xref: /freebsd/crypto/openssl/crypto/bn/bn_asm.c (revision f05cddf9)
1 /* crypto/bn/bn_asm.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3  * All rights reserved.
4  *
5  * This package is an SSL implementation written
6  * by Eric Young (eay@cryptsoft.com).
7  * The implementation was written so as to conform with Netscapes SSL.
8  *
9  * This library is free for commercial and non-commercial use as long as
10  * the following conditions are aheared to.  The following conditions
11  * apply to all code found in this distribution, be it the RC4, RSA,
12  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13  * included with this distribution is covered by the same copyright terms
14  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15  *
16  * Copyright remains Eric Young's, and as such any Copyright notices in
17  * the code are not to be removed.
18  * If this package is used in a product, Eric Young should be given attribution
19  * as the author of the parts of the library used.
20  * This can be in the form of a textual message at program startup or
21  * in documentation (online or textual) provided with the package.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 3. All advertising materials mentioning features or use of this software
32  *    must display the following acknowledgement:
33  *    "This product includes cryptographic software written by
34  *     Eric Young (eay@cryptsoft.com)"
35  *    The word 'cryptographic' can be left out if the rouines from the library
36  *    being used are not cryptographic related :-).
37  * 4. If you include any Windows specific code (or a derivative thereof) from
38  *    the apps directory (application code) you must include an acknowledgement:
39  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40  *
41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  * The licence and distribution terms for any publically available version or
54  * derivative of this code cannot be changed.  i.e. this code cannot simply be
55  * copied and put under another distribution licence
56  * [including the GNU Public Licence.]
57  */
58 
59 #ifndef BN_DEBUG
60 # undef NDEBUG /* avoid conflicting definitions */
61 # define NDEBUG
62 #endif
63 
64 #include <stdio.h>
65 #include <assert.h>
66 #include "cryptlib.h"
67 #include "bn_lcl.h"
68 
69 #if defined(BN_LLONG) || defined(BN_UMULT_HIGH)
70 
71 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
72 	{
73 	BN_ULONG c1=0;
74 
75 	assert(num >= 0);
76 	if (num <= 0) return(c1);
77 
78 #ifndef OPENSSL_SMALL_FOOTPRINT
79 	while (num&~3)
80 		{
81 		mul_add(rp[0],ap[0],w,c1);
82 		mul_add(rp[1],ap[1],w,c1);
83 		mul_add(rp[2],ap[2],w,c1);
84 		mul_add(rp[3],ap[3],w,c1);
85 		ap+=4; rp+=4; num-=4;
86 		}
87 #endif
88 	while (num)
89 		{
90 		mul_add(rp[0],ap[0],w,c1);
91 		ap++; rp++; num--;
92 		}
93 
94 	return(c1);
95 	}
96 
97 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
98 	{
99 	BN_ULONG c1=0;
100 
101 	assert(num >= 0);
102 	if (num <= 0) return(c1);
103 
104 #ifndef OPENSSL_SMALL_FOOTPRINT
105 	while (num&~3)
106 		{
107 		mul(rp[0],ap[0],w,c1);
108 		mul(rp[1],ap[1],w,c1);
109 		mul(rp[2],ap[2],w,c1);
110 		mul(rp[3],ap[3],w,c1);
111 		ap+=4; rp+=4; num-=4;
