xref: /freebsd/crypto/openssl/crypto/bn/bn_gf2m.c (revision 3157ba21)
1 /* crypto/bn/bn_gf2m.c */
2 /* ====================================================================
3  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4  *
5  * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6  * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7  * to the OpenSSL project.
8  *
9  * The ECC Code is licensed pursuant to the OpenSSL open source
10  * license provided below.
11  *
12  * In addition, Sun covenants to all licensees who provide a reciprocal
13  * covenant with respect to their own patents if any, not to sue under
14  * current and future patent claims necessarily infringed by the making,
15  * using, practicing, selling, offering for sale and/or otherwise
16  * disposing of the ECC Code as delivered hereunder (or portions thereof),
17  * provided that such covenant shall not apply:
18  *  1) for code that a licensee deletes from the ECC Code;
19  *  2) separates from the ECC Code; or
20  *  3) for infringements caused by:
21  *       i) the modification of the ECC Code or
22  *      ii) the combination of the ECC Code with other software or
23  *          devices where such combination causes the infringement.
24  *
25  * The software is originally written by Sheueling Chang Shantz and
26  * Douglas Stebila of Sun Microsystems Laboratories.
27  *
28  */
29 
30 /* NOTE: This file is licensed pursuant to the OpenSSL license below
31  * and may be modified; but after modifications, the above covenant
32  * may no longer apply!  In such cases, the corresponding paragraph
33  * ["In addition, Sun covenants ... causes the infringement."] and
34  * this note can be edited out; but please keep the Sun copyright
35  * notice and attribution. */
36 
37 /* ====================================================================
38  * Copyright (c) 1998-2002 The OpenSSL Project.  All rights reserved.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  *
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  *
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in
49  *    the documentation and/or other materials provided with the
50  *    distribution.
51  *
52  * 3. All advertising materials mentioning features or use of this
53  *    software must display the following acknowledgment:
54  *    "This product includes software developed by the OpenSSL Project
55  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
56  *
57  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
58  *    endorse or promote products derived from this software without
59  *    prior written permission. For written permission, please contact
60  *    openssl-core@openssl.org.
61  *
62  * 5. Products derived from this software may not be called "OpenSSL"
63  *    nor may "OpenSSL" appear in their names without prior written
64  *    permission of the OpenSSL Project.
65  *
66  * 6. Redistributions of any form whatsoever must retain the following
67  *    acknowledgment:
68  *    "This product includes software developed by the OpenSSL Project
69  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
72  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
74  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
75  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
76  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
77  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
78  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
79  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
80  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
81  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
82  * OF THE POSSIBILITY OF SUCH DAMAGE.
83  * ====================================================================
84  *
85  * This product includes cryptographic software written by Eric Young
86  * (eay@cryptsoft.com).  This product includes software written by Tim
87  * Hudson (tjh@cryptsoft.com).
88  *
89  */
90 
91 #include <assert.h>
92 #include <limits.h>
93 #include <stdio.h>
94 #include "cryptlib.h"
95 #include "bn_lcl.h"
96 
97 /* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */
98 #define MAX_ITERATIONS 50
99 
100 static const BN_ULONG SQR_tb[16] =
101   {     0,     1,     4,     5,    16,    17,    20,    21,
102        64,    65,    68,    69,    80,    81,    84,    85 };
103 /* Platform-specific macros to accelerate squaring. */
104 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
105 #define SQR1(w) \
106     SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
107     SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
108     SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
109     SQR_tb[(w) >> 36 & 0xF] <<  8 | SQR_tb[(w) >> 32 & 0xF]
110 #define SQR0(w) \
111     SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
112     SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
113     SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \
114     SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
115 #endif
116 #ifdef THIRTY_TWO_BIT
117 #define SQR1(w) \
118     SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
119     SQR_tb[(w) >> 20 & 0xF] <<  8 | SQR_tb[(w) >> 16 & 0xF]
120 #define SQR0(w) \
121     SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \
122     SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
123 #endif
124 #ifdef SIXTEEN_BIT
125 #define SQR1(w) \
126     SQR_tb[(w) >> 12 & 0xF] <<  8 | SQR_tb[(w) >>  8 & 0xF]
127 #define SQR0(w) \
128     SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
129 #endif
130 #ifdef EIGHT_BIT
131 #define SQR1(w) \
132     SQR_tb[(w) >>  4 & 0xF]
133 #define SQR0(w) \
134     SQR_tb[(w)       & 15]
135 #endif
136 
137 /* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
138  * result is a polynomial r with degree < 2 * BN_BITS - 1
139  * The caller MUST ensure that the variables have the right amount
140  * of space allocated.
