# copy first 4 dwords
2708	&mov	("ebx",&DWP(4,"esi"));
2709	&mov	("ecx",&DWP(8,"esi"));
2710	&mov	("edx",&DWP(12,"esi"));
2711	&mov	(&DWP(0,"edi"),"eax");
2712	&mov	(&DWP(4,"edi"),"ebx");
2713	&mov	(&DWP(8,"edi"),"ecx");
2714	&mov	(&DWP(12,"edi"),"edx");
2715
2716	&xor	("ecx","ecx");
2717	&jmp	(&label("10shortcut"));
2718
2719	&align	(4);
2720	&set_label("10loop");
2721		&mov	("eax",&DWP(0,"edi"));		# rk[0]
2722		&mov	("edx",&DWP(12,"edi"));		# rk[3]
2723	&set_label("10shortcut");
2724		&enckey	();
2725
2726		&mov	(&DWP(16,"edi"),"eax");		# rk[4]
2727		&xor	("eax",&DWP(4,"edi"));
2728		&mov	(&DWP(20,"edi"),"eax");		# rk[5]
2729		&xor	("eax",&DWP(8,"edi"));
2730		&mov	(&DWP(24,"edi"),"eax");		# rk[6]
2731		&xor	("eax",&DWP(12,"edi"));
2732		&mov	(&DWP(28,"edi"),"eax");		# rk[7]
2733		&inc	("ecx");
2734		&add	("edi",16);
2735		&cmp	("ecx",10);
2736	&jl	(&label("10loop"));
2737
2738	&mov	(&DWP(80,"edi"),10);		# setup number of rounds
2739	&xor	("eax","eax");
2740	&jmp	(&label("exit"));
2741
2742    &set_label("12rounds");
2743	&mov	("eax",&DWP(0,"esi"));		# copy first 6 dwords
2744	&mov	("ebx",&DWP(4,"esi"));
2745	&mov	("ecx",&DWP(8,"esi"));
2746	&mov	("edx",&DWP(12,"esi"));
2747	&mov	(&DWP(0,"edi"),"eax");
2748	&mov	(&DWP(4,"edi"),"ebx");
2749	&mov	(&DWP(8,"edi"),"ecx");
2750	&mov	(&DWP(12,"edi"),"edx");
2751	&mov	("ecx",&DWP(16,"esi"));
2752	&mov	("edx",&DWP(20,"esi"));
2753	&mov	(&DWP(16,"edi"),"ecx");
2754	&mov	(&DWP(20,"edi"),"edx");
2755
2756	&xor	("ecx","ecx");
2757	&jmp	(&label("12shortcut"));
2758
2759	&align	(4);
2760	&set_label("12loop");
2761		&mov	("eax",&DWP(0,"edi"));		# rk[0]
2762		&mov	("edx",&DWP(20,"edi"));		# rk[5]
2763	&set_label("12shortcut");
2764		&enckey	();
2765
2766		&mov	(&DWP(24,"edi"),"eax");		# rk[6]
2767		&xor	("eax",&DWP(4,"edi"));
2768		&mov	(&DWP(28,"edi"),"eax");		# rk[7]
2769		&xor	("eax",&DWP(8,"edi"));
2770		&mov	(&DWP(32,"edi"),"eax");		# rk[8]
2771		&xor	("eax",&DWP(12,"edi"));
2772		&mov	(&DWP(36,"edi"),"eax");		# rk[9]
2773
2774		&cmp	("ecx",7);
2775		&je	(&label("12break"));
2776		&inc	("ecx");
2777
2778		&xor	("eax",&DWP(16,"edi"));
2779		&mov	(&DWP(40,"edi"),"eax");		# rk[10]
2780		&xor	("eax",&DWP(20,"edi"));
2781		&mov	(&DWP(44,"edi"),"eax");		# rk[11]
2782
2783		&add	("edi",24);
2784	&jmp	(&label("12loop"));
2785
2786	&set_label("12break");
2787	&mov	(&DWP(72,"edi"),12);		# setup number of rounds
2788	&xor	("eax","eax");
2789	&jmp	(&label("exit"));
2790
2791    &set_label("14rounds");
2792	&mov	("eax",&DWP(0,"esi"));		# copy first 8 dwords
2793	&mov	("ebx",&DWP(4,"esi"));
2794	&mov	("ecx",&DWP(8,"esi"));
2795	&mov	("edx",&DWP(12,"esi"));
2796	&mov	(&DWP(0,"edi"),"eax");
2797	&mov	(&DWP(4,"edi"),"ebx");
2798	&mov	(&DWP(8,"edi"),"ecx");
2799	&mov	(&DWP(12,"edi"),"edx");
2800	&mov	("eax",&DWP(16,"esi"));
2801	&mov	("ebx",&DWP(20,"esi"));
2802	&mov	("ecx",&DWP(24,"esi"));
2803	&mov	("edx",&DWP(28,"esi"));
