xref: /freebsd/crypto/openssl/crypto/bn/bn_mul.c (revision 7bd6fde3)
1 /* crypto/bn/bn_mul.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3  * All rights reserved.
4  *
5  * This package is an SSL implementation written
6  * by Eric Young (eay@cryptsoft.com).
7  * The implementation was written so as to conform with Netscapes SSL.
8  *
9  * This library is free for commercial and non-commercial use as long as
10  * the following conditions are aheared to.  The following conditions
11  * apply to all code found in this distribution, be it the RC4, RSA,
12  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13  * included with this distribution is covered by the same copyright terms
14  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15  *
16  * Copyright remains Eric Young's, and as such any Copyright notices in
17  * the code are not to be removed.
18  * If this package is used in a product, Eric Young should be given attribution
19  * as the author of the parts of the library used.
20  * This can be in the form of a textual message at program startup or
21  * in documentation (online or textual) provided with the package.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 3. All advertising materials mentioning features or use of this software
32  *    must display the following acknowledgement:
33  *    "This product includes cryptographic software written by
34  *     Eric Young (eay@cryptsoft.com)"
35  *    The word 'cryptographic' can be left out if the rouines from the library
36  *    being used are not cryptographic related :-).
37  * 4. If you include any Windows specific code (or a derivative thereof) from
38  *    the apps directory (application code) you must include an acknowledgement:
39  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40  *
41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  * The licence and distribution terms for any publically available version or
54  * derivative of this code cannot be changed.  i.e. this code cannot simply be
55  * copied and put under another distribution licence
56  * [including the GNU Public Licence.]
57  */
58 
59 #ifndef BN_DEBUG
60 # undef NDEBUG /* avoid conflicting definitions */
61 # define NDEBUG
62 #endif
63 
64 #include <stdio.h>
65 #include <assert.h>
66 #include "cryptlib.h"
67 #include "bn_lcl.h"
68 
69 #if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS)
70 /* Here follows specialised variants of bn_add_words() and
71    bn_sub_words().  They have the property performing operations on
72    arrays of different sizes.  The sizes of those arrays is expressed through
73    cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl,
74    which is the delta between the two lengths, calculated as len(a)-len(b).
75    All lengths are the number of BN_ULONGs...  For the operations that require
76    a result array as parameter, it must have the length cl+abs(dl).
77    These functions should probably end up in bn_asm.c as soon as there are
78    assembler counterparts for the systems that use assembler files.  */
79 
80 BN_ULONG bn_sub_part_words(BN_ULONG *r,
81 	const BN_ULONG *a, const BN_ULONG *b,
82 	int cl, int dl)
83 	{
84 	BN_ULONG c, t;
85 
86 	assert(cl >= 0);
87 	c = bn_sub_words(r, a, b, cl);
88 
89 	if (dl == 0)
90 		return c;
91 
92 	r += cl;
93 	a += cl;
94 	b += cl;
95 
96 	if (dl < 0)
97 		{
98 #ifdef BN_COUNT
99 		fprintf(stderr, "  bn_sub_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c);
100 #endif
101 		for (;;)
102 			{
103 			t = b[0];
104 			r[0] = (0-t-c)&BN_MASK2;
105 			if (t != 0) c=1;
106 			if (++dl >= 0) break;
107 
108 			t = b[1];
109 			r[1] = (0-t-c)&BN_MASK2;
110 			if (t != 0) c=1;
111 			if (++dl >= 0) break;
112 
113 			t = b[2];
114 			r[2] = (0-t-c)&BN_MASK2;
115 			if (t != 0) c=1;
116 			if (++dl >= 0) break;
117 
118 			t = b[3];