141  */
142 #ifdef EIGHT_BIT
143 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
144 	{
145 	register BN_ULONG h, l, s;
146 	BN_ULONG tab[4], top1b = a >> 7;
147 	register BN_ULONG a1, a2;
148 
149 	a1 = a & (0x7F); a2 = a1 << 1;
150 
151 	tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
152 
153 	s = tab[b      & 0x3]; l  = s;
154 	s = tab[b >> 2 & 0x3]; l ^= s << 2; h  = s >> 6;
155 	s = tab[b >> 4 & 0x3]; l ^= s << 4; h ^= s >> 4;
156 	s = tab[b >> 6      ]; l ^= s << 6; h ^= s >> 2;
157 
158 	/* compensate for the top bit of a */
159 
160 	if (top1b & 01) { l ^= b << 7; h ^= b >> 1; }
161 
162 	*r1 = h; *r0 = l;
163 	}
164 #endif
165 #ifdef SIXTEEN_BIT
166 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
167 	{
168 	register BN_ULONG h, l, s;
169 	BN_ULONG tab[4], top1b = a >> 15;
170 	register BN_ULONG a1, a2;
171 
172 	a1 = a & (0x7FFF); a2 = a1 << 1;
173 
174 	tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
175 
176 	s = tab[b      & 0x3]; l  = s;
177 	s = tab[b >> 2 & 0x3]; l ^= s <<  2; h  = s >> 14;
178 	s = tab[b >> 4 & 0x3]; l ^= s <<  4; h ^= s >> 12;
179 	s = tab[b >> 6 & 0x3]; l ^= s <<  6; h ^= s >> 10;
180 	s = tab[b >> 8 & 0x3]; l ^= s <<  8; h ^= s >>  8;
181 	s = tab[b >>10 & 0x3]; l ^= s << 10; h ^= s >>  6;
182 	s = tab[b >>12 & 0x3]; l ^= s << 12; h ^= s >>  4;
183 	s = tab[b >>14      ]; l ^= s << 14; h ^= s >>  2;
184 
185 	/* compensate for the top bit of a */
186 
187 	if (top1b & 01) { l ^= b << 15; h ^= b >> 1; }
188 
189 	*r1 = h; *r0 = l;
190 	}
191 #endif
192 #ifdef THIRTY_TWO_BIT
193 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
194 	{
195 	register BN_ULONG h, l, s;
196 	BN_ULONG tab[8], top2b = a >> 30;
197 	register BN_ULONG a1, a2, a4;
198 
199 	a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;
200 
201 	tab[0] =  0; tab[1] = a1;    tab[2] = a2;    tab[3] = a1^a2;
202 	tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;
203 
204 	s = tab[b       & 0x7]; l  = s;
205 	s = tab[b >>  3 & 0x7]; l ^= s <<  3; h  = s >> 29;
206 	s = tab[b >>  6 & 0x7]; l ^= s <<  6; h ^= s >> 26;
207 	s = tab[b >>  9 & 0x7]; l ^= s <<  9; h ^= s >> 23;
208 	s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
209 	s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
210 	s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
211 	s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
212 	s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >>  8;
213 	s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >>  5;
214 	s = tab[b >> 30      ]; l ^= s << 30; h ^= s >>  2;
215 
216 	/* compensate for the top two bits of a */
217 
218 	if (top2b & 01) { l ^= b << 30; h ^= b >> 2; }
219 	if (top2b & 02) { l ^= b << 31; h ^= b >> 1; }
220 
221 	*r1 = h; *r0 = l;
222 	}
223 #endif
224 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
225 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
226 	{
227 	register BN_ULONG h, l, s;
228 	BN_ULONG tab[16], top3b = a >> 61;
229 	register BN_ULONG a1, a2, a4, a8;
230 
231 	a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1;
232 
233 	tab[ 0] = 0;     tab[ 1] = a1;       tab[ 2] = a2;       tab[ 3] = a1^a2;
234 	tab[ 4] = a4;    tab[ 5] = a1^a4;    tab[ 6] = a2^a4;    tab[ 7] = a1^a2^a4;
235 	tab[ 8] = a8;    tab[ 9] = a1^a8;    tab[10] = a2^a8;    tab[11] = a1^a2^a8;
236 	tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;
237 
238 	s = tab[b       & 0xF]; l  = s;
239 	s = tab[b >>  4 & 0xF]; l ^= s <<  4; h  = s >> 60;
240 	s = tab[b >>  8 & 0xF]; l ^= s <<  8; h ^= s >> 56;
241 	s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
242 	s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
243 	s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
244 	s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
245 	s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
246 	s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
247 	s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
248 	s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
249 	s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
250 	s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
251 	s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
252 	s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >>  8;
253 	s = tab[b >> 60      ]; l ^= s << 60; h ^= s >>  4;
254 
255 	/* compensate for the top three bits of a */
256 
257 	if (top3b & 01) { l ^= b << 61; h ^= b >> 3; }
258 	if (top3b & 02) { l ^= b << 62; h ^= b >> 2; }
259 	if (top3b & 04) { l ^= b << 63; h ^= b >> 1; }
260 
261 	*r1 = h; *r0 = l;
262 	}
263 #endif
264 
265 /* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
266  * result is a polynomial r with degree < 4 * BN_BITS2 - 1
267  * The caller MUST ensure that the variables have the right amount
268  * of space allocated.
