xref: /freebsd/crypto/openssl/crypto/aes/asm/aes-586.pl (revision d0b2dbfa)
1#! /usr/bin/env perl
2# Copyright 2004-2020 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the Apache License 2.0 (the "License").  You may not use
5# this file except in compliance with the License.  You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9#
10# ====================================================================
11# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
12# project. The module is, however, dual licensed under OpenSSL and
13# CRYPTOGAMS licenses depending on where you obtain it. For further
14# details see http://www.openssl.org/~appro/cryptogams/.
15# ====================================================================
16#
17# Version 4.3.
18#
19# You might fail to appreciate this module performance from the first
20# try. If compared to "vanilla" linux-ia32-icc target, i.e. considered
21# to be *the* best Intel C compiler without -KPIC, performance appears
22# to be virtually identical... But try to re-configure with shared
23# library support... Aha! Intel compiler "suddenly" lags behind by 30%
24# [on P4, more on others]:-) And if compared to position-independent
25# code generated by GNU C, this code performs *more* than *twice* as
26# fast! Yes, all this buzz about PIC means that unlike other hand-
27# coded implementations, this one was explicitly designed to be safe
28# to use even in shared library context... This also means that this
29# code isn't necessarily absolutely fastest "ever," because in order
30# to achieve position independence an extra register has to be
31# off-loaded to stack, which affects the benchmark result.
32#
33# Special note about instruction choice. Do you recall RC4_INT code
34# performing poorly on P4? It might be the time to figure out why.
35# RC4_INT code implies effective address calculations in base+offset*4
36# form. Trouble is that it seems that offset scaling turned to be
37# critical path... At least eliminating scaling resulted in 2.8x RC4
38# performance improvement [as you might recall]. As AES code is hungry
39# for scaling too, I [try to] avoid the latter by favoring off-by-2
40# shifts and masking the result with 0xFF<<2 instead of "boring" 0xFF.
41#
42# As was shown by Dean Gaudet, the above note turned out to be
43# void. Performance improvement with off-by-2 shifts was observed on
44# intermediate implementation, which was spilling yet another register
45# to stack... Final offset*4 code below runs just a tad faster on P4,
46# but exhibits up to 10% improvement on other cores.
47#
48# Second version is "monolithic" replacement for aes_core.c, which in
49# addition to AES_[de|en]crypt implements AES_set_[de|en]cryption_key.
50# This made it possible to implement little-endian variant of the
51# algorithm without modifying the base C code. Motivating factor for
52# the undertaken effort was that it appeared that in tight IA-32
53# register window little-endian flavor could achieve slightly higher
54# Instruction Level Parallelism, and it indeed resulted in up to 15%
55# better performance on most recent µ-archs...
56#
57# Third version adds AES_cbc_encrypt implementation, which resulted in
58# up to 40% performance improvement of CBC benchmark results. 40% was
59# observed on P4 core, where "overall" improvement coefficient, i.e. if
60# compared to PIC generated by GCC and in CBC mode, was observed to be
61# as large as 4x:-) CBC performance is virtually identical to ECB now
62# and on some platforms even better, e.g. 17.6 "small" cycles/byte on
63# Opteron, because certain function prologues and epilogues are
64# effectively taken out of the loop...
65#
66# Version 3.2 implements compressed tables and prefetch of these tables
67# in CBC[!] mode. Former means that 3/4 of table references are now
68# misaligned, which unfortunately has negative impact on elder IA-32
69# implementations, Pentium suffered 30% penalty, PIII - 10%.
70#
71# Version 3.3 avoids L1 cache aliasing between stack frame and
72# S-boxes, and 3.4 - L1 cache aliasing even between key schedule. The
73# latter is achieved by copying the key schedule to controlled place in
74# stack. This unfortunately has rather strong impact on small block CBC
75# performance, ~2x deterioration on 16-byte block if compared to 3.3.
76#
77# Version 3.5 checks if there is L1 cache aliasing between user-supplied
78# key schedule and S-boxes and abstains from copying the former if
79# there is no. This allows end-user to consciously retain small block
80# performance by aligning key schedule in specific manner.
81#
82# Version 3.6 compresses Td4 to 256 bytes and prefetches it in ECB.
83#
84# Current ECB performance numbers for 128-bit key in CPU cycles per
85# processed byte [measure commonly used by AES benchmarkers] are:
86#
87#		small footprint		fully unrolled
88# P4		24			22
89# AMD K8	20			19
90# PIII		25			23
91# Pentium	81			78
92#
93# Version 3.7 reimplements outer rounds as "compact." Meaning that
94# first and last rounds reference compact 256 bytes S-box. This means
95# that first round consumes a lot more CPU cycles and that encrypt
96# and decrypt performance becomes asymmetric. Encrypt performance
97# drops by 10-12%, while decrypt - by 20-25%:-( 256 bytes S-box is
98# aggressively pre-fetched.
99#
100# Version 4.0 effectively rolls back to 3.6 and instead implements
101# additional set of functions, _[x86|sse]_AES_[en|de]crypt_compact,
102# which use exclusively 256 byte S-box. These functions are to be
103# called in modes not concealing plain text, such as ECB, or when
104# we're asked to process smaller amount of data [or unconditionally
105# on hyper-threading CPU]. Currently it's called unconditionally from
106# AES_[en|de]crypt, which affects all modes, but CBC. CBC routine
107# still needs to be modified to switch between slower and faster
108# mode when appropriate... But in either case benchmark landscape
109# changes dramatically and below numbers are CPU cycles per processed
110# byte for 128-bit key.
111#
112#		ECB encrypt	ECB decrypt	CBC large chunk
113# P4		52[54]		83[95]		23
114# AMD K8	46[41]		66[70]		18
115# PIII		41[50]		60[77]		24
116# Core 2	31[36]		45[64]		18.5
117# Atom		76[100]		96[138]		60
118# Pentium	115		150		77
119#
120# Version 4.1 switches to compact S-box even in key schedule setup.
121#
122# Version 4.2 prefetches compact S-box in every SSE round or in other
123# words every cache-line is *guaranteed* to be accessed within ~50
124# cycles window. Why just SSE? Because it's needed on hyper-threading
125# CPU! Which is also why it's prefetched with 64 byte stride. Best
126# part is that it has no negative effect on performance:-)
127#
128# Version 4.3 implements switch between compact and non-compact block
129# functions in AES_cbc_encrypt depending on how much data was asked
130# to be processed in one stroke.
131#
132######################################################################
133# Timing attacks are classified in two classes: synchronous when
134# attacker consciously initiates cryptographic operation and collects
135# timing data of various character afterwards, and asynchronous when
136# malicious code is executed on same CPU simultaneously with AES,
137# instruments itself and performs statistical analysis of this data.
138#
139# As far as synchronous attacks go the root to the AES timing
140# vulnerability is twofold. Firstly, of 256 S-box elements at most 160
141# are referred to in single 128-bit block operation. Well, in C
142# implementation with 4 distinct tables it's actually as little as 40
143# references per 256 elements table, but anyway... Secondly, even
144# though S-box elements are clustered into smaller amount of cache-
145# lines, smaller than 160 and even 40, it turned out that for certain
146# plain-text pattern[s] or simply put chosen plain-text and given key
147# few cache-lines remain unaccessed during block operation. Now, if
148# attacker can figure out this access pattern, he can deduct the key
149# [or at least part of it]. The natural way to mitigate this kind of
150# attacks is to minimize the amount of cache-lines in S-box and/or
151# prefetch them to ensure that every one is accessed for more uniform
152# timing. But note that *if* plain-text was concealed in such way that
153# input to block function is distributed *uniformly*, then attack
154# wouldn't apply. Now note that some encryption modes, most notably
155# CBC, do mask the plain-text in this exact way [secure cipher output
156# is distributed uniformly]. Yes, one still might find input that
157# would reveal the information about given key, but if amount of
158# candidate inputs to be tried is larger than amount of possible key
159# combinations then attack becomes infeasible. This is why revised
160# AES_cbc_encrypt "dares" to switch to larger S-box when larger chunk
161# of data is to be processed in one stroke. The current size limit of
162# 512 bytes is chosen to provide same [diminishingly low] probability
163# for cache-line to remain untouched in large chunk operation with
164# large S-box as for single block operation with compact S-box and
165# surely needs more careful consideration...
166#
167# As for asynchronous attacks. There are two flavours: attacker code
168# being interleaved with AES on hyper-threading CPU at *instruction*
169# level, and two processes time sharing single core. As for latter.
170# Two vectors. 1. Given that attacker process has higher priority,
171# yield execution to process performing AES just before timer fires
172# off the scheduler, immediately regain control of CPU and analyze the
173# cache state. For this attack to be efficient attacker would have to
174# effectively slow down the operation by several *orders* of magnitude,
175# by ratio of time slice to duration of handful of AES rounds, which
176# unlikely to remain unnoticed. Not to mention that this also means
177# that he would spend correspondingly more time to collect enough
178# statistical data to mount the attack. It's probably appropriate to
179# say that if adversary reckons that this attack is beneficial and
180# risks to be noticed, you probably have larger problems having him
181# mere opportunity. In other words suggested code design expects you
182# to preclude/mitigate this attack by overall system security design.
183# 2. Attacker manages to make his code interrupt driven. In order for
184# this kind of attack to be feasible, interrupt rate has to be high
185# enough, again comparable to duration of handful of AES rounds. But
186# is there interrupt source of such rate? Hardly, not even 1Gbps NIC
187# generates interrupts at such raging rate...
188#
189# And now back to the former, hyper-threading CPU or more specifically
190# Intel P4. Recall that asynchronous attack implies that malicious
191# code instruments itself. And naturally instrumentation granularity
192# has be noticeably lower than duration of codepath accessing S-box.
193# Given that all cache-lines are accessed during that time that is.
194# Current implementation accesses *all* cache-lines within ~50 cycles
195# window, which is actually *less* than RDTSC latency on Intel P4!
196
197$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
198push(@INC,"${dir}","${dir}../../perlasm");
199require "x86asm.pl";
200
201$output = pop and open STDOUT,">$output";
202
203&asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386");
204&static_label("AES_Te");
205&static_label("AES_Td");
206
207$s0="eax";
208$s1="ebx";
209$s2="ecx";
210$s3="edx";
211$key="edi";
212$acc="esi";
213$tbl="ebp";
214
215# stack frame layout in _[x86|sse]_AES_* routines, frame is allocated
216# by caller
217$__ra=&DWP(0,"esp");	# return address
218$__s0=&DWP(4,"esp");	# s0 backing store
219$__s1=&DWP(8,"esp");	# s1 backing store
220$__s2=&DWP(12,"esp");	# s2 backing store
221$__s3=&DWP(16,"esp");	# s3 backing store
222$__key=&DWP(20,"esp");	# pointer to key schedule
223$__end=&DWP(24,"esp");	# pointer to end of key schedule
224$__tbl=&DWP(28,"esp");	# %ebp backing store
225
226# stack frame layout in AES_[en|crypt] routines, which differs from
227# above by 4 and overlaps by %ebp backing store
228$_tbl=&DWP(24,"esp");
229$_esp=&DWP(28,"esp");
230
231sub _data_word() { my $i; while(defined($i=shift)) { &data_word($i,$i); } }
232
233$speed_limit=512;	# chunks smaller than $speed_limit are
234			# processed with compact routine in CBC mode
235$small_footprint=1;	# $small_footprint=1 code is ~5% slower [on
236			# recent µ-archs], but ~5 times smaller!
237			# I favor compact code to minimize cache
238			# contention and in hope to "collect" 5% back
239			# in real-life applications...
240
241$vertical_spin=0;	# shift "vertically" defaults to 0, because of
242			# its proof-of-concept status...
243# Note that there is no decvert(), as well as last encryption round is
244# performed with "horizontal" shifts. This is because this "vertical"
245# implementation [one which groups shifts on a given $s[i] to form a
246# "column," unlike "horizontal" one, which groups shifts on different
247# $s[i] to form a "row"] is work in progress. It was observed to run
248# few percents faster on Intel cores, but not AMD. On AMD K8 core it's
249# whole 12% slower:-( So we face a trade-off... Shall it be resolved
250# some day? Till then the code is considered experimental and by
251# default remains dormant...
252
253sub encvert()
254{ my ($te,@s) = @_;
255  my ($v0,$v1) = ($acc,$key);
256
257	&mov	($v0,$s[3]);				# copy s3
258	&mov	(&DWP(4,"esp"),$s[2]);			# save s2
259	&mov	($v1,$s[0]);				# copy s0
260	&mov	(&DWP(8,"esp"),$s[1]);			# save s1
261
262	&movz	($s[2],&HB($s[0]));
263	&and	($s[0],0xFF);
264	&mov	($s[0],&DWP(0,$te,$s[0],8));		# s0>>0
265	&shr	($v1,16);
266	&mov	($s[3],&DWP(3,$te,$s[2],8));		# s0>>8
267	&movz	($s[1],&HB($v1));
268	&and	($v1,0xFF);
269	&mov	($s[2],&DWP(2,$te,$v1,8));		# s0>>16
270	 &mov	($v1,$v0);
271	&mov	($s[1],&DWP(1,$te,$s[1],8));		# s0>>24
272
273	&and	($v0,0xFF);
274	&xor	($s[3],&DWP(0,$te,$v0,8));		# s3>>0
275	&movz	($v0,&HB($v1));
276	&shr	($v1,16);
277	&xor	($s[2],&DWP(3,$te,$v0,8));		# s3>>8
278	&movz	($v0,&HB($v1));
279	&and	($v1,0xFF);
280	&xor	($s[1],&DWP(2,$te,$v1,8));		# s3>>16
281	 &mov	($v1,&DWP(4,"esp"));			# restore s2
282	&xor	($s[0],&DWP(1,$te,$v0,8));		# s3>>24
283
284	&mov	($v0,$v1);
285	&and	($v1,0xFF);
286	&xor	($s[2],&DWP(0,$te,$v1,8));		# s2>>0
287	&movz	($v1,&HB($v0));
288	&shr	($v0,16);
289	&xor	($s[1],&DWP(3,$te,$v1,8));		# s2>>8
290	&movz	($v1,&HB($v0));
291	&and	($v0,0xFF);
292	&xor	($s[0],&DWP(2,$te,$v0,8));		# s2>>16
293	 &mov	($v0,&DWP(8,"esp"));			# restore s1
294	&xor	($s[3],&DWP(1,$te,$v1,8));		# s2>>24
295
296	&mov	($v1,$v0);
297	&and	($v0,0xFF);
298	&xor	($s[1],&DWP(0,$te,$v0,8));		# s1>>0
299	&movz	($v0,&HB($v1));
300	&shr	($v1,16);
301	&xor	($s[0],&DWP(3,$te,$v0,8));		# s1>>8
302	&movz	($v0,&HB($v1));
303	&and	($v1,0xFF);
304	&xor	($s[3],&DWP(2,$te,$v1,8));		# s1>>16
305	 &mov	($key,$__key);				# reincarnate v1 as key
306	&xor	($s[2],&DWP(1,$te,$v0,8));		# s1>>24
307}
308
309# Another experimental routine, which features "horizontal spin," but
310# eliminates one reference to stack. Strangely enough runs slower...
311sub enchoriz()
312{ my ($v0,$v1) = ($key,$acc);
313
314	&movz	($v0,&LB($s0));			#  3, 2, 1, 0*
315	&rotr	($s2,8);			#  8,11,10, 9
316	&mov	($v1,&DWP(0,$te,$v0,8));	#  0
317	&movz	($v0,&HB($s1));			#  7, 6, 5*, 4
318	&rotr	($s3,16);			# 13,12,15,14
319	&xor	($v1,&DWP(3,$te,$v0,8));	#  5
320	&movz	($v0,&HB($s2));			#  8,11,10*, 9
321	&rotr	($s0,16);			#  1, 0, 3, 2
322	&xor	($v1,&DWP(2,$te,$v0,8));	# 10
323	&movz	($v0,&HB($s3));			# 13,12,15*,14
324	&xor	($v1,&DWP(1,$te,$v0,8));	# 15, t[0] collected
325	&mov	($__s0,$v1);			# t[0] saved
326
327	&movz	($v0,&LB($s1));			#  7, 6, 5, 4*
328	&shr	($s1,16);			#  -, -, 7, 6
329	&mov	($v1,&DWP(0,$te,$v0,8));	#  4
330	&movz	($v0,&LB($s3));			# 13,12,15,14*
331	&xor	($v1,&DWP(2,$te,$v0,8));	# 14
332	&movz	($v0,&HB($s0));			#  1, 0, 3*, 2
333	&and	($s3,0xffff0000);		# 13,12, -, -
334	&xor	($v1,&DWP(1,$te,$v0,8));	#  3
335	&movz	($v0,&LB($s2));			#  8,11,10, 9*
336	&or	($s3,$s1);			# 13,12, 7, 6
337	&xor	($v1,&DWP(3,$te,$v0,8));	#  9, t[1] collected
338	&mov	($s1,$v1);			#  s[1]=t[1]
339
340	&movz	($v0,&LB($s0));			#  1, 0, 3, 2*
341	&shr	($s2,16);			#  -, -, 8,11
342	&mov	($v1,&DWP(2,$te,$v0,8));	#  2
343	&movz	($v0,&HB($s3));			# 13,12, 7*, 6
344	&xor	($v1,&DWP(1,$te,$v0,8));	#  7
345	&movz	($v0,&HB($s2));			#  -, -, 8*,11
346	&xor	($v1,&DWP(0,$te,$v0,8));	#  8
347	&mov	($v0,$s3);
348	&shr	($v0,24);			# 13
349	&xor	($v1,&DWP(3,$te,$v0,8));	# 13, t[2] collected
350
351	&movz	($v0,&LB($s2));			#  -, -, 8,11*
352	&shr	($s0,24);			#  1*
353	&mov	($s2,&DWP(1,$te,$v0,8));	# 11
354	&xor	($s2,&DWP(3,$te,$s0,8));	#  1
355	&mov	($s0,$__s0);			# s[0]=t[0]
356	&movz	($v0,&LB($s3));			# 13,12, 7, 6*
357	&shr	($s3,16);			#   ,  ,13,12
358	&xor	($s2,&DWP(2,$te,$v0,8));	#  6
359	&mov	($key,$__key);			# reincarnate v0 as key
360	&and	($s3,0xff);			#   ,  ,13,12*
361	&mov	($s3,&DWP(0,$te,$s3,8));	# 12
362	&xor	($s3,$s2);			# s[2]=t[3] collected
363	&mov	($s2,$v1);			# s[2]=t[2]
364}
365
366# More experimental code... SSE one... Even though this one eliminates
367# *all* references to stack, it's not faster...