119 			r[3] = (0-t-c)&BN_MASK2;
120 			if (t != 0) c=1;
121 			if (++dl >= 0) break;
122 
123 			b += 4;
124 			r += 4;
125 			}
126 		}
127 	else
128 		{
129 		int save_dl = dl;
130 #ifdef BN_COUNT
131 		fprintf(stderr, "  bn_sub_part_words %d + %d (dl > 0, c = %d)\n", cl, dl, c);
132 #endif
133 		while(c)
134 			{
135 			t = a[0];
136 			r[0] = (t-c)&BN_MASK2;
137 			if (t != 0) c=0;
138 			if (--dl <= 0) break;
139 
140 			t = a[1];
141 			r[1] = (t-c)&BN_MASK2;
142 			if (t != 0) c=0;
143 			if (--dl <= 0) break;
144 
145 			t = a[2];
146 			r[2] = (t-c)&BN_MASK2;
147 			if (t != 0) c=0;
148 			if (--dl <= 0) break;
149 
150 			t = a[3];
151 			r[3] = (t-c)&BN_MASK2;
152 			if (t != 0) c=0;
153 			if (--dl <= 0) break;
154 
155 			save_dl = dl;
156 			a += 4;
157 			r += 4;
158 			}
159 		if (dl > 0)
160 			{
161 #ifdef BN_COUNT
162 			fprintf(stderr, "  bn_sub_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);
163 #endif
164 			if (save_dl > dl)
165 				{
166 				switch (save_dl - dl)
167 					{
168 				case 1:
169 					r[1] = a[1];
170 					if (--dl <= 0) break;
171 				case 2:
172 					r[2] = a[2];
173 					if (--dl <= 0) break;
174 				case 3:
175 					r[3] = a[3];
176 					if (--dl <= 0) break;
177 					}
178 				a += 4;
179 				r += 4;
180 				}
181 			}
182 		if (dl > 0)
183 			{
184 #ifdef BN_COUNT
185 			fprintf(stderr, "  bn_sub_part_words %d + %d (dl > 0, copy)\n", cl, dl);
186 #endif
187 			for(;;)
188 				{
189 				r[0] = a[0];
190 				if (--dl <= 0) break;
191 				r[1] = a[1];
192 				if (--dl <= 0) break;
193 				r[2] = a[2];
194 				if (--dl <= 0) break;
195 				r[3] = a[3];
196 				if (--dl <= 0) break;
197 
198 				a += 4;
199 				r += 4;
200 				}
201 			}
202 		}
203 	return c;
204 	}
205 #endif
206 
207 BN_ULONG bn_add_part_words(BN_ULONG *r,
208 	const BN_ULONG *a, const BN_ULONG *b,
209 	int cl, int dl)
210 	{
211 	BN_ULONG c, l, t;
212 
213 	assert(cl >= 0);
214 	c = bn_add_words(r, a, b, cl);
215 
216 	if (dl == 0)
217 		return c;
218 
219 	r += cl;
220 	a += cl;
221 	b += cl;
222 
223 	if (dl < 0)
224 		{
225 		int save_dl = dl;
226 #ifdef BN_COUNT
227 		fprintf(stderr, "  bn_add_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c);
228 #endif
229 		while (c)
230 			{
231 			l=(c+b[0])&BN_MASK2;
232 			c=(l < c);
233 			r[0]=l;
234 			if (++dl >= 0) break;
235 
236 			l=(c+b[1])&BN_MASK2;
237 			c=(l < c);
238 			r[1]=l;
239 			if (++dl >= 0) break;
240 
241 			l=(c+b[2])&BN_MASK2;
242 			c=(l < c);
243 			r[2]=l;
244 			if (++dl >= 0) break;
245 
246 			l=(c+b[3])&BN_MASK2;
247 			c=(l < c);
248 			r[3]=l;
249 			if (++dl >= 0) break;
250 
251 			save_dl = dl;
252 			b+=4;
253 			r+=4;
254 			}
255 		if (dl < 0)
256 			{
257 #ifdef BN_COUNT
258 			fprintf(stderr, "  bn_add_part_words %d + %d (dl < 0, c == 0)\n", cl, dl);
259 #endif
260 			if (save_dl < dl)
261 				{
262 				switch (dl - save_dl)
263 					{
264 				case 1:
265 					r[1] = b[1];
266 					if (++dl >= 0) break;
267 				case 2:
268 					r[2] = b[2];
269 					if (++dl >= 0) break;
270 				case 3:
271 					r[3] = b[3];
272 					if (++dl >= 0) break;
273 					}
274 				b += 4;
275 				r += 4;
276 				}
277 			}
278 		if (dl < 0)
279 			{
280 #ifdef BN_COUNT
281 			fprintf(stderr, "  bn_add_part_words %d + %d (dl < 0, copy)\n", cl, dl);
282 #endif
283 			for(;;)
284 				{
285 				r[0] = b[0];
286 				if (++dl >= 0) break;
287 				r[1] = b[1];
288 				if (++dl >= 0) break;
289 				r[2] = b[2];
290 				if (++dl >= 0) break;
291 				r[3] = b[3];
292 				if (++dl >= 0) break;
293 
294 				b += 4;
295 				r += 4;
296 				}
297 			}
298 		}
299 	else
300 		{
301 		int save_dl = dl;
302 #ifdef BN_COUNT
303 		fprintf(stderr, "  bn_add_part_words %d + %d (dl > 0)\n", cl, dl);
304 #endif
305 		while (c)
306 			{
307 			t=(a[0]+c)&BN_MASK2;
308 			c=(t < c);
309 			r[0]=t;
310 			if (--dl <= 0) break;
