xref: /freebsd/crypto/openssl/crypto/bn/bn_gcd.c (revision 39beb93c)
1 /* crypto/bn/bn_gcd.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3  * All rights reserved.
4  *
5  * This package is an SSL implementation written
6  * by Eric Young (eay@cryptsoft.com).
7  * The implementation was written so as to conform with Netscapes SSL.
8  *
9  * This library is free for commercial and non-commercial use as long as
10  * the following conditions are aheared to.  The following conditions
11  * apply to all code found in this distribution, be it the RC4, RSA,
12  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13  * included with this distribution is covered by the same copyright terms
14  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15  *
16  * Copyright remains Eric Young's, and as such any Copyright notices in
17  * the code are not to be removed.
18  * If this package is used in a product, Eric Young should be given attribution
19  * as the author of the parts of the library used.
20  * This can be in the form of a textual message at program startup or
21  * in documentation (online or textual) provided with the package.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 3. All advertising materials mentioning features or use of this software
32  *    must display the following acknowledgement:
33  *    "This product includes cryptographic software written by
34  *     Eric Young (eay@cryptsoft.com)"
35  *    The word 'cryptographic' can be left out if the rouines from the library
36  *    being used are not cryptographic related :-).
37  * 4. If you include any Windows specific code (or a derivative thereof) from
38  *    the apps directory (application code) you must include an acknowledgement:
39  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40  *
41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  * The licence and distribution terms for any publically available version or
54  * derivative of this code cannot be changed.  i.e. this code cannot simply be
55  * copied and put under another distribution licence
56  * [including the GNU Public Licence.]
57  */
58 /* ====================================================================
59  * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
60  *
61  * Redistribution and use in source and binary forms, with or without
62  * modification, are permitted provided that the following conditions
63  * are met:
64  *
65  * 1. Redistributions of source code must retain the above copyright
66  *    notice, this list of conditions and the following disclaimer.
67  *
68  * 2. Redistributions in binary form must reproduce the above copyright
69  *    notice, this list of conditions and the following disclaimer in
70  *    the documentation and/or other materials provided with the
71  *    distribution.
72  *
73  * 3. All advertising materials mentioning features or use of this
74  *    software must display the following acknowledgment:
75  *    "This product includes software developed by the OpenSSL Project
76  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77  *
78  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79  *    endorse or promote products derived from this software without
80  *    prior written permission. For written permission, please contact
81  *    openssl-core@openssl.org.
82  *
83  * 5. Products derived from this software may not be called "OpenSSL"
84  *    nor may "OpenSSL" appear in their names without prior written
85  *    permission of the OpenSSL Project.
86  *
87  * 6. Redistributions of any form whatsoever must retain the following
88  *    acknowledgment:
89  *    "This product includes software developed by the OpenSSL Project
90  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91  *
92  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103  * OF THE POSSIBILITY OF SUCH DAMAGE.
104  * ====================================================================
105  *
106  * This product includes cryptographic software written by Eric Young
107  * (eay@cryptsoft.com).  This product includes software written by Tim
108  * Hudson (tjh@cryptsoft.com).