368sub sse_encbody()
369{
370	&movz	($acc,&LB("eax"));		#  0
371	&mov	("ecx",&DWP(0,$tbl,$acc,8));	#  0
372	&pshufw	("mm2","mm0",0x0d);		#  7, 6, 3, 2
373	&movz	("edx",&HB("eax"));		#  1
374	&mov	("edx",&DWP(3,$tbl,"edx",8));	#  1
375	&shr	("eax",16);			#  5, 4
376
377	&movz	($acc,&LB("ebx"));		# 10
378	&xor	("ecx",&DWP(2,$tbl,$acc,8));	# 10
379	&pshufw	("mm6","mm4",0x08);		# 13,12, 9, 8
380	&movz	($acc,&HB("ebx"));		# 11
381	&xor	("edx",&DWP(1,$tbl,$acc,8));	# 11
382	&shr	("ebx",16);			# 15,14
383
384	&movz	($acc,&HB("eax"));		#  5
385	&xor	("ecx",&DWP(3,$tbl,$acc,8));	#  5
386	&movq	("mm3",QWP(16,$key));
387	&movz	($acc,&HB("ebx"));		# 15
388	&xor	("ecx",&DWP(1,$tbl,$acc,8));	# 15
389	&movd	("mm0","ecx");			# t[0] collected
390
391	&movz	($acc,&LB("eax"));		#  4
392	&mov	("ecx",&DWP(0,$tbl,$acc,8));	#  4
393	&movd	("eax","mm2");			#  7, 6, 3, 2
394	&movz	($acc,&LB("ebx"));		# 14
395	&xor	("ecx",&DWP(2,$tbl,$acc,8));	# 14
396	&movd	("ebx","mm6");			# 13,12, 9, 8
397
398	&movz	($acc,&HB("eax"));		#  3
399	&xor	("ecx",&DWP(1,$tbl,$acc,8));	#  3
400	&movz	($acc,&HB("ebx"));		#  9
401	&xor	("ecx",&DWP(3,$tbl,$acc,8));	#  9
402	&movd	("mm1","ecx");			# t[1] collected
403
404	&movz	($acc,&LB("eax"));		#  2
405	&mov	("ecx",&DWP(2,$tbl,$acc,8));	#  2
406	&shr	("eax",16);			#  7, 6
407	&punpckldq	("mm0","mm1");		# t[0,1] collected
408	&movz	($acc,&LB("ebx"));		#  8
409	&xor	("ecx",&DWP(0,$tbl,$acc,8));	#  8
410	&shr	("ebx",16);			# 13,12
411
412	&movz	($acc,&HB("eax"));		#  7
413	&xor	("ecx",&DWP(1,$tbl,$acc,8));	#  7
414	&pxor	("mm0","mm3");
415	&movz	("eax",&LB("eax"));		#  6
416	&xor	("edx",&DWP(2,$tbl,"eax",8));	#  6
417	&pshufw	("mm1","mm0",0x08);		#  5, 4, 1, 0
418	&movz	($acc,&HB("ebx"));		# 13
419	&xor	("ecx",&DWP(3,$tbl,$acc,8));	# 13
420	&xor	("ecx",&DWP(24,$key));		# t[2]
421	&movd	("mm4","ecx");			# t[2] collected
422	&movz	("ebx",&LB("ebx"));		# 12
423	&xor	("edx",&DWP(0,$tbl,"ebx",8));	# 12
424	&shr	("ecx",16);
425	&movd	("eax","mm1");			#  5, 4, 1, 0
426	&mov	("ebx",&DWP(28,$key));		# t[3]
427	&xor	("ebx","edx");
428	&movd	("mm5","ebx");			# t[3] collected
429	&and	("ebx",0xffff0000);
430	&or	("ebx","ecx");
431
432	&punpckldq	("mm4","mm5");		# t[2,3] collected
433}
434
435######################################################################
436# "Compact" block function
437######################################################################
438
439sub enccompact()
440{ my $Fn = \&mov;
441  while ($#_>5) { pop(@_); $Fn=sub{}; }
442  my ($i,$te,@s)=@_;
443  my $tmp = $key;
444  my $out = $i==3?$s[0]:$acc;
445
446	# $Fn is used in first compact round and its purpose is to
447	# void restoration of some values from stack, so that after
448	# 4xenccompact with extra argument $key value is left there...
449	if ($i==3)  {	&$Fn	($key,$__key);			}##%edx
450	else        {	&mov	($out,$s[0]);			}
451			&and	($out,0xFF);
452	if ($i==1)  {	&shr	($s[0],16);			}#%ebx[1]
453	if ($i==2)  {	&shr	($s[0],24);			}#%ecx[2]
454			&movz	($out,&BP(-128,$te,$out,1));
455
456	if ($i==3)  {	$tmp=$s[1];				}##%eax
457			&movz	($tmp,&HB($s[1]));
458			&movz	($tmp,&BP(-128,$te,$tmp,1));
459			&shl	($tmp,8);
460			&xor	($out,$tmp);
461
462	if ($i==3)  {	$tmp=$s[2]; &mov ($s[1],$__s0);		}##%ebx
463	else        {	&mov	($tmp,$s[2]);
464			&shr	($tmp,16);			}
465	if ($i==2)  {	&and	($s[1],0xFF);			}#%edx[2]
466			&and	($tmp,0xFF);
467			&movz	($tmp,&BP(-128,$te,$tmp,1));
468			&shl	($tmp,16);
469			&xor	($out,$tmp);
470
471	if ($i==3)  {	$tmp=$s[3]; &mov ($s[2],$__s1);		}##%ecx
472	elsif($i==2){	&movz	($tmp,&HB($s[3]));		}#%ebx[2]
473	else        {	&mov	($tmp,$s[3]);
474			&shr	($tmp,24);			}
475			&movz	($tmp,&BP(-128,$te,$tmp,1));
476			&shl	($tmp,24);
477			&xor	($out,$tmp);
478	if ($i<2)   {	&mov	(&DWP(4+4*$i,"esp"),$out);	}
479	if ($i==3)  {	&mov	($s[3],$acc);			}
480	&comment();
481}
482
483sub enctransform()
484{ my @s = ($s0,$s1,$s2,$s3);
485  my $i = shift;
486  my $tmp = $tbl;
487  my $r2  = $key ;
488
489	&and	($tmp,$s[$i]);
490	&lea	($r2,&DWP(0,$s[$i],$s[$i]));
491	&mov	($acc,$tmp);
492	&shr	($tmp,7);
493	&and	($r2,0xfefefefe);
494	&sub	($acc,$tmp);
495	&mov	($tmp,$s[$i]);
496	&and	($acc,0x1b1b1b1b);
497	&rotr	($tmp,16);
498	&xor	($acc,$r2);	# r2
499	&mov	($r2,$s[$i]);
500
501	&xor	($s[$i],$acc);	# r0 ^ r2
502	&rotr	($r2,16+8);
503	&xor	($acc,$tmp);
504	&rotl	($s[$i],24);
505	&xor	($acc,$r2);
506	&mov	($tmp,0x80808080)	if ($i!=1);
507	&xor	($s[$i],$acc);	# ROTATE(r2^r0,24) ^ r2
508}
509
510&function_begin_B("_x86_AES_encrypt_compact");
511	# note that caller is expected to allocate stack frame for me!
512	&mov	($__key,$key);			# save key
513
514	&xor	($s0,&DWP(0,$key));		# xor with key
515	&xor	($s1,&DWP(4,$key));
516	&xor	($s2,&DWP(8,$key));
517	&xor	($s3,&DWP(12,$key));
518
519	&mov	($acc,&DWP(240,$key));		# load key->rounds
520	&lea	($acc,&DWP(-2,$acc,$acc));
521	&lea	($acc,&DWP(0,$key,$acc,8));
522	&mov	($__end,$acc);			# end of key schedule
523
524	# prefetch Te4
525	&mov	($key,&DWP(0-128,$tbl));
526	&mov	($acc,&DWP(32-128,$tbl));
527	&mov	($key,&DWP(64-128,$tbl));
528	&mov	($acc,&DWP(96-128,$tbl));
529	&mov	($key,&DWP(128-128,$tbl));
530	&mov	($acc,&DWP(160-128,$tbl));
531	&mov	($key,&DWP(192-128,$tbl));
532	&mov	($acc,&DWP(224-128,$tbl));
533
534	&set_label("loop",16);
535
536		&enccompact(0,$tbl,$s0,$s1,$s2,$s3,1);
537		&enccompact(1,$tbl,$s1,$s2,$s3,$s0,1);
538		&enccompact(2,$tbl,$s2,$s3,$s0,$s1,1);
539		&enccompact(3,$tbl,$s3,$s0,$s1,$s2,1);
540		&mov	($tbl,0x80808080);
541		&enctransform(2);
542		&enctransform(3);
543		&enctransform(0);
544		&enctransform(1);
545		&mov 	($key,$__key);
546		&mov	($tbl,$__tbl);
547		&add	($key,16);		# advance rd_key
548		&xor	($s0,&DWP(0,$key));
549		&xor	($s1,&DWP(4,$key));
550		&xor	($s2,&DWP(8,$key));
551		&xor	($s3,&DWP(12,$key));
552
553	&cmp	($key,$__end);
554	&mov	($__key,$key);
555	&jb	(&label("loop"));
556
557	&enccompact(0,$tbl,$s0,$s1,$s2,$s3);
558	&enccompact(1,$tbl,$s1,$s2,$s3,$s0);
559	&enccompact(2,$tbl,$s2,$s3,$s0,$s1);
560	&enccompact(3,$tbl,$s3,$s0,$s1,$s2);
561
562	&xor	($s0,&DWP(16,$key));
563	&xor	($s1,&DWP(20,$key));
564	&xor	($s2,&DWP(24,$key));
565	&xor	($s3,&DWP(28,$key));
566
567	&ret	();
568&function_end_B("_x86_AES_encrypt_compact");
569
570######################################################################
571# "Compact" SSE block function.
572######################################################################
573#
574# Performance is not actually extraordinary in comparison to pure
575# x86 code. In particular encrypt performance is virtually the same.
576# Decrypt performance on the other hand is 15-20% better on newer
577# µ-archs [but we're thankful for *any* improvement here], and ~50%
578# better on PIII:-) And additionally on the pros side this code
579# eliminates redundant references to stack and thus relieves/
580# minimizes the pressure on the memory bus.
581#
582# MMX register layout                           lsb
583# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
584# |          mm4          |          mm0          |
585# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
586# |     s3    |     s2    |     s1    |     s0    |
587# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
588# |15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0|
589# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
590#
591# Indexes translate as s[N/4]>>(8*(N%4)), e.g. 5 means s1>>8.
592# In this terms encryption and decryption "compact" permutation
593# matrices can be depicted as following:
594#
595# encryption              lsb	# decryption              lsb
596# +----++----+----+----+----+	# +----++----+----+----+----+
597# | t0 || 15 | 10 |  5 |  0 |	# | t0 ||  7 | 10 | 13 |  0 |
598# +----++----+----+----+----+	# +----++----+----+----+----+
599# | t1 ||  3 | 14 |  9 |  4 |	# | t1 || 11 | 14 |  1 |  4 |
600# +----++----+----+----+----+	# +----++----+----+----+----+
601# | t2 ||  7 |  2 | 13 |  8 |	# | t2 || 15 |  2 |  5 |  8 |
602# +----++----+----+----+----+	# +----++----+----+----+----+
603# | t3 || 11 |  6 |  1 | 12 |	# | t3 ||  3 |  6 |  9 | 12 |
604# +----++----+----+----+----+	# +----++----+----+----+----+
605#
606######################################################################
607# Why not xmm registers? Short answer. It was actually tested and
608# was not any faster, but *contrary*, most notably on Intel CPUs.
609# Longer answer. Main advantage of using mm registers is that movd
610# latency is lower, especially on Intel P4. While arithmetic
611# instructions are twice as many, they can be scheduled every cycle
612# and not every second one when they are operating on xmm register,
613# so that "arithmetic throughput" remains virtually the same. And
614# finally the code can be executed even on elder SSE-only CPUs:-)
615
616sub sse_enccompact()
617{
618	&pshufw	("mm1","mm0",0x08);		#  5, 4, 1, 0
619	&pshufw	("mm5","mm4",0x0d);		# 15,14,11,10
620	&movd	("eax","mm1");			#  5, 4, 1, 0
621	&movd	("ebx","mm5");			# 15,14,11,10
622	&mov	($__key,$key);
623
624	&movz	($acc,&LB("eax"));		#  0
625	&movz	("edx",&HB("eax"));		#  1
626	&pshufw	("mm2","mm0",0x0d);		#  7, 6, 3, 2
627	&movz	("ecx",&BP(-128,$tbl,$acc,1));	#  0
628	&movz	($key,&LB("ebx"));		# 10
629	&movz	("edx",&BP(-128,$tbl,"edx",1));	#  1
630	&shr	("eax",16);			#  5, 4
631	&shl	("edx",8);			#  1
632
633	&movz	($acc,&BP(-128,$tbl,$key,1));	# 10
634	&movz	($key,&HB("ebx"));		# 11
635	&shl	($acc,16);			# 10
636	&pshufw	("mm6","mm4",0x08);		# 13,12, 9, 8
637	&or	("ecx",$acc);			# 10
638	&movz	($acc,&BP(-128,$tbl,$key,1));	# 11
639	&movz	($key,&HB("eax"));		#  5
640	&shl	($acc,24);			# 11
641	&shr	("ebx",16);			# 15,14
642	&or	("edx",$acc);			# 11
643
644	&movz	($acc,&BP(-128,$tbl,$key,1));	#  5
645	&movz	($key,&HB("ebx"));		# 15
646	&shl	($acc,8);			#  5
647	&or	("ecx",$acc);			#  5
648	&movz	($acc,&BP(-128,$tbl,$key,1));	# 15
649	&movz	($key,&LB("eax"));		#  4
650	&shl	($acc,24);			# 15
651	&or	("ecx",$acc);			# 15
652
653	&movz	($acc,&BP(-128,$tbl,$key,1));	#  4
654	&movz	($key,&LB("ebx"));		# 14
655	&movd	("eax","mm2");			#  7, 6, 3, 2
656	&movd	("mm0","ecx");			# t[0] collected
657	&movz	("ecx",&BP(-128,$tbl,$key,1));	# 14
658	&movz	($key,&HB("eax"));		#  3
659	&shl	("ecx",16);			# 14
660	&movd	("ebx","mm6");			# 13,12, 9, 8
661	&or	("ecx",$acc);			# 14
662
663	&movz	($acc,&BP(-128,$tbl,$key,1));	#  3
664	&movz	($key,&HB("ebx"));		#  9
665	&shl	($acc,24);			#  3
666	&or	("ecx",$acc);			#  3
667	&movz	($acc,&BP(-128,$tbl,$key,1));	#  9
668	&movz	($key,&LB("ebx"));		#  8
669	&shl	($acc,8);			#  9
670	&shr	("ebx",16);			# 13,12
671	&or	("ecx",$acc);			#  9
672
673	&movz	($acc,&BP(-128,$tbl,$key,1));	#  8
674	&movz	($key,&LB("eax"));		#  2
675	&shr	("eax",16);			#  7, 6
676	&movd	("mm1","ecx");			# t[1] collected
677	&movz	("ecx",&BP(-128,$tbl,$key,1));	#  2
678	&movz	($key,&HB("eax"));		#  7
679	&shl	("ecx",16);			#  2
680	&and	("eax",0xff);			#  6
681	&or	("ecx",$acc);			#  2
682
683	&punpckldq	("mm0","mm1");		# t[0,1] collected
684
685	&movz	($acc,&BP(-128,$tbl,$key,1));	#  7
686	&movz	($key,&HB("ebx"));		# 13
687	&shl	($acc,24);			#  7
688	&and	("ebx",0xff);			# 12
689	&movz	("eax",&BP(-128,$tbl,"eax",1));	#  6
690	&or	("ecx",$acc);			#  7
691	&shl	("eax",16);			#  6
692	&movz	($acc,&BP(-128,$tbl,$key,1));	# 13
693	&or	("edx","eax");			#  6
694	&shl	($acc,8);			# 13
695	&movz	("ebx",&BP(-128,$tbl,"ebx",1));	# 12
696	&or	("ecx",$acc);			# 13
697	&or	("edx","ebx");			# 12
698	&mov	($key,$__key);
699	&movd	("mm4","ecx");			# t[2] collected
700	&movd	("mm5","edx");			# t[3] collected
701
702	&punpckldq	("mm4","mm5");		# t[2,3] collected
703}
704
705					if (!$x86only) {
706&function_begin_B("_sse_AES_encrypt_compact");
707	&pxor	("mm0",&QWP(0,$key));	#  7, 6, 5, 4, 3, 2, 1, 0
708	&pxor	("mm4",&QWP(8,$key));	# 15,14,13,12,11,10, 9, 8
709
710	# note that caller is expected to allocate stack frame for me!