311 
312 			t=(a[1]+c)&BN_MASK2;
313 			c=(t < c);
314 			r[1]=t;
315 			if (--dl <= 0) break;
316 
317 			t=(a[2]+c)&BN_MASK2;
318 			c=(t < c);
319 			r[2]=t;
320 			if (--dl <= 0) break;
321 
322 			t=(a[3]+c)&BN_MASK2;
323 			c=(t < c);
324 			r[3]=t;
325 			if (--dl <= 0) break;
326 
327 			save_dl = dl;
328 			a+=4;
329 			r+=4;
330 			}
331 #ifdef BN_COUNT
332 		fprintf(stderr, "  bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);
333 #endif
334 		if (dl > 0)
335 			{
336 			if (save_dl > dl)
337 				{
338 				switch (save_dl - dl)
339 					{
340 				case 1:
341 					r[1] = a[1];
342 					if (--dl <= 0) break;
343 				case 2:
344 					r[2] = a[2];
345 					if (--dl <= 0) break;
346 				case 3:
347 					r[3] = a[3];
348 					if (--dl <= 0) break;
349 					}
350 				a += 4;
351 				r += 4;
352 				}
353 			}
354 		if (dl > 0)
355 			{
356 #ifdef BN_COUNT
357 			fprintf(stderr, "  bn_add_part_words %d + %d (dl > 0, copy)\n", cl, dl);
358 #endif
359 			for(;;)
360 				{
361 				r[0] = a[0];
362 				if (--dl <= 0) break;
363 				r[1] = a[1];
364 				if (--dl <= 0) break;
365 				r[2] = a[2];
366 				if (--dl <= 0) break;
367 				r[3] = a[3];
368 				if (--dl <= 0) break;
369 
370 				a += 4;
371 				r += 4;
372 				}
373 			}
374 		}
375 	return c;
376 	}
377 
378 #ifdef BN_RECURSION
379 /* Karatsuba recursive multiplication algorithm
380  * (cf. Knuth, The Art of Computer Programming, Vol. 2) */
381 
382 /* r is 2*n2 words in size,
383  * a and b are both n2 words in size.
384  * n2 must be a power of 2.
385  * We multiply and return the result.
386  * t must be 2*n2 words in size
387  * We calculate
388  * a[0]*b[0]
389  * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
390  * a[1]*b[1]
391  */
392 void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
393 	int dna, int dnb, BN_ULONG *t)
394 	{
395 	int n=n2/2,c1,c2;
396 	int tna=n+dna, tnb=n+dnb;
397 	unsigned int neg,zero;
398 	BN_ULONG ln,lo,*p;
399 
400 # ifdef BN_COUNT
401 	fprintf(stderr," bn_mul_recursive %d * %d\n",n2,n2);
402 # endif
403 # ifdef BN_MUL_COMBA
404 #  if 0
405 	if (n2 == 4)
406 		{
407 		bn_mul_comba4(r,a,b);
408 		return;
409 		}
410 #  endif
411 	/* Only call bn_mul_comba 8 if n2 == 8 and the
412 	 * two arrays are complete [steve]
413 	 */
414 	if (n2 == 8 && dna == 0 && dnb == 0)
415 		{
416 		bn_mul_comba8(r,a,b);
417 		return;
418 		}
419 # endif /* BN_MUL_COMBA */
420 	/* Else do normal multiply */
421 	if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL)
422 		{
423 		bn_mul_normal(r,a,n2+dna,b,n2+dnb);
424 		if ((dna + dnb) < 0)
425 			memset(&r[2*n2 + dna + dnb], 0,
426 				sizeof(BN_ULONG) * -(dna + dnb));
427 		return;
428 		}
429 	/* r=(a[0]-a[1])*(b[1]-b[0]) */
430 	c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna);
431 	c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n);
432 	zero=neg=0;
433 	switch (c1*3+c2)
434 		{
435 	case -4:
436 		bn_sub_part_words(t,      &(a[n]),a,      tna,tna-n); /* - */
437 		bn_sub_part_words(&(t[n]),b,      &(b[n]),tnb,n-tnb); /* - */
438 		break;
439 	case -3:
440 		zero=1;
441 		break;
442 	case -2:
443 		bn_sub_part_words(t,      &(a[n]),a,      tna,tna-n); /* - */
444 		bn_sub_part_words(&(t[n]),&(b[n]),b,      tnb,tnb-n); /* + */
445 		neg=1;
446 		break;
447 	case -1:
448 	case 0:
449 	case 1:
450 		zero=1;
451 		break;
452 	case 2:
453 		bn_sub_part_words(t,      a,      &(a[n]),tna,n-tna); /* + */
454 		bn_sub_part_words(&(t[n]),b,      &(b[n]),tnb,n-tnb); /* - */
455 		neg=1;
456 		break;
457 	case 3:
458 		zero=1;
459 		break;
460 	case 4:
461 		bn_sub_part_words(t,      a,      &(a[n]),tna,n-tna);
462 		bn_sub_part_words(&(t[n]),&(b[n]),b,      tnb,tnb-n);
463 		break;
464 		}
465 
466 # ifdef BN_MUL_COMBA
467 	if (n == 4 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba4 could take