112 		}
113 #endif
114 	while (num)
115 		{
116 		mul(rp[0],ap[0],w,c1);
117 		ap++; rp++; num--;
118 		}
119 	return(c1);
120 	}
121 
122 void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
123         {
124 	assert(n >= 0);
125 	if (n <= 0) return;
126 
127 #ifndef OPENSSL_SMALL_FOOTPRINT
128 	while (n&~3)
129 		{
130 		sqr(r[0],r[1],a[0]);
131 		sqr(r[2],r[3],a[1]);
132 		sqr(r[4],r[5],a[2]);
133 		sqr(r[6],r[7],a[3]);
134 		a+=4; r+=8; n-=4;
135 		}
136 #endif
137 	while (n)
138 		{
139 		sqr(r[0],r[1],a[0]);
140 		a++; r+=2; n--;
141 		}
142 	}
143 
144 #else /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */
145 
146 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
147 	{
148 	BN_ULONG c=0;
149 	BN_ULONG bl,bh;
150 
151 	assert(num >= 0);
152 	if (num <= 0) return((BN_ULONG)0);
153 
154 	bl=LBITS(w);
155 	bh=HBITS(w);
156 
157 #ifndef OPENSSL_SMALL_FOOTPRINT
158 	while (num&~3)
159 		{
160 		mul_add(rp[0],ap[0],bl,bh,c);
161 		mul_add(rp[1],ap[1],bl,bh,c);
162 		mul_add(rp[2],ap[2],bl,bh,c);
163 		mul_add(rp[3],ap[3],bl,bh,c);
164 		ap+=4; rp+=4; num-=4;
165 		}
166 #endif
167 	while (num)
168 		{
169 		mul_add(rp[0],ap[0],bl,bh,c);
170 		ap++; rp++; num--;
171 		}
172 	return(c);
173 	}
174 
175 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
176 	{
177 	BN_ULONG carry=0;
178 	BN_ULONG bl,bh;
179 
180 	assert(num >= 0);
181 	if (num <= 0) return((BN_ULONG)0);
182 
183 	bl=LBITS(w);
184 	bh=HBITS(w);
185 
186 #ifndef OPENSSL_SMALL_FOOTPRINT
187 	while (num&~3)
188 		{
189 		mul(rp[0],ap[0],bl,bh,carry);
190 		mul(rp[1],ap[1],bl,bh,carry);
191 		mul(rp[2],ap[2],bl,bh,carry);
192 		mul(rp[3],ap[3],bl,bh,carry);
193 		ap+=4; rp+=4; num-=4;
194 		}
195 #endif
196 	while (num)
197 		{
198 		mul(rp[0],ap[0],bl,bh,carry);
199 		ap++; rp++; num--;
200 		}
201 	return(carry);
202 	}
203 
204 void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
205         {
206 	assert(n >= 0);
207 	if (n <= 0) return;
208 
209 #ifndef OPENSSL_SMALL_FOOTPRINT
210 	while (n&~3)
211 		{
212 		sqr64(r[0],r[1],a[0]);
213 		sqr64(r[2],r[3],a[1]);
214 		sqr64(r[4],r[5],a[2]);
215 		sqr64(r[6],r[7],a[3]);
216 		a+=4; r+=8; n-=4;
217 		}
218 #endif
219 	while (n)
220 		{
221 		sqr64(r[0],r[1],a[0]);
222 		a++; r+=2; n--;
223 		}
224 	}
225 
226 #endif /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */
227 
228 #if defined(BN_LLONG) && defined(BN_DIV2W)
229 
230 BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
231 	{
232 	return((BN_ULONG)(((((BN_ULLONG)h)<<BN_BITS2)|l)/(BN_ULLONG)d));
233 	}
234 
235 #else
236 
237 /* Divide h,l by d and return the result. */
238 /* I need to test this some more :-( */
239 BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
240 	{
241 	BN_ULONG dh,dl,q,ret=0,th,tl,t;
242 	int i,count=2;
243 
244 	if (d == 0) return(BN_MASK2);
245 
246 	i=BN_num_bits_word(d);
247 	assert((i == BN_BITS2) || (h <= (BN_ULONG)1<<i));
248 
249 	i=BN_BITS2-i;
250 	if (h >= d) h-=d;
251 
252 	if (i)
253 		{
254 		d<<=i;
255 		h=(h<<i)|(l>>(BN_BITS2-i));
256 		l<<=i;
257 		}
258 	dh=(d&BN_MASK2h)>>BN_BITS4;
259 	dl=(d&BN_MASK2l);
260 	for (;;)
261 		{
262 		if ((h>>BN_BITS4) == dh)
263 			q=BN_MASK2l;
264 		else
265 			q=h/dh;
266 
267 		th=q*dh;