711	&mov	($acc,&DWP(240,$key));		# load key->rounds
712	&lea	($acc,&DWP(-2,$acc,$acc));
713	&lea	($acc,&DWP(0,$key,$acc,8));
714	&mov	($__end,$acc);			# end of key schedule
715
716	&mov	($s0,0x1b1b1b1b);		# magic constant
717	&mov	(&DWP(8,"esp"),$s0);
718	&mov	(&DWP(12,"esp"),$s0);
719
720	# prefetch Te4
721	&mov	($s0,&DWP(0-128,$tbl));
722	&mov	($s1,&DWP(32-128,$tbl));
723	&mov	($s2,&DWP(64-128,$tbl));
724	&mov	($s3,&DWP(96-128,$tbl));
725	&mov	($s0,&DWP(128-128,$tbl));
726	&mov	($s1,&DWP(160-128,$tbl));
727	&mov	($s2,&DWP(192-128,$tbl));
728	&mov	($s3,&DWP(224-128,$tbl));
729
730	&set_label("loop",16);
731		&sse_enccompact();
732		&add	($key,16);
733		&cmp	($key,$__end);
734		&ja	(&label("out"));
735
736		&movq	("mm2",&QWP(8,"esp"));
737		&pxor	("mm3","mm3");		&pxor	("mm7","mm7");
738		&movq	("mm1","mm0");		&movq	("mm5","mm4");	# r0
739		&pcmpgtb("mm3","mm0");		&pcmpgtb("mm7","mm4");
740		&pand	("mm3","mm2");		&pand	("mm7","mm2");
741		&pshufw	("mm2","mm0",0xb1);	&pshufw	("mm6","mm4",0xb1);# ROTATE(r0,16)
742		&paddb	("mm0","mm0");		&paddb	("mm4","mm4");
743		&pxor	("mm0","mm3");		&pxor	("mm4","mm7");	# = r2
744		&pshufw	("mm3","mm2",0xb1);	&pshufw	("mm7","mm6",0xb1);# r0
745		&pxor	("mm1","mm0");		&pxor	("mm5","mm4");	# r0^r2
746		&pxor	("mm0","mm2");		&pxor	("mm4","mm6");	# ^= ROTATE(r0,16)
747
748		&movq	("mm2","mm3");		&movq	("mm6","mm7");
749		&pslld	("mm3",8);		&pslld	("mm7",8);
750		&psrld	("mm2",24);		&psrld	("mm6",24);
751		&pxor	("mm0","mm3");		&pxor	("mm4","mm7");	# ^= r0<<8
752		&pxor	("mm0","mm2");		&pxor	("mm4","mm6");	# ^= r0>>24
753
754		&movq	("mm3","mm1");		&movq	("mm7","mm5");
755		&movq	("mm2",&QWP(0,$key));	&movq	("mm6",&QWP(8,$key));
756		&psrld	("mm1",8);		&psrld	("mm5",8);
757		&mov	($s0,&DWP(0-128,$tbl));
758		&pslld	("mm3",24);		&pslld	("mm7",24);
759		&mov	($s1,&DWP(64-128,$tbl));
760		&pxor	("mm0","mm1");		&pxor	("mm4","mm5");	# ^= (r2^r0)<<8
761		&mov	($s2,&DWP(128-128,$tbl));
762		&pxor	("mm0","mm3");		&pxor	("mm4","mm7");	# ^= (r2^r0)>>24
763		&mov	($s3,&DWP(192-128,$tbl));
764
765		&pxor	("mm0","mm2");		&pxor	("mm4","mm6");
766	&jmp	(&label("loop"));
767
768	&set_label("out",16);
769	&pxor	("mm0",&QWP(0,$key));
770	&pxor	("mm4",&QWP(8,$key));
771
772	&ret	();
773&function_end_B("_sse_AES_encrypt_compact");
774					}
775
776######################################################################
777# Vanilla block function.
778######################################################################
779
780sub encstep()
781{ my ($i,$te,@s) = @_;
782  my $tmp = $key;
783  my $out = $i==3?$s[0]:$acc;
784
785	# lines marked with #%e?x[i] denote "reordered" instructions...
786	if ($i==3)  {	&mov	($key,$__key);			}##%edx
787	else        {	&mov	($out,$s[0]);
788			&and	($out,0xFF);			}
789	if ($i==1)  {	&shr	($s[0],16);			}#%ebx[1]
790	if ($i==2)  {	&shr	($s[0],24);			}#%ecx[2]
791			&mov	($out,&DWP(0,$te,$out,8));
792
793	if ($i==3)  {	$tmp=$s[1];				}##%eax
794			&movz	($tmp,&HB($s[1]));
795			&xor	($out,&DWP(3,$te,$tmp,8));
796
797	if ($i==3)  {	$tmp=$s[2]; &mov ($s[1],$__s0);		}##%ebx
798	else        {	&mov	($tmp,$s[2]);
799			&shr	($tmp,16);			}
800	if ($i==2)  {	&and	($s[1],0xFF);			}#%edx[2]
801			&and	($tmp,0xFF);
802			&xor	($out,&DWP(2,$te,$tmp,8));
803
804	if ($i==3)  {	$tmp=$s[3]; &mov ($s[2],$__s1);		}##%ecx
805	elsif($i==2){	&movz	($tmp,&HB($s[3]));		}#%ebx[2]
806	else        {	&mov	($tmp,$s[3]);
807			&shr	($tmp,24)			}
808			&xor	($out,&DWP(1,$te,$tmp,8));
809	if ($i<2)   {	&mov	(&DWP(4+4*$i,"esp"),$out);	}
810	if ($i==3)  {	&mov	($s[3],$acc);			}
811			&comment();
812}
813
814sub enclast()
815{ my ($i,$te,@s)=@_;
816  my $tmp = $key;
817  my $out = $i==3?$s[0]:$acc;
818
819	if ($i==3)  {	&mov	($key,$__key);			}##%edx
820	else        {	&mov	($out,$s[0]);			}
821			&and	($out,0xFF);
822	if ($i==1)  {	&shr	($s[0],16);			}#%ebx[1]
823	if ($i==2)  {	&shr	($s[0],24);			}#%ecx[2]
824			&mov	($out,&DWP(2,$te,$out,8));
825			&and	($out,0x000000ff);
826
827	if ($i==3)  {	$tmp=$s[1];				}##%eax
828			&movz	($tmp,&HB($s[1]));
829			&mov	($tmp,&DWP(0,$te,$tmp,8));
830			&and	($tmp,0x0000ff00);
831			&xor	($out,$tmp);
832
833	if ($i==3)  {	$tmp=$s[2]; &mov ($s[1],$__s0);		}##%ebx
834	else        {	&mov	($tmp,$s[2]);
835			&shr	($tmp,16);			}
836	if ($i==2)  {	&and	($s[1],0xFF);			}#%edx[2]
837			&and	($tmp,0xFF);
838			&mov	($tmp,&DWP(0,$te,$tmp,8));
839			&and	($tmp,0x00ff0000);
840			&xor	($out,$tmp);
841
842	if ($i==3)  {	$tmp=$s[3]; &mov ($s[2],$__s1);		}##%ecx
843	elsif($i==2){	&movz	($tmp,&HB($s[3]));		}#%ebx[2]
844	else        {	&mov	($tmp,$s[3]);
845			&shr	($tmp,24);			}
846			&mov	($tmp,&DWP(2,$te,$tmp,8));
847			&and	($tmp,0xff000000);
848			&xor	($out,$tmp);
849	if ($i<2)   {	&mov	(&DWP(4+4*$i,"esp"),$out);	}
850	if ($i==3)  {	&mov	($s[3],$acc);			}
851}
852
853&function_begin_B("_x86_AES_encrypt");
854	if ($vertical_spin) {
855		# I need high parts of volatile registers to be accessible...
856		&exch	($s1="edi",$key="ebx");
857		&mov	($s2="esi",$acc="ecx");
858	}
859
860	# note that caller is expected to allocate stack frame for me!
861	&mov	($__key,$key);			# save key
862
863	&xor	($s0,&DWP(0,$key));		# xor with key
864	&xor	($s1,&DWP(4,$key));
865	&xor	($s2,&DWP(8,$key));
866	&xor	($s3,&DWP(12,$key));
867
868	&mov	($acc,&DWP(240,$key));		# load key->rounds
869
870	if ($small_footprint) {
871	    &lea	($acc,&DWP(-2,$acc,$acc));
872	    &lea	($acc,&DWP(0,$key,$acc,8));
873	    &mov	($__end,$acc);		# end of key schedule
874
875	    &set_label("loop",16);
876		if ($vertical_spin) {
877		    &encvert($tbl,$s0,$s1,$s2,$s3);
878		} else {
879		    &encstep(0,$tbl,$s0,$s1,$s2,$s3);
880		    &encstep(1,$tbl,$s1,$s2,$s3,$s0);
881		    &encstep(2,$tbl,$s2,$s3,$s0,$s1);
882		    &encstep(3,$tbl,$s3,$s0,$s1,$s2);
883		}
884		&add	($key,16);		# advance rd_key
885		&xor	($s0,&DWP(0,$key));
886		&xor	($s1,&DWP(4,$key));
887		&xor	($s2,&DWP(8,$key));
888		&xor	($s3,&DWP(12,$key));
889	    &cmp	($key,$__end);
890	    &mov	($__key,$key);
891	    &jb		(&label("loop"));
892	}
893	else {
894	    &cmp	($acc,10);
895	    &jle	(&label("10rounds"));
896	    &cmp	($acc,12);
897	    &jle	(&label("12rounds"));
898
899	&set_label("14rounds",4);
900	    for ($i=1;$i<3;$i++) {
901		if ($vertical_spin) {
902		    &encvert($tbl,$s0,$s1,$s2,$s3);
903		} else {
904		    &encstep(0,$tbl,$s0,$s1,$s2,$s3);
905		    &encstep(1,$tbl,$s1,$s2,$s3,$s0);
906		    &encstep(2,$tbl,$s2,$s3,$s0,$s1);
907		    &encstep(3,$tbl,$s3,$s0,$s1,$s2);
908		}
909		&xor	($s0,&DWP(16*$i+0,$key));
910		&xor	($s1,&DWP(16*$i+4,$key));
911		&xor	($s2,&DWP(16*$i+8,$key));
912		&xor	($s3,&DWP(16*$i+12,$key));
913	    }
914	    &add	($key,32);
915	    &mov	($__key,$key);		# advance rd_key
916	&set_label("12rounds",4);
917	    for ($i=1;$i<3;$i++) {
918		if ($vertical_spin) {
919		    &encvert($tbl,$s0,$s1,$s2,$s3);
920		} else {
921		    &encstep(0,$tbl,$s0,$s1,$s2,$s3);
922		    &encstep(1,$tbl,$s1,$s2,$s3,$s0);
923		    &encstep(2,$tbl,$s2,$s3,$s0,$s1);
924		    &encstep(3,$tbl,$s3,$s0,$s1,$s2);
925		}
926		&xor	($s0,&DWP(16*$i+0,$key));
927		&xor	($s1,&DWP(16*$i+4,$key));
928		&xor	($s2,&DWP(16*$i+8,$key));
929		&xor	($s3,&DWP(16*$i+12,$key));
930	    }
931	    &add	($key,32);
932	    &mov	($__key,$key);		# advance rd_key
933	&set_label("10rounds",4);
934	    for ($i=1;$i<10;$i++) {
935		if ($vertical_spin) {
936		    &encvert($tbl,$s0,$s1,$s2,$s3);
937		} else {
938		    &encstep(0,$tbl,$s0,$s1,$s2,$s3);
939		    &encstep(1,$tbl,$s1,$s2,$s3,$s0);
940		    &encstep(2,$tbl,$s2,$s3,$s0,$s1);
941		    &encstep(3,$tbl,$s3,$s0,$s1,$s2);
942		}
943		&xor	($s0,&DWP(16*$i+0,$key));
944		&xor	($s1,&DWP(16*$i+4,$key));
945		&xor	($s2,&DWP(16*$i+8,$key));
946		&xor	($s3,&DWP(16*$i+12,$key));
947	    }
948	}
949
950	if ($vertical_spin) {
951	    # "reincarnate" some registers for "horizontal" spin...
952	    &mov	($s1="ebx",$key="edi");
953	    &mov	($s2="ecx",$acc="esi");
954	}
955	&enclast(0,$tbl,$s0,$s1,$s2,$s3);
956	&enclast(1,$tbl,$s1,$s2,$s3,$s0);
957	&enclast(2,$tbl,$s2,$s3,$s0,$s1);
958	&enclast(3,$tbl,$s3,$s0,$s1,$s2);
959
960	&add	($key,$small_footprint?16:160);
961	&xor	($s0,&DWP(0,$key));
962	&xor	($s1,&DWP(4,$key));
963	&xor	($s2,&DWP(8,$key));
964	&xor	($s3,&DWP(12,$key));
965
966	&ret	();
967
968&set_label("AES_Te",64);	# Yes! I keep it in the code segment!
969	&_data_word(0xa56363c6, 0x847c7cf8, 0x997777ee, 0x8d7b7bf6);
970	&_data_word(0x0df2f2ff, 0xbd6b6bd6, 0xb16f6fde, 0x54c5c591);
971	&_data_word(0x50303060, 0x03010102, 0xa96767ce, 0x7d2b2b56);
972	&_data_word(0x19fefee7, 0x62d7d7b5, 0xe6abab4d, 0x9a7676ec);
973	&_data_word(0x45caca8f, 0x9d82821f, 0x40c9c989, 0x877d7dfa);
974	&_data_word(0x15fafaef, 0xeb5959b2, 0xc947478e, 0x0bf0f0fb);
975	&_data_word(0xecadad41, 0x67d4d4b3, 0xfda2a25f, 0xeaafaf45);
976	&_data_word(0xbf9c9c23, 0xf7a4a453, 0x967272e4, 0x5bc0c09b);
977	&_data_word(0xc2b7b775, 0x1cfdfde1, 0xae93933d, 0x6a26264c);
978	&_data_word(0x5a36366c, 0x413f3f7e, 0x02f7f7f5, 0x4fcccc83);
979	&_data_word(0x5c343468, 0xf4a5a551, 0x34e5e5d1, 0x08f1f1f9);
980	&_data_word(0x937171e2, 0x73d8d8ab, 0x53313162, 0x3f15152a);
981	&_data_word(0x0c040408, 0x52c7c795, 0x65232346, 0x5ec3c39d);
982	&_data_word(0x28181830, 0xa1969637, 0x0f05050a, 0xb59a9a2f);
983	&_data_word(0x0907070e, 0x36121224, 0x9b80801b, 0x3de2e2df);
984	&_data_word(0x26ebebcd, 0x6927274e, 0xcdb2b27f, 0x9f7575ea);
985	&_data_word(0x1b090912, 0x9e83831d, 0x742c2c58, 0x2e1a1a34);
986	&_data_word(0x2d1b1b36, 0xb26e6edc, 0xee5a5ab4, 0xfba0a05b);
987	&_data_word(0xf65252a4, 0x4d3b3b76, 0x61d6d6b7, 0xceb3b37d);
988	&_data_word(0x7b292952, 0x3ee3e3dd, 0x712f2f5e, 0x97848413);
989	&_data_word(0xf55353a6, 0x68d1d1b9, 0x00000000, 0x2cededc1);
990	&_data_word(0x60202040, 0x1ffcfce3, 0xc8b1b179, 0xed5b5bb6);
991	&_data_word(0xbe6a6ad4, 0x46cbcb8d, 0xd9bebe67, 0x4b393972);
992	&_data_word(0xde4a4a94, 0xd44c4c98, 0xe85858b0, 0x4acfcf85);
993	&_data_word(0x6bd0d0bb, 0x2aefefc5, 0xe5aaaa4f, 0x16fbfbed);
994	&_data_word(0xc5434386, 0xd74d4d9a, 0x55333366, 0x94858511);
995	&_data_word(0xcf45458a, 0x10f9f9e9, 0x06020204, 0x817f7ffe);
996	&_data_word(0xf05050a0, 0x443c3c78, 0xba9f9f25, 0xe3a8a84b);
997	&_data_word(0xf35151a2, 0xfea3a35d, 0xc0404080, 0x8a8f8f05);
998	&_data_word(0xad92923f, 0xbc9d9d21, 0x48383870, 0x04f5f5f1);
999	&_data_word(0xdfbcbc63, 0xc1b6b677, 0x75dadaaf, 0x63212142);
1000	&_data_word(0x30101020, 0x1affffe5, 0x0ef3f3fd, 0x6dd2d2bf);
1001	&_data_word(0x4ccdcd81, 0x140c0c18, 0x35131326, 0x2fececc3);
1002	&_data_word(0xe15f5fbe, 0xa2979735, 0xcc444488, 0x3917172e);
1003	&_data_word(0x57c4c493, 0xf2a7a755, 0x827e7efc, 0x473d3d7a);
1004	&_data_word(0xac6464c8, 0xe75d5dba, 0x2b191932, 0x957373e6);
1005	&_data_word(0xa06060c0, 0x98818119, 0xd14f4f9e, 0x7fdcdca3);
1006	&_data_word(0x66222244, 0x7e2a2a54, 0xab90903b, 0x8388880b);
1007	&_data_word(0xca46468c, 0x29eeeec7, 0xd3b8b86b, 0x3c141428);
1008	&_data_word(0x79dedea7, 0xe25e5ebc, 0x1d0b0b16, 0x76dbdbad);
1009	&_data_word(0x3be0e0db, 0x56323264, 0x4e3a3a74, 0x1e0a0a14);
1010	&_data_word(0xdb494992, 0x0a06060c, 0x6c242448, 0xe45c5cb8);
1011	&_data_word(0x5dc2c29f, 0x6ed3d3bd, 0xefacac43, 0xa66262c4);
1012	&_data_word(0xa8919139, 0xa4959531, 0x37e4e4d3, 0x8b7979f2);
1013	&_data_word(0x32e7e7d5, 0x43c8c88b, 0x5937376e, 0xb76d6dda);
1014	&_data_word(0x8c8d8d01, 0x64d5d5b1, 0xd24e4e9c, 0xe0a9a949);
1015	&_data_word(0xb46c6cd8, 0xfa5656ac, 0x07f4f4f3, 0x25eaeacf);
1016	&_data_word(0xaf6565ca, 0x8e7a7af4, 0xe9aeae47, 0x18080810);
1017	&_data_word(0xd5baba6f, 0x887878f0, 0x6f25254a, 0x722e2e5c);
1018	&_data_word(0x241c1c38, 0xf1a6a657, 0xc7b4b473, 0x51c6c697);
1019	&_data_word(0x23e8e8cb, 0x7cdddda1, 0x9c7474e8, 0x211f1f3e);
1020	&_data_word(0xdd4b4b96, 0xdcbdbd61, 0x868b8b0d, 0x858a8a0f);
1021	&_data_word(0x907070e0, 0x423e3e7c, 0xc4b5b571, 0xaa6666cc);
1022	&_data_word(0xd8484890, 0x05030306, 0x01f6f6f7, 0x120e0e1c);
1023	&_data_word(0xa36161c2, 0x5f35356a, 0xf95757ae, 0xd0b9b969);
1024	&_data_word(0x91868617, 0x58c1c199, 0x271d1d3a, 0xb99e9e27);
1025	&_data_word(0x38e1e1d9, 0x13f8f8eb, 0xb398982b, 0x33111122);
1026	&_data_word(0xbb6969d2, 0x70d9d9a9, 0x898e8e07, 0xa7949433);
1027	&_data_word(0xb69b9b2d, 0x221e1e3c, 0x92878715, 0x20e9e9c9);
1028	&_data_word(0x49cece87, 0xff5555aa, 0x78282850, 0x7adfdfa5);
1029	&_data_word(0x8f8c8c03, 0xf8a1a159, 0x80898909, 0x170d0d1a);
1030	&_data_word(0xdabfbf65, 0x31e6e6d7, 0xc6424284, 0xb86868d0);
1031	&_data_word(0xc3414182, 0xb0999929, 0x772d2d5a, 0x110f0f1e);
1032	&_data_word(0xcbb0b07b, 0xfc5454a8, 0xd6bbbb6d, 0x3a16162c);
1033
1034#Te4	# four copies of Te4 to choose from to avoid L1 aliasing
1035	&data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
1036	&data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
1037	&data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
1038	&data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
1039	&data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
1040	&data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
1041	&data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
1042	&data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
1043	&data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
1044	&data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
1045	&data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
1046	&data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
1047	&data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
1048	&data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
1049	&data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
1050	&data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
1051	&data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
1052	&data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
1053	&data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
1054	&data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
1055	&data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
1056	&data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
1057	&data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
1058	&data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
1059	&data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
1060	&data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
1061	&data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
1062	&data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
1063	&data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
1064	&data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
1065	&data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
1066	&data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
1067
1068	&data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
1069	&data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
1070	&data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
1071	&data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
1072	&data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
1073	&data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
1074	&data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
1075	&data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
1076	&data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
1077	&data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
1078	&data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
1079	&data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
1080	&data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
1081	&data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
1082	&data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
1083	&data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
1084	&data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
1085	&data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
1086	&data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
1087	&data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
1088	&data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
1089	&data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
1090	&data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
1091	&data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
1092	&data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
1093	&data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
1094	&data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
1095	&data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
1096	&data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
1097	&data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
1098	&data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
1099	&data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
1100
1101	&data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
1102	&data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
1103	&data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
1104	&data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
1105	&data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
1106	&data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
1107	&data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
1108	&data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
1109	&data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
1110	&data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
1111	&data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
1112	&data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
1113	&data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
1114	&data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
1115	&data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
1116	&data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
1117	&data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
1118	&data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
1119	&data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
1120	&data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
1121	&data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
1122	&data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
1123	&data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
1124	&data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
1125	&data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
1126	&data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
1127	&data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
1128	&data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
1129	&data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
1130	&data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
1131	&data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
1132	&data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
1133
1134	&data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
1135	&data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
1136	&data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
1137	&data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
1138	&data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
1139	&data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
1140	&data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
1141	&data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
1142	&data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
1143	&data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
1144	&data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
1145	&data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
1146	&data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
1147	&data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
1148	&data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
1149	&data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
1150	&data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
1151	&data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
1152	&data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
1153	&data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
1154	&data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
1155	&data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
1156	&data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
1157	&data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
1158	&data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
1159	&data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
1160	&data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
1161	&data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
1162	&data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
1163	&data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
1164	&data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
1165	&data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
1166#rcon:
1167	&data_word(0x00000001, 0x00000002, 0x00000004, 0x00000008);
1168	&data_word(0x00000010, 0x00000020, 0x00000040, 0x00000080);
1169	&data_word(0x0000001b, 0x00000036, 0x00000000, 0x00000000);
1170	&data_word(0x00000000, 0x00000000, 0x00000000, 0x00000000);
1171&function_end_B("_x86_AES_encrypt");
1172
1173# void AES_encrypt (const void *inp,void *out,const AES_KEY *key);
1174&function_begin("AES_encrypt");
1175	&mov	($acc,&wparam(0));		# load inp
1176	&mov	($key,&wparam(2));		# load key
1177
1178	&mov	($s0,"esp");
1179	&sub	("esp",36);
1180	&and	("esp",-64);			# align to cache-line
1181
1182	# place stack frame just "above" the key schedule
1183	&lea	($s1,&DWP(-64-63,$key));
1184	&sub	($s1,"esp");
1185	&neg	($s1);
1186	&and	($s1,0x3C0);	# modulo 1024, but aligned to cache-line
1187	&sub	("esp",$s1);
1188	&add	("esp",4);	# 4 is reserved for caller's return address
1189	&mov	($_esp,$s0);			# save stack pointer
1190
1191	&call   (&label("pic_point"));          # make it PIC!