468 					       extra args to do this well */
469 		{
470 		if (!zero)
471 			bn_mul_comba4(&(t[n2]),t,&(t[n]));
472 		else
473 			memset(&(t[n2]),0,8*sizeof(BN_ULONG));
474 
475 		bn_mul_comba4(r,a,b);
476 		bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n]));
477 		}
478 	else if (n == 8 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba8 could
479 						    take extra args to do this
480 						    well */
481 		{
482 		if (!zero)
483 			bn_mul_comba8(&(t[n2]),t,&(t[n]));
484 		else
485 			memset(&(t[n2]),0,16*sizeof(BN_ULONG));
486 
487 		bn_mul_comba8(r,a,b);
488 		bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n]));
489 		}
490 	else
491 # endif /* BN_MUL_COMBA */
492 		{
493 		p= &(t[n2*2]);
494 		if (!zero)
495 			bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p);
496 		else
497 			memset(&(t[n2]),0,n2*sizeof(BN_ULONG));
498 		bn_mul_recursive(r,a,b,n,0,0,p);
499 		bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,dna,dnb,p);
500 		}
501 
502 	/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
503 	 * r[10] holds (a[0]*b[0])
504 	 * r[32] holds (b[1]*b[1])
505 	 */
506 
507 	c1=(int)(bn_add_words(t,r,&(r[n2]),n2));
508 
509 	if (neg) /* if t[32] is negative */
510 		{
511 		c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
512 		}
513 	else
514 		{
515 		/* Might have a carry */
516 		c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
517 		}
518 
519 	/* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
520 	 * r[10] holds (a[0]*b[0])
521 	 * r[32] holds (b[1]*b[1])
522 	 * c1 holds the carry bits
523 	 */
524 	c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
525 	if (c1)
526 		{
527 		p= &(r[n+n2]);
528 		lo= *p;
529 		ln=(lo+c1)&BN_MASK2;
530 		*p=ln;
531 
532 		/* The overflow will stop before we over write
533 		 * words we should not overwrite */
534 		if (ln < (BN_ULONG)c1)
535 			{
536 			do	{
537 				p++;
538 				lo= *p;
539 				ln=(lo+1)&BN_MASK2;
540 				*p=ln;
541 				} while (ln == 0);
542 			}
543 		}
544 	}
545 
546 /* n+tn is the word length
547  * t needs to be n*4 is size, as does r */
548 void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
549 	     int tna, int tnb, BN_ULONG *t)
550 	{
551 	int i,j,n2=n*2;
552 	int c1,c2,neg,zero;
553 	BN_ULONG ln,lo,*p;
554 
555 # ifdef BN_COUNT
556 	fprintf(stderr," bn_mul_part_recursive (%d+%d) * (%d+%d)\n",
557 		tna, n, tnb, n);
558 # endif
559 	if (n < 8)
560 		{
561 		bn_mul_normal(r,a,n+tna,b,n+tnb);
562 		return;
563 		}
564 
565 	/* r=(a[0]-a[1])*(b[1]-b[0]) */
566 	c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna);
567 	c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n);
568 	zero=neg=0;
569 	switch (c1*3+c2)
570 		{
571 	case -4:
572 		bn_sub_part_words(t,      &(a[n]),a,      tna,tna-n); /* - */
573 		bn_sub_part_words(&(t[n]),b,      &(b[n]),tnb,n-tnb); /* - */
574 		break;
575 	case -3:
576 		zero=1;
577 		/* break; */
578 	case -2:
579 		bn_sub_part_words(t,      &(a[n]),a,      tna,tna-n); /* - */
580 		bn_sub_part_words(&(t[n]),&(b[n]),b,      tnb,tnb-n); /* + */
581 		neg=1;
582 		break;
583 	case -1:
584 	case 0:
585 	case 1:
586 		zero=1;
587 		/* break; */
588 	case 2:
589 		bn_sub_part_words(t,      a,      &(a[n]),tna,n-tna); /* + */
590 		bn_sub_part_words(&(t[n]),b,      &(b[n]),tnb,n-tnb); /* - */
591 		neg=1;
592 		break;
593 	case 3:
594 		zero=1;
595 		/* break; */
596 	case 4:
597 		bn_sub_part_words(t,      a,      &(a[n]),tna,n-tna);
598 		bn_sub_part_words(&(t[n]),&(b[n]),b,      tnb,tnb-n);
599 		break;
600 		}
601 		/* The zero case isn't yet implemented here. The speedup
602 		   would probably be negligible. */
603 # if 0
604 	if (n == 4)
605 		{
606 		bn_mul_comba4(&(t[n2]),t,&(t[n]));
607 		bn_mul_comba4(r,a,b);
608 		bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
609 		memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2));
