xref: /freebsd/crypto/openssl/crypto/bn/asm/x86-gf2m.pl (revision 315ee00f)
1#! /usr/bin/env perl
2# Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the Apache License 2.0 (the "License").  You may not use
5# this file except in compliance with the License.  You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9#
10# ====================================================================
11# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
12# project. The module is, however, dual licensed under OpenSSL and
13# CRYPTOGAMS licenses depending on where you obtain it. For further
14# details see http://www.openssl.org/~appro/cryptogams/.
15# ====================================================================
16#
17# May 2011
18#
19# The module implements bn_GF2m_mul_2x2 polynomial multiplication used
20# in bn_gf2m.c. It's kind of low-hanging mechanical port from C for
21# the time being... Except that it has three code paths: pure integer
22# code suitable for any x86 CPU, MMX code suitable for PIII and later
23# and PCLMULQDQ suitable for Westmere and later. Improvement varies
24# from one benchmark and µ-arch to another. Below are interval values
25# for 163- and 571-bit ECDH benchmarks relative to compiler-generated
26# code:
27#
28# PIII		16%-30%
29# P4		12%-12%
30# Opteron	18%-40%
31# Core2		19%-44%
32# Atom		38%-64%
33# Westmere	53%-121%(PCLMULQDQ)/20%-32%(MMX)
34# Sandy Bridge	72%-127%(PCLMULQDQ)/27%-23%(MMX)
35#
36# Note that above improvement coefficients are not coefficients for
37# bn_GF2m_mul_2x2 itself. For example 120% ECDH improvement is result
38# of bn_GF2m_mul_2x2 being >4x faster. As it gets faster, benchmark
39# is more and more dominated by other subroutines, most notably by
40# BN_GF2m_mod[_mul]_arr...
41
42$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
43push(@INC,"${dir}","${dir}../../perlasm");
44require "x86asm.pl";
45
46$output = pop and open STDOUT,">$output";
47
48&asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386");
49
50$sse2=0;
51for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }
52
53&external_label("OPENSSL_ia32cap_P") if ($sse2);
54
55$a="eax";
56$b="ebx";
57($a1,$a2,$a4)=("ecx","edx","ebp");
58
59$R="mm0";
60@T=("mm1","mm2");
61($A,$B,$B30,$B31)=("mm2","mm3","mm4","mm5");
62@i=("esi","edi");
63
64					if (!$x86only) {
65&function_begin_B("_mul_1x1_mmx");
66	&sub	("esp",32+4);
67	 &mov	($a1,$a);
68	 &lea	($a2,&DWP(0,$a,$a));
69	 &and	($a1,0x3fffffff);
70	 &lea	($a4,&DWP(0,$a2,$a2));
71	 &mov	(&DWP(0*4,"esp"),0);
72	 &and	($a2,0x7fffffff);
73	&movd	($A,$a);
74	&movd	($B,$b);
75	 &mov	(&DWP(1*4,"esp"),$a1);	# a1
76	 &xor	($a1,$a2);		# a1^a2
77	&pxor	($B31,$B31);
78	&pxor	($B30,$B30);
79	 &mov	(&DWP(2*4,"esp"),$a2);	# a2
80	 &xor	($a2,$a4);		# a2^a4
81	 &mov	(&DWP(3*4,"esp"),$a1);	# a1^a2
82	&pcmpgtd($B31,$A);		# broadcast 31st bit
83	&paddd	($A,$A);		# $A<<=1
84	 &xor	($a1,$a2);		# a1^a4=a1^a2^a2^a4
85	 &mov	(&DWP(4*4,"esp"),$a4);	# a4
86	 &xor	($a4,$a2);		# a2=a4^a2^a4