1192	&set_label("pic_point");
1193	&blindpop($tbl);
1194	&picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if (!$x86only);
1195	&lea    ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl));
1196
1197	# pick Te4 copy which can't "overlap" with stack frame or key schedule
1198	&lea	($s1,&DWP(768-4,"esp"));
1199	&sub	($s1,$tbl);
1200	&and	($s1,0x300);
1201	&lea	($tbl,&DWP(2048+128,$tbl,$s1));
1202
1203					if (!$x86only) {
1204	&bt	(&DWP(0,$s0),25);	# check for SSE bit
1205	&jnc	(&label("x86"));
1206
1207	&movq	("mm0",&QWP(0,$acc));
1208	&movq	("mm4",&QWP(8,$acc));
1209	&call	("_sse_AES_encrypt_compact");
1210	&mov	("esp",$_esp);			# restore stack pointer
1211	&mov	($acc,&wparam(1));		# load out
1212	&movq	(&QWP(0,$acc),"mm0");		# write output data
1213	&movq	(&QWP(8,$acc),"mm4");
1214	&emms	();
1215	&function_end_A();
1216					}
1217	&set_label("x86",16);
1218	&mov	($_tbl,$tbl);
1219	&mov	($s0,&DWP(0,$acc));		# load input data
1220	&mov	($s1,&DWP(4,$acc));
1221	&mov	($s2,&DWP(8,$acc));
1222	&mov	($s3,&DWP(12,$acc));
1223	&call	("_x86_AES_encrypt_compact");
1224	&mov	("esp",$_esp);			# restore stack pointer
1225	&mov	($acc,&wparam(1));		# load out
1226	&mov	(&DWP(0,$acc),$s0);		# write output data
1227	&mov	(&DWP(4,$acc),$s1);
1228	&mov	(&DWP(8,$acc),$s2);
1229	&mov	(&DWP(12,$acc),$s3);
1230&function_end("AES_encrypt");
1231
1232#--------------------------------------------------------------------#
1233
1234######################################################################
1235# "Compact" block function
1236######################################################################
1237
1238sub deccompact()
1239{ my $Fn = \&mov;
1240  while ($#_>5) { pop(@_); $Fn=sub{}; }
1241  my ($i,$td,@s)=@_;
1242  my $tmp = $key;
1243  my $out = $i==3?$s[0]:$acc;
1244
1245	# $Fn is used in first compact round and its purpose is to
1246	# void restoration of some values from stack, so that after
1247	# 4xdeccompact with extra argument $key, $s0 and $s1 values
1248	# are left there...
1249	if($i==3)   {	&$Fn	($key,$__key);			}
1250	else        {	&mov	($out,$s[0]);			}
1251			&and	($out,0xFF);
1252			&movz	($out,&BP(-128,$td,$out,1));
1253
1254	if ($i==3)  {	$tmp=$s[1];				}
1255			&movz	($tmp,&HB($s[1]));
1256			&movz	($tmp,&BP(-128,$td,$tmp,1));
1257			&shl	($tmp,8);
1258			&xor	($out,$tmp);
1259
1260	if ($i==3)  {	$tmp=$s[2]; &mov ($s[1],$acc);		}
1261	else        {	mov	($tmp,$s[2]);			}
1262			&shr	($tmp,16);
1263			&and	($tmp,0xFF);
1264			&movz	($tmp,&BP(-128,$td,$tmp,1));
1265			&shl	($tmp,16);
1266			&xor	($out,$tmp);
1267
1268	if ($i==3)  {	$tmp=$s[3]; &$Fn ($s[2],$__s1);		}
1269	else        {	&mov	($tmp,$s[3]);			}
1270			&shr	($tmp,24);
1271			&movz	($tmp,&BP(-128,$td,$tmp,1));
1272			&shl	($tmp,24);
1273			&xor	($out,$tmp);
1274	if ($i<2)   {	&mov	(&DWP(4+4*$i,"esp"),$out);	}
1275	if ($i==3)  {	&$Fn	($s[3],$__s0);			}
1276}
1277
1278# must be called with 2,3,0,1 as argument sequence!!!
1279sub dectransform()
1280{ my @s = ($s0,$s1,$s2,$s3);
1281  my $i = shift;
1282  my $tmp = $key;
1283  my $tp2 = @s[($i+2)%4]; $tp2 = @s[2] if ($i==1);
1284  my $tp4 = @s[($i+3)%4]; $tp4 = @s[3] if ($i==1);
1285  my $tp8 = $tbl;
1286
1287	&mov	($tmp,0x80808080);
1288	&and	($tmp,$s[$i]);
1289	&mov	($acc,$tmp);
1290	&shr	($tmp,7);
1291	&lea	($tp2,&DWP(0,$s[$i],$s[$i]));
1292	&sub	($acc,$tmp);
1293	&and	($tp2,0xfefefefe);
1294	&and	($acc,0x1b1b1b1b);
1295	&xor	($tp2,$acc);
1296	&mov	($tmp,0x80808080);
1297
1298	&and	($tmp,$tp2);
1299	&mov	($acc,$tmp);
1300	&shr	($tmp,7);
1301	&lea	($tp4,&DWP(0,$tp2,$tp2));
1302	&sub	($acc,$tmp);
1303	&and	($tp4,0xfefefefe);
1304	&and	($acc,0x1b1b1b1b);
1305	 &xor	($tp2,$s[$i]);	# tp2^tp1
1306	&xor	($tp4,$acc);
1307	&mov	($tmp,0x80808080);
1308
1309	&and	($tmp,$tp4);
1310	&mov	($acc,$tmp);
1311	&shr	($tmp,7);
1312	&lea	($tp8,&DWP(0,$tp4,$tp4));
1313	&sub	($acc,$tmp);
1314	&and	($tp8,0xfefefefe);
1315	&and	($acc,0x1b1b1b1b);
1316	 &xor	($tp4,$s[$i]);	# tp4^tp1
1317	 &rotl	($s[$i],8);	# = ROTATE(tp1,8)
1318	&xor	($tp8,$acc);
1319
1320	&xor	($s[$i],$tp2);
1321	&xor	($tp2,$tp8);
1322	&xor	($s[$i],$tp4);
1323	&xor	($tp4,$tp8);
1324	&rotl	($tp2,24);
1325	&xor	($s[$i],$tp8);	# ^= tp8^(tp4^tp1)^(tp2^tp1)
1326	&rotl	($tp4,16);
1327	&xor	($s[$i],$tp2);	# ^= ROTATE(tp8^tp2^tp1,24)
1328	&rotl	($tp8,8);
1329	&xor	($s[$i],$tp4);	# ^= ROTATE(tp8^tp4^tp1,16)
1330	 &mov	($s[0],$__s0)			if($i==2); #prefetch $s0
1331	 &mov	($s[1],$__s1)			if($i==3); #prefetch $s1
1332	 &mov	($s[2],$__s2)			if($i==1);
1333	&xor	($s[$i],$tp8);	# ^= ROTATE(tp8,8)
1334
1335	&mov	($s[3],$__s3)			if($i==1);
1336	&mov	(&DWP(4+4*$i,"esp"),$s[$i])	if($i>=2);
1337}
1338
1339&function_begin_B("_x86_AES_decrypt_compact");
1340	# note that caller is expected to allocate stack frame for me!
1341	&mov	($__key,$key);			# save key
1342
1343	&xor	($s0,&DWP(0,$key));		# xor with key
1344	&xor	($s1,&DWP(4,$key));
1345	&xor	($s2,&DWP(8,$key));
1346	&xor	($s3,&DWP(12,$key));
1347
1348	&mov	($acc,&DWP(240,$key));		# load key->rounds
1349
1350	&lea	($acc,&DWP(-2,$acc,$acc));
1351	&lea	($acc,&DWP(0,$key,$acc,8));
1352	&mov	($__end,$acc);			# end of key schedule
1353
1354	# prefetch Td4
1355	&mov	($key,&DWP(0-128,$tbl));
1356	&mov	($acc,&DWP(32-128,$tbl));
1357	&mov	($key,&DWP(64-128,$tbl));
1358	&mov	($acc,&DWP(96-128,$tbl));
1359	&mov	($key,&DWP(128-128,$tbl));
1360	&mov	($acc,&DWP(160-128,$tbl));
1361	&mov	($key,&DWP(192-128,$tbl));
1362	&mov	($acc,&DWP(224-128,$tbl));
1363
1364	&set_label("loop",16);
1365
1366		&deccompact(0,$tbl,$s0,$s3,$s2,$s1,1);
1367		&deccompact(1,$tbl,$s1,$s0,$s3,$s2,1);
1368		&deccompact(2,$tbl,$s2,$s1,$s0,$s3,1);
1369		&deccompact(3,$tbl,$s3,$s2,$s1,$s0,1);
1370		&dectransform(2);
1371		&dectransform(3);
1372		&dectransform(0);
1373		&dectransform(1);
1374		&mov 	($key,$__key);
1375		&mov	($tbl,$__tbl);
1376		&add	($key,16);		# advance rd_key
1377		&xor	($s0,&DWP(0,$key));
1378		&xor	($s1,&DWP(4,$key));
1379		&xor	($s2,&DWP(8,$key));
1380		&xor	($s3,&DWP(12,$key));
1381
1382	&cmp	($key,$__end);
1383	&mov	($__key,$key);
1384	&jb	(&label("loop"));
1385
1386	&deccompact(0,$tbl,$s0,$s3,$s2,$s1);
1387	&deccompact(1,$tbl,$s1,$s0,$s3,$s2);
1388	&deccompact(2,$tbl,$s2,$s1,$s0,$s3);
1389	&deccompact(3,$tbl,$s3,$s2,$s1,$s0);
1390
1391	&xor	($s0,&DWP(16,$key));
1392	&xor	($s1,&DWP(20,$key));
1393	&xor	($s2,&DWP(24,$key));
1394	&xor	($s3,&DWP(28,$key));
1395
1396	&ret	();
1397&function_end_B("_x86_AES_decrypt_compact");
1398
1399######################################################################
1400# "Compact" SSE block function.
1401######################################################################
1402
1403sub sse_deccompact()
1404{
1405	&pshufw	("mm1","mm0",0x0c);		#  7, 6, 1, 0
1406	&pshufw	("mm5","mm4",0x09);		# 13,12,11,10
1407	&movd	("eax","mm1");			#  7, 6, 1, 0
1408	&movd	("ebx","mm5");			# 13,12,11,10
1409	&mov	($__key,$key);
1410
1411	&movz	($acc,&LB("eax"));		#  0
1412	&movz	("edx",&HB("eax"));		#  1
1413	&pshufw	("mm2","mm0",0x06);		#  3, 2, 5, 4
1414	&movz	("ecx",&BP(-128,$tbl,$acc,1));	#  0
1415	&movz	($key,&LB("ebx"));		# 10
1416	&movz	("edx",&BP(-128,$tbl,"edx",1));	#  1
1417	&shr	("eax",16);			#  7, 6
1418	&shl	("edx",8);			#  1
1419
1420	&movz	($acc,&BP(-128,$tbl,$key,1));	# 10
1421	&movz	($key,&HB("ebx"));		# 11
1422	&shl	($acc,16);			# 10
1423	&pshufw	("mm6","mm4",0x03);		# 9, 8,15,14
1424	&or	("ecx",$acc);			# 10
1425	&movz	($acc,&BP(-128,$tbl,$key,1));	# 11
1426	&movz	($key,&HB("eax"));		#  7
1427	&shl	($acc,24);			# 11
1428	&shr	("ebx",16);			# 13,12
1429	&or	("edx",$acc);			# 11
1430
1431	&movz	($acc,&BP(-128,$tbl,$key,1));	#  7
1432	&movz	($key,&HB("ebx"));		# 13
1433	&shl	($acc,24);			#  7
1434	&or	("ecx",$acc);			#  7
1435	&movz	($acc,&BP(-128,$tbl,$key,1));	# 13
1436	&movz	($key,&LB("eax"));		#  6
1437	&shl	($acc,8);			# 13
1438	&movd	("eax","mm2");			#  3, 2, 5, 4
1439	&or	("ecx",$acc);			# 13
1440
1441	&movz	($acc,&BP(-128,$tbl,$key,1));	#  6
1442	&movz	($key,&LB("ebx"));		# 12
1443	&shl	($acc,16);			#  6
1444	&movd	("ebx","mm6");			#  9, 8,15,14
1445	&movd	("mm0","ecx");			# t[0] collected
1446	&movz	("ecx",&BP(-128,$tbl,$key,1));	# 12
1447	&movz	($key,&LB("eax"));		#  4
1448	&or	("ecx",$acc);			# 12
1449
1450	&movz	($acc,&BP(-128,$tbl,$key,1));	#  4
1451	&movz	($key,&LB("ebx"));		# 14
1452	&or	("edx",$acc);			#  4
1453	&movz	($acc,&BP(-128,$tbl,$key,1));	# 14
1454	&movz	($key,&HB("eax"));		#  5
1455	&shl	($acc,16);			# 14
1456	&shr	("eax",16);			#  3, 2
1457	&or	("edx",$acc);			# 14
1458
1459	&movz	($acc,&BP(-128,$tbl,$key,1));	#  5
1460	&movz	($key,&HB("ebx"));		# 15
1461	&shr	("ebx",16);			#  9, 8
1462	&shl	($acc,8);			#  5
1463	&movd	("mm1","edx");			# t[1] collected
1464	&movz	("edx",&BP(-128,$tbl,$key,1));	# 15
1465	&movz	($key,&HB("ebx"));		#  9
1466	&shl	("edx",24);			# 15
1467	&and	("ebx",0xff);			#  8
1468	&or	("edx",$acc);			# 15
1469
1470	&punpckldq	("mm0","mm1");		# t[0,1] collected
1471
1472	&movz	($acc,&BP(-128,$tbl,$key,1));	#  9
1473	&movz	($key,&LB("eax"));		#  2
1474	&shl	($acc,8);			#  9
1475	&movz	("eax",&HB("eax"));		#  3
1476	&movz	("ebx",&BP(-128,$tbl,"ebx",1));	#  8
1477	&or	("ecx",$acc);			#  9
1478	&movz	($acc,&BP(-128,$tbl,$key,1));	#  2
1479	&or	("edx","ebx");			#  8
1480	&shl	($acc,16);			#  2
1481	&movz	("eax",&BP(-128,$tbl,"eax",1));	#  3
1482	&or	("edx",$acc);			#  2
1483	&shl	("eax",24);			#  3
1484	&or	("ecx","eax");			#  3
1485	&mov	($key,$__key);
1486	&movd	("mm4","edx");			# t[2] collected
1487	&movd	("mm5","ecx");			# t[3] collected
1488
1489	&punpckldq	("mm4","mm5");		# t[2,3] collected
1490}
1491
1492					if (!$x86only) {
1493&function_begin_B("_sse_AES_decrypt_compact");
1494	&pxor	("mm0",&QWP(0,$key));	#  7, 6, 5, 4, 3, 2, 1, 0
1495	&pxor	("mm4",&QWP(8,$key));	# 15,14,13,12,11,10, 9, 8
1496
1497	# note that caller is expected to allocate stack frame for me!