610 		}
611 	else
612 # endif
613 	if (n == 8)
614 		{
615 		bn_mul_comba8(&(t[n2]),t,&(t[n]));
616 		bn_mul_comba8(r,a,b);
617 		bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb);
618 		memset(&(r[n2+tna+tnb]),0,sizeof(BN_ULONG)*(n2-tna-tnb));
619 		}
620 	else
621 		{
622 		p= &(t[n2*2]);
623 		bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p);
624 		bn_mul_recursive(r,a,b,n,0,0,p);
625 		i=n/2;
626 		/* If there is only a bottom half to the number,
627 		 * just do it */
628 		if (tna > tnb)
629 			j = tna - i;
630 		else
631 			j = tnb - i;
632 		if (j == 0)
633 			{
634 			bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),
635 				i,tna-i,tnb-i,p);
636 			memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2));
637 			}
638 		else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */
639 				{
640 				bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]),
641 					i,tna-i,tnb-i,p);
642 				memset(&(r[n2+tna+tnb]),0,
643 					sizeof(BN_ULONG)*(n2-tna-tnb));
644 				}
645 		else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
646 			{
647 			memset(&(r[n2]),0,sizeof(BN_ULONG)*n2);
648 			if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL
649 				&& tnb < BN_MUL_RECURSIVE_SIZE_NORMAL)
650 				{
651 				bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb);
652 				}
653 			else
654 				{
655 				for (;;)
656 					{
657 					i/=2;
658 					if (i < tna && i < tnb)
659 						{
660 						bn_mul_part_recursive(&(r[n2]),
661 							&(a[n]),&(b[n]),
662 							i,tna-i,tnb-i,p);
663 						break;
664 						}
665 					else if (i <= tna && i <= tnb)
666 						{
667 						bn_mul_recursive(&(r[n2]),
668 							&(a[n]),&(b[n]),
669 							i,tna-i,tnb-i,p);
670 						break;
671 						}
672 					}
673 				}
674 			}
675 		}
676 
677 	/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
678 	 * r[10] holds (a[0]*b[0])
679 	 * r[32] holds (b[1]*b[1])
680 	 */
681 
682 	c1=(int)(bn_add_words(t,r,&(r[n2]),n2));
683 
684 	if (neg) /* if t[32] is negative */
685 		{
686 		c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
687 		}
688 	else
689 		{
690 		/* Might have a carry */
691 		c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
692 		}
693 
694 	/* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
695 	 * r[10] holds (a[0]*b[0])
696 	 * r[32] holds (b[1]*b[1])
697 	 * c1 holds the carry bits
698 	 */
699 	c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
700 	if (c1)
701 		{
702 		p= &(r[n+n2]);
703 		lo= *p;
704 		ln=(lo+c1)&BN_MASK2;
705 		*p=ln;
706 
707 		/* The overflow will stop before we over write
708 		 * words we should not overwrite */
709 		if (ln < (BN_ULONG)c1)
710 			{
711 			do	{
712 				p++;
713 				lo= *p;
714 				ln=(lo+1)&BN_MASK2;
715 				*p=ln;
716 				} while (ln == 0);
717 			}
718 		}
719 	}
720 
721 /* a and b must be the same size, which is n2.
722  * r needs to be n2 words and t needs to be n2*2
723  */
724 void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
725 	     BN_ULONG *t)
726 	{
727 	int n=n2/2;
728 
729 # ifdef BN_COUNT
730 	fprintf(stderr," bn_mul_low_recursive %d * %d\n",n2,n2);
731 # endif
732 
733 	bn_mul_recursive(r,a,b,n,0,0,&(t[0]));
734 	if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL)
735 		{
736 		bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2]));
737 		bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
738 		bn_mul_low_recursive(&(t[0]),&(a[n]),&(b[0]),n,&(t[n2]));
739 		bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
740 		}
741 	else
742 		{
743 		bn_mul_low_normal(&(t[0]),&(a[0]),&(b[n]),n);
744 		bn_mul_low_normal(&(t[n]),&(a[n]),&(b[0]),n);
745 		bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
746 		bn_add_words(&(r[n]),&(r[n]),&(t[n]),n);
747 		}
748 	}
749 
750 /* a and b must be the same size, which is n2.