2804	&mov	(&DWP(16,"edi"),"eax");
2805	&mov	(&DWP(20,"edi"),"ebx");
2806	&mov	(&DWP(24,"edi"),"ecx");
2807	&mov	(&DWP(28,"edi"),"edx");
2808
2809	&xor	("ecx","ecx");
2810	&jmp	(&label("14shortcut"));
2811
2812	&align	(4);
2813	&set_label("14loop");
2814		&mov	("edx",&DWP(28,"edi"));		# rk[7]
2815	&set_label("14shortcut");
2816		&mov	("eax",&DWP(0,"edi"));		# rk[0]
2817
2818		&enckey	();
2819
2820		&mov	(&DWP(32,"edi"),"eax");		# rk[8]
2821		&xor	("eax",&DWP(4,"edi"));
2822		&mov	(&DWP(36,"edi"),"eax");		# rk[9]
2823		&xor	("eax",&DWP(8,"edi"));
2824		&mov	(&DWP(40,"edi"),"eax");		# rk[10]
2825		&xor	("eax",&DWP(12,"edi"));
2826		&mov	(&DWP(44,"edi"),"eax");		# rk[11]
2827
2828		&cmp	("ecx",6);
2829		&je	(&label("14break"));
2830		&inc	("ecx");
2831
2832		&mov	("edx","eax");
2833		&mov	("eax",&DWP(16,"edi"));		# rk[4]
2834		&movz	("esi",&LB("edx"));		# rk[11]>>0
2835		&movz	("ebx",&BP(-128,$tbl,"esi",1));
2836		&movz	("esi",&HB("edx"));		# rk[11]>>8
2837		&xor	("eax","ebx");
2838
2839		&movz	("ebx",&BP(-128,$tbl,"esi",1));
2840		&shr	("edx",16);
2841		&shl	("ebx",8);
2842		&movz	("esi",&LB("edx"));		# rk[11]>>16
2843		&xor	("eax","ebx");
2844
2845		&movz	("ebx",&BP(-128,$tbl,"esi",1));
2846		&movz	("esi",&HB("edx"));		# rk[11]>>24
2847		&shl	("ebx",16);
2848		&xor	("eax","ebx");
2849
2850		&movz	("ebx",&BP(-128,$tbl,"esi",1));
2851		&shl	("ebx",24);
2852		&xor	("eax","ebx");
2853
2854		&mov	(&DWP(48,"edi"),"eax");		# rk[12]
2855		&xor	("eax",&DWP(20,"edi"));
2856		&mov	(&DWP(52,"edi"),"eax");		# rk[13]
2857		&xor	("eax",&DWP(24,"edi"));
2858		&mov	(&DWP(56,"edi"),"eax");		# rk[14]
2859		&xor	("eax",&DWP(28,"edi"));
2860		&mov	(&DWP(60,"edi"),"eax");		# rk[15]
2861
2862		&add	("edi",32);
2863	&jmp	(&label("14loop"));
2864
2865	&set_label("14break");
2866	&mov	(&DWP(48,"edi"),14);		# setup number of rounds
2867	&xor	("eax","eax");
2868	&jmp	(&label("exit"));
2869
2870    &set_label("badpointer");
2871	&mov	("eax",-1);
2872    &set_label("exit");
2873&function_end("_x86_AES_set_encrypt_key");
2874
2875# int AES_set_encrypt_key(const unsigned char *userKey, const int bits,
2876#                        AES_KEY *key)
2877&function_begin_B("AES_set_encrypt_key");
2878	&call	("_x86_AES_set_encrypt_key");
2879	&ret	();
2880&function_end_B("AES_set_encrypt_key");
2881
2882sub deckey()
2883{ my ($i,$key,$tp1,$tp2,$tp4,$tp8) = @_;
2884  my $tmp = $tbl;
2885
2886	&mov	($tmp,0x80808080);
2887	&and	($tmp,$tp1);
2888	&lea	($tp2,&DWP(0,$tp1,$tp1));
2889	&mov	($acc,$tmp);
2890	&shr	($tmp,7);
2891	&sub	($acc,$tmp);
2892	&and	($tp2,0xfefefefe);
2893	&and	($acc,0x1b1b1b1b);
2894	&xor	($tp2,$acc);
2895	&mov	($tmp,0x80808080);
2896
2897	&and	($tmp,$tp2);
2898	&lea	($tp4,&DWP(0,$tp2,$tp2));
2899	&mov	($acc,$tmp);
2900	&shr	($tmp,7);
2901	&sub	($acc,$tmp);
2902	&and	($tp4,0xfefefefe);
2903	&and	($acc,0x1b1b1b1b);
2904	 &xor	($tp2,$tp1);	# tp2^tp1