269  */
270 static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0)
271 	{
272 	BN_ULONG m1, m0;
273 	/* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
274 	bn_GF2m_mul_1x1(r+3, r+2, a1, b1);
275 	bn_GF2m_mul_1x1(r+1, r, a0, b0);
276 	bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
277 	/* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
278 	r[2] ^= m1 ^ r[1] ^ r[3];  /* h0 ^= m1 ^ l1 ^ h1; */
279 	r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0;  /* l1 ^= l0 ^ h0 ^ m0; */
280 	}
281 
282 
283 /* Add polynomials a and b and store result in r; r could be a or b, a and b
284  * could be equal; r is the bitwise XOR of a and b.
285  */
286 int	BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
287 	{
288 	int i;
289 	const BIGNUM *at, *bt;
290 
291 	bn_check_top(a);
292 	bn_check_top(b);
293 
294 	if (a->top < b->top) { at = b; bt = a; }
295 	else { at = a; bt = b; }
296 
297 	if(bn_wexpand(r, at->top) == NULL)
298 		return 0;
299 
300 	for (i = 0; i < bt->top; i++)
301 		{
302 		r->d[i] = at->d[i] ^ bt->d[i];
303 		}
304 	for (; i < at->top; i++)
305 		{
306 		r->d[i] = at->d[i];
307 		}
308 
309 	r->top = at->top;
310 	bn_correct_top(r);
311 
312 	return 1;
313 	}
314 
315 
316 /* Some functions allow for representation of the irreducible polynomials
317  * as an int[], say p.  The irreducible f(t) is then of the form:
318  *     t^p[0] + t^p[1] + ... + t^p[k]
319  * where m = p[0] > p[1] > ... > p[k] = 0.
320  */
321 
322 
323 /* Performs modular reduction of a and store result in r.  r could be a. */
324 int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[])
325 	{
326 	int j, k;
327 	int n, dN, d0, d1;
328 	BN_ULONG zz, *z;
329 
330 	bn_check_top(a);
331 
332 	if (!p[0])
333 		{
334 		/* reduction mod 1 => return 0 */
335 		BN_zero(r);
336 		return 1;
337 		}
338 
339 	/* Since the algorithm does reduction in the r value, if a != r, copy
340 	 * the contents of a into r so we can do reduction in r.