751  * r needs to be n2 words and t needs to be n2*2
752  * l is the low words of the output.
753  * t needs to be n2*3
754  */
755 void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
756 	     BN_ULONG *t)
757 	{
758 	int i,n;
759 	int c1,c2;
760 	int neg,oneg,zero;
761 	BN_ULONG ll,lc,*lp,*mp;
762 
763 # ifdef BN_COUNT
764 	fprintf(stderr," bn_mul_high %d * %d\n",n2,n2);
765 # endif
766 	n=n2/2;
767 
768 	/* Calculate (al-ah)*(bh-bl) */
769 	neg=zero=0;
770 	c1=bn_cmp_words(&(a[0]),&(a[n]),n);
771 	c2=bn_cmp_words(&(b[n]),&(b[0]),n);
772 	switch (c1*3+c2)
773 		{
774 	case -4:
775 		bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
776 		bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
777 		break;
778 	case -3:
779 		zero=1;
780 		break;
781 	case -2:
782 		bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
783 		bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
784 		neg=1;
785 		break;
786 	case -1:
787 	case 0:
788 	case 1:
789 		zero=1;
790 		break;
791 	case 2:
792 		bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
793 		bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
794 		neg=1;
795 		break;
796 	case 3:
797 		zero=1;
798 		break;
799 	case 4:
800 		bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
801 		bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
802 		break;
803 		}
804 
805 	oneg=neg;
806 	/* t[10] = (a[0]-a[1])*(b[1]-b[0]) */
807 	/* r[10] = (a[1]*b[1]) */
808 # ifdef BN_MUL_COMBA
809 	if (n == 8)
810 		{
811 		bn_mul_comba8(&(t[0]),&(r[0]),&(r[n]));
812 		bn_mul_comba8(r,&(a[n]),&(b[n]));
813 		}
814 	else
815 # endif
816 		{
817 		bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,0,0,&(t[n2]));
818 		bn_mul_recursive(r,&(a[n]),&(b[n]),n,0,0,&(t[n2]));
819 		}
820 
821 	/* s0 == low(al*bl)
822 	 * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl)
823 	 * We know s0 and s1 so the only unknown is high(al*bl)
824 	 * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl))
825 	 * high(al*bl) == s1 - (r[0]+l[0]+t[0])
826 	 */
827 	if (l != NULL)
828 		{
829 		lp= &(t[n2+n]);
830 		c1=(int)(bn_add_words(lp,&(r[0]),&(l[0]),n));
831 		}
832 	else
833 		{
834 		c1=0;
835 		lp= &(r[0]);
836 		}
837 
838 	if (neg)
839 		neg=(int)(bn_sub_words(&(t[n2]),lp,&(t[0]),n));
840 	else
841 		{
842 		bn_add_words(&(t[n2]),lp,&(t[0]),n);
843 		neg=0;
844 		}
845 
846 	if (l != NULL)
847 		{
848 		bn_sub_words(&(t[n2+n]),&(l[n]),&(t[n2]),n);
849 		}
850 	else
851 		{
852 		lp= &(t[n2+n]);
853 		mp= &(t[n2]);
854 		for (i=0; i<n; i++)
855 			lp[i]=((~mp[i])+1)&BN_MASK2;
856 		}
857 
858 	/* s[0] = low(al*bl)
859 	 * t[3] = high(al*bl)
860 	 * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign
861 	 * r[10] = (a[1]*b[1])
862 	 */
863 	/* R[10] = al*bl
864 	 * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0])
865 	 * R[32] = ah*bh
866 	 */
867 	/* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow)
868 	 * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow)
869 	 * R[3]=r[1]+(carry/borrow)
870 	 */
871 	if (l != NULL)
872 		{
873 		lp= &(t[n2]);
874 		c1= (int)(bn_add_words(lp,&(t[n2+n]),&(l[0]),n));
875 		}
876 	else
877 		{
878 		lp= &(t[n2+n]);
879 		c1=0;
880 		}
881 	c1+=(int)(bn_add_words(&(t[n2]),lp,  &(r[0]),n));
882 	if (oneg)