87	&pand	($B31,$B);
88	&pcmpgtd($B30,$A);		# broadcast 30th bit
89	 &mov	(&DWP(5*4,"esp"),$a1);	# a1^a4
90	 &xor	($a4,$a1);		# a1^a2^a4
91	&psllq	($B31,31);
92	&pand	($B30,$B);
93	 &mov	(&DWP(6*4,"esp"),$a2);	# a2^a4
94	&mov	(@i[0],0x7);
95	 &mov	(&DWP(7*4,"esp"),$a4);	# a1^a2^a4
96	 &mov	($a4,@i[0]);
97	&and	(@i[0],$b);
98	&shr	($b,3);
99	&mov	(@i[1],$a4);
100	&psllq	($B30,30);
101	&and	(@i[1],$b);
102	&shr	($b,3);
103	&movd	($R,&DWP(0,"esp",@i[0],4));
104	&mov	(@i[0],$a4);
105	&and	(@i[0],$b);
106	&shr	($b,3);
107	for($n=1;$n<9;$n++) {
108		&movd	(@T[1],&DWP(0,"esp",@i[1],4));
109		&mov	(@i[1],$a4);
110		&psllq	(@T[1],3*$n);
111		&and	(@i[1],$b);
112		&shr	($b,3);
113		&pxor	($R,@T[1]);
114
115		push(@i,shift(@i)); push(@T,shift(@T));
116	}
117	&movd	(@T[1],&DWP(0,"esp",@i[1],4));
118	&pxor	($R,$B30);
119	&psllq	(@T[1],3*$n++);
120	&pxor	($R,@T[1]);
121
122	&movd	(@T[0],&DWP(0,"esp",@i[0],4));
123	&pxor	($R,$B31);
124	&psllq	(@T[0],3*$n);
125	&add	("esp",32+4);
126	&pxor	($R,@T[0]);
127	&ret	();
128&function_end_B("_mul_1x1_mmx");
129					}
130
131($lo,$hi)=("eax","edx");
132@T=("ecx","ebp");
133
134&function_begin_B("_mul_1x1_ialu");
135	&sub	("esp",32+4);
136	 &mov	($a1,$a);
137	 &lea	($a2,&DWP(0,$a,$a));
138	 &lea	($a4,&DWP(0,"",$a,4));
139	 &and	($a1,0x3fffffff);
140	&lea	(@i[1],&DWP(0,$lo,$lo));
141	&sar	($lo,31);		# broadcast 31st bit
142	 &mov	(&DWP(0*4,"esp"),0);
143	 &and	($a2,0x7fffffff);
144	 &mov	(&DWP(1*4,"esp"),$a1);	# a1
145	 &xor	($a1,$a2);		# a1^a2
146	 &mov	(&DWP(2*4,"esp"),$a2);	# a2
147	 &xor	($a2,$a4);		# a2^a4
148	 &mov	(&DWP(3*4,"esp"),$a1);	# a1^a2
149	 &xor	($a1,$a2);		# a1^a4=a1^a2^a2^a4
150	 &mov	(&DWP(4*4,"esp"),$a4);	# a4
151	 &xor	($a4,$a2);		# a2=a4^a2^a4
152	 &mov	(&DWP(5*4,"esp"),$a1);	# a1^a4
153	 &xor	($a4,$a1);		# a1^a2^a4
154	&sar	(@i[1],31);		# broadcast 30th bit
155	&and	($lo,$b);
156	 &mov	(&DWP(6*4,"esp"),$a2);	# a2^a4
157	&and	(@i[1],$b);
158	 &mov	(&DWP(7*4,"esp"),$a4);	# a1^a2^a4
159	&mov	($hi,$lo);
160	&shl	($lo,31);
161	&mov	(@T[0],@i[1]);
162	&shr	($hi,1);
163
164	 &mov	(@i[0],0x7);
165	&shl	(@i[1],30);
166	 &and	(@i[0],$b);
167	&shr	(@T[0],2);
168	&xor	($lo,@i[1]);
169
170	&shr	($b,3);
171	&mov	(@i[1],0x7);		# 5-byte instruction!?
172	&and	(@i[1],$b);
173	&shr	($b,3);
174	 &xor	($hi,@T[0]);
175	&xor	($lo,&DWP(0,"esp",@i[0],4));
176	&mov	(@i[0],0x7);
177	&and	(@i[0],$b);
178	&shr	($b,3);
179	for($n=1;$n<9;$n++) {
180		&mov	(@T[1],&DWP(0,"esp",@i[1],4));
181		&mov	(@i[1],0x7);
182		&mov	(@T[0],@T[1]);
183		&shl	(@T[1],3*$n);
184		&and	(@i[1],$b);
185		&shr	(@T[0],32-3*$n);
186		&xor	($lo,@T[1]);
187		&shr	($b,3);
188		&xor	($hi,@T[0]);
189
190		push(@i,shift(@i)); push(@T,shift(@T));
191	}
192	&mov	(@T[1],&DWP(0,"esp",@i[1],4));
193	&mov	(@T[0],@T[1]);
194	&shl	(@T[1],3*$n);
195	&mov	(@i[1],&DWP(0,"esp",@i[0],4));
196	&shr	(@T[0],32-3*$n);	$n++;
197	&mov	(@i[0],@i[1]);
198	&xor	($lo,@T[1]);
199	&shl	(@i[1],3*$n);
200	&xor	($hi,@T[0]);
201	&shr	(@i[0],32-3*$n);
202	&xor	($lo,@i[1]);