341 	 */
342 	if (a != r)
343 		{
344 		if (!bn_wexpand(r, a->top)) return 0;
345 		for (j = 0; j < a->top; j++)
346 			{
347 			r->d[j] = a->d[j];
348 			}
349 		r->top = a->top;
350 		}
351 	z = r->d;
352 
353 	/* start reduction */
354 	dN = p[0] / BN_BITS2;
355 	for (j = r->top - 1; j > dN;)
356 		{
357 		zz = z[j];
358 		if (z[j] == 0) { j--; continue; }
359 		z[j] = 0;
360 
361 		for (k = 1; p[k] != 0; k++)
362 			{
363 			/* reducing component t^p[k] */
364 			n = p[0] - p[k];
365 			d0 = n % BN_BITS2;  d1 = BN_BITS2 - d0;
366 			n /= BN_BITS2;
367 			z[j-n] ^= (zz>>d0);
368 			if (d0) z[j-n-1] ^= (zz<<d1);
369 			}
370 
371 		/* reducing component t^0 */
372 		n = dN;
373 		d0 = p[0] % BN_BITS2;
374 		d1 = BN_BITS2 - d0;
375 		z[j-n] ^= (zz >> d0);
376 		if (d0) z[j-n-1] ^= (zz << d1);
377 		}
378 
379 	/* final round of reduction */
380 	while (j == dN)
381 		{
382 
383 		d0 = p[0] % BN_BITS2;
384 		zz = z[dN] >> d0;
385 		if (zz == 0) break;
386 		d1 = BN_BITS2 - d0;
387 
388 		/* clear up the top d1 bits */
389 		if (d0)
390 			z[dN] = (z[dN] << d1) >> d1;
391 		else
392 			z[dN] = 0;
393 		z[0] ^= zz; /* reduction t^0 component */
394 
395 		for (k = 1; p[k] != 0; k++)
396 			{
397 			BN_ULONG tmp_ulong;
398 
399 			/* reducing component t^p[k]*/
400 			n = p[k] / BN_BITS2;
401 			d0 = p[k] % BN_BITS2;
402 			d1 = BN_BITS2 - d0;
403 			z[n] ^= (zz << d0);
404 			tmp_ulong = zz >> d1;
405                         if (d0 && tmp_ulong)
406                                 z[n+1] ^= tmp_ulong;
407 			}
408 
409 
410 		}
411 
412 	bn_correct_top(r);
413 	return 1;
414 	}
415 
416 /* Performs modular reduction of a by p and store result in r.  r could be a.
417  *
418  * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
419  * function is only provided for convenience; for best performance, use the
420  * BN_GF2m_mod_arr function.
421  */
422 int	BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
423 	{
424 	int ret = 0;
425 	const int max = BN_num_bits(p);
426 	unsigned int *arr=NULL;
427 	bn_check_top(a);
428 	bn_check_top(p);
429 	if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
430 	ret = BN_GF2m_poly2arr(p, arr, max);
431 	if (!ret || ret > max)
432 		{
433 		BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH);
434 		goto err;
435 		}
436 	ret = BN_GF2m_mod_arr(r, a, arr);
437 	bn_check_top(r);
438 err:
439 	if (arr) OPENSSL_free(arr);
440 	return ret;
441 	}
442 
443 
444 /* Compute the product of two polynomials a and b, reduce modulo p, and store
445  * the result in r.  r could be a or b; a could be b.
446  */
447 int	BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx)
448 	{
449 	int zlen, i, j, k, ret = 0;
450 	BIGNUM *s;
451 	BN_ULONG x1, x0, y1, y0, zz[4];
452 
453 	bn_check_top(a);
454 	bn_check_top(b);
455 
456 	if (a == b)
457 		{
458 		return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
459 		}
460 
461 	BN_CTX_start(ctx);
462 	if ((s = BN_CTX_get(ctx)) == NULL) goto err;
463 
464 	zlen = a->top + b->top + 4;
465 	if (!bn_wexpand(s, zlen)) goto err;
466 	s->top = zlen;
467 
468 	for (i = 0; i < zlen; i++) s->d[i] = 0;
469 
470 	for (j = 0; j < b->top; j += 2)
471 		{
472 		y0 = b->d[j];
473 		y1 = ((j+1) == b->top) ? 0 : b->d[j+1];
474 		for (i = 0; i < a->top; i += 2)
475 			{
476 			x0 = a->d[i];
477 			x1 = ((i+1) == a->top) ? 0 : a->d[i+1];
478 			bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
479 			for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k];
480 			}
481 		}
482 
483 	bn_correct_top(s);
484 	if (BN_GF2m_mod_arr(r, s, p))
485 		ret = 1;
486 	bn_check_top(r);
487 
488 err:
489 	BN_CTX_end(ctx);
490 	return ret;
491 	}
492 
493 /* Compute the product of two polynomials a and b, reduce modulo p, and store
494  * the result in r.  r could be a or b; a could equal b.
495  *
496  * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper
497  * function is only provided for convenience; for best performance, use the
498  * BN_GF2m_mod_mul_arr function.
