xref: /freebsd/crypto/openssl/crypto/bn/bn_prime.c (revision e17f5b1d)
1 /*
2  * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the OpenSSL license (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 #include <stdio.h>
11 #include <time.h>
12 #include "internal/cryptlib.h"
13 #include "bn_local.h"
14 
15 /*
16  * The quick sieve algorithm approach to weeding out primes is Philip
17  * Zimmermann's, as implemented in PGP.  I have had a read of his comments
18  * and implemented my own version.
19  */
20 #include "bn_prime.h"
21 
22 static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
23                    const BIGNUM *a1_odd, int k, BN_CTX *ctx,
24                    BN_MONT_CTX *mont);
25 static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods);
26 static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods,
27                              const BIGNUM *add, const BIGNUM *rem,
28                              BN_CTX *ctx);
29 
30 #define square(x) ((BN_ULONG)(x) * (BN_ULONG)(x))
31 
32 int BN_GENCB_call(BN_GENCB *cb, int a, int b)
33 {
34     /* No callback means continue */
35     if (!cb)
36         return 1;
37     switch (cb->ver) {
38     case 1:
39         /* Deprecated-style callbacks */
40         if (!cb->cb.cb_1)
41             return 1;
42         cb->cb.cb_1(a, b, cb->arg);
43         return 1;
44     case 2:
45         /* New-style callbacks */
46         return cb->cb.cb_2(a, b, cb);
47     default:
48         break;
49     }
50     /* Unrecognised callback type */
51     return 0;
52 }
53 
54 int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe,
55                          const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb)
56 {
57     BIGNUM *t;
58     int found = 0;
59     int i, j, c1 = 0;
60     BN_CTX *ctx = NULL;
61     prime_t *mods = NULL;
62     int checks = BN_prime_checks_for_size(bits);
63 
64     if (bits < 2) {
65         /* There are no prime numbers this small. */
66         BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL);
67         return 0;
68     } else if (add == NULL && safe && bits < 6 && bits != 3) {
69         /*
70          * The smallest safe prime (7) is three bits.
71          * But the following two safe primes with less than 6 bits (11, 23)
72          * are unreachable for BN_rand with BN_RAND_TOP_TWO.
73          */
74         BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL);
75         return 0;
76     }
77 
78     mods = OPENSSL_zalloc(sizeof(*mods) * NUMPRIMES);
79     if (mods == NULL)
80         goto err;
81 
82     ctx = BN_CTX_new();
83     if (ctx == NULL)
84         goto err;
85     BN_CTX_start(ctx);
86     t = BN_CTX_get(ctx);
87     if (t == NULL)
88         goto err;
89  loop:
90     /* make a random number and set the top and bottom bits */
91     if (add == NULL) {
92         if (!probable_prime(ret, bits, safe, mods))
93             goto err;
94     } else {
95         if (!probable_prime_dh(ret, bits, safe, mods, add, rem, ctx))
96             goto err;
97     }
98 
99     if (!BN_GENCB_call(cb, 0, c1++))
100         /* aborted */
101         goto err;
102 
103     if (!safe) {
104         i = BN_is_prime_fasttest_ex(ret, checks, ctx, 0, cb);
105         if (i == -1)
106             goto err;
107         if (i == 0)
108             goto loop;
109     } else {
110         /*
111          * for "safe prime" generation, check that (p-1)/2 is prime. Since a
112          * prime is odd, We just need to divide by 2
113          */
114         if (!BN_rshift1(t, ret))
115             goto err;
116 
117         for (i = 0; i < checks; i++) {
118             j = BN_is_prime_fasttest_ex(ret, 1, ctx, 0, cb);
119             if (j == -1)
120                 goto err;
121             if (j == 0)
122                 goto loop;
123 
124             j = BN_is_prime_fasttest_ex(t, 1, ctx, 0, cb);
125             if (j == -1)
126                 goto err;
127             if (j == 0)
128                 goto loop;
129 
130             if (!BN_GENCB_call(cb, 2, c1 - 1))
131                 goto err;
132             /* We have a safe prime test pass */
133         }
134     }
135     /* we have a prime :-) */
136     found = 1;
137  err:
138     OPENSSL_free(mods);
139     BN_CTX_end(ctx);
140     BN_CTX_free(ctx);
141     bn_check_top(ret);
142     return found;
143 }
144 
145 int BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
146                    BN_GENCB *cb)
147 {
148     return BN_is_prime_fasttest_ex(a, checks, ctx_passed, 0, cb);
149 }
150 
151 int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
152                             int do_trial_division, BN_GENCB *cb)
153 {
154     int i, j, ret = -1;
155     int k;
156     BN_CTX *ctx = NULL;
157     BIGNUM *A1, *A1_odd, *A3, *check; /* taken from ctx */
158     BN_MONT_CTX *mont = NULL;
159 