268 		tl=dl*q;
269 		for (;;)
270 			{
271 			t=h-th;
272 			if ((t&BN_MASK2h) ||
273 				((tl) <= (
274 					(t<<BN_BITS4)|
275 					((l&BN_MASK2h)>>BN_BITS4))))
276 				break;
277 			q--;
278 			th-=dh;
279 			tl-=dl;
280 			}
281 		t=(tl>>BN_BITS4);
282 		tl=(tl<<BN_BITS4)&BN_MASK2h;
283 		th+=t;
284 
285 		if (l < tl) th++;
286 		l-=tl;
287 		if (h < th)
288 			{
289 			h+=d;
290 			q--;
291 			}
292 		h-=th;
293 
294 		if (--count == 0) break;
295 
296 		ret=q<<BN_BITS4;
297 		h=((h<<BN_BITS4)|(l>>BN_BITS4))&BN_MASK2;
298 		l=(l&BN_MASK2l)<<BN_BITS4;
299 		}
300 	ret|=q;
301 	return(ret);
302 	}
303 #endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */
304 
305 #ifdef BN_LLONG
306 BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
307         {
308 	BN_ULLONG ll=0;
309 
310 	assert(n >= 0);
311 	if (n <= 0) return((BN_ULONG)0);
312 
313 #ifndef OPENSSL_SMALL_FOOTPRINT
314 	while (n&~3)
315 		{
316 		ll+=(BN_ULLONG)a[0]+b[0];
317 		r[0]=(BN_ULONG)ll&BN_MASK2;
318 		ll>>=BN_BITS2;
319 		ll+=(BN_ULLONG)a[1]+b[1];
320 		r[1]=(BN_ULONG)ll&BN_MASK2;
321 		ll>>=BN_BITS2;
322 		ll+=(BN_ULLONG)a[2]+b[2];
323 		r[2]=(BN_ULONG)ll&BN_MASK2;
324 		ll>>=BN_BITS2;
325 		ll+=(BN_ULLONG)a[3]+b[3];
326 		r[3]=(BN_ULONG)ll&BN_MASK2;
327 		ll>>=BN_BITS2;
328 		a+=4; b+=4; r+=4; n-=4;
329 		}
330 #endif
331 	while (n)
332 		{
333 		ll+=(BN_ULLONG)a[0]+b[0];
334 		r[0]=(BN_ULONG)ll&BN_MASK2;
335 		ll>>=BN_BITS2;
336 		a++; b++; r++; n--;
337 		}
338 	return((BN_ULONG)ll);
339 	}
340 #else /* !BN_LLONG */
341 BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
342         {
343 	BN_ULONG c,l,t;
344 
345 	assert(n >= 0);
346 	if (n <= 0) return((BN_ULONG)0);
347 
348 	c=0;
349 #ifndef OPENSSL_SMALL_FOOTPRINT
350 	while (n&~3)
351 		{
352 		t=a[0];
353 		t=(t+c)&BN_MASK2;
354 		c=(t < c);
355 		l=(t+b[0])&BN_MASK2;
356 		c+=(l < t);
357 		r[0]=l;
358 		t=a[1];
359 		t=(t+c)&BN_MASK2;
360 		c=(t < c);
361 		l=(t+b[1])&BN_MASK2;
362 		c+=(l < t);
363 		r[1]=l;
364 		t=a[2];
365 		t=(t+c)&BN_MASK2;
366 		c=(t < c);
367 		l=(t+b[2])&BN_MASK2;
368 		c+=(l < t);
369 		r[2]=l;
370 		t=a[3];
371 		t=(t+c)&BN_MASK2;
372 		c=(t < c);
373 		l=(t+b[3])&BN_MASK2;
374 		c+=(l < t);
375 		r[3]=l;
376 		a+=4; b+=4; r+=4; n-=4;
377 		}
378 #endif
379 	while(n)
380 		{
381 		t=a[0];
382 		t=(t+c)&BN_MASK2;
383 		c=(t < c);
384 		l=(t+b[0])&BN_MASK2;
385 		c+=(l < t);
386 		r[0]=l;
387 		a++; b++; r++; n--;
388 		}
389 	return((BN_ULONG)c);
390 	}
391 #endif /* !BN_LLONG */
392 
393 BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
394         {
395 	BN_ULONG t1,t2;
396 	int c=0;
397 
398 	assert(n >= 0);
399 	if (n <= 0) return((BN_ULONG)0);
400 
401 #ifndef OPENSSL_SMALL_FOOTPRINT
402 	while (n&~3)
403 		{
404 		t1=a[0]; t2=b[0];
405 		r[0]=(t1-t2-c)&BN_MASK2;
406 		if (t1 != t2) c=(t1 < t2);
407 		t1=a[1]; t2=b[1];
408 		r[1]=(t1-t2-c)&BN_MASK2;
409 		if (t1 != t2) c=(t1 < t2);
410 		t1=a[2]; t2=b[2];
411 		r[2]=(t1-t2-c)&BN_MASK2;
412 		if (t1 != t2) c=(t1 < t2);
413 		t1=a[3]; t2=b[3];
414 		r[3]=(t1-t2-c)&BN_MASK2;
415 		if (t1 != t2) c=(t1 < t2);
416 		a+=4; b+=4; r+=4; n-=4;
417 		}
418 #endif
419 	while (n)
420 		{
421 		t1=a[0]; t2=b[0];
422 		r[0]=(t1-t2-c)&BN_MASK2;