883 		c1-=(int)(bn_sub_words(&(t[n2]),&(t[n2]),&(t[0]),n));
884 	else
885 		c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),&(t[0]),n));
886 
887 	c2 =(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n2+n]),n));
888 	c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(r[n]),n));
889 	if (oneg)
890 		c2-=(int)(bn_sub_words(&(r[0]),&(r[0]),&(t[n]),n));
891 	else
892 		c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n]),n));
893 
894 	if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */
895 		{
896 		i=0;
897 		if (c1 > 0)
898 			{
899 			lc=c1;
900 			do	{
901 				ll=(r[i]+lc)&BN_MASK2;
902 				r[i++]=ll;
903 				lc=(lc > ll);
904 				} while (lc);
905 			}
906 		else
907 			{
908 			lc= -c1;
909 			do	{
910 				ll=r[i];
911 				r[i++]=(ll-lc)&BN_MASK2;
912 				lc=(lc > ll);
913 				} while (lc);
914 			}
915 		}
916 	if (c2 != 0) /* Add starting at r[1] */
917 		{
918 		i=n;
919 		if (c2 > 0)
920 			{
921 			lc=c2;
922 			do	{
923 				ll=(r[i]+lc)&BN_MASK2;
924 				r[i++]=ll;
925 				lc=(lc > ll);
926 				} while (lc);
927 			}
928 		else
929 			{
930 			lc= -c2;
931 			do	{
932 				ll=r[i];
933 				r[i++]=(ll-lc)&BN_MASK2;
934 				lc=(lc > ll);
935 				} while (lc);
936 			}
937 		}
938 	}
939 #endif /* BN_RECURSION */
940 
941 int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
942 	{
943 	int ret=0;
944 	int top,al,bl;
945 	BIGNUM *rr;
946 #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
947 	int i;
948 #endif
949 #ifdef BN_RECURSION
950 	BIGNUM *t=NULL;
951 	int j=0,k;
952 #endif
953 
954 #ifdef BN_COUNT
955 	fprintf(stderr,"BN_mul %d * %d\n",a->top,b->top);
956 #endif
957 
958 	bn_check_top(a);
959 	bn_check_top(b);
960 	bn_check_top(r);
961 
962 	al=a->top;
963 	bl=b->top;
964 
965 	if ((al == 0) || (bl == 0))
966 		{
967 		BN_zero(r);
968 		return(1);
969 		}
970 	top=al+bl;
971 
972 	BN_CTX_start(ctx);
973 	if ((r == a) || (r == b))
974 		{
975 		if ((rr = BN_CTX_get(ctx)) == NULL) goto err;
976 		}
977 	else
978 		rr = r;
979 	rr->neg=a->neg^b->neg;
980 
981 #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
982 	i = al-bl;
983 #endif
984 #ifdef BN_MUL_COMBA
985 	if (i == 0)
986 		{
987 # if 0
988 		if (al == 4)
989 			{
990 			if (bn_wexpand(rr,8) == NULL) goto err;
991 			rr->top=8;
992 			bn_mul_comba4(rr->d,a->d,b->d);
993 			goto end;
994 			}
995 # endif
996 		if (al == 8)
997 			{
998 			if (bn_wexpand(rr,16) == NULL) goto err;
999 			rr->top=16;
1000 			bn_mul_comba8(rr->d,a->d,b->d);
1001 			goto end;
1002 			}
1003 		}
1004 #endif /* BN_MUL_COMBA */
1005 #ifdef BN_RECURSION
1006 	if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL))
1007 		{
1008 		if (i >= -1 && i <= 1)
1009 			{
1010 			int sav_j =0;
1011 			/* Find out the power of two lower or equal
1012 			   to the longest of the two numbers */
1013 			if (i >= 0)
1014 				{
1015 				j = BN_num_bits_word((BN_ULONG)al);
1016 				}
1017 			if (i == -1)
1018 				{
1019 				j = BN_num_bits_word((BN_ULONG)bl);
1020 				}
1021 			sav_j = j;
1022 			j = 1<<(j-1);
1023 			assert(j <= al || j <= bl);
1024 			k = j+j;
1025 			t = BN_CTX_get(ctx);
1026 			if (al > j || bl > j)
1027 				{
1028 				bn_wexpand(t,k*4);
1029 				bn_wexpand(rr,k*4);
1030 				bn_mul_part_recursive(rr->d,a->d,b->d,
1031 					j,al-j,bl-j,t->d);