1498	&mov	($acc,&DWP(240,$key));		# load key->rounds
1499	&lea	($acc,&DWP(-2,$acc,$acc));
1500	&lea	($acc,&DWP(0,$key,$acc,8));
1501	&mov	($__end,$acc);			# end of key schedule
1502
1503	&mov	($s0,0x1b1b1b1b);		# magic constant
1504	&mov	(&DWP(8,"esp"),$s0);
1505	&mov	(&DWP(12,"esp"),$s0);
1506
1507	# prefetch Td4
1508	&mov	($s0,&DWP(0-128,$tbl));
1509	&mov	($s1,&DWP(32-128,$tbl));
1510	&mov	($s2,&DWP(64-128,$tbl));
1511	&mov	($s3,&DWP(96-128,$tbl));
1512	&mov	($s0,&DWP(128-128,$tbl));
1513	&mov	($s1,&DWP(160-128,$tbl));
1514	&mov	($s2,&DWP(192-128,$tbl));
1515	&mov	($s3,&DWP(224-128,$tbl));
1516
1517	&set_label("loop",16);
1518		&sse_deccompact();
1519		&add	($key,16);
1520		&cmp	($key,$__end);
1521		&ja	(&label("out"));
1522
1523		# ROTATE(x^y,N) == ROTATE(x,N)^ROTATE(y,N)
1524		&movq	("mm3","mm0");		&movq	("mm7","mm4");
1525		&movq	("mm2","mm0",1);	&movq	("mm6","mm4",1);
1526		&movq	("mm1","mm0");		&movq	("mm5","mm4");
1527		&pshufw	("mm0","mm0",0xb1);	&pshufw	("mm4","mm4",0xb1);# = ROTATE(tp0,16)
1528		&pslld	("mm2",8);		&pslld	("mm6",8);
1529		&psrld	("mm3",8);		&psrld	("mm7",8);
1530		&pxor	("mm0","mm2");		&pxor	("mm4","mm6");	# ^= tp0<<8
1531		&pxor	("mm0","mm3");		&pxor	("mm4","mm7");	# ^= tp0>>8
1532		&pslld	("mm2",16);		&pslld	("mm6",16);
1533		&psrld	("mm3",16);		&psrld	("mm7",16);
1534		&pxor	("mm0","mm2");		&pxor	("mm4","mm6");	# ^= tp0<<24
1535		&pxor	("mm0","mm3");		&pxor	("mm4","mm7");	# ^= tp0>>24
1536
1537		&movq	("mm3",&QWP(8,"esp"));
1538		&pxor	("mm2","mm2");		&pxor	("mm6","mm6");
1539		&pcmpgtb("mm2","mm1");		&pcmpgtb("mm6","mm5");
1540		&pand	("mm2","mm3");		&pand	("mm6","mm3");
1541		&paddb	("mm1","mm1");		&paddb	("mm5","mm5");
1542		&pxor	("mm1","mm2");		&pxor	("mm5","mm6");	# tp2
1543		&movq	("mm3","mm1");		&movq	("mm7","mm5");
1544		&movq	("mm2","mm1");		&movq	("mm6","mm5");
1545		&pxor	("mm0","mm1");		&pxor	("mm4","mm5");	# ^= tp2
1546		&pslld	("mm3",24);		&pslld	("mm7",24);
1547		&psrld	("mm2",8);		&psrld	("mm6",8);
1548		&pxor	("mm0","mm3");		&pxor	("mm4","mm7");	# ^= tp2<<24
1549		&pxor	("mm0","mm2");		&pxor	("mm4","mm6");	# ^= tp2>>8
1550
1551		&movq	("mm2",&QWP(8,"esp"));
1552		&pxor	("mm3","mm3");		&pxor	("mm7","mm7");
1553		&pcmpgtb("mm3","mm1");		&pcmpgtb("mm7","mm5");
1554		&pand	("mm3","mm2");		&pand	("mm7","mm2");
1555		&paddb	("mm1","mm1");		&paddb	("mm5","mm5");
1556		&pxor	("mm1","mm3");		&pxor	("mm5","mm7");	# tp4
1557		&pshufw	("mm3","mm1",0xb1);	&pshufw	("mm7","mm5",0xb1);
1558		&pxor	("mm0","mm1");		&pxor	("mm4","mm5");	# ^= tp4
1559		&pxor	("mm0","mm3");		&pxor	("mm4","mm7");	# ^= ROTATE(tp4,16)
1560
1561		&pxor	("mm3","mm3");		&pxor	("mm7","mm7");
1562		&pcmpgtb("mm3","mm1");		&pcmpgtb("mm7","mm5");
1563		&pand	("mm3","mm2");		&pand	("mm7","mm2");
1564		&paddb	("mm1","mm1");		&paddb	("mm5","mm5");
1565		&pxor	("mm1","mm3");		&pxor	("mm5","mm7");	# tp8
1566		&pxor	("mm0","mm1");		&pxor	("mm4","mm5");	# ^= tp8
1567		&movq	("mm3","mm1");		&movq	("mm7","mm5");
1568		&pshufw	("mm2","mm1",0xb1);	&pshufw	("mm6","mm5",0xb1);
1569		&pxor	("mm0","mm2");		&pxor	("mm4","mm6");	# ^= ROTATE(tp8,16)
1570		&pslld	("mm1",8);		&pslld	("mm5",8);
1571		&psrld	("mm3",8);		&psrld	("mm7",8);
1572		&movq	("mm2",&QWP(0,$key));	&movq	("mm6",&QWP(8,$key));
1573		&pxor	("mm0","mm1");		&pxor	("mm4","mm5");	# ^= tp8<<8
1574		&pxor	("mm0","mm3");		&pxor	("mm4","mm7");	# ^= tp8>>8
1575		&mov	($s0,&DWP(0-128,$tbl));
1576		&pslld	("mm1",16);		&pslld	("mm5",16);
1577		&mov	($s1,&DWP(64-128,$tbl));
1578		&psrld	("mm3",16);		&psrld	("mm7",16);
1579		&mov	($s2,&DWP(128-128,$tbl));
1580		&pxor	("mm0","mm1");		&pxor	("mm4","mm5");	# ^= tp8<<24
1581		&mov	($s3,&DWP(192-128,$tbl));
1582		&pxor	("mm0","mm3");		&pxor	("mm4","mm7");	# ^= tp8>>24
1583
1584		&pxor	("mm0","mm2");		&pxor	("mm4","mm6");
1585	&jmp	(&label("loop"));
1586
1587	&set_label("out",16);
1588	&pxor	("mm0",&QWP(0,$key));
1589	&pxor	("mm4",&QWP(8,$key));
1590
1591	&ret	();
1592&function_end_B("_sse_AES_decrypt_compact");
1593					}
1594
1595######################################################################
1596# Vanilla block function.
1597######################################################################
1598
1599sub decstep()
1600{ my ($i,$td,@s) = @_;
1601  my $tmp = $key;
1602  my $out = $i==3?$s[0]:$acc;
1603
1604	# no instructions are reordered, as performance appears
1605	# optimal... or rather that all attempts to reorder didn't
1606	# result in better performance [which by the way is not a
1607	# bit lower than encryption].
1608	if($i==3)   {	&mov	($key,$__key);			}
1609	else        {	&mov	($out,$s[0]);			}
1610			&and	($out,0xFF);
1611			&mov	($out,&DWP(0,$td,$out,8));
1612
1613	if ($i==3)  {	$tmp=$s[1];				}
1614			&movz	($tmp,&HB($s[1]));
1615			&xor	($out,&DWP(3,$td,$tmp,8));
1616
1617	if ($i==3)  {	$tmp=$s[2]; &mov ($s[1],$acc);		}
1618	else        {	&mov	($tmp,$s[2]);			}
1619			&shr	($tmp,16);
1620			&and	($tmp,0xFF);
1621			&xor	($out,&DWP(2,$td,$tmp,8));
1622
1623	if ($i==3)  {	$tmp=$s[3]; &mov ($s[2],$__s1);		}
1624	else        {	&mov	($tmp,$s[3]);			}
1625			&shr	($tmp,24);
1626			&xor	($out,&DWP(1,$td,$tmp,8));
1627	if ($i<2)   {	&mov	(&DWP(4+4*$i,"esp"),$out);	}
1628	if ($i==3)  {	&mov	($s[3],$__s0);			}
1629			&comment();
1630}
1631
1632sub declast()
1633{ my ($i,$td,@s)=@_;
1634  my $tmp = $key;
1635  my $out = $i==3?$s[0]:$acc;
1636
1637	if($i==0)   {	&lea	($td,&DWP(2048+128,$td));
1638			&mov	($tmp,&DWP(0-128,$td));
1639			&mov	($acc,&DWP(32-128,$td));
1640			&mov	($tmp,&DWP(64-128,$td));
1641			&mov	($acc,&DWP(96-128,$td));
1642			&mov	($tmp,&DWP(128-128,$td));
1643			&mov	($acc,&DWP(160-128,$td));
1644			&mov	($tmp,&DWP(192-128,$td));
1645			&mov	($acc,&DWP(224-128,$td));
1646			&lea	($td,&DWP(-128,$td));		}
1647	if($i==3)   {	&mov	($key,$__key);			}
1648	else        {	&mov	($out,$s[0]);			}
1649			&and	($out,0xFF);
1650			&movz	($out,&BP(0,$td,$out,1));
1651
1652	if ($i==3)  {	$tmp=$s[1];				}
1653			&movz	($tmp,&HB($s[1]));
1654			&movz	($tmp,&BP(0,$td,$tmp,1));
1655			&shl	($tmp,8);
1656			&xor	($out,$tmp);
1657
1658	if ($i==3)  {	$tmp=$s[2]; &mov ($s[1],$acc);		}
1659	else        {	mov	($tmp,$s[2]);			}
1660			&shr	($tmp,16);
1661			&and	($tmp,0xFF);
1662			&movz	($tmp,&BP(0,$td,$tmp,1));
1663			&shl	($tmp,16);
1664			&xor	($out,$tmp);
1665
1666	if ($i==3)  {	$tmp=$s[3]; &mov ($s[2],$__s1);		}
1667	else        {	&mov	($tmp,$s[3]);			}
1668			&shr	($tmp,24);
1669			&movz	($tmp,&BP(0,$td,$tmp,1));
1670			&shl	($tmp,24);
1671			&xor	($out,$tmp);
1672	if ($i<2)   {	&mov	(&DWP(4+4*$i,"esp"),$out);	}
1673	if ($i==3)  {	&mov	($s[3],$__s0);
1674			&lea	($td,&DWP(-2048,$td));		}
1675}
1676
1677&function_begin_B("_x86_AES_decrypt");
1678	# note that caller is expected to allocate stack frame for me!
1679	&mov	($__key,$key);			# save key
1680
1681	&xor	($s0,&DWP(0,$key));		# xor with key
1682	&xor	($s1,&DWP(4,$key));
1683	&xor	($s2,&DWP(8,$key));
1684	&xor	($s3,&DWP(12,$key));
1685
1686	&mov	($acc,&DWP(240,$key));		# load key->rounds
1687
1688	if ($small_footprint) {
1689	    &lea	($acc,&DWP(-2,$acc,$acc));
1690	    &lea	($acc,&DWP(0,$key,$acc,8));
1691	    &mov	($__end,$acc);		# end of key schedule
1692	    &set_label("loop",16);
1693		&decstep(0,$tbl,$s0,$s3,$s2,$s1);
1694		&decstep(1,$tbl,$s1,$s0,$s3,$s2);
1695		&decstep(2,$tbl,$s2,$s1,$s0,$s3);
1696		&decstep(3,$tbl,$s3,$s2,$s1,$s0);
1697		&add	($key,16);		# advance rd_key
1698		&xor	($s0,&DWP(0,$key));
1699		&xor	($s1,&DWP(4,$key));
1700		&xor	($s2,&DWP(8,$key));
1701		&xor	($s3,&DWP(12,$key));
1702	    &cmp	($key,$__end);
1703	    &mov	($__key,$key);
1704	    &jb		(&label("loop"));
1705	}
1706	else {
1707	    &cmp	($acc,10);
1708	    &jle	(&label("10rounds"));
1709	    &cmp	($acc,12);
1710	    &jle	(&label("12rounds"));
1711
1712	&set_label("14rounds",4);
1713	    for ($i=1;$i<3;$i++) {
1714		&decstep(0,$tbl,$s0,$s3,$s2,$s1);
1715		&decstep(1,$tbl,$s1,$s0,$s3,$s2);
1716		&decstep(2,$tbl,$s2,$s1,$s0,$s3);
1717		&decstep(3,$tbl,$s3,$s2,$s1,$s0);
1718		&xor	($s0,&DWP(16*$i+0,$key));
1719		&xor	($s1,&DWP(16*$i+4,$key));
1720		&xor	($s2,&DWP(16*$i+8,$key));
1721		&xor	($s3,&DWP(16*$i+12,$key));
1722	    }
1723	    &add	($key,32);
1724	    &mov	($__key,$key);		# advance rd_key
1725	&set_label("12rounds",4);
1726	    for ($i=1;$i<3;$i++) {
1727		&decstep(0,$tbl,$s0,$s3,$s2,$s1);
1728		&decstep(1,$tbl,$s1,$s0,$s3,$s2);
1729		&decstep(2,$tbl,$s2,$s1,$s0,$s3);
1730		&decstep(3,$tbl,$s3,$s2,$s1,$s0);
1731		&xor	($s0,&DWP(16*$i+0,$key));
1732		&xor	($s1,&DWP(16*$i+4,$key));
1733		&xor	($s2,&DWP(16*$i+8,$key));
1734		&xor	($s3,&DWP(16*$i+12,$key));
1735	    }
1736	    &add	($key,32);
1737	    &mov	($__key,$key);		# advance rd_key
1738	&set_label("10rounds",4);
1739	    for ($i=1;$i<10;$i++) {
1740		&decstep(0,$tbl,$s0,$s3,$s2,$s1);
1741		&decstep(1,$tbl,$s1,$s0,$s3,$s2);
1742		&decstep(2,$tbl,$s2,$s1,$s0,$s3);
1743		&decstep(3,$tbl,$s3,$s2,$s1,$s0);
1744		&xor	($s0,&DWP(16*$i+0,$key));
1745		&xor	($s1,&DWP(16*$i+4,$key));
1746		&xor	($s2,&DWP(16*$i+8,$key));
1747		&xor	($s3,&DWP(16*$i+12,$key));
1748	    }
1749	}
1750
1751	&declast(0,$tbl,$s0,$s3,$s2,$s1);
1752	&declast(1,$tbl,$s1,$s0,$s3,$s2);
1753	&declast(2,$tbl,$s2,$s1,$s0,$s3);
1754	&declast(3,$tbl,$s3,$s2,$s1,$s0);
1755
1756	&add	($key,$small_footprint?16:160);
1757	&xor	($s0,&DWP(0,$key));
1758	&xor	($s1,&DWP(4,$key));
1759	&xor	($s2,&DWP(8,$key));
1760	&xor	($s3,&DWP(12,$key));
1761
1762	&ret	();
1763
1764&set_label("AES_Td",64);	# Yes! I keep it in the code segment!