423 		if (t1 != t2) c=(t1 < t2);
424 		a++; b++; r++; n--;
425 		}
426 	return(c);
427 	}
428 
429 #if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT)
430 
431 #undef bn_mul_comba8
432 #undef bn_mul_comba4
433 #undef bn_sqr_comba8
434 #undef bn_sqr_comba4
435 
436 /* mul_add_c(a,b,c0,c1,c2)  -- c+=a*b for three word number c=(c2,c1,c0) */
437 /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */
438 /* sqr_add_c(a,i,c0,c1,c2)  -- c+=a[i]^2 for three word number c=(c2,c1,c0) */
439 /* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0) */
440 
441 #ifdef BN_LLONG
442 #define mul_add_c(a,b,c0,c1,c2) \
443 	t=(BN_ULLONG)a*b; \
444 	t1=(BN_ULONG)Lw(t); \
445 	t2=(BN_ULONG)Hw(t); \
446 	c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
447 	c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
448 
449 #define mul_add_c2(a,b,c0,c1,c2) \
450 	t=(BN_ULLONG)a*b; \
451 	tt=(t+t)&BN_MASK; \
452 	if (tt < t) c2++; \
453 	t1=(BN_ULONG)Lw(tt); \
454 	t2=(BN_ULONG)Hw(tt); \
455 	c0=(c0+t1)&BN_MASK2;  \
456 	if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \
457 	c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
458 
459 #define sqr_add_c(a,i,c0,c1,c2) \
460 	t=(BN_ULLONG)a[i]*a[i]; \
461 	t1=(BN_ULONG)Lw(t); \
462 	t2=(BN_ULONG)Hw(t); \
463 	c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
464 	c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
465 
466 #define sqr_add_c2(a,i,j,c0,c1,c2) \
467 	mul_add_c2((a)[i],(a)[j],c0,c1,c2)
468 
469 #elif defined(BN_UMULT_LOHI)
470 
471 #define mul_add_c(a,b,c0,c1,c2)	{	\
472 	BN_ULONG ta=(a),tb=(b);		\
473 	BN_UMULT_LOHI(t1,t2,ta,tb);	\
474 	c0 += t1; t2 += (c0<t1)?1:0;	\
475 	c1 += t2; c2 += (c1<t2)?1:0;	\
476 	}
477 
478 #define mul_add_c2(a,b,c0,c1,c2) {	\
479 	BN_ULONG ta=(a),tb=(b),t0;	\
480 	BN_UMULT_LOHI(t0,t1,ta,tb);	\
481 	t2 = t1+t1; c2 += (t2<t1)?1:0;	\
482 	t1 = t0+t0; t2 += (t1<t0)?1:0;	\
483 	c0 += t1; t2 += (c0<t1)?1:0;	\
484 	c1 += t2; c2 += (c1<t2)?1:0;	\
485 	}
486 
487 #define sqr_add_c(a,i,c0,c1,c2)	{	\
488 	BN_ULONG ta=(a)[i];		\
489 	BN_UMULT_LOHI(t1,t2,ta,ta);	\
490 	c0 += t1; t2 += (c0<t1)?1:0;	\
491 	c1 += t2; c2 += (c1<t2)?1:0;	\
492 	}
493 
494 #define sqr_add_c2(a,i,j,c0,c1,c2)	\
495 	mul_add_c2((a)[i],(a)[j],c0,c1,c2)
496 
497 #elif defined(BN_UMULT_HIGH)
498 
499 #define mul_add_c(a,b,c0,c1,c2)	{	\
500 	BN_ULONG ta=(a),tb=(b);		\
501 	t1 = ta * tb;			\
502 	t2 = BN_UMULT_HIGH(ta,tb);	\
503 	c0 += t1; t2 += (c0<t1)?1:0;	\
504 	c1 += t2; c2 += (c1<t2)?1:0;	\
505 	}
506 
507 #define mul_add_c2(a,b,c0,c1,c2) {	\
508 	BN_ULONG ta=(a),tb=(b),t0;	\
509 	t1 = BN_UMULT_HIGH(ta,tb);	\
510 	t0 = ta * tb;			\
511 	t2 = t1+t1; c2 += (t2<t1)?1:0;	\
512 	t1 = t0+t0; t2 += (t1<t0)?1:0;	\
513 	c0 += t1; t2 += (c0<t1)?1:0;	\
514 	c1 += t2; c2 += (c1<t2)?1:0;	\
515 	}
516 
517 #define sqr_add_c(a,i,c0,c1,c2)	{	\
518 	BN_ULONG ta=(a)[i];		\
519 	t1 = ta * ta;			\
520 	t2 = BN_UMULT_HIGH(ta,ta);	\
521 	c0 += t1; t2 += (c0<t1)?1:0;	\
522 	c1 += t2; c2 += (c1<t2)?1:0;	\
523 	}
524 
525 #define sqr_add_c2(a,i,j,c0,c1,c2)	\
526 	mul_add_c2((a)[i],(a)[j],c0,c1,c2)
527 
528 #else /* !BN_LLONG */
529 #define mul_add_c(a,b,c0,c1,c2) \
530 	t1=LBITS(a); t2=HBITS(a); \
531 	bl=LBITS(b); bh=HBITS(b); \