499  */
500 int	BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
501 	{
502 	int ret = 0;
503 	const int max = BN_num_bits(p);
504 	unsigned int *arr=NULL;
505 	bn_check_top(a);
506 	bn_check_top(b);
507 	bn_check_top(p);
508 	if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
509 	ret = BN_GF2m_poly2arr(p, arr, max);
510 	if (!ret || ret > max)
511 		{
512 		BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH);
513 		goto err;
514 		}
515 	ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
516 	bn_check_top(r);
517 err:
518 	if (arr) OPENSSL_free(arr);
519 	return ret;
520 	}
521 
522 
523 /* Square a, reduce the result mod p, and store it in a.  r could be a. */
524 int	BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx)
525 	{
526 	int i, ret = 0;
527 	BIGNUM *s;
528 
529 	bn_check_top(a);
530 	BN_CTX_start(ctx);
531 	if ((s = BN_CTX_get(ctx)) == NULL) return 0;
532 	if (!bn_wexpand(s, 2 * a->top)) goto err;
533 
534 	for (i = a->top - 1; i >= 0; i--)
535 		{
536 		s->d[2*i+1] = SQR1(a->d[i]);
537 		s->d[2*i  ] = SQR0(a->d[i]);
538 		}
539 
540 	s->top = 2 * a->top;
541 	bn_correct_top(s);
542 	if (!BN_GF2m_mod_arr(r, s, p)) goto err;
543 	bn_check_top(r);
544 	ret = 1;
545 err:
546 	BN_CTX_end(ctx);
547 	return ret;
548 	}
549 
550 /* Square a, reduce the result mod p, and store it in a.  r could be a.
551  *
552  * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper
553  * function is only provided for convenience; for best performance, use the
554  * BN_GF2m_mod_sqr_arr function.
555  */
556 int	BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
557 	{
558 	int ret = 0;
559 	const int max = BN_num_bits(p);
560 	unsigned int *arr=NULL;
561 
562 	bn_check_top(a);
563 	bn_check_top(p);
564 	if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
565 	ret = BN_GF2m_poly2arr(p, arr, max);
566 	if (!ret || ret > max)
567 		{
568 		BNerr(BN_F_BN_GF2M_MOD_SQR,BN_R_INVALID_LENGTH);
569 		goto err;
570 		}
571 	ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
572 	bn_check_top(r);
573 err:
574 	if (arr) OPENSSL_free(arr);
575 	return ret;
576 	}
577 
578 
579 /* Invert a, reduce modulo p, and store the result in r. r could be a.
580  * Uses Modified Almost Inverse Algorithm (Algorithm 10) from
581  *     Hankerson, D., Hernandez, J.L., and Menezes, A.  "Software Implementation
582  *     of Elliptic Curve Cryptography Over Binary Fields".
583  */
584 int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
585 	{
586 	BIGNUM *b, *c, *u, *v, *tmp;
587 	int ret = 0;
588 
589 	bn_check_top(a);
590 	bn_check_top(p);
591 
592 	BN_CTX_start(ctx);
593 
594 	b = BN_CTX_get(ctx);
595 	c = BN_CTX_get(ctx);
596 	u = BN_CTX_get(ctx);
597 	v = BN_CTX_get(ctx);
598 	if (v == NULL) goto err;
599 
600 	if (!BN_one(b)) goto err;
601 	if (!BN_GF2m_mod(u, a, p)) goto err;
602 	if (!BN_copy(v, p)) goto err;
603 
604 	if (BN_is_zero(u)) goto err;
605 
606 	while (1)
607 		{
608 		while (!BN_is_odd(u))
609 			{
610 			if (!BN_rshift1(u, u)) goto err;
611 			if (BN_is_odd(b))
612 				{
613 				if (!BN_GF2m_add(b, b, p)) goto err;
614 				}
615 			if (!BN_rshift1(b, b)) goto err;
616 			}
617 
618 		if (BN_abs_is_word(u, 1)) break;
619 
620 		if (BN_num_bits(u) < BN_num_bits(v))
621 			{
622 			tmp = u; u = v; v = tmp;
623 			tmp = b; b = c; c = tmp;
624 			}
625 
626 		if (!BN_GF2m_add(u, u, v)) goto err;
627 		if (!BN_GF2m_add(b, b, c)) goto err;
628 		}
629 
630 
631 	if (!BN_copy(r, b)) goto err;
632 	bn_check_top(r);
633 	ret = 1;
634 
635 err:
636   	BN_CTX_end(ctx);
637 	return ret;
638 	}
639 
640 /* Invert xx, reduce modulo p, and store the result in r. r could be xx.
641  *
642  * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper
643  * function is only provided for convenience; for best performance, use the
644  * BN_GF2m_mod_inv function.
645  */
646 int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx)
647 	{
648 	BIGNUM *field;
649 	int ret = 0;
650 
651 	bn_check_top(xx);
652 	BN_CTX_start(ctx);
653 	if ((field = BN_CTX_get(ctx)) == NULL) goto err;
654 	if (!BN_GF2m_arr2poly(p, field)) goto err;
655 
656 	ret = BN_GF2m_mod_inv(r, xx, field, ctx);
657 	bn_check_top(r);
658 
659 err:
660 	BN_CTX_end(ctx);
661 	return ret;
662 	}
663 
664 
665 #ifndef OPENSSL_SUN_GF2M_DIV
666 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
667  * or y, x could equal y.