203	&xor	($hi,@i[0]);
204
205	&add	("esp",32+4);
206	&ret	();
207&function_end_B("_mul_1x1_ialu");
208
209# void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, BN_ULONG b0);
210&function_begin_B("bn_GF2m_mul_2x2");
211if (!$x86only) {
212	&picmeup("edx","OPENSSL_ia32cap_P");
213	&mov	("eax",&DWP(0,"edx"));
214	&mov	("edx",&DWP(4,"edx"));
215	&test	("eax",1<<23);		# check MMX bit
216	&jz	(&label("ialu"));
217if ($sse2) {
218	&test	("eax",1<<24);		# check FXSR bit
219	&jz	(&label("mmx"));
220	&test	("edx",1<<1);		# check PCLMULQDQ bit
221	&jz	(&label("mmx"));
222
223	&movups		("xmm0",&QWP(8,"esp"));
224	&shufps		("xmm0","xmm0",0b10110001);
225	&pclmulqdq	("xmm0","xmm0",1);
226	&mov		("eax",&DWP(4,"esp"));
227	&movups		(&QWP(0,"eax"),"xmm0");
228	&ret	();
229
230&set_label("mmx",16);
231}
232	&push	("ebp");
233	&push	("ebx");
234	&push	("esi");
235	&push	("edi");
236	&mov	($a,&wparam(1));
237	&mov	($b,&wparam(3));
238	&call	("_mul_1x1_mmx");	# a1·b1
239	&movq	("mm7",$R);
240
241	&mov	($a,&wparam(2));
242	&mov	($b,&wparam(4));
243	&call	("_mul_1x1_mmx");	# a0·b0
244	&movq	("mm6",$R);
245
246	&mov	($a,&wparam(1));
247	&mov	($b,&wparam(3));
248	&xor	($a,&wparam(2));
249	&xor	($b,&wparam(4));
250	&call	("_mul_1x1_mmx");	# (a0+a1)·(b0+b1)
251	&pxor	($R,"mm7");
252	&mov	($a,&wparam(0));
253	&pxor	($R,"mm6");		# (a0+a1)·(b0+b1)-a1·b1-a0·b0
254
255	&movq	($A,$R);
256	&psllq	($R,32);
257	&pop	("edi");
258	&psrlq	($A,32);
259	&pop	("esi");
260	&pxor	($R,"mm6");
261	&pop	("ebx");
262	&pxor	($A,"mm7");
263	&movq	(&QWP(0,$a),$R);
264	&pop	("ebp");
265	&movq	(&QWP(8,$a),$A);
266	&emms	();
267	&ret	();
268&set_label("ialu",16);
269}
270	&push	("ebp");
271	&push	("ebx");
272	&push	("esi");
273	&push	("edi");
274	&stack_push(4+1);
275
276	&mov	($a,&wparam(1));
277	&mov	($b,&wparam(3));
278	&call	("_mul_1x1_ialu");	# a1·b1
279	&mov	(&DWP(8,"esp"),$lo);
280	&mov	(&DWP(12,"esp"),$hi);
281
282	&mov	($a,&wparam(2));
283	&mov	($b,&wparam(4));
284	&call	("_mul_1x1_ialu");	# a0·b0
285	&mov	(&DWP(0,"esp"),$lo);
286	&mov	(&DWP(4,"esp"),$hi);
287
288	&mov	($a,&wparam(1));
289	&mov	($b,&wparam(3));
290	&xor	($a,&wparam(2));
291	&xor	($b,&wparam(4));
292	&call	("_mul_1x1_ialu");	# (a0+a1)·(b0+b1)
293
294	&mov	("ebp",&wparam(0));
295		 @r=("ebx","ecx","edi","esi");
296	&mov	(@r[0],&DWP(0,"esp"));
297	&mov	(@r[1],&DWP(4,"esp"));
298	&mov	(@r[2],&DWP(8,"esp"));
299	&mov	(@r[3],&DWP(12,"esp"));
300
301	&xor	($lo,$hi);
302	&xor	($hi,@r[1]);
303	&xor	($lo,@r[0]);
304	&mov	(&DWP(0,"ebp"),@r[0]);
305	&xor	($hi,@r[2]);
306	&mov	(&DWP(12,"ebp"),@r[3]);
307	&xor	($lo,@r[3]);
308	&stack_pop(4+1);
309	&xor	($hi,@r[3]);
310	&pop	("edi");
311	&xor	($lo,$hi);
312	&pop	("esi");
313	&mov	(&DWP(8,"ebp"),$hi);
314	&pop	("ebx");
315	&mov	(&DWP(4,"ebp"),$lo);
316	&pop	("ebp");
317	&ret	();
318&function_end_B("bn_GF2m_mul_2x2");
319
320&asciz	("GF(2^m) Multiplication for x86, CRYPTOGAMS by <appro\@openssl.org>");
321
322&asm_finish();
323
324close STDOUT or die "error closing STDOUT: $!";
325