1765	&_data_word(0x50a7f451, 0x5365417e, 0xc3a4171a, 0x965e273a);
1766	&_data_word(0xcb6bab3b, 0xf1459d1f, 0xab58faac, 0x9303e34b);
1767	&_data_word(0x55fa3020, 0xf66d76ad, 0x9176cc88, 0x254c02f5);
1768	&_data_word(0xfcd7e54f, 0xd7cb2ac5, 0x80443526, 0x8fa362b5);
1769	&_data_word(0x495ab1de, 0x671bba25, 0x980eea45, 0xe1c0fe5d);
1770	&_data_word(0x02752fc3, 0x12f04c81, 0xa397468d, 0xc6f9d36b);
1771	&_data_word(0xe75f8f03, 0x959c9215, 0xeb7a6dbf, 0xda595295);
1772	&_data_word(0x2d83bed4, 0xd3217458, 0x2969e049, 0x44c8c98e);
1773	&_data_word(0x6a89c275, 0x78798ef4, 0x6b3e5899, 0xdd71b927);
1774	&_data_word(0xb64fe1be, 0x17ad88f0, 0x66ac20c9, 0xb43ace7d);
1775	&_data_word(0x184adf63, 0x82311ae5, 0x60335197, 0x457f5362);
1776	&_data_word(0xe07764b1, 0x84ae6bbb, 0x1ca081fe, 0x942b08f9);
1777	&_data_word(0x58684870, 0x19fd458f, 0x876cde94, 0xb7f87b52);
1778	&_data_word(0x23d373ab, 0xe2024b72, 0x578f1fe3, 0x2aab5566);
1779	&_data_word(0x0728ebb2, 0x03c2b52f, 0x9a7bc586, 0xa50837d3);
1780	&_data_word(0xf2872830, 0xb2a5bf23, 0xba6a0302, 0x5c8216ed);
1781	&_data_word(0x2b1ccf8a, 0x92b479a7, 0xf0f207f3, 0xa1e2694e);
1782	&_data_word(0xcdf4da65, 0xd5be0506, 0x1f6234d1, 0x8afea6c4);
1783	&_data_word(0x9d532e34, 0xa055f3a2, 0x32e18a05, 0x75ebf6a4);
1784	&_data_word(0x39ec830b, 0xaaef6040, 0x069f715e, 0x51106ebd);
1785	&_data_word(0xf98a213e, 0x3d06dd96, 0xae053edd, 0x46bde64d);
1786	&_data_word(0xb58d5491, 0x055dc471, 0x6fd40604, 0xff155060);
1787	&_data_word(0x24fb9819, 0x97e9bdd6, 0xcc434089, 0x779ed967);
1788	&_data_word(0xbd42e8b0, 0x888b8907, 0x385b19e7, 0xdbeec879);
1789	&_data_word(0x470a7ca1, 0xe90f427c, 0xc91e84f8, 0x00000000);
1790	&_data_word(0x83868009, 0x48ed2b32, 0xac70111e, 0x4e725a6c);
1791	&_data_word(0xfbff0efd, 0x5638850f, 0x1ed5ae3d, 0x27392d36);
1792	&_data_word(0x64d90f0a, 0x21a65c68, 0xd1545b9b, 0x3a2e3624);
1793	&_data_word(0xb1670a0c, 0x0fe75793, 0xd296eeb4, 0x9e919b1b);
1794	&_data_word(0x4fc5c080, 0xa220dc61, 0x694b775a, 0x161a121c);
1795	&_data_word(0x0aba93e2, 0xe52aa0c0, 0x43e0223c, 0x1d171b12);
1796	&_data_word(0x0b0d090e, 0xadc78bf2, 0xb9a8b62d, 0xc8a91e14);
1797	&_data_word(0x8519f157, 0x4c0775af, 0xbbdd99ee, 0xfd607fa3);
1798	&_data_word(0x9f2601f7, 0xbcf5725c, 0xc53b6644, 0x347efb5b);
1799	&_data_word(0x7629438b, 0xdcc623cb, 0x68fcedb6, 0x63f1e4b8);
1800	&_data_word(0xcadc31d7, 0x10856342, 0x40229713, 0x2011c684);
1801	&_data_word(0x7d244a85, 0xf83dbbd2, 0x1132f9ae, 0x6da129c7);
1802	&_data_word(0x4b2f9e1d, 0xf330b2dc, 0xec52860d, 0xd0e3c177);
1803	&_data_word(0x6c16b32b, 0x99b970a9, 0xfa489411, 0x2264e947);
1804	&_data_word(0xc48cfca8, 0x1a3ff0a0, 0xd82c7d56, 0xef903322);
1805	&_data_word(0xc74e4987, 0xc1d138d9, 0xfea2ca8c, 0x360bd498);
1806	&_data_word(0xcf81f5a6, 0x28de7aa5, 0x268eb7da, 0xa4bfad3f);
1807	&_data_word(0xe49d3a2c, 0x0d927850, 0x9bcc5f6a, 0x62467e54);
1808	&_data_word(0xc2138df6, 0xe8b8d890, 0x5ef7392e, 0xf5afc382);
1809	&_data_word(0xbe805d9f, 0x7c93d069, 0xa92dd56f, 0xb31225cf);
1810	&_data_word(0x3b99acc8, 0xa77d1810, 0x6e639ce8, 0x7bbb3bdb);
1811	&_data_word(0x097826cd, 0xf418596e, 0x01b79aec, 0xa89a4f83);
1812	&_data_word(0x656e95e6, 0x7ee6ffaa, 0x08cfbc21, 0xe6e815ef);
1813	&_data_word(0xd99be7ba, 0xce366f4a, 0xd4099fea, 0xd67cb029);
1814	&_data_word(0xafb2a431, 0x31233f2a, 0x3094a5c6, 0xc066a235);
1815	&_data_word(0x37bc4e74, 0xa6ca82fc, 0xb0d090e0, 0x15d8a733);
1816	&_data_word(0x4a9804f1, 0xf7daec41, 0x0e50cd7f, 0x2ff69117);
1817	&_data_word(0x8dd64d76, 0x4db0ef43, 0x544daacc, 0xdf0496e4);
1818	&_data_word(0xe3b5d19e, 0x1b886a4c, 0xb81f2cc1, 0x7f516546);
1819	&_data_word(0x04ea5e9d, 0x5d358c01, 0x737487fa, 0x2e410bfb);
1820	&_data_word(0x5a1d67b3, 0x52d2db92, 0x335610e9, 0x1347d66d);
1821	&_data_word(0x8c61d79a, 0x7a0ca137, 0x8e14f859, 0x893c13eb);
1822	&_data_word(0xee27a9ce, 0x35c961b7, 0xede51ce1, 0x3cb1477a);
1823	&_data_word(0x59dfd29c, 0x3f73f255, 0x79ce1418, 0xbf37c773);
1824	&_data_word(0xeacdf753, 0x5baafd5f, 0x146f3ddf, 0x86db4478);
1825	&_data_word(0x81f3afca, 0x3ec468b9, 0x2c342438, 0x5f40a3c2);
1826	&_data_word(0x72c31d16, 0x0c25e2bc, 0x8b493c28, 0x41950dff);
1827	&_data_word(0x7101a839, 0xdeb30c08, 0x9ce4b4d8, 0x90c15664);
1828	&_data_word(0x6184cb7b, 0x70b632d5, 0x745c6c48, 0x4257b8d0);
1829
1830#Td4:	# four copies of Td4 to choose from to avoid L1 aliasing
1831	&data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
1832	&data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
1833	&data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
1834	&data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
1835	&data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
1836	&data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
1837	&data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
1838	&data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
1839	&data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
1840	&data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
1841	&data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
1842	&data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
1843	&data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
1844	&data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
1845	&data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
1846	&data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
1847	&data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
1848	&data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
1849	&data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
1850	&data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
1851	&data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
1852	&data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
1853	&data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
1854	&data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
1855	&data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
1856	&data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
1857	&data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
1858	&data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
1859	&data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
1860	&data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
1861	&data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
1862	&data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
1863
1864	&data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
1865	&data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
1866	&data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
1867	&data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
1868	&data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
1869	&data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
1870	&data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
1871	&data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
1872	&data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
1873	&data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
1874	&data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
1875	&data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
1876	&data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
1877	&data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
1878	&data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
1879	&data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
1880	&data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
1881	&data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
1882	&data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
1883	&data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
1884	&data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
1885	&data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
1886	&data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
1887	&data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
1888	&data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
1889	&data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
1890	&data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
1891	&data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
1892	&data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
1893	&data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
1894	&data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
1895	&data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
1896
1897	&data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
1898	&data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
1899	&data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
1900	&data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
1901	&data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
1902	&data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
1903	&data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
1904	&data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
1905	&data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
1906	&data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
1907	&data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
1908	&data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
1909	&data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
1910	&data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
1911	&data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
1912	&data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
1913	&data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
1914	&data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
1915	&data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
1916	&data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
1917	&data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
1918	&data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
1919	&data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
1920	&data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
1921	&data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
1922	&data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
1923	&data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
1924	&data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
1925	&data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
1926	&data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
1927	&data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
1928	&data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
1929
1930	&data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
1931	&data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
1932	&data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
1933	&data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
1934	&data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
1935	&data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
1936	&data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
1937	&data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
1938	&data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
1939	&data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
1940	&data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
1941	&data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
1942	&data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
1943	&data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
1944	&data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
1945	&data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
1946	&data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
1947	&data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
1948	&data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
1949	&data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
1950	&data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
1951	&data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
1952	&data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
1953	&data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
1954	&data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
1955	&data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
1956	&data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
1957	&data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
1958	&data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
1959	&data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
1960	&data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
1961	&data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
1962&function_end_B("_x86_AES_decrypt");
1963
1964# void AES_decrypt (const void *inp,void *out,const AES_KEY *key);
1965&function_begin("AES_decrypt");
1966	&mov	($acc,&wparam(0));		# load inp
1967	&mov	($key,&wparam(2));		# load key
1968
1969	&mov	($s0,"esp");
1970	&sub	("esp",36);
1971	&and	("esp",-64);			# align to cache-line
1972
1973	# place stack frame just "above" the key schedule
1974	&lea	($s1,&DWP(-64-63,$key));
1975	&sub	($s1,"esp");
1976	&neg	($s1);
1977	&and	($s1,0x3C0);	# modulo 1024, but aligned to cache-line
1978	&sub	("esp",$s1);
1979	&add	("esp",4);	# 4 is reserved for caller's return address
1980	&mov	($_esp,$s0);	# save stack pointer
1981
1982	&call   (&label("pic_point"));          # make it PIC!
1983	&set_label("pic_point");
1984	&blindpop($tbl);
1985	&picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if(!$x86only);
1986	&lea    ($tbl,&DWP(&label("AES_Td")."-".&label("pic_point"),$tbl));
1987
1988	# pick Td4 copy which can't "overlap" with stack frame or key schedule
1989	&lea	($s1,&DWP(768-4,"esp"));
1990	&sub	($s1,$tbl);
1991	&and	($s1,0x300);
1992	&lea	($tbl,&DWP(2048+128,$tbl,$s1));
1993
1994					if (!$x86only) {
1995	&bt	(&DWP(0,$s0),25);	# check for SSE bit
1996	&jnc	(&label("x86"));
1997
1998	&movq	("mm0",&QWP(0,$acc));
1999	&movq	("mm4",&QWP(8,$acc));
2000	&call	("_sse_AES_decrypt_compact");
2001	&mov	("esp",$_esp);			# restore stack pointer
2002	&mov	($acc,&wparam(1));		# load out
2003	&movq	(&QWP(0,$acc),"mm0");		# write output data
2004	&movq	(&QWP(8,$acc),"mm4");
2005	&emms	();
2006	&function_end_A();
2007					}
2008	&set_label("x86",16);
2009	&mov	($_tbl,$tbl);
2010	&mov	($s0,&DWP(0,$acc));		# load input data
2011	&mov	($s1,&DWP(4,$acc));
2012	&mov	($s2,&DWP(8,$acc));
2013	&mov	($s3,&DWP(12,$acc));
2014	&call	("_x86_AES_decrypt_compact");
2015	&mov	("esp",$_esp);			# restore stack pointer
2016	&mov	($acc,&wparam(1));		# load out
2017	&mov	(&DWP(0,$acc),$s0);		# write output data
2018	&mov	(&DWP(4,$acc),$s1);
2019	&mov	(&DWP(8,$acc),$s2);
2020	&mov	(&DWP(12,$acc),$s3);
2021&function_end("AES_decrypt");
2022
2023# void AES_cbc_encrypt (const void char *inp, unsigned char *out,
2024#			size_t length, const AES_KEY *key,
2025#			unsigned char *ivp,const int enc);
2026{
2027# stack frame layout
2028#             -4(%esp)		# return address	 0(%esp)
2029#              0(%esp)		# s0 backing store	 4(%esp)
2030#              4(%esp)		# s1 backing store	 8(%esp)
2031#              8(%esp)		# s2 backing store	12(%esp)
2032#             12(%esp)		# s3 backing store	16(%esp)
2033#             16(%esp)		# key backup		20(%esp)
2034#             20(%esp)		# end of key schedule	24(%esp)
2035#             24(%esp)		# %ebp backup		28(%esp)
2036#             28(%esp)		# %esp backup
2037my $_inp=&DWP(32,"esp");	# copy of wparam(0)
2038my $_out=&DWP(36,"esp");	# copy of wparam(1)
2039my $_len=&DWP(40,"esp");	# copy of wparam(2)
2040my $_key=&DWP(44,"esp");	# copy of wparam(3)
2041my $_ivp=&DWP(48,"esp");	# copy of wparam(4)
2042my $_tmp=&DWP(52,"esp");	# volatile variable
2043#
2044my $ivec=&DWP(60,"esp");	# ivec[16]
2045my $aes_key=&DWP(76,"esp");	# copy of aes_key
2046my $mark=&DWP(76+240,"esp");	# copy of aes_key->rounds
2047
2048&function_begin("AES_cbc_encrypt");
2049	&mov	($s2 eq "ecx"? $s2 : "",&wparam(2));	# load len
2050	&cmp	($s2,0);
2051	&je	(&label("drop_out"));
2052
2053	&call   (&label("pic_point"));		# make it PIC!
2054	&set_label("pic_point");
2055	&blindpop($tbl);
2056	&picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if(!$x86only);
2057
2058	&cmp	(&wparam(5),0);
2059	&lea    ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl));
2060	&jne	(&label("picked_te"));
2061	&lea	($tbl,&DWP(&label("AES_Td")."-".&label("AES_Te"),$tbl));
2062	&set_label("picked_te");
2063
2064	# one can argue if this is required
2065	&pushf	();
2066	&cld	();
2067
2068	&cmp	($s2,$speed_limit);
2069	&jb	(&label("slow_way"));
2070	&test	($s2,15);
2071	&jnz	(&label("slow_way"));
2072					if (!$x86only) {
2073	&bt	(&DWP(0,$s0),28);	# check for hyper-threading bit
2074	&jc	(&label("slow_way"));
2075					}
2076	# pre-allocate aligned stack frame...
2077	&lea	($acc,&DWP(-80-244,"esp"));
2078	&and	($acc,-64);
2079
2080	# ... and make sure it doesn't alias with $tbl modulo 4096
2081	&mov	($s0,$tbl);
2082	&lea	($s1,&DWP(2048+256,$tbl));
2083	&mov	($s3,$acc);
2084	&and	($s0,0xfff);		# s = %ebp&0xfff
2085	&and	($s1,0xfff);		# e = (%ebp+2048+256)&0xfff
2086	&and	($s3,0xfff);		# p = %esp&0xfff
2087
2088	&cmp	($s3,$s1);		# if (p>=e) %esp =- (p-e);
2089	&jb	(&label("tbl_break_out"));
2090	&sub	($s3,$s1);
2091	&sub	($acc,$s3);
2092	&jmp	(&label("tbl_ok"));
2093	&set_label("tbl_break_out",4);	# else %esp -= (p-s)&0xfff + framesz;
2094	&sub	($s3,$s0);
2095	&and	($s3,0xfff);
2096	&add	($s3,384);
2097	&sub	($acc,$s3);
2098	&set_label("tbl_ok",4);
2099
2100	&lea	($s3,&wparam(0));	# obtain pointer to parameter block
2101	&exch	("esp",$acc);		# allocate stack frame
2102	&add	("esp",4);		# reserve for return address!
2103	&mov	($_tbl,$tbl);		# save %ebp
2104	&mov	($_esp,$acc);		# save %esp
2105
2106	&mov	($s0,&DWP(0,$s3));	# load inp
2107	&mov	($s1,&DWP(4,$s3));	# load out
2108	#&mov	($s2,&DWP(8,$s3));	# load len
2109	&mov	($key,&DWP(12,$s3));	# load key
2110	&mov	($acc,&DWP(16,$s3));	# load ivp
2111	&mov	($s3,&DWP(20,$s3));	# load enc flag
2112
2113	&mov	($_inp,$s0);		# save copy of inp
2114	&mov	($_out,$s1);		# save copy of out
2115	&mov	($_len,$s2);		# save copy of len
2116	&mov	($_key,$key);		# save copy of key
2117	&mov	($_ivp,$acc);		# save copy of ivp
2118
2119	&mov	($mark,0);		# copy of aes_key->rounds = 0;
2120	# do we copy key schedule to stack?
2121	&mov	($s1 eq "ebx" ? $s1 : "",$key);
2122	&mov	($s2 eq "ecx" ? $s2 : "",244/4);
2123	&sub	($s1,$tbl);
2124	&mov	("esi",$key);
2125	&and	($s1,0xfff);
2126	&lea	("edi",$aes_key);
2127	&cmp	($s1,2048+256);
2128	&jb	(&label("do_copy"));
2129	&cmp	($s1,4096-244);
2130	&jb	(&label("skip_copy"));
2131	&set_label("do_copy",4);
2132		&mov	($_key,"edi");
2133		&data_word(0xA5F3F689);	# rep movsd
2134	&set_label("skip_copy");
2135
2136	&mov	($key,16);
2137	&set_label("prefetch_tbl",4);
2138		&mov	($s0,&DWP(0,$tbl));
2139		&mov	($s1,&DWP(32,$tbl));
2140		&mov	($s2,&DWP(64,$tbl));
2141		&mov	($acc,&DWP(96,$tbl));
2142		&lea	($tbl,&DWP(128,$tbl));
2143		&sub	($key,1);
2144	&jnz	(&label("prefetch_tbl"));
2145	&sub	($tbl,2048);
2146
2147	&mov	($acc,$_inp);
2148	&mov	($key,$_ivp);
2149
2150	&cmp	($s3,0);
2151	&je	(&label("fast_decrypt"));
2152
2153#----------------------------- ENCRYPT -----------------------------#
2154	&mov	($s0,&DWP(0,$key));		# load iv
2155	&mov	($s1,&DWP(4,$key));
2156
2157	&set_label("fast_enc_loop",16);
2158		&mov	($s2,&DWP(8,$key));
2159		&mov	($s3,&DWP(12,$key));
2160
2161		&xor	($s0,&DWP(0,$acc));	# xor input data
2162		&xor	($s1,&DWP(4,$acc));
2163		&xor	($s2,&DWP(8,$acc));
2164		&xor	($s3,&DWP(12,$acc));
2165
2166		&mov	($key,$_key);		# load key
2167		&call	("_x86_AES_encrypt");
2168
2169		&mov	($acc,$_inp);		# load inp
2170		&mov	($key,$_out);		# load out
2171
2172		&mov	(&DWP(0,$key),$s0);	# save output data
2173		&mov	(&DWP(4,$key),$s1);
2174		&mov	(&DWP(8,$key),$s2);
2175		&mov	(&DWP(12,$key),$s3);
2176
2177		&lea	($acc,&DWP(16,$acc));	# advance inp
2178		&mov	($s2,$_len);		# load len
2179		&mov	($_inp,$acc);		# save inp
2180		&lea	($s3,&DWP(16,$key));	# advance out
2181		&mov	($_out,$s3);		# save out
2182		&sub	($s2,16);		# decrease len
2183		&mov	($_len,$s2);		# save len
2184	&jnz	(&label("fast_enc_loop"));
2185	&mov	($acc,$_ivp);		# load ivp
2186	&mov	($s2,&DWP(8,$key));	# restore last 2 dwords
2187	&mov	($s3,&DWP(12,$key));
2188	&mov	(&DWP(0,$acc),$s0);	# save ivec
2189	&mov	(&DWP(4,$acc),$s1);
2190	&mov	(&DWP(8,$acc),$s2);
2191	&mov	(&DWP(12,$acc),$s3);
2192
2193	&cmp	($mark,0);		# was the key schedule copied?