668  */
669 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
670 	{
671 	BIGNUM *xinv = NULL;
672 	int ret = 0;
673 
674 	bn_check_top(y);
675 	bn_check_top(x);
676 	bn_check_top(p);
677 
678 	BN_CTX_start(ctx);
679 	xinv = BN_CTX_get(ctx);
680 	if (xinv == NULL) goto err;
681 
682 	if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err;
683 	if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err;
684 	bn_check_top(r);
685 	ret = 1;
686 
687 err:
688 	BN_CTX_end(ctx);
689 	return ret;
690 	}
691 #else
692 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
693  * or y, x could equal y.
694  * Uses algorithm Modular_Division_GF(2^m) from
695  *     Chang-Shantz, S.  "From Euclid's GCD to Montgomery Multiplication to
696  *     the Great Divide".
697  */
698 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
699 	{
700 	BIGNUM *a, *b, *u, *v;
701 	int ret = 0;
702 
703 	bn_check_top(y);
704 	bn_check_top(x);
705 	bn_check_top(p);
706 
707 	BN_CTX_start(ctx);
708 
709 	a = BN_CTX_get(ctx);
710 	b = BN_CTX_get(ctx);
711 	u = BN_CTX_get(ctx);
712 	v = BN_CTX_get(ctx);
713 	if (v == NULL) goto err;
714 
715 	/* reduce x and y mod p */
716 	if (!BN_GF2m_mod(u, y, p)) goto err;
717 	if (!BN_GF2m_mod(a, x, p)) goto err;
718 	if (!BN_copy(b, p)) goto err;
719 
720 	while (!BN_is_odd(a))
721 		{
722 		if (!BN_rshift1(a, a)) goto err;
723 		if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
724 		if (!BN_rshift1(u, u)) goto err;
725 		}
726 
727 	do
728 		{
729 		if (BN_GF2m_cmp(b, a) > 0)
730 			{
731 			if (!BN_GF2m_add(b, b, a)) goto err;
732 			if (!BN_GF2m_add(v, v, u)) goto err;
733 			do
734 				{
735 				if (!BN_rshift1(b, b)) goto err;
736 				if (BN_is_odd(v)) if (!BN_GF2m_add(v, v, p)) goto err;
737 				if (!BN_rshift1(v, v)) goto err;
738 				} while (!BN_is_odd(b));
739 			}
740 		else if (BN_abs_is_word(a, 1))
741 			break;
742 		else
743 			{
744 			if (!BN_GF2m_add(a, a, b)) goto err;
745 			if (!BN_GF2m_add(u, u, v)) goto err;
746 			do
747 				{
748 				if (!BN_rshift1(a, a)) goto err;
749 				if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
750 				if (!BN_rshift1(u, u)) goto err;
751 				} while (!BN_is_odd(a));
752 			}
753 		} while (1);
754 
755 	if (!BN_copy(r, u)) goto err;
756 	bn_check_top(r);
757 	ret = 1;
758 
759 err:
760   	BN_CTX_end(ctx);
761 	return ret;
762 	}
763 #endif
764 
765 /* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
766  * or yy, xx could equal yy.
767  *
768  * This function calls down to the BN_GF2m_mod_div implementation; this wrapper
769  * function is only provided for convenience; for best performance, use the
770  * BN_GF2m_mod_div function.
771  */
772 int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx)
773 	{
774 	BIGNUM *field;
775 	int ret = 0;
776 
777 	bn_check_top(yy);
778 	bn_check_top(xx);
779 
780 	BN_CTX_start(ctx);
781 	if ((field = BN_CTX_get(ctx)) == NULL) goto err;
782 	if (!BN_GF2m_arr2poly(p, field)) goto err;
783 
784 	ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
785 	bn_check_top(r);
786 
787 err:
788 	BN_CTX_end(ctx);
789 	return ret;
790 	}
791 
792 
793 /* Compute the bth power of a, reduce modulo p, and store
794  * the result in r.  r could be a.