109  *
110  */
111 
112 #include "cryptlib.h"
113 #include "bn_lcl.h"
114 
115 static BIGNUM *euclid(BIGNUM *a, BIGNUM *b);
116 
117 int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
118 	{
119 	BIGNUM *a,*b,*t;
120 	int ret=0;
121 
122 	bn_check_top(in_a);
123 	bn_check_top(in_b);
124 
125 	BN_CTX_start(ctx);
126 	a = BN_CTX_get(ctx);
127 	b = BN_CTX_get(ctx);
128 	if (a == NULL || b == NULL) goto err;
129 
130 	if (BN_copy(a,in_a) == NULL) goto err;
131 	if (BN_copy(b,in_b) == NULL) goto err;
132 	a->neg = 0;
133 	b->neg = 0;
134 
135 	if (BN_cmp(a,b) < 0) { t=a; a=b; b=t; }
136 	t=euclid(a,b);
137 	if (t == NULL) goto err;
138 
139 	if (BN_copy(r,t) == NULL) goto err;
140 	ret=1;
141 err:
142 	BN_CTX_end(ctx);
143 	bn_check_top(r);
144 	return(ret);
145 	}
146 
147 static BIGNUM *euclid(BIGNUM *a, BIGNUM *b)
148 	{
149 	BIGNUM *t;
150 	int shifts=0;
151 
152 	bn_check_top(a);
153 	bn_check_top(b);
154 
155 	/* 0 <= b <= a */
156 	while (!BN_is_zero(b))
157 		{
158 		/* 0 < b <= a */
159 
160 		if (BN_is_odd(a))
161 			{
162 			if (BN_is_odd(b))
163 				{
164 				if (!BN_sub(a,a,b)) goto err;
165 				if (!BN_rshift1(a,a)) goto err;
166 				if (BN_cmp(a,b) < 0)
167 					{ t=a; a=b; b=t; }
168 				}
169 			else		/* a odd - b even */
170 				{
171 				if (!BN_rshift1(b,b)) goto err;
172 				if (BN_cmp(a,b) < 0)
173 					{ t=a; a=b; b=t; }
174 				}
175 			}
176 		else			/* a is even */
177 			{
178 			if (BN_is_odd(b))
179 				{
180 				if (!BN_rshift1(a,a)) goto err;
181 				if (BN_cmp(a,b) < 0)
182 					{ t=a; a=b; b=t; }
183 				}
184 			else		/* a even - b even */
185 				{
186 				if (!BN_rshift1(a,a)) goto err;
187 				if (!BN_rshift1(b,b)) goto err;
188 				shifts++;
189 				}
190 			}
191 		/* 0 <= b <= a */
192 		}
193 
194 	if (shifts)
195 		{
196 		if (!BN_lshift(a,a,shifts)) goto err;
197 		}
198 	bn_check_top(a);
199 	return(a);
200 err:
201 	return(NULL);
202 	}
203 
204 
205 /* solves ax == 1 (mod n) */
206 BIGNUM *BN_mod_inverse(BIGNUM *in,
207 	const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
208 	{
209 	BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL;
210 	BIGNUM *ret=NULL;
211 	int sign;
212 
213 	bn_check_top(a);
214 	bn_check_top(n);
215 
216 	BN_CTX_start(ctx);
217 	A = BN_CTX_get(ctx);
218 	B = BN_CTX_get(ctx);
219 	X = BN_CTX_get(ctx);
220 	D = BN_CTX_get(ctx);
221 	M = BN_CTX_get(ctx);
222 	Y = BN_CTX_get(ctx);
223 	T = BN_CTX_get(ctx);
224 	if (T == NULL) goto err;
225 
226 	if (in == NULL)
227 		R=BN_new();
228 	else
229 		R=in;
230 	if (R == NULL) goto err;
231 
232 	BN_one(X);
233 	BN_zero(Y);
234 	if (BN_copy(B,a) == NULL) goto err;
235 	if (BN_copy(A,n) == NULL) goto err;
236 	A->neg = 0;
237 	if (B->neg || (BN_ucmp(B, A) >= 0))
238 		{
239 		if (!BN_nnmod(B, B, A, ctx)) goto err;
240 		}
241 	sign = -1;
242 	/* From  B = a mod |n|,  A = |n|  it follows that
243 	 *
244 	 *      0 <= B < A,
245 	 *     -sign*X*a  ==  B   (mod |n|),
246 	 *      sign*Y*a  ==  A   (mod |n|).
247 	 */
248 
249 	if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048)))
250 		{
251 		/* Binary inversion algorithm; requires odd modulus.
252 		 * This is faster than the general algorithm if the modulus
253 		 * is sufficiently small (about 400 .. 500 bits on 32-bit
254 		 * sytems, but much more on 64-bit systems) */
255 		int shift;
256 
257 		while (!BN_is_zero(B))
258 			{
259 			/*
260 			 *      0 < B < |n|,
261 			 *      0 < A <= |n|,
262 			 * (1) -sign*X*a  ==  B   (mod |n|),
263 			 * (2)  sign*Y*a  ==  A   (mod |n|)
264 			 */
265 
266 			/* Now divide  B  by the maximum possible power of two in the integers,
267 			 * and divide  X  by the same value mod |n|.