532 	mul64(t1,t2,bl,bh); \
533 	c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
534 	c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
535 
536 #define mul_add_c2(a,b,c0,c1,c2) \
537 	t1=LBITS(a); t2=HBITS(a); \
538 	bl=LBITS(b); bh=HBITS(b); \
539 	mul64(t1,t2,bl,bh); \
540 	if (t2 & BN_TBIT) c2++; \
541 	t2=(t2+t2)&BN_MASK2; \
542 	if (t1 & BN_TBIT) t2++; \
543 	t1=(t1+t1)&BN_MASK2; \
544 	c0=(c0+t1)&BN_MASK2;  \
545 	if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \
546 	c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
547 
548 #define sqr_add_c(a,i,c0,c1,c2) \
549 	sqr64(t1,t2,(a)[i]); \
550 	c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
551 	c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
552 
553 #define sqr_add_c2(a,i,j,c0,c1,c2) \
554 	mul_add_c2((a)[i],(a)[j],c0,c1,c2)
555 #endif /* !BN_LLONG */
556 
557 void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
558 	{
559 #ifdef BN_LLONG
560 	BN_ULLONG t;
561 #else
562 	BN_ULONG bl,bh;
563 #endif
564 	BN_ULONG t1,t2;
565 	BN_ULONG c1,c2,c3;
566 
567 	c1=0;
568 	c2=0;
569 	c3=0;
570 	mul_add_c(a[0],b[0],c1,c2,c3);
571 	r[0]=c1;
572 	c1=0;
573 	mul_add_c(a[0],b[1],c2,c3,c1);
574 	mul_add_c(a[1],b[0],c2,c3,c1);
575 	r[1]=c2;
576 	c2=0;
577 	mul_add_c(a[2],b[0],c3,c1,c2);
578 	mul_add_c(a[1],b[1],c3,c1,c2);
579 	mul_add_c(a[0],b[2],c3,c1,c2);
580 	r[2]=c3;
581 	c3=0;
582 	mul_add_c(a[0],b[3],c1,c2,c3);
583 	mul_add_c(a[1],b[2],c1,c2,c3);
584 	mul_add_c(a[2],b[1],c1,c2,c3);
585 	mul_add_c(a[3],b[0],c1,c2,c3);
586 	r[3]=c1;
587 	c1=0;
588 	mul_add_c(a[4],b[0],c2,c3,c1);
589 	mul_add_c(a[3],b[1],c2,c3,c1);
590 	mul_add_c(a[2],b[2],c2,c3,c1);
591 	mul_add_c(a[1],b[3],c2,c3,c1);
592 	mul_add_c(a[0],b[4],c2,c3,c1);
593 	r[4]=c2;
594 	c2=0;
595 	mul_add_c(a[0],b[5],c3,c1,c2);
596 	mul_add_c(a[1],b[4],c3,c1,c2);
597 	mul_add_c(a[2],b[3],c3,c1,c2);
598 	mul_add_c(a[3],b[2],c3,c1,c2);
599 	mul_add_c(a[4],b[1],c3,c1,c2);
600 	mul_add_c(a[5],b[0],c3,c1,c2);
601 	r[5]=c3;
602 	c3=0;
603 	mul_add_c(a[6],b[0],c1,c2,c3);
604 	mul_add_c(a[5],b[1],c1,c2,c3);
605 	mul_add_c(a[4],b[2],c1,c2,c3);
606 	mul_add_c(a[3],b[3],c1,c2,c3);
607 	mul_add_c(a[2],b[4],c1,c2,c3);
608 	mul_add_c(a[1],b[5],c1,c2,c3);
609 	mul_add_c(a[0],b[6],c1,c2,c3);
610 	r[6]=c1;
611 	c1=0;
612 	mul_add_c(a[0],b[7],c2,c3,c1);
613 	mul_add_c(a[1],b[6],c2,c3,c1);
614 	mul_add_c(a[2],b[5],c2,c3,c1);
615 	mul_add_c(a[3],b[4],c2,c3,c1);
616 	mul_add_c(a[4],b[3],c2,c3,c1);
617 	mul_add_c(a[5],b[2],c2,c3,c1);
618 	mul_add_c(a[6],b[1],c2,c3,c1);
619 	mul_add_c(a[7],b[0],c2,c3,c1);
620 	r[7]=c2;
621 	c2=0;
622 	mul_add_c(a[7],b[1],c3,c1,c2);
623 	mul_add_c(a[6],b[2],c3,c1,c2);
624 	mul_add_c(a[5],b[3],c3,c1,c2);
625 	mul_add_c(a[4],b[4],c3,c1,c2);
626 	mul_add_c(a[3],b[5],c3,c1,c2);
627 	mul_add_c(a[2],b[6],c3,c1,c2);
628 	mul_add_c(a[1],b[7],c3,c1,c2);
629 	r[8]=c3;
630 	c3=0;
631 	mul_add_c(a[2],b[7],c1,c2,c3);
632 	mul_add_c(a[3],b[6],c1,c2,c3);
633 	mul_add_c(a[4],b[5],c1,c2,c3);
634 	mul_add_c(a[5],b[4],c1,c2,c3);
635 	mul_add_c(a[6],b[3],c1,c2,c3);
636 	mul_add_c(a[7],b[2],c1,c2,c3);
637 	r[9]=c1;
638 	c1=0;
639 	mul_add_c(a[7],b[3],c2,c3,c1);
640 	mul_add_c(a[6],b[4],c2,c3,c1);
641 	mul_add_c(a[5],b[5],c2,c3,c1);
642 	mul_add_c(a[4],b[6],c2,c3,c1);