795  * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
796  */
797 int	BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx)
798 	{
799 	int ret = 0, i, n;
800 	BIGNUM *u;
801 
802 	bn_check_top(a);
803 	bn_check_top(b);
804 
805 	if (BN_is_zero(b))
806 		return(BN_one(r));
807 
808 	if (BN_abs_is_word(b, 1))
809 		return (BN_copy(r, a) != NULL);
810 
811 	BN_CTX_start(ctx);
812 	if ((u = BN_CTX_get(ctx)) == NULL) goto err;
813 
814 	if (!BN_GF2m_mod_arr(u, a, p)) goto err;
815 
816 	n = BN_num_bits(b) - 1;
817 	for (i = n - 1; i >= 0; i--)
818 		{
819 		if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err;
820 		if (BN_is_bit_set(b, i))
821 			{
822 			if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err;
823 			}
824 		}
825 	if (!BN_copy(r, u)) goto err;
826 	bn_check_top(r);
827 	ret = 1;
828 err:
829 	BN_CTX_end(ctx);
830 	return ret;
831 	}
832 
833 /* Compute the bth power of a, reduce modulo p, and store
834  * the result in r.  r could be a.
835  *
836  * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper
837  * function is only provided for convenience; for best performance, use the
838  * BN_GF2m_mod_exp_arr function.
839  */
840 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
841 	{
842 	int ret = 0;
843 	const int max = BN_num_bits(p);
844 	unsigned int *arr=NULL;
845 	bn_check_top(a);
846 	bn_check_top(b);
847 	bn_check_top(p);
848 	if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
849 	ret = BN_GF2m_poly2arr(p, arr, max);
850 	if (!ret || ret > max)
851 		{
852 		BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH);
853 		goto err;
854 		}
855 	ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
856 	bn_check_top(r);
857 err:
858 	if (arr) OPENSSL_free(arr);
859 	return ret;
860 	}
861 
862 /* Compute the square root of a, reduce modulo p, and store
863  * the result in r.  r could be a.
864  * Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
865  */
866 int	BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx)
867 	{
868 	int ret = 0;
869 	BIGNUM *u;
870 
871 	bn_check_top(a);
872 
873 	if (!p[0])
874 		{
875 		/* reduction mod 1 => return 0 */
876 		BN_zero(r);
877 		return 1;
878 		}
879 
880 	BN_CTX_start(ctx);
881 	if ((u = BN_CTX_get(ctx)) == NULL) goto err;
882 
883 	if (!BN_set_bit(u, p[0] - 1)) goto err;
884 	ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
885 	bn_check_top(r);
886 
887 err:
888 	BN_CTX_end(ctx);
889 	return ret;
890 	}
891 
892 /* Compute the square root of a, reduce modulo p, and store
893  * the result in r.  r could be a.
894  *
895  * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper
896  * function is only provided for convenience; for best performance, use the
897  * BN_GF2m_mod_sqrt_arr function.
898  */
899 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
900 	{
901 	int ret = 0;
902 	const int max = BN_num_bits(p);
903 	unsigned int *arr=NULL;
904 	bn_check_top(a);
905 	bn_check_top(p);
906 	if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
907 	ret = BN_GF2m_poly2arr(p, arr, max);
908 	if (!ret || ret > max)
909 		{
910 		BNerr(BN_F_BN_GF2M_MOD_SQRT,BN_R_INVALID_LENGTH);
911 		goto err;
912 		}
913 	ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
914 	bn_check_top(r);
915 err:
916 	if (arr) OPENSSL_free(arr);
917 	return ret;
918 	}
919 
920 /* Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns 0.