2905	&xor	($tp4,$acc);
2906	&mov	($tmp,0x80808080);
2907
2908	&and	($tmp,$tp4);
2909	&lea	($tp8,&DWP(0,$tp4,$tp4));
2910	&mov	($acc,$tmp);
2911	&shr	($tmp,7);
2912	 &xor	($tp4,$tp1);	# tp4^tp1
2913	&sub	($acc,$tmp);
2914	&and	($tp8,0xfefefefe);
2915	&and	($acc,0x1b1b1b1b);
2916	 &rotl	($tp1,8);	# = ROTATE(tp1,8)
2917	&xor	($tp8,$acc);
2918
2919	&mov	($tmp,&DWP(4*($i+1),$key));	# modulo-scheduled load
2920
2921	&xor	($tp1,$tp2);
2922	&xor	($tp2,$tp8);
2923	&xor	($tp1,$tp4);
2924	&rotl	($tp2,24);
2925	&xor	($tp4,$tp8);
2926	&xor	($tp1,$tp8);	# ^= tp8^(tp4^tp1)^(tp2^tp1)
2927	&rotl	($tp4,16);
2928	&xor	($tp1,$tp2);	# ^= ROTATE(tp8^tp2^tp1,24)
2929	&rotl	($tp8,8);
2930	&xor	($tp1,$tp4);	# ^= ROTATE(tp8^tp4^tp1,16)
2931	&mov	($tp2,$tmp);
2932	&xor	($tp1,$tp8);	# ^= ROTATE(tp8,8)
2933
2934	&mov	(&DWP(4*$i,$key),$tp1);
2935}
2936
2937# int AES_set_decrypt_key(const unsigned char *userKey, const int bits,
2938#                        AES_KEY *key)
2939&function_begin_B("AES_set_decrypt_key");
2940	&call	("_x86_AES_set_encrypt_key");
2941	&cmp	("eax",0);
2942	&je	(&label("proceed"));
2943	&ret	();
2944
2945    &set_label("proceed");
2946	&push	("ebp");
2947	&push	("ebx");
2948	&push	("esi");
2949	&push	("edi");
2950
2951	&mov	("esi",&wparam(2));
2952	&mov	("ecx",&DWP(240,"esi"));	# pull number of rounds
2953	&lea	("ecx",&DWP(0,"","ecx",4));
2954	&lea	("edi",&DWP(0,"esi","ecx",4));	# pointer to last chunk
2955
2956	&set_label("invert",4);			# invert order of chunks
2957		&mov	("eax",&DWP(0,"esi"));
2958		&mov	("ebx",&DWP(4,"esi"));
2959		&mov	("ecx",&DWP(0,"edi"));
2960		&mov	("edx",&DWP(4,"edi"));
2961		&mov	(&DWP(0,"edi"),"eax");
2962		&mov	(&DWP(4,"edi"),"ebx");
2963		&mov	(&DWP(0,"esi"),"ecx");
2964		&mov	(&DWP(4,"esi"),"edx");
2965		&mov	("eax",&DWP(8,"esi"));
2966		&mov	("ebx",&DWP(12,"esi"));
2967		&mov	("ecx",&DWP(8,"edi"));
2968		&mov	("edx",&DWP(12,"edi"));
2969		&mov	(&DWP(8,"edi"),"eax");
2970		&mov	(&DWP(12,"edi"),"ebx");
2971		&mov	(&DWP(8,"esi"),"ecx");
2972		&mov	(&DWP(12,"esi"),"edx");
2973		&add	("esi",16);
2974		&sub	("edi",16);
2975		&cmp	("esi","edi");
2976	&jne	(&label("invert"));
2977
2978	&mov	($key,&wparam(2));
2979	&mov	($acc,&DWP(240,$key));		# pull number of rounds
2980	&lea	($acc,&DWP(-2,$acc,$acc));
2981	&lea	($acc,&DWP(0,$key,$acc,8));
2982	&mov	(&wparam(2),$acc);
2983
2984	&mov	($s0,&DWP(16,$key));		# modulo-scheduled load
2985	&set_label("permute",4);		# permute the key schedule
2986		&add	($key,16);
2987		&deckey	(0,$key,$s0,$s1,$s2,$s3);
2988		&deckey	(1,$key,$s1,$s2,$s3,$s0);
2989		&deckey	(2,$key,$s2,$s3,$s0,$s1);
2990		&deckey	(3,$key,$s3,$s0,$s1,$s2);
2991		&cmp	($key,&wparam(2));
2992	&jb	(&label("permute"));
2993
2994	&xor	("eax","eax");			# return success
2995&function_end("AES_set_decrypt_key");
2996&asciz("AES for x86, CRYPTOGAMS by <appro\@openssl.org>");
2997
2998&asm_finish();
2999
3000close STDOUT;
3001