643 	mul_add_c(a[3],b[7],c2,c3,c1);
644 	r[10]=c2;
645 	c2=0;
646 	mul_add_c(a[4],b[7],c3,c1,c2);
647 	mul_add_c(a[5],b[6],c3,c1,c2);
648 	mul_add_c(a[6],b[5],c3,c1,c2);
649 	mul_add_c(a[7],b[4],c3,c1,c2);
650 	r[11]=c3;
651 	c3=0;
652 	mul_add_c(a[7],b[5],c1,c2,c3);
653 	mul_add_c(a[6],b[6],c1,c2,c3);
654 	mul_add_c(a[5],b[7],c1,c2,c3);
655 	r[12]=c1;
656 	c1=0;
657 	mul_add_c(a[6],b[7],c2,c3,c1);
658 	mul_add_c(a[7],b[6],c2,c3,c1);
659 	r[13]=c2;
660 	c2=0;
661 	mul_add_c(a[7],b[7],c3,c1,c2);
662 	r[14]=c3;
663 	r[15]=c1;
664 	}
665 
666 void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
667 	{
668 #ifdef BN_LLONG
669 	BN_ULLONG t;
670 #else
671 	BN_ULONG bl,bh;
672 #endif
673 	BN_ULONG t1,t2;
674 	BN_ULONG c1,c2,c3;
675 
676 	c1=0;
677 	c2=0;
678 	c3=0;
679 	mul_add_c(a[0],b[0],c1,c2,c3);
680 	r[0]=c1;
681 	c1=0;
682 	mul_add_c(a[0],b[1],c2,c3,c1);
683 	mul_add_c(a[1],b[0],c2,c3,c1);
684 	r[1]=c2;
685 	c2=0;
686 	mul_add_c(a[2],b[0],c3,c1,c2);
687 	mul_add_c(a[1],b[1],c3,c1,c2);
688 	mul_add_c(a[0],b[2],c3,c1,c2);
689 	r[2]=c3;
690 	c3=0;
691 	mul_add_c(a[0],b[3],c1,c2,c3);
692 	mul_add_c(a[1],b[2],c1,c2,c3);
693 	mul_add_c(a[2],b[1],c1,c2,c3);
694 	mul_add_c(a[3],b[0],c1,c2,c3);
695 	r[3]=c1;
696 	c1=0;
697 	mul_add_c(a[3],b[1],c2,c3,c1);
698 	mul_add_c(a[2],b[2],c2,c3,c1);
699 	mul_add_c(a[1],b[3],c2,c3,c1);
700 	r[4]=c2;
701 	c2=0;
702 	mul_add_c(a[2],b[3],c3,c1,c2);
703 	mul_add_c(a[3],b[2],c3,c1,c2);
704 	r[5]=c3;
705 	c3=0;
706 	mul_add_c(a[3],b[3],c1,c2,c3);
707 	r[6]=c1;
708 	r[7]=c2;
709 	}
710 
711 void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
712 	{
713 #ifdef BN_LLONG
714 	BN_ULLONG t,tt;
715 #else
716 	BN_ULONG bl,bh;
717 #endif
718 	BN_ULONG t1,t2;
719 	BN_ULONG c1,c2,c3;
720 
721 	c1=0;
722 	c2=0;
723 	c3=0;
724 	sqr_add_c(a,0,c1,c2,c3);
725 	r[0]=c1;
726 	c1=0;
727 	sqr_add_c2(a,1,0,c2,c3,c1);
728 	r[1]=c2;
729 	c2=0;
730 	sqr_add_c(a,1,c3,c1,c2);
731 	sqr_add_c2(a,2,0,c3,c1,c2);
732 	r[2]=c3;
733 	c3=0;
734 	sqr_add_c2(a,3,0,c1,c2,c3);
735 	sqr_add_c2(a,2,1,c1,c2,c3);
736 	r[3]=c1;
737 	c1=0;
738 	sqr_add_c(a,2,c2,c3,c1);
739 	sqr_add_c2(a,3,1,c2,c3,c1);
740 	sqr_add_c2(a,4,0,c2,c3,c1);
741 	r[4]=c2;
742 	c2=0;
743 	sqr_add_c2(a,5,0,c3,c1,c2);
744 	sqr_add_c2(a,4,1,c3,c1,c2);
745 	sqr_add_c2(a,3,2,c3,c1,c2);
746 	r[5]=c3;
747 	c3=0;
748 	sqr_add_c(a,3,c1,c2,c3);
749 	sqr_add_c2(a,4,2,c1,c2,c3);
750 	sqr_add_c2(a,5,1,c1,c2,c3);
751 	sqr_add_c2(a,6,0,c1,c2,c3);
752 	r[6]=c1;
753 	c1=0;
754 	sqr_add_c2(a,7,0,c2,c3,c1);
755 	sqr_add_c2(a,6,1,c2,c3,c1);
756 	sqr_add_c2(a,5,2,c2,c3,c1);
757 	sqr_add_c2(a,4,3,c2,c3,c1);
758 	r[7]=c2;
759 	c2=0;
760 	sqr_add_c(a,4,c3,c1,c2);
761 	sqr_add_c2(a,5,3,c3,c1,c2);
762 	sqr_add_c2(a,6,2,c3,c1,c2);
763 	sqr_add_c2(a,7,1,c3,c1,c2);
764 	r[8]=c3;
765 	c3=0;
766 	sqr_add_c2(a,7,2,c1,c2,c3);
767 	sqr_add_c2(a,6,3,c1,c2,c3);
768 	sqr_add_c2(a,5,4,c1,c2,c3);
769 	r[9]=c1;
770 	c1=0;
771 	sqr_add_c(a,5,c2,c3,c1);
772 	sqr_add_c2(a,6,4,c2,c3,c1);
773 	sqr_add_c2(a,7,3,c2,c3,c1);
774 	r[10]=c2;
775 	c2=0;
776 	sqr_add_c2(a,7,4,c3,c1,c2);
777 	sqr_add_c2(a,6,5,c3,c1,c2);
778 	r[11]=c3;
779 	c3=0;
780 	sqr_add_c(a,6,c1,c2,c3);
781 	sqr_add_c2(a,7,5,c1,c2,c3);
782 	r[12]=c1;
783 	c1=0;
