1#! /usr/bin/env perl
2# Copyright 2007-2018 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the OpenSSL license (the "License").  You may not use
5# this file except in compliance with the License.  You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9
10# ====================================================================
11# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
12# project. The module is, however, dual licensed under OpenSSL and
13# CRYPTOGAMS licenses depending on where you obtain it. For further
14# details see http://www.openssl.org/~appro/cryptogams/.
15# ====================================================================
16
17# April 2007.
18#
19# Performance improvement over vanilla C code varies from 85% to 45%
20# depending on key length and benchmark. Unfortunately in this context
21# these are not very impressive results [for code that utilizes "wide"
22# 64x64=128-bit multiplication, which is not commonly available to C
23# programmers], at least hand-coded bn_asm.c replacement is known to
24# provide 30-40% better results for longest keys. Well, on a second
25# thought it's not very surprising, because z-CPUs are single-issue
26# and _strictly_ in-order execution, while bn_mul_mont is more or less
27# dependent on CPU ability to pipe-line instructions and have several
28# of them "in-flight" at the same time. I mean while other methods,
29# for example Karatsuba, aim to minimize amount of multiplications at
30# the cost of other operations increase, bn_mul_mont aim to neatly
31# "overlap" multiplications and the other operations [and on most
32# platforms even minimize the amount of the other operations, in
33# particular references to memory]. But it's possible to improve this
34# module performance by implementing dedicated squaring code-path and
35# possibly by unrolling loops...
36
37# January 2009.
38#
39# Reschedule to minimize/avoid Address Generation Interlock hazard,
40# make inner loops counter-based.
41
42# November 2010.
43#
44# Adapt for -m31 build. If kernel supports what's called "highgprs"
45# feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit
46# instructions and achieve "64-bit" performance even in 31-bit legacy
47# application context. The feature is not specific to any particular
48# processor, as long as it's "z-CPU". Latter implies that the code
49# remains z/Architecture specific. Compatibility with 32-bit BN_ULONG
50# is achieved by swapping words after 64-bit loads, follow _dswap-s.
51# On z990 it was measured to perform 2.6-2.2 times better than
52# compiler-generated code, less for longer keys...
53
54$flavour = shift;
55
56if ($flavour =~ /3[12]/) {
57	$SIZE_T=4;
58	$g="";
59} else {
60	$SIZE_T=8;
61	$g="g";
62}
63
64while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {}
65open STDOUT,">$output";
66
67$stdframe=16*$SIZE_T+4*8;
68
69$mn0="%r0";
70$num="%r1";
71
72# int bn_mul_mont(
73$rp="%r2";		# BN_ULONG *rp,
74$ap="%r3";		# const BN_ULONG *ap,
75$bp="%r4";		# const BN_ULONG *bp,
76$np="%r5";		# const BN_ULONG *np,
77$n0="%r6";		# const BN_ULONG *n0,
78#$num="160(%r15)"	# int num);
79
80$bi="%r2";	# zaps rp
81$j="%r7";
82
83$ahi="%r8";
84$alo="%r9";
85$nhi="%r10";
86$nlo="%r11";
87$AHI="%r12";
88$NHI="%r13";
89$count="%r14";
90$sp="%r15";
91
92$code.=<<___;
93.text
94.globl	bn_mul_mont
95.type	bn_mul_mont,\@function
96bn_mul_mont:
97	lgf	$num,`$stdframe+$SIZE_T-4`($sp)	# pull $num
98	sla	$num,`log($SIZE_T)/log(2)`	# $num to enumerate bytes
99	la	$bp,0($num,$bp)
100
101	st${g}	%r2,2*$SIZE_T($sp)
102
103	cghi	$num,16		#
104	lghi	%r2,0		#
105	blr	%r14		# if($num<16) return 0;
106___
107$code.=<<___ if ($flavour =~ /3[12]/);
108	tmll	$num,4
109	bnzr	%r14		# if ($num&1) return 0;
110___
111$code.=<<___ if ($flavour !~ /3[12]/);
112	cghi	$num,96		#
113	bhr	%r14		# if($num>96) return 0;