921  * Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
922  */
923 int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const unsigned int p[], BN_CTX *ctx)
924 	{
925 	int ret = 0, count = 0;
926 	unsigned int j;
927 	BIGNUM *a, *z, *rho, *w, *w2, *tmp;
928 
929 	bn_check_top(a_);
930 
931 	if (!p[0])
932 		{
933 		/* reduction mod 1 => return 0 */
934 		BN_zero(r);
935 		return 1;
936 		}
937 
938 	BN_CTX_start(ctx);
939 	a = BN_CTX_get(ctx);
940 	z = BN_CTX_get(ctx);
941 	w = BN_CTX_get(ctx);
942 	if (w == NULL) goto err;
943 
944 	if (!BN_GF2m_mod_arr(a, a_, p)) goto err;
945 
946 	if (BN_is_zero(a))
947 		{
948 		BN_zero(r);
949 		ret = 1;
950 		goto err;
951 		}
952 
953 	if (p[0] & 0x1) /* m is odd */
954 		{
955 		/* compute half-trace of a */
956 		if (!BN_copy(z, a)) goto err;
957 		for (j = 1; j <= (p[0] - 1) / 2; j++)
958 			{
959 			if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
960 			if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
961 			if (!BN_GF2m_add(z, z, a)) goto err;
962 			}
963 
964 		}
965 	else /* m is even */
966 		{
967 		rho = BN_CTX_get(ctx);
968 		w2 = BN_CTX_get(ctx);
969 		tmp = BN_CTX_get(ctx);
970 		if (tmp == NULL) goto err;
971 		do
972 			{
973 			if (!BN_rand(rho, p[0], 0, 0)) goto err;
974 			if (!BN_GF2m_mod_arr(rho, rho, p)) goto err;
975 			BN_zero(z);
976 			if (!BN_copy(w, rho)) goto err;
977 			for (j = 1; j <= p[0] - 1; j++)
978 				{
979 				if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
980 				if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto err;
981 				if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) goto err;
982 				if (!BN_GF2m_add(z, z, tmp)) goto err;
983 				if (!BN_GF2m_add(w, w2, rho)) goto err;
984 				}
985 			count++;
986 			} while (BN_is_zero(w) && (count < MAX_ITERATIONS));
987 		if (BN_is_zero(w))
988 			{
989 			BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,BN_R_TOO_MANY_ITERATIONS);
990 			goto err;
991 			}
992 		}
993 
994 	if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err;
995 	if (!BN_GF2m_add(w, z, w)) goto err;
996 	if (BN_GF2m_cmp(w, a))
997 		{
998 		BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
999 		goto err;
1000 		}
1001 
1002 	if (!BN_copy(r, z)) goto err;
1003 	bn_check_top(r);
1004 
1005 	ret = 1;
1006 
1007 err:
1008 	BN_CTX_end(ctx);
1009 	return ret;
1010 	}
1011 
1012 /* Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns 0.
1013  *
1014  * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper
1015  * function is only provided for convenience; for best performance, use the
1016  * BN_GF2m_mod_solve_quad_arr function.
1017  */
1018 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
1019 	{
1020 	int ret = 0;
1021 	const int max = BN_num_bits(p);
1022 	unsigned int *arr=NULL;
1023 	bn_check_top(a);
1024 	bn_check_top(p);
1025 	if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) *
1026 						max)) == NULL) goto err;
1027 	ret = BN_GF2m_poly2arr(p, arr, max);
1028 	if (!ret || ret > max)
1029 		{
1030 		BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD,BN_R_INVALID_LENGTH);
1031 		goto err;
1032 		}
1033 	ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
1034 	bn_check_top(r);
1035 err:
1036 	if (arr) OPENSSL_free(arr);
1037 	return ret;
1038 	}
1039 
1040 /* Convert the bit-string representation of a polynomial
1041  * ( \sum_{i=0}^n a_i * x^i , where a_0 is *not* zero) into an array
1042  * of integers corresponding to the bits with non-zero coefficient.
1043  * Up to max elements of the array will be filled.  Return value is total
1044  * number of coefficients that would be extracted if array was large enough.
1045  */
1046 int BN_GF2m_poly2arr(const BIGNUM *a, unsigned int p[], int max)
1047 	{
1048 	int i, j, k = 0;
1049 	BN_ULONG mask;
1050 
1051 	if (BN_is_zero(a) || !BN_is_bit_set(a, 0))
1052 		/* a_0 == 0 => return error (the unsigned int array
1053 		 * must be terminated by 0)
1054 		 */
1055 		return 0;
1056 
1057 	for (i = a->top - 1; i >= 0; i--)
1058 		{
1059 		if (!a->d[i])
1060 			/* skip word if a->d[i] == 0 */
1061 			continue;
1062 		mask = BN_TBIT;
1063 		for (j = BN_BITS2 - 1; j >= 0; j--)
1064 			{
1065 			if (a->d[i] & mask)
1066 				{
1067 				if (k < max) p[k] = BN_BITS2 * i + j;
1068 				k++;
1069 				}
1070 			mask >>= 1;
1071 			}
1072 		}
1073 
1074 	return k;
1075 	}
1076 
1077 /* Convert the coefficient array representation of a polynomial to a
1078  * bit-string.  The array must be terminated by 0.
1079  */
1080 int BN_GF2m_arr2poly(const unsigned int p[], BIGNUM *a)
1081 	{
1082 	int i;
1083 
1084 	bn_check_top(a);
1085 	BN_zero(a);
1086 	for (i = 0; p[i] != 0; i++)
1087 		{
1088 		if (BN_set_bit(a, p[i]) == 0)
1089 			return 0;
1090 		}
1091 	BN_set_bit(a, 0);
1092 	bn_check_top(a);
1093 
1094 	return 1;
1095 	}
1096 
1097