784 	sqr_add_c2(a,7,6,c2,c3,c1);
785 	r[13]=c2;
786 	c2=0;
787 	sqr_add_c(a,7,c3,c1,c2);
788 	r[14]=c3;
789 	r[15]=c1;
790 	}
791 
792 void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
793 	{
794 #ifdef BN_LLONG
795 	BN_ULLONG t,tt;
796 #else
797 	BN_ULONG bl,bh;
798 #endif
799 	BN_ULONG t1,t2;
800 	BN_ULONG c1,c2,c3;
801 
802 	c1=0;
803 	c2=0;
804 	c3=0;
805 	sqr_add_c(a,0,c1,c2,c3);
806 	r[0]=c1;
807 	c1=0;
808 	sqr_add_c2(a,1,0,c2,c3,c1);
809 	r[1]=c2;
810 	c2=0;
811 	sqr_add_c(a,1,c3,c1,c2);
812 	sqr_add_c2(a,2,0,c3,c1,c2);
813 	r[2]=c3;
814 	c3=0;
815 	sqr_add_c2(a,3,0,c1,c2,c3);
816 	sqr_add_c2(a,2,1,c1,c2,c3);
817 	r[3]=c1;
818 	c1=0;
819 	sqr_add_c(a,2,c2,c3,c1);
820 	sqr_add_c2(a,3,1,c2,c3,c1);
821 	r[4]=c2;
822 	c2=0;
823 	sqr_add_c2(a,3,2,c3,c1,c2);
824 	r[5]=c3;
825 	c3=0;
826 	sqr_add_c(a,3,c1,c2,c3);
827 	r[6]=c1;
828 	r[7]=c2;
829 	}
830 
831 #ifdef OPENSSL_NO_ASM
832 #ifdef OPENSSL_BN_ASM_MONT
833 #include <alloca.h>
834 /*
835  * This is essentially reference implementation, which may or may not
836  * result in performance improvement. E.g. on IA-32 this routine was
837  * observed to give 40% faster rsa1024 private key operations and 10%
838  * faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only
839  * by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a
840  * reference implementation, one to be used as starting point for
841  * platform-specific assembler. Mentioned numbers apply to compiler
842  * generated code compiled with and without -DOPENSSL_BN_ASM_MONT and
843  * can vary not only from platform to platform, but even for compiler
844  * versions. Assembler vs. assembler improvement coefficients can
845  * [and are known to] differ and are to be documented elsewhere.
846  */
847 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num)
848 	{
849 	BN_ULONG c0,c1,ml,*tp,n0;
850 #ifdef mul64
851 	BN_ULONG mh;
852 #endif
853 	volatile BN_ULONG *vp;
854 	int i=0,j;
855 
856 #if 0	/* template for platform-specific implementation */
857 	if (ap==bp)	return bn_sqr_mont(rp,ap,np,n0p,num);
858 #endif
859 	vp = tp = alloca((num+2)*sizeof(BN_ULONG));
860 
861 	n0 = *n0p;
862 
863 	c0 = 0;
864 	ml = bp[0];
865 #ifdef mul64
866 	mh = HBITS(ml);
867 	ml = LBITS(ml);
868 	for (j=0;j<num;++j)
869 		mul(tp[j],ap[j],ml,mh,c0);
870 #else
871 	for (j=0;j<num;++j)
872 		mul(tp[j],ap[j],ml,c0);
873 #endif
874 
875 	tp[num]   = c0;
876 	tp[num+1] = 0;
877 	goto enter;
878 
879 	for(i=0;i<num;i++)
880 		{
881 		c0 = 0;
882 		ml = bp[i];
883 #ifdef mul64
884 		mh = HBITS(ml);
885 		ml = LBITS(ml);
886 		for (j=0;j<num;++j)
887 			mul_add(tp[j],ap[j],ml,mh,c0);
888 #else
889 		for (j=0;j<num;++j)
890 			mul_add(tp[j],ap[j],ml,c0);
891 #endif
892 		c1 = (tp[num] + c0)&BN_MASK2;
893 		tp[num]   = c1;
894 		tp[num+1] = (c1<c0?1:0);
895 	enter:
896 		c1  = tp[0];
897 		ml = (c1*n0)&BN_MASK2;
898 		c0 = 0;
899 #ifdef mul64
900 		mh = HBITS(ml);
901 		ml = LBITS(ml);
902 		mul_add(c1,np[0],ml,mh,c0);
903 #else
904 		mul_add(c1,ml,np[0],c0);
905 #endif
906 		for(j=1;j<num;j++)
907 			{
908 			c1 = tp[j];
909 #ifdef mul64
910 			mul_add(c1,np[j],ml,mh,c0);
911 #else
912 			mul_add(c1,ml,np[j],c0);
913 #endif
914 			tp[j-1] = c1&BN_MASK2;
915 			}