1032 				}
1033 			else	/* al <= j || bl <= j */
1034 				{
1035 				bn_wexpand(t,k*2);
1036 				bn_wexpand(rr,k*2);
1037 				bn_mul_recursive(rr->d,a->d,b->d,
1038 					j,al-j,bl-j,t->d);
1039 				}
1040 			rr->top=top;
1041 			goto end;
1042 			}
1043 #if 0
1044 		if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA))
1045 			{
1046 			BIGNUM *tmp_bn = (BIGNUM *)b;
1047 			if (bn_wexpand(tmp_bn,al) == NULL) goto err;
1048 			tmp_bn->d[bl]=0;
1049 			bl++;
1050 			i--;
1051 			}
1052 		else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA))
1053 			{
1054 			BIGNUM *tmp_bn = (BIGNUM *)a;
1055 			if (bn_wexpand(tmp_bn,bl) == NULL) goto err;
1056 			tmp_bn->d[al]=0;
1057 			al++;
1058 			i++;
1059 			}
1060 		if (i == 0)
1061 			{
1062 			/* symmetric and > 4 */
1063 			/* 16 or larger */
1064 			j=BN_num_bits_word((BN_ULONG)al);
1065 			j=1<<(j-1);
1066 			k=j+j;
1067 			t = BN_CTX_get(ctx);
1068 			if (al == j) /* exact multiple */
1069 				{
1070 				if (bn_wexpand(t,k*2) == NULL) goto err;
1071 				if (bn_wexpand(rr,k*2) == NULL) goto err;
1072 				bn_mul_recursive(rr->d,a->d,b->d,al,t->d);
1073 				}
1074 			else
1075 				{
1076 				if (bn_wexpand(t,k*4) == NULL) goto err;
1077 				if (bn_wexpand(rr,k*4) == NULL) goto err;
1078 				bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d);
1079 				}
1080 			rr->top=top;
1081 			goto end;
1082 			}
1083 #endif
1084 		}
1085 #endif /* BN_RECURSION */
1086 	if (bn_wexpand(rr,top) == NULL) goto err;
1087 	rr->top=top;
1088 	bn_mul_normal(rr->d,a->d,al,b->d,bl);
1089 
1090 #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
1091 end:
1092 #endif
1093 	bn_correct_top(rr);
1094 	if (r != rr) BN_copy(r,rr);
1095 	ret=1;
1096 err:
1097 	bn_check_top(r);
1098 	BN_CTX_end(ctx);
1099 	return(ret);
1100 	}
1101 
1102 void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
1103 	{
1104 	BN_ULONG *rr;
1105 
1106 #ifdef BN_COUNT
1107 	fprintf(stderr," bn_mul_normal %d * %d\n",na,nb);
1108 #endif
1109 
1110 	if (na < nb)
1111 		{
1112 		int itmp;
1113 		BN_ULONG *ltmp;
1114 
1115 		itmp=na; na=nb; nb=itmp;
1116 		ltmp=a;   a=b;   b=ltmp;
1117 
1118 		}
1119 	rr= &(r[na]);
1120 	if (nb <= 0)
1121 		{
1122 		(void)bn_mul_words(r,a,na,0);
1123 		return;
1124 		}
1125 	else
1126 		rr[0]=bn_mul_words(r,a,na,b[0]);
1127 
1128 	for (;;)
1129 		{
1130 		if (--nb <= 0) return;
1131 		rr[1]=bn_mul_add_words(&(r[1]),a,na,b[1]);
1132 		if (--nb <= 0) return;
1133 		rr[2]=bn_mul_add_words(&(r[2]),a,na,b[2]);
1134 		if (--nb <= 0) return;
1135 		rr[3]=bn_mul_add_words(&(r[3]),a,na,b[3]);
1136 		if (--nb <= 0) return;
1137 		rr[4]=bn_mul_add_words(&(r[4]),a,na,b[4]);
1138 		rr+=4;
1139 		r+=4;
1140 		b+=4;
1141 		}
1142 	}
1143 
1144 void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
1145 	{
1146 #ifdef BN_COUNT
1147 	fprintf(stderr," bn_mul_low_normal %d * %d\n",n,n);
1148 #endif
1149 	bn_mul_words(r,a,n,b[0]);
1150 
1151 	for (;;)
1152 		{
1153 		if (--n <= 0) return;
1154 		bn_mul_add_words(&(r[1]),a,n,b[1]);
1155 		if (--n <= 0) return;
1156 		bn_mul_add_words(&(r[2]),a,n,b[2]);
1157 		if (--n <= 0) return;
1158 		bn_mul_add_words(&(r[3]),a,n,b[3]);
1159 		if (--n <= 0) return;
1160 		bn_mul_add_words(&(r[4]),a,n,b[4]);
1161 		r+=4;
1162 		b+=4;
1163 		}
1164 	}
1165