114___
115$code.=<<___;
116	stm${g}	%r3,%r15,3*$SIZE_T($sp)
117
118	lghi	$rp,-$stdframe-8	# leave room for carry bit
119	lcgr	$j,$num		# -$num
120	lgr	%r0,$sp
121	la	$rp,0($rp,$sp)
122	la	$sp,0($j,$rp)	# alloca
123	st${g}	%r0,0($sp)	# back chain
124
125	sra	$num,3		# restore $num
126	la	$bp,0($j,$bp)	# restore $bp
127	ahi	$num,-1		# adjust $num for inner loop
128	lg	$n0,0($n0)	# pull n0
129	_dswap	$n0
130
131	lg	$bi,0($bp)
132	_dswap	$bi
133	lg	$alo,0($ap)
134	_dswap	$alo
135	mlgr	$ahi,$bi	# ap[0]*bp[0]
136	lgr	$AHI,$ahi
137
138	lgr	$mn0,$alo	# "tp[0]"*n0
139	msgr	$mn0,$n0
140
141	lg	$nlo,0($np)	#
142	_dswap	$nlo
143	mlgr	$nhi,$mn0	# np[0]*m1
144	algr	$nlo,$alo	# +="tp[0]"
145	lghi	$NHI,0
146	alcgr	$NHI,$nhi
147
148	la	$j,8(%r0)	# j=1
149	lr	$count,$num
150
151.align	16
152.L1st:
153	lg	$alo,0($j,$ap)
154	_dswap	$alo
155	mlgr	$ahi,$bi	# ap[j]*bp[0]
156	algr	$alo,$AHI
157	lghi	$AHI,0
158	alcgr	$AHI,$ahi
159
160	lg	$nlo,0($j,$np)
161	_dswap	$nlo
162	mlgr	$nhi,$mn0	# np[j]*m1
163	algr	$nlo,$NHI
164	lghi	$NHI,0
165	alcgr	$nhi,$NHI	# +="tp[j]"
166	algr	$nlo,$alo
167	alcgr	$NHI,$nhi
168
169	stg	$nlo,$stdframe-8($j,$sp)	# tp[j-1]=
170	la	$j,8($j)	# j++
171	brct	$count,.L1st
172
173	algr	$NHI,$AHI
174	lghi	$AHI,0
175	alcgr	$AHI,$AHI	# upmost overflow bit
176	stg	$NHI,$stdframe-8($j,$sp)
177	stg	$AHI,$stdframe($j,$sp)
178	la	$bp,8($bp)	# bp++
179
180.Louter:
181	lg	$bi,0($bp)	# bp[i]
182	_dswap	$bi
183	lg	$alo,0($ap)
184	_dswap	$alo
185	mlgr	$ahi,$bi	# ap[0]*bp[i]
186	alg	$alo,$stdframe($sp)	# +=tp[0]
187	lghi	$AHI,0
188	alcgr	$AHI,$ahi
189
190	lgr	$mn0,$alo
191	msgr	$mn0,$n0	# tp[0]*n0
192
193	lg	$nlo,0($np)	# np[0]
194	_dswap	$nlo
195	mlgr	$nhi,$mn0	# np[0]*m1
196	algr	$nlo,$alo	# +="tp[0]"
197	lghi	$NHI,0
198	alcgr	$NHI,$nhi
199
200	la	$j,8(%r0)	# j=1
201	lr	$count,$num
202
203.align	16
204.Linner:
205	lg	$alo,0($j,$ap)
206	_dswap	$alo
207	mlgr	$ahi,$bi	# ap[j]*bp[i]
208	algr	$alo,$AHI
209	lghi	$AHI,0
210	alcgr	$ahi,$AHI
211	alg	$alo,$stdframe($j,$sp)# +=tp[j]
212	alcgr	$AHI,$ahi
213
214	lg	$nlo,0($j,$np)
215	_dswap	$nlo
216	mlgr	$nhi,$mn0	# np[j]*m1
217	algr	$nlo,$NHI
218	lghi	$NHI,0
219	alcgr	$nhi,$NHI
220	algr	$nlo,$alo	# +="tp[j]"
221	alcgr	$NHI,$nhi
222
223	stg	$nlo,$stdframe-8($j,$sp)	# tp[j-1]=
224	la	$j,8($j)	# j++
225	brct	$count,.Linner
226
227	algr	$NHI,$AHI
228	lghi	$AHI,0
229	alcgr	$AHI,$AHI
230	alg	$NHI,$stdframe($j,$sp)# accumulate previous upmost overflow bit
231	lghi	$ahi,0
232	alcgr	$AHI,$ahi	# new upmost overflow bit
233	stg	$NHI,$stdframe-8($j,$sp)
234	stg	$AHI,$stdframe($j,$sp)
235
236	la	$bp,8($bp)	# bp++
237	cl${g}	$bp,`$stdframe+8+4*$SIZE_T`($j,$sp)	# compare to &bp[num]
238	jne	.Louter
239
240	l${g}	$rp,`$stdframe+8+2*$SIZE_T`($j,$sp)	# reincarnate rp
241	la	$ap,$stdframe($sp)
242	ahi	$num,1		# restore $num, incidentally clears "borrow"
243
244	la	$j,0(%r0)
245	lr	$count,$num
246.Lsub:	lg	$alo,0($j,$ap)
247	lg	$nlo,0($j,$np)
248	_dswap	$nlo
249	slbgr	$alo,$nlo
250	stg	$alo,0($j,$rp)
251	la	$j,8($j)
252	brct	$count,.Lsub
253	lghi	$ahi,0
254	slbgr	$AHI,$ahi	# handle upmost carry
255	lghi	$NHI,-1
256	xgr	$NHI,$AHI
257
258	la	$j,0(%r0)
259	lgr	$count,$num
260.Lcopy:	lg	$ahi,$stdframe($j,$sp)	# conditional copy
261	lg	$alo,0($j,$rp)
262	ngr	$ahi,$AHI
263	ngr	$alo,$NHI
264	ogr	$alo,$ahi
265	_dswap	$alo
266	stg	$j,$stdframe($j,$sp)	# zap tp
267	stg	$alo,0($j,$rp)
268	la	$j,8($j)
269	brct	$count,.Lcopy
270
271	la	%r1,`$stdframe+8+6*$SIZE_T`($j,$sp)
272	lm${g}	%r6,%r15,0(%r1)
273	lghi	%r2,1		# signal "processed"
274	br	%r14
275.size	bn_mul_mont,.-bn_mul_mont
276.string	"Montgomery Multiplication for s390x, CRYPTOGAMS by <appro\@openssl.org>"
277___
278
279foreach (split("\n",$code)) {
280	s/\`([^\`]*)\`/eval $1/ge;
281	s/_dswap\s+(%r[0-9]+)/sprintf("rllg\t%s,%s,32",$1,$1) if($SIZE_T==4)/e;
282	print $_,"\n";
283}
284close STDOUT;
285