268 			 * When we're done, (1) still holds. */
269 			shift = 0;
270 			while (!BN_is_bit_set(B, shift)) /* note that 0 < B */
271 				{
272 				shift++;
273 
274 				if (BN_is_odd(X))
275 					{
276 					if (!BN_uadd(X, X, n)) goto err;
277 					}
278 				/* now X is even, so we can easily divide it by two */
279 				if (!BN_rshift1(X, X)) goto err;
280 				}
281 			if (shift > 0)
282 				{
283 				if (!BN_rshift(B, B, shift)) goto err;
284 				}
285 
286 
287 			/* Same for  A  and  Y.  Afterwards, (2) still holds. */
288 			shift = 0;
289 			while (!BN_is_bit_set(A, shift)) /* note that 0 < A */
290 				{
291 				shift++;
292 
293 				if (BN_is_odd(Y))
294 					{
295 					if (!BN_uadd(Y, Y, n)) goto err;
296 					}
297 				/* now Y is even */
298 				if (!BN_rshift1(Y, Y)) goto err;
299 				}
300 			if (shift > 0)
301 				{
302 				if (!BN_rshift(A, A, shift)) goto err;
303 				}
304 
305 
306 			/* We still have (1) and (2).
307 			 * Both  A  and  B  are odd.
308 			 * The following computations ensure that
309 			 *
310 			 *     0 <= B < |n|,
311 			 *      0 < A < |n|,
312 			 * (1) -sign*X*a  ==  B   (mod |n|),
313 			 * (2)  sign*Y*a  ==  A   (mod |n|),
314 			 *
315 			 * and that either  A  or  B  is even in the next iteration.
316 			 */
317 			if (BN_ucmp(B, A) >= 0)
318 				{
319 				/* -sign*(X + Y)*a == B - A  (mod |n|) */
320 				if (!BN_uadd(X, X, Y)) goto err;
321 				/* NB: we could use BN_mod_add_quick(X, X, Y, n), but that
322 				 * actually makes the algorithm slower */
323 				if (!BN_usub(B, B, A)) goto err;
324 				}
325 			else
326 				{
327 				/*  sign*(X + Y)*a == A - B  (mod |n|) */
328 				if (!BN_uadd(Y, Y, X)) goto err;
329 				/* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */
330 				if (!BN_usub(A, A, B)) goto err;
331 				}
332 			}
333 		}
334 	else
335 		{
336 		/* general inversion algorithm */
337 
338 		while (!BN_is_zero(B))
339 			{
340 			BIGNUM *tmp;
341 
342 			/*
343 			 *      0 < B < A,
344 			 * (*) -sign*X*a  ==  B   (mod |n|),
345 			 *      sign*Y*a  ==  A   (mod |n|)
346 			 */
347 
348 			/* (D, M) := (A/B, A%B) ... */
349 			if (BN_num_bits(A) == BN_num_bits(B))
350 				{
351 				if (!BN_one(D)) goto err;
352 				if (!BN_sub(M,A,B)) goto err;
353 				}
354 			else if (BN_num_bits(A) == BN_num_bits(B) + 1)
355 				{
356 				/* A/B is 1, 2, or 3 */
357 				if (!BN_lshift1(T,B)) goto err;
358 				if (BN_ucmp(A,T) < 0)
359 					{
360 					/* A < 2*B, so D=1 */
361 					if (!BN_one(D)) goto err;
362 					if (!BN_sub(M,A,B)) goto err;
363 					}
364 				else
365 					{
366 					/* A >= 2*B, so D=2 or D=3 */
367 					if (!BN_sub(M,A,T)) goto err;
368 					if (!BN_add(D,T,B)) goto err; /* use D (:= 3*B) as temp */
369 					if (BN_ucmp(A,D) < 0)
370 						{
371 						/* A < 3*B, so D=2 */
372 						if (!BN_set_word(D,2)) goto err;
373 						/* M (= A - 2*B) already has the correct value */
374 						}
375 					else
376 						{
377 						/* only D=3 remains */
378 						if (!BN_set_word(D,3)) goto err;
379 						/* currently  M = A - 2*B,  but we need  M = A - 3*B */
380 						if (!BN_sub(M,M,B)) goto err;
381 						}
382 					}
383 				}
384 			else
385 				{
386 				if (!BN_div(D,M,A,B,ctx)) goto err;
387 				}
388 
389 			/* Now
390 			 *      A = D*B + M;
391 			 * thus we have
392 			 * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
393 			 */
394 
395 			tmp=A; /* keep the BIGNUM object, the value does not matter */
396 
397 			/* (A, B) := (B, A mod B) ... */
398 			A=B;
399 			B=M;
400 			/* ... so we have  0 <= B < A  again */
401 
402 			/* Since the former  M  is now  B  and the former  B  is now  A,
403 			 * (**) translates into
404 			 *       sign*Y*a  ==  D*A + B    (mod |n|),
405 			 * i.e.