2194	&mov	("edi",$_key);
2195	&je	(&label("skip_ezero"));
2196	# zero copy of key schedule
2197	&mov	("ecx",240/4);
2198	&xor	("eax","eax");
2199	&align	(4);
2200	&data_word(0xABF3F689);		# rep stosd
2201	&set_label("skip_ezero");
2202	&mov	("esp",$_esp);
2203	&popf	();
2204    &set_label("drop_out");
2205	&function_end_A();
2206	&pushf	();			# kludge, never executed
2207
2208#----------------------------- DECRYPT -----------------------------#
2209&set_label("fast_decrypt",16);
2210
2211	&cmp	($acc,$_out);
2212	&je	(&label("fast_dec_in_place"));	# in-place processing...
2213
2214	&mov	($_tmp,$key);
2215
2216	&align	(4);
2217	&set_label("fast_dec_loop",16);
2218		&mov	($s0,&DWP(0,$acc));	# read input
2219		&mov	($s1,&DWP(4,$acc));
2220		&mov	($s2,&DWP(8,$acc));
2221		&mov	($s3,&DWP(12,$acc));
2222
2223		&mov	($key,$_key);		# load key
2224		&call	("_x86_AES_decrypt");
2225
2226		&mov	($key,$_tmp);		# load ivp
2227		&mov	($acc,$_len);		# load len
2228		&xor	($s0,&DWP(0,$key));	# xor iv
2229		&xor	($s1,&DWP(4,$key));
2230		&xor	($s2,&DWP(8,$key));
2231		&xor	($s3,&DWP(12,$key));
2232
2233		&mov	($key,$_out);		# load out
2234		&mov	($acc,$_inp);		# load inp
2235
2236		&mov	(&DWP(0,$key),$s0);	# write output
2237		&mov	(&DWP(4,$key),$s1);
2238		&mov	(&DWP(8,$key),$s2);
2239		&mov	(&DWP(12,$key),$s3);
2240
2241		&mov	($s2,$_len);		# load len
2242		&mov	($_tmp,$acc);		# save ivp
2243		&lea	($acc,&DWP(16,$acc));	# advance inp
2244		&mov	($_inp,$acc);		# save inp
2245		&lea	($key,&DWP(16,$key));	# advance out
2246		&mov	($_out,$key);		# save out
2247		&sub	($s2,16);		# decrease len
2248		&mov	($_len,$s2);		# save len
2249	&jnz	(&label("fast_dec_loop"));
2250	&mov	($key,$_tmp);		# load temp ivp
2251	&mov	($acc,$_ivp);		# load user ivp
2252	&mov	($s0,&DWP(0,$key));	# load iv
2253	&mov	($s1,&DWP(4,$key));
2254	&mov	($s2,&DWP(8,$key));
2255	&mov	($s3,&DWP(12,$key));
2256	&mov	(&DWP(0,$acc),$s0);	# copy back to user
2257	&mov	(&DWP(4,$acc),$s1);
2258	&mov	(&DWP(8,$acc),$s2);
2259	&mov	(&DWP(12,$acc),$s3);
2260	&jmp	(&label("fast_dec_out"));
2261
2262    &set_label("fast_dec_in_place",16);
2263	&set_label("fast_dec_in_place_loop");
2264		&mov	($s0,&DWP(0,$acc));	# read input
2265		&mov	($s1,&DWP(4,$acc));
2266		&mov	($s2,&DWP(8,$acc));
2267		&mov	($s3,&DWP(12,$acc));
2268
2269		&lea	($key,$ivec);
2270		&mov	(&DWP(0,$key),$s0);	# copy to temp
2271		&mov	(&DWP(4,$key),$s1);
2272		&mov	(&DWP(8,$key),$s2);
2273		&mov	(&DWP(12,$key),$s3);
2274
2275		&mov	($key,$_key);		# load key
2276		&call	("_x86_AES_decrypt");
2277
2278		&mov	($key,$_ivp);		# load ivp
2279		&mov	($acc,$_out);		# load out
2280		&xor	($s0,&DWP(0,$key));	# xor iv
2281		&xor	($s1,&DWP(4,$key));
2282		&xor	($s2,&DWP(8,$key));
2283		&xor	($s3,&DWP(12,$key));
2284
2285		&mov	(&DWP(0,$acc),$s0);	# write output
2286		&mov	(&DWP(4,$acc),$s1);
2287		&mov	(&DWP(8,$acc),$s2);
2288		&mov	(&DWP(12,$acc),$s3);
2289
2290		&lea	($acc,&DWP(16,$acc));	# advance out
2291		&mov	($_out,$acc);		# save out
2292
2293		&lea	($acc,$ivec);
2294		&mov	($s0,&DWP(0,$acc));	# read temp
2295		&mov	($s1,&DWP(4,$acc));
2296		&mov	($s2,&DWP(8,$acc));
2297		&mov	($s3,&DWP(12,$acc));
2298
2299		&mov	(&DWP(0,$key),$s0);	# copy iv
2300		&mov	(&DWP(4,$key),$s1);
2301		&mov	(&DWP(8,$key),$s2);
2302		&mov	(&DWP(12,$key),$s3);
2303
2304		&mov	($acc,$_inp);		# load inp
2305		&mov	($s2,$_len);		# load len
2306		&lea	($acc,&DWP(16,$acc));	# advance inp
2307		&mov	($_inp,$acc);		# save inp
2308		&sub	($s2,16);		# decrease len
2309		&mov	($_len,$s2);		# save len
2310	&jnz	(&label("fast_dec_in_place_loop"));
2311
2312    &set_label("fast_dec_out",4);
2313	&cmp	($mark,0);		# was the key schedule copied?
2314	&mov	("edi",$_key);
2315	&je	(&label("skip_dzero"));
2316	# zero copy of key schedule
2317	&mov	("ecx",240/4);
2318	&xor	("eax","eax");
2319	&align	(4);
2320	&data_word(0xABF3F689);		# rep stosd
2321	&set_label("skip_dzero");
2322	&mov	("esp",$_esp);
2323	&popf	();
2324	&function_end_A();
2325	&pushf	();			# kludge, never executed
2326
2327#--------------------------- SLOW ROUTINE ---------------------------#
2328&set_label("slow_way",16);
2329
2330	&mov	($s0,&DWP(0,$s0)) if (!$x86only);# load OPENSSL_ia32cap
2331	&mov	($key,&wparam(3));	# load key
2332
2333	# pre-allocate aligned stack frame...
2334	&lea	($acc,&DWP(-80,"esp"));
2335	&and	($acc,-64);
2336
2337	# ... and make sure it doesn't alias with $key modulo 1024
2338	&lea	($s1,&DWP(-80-63,$key));
2339	&sub	($s1,$acc);
2340	&neg	($s1);
2341	&and	($s1,0x3C0);	# modulo 1024, but aligned to cache-line
2342	&sub	($acc,$s1);
2343
2344	# pick S-box copy which can't overlap with stack frame or $key
2345	&lea	($s1,&DWP(768,$acc));
2346	&sub	($s1,$tbl);
2347	&and	($s1,0x300);
2348	&lea	($tbl,&DWP(2048+128,$tbl,$s1));
2349
2350	&lea	($s3,&wparam(0));	# pointer to parameter block
2351
2352	&exch	("esp",$acc);
2353	&add	("esp",4);		# reserve for return address!
2354	&mov	($_tbl,$tbl);		# save %ebp
2355	&mov	($_esp,$acc);		# save %esp
2356	&mov	($_tmp,$s0);		# save OPENSSL_ia32cap
2357
2358	&mov	($s0,&DWP(0,$s3));	# load inp
2359	&mov	($s1,&DWP(4,$s3));	# load out
2360	#&mov	($s2,&DWP(8,$s3));	# load len
2361	#&mov	($key,&DWP(12,$s3));	# load key
2362	&mov	($acc,&DWP(16,$s3));	# load ivp
2363	&mov	($s3,&DWP(20,$s3));	# load enc flag
2364
2365	&mov	($_inp,$s0);		# save copy of inp
2366	&mov	($_out,$s1);		# save copy of out
2367	&mov	($_len,$s2);		# save copy of len
2368	&mov	($_key,$key);		# save copy of key
2369	&mov	($_ivp,$acc);		# save copy of ivp
2370
2371	&mov	($key,$acc);
2372	&mov	($acc,$s0);
2373
2374	&cmp	($s3,0);
2375	&je	(&label("slow_decrypt"));
2376
2377#--------------------------- SLOW ENCRYPT ---------------------------#
2378	&cmp	($s2,16);
2379	&mov	($s3,$s1);
2380	&jb	(&label("slow_enc_tail"));
2381
2382					if (!$x86only) {
2383	&bt	($_tmp,25);		# check for SSE bit
2384	&jnc	(&label("slow_enc_x86"));
2385
2386	&movq	("mm0",&QWP(0,$key));	# load iv
2387	&movq	("mm4",&QWP(8,$key));
2388
2389	&set_label("slow_enc_loop_sse",16);
2390		&pxor	("mm0",&QWP(0,$acc));	# xor input data
2391		&pxor	("mm4",&QWP(8,$acc));
2392
2393		&mov	($key,$_key);
2394		&call	("_sse_AES_encrypt_compact");
2395
2396		&mov	($acc,$_inp);		# load inp
2397		&mov	($key,$_out);		# load out
2398		&mov	($s2,$_len);		# load len
2399
2400		&movq	(&QWP(0,$key),"mm0");	# save output data
2401		&movq	(&QWP(8,$key),"mm4");
2402
2403		&lea	($acc,&DWP(16,$acc));	# advance inp
2404		&mov	($_inp,$acc);		# save inp
2405		&lea	($s3,&DWP(16,$key));	# advance out
2406		&mov	($_out,$s3);		# save out
2407		&sub	($s2,16);		# decrease len
2408		&cmp	($s2,16);
2409		&mov	($_len,$s2);		# save len
2410	&jae	(&label("slow_enc_loop_sse"));
2411	&test	($s2,15);
2412	&jnz	(&label("slow_enc_tail"));
2413	&mov	($acc,$_ivp);		# load ivp
2414	&movq	(&QWP(0,$acc),"mm0");	# save ivec
2415	&movq	(&QWP(8,$acc),"mm4");
2416	&emms	();
2417	&mov	("esp",$_esp);
2418	&popf	();
2419	&function_end_A();
2420	&pushf	();			# kludge, never executed
2421					}
2422    &set_label("slow_enc_x86",16);
2423	&mov	($s0,&DWP(0,$key));	# load iv
2424	&mov	($s1,&DWP(4,$key));
2425
2426	&set_label("slow_enc_loop_x86",4);
2427		&mov	($s2,&DWP(8,$key));
2428		&mov	($s3,&DWP(12,$key));
2429
2430		&xor	($s0,&DWP(0,$acc));	# xor input data
2431		&xor	($s1,&DWP(4,$acc));
2432		&xor	($s2,&DWP(8,$acc));
2433		&xor	($s3,&DWP(12,$acc));
2434
2435		&mov	($key,$_key);		# load key
2436		&call	("_x86_AES_encrypt_compact");
2437
2438		&mov	($acc,$_inp);		# load inp
2439		&mov	($key,$_out);		# load out
2440
2441		&mov	(&DWP(0,$key),$s0);	# save output data
2442		&mov	(&DWP(4,$key),$s1);
2443		&mov	(&DWP(8,$key),$s2);
2444		&mov	(&DWP(12,$key),$s3);
2445
2446		&mov	($s2,$_len);		# load len
2447		&lea	($acc,&DWP(16,$acc));	# advance inp
2448		&mov	($_inp,$acc);		# save inp
2449		&lea	($s3,&DWP(16,$key));	# advance out
2450		&mov	($_out,$s3);		# save out
2451		&sub	($s2,16);		# decrease len
2452		&cmp	($s2,16);
2453		&mov	($_len,$s2);		# save len
2454	&jae	(&label("slow_enc_loop_x86"));
2455	&test	($s2,15);
2456	&jnz	(&label("slow_enc_tail"));
2457	&mov	($acc,$_ivp);		# load ivp
2458	&mov	($s2,&DWP(8,$key));	# restore last dwords
2459	&mov	($s3,&DWP(12,$key));
2460	&mov	(&DWP(0,$acc),$s0);	# save ivec
2461	&mov	(&DWP(4,$acc),$s1);
2462	&mov	(&DWP(8,$acc),$s2);
2463	&mov	(&DWP(12,$acc),$s3);
2464
2465	&mov	("esp",$_esp);
2466	&popf	();
2467	&function_end_A();
2468	&pushf	();			# kludge, never executed
2469
2470    &set_label("slow_enc_tail",16);
2471	&emms	()	if (!$x86only);
2472	&mov	($key eq "edi"? $key:"",$s3);	# load out to edi
2473	&mov	($s1,16);
2474	&sub	($s1,$s2);
2475	&cmp	($key,$acc eq "esi"? $acc:"");	# compare with inp
2476	&je	(&label("enc_in_place"));
2477	&align	(4);
2478	&data_word(0xA4F3F689);	# rep movsb	# copy input
2479	&jmp	(&label("enc_skip_in_place"));
2480    &set_label("enc_in_place");
2481	&lea	($key,&DWP(0,$key,$s2));
2482    &set_label("enc_skip_in_place");
2483	&mov	($s2,$s1);
2484	&xor	($s0,$s0);
2485	&align	(4);
2486	&data_word(0xAAF3F689);	# rep stosb	# zero tail
2487
2488	&mov	($key,$_ivp);			# restore ivp
2489	&mov	($acc,$s3);			# output as input
2490	&mov	($s0,&DWP(0,$key));
2491	&mov	($s1,&DWP(4,$key));
2492	&mov	($_len,16);			# len=16
2493	&jmp	(&label("slow_enc_loop_x86"));	# one more spin...