916 		c1        = (tp[num] + c0)&BN_MASK2;
917 		tp[num-1] = c1;
918 		tp[num]   = tp[num+1] + (c1<c0?1:0);
919 		}
920 
921 	if (tp[num]!=0 || tp[num-1]>=np[num-1])
922 		{
923 		c0 = bn_sub_words(rp,tp,np,num);
924 		if (tp[num]!=0 || c0==0)
925 			{
926 			for(i=0;i<num+2;i++)	vp[i] = 0;
927 			return 1;
928 			}
929 		}
930 	for(i=0;i<num;i++)	rp[i] = tp[i],	vp[i] = 0;
931 	vp[num]   = 0;
932 	vp[num+1] = 0;
933 	return 1;
934 	}
935 #else
936 /*
937  * Return value of 0 indicates that multiplication/convolution was not
938  * performed to signal the caller to fall down to alternative/original
939  * code-path.
940  */
941 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num)
942 {	return 0;	}
943 #endif /* OPENSSL_BN_ASM_MONT */
944 #endif
945 
946 #else /* !BN_MUL_COMBA */
947 
948 /* hmm... is it faster just to do a multiply? */
949 #undef bn_sqr_comba4
950 void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
951 	{
952 	BN_ULONG t[8];
953 	bn_sqr_normal(r,a,4,t);
954 	}
955 
956 #undef bn_sqr_comba8
957 void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
958 	{
959 	BN_ULONG t[16];
960 	bn_sqr_normal(r,a,8,t);
961 	}
962 
963 void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
964 	{
965 	r[4]=bn_mul_words(    &(r[0]),a,4,b[0]);
966 	r[5]=bn_mul_add_words(&(r[1]),a,4,b[1]);
967 	r[6]=bn_mul_add_words(&(r[2]),a,4,b[2]);
968 	r[7]=bn_mul_add_words(&(r[3]),a,4,b[3]);
969 	}
970 
971 void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
972 	{
973 	r[ 8]=bn_mul_words(    &(r[0]),a,8,b[0]);
974 	r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]);
975 	r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]);
976 	r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]);
977 	r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]);
978 	r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]);
979 	r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]);
980 	r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]);
981 	}
982 
983 #ifdef OPENSSL_NO_ASM
984 #ifdef OPENSSL_BN_ASM_MONT
985 #include <alloca.h>
986 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num)
987 	{
988 	BN_ULONG c0,c1,*tp,n0=*n0p;
989 	volatile BN_ULONG *vp;
990 	int i=0,j;
991 
992 	vp = tp = alloca((num+2)*sizeof(BN_ULONG));
993 
994 	for(i=0;i<=num;i++)	tp[i]=0;
995 
996 	for(i=0;i<num;i++)
997 		{
998 		c0         = bn_mul_add_words(tp,ap,num,bp[i]);
999 		c1         = (tp[num] + c0)&BN_MASK2;
1000 		tp[num]    = c1;
1001 		tp[num+1]  = (c1<c0?1:0);
1002 
1003 		c0         = bn_mul_add_words(tp,np,num,tp[0]*n0);
1004 		c1         = (tp[num] + c0)&BN_MASK2;
1005 		tp[num]    = c1;
1006 		tp[num+1] += (c1<c0?1:0);
1007 		for(j=0;j<=num;j++)	tp[j]=tp[j+1];
1008 		}
1009 
1010 	if (tp[num]!=0 || tp[num-1]>=np[num-1])
1011 		{
1012 		c0 = bn_sub_words(rp,tp,np,num);
1013 		if (tp[num]!=0 || c0==0)
1014 			{
1015 			for(i=0;i<num+2;i++)	vp[i] = 0;
1016 			return 1;
1017 			}
1018 		}
1019 	for(i=0;i<num;i++)	rp[i] = tp[i],	vp[i] = 0;
1020 	vp[num]   = 0;
1021 	vp[num+1] = 0;
1022 	return 1;
1023 	}
1024 #else
1025 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num)
1026 {	return 0;	}
1027 #endif /* OPENSSL_BN_ASM_MONT */
1028 #endif
1029 
1030 #endif /* !BN_MUL_COMBA */
1031