406 			 *       sign*Y*a - D*A  ==  B    (mod |n|).
407 			 * Similarly, (*) translates into
408 			 *      -sign*X*a  ==  A          (mod |n|).
409 			 *
410 			 * Thus,
411 			 *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
412 			 * i.e.
413 			 *        sign*(Y + D*X)*a  ==  B  (mod |n|).
414 			 *
415 			 * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at
416 			 *      -sign*X*a  ==  B   (mod |n|),
417 			 *       sign*Y*a  ==  A   (mod |n|).
418 			 * Note that  X  and  Y  stay non-negative all the time.
419 			 */
420 
421 			/* most of the time D is very small, so we can optimize tmp := D*X+Y */
422 			if (BN_is_one(D))
423 				{
424 				if (!BN_add(tmp,X,Y)) goto err;
425 				}
426 			else
427 				{
428 				if (BN_is_word(D,2))
429 					{
430 					if (!BN_lshift1(tmp,X)) goto err;
431 					}
432 				else if (BN_is_word(D,4))
433 					{
434 					if (!BN_lshift(tmp,X,2)) goto err;
435 					}
436 				else if (D->top == 1)
437 					{
438 					if (!BN_copy(tmp,X)) goto err;
439 					if (!BN_mul_word(tmp,D->d[0])) goto err;
440 					}
441 				else
442 					{
443 					if (!BN_mul(tmp,D,X,ctx)) goto err;
444 					}
445 				if (!BN_add(tmp,tmp,Y)) goto err;
446 				}
447 
448 			M=Y; /* keep the BIGNUM object, the value does not matter */
449 			Y=X;
450 			X=tmp;
451 			sign = -sign;
452 			}
453 		}
454 
455 	/*
456 	 * The while loop (Euclid's algorithm) ends when
457 	 *      A == gcd(a,n);
458 	 * we have
459 	 *       sign*Y*a  ==  A  (mod |n|),
460 	 * where  Y  is non-negative.
461 	 */
462 
463 	if (sign < 0)
464 		{
465 		if (!BN_sub(Y,n,Y)) goto err;
466 		}
467 	/* Now  Y*a  ==  A  (mod |n|).  */
468 
469 
470 	if (BN_is_one(A))
471 		{
472 		/* Y*a == 1  (mod |n|) */
473 		if (!Y->neg && BN_ucmp(Y,n) < 0)
474 			{
475 			if (!BN_copy(R,Y)) goto err;
476 			}
477 		else
478 			{
479 			if (!BN_nnmod(R,Y,n,ctx)) goto err;
480 			}
481 		}
482 	else
483 		{
484 		BNerr(BN_F_BN_MOD_INVERSE,BN_R_NO_INVERSE);
485 		goto err;
486 		}
487 	ret=R;
488 err:
489 	if ((ret == NULL) && (in == NULL)) BN_free(R);
490 	BN_CTX_end(ctx);
491 	bn_check_top(ret);
492 	return(ret);
493 	}
494