2494
2495#--------------------------- SLOW DECRYPT ---------------------------#
2496&set_label("slow_decrypt",16);
2497					if (!$x86only) {
2498	&bt	($_tmp,25);		# check for SSE bit
2499	&jnc	(&label("slow_dec_loop_x86"));
2500
2501	&set_label("slow_dec_loop_sse",4);
2502		&movq	("mm0",&QWP(0,$acc));	# read input
2503		&movq	("mm4",&QWP(8,$acc));
2504
2505		&mov	($key,$_key);
2506		&call	("_sse_AES_decrypt_compact");
2507
2508		&mov	($acc,$_inp);		# load inp
2509		&lea	($s0,$ivec);
2510		&mov	($s1,$_out);		# load out
2511		&mov	($s2,$_len);		# load len
2512		&mov	($key,$_ivp);		# load ivp
2513
2514		&movq	("mm1",&QWP(0,$acc));	# re-read input
2515		&movq	("mm5",&QWP(8,$acc));
2516
2517		&pxor	("mm0",&QWP(0,$key));	# xor iv
2518		&pxor	("mm4",&QWP(8,$key));
2519
2520		&movq	(&QWP(0,$key),"mm1");	# copy input to iv
2521		&movq	(&QWP(8,$key),"mm5");
2522
2523		&sub	($s2,16);		# decrease len
2524		&jc	(&label("slow_dec_partial_sse"));
2525
2526		&movq	(&QWP(0,$s1),"mm0");	# write output
2527		&movq	(&QWP(8,$s1),"mm4");
2528
2529		&lea	($s1,&DWP(16,$s1));	# advance out
2530		&mov	($_out,$s1);		# save out
2531		&lea	($acc,&DWP(16,$acc));	# advance inp
2532		&mov	($_inp,$acc);		# save inp
2533		&mov	($_len,$s2);		# save len
2534	&jnz	(&label("slow_dec_loop_sse"));
2535	&emms	();
2536	&mov	("esp",$_esp);
2537	&popf	();
2538	&function_end_A();
2539	&pushf	();			# kludge, never executed
2540
2541    &set_label("slow_dec_partial_sse",16);
2542	&movq	(&QWP(0,$s0),"mm0");	# save output to temp
2543	&movq	(&QWP(8,$s0),"mm4");
2544	&emms	();
2545
2546	&add	($s2 eq "ecx" ? "ecx":"",16);
2547	&mov	("edi",$s1);		# out
2548	&mov	("esi",$s0);		# temp
2549	&align	(4);
2550	&data_word(0xA4F3F689);		# rep movsb # copy partial output
2551
2552	&mov	("esp",$_esp);
2553	&popf	();
2554	&function_end_A();
2555	&pushf	();			# kludge, never executed
2556					}
2557	&set_label("slow_dec_loop_x86",16);
2558		&mov	($s0,&DWP(0,$acc));	# read input
2559		&mov	($s1,&DWP(4,$acc));
2560		&mov	($s2,&DWP(8,$acc));
2561		&mov	($s3,&DWP(12,$acc));
2562
2563		&lea	($key,$ivec);
2564		&mov	(&DWP(0,$key),$s0);	# copy to temp
2565		&mov	(&DWP(4,$key),$s1);
2566		&mov	(&DWP(8,$key),$s2);
2567		&mov	(&DWP(12,$key),$s3);
2568
2569		&mov	($key,$_key);		# load key
2570		&call	("_x86_AES_decrypt_compact");
2571
2572		&mov	($key,$_ivp);		# load ivp
2573		&mov	($acc,$_len);		# load len
2574		&xor	($s0,&DWP(0,$key));	# xor iv
2575		&xor	($s1,&DWP(4,$key));
2576		&xor	($s2,&DWP(8,$key));
2577		&xor	($s3,&DWP(12,$key));
2578
2579		&sub	($acc,16);
2580		&jc	(&label("slow_dec_partial_x86"));
2581
2582		&mov	($_len,$acc);		# save len
2583		&mov	($acc,$_out);		# load out
2584
2585		&mov	(&DWP(0,$acc),$s0);	# write output
2586		&mov	(&DWP(4,$acc),$s1);
2587		&mov	(&DWP(8,$acc),$s2);
2588		&mov	(&DWP(12,$acc),$s3);
2589
2590		&lea	($acc,&DWP(16,$acc));	# advance out
2591		&mov	($_out,$acc);		# save out
2592
2593		&lea	($acc,$ivec);
2594		&mov	($s0,&DWP(0,$acc));	# read temp
2595		&mov	($s1,&DWP(4,$acc));
2596		&mov	($s2,&DWP(8,$acc));
2597		&mov	($s3,&DWP(12,$acc));
2598
2599		&mov	(&DWP(0,$key),$s0);	# copy it to iv
2600		&mov	(&DWP(4,$key),$s1);
2601		&mov	(&DWP(8,$key),$s2);
2602		&mov	(&DWP(12,$key),$s3);
2603
2604		&mov	($acc,$_inp);		# load inp
2605		&lea	($acc,&DWP(16,$acc));	# advance inp
2606		&mov	($_inp,$acc);		# save inp
2607	&jnz	(&label("slow_dec_loop_x86"));
2608	&mov	("esp",$_esp);
2609	&popf	();
2610	&function_end_A();
2611	&pushf	();			# kludge, never executed
2612
2613    &set_label("slow_dec_partial_x86",16);
2614	&lea	($acc,$ivec);
2615	&mov	(&DWP(0,$acc),$s0);	# save output to temp
2616	&mov	(&DWP(4,$acc),$s1);
2617	&mov	(&DWP(8,$acc),$s2);
2618	&mov	(&DWP(12,$acc),$s3);
2619
2620	&mov	($acc,$_inp);
2621	&mov	($s0,&DWP(0,$acc));	# re-read input
2622	&mov	($s1,&DWP(4,$acc));
2623	&mov	($s2,&DWP(8,$acc));
2624	&mov	($s3,&DWP(12,$acc));
2625
2626	&mov	(&DWP(0,$key),$s0);	# copy it to iv
2627	&mov	(&DWP(4,$key),$s1);
2628	&mov	(&DWP(8,$key),$s2);
2629	&mov	(&DWP(12,$key),$s3);
2630
2631	&mov	("ecx",$_len);
2632	&mov	("edi",$_out);
2633	&lea	("esi",$ivec);
2634	&align	(4);
2635	&data_word(0xA4F3F689);		# rep movsb # copy partial output
2636
2637	&mov	("esp",$_esp);
2638	&popf	();
2639&function_end("AES_cbc_encrypt");
2640}
2641
2642#------------------------------------------------------------------#
2643
2644sub enckey()
2645{
2646	&movz	("esi",&LB("edx"));		# rk[i]>>0
2647	&movz	("ebx",&BP(-128,$tbl,"esi",1));
2648	&movz	("esi",&HB("edx"));		# rk[i]>>8
2649	&shl	("ebx",24);
2650	&xor	("eax","ebx");
2651
2652	&movz	("ebx",&BP(-128,$tbl,"esi",1));
2653	&shr	("edx",16);
2654	&movz	("esi",&LB("edx"));		# rk[i]>>16
2655	&xor	("eax","ebx");
2656
2657	&movz	("ebx",&BP(-128,$tbl,"esi",1));
2658	&movz	("esi",&HB("edx"));		# rk[i]>>24
2659	&shl	("ebx",8);
2660	&xor	("eax","ebx");
2661
2662	&movz	("ebx",&BP(-128,$tbl,"esi",1));
2663	&shl	("ebx",16);
2664	&xor	("eax","ebx");
2665
2666	&xor	("eax",&DWP(1024-128,$tbl,"ecx",4));	# rcon
2667}
2668
2669&function_begin("_x86_AES_set_encrypt_key");
2670	&mov	("esi",&wparam(1));		# user supplied key
2671	&mov	("edi",&wparam(3));		# private key schedule
2672
2673	&test	("esi",-1);
2674	&jz	(&label("badpointer"));
2675	&test	("edi",-1);
2676	&jz	(&label("badpointer"));
2677
2678	&call	(&label("pic_point"));
2679	&set_label("pic_point");
2680	&blindpop($tbl);
2681	&lea	($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl));
2682	&lea	($tbl,&DWP(2048+128,$tbl));
2683
2684	# prefetch Te4
2685	&mov	("eax",&DWP(0-128,$tbl));
2686	&mov	("ebx",&DWP(32-128,$tbl));
2687	&mov	("ecx",&DWP(64-128,$tbl));
2688	&mov	("edx",&DWP(96-128,$tbl));
2689	&mov	("eax",&DWP(128-128,$tbl));
2690	&mov	("ebx",&DWP(160-128,$tbl));
2691	&mov	("ecx",&DWP(192-128,$tbl));
2692	&mov	("edx",&DWP(224-128,$tbl));
2693
2694	&mov	("ecx",&wparam(2));		# number of bits in key
2695	&cmp	("ecx",128);
2696	&je	(&label("10rounds"));
2697	&cmp	("ecx",192);
2698	&je	(&label("12rounds"));
2699	&cmp	("ecx",256);
2700	&je	(&label("14rounds"));
2701	&mov	("eax",-2);			# invalid number of bits
2702	&jmp	(&label("exit"));
2703
2704    &set_label("10rounds");
2705	&mov	("eax",&DWP(0,"esi"));		# copy first 4 dwords
2706	&mov	("ebx",&DWP(4,"esi"));
2707	&mov	("ecx",&DWP(8,"esi"));
2708	&mov	("edx",&DWP(12,"esi"));
2709	&mov	(&DWP(0,"edi"),"eax");
2710	&mov	(&DWP(4,"edi"),"ebx");
2711	&mov	(&DWP(8,"edi"),"ecx");
2712	&mov	(&DWP(12,"edi"),"edx");
2713
2714	&xor	("ecx","ecx");
2715	&jmp	(&label("10shortcut"));
2716
2717	&align	(4);
2718	&set_label("10loop");
2719		&mov	("eax",&DWP(0,"edi"));		# rk[0]
2720		&mov	("edx",&DWP(12,"edi"));		# rk[3]
2721	&set_label("10shortcut");
2722		&enckey	();
2723
2724		&mov	(&DWP(16,"edi"),"eax");		# rk[4]
2725		&xor	("eax",&DWP(4,"edi"));
2726		&mov	(&DWP(20,"edi"),"eax");		# rk[5]
2727		&xor	("eax",&DWP(8,"edi"));
2728		&mov	(&DWP(24,"edi"),"eax");		# rk[6]
2729		&xor	("eax",&DWP(12,"edi"));
2730		&mov	(&DWP(28,"edi"),"eax");		# rk[7]
2731		&inc	("ecx");
2732		&add	("edi",16);
2733		&cmp	("ecx",10);
2734	&jl	(&label("10loop"));
2735
2736	&mov	(&DWP(80,"edi"),10);		# setup number of rounds
2737	&xor	("eax","eax");
2738	&jmp	(&label("exit"));
2739
2740    &set_label("12rounds");
2741	&mov	("eax",&DWP(0,"esi"));		# copy first 6 dwords
2742	&mov	("ebx",&DWP(4,"esi"));
2743	&mov	("ecx",&DWP(8,"esi"));
2744	&mov	("edx",&DWP(12,"esi"));
2745	&mov	(&DWP(0,"edi"),"eax");
2746	&mov	(&DWP(4,"edi"),"ebx");
2747	&mov	(&DWP(8,"edi"),"ecx");
2748	&mov	(&DWP(12,"edi"),"edx");
2749	&mov	("ecx",&DWP(16,"esi"));
2750	&mov	("edx",&DWP(20,"esi"));
2751	&mov	(&DWP(16,"edi"),"ecx");
2752	&mov	(&DWP(20,"edi"),"edx");
2753
2754	&xor	("ecx","ecx");
2755	&jmp	(&label("12shortcut"));
2756
2757	&align	(4);
2758	&set_label("12loop");
2759		&mov	("eax",&DWP(0,"edi"));		# rk[0]
2760		&mov	("edx",&DWP(20,"edi"));		# rk[5]
2761	&set_label("12shortcut");
2762		&enckey	();
2763
2764		&mov	(&DWP(24,"edi"),"eax");		# rk[6]
2765		&xor	("eax",&DWP(4,"edi"));
2766		&mov	(&DWP(28,"edi"),"eax");		# rk[7]
2767		&xor	("eax",&DWP(8,"edi"));
2768		&mov	(&DWP(32,"edi"),"eax");		# rk[8]
2769		&xor	("eax",&DWP(12,"edi"));
2770		&mov	(&DWP(36,"edi"),"eax");		# rk[9]
2771
2772		&cmp	("ecx",7);
2773		&je	(&label("12break"));
2774		&inc	("ecx");
2775
2776		&xor	("eax",&DWP(16,"edi"));
2777		&mov	(&DWP(40,"edi"),"eax");		# rk[10]
2778		&xor	("eax",&DWP(20,"edi"));
2779		&mov	(&DWP(44,"edi"),"eax");		# rk[11]
2780
2781		&add	("edi",24);
2782	&jmp	(&label("12loop"));
2783
2784	&set_label("12break");
2785	&mov	(&DWP(72,"edi"),12);		# setup number of rounds
2786	&xor	("eax","eax");
2787	&jmp	(&label("exit"));
2788
2789    &set_label("14rounds");
2790	&mov	("eax",&DWP(0,"esi"));		# copy first 8 dwords
2791	&mov	("ebx",&DWP(4,"esi"));
2792	&mov	("ecx",&DWP(8,"esi"));
2793	&mov	("edx",&DWP(12,"esi"));
2794	&mov	(&DWP(0,"edi"),"eax");
2795	&mov	(&DWP(4,"edi"),"ebx");
2796	&mov	(&DWP(8,"edi"),"ecx");
2797	&mov	(&DWP(12,"edi"),"edx");
2798	&mov	("eax",&DWP(16,"esi"));
2799	&mov	("ebx",&DWP(20,"esi"));
2800	&mov	("ecx",&DWP(24,"esi"));
2801	&mov	("edx",&DWP(28,"esi"));
2802	&mov	(&DWP(16,"edi"),"eax");
2803	&mov	(&DWP(20,"edi"),"ebx");
2804	&mov	(&DWP(24,"edi"),"ecx");
2805	&mov	(&DWP(28,"edi"),"edx");
2806
2807	&xor	("ecx","ecx");
2808	&jmp	(&label("14shortcut"));
2809
2810	&align	(4);
2811	&set_label("14loop");
2812		&mov	("edx",&DWP(28,"edi"));		# rk[7]
2813	&set_label("14shortcut");
2814		&mov	("eax",&DWP(0,"edi"));		# rk[0]
2815
2816		&enckey	();
2817
2818		&mov	(&DWP(32,"edi"),"eax");		# rk[8]
2819		&xor	("eax",&DWP(4,"edi"));
2820		&mov	(&DWP(36,"edi"),"eax");		# rk[9]
2821		&xor	("eax",&DWP(8,"edi"));
2822		&mov	(&DWP(40,"edi"),"eax");		# rk[10]
2823		&xor	("eax",&DWP(12,"edi"));
2824		&mov	(&DWP(44,"edi"),"eax");		# rk[11]
2825
2826		&cmp	("ecx",6);
2827		&je	(&label("14break"));
2828		&inc	("ecx");
2829
2830		&mov	("edx","eax");
2831		&mov	("eax",&DWP(16,"edi"));		# rk[4]
2832		&movz	("esi",&LB("edx"));		# rk[11]>>0
2833		&movz	("ebx",&BP(-128,$tbl,"esi",1));
2834		&movz	("esi",&HB("edx"));		# rk[11]>>8
2835		&xor	("eax","ebx");
2836
2837		&movz	("ebx",&BP(-128,$tbl,"esi",1));
2838		&shr	("edx",16);
2839		&shl	("ebx",8);
2840		&movz	("esi",&LB("edx"));		# rk[11]>>16
2841		&xor	("eax","ebx");
2842
2843		&movz	("ebx",&BP(-128,$tbl,"esi",1));
2844		&movz	("esi",&HB("edx"));		# rk[11]>>24
2845		&shl	("ebx",16);
2846		&xor	("eax","ebx");
2847
2848		&movz	("ebx",&BP(-128,$tbl,"esi",1));
2849		&shl	("ebx",24);
2850		&xor	("eax","ebx");
2851
2852		&mov	(&DWP(48,"edi"),"eax");		# rk[12]
2853		&xor	("eax",&DWP(20,"edi"));
2854		&mov	(&DWP(52,"edi"),"eax");		# rk[13]
2855		&xor	("eax",&DWP(24,"edi"));
2856		&mov	(&DWP(56,"edi"),"eax");		# rk[14]
2857		&xor	("eax",&DWP(28,"edi"));
2858		&mov	(&DWP(60,"edi"),"eax");		# rk[15]
2859
2860		&add	("edi",32);
2861	&jmp	(&label("14loop"));
2862
2863	&set_label("14break");
2864	&mov	(&DWP(48,"edi"),14);		# setup number of rounds
2865	&xor	("eax","eax");
2866	&jmp	(&label("exit"));
2867
2868    &set_label("badpointer");
2869	&mov	("eax",-1);
2870    &set_label("exit");
2871&function_end("_x86_AES_set_encrypt_key");
2872
2873# int AES_set_encrypt_key(const unsigned char *userKey, const int bits,
2874#                        AES_KEY *key)
2875&function_begin_B("AES_set_encrypt_key");
2876	&call	("_x86_AES_set_encrypt_key");
2877	&ret	();
2878&function_end_B("AES_set_encrypt_key");
2879
2880sub deckey()
2881{ my ($i,$key,$tp1,$tp2,$tp4,$tp8) = @_;
2882  my $tmp = $tbl;
2883
2884	&mov	($tmp,0x80808080);
2885	&and	($tmp,$tp1);
2886	&lea	($tp2,&DWP(0,$tp1,$tp1));
2887	&mov	($acc,$tmp);
2888	&shr	($tmp,7);
2889	&sub	($acc,$tmp);
2890	&and	($tp2,0xfefefefe);
2891	&and	($acc,0x1b1b1b1b);
2892	&xor	($tp2,$acc);
2893	&mov	($tmp,0x80808080);
2894
2895	&and	($tmp,$tp2);
2896	&lea	($tp4,&DWP(0,$tp2,$tp2));
2897	&mov	($acc,$tmp);
2898	&shr	($tmp,7);
2899	&sub	($acc,$tmp);
2900	&and	($tp4,0xfefefefe);
2901	&and	($acc,0x1b1b1b1b);
2902	 &xor	($tp2,$tp1);	# tp2^tp1
2903	&xor	($tp4,$acc);
2904	&mov	($tmp,0x80808080);
2905
2906	&and	($tmp,$tp4);
2907	&lea	($tp8,&DWP(0,$tp4,$tp4));
2908	&mov	($acc,$tmp);
2909	&shr	($tmp,7);
2910	 &xor	($tp4,$tp1);	# tp4^tp1
2911	&sub	($acc,$tmp);
2912	&and	($tp8,0xfefefefe);
2913	&and	($acc,0x1b1b1b1b);
2914	 &rotl	($tp1,8);	# = ROTATE(tp1,8)
2915	&xor	($tp8,$acc);
2916
2917	&mov	($tmp,&DWP(4*($i+1),$key));	# modulo-scheduled load
2918
2919	&xor	($tp1,$tp2);
2920	&xor	($tp2,$tp8);
2921	&xor	($tp1,$tp4);
2922	&rotl	($tp2,24);
2923	&xor	($tp4,$tp8);
2924	&xor	($tp1,$tp8);	# ^= tp8^(tp4^tp1)^(tp2^tp1)
2925	&rotl	($tp4,16);
2926	&xor	($tp1,$tp2);	# ^= ROTATE(tp8^tp2^tp1,24)
2927	&rotl	($tp8,8);
2928	&xor	($tp1,$tp4);	# ^= ROTATE(tp8^tp4^tp1,16)
2929	&mov	($tp2,$tmp);
2930	&xor	($tp1,$tp8);	# ^= ROTATE(tp8,8)
2931
2932	&mov	(&DWP(4*$i,$key),$tp1);
2933}
2934
2935# int AES_set_decrypt_key(const unsigned char *userKey, const int bits,
2936#                        AES_KEY *key)
2937&function_begin_B("AES_set_decrypt_key");
2938	&call	("_x86_AES_set_encrypt_key");
2939	&cmp	("eax",0);
2940	&je	(&label("proceed"));
2941	&ret	();
2942
2943    &set_label("proceed");
2944	&push	("ebp");
2945	&push	("ebx");
2946	&push	("esi");
2947	&push	("edi");
2948
2949	&mov	("esi",&wparam(2));
2950	&mov	("ecx",&DWP(240,"esi"));	# pull number of rounds
2951	&lea	("ecx",&DWP(0,"","ecx",4));
2952	&lea	("edi",&DWP(0,"esi","ecx",4));	# pointer to last chunk
2953
2954	&set_label("invert",4);			# invert order of chunks
2955		&mov	("eax",&DWP(0,"esi"));
2956		&mov	("ebx",&DWP(4,"esi"));
2957		&mov	("ecx",&DWP(0,"edi"));
2958		&mov	("edx",&DWP(4,"edi"));
2959		&mov	(&DWP(0,"edi"),"eax");
2960		&mov	(&DWP(4,"edi"),"ebx");
2961		&mov	(&DWP(0,"esi"),"ecx");
2962		&mov	(&DWP(4,"esi"),"edx");
2963		&mov	("eax",&DWP(8,"esi"));
2964		&mov	("ebx",&DWP(12,"esi"));
2965		&mov	("ecx",&DWP(8,"edi"));
2966		&mov	("edx",&DWP(12,"edi"));
2967		&mov	(&DWP(8,"edi"),"eax");
2968		&mov	(&DWP(12,"edi"),"ebx");
2969		&mov	(&DWP(8,"esi"),"ecx");
2970		&mov	(&DWP(12,"esi"),"edx");
2971		&add	("esi",16);
2972		&sub	("edi",16);
2973		&cmp	("esi","edi");
2974	&jne	(&label("invert"));
2975
2976	&mov	($key,&wparam(2));
2977	&mov	($acc,&DWP(240,$key));		# pull number of rounds
2978	&lea	($acc,&DWP(-2,$acc,$acc));
2979	&lea	($acc,&DWP(0,$key,$acc,8));
2980	&mov	(&wparam(2),$acc);
2981
2982	&mov	($s0,&DWP(16,$key));		# modulo-scheduled load
2983	&set_label("permute",4);		# permute the key schedule
2984		&add	($key,16);
2985		&deckey	(0,$key,$s0,$s1,$s2,$s3);
2986		&deckey	(1,$key,$s1,$s2,$s3,$s0);
2987		&deckey	(2,$key,$s2,$s3,$s0,$s1);
2988		&deckey	(3,$key,$s3,$s0,$s1,$s2);
2989		&cmp	($key,&wparam(2));
2990	&jb	(&label("permute"));
2991
2992	&xor	("eax","eax");			# return success
2993&function_end("AES_set_decrypt_key");
2994&asciz("AES for x86, CRYPTOGAMS by <appro\@openssl.org>");
2995
2996&asm_finish();
2997
2998close STDOUT or die "error closing STDOUT: $!";
2999