160     /* Take care of the really small primes 2 & 3 */
161     if (BN_is_word(a, 2) || BN_is_word(a, 3))
162         return 1;
163 
164     /* Check odd and bigger than 1 */
165     if (!BN_is_odd(a) || BN_cmp(a, BN_value_one()) <= 0)
166         return 0;
167 
168     if (checks == BN_prime_checks)
169         checks = BN_prime_checks_for_size(BN_num_bits(a));
170 
171     /* first look for small factors */
172     if (do_trial_division) {
173         for (i = 1; i < NUMPRIMES; i++) {
174             BN_ULONG mod = BN_mod_word(a, primes[i]);
175             if (mod == (BN_ULONG)-1)
176                 goto err;
177             if (mod == 0)
178                 return BN_is_word(a, primes[i]);
179         }
180         if (!BN_GENCB_call(cb, 1, -1))
181             goto err;
182     }
183 
184     if (ctx_passed != NULL)
185         ctx = ctx_passed;
186     else if ((ctx = BN_CTX_new()) == NULL)
187         goto err;
188     BN_CTX_start(ctx);
189 
190     A1 = BN_CTX_get(ctx);
191     A3 = BN_CTX_get(ctx);
192     A1_odd = BN_CTX_get(ctx);
193     check = BN_CTX_get(ctx);
194     if (check == NULL)
195         goto err;
196 
197     /* compute A1 := a - 1 */
198     if (!BN_copy(A1, a) || !BN_sub_word(A1, 1))
199         goto err;
200     /* compute A3 := a - 3 */
201     if (!BN_copy(A3, a) || !BN_sub_word(A3, 3))
202         goto err;
203 
204     /* write  A1  as  A1_odd * 2^k */
205     k = 1;
206     while (!BN_is_bit_set(A1, k))
207         k++;
208     if (!BN_rshift(A1_odd, A1, k))
209         goto err;
210 
211     /* Montgomery setup for computations mod a */
212     mont = BN_MONT_CTX_new();
213     if (mont == NULL)
214         goto err;
215     if (!BN_MONT_CTX_set(mont, a, ctx))
216         goto err;
217 
218     for (i = 0; i < checks; i++) {
219         /* 1 < check < a-1 */
220         if (!BN_priv_rand_range(check, A3) || !BN_add_word(check, 2))
221             goto err;
222 
223         j = witness(check, a, A1, A1_odd, k, ctx, mont);
224         if (j == -1)
225             goto err;
226         if (j) {
227             ret = 0;
228             goto err;
229         }
230         if (!BN_GENCB_call(cb, 1, i))
231             goto err;
232     }
233     ret = 1;
234  err:
235     if (ctx != NULL) {
236         BN_CTX_end(ctx);
237         if (ctx_passed == NULL)
238             BN_CTX_free(ctx);
239     }
240     BN_MONT_CTX_free(mont);
241 
242     return ret;
243 }
244 
245 static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
246                    const BIGNUM *a1_odd, int k, BN_CTX *ctx,
247                    BN_MONT_CTX *mont)
248 {
249     if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */
250         return -1;
251     if (BN_is_one(w))
252         return 0;               /* probably prime */
253     if (BN_cmp(w, a1) == 0)
254         return 0;               /* w == -1 (mod a), 'a' is probably prime */
255     while (--k) {
256         if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */
257             return -1;
258         if (BN_is_one(w))
259             return 1;           /* 'a' is composite, otherwise a previous 'w'
260                                  * would have been == -1 (mod 'a') */
261         if (BN_cmp(w, a1) == 0)
262             return 0;           /* w == -1 (mod a), 'a' is probably prime */
263     }
264     /*
265      * If we get here, 'w' is the (a-1)/2-th power of the original 'w', and
266      * it is neither -1 nor +1 -- so 'a' cannot be prime
267      */
268     bn_check_top(w);
269     return 1;
270 }
271 
272 static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods)
273 {
274     int i;
275     BN_ULONG delta;
276     BN_ULONG maxdelta = BN_MASK2 - primes[NUMPRIMES - 1];
277 
278  again:
279     /* TODO: Not all primes are private */
280     if (!BN_priv_rand(rnd, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ODD))
281         return 0;
282     if (safe && !BN_set_bit(rnd, 1))
283         return 0;
284     /* we now have a random number 'rnd' to test. */
285     for (i = 1; i < NUMPRIMES; i++) {
286         BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
287         if (mod == (BN_ULONG)-1)
288             return 0;
289         mods[i] = (prime_t) mod;
290     }
291     delta = 0;
292  loop:
293     for (i = 1; i < NUMPRIMES; i++) {
294         /*
295          * check that rnd is a prime and also that
296          * gcd(rnd-1,primes) == 1 (except for 2)
297          * do the second check only if we are interested in safe primes
298          * in the case that the candidate prime is a single word then
299          * we check only the primes up to sqrt(rnd)
300          */
301         if (bits <= 31 && delta <= 0x7fffffff
302                 && square(primes[i]) > BN_get_word(rnd) + delta)
303             break;
304         if (safe ? (mods[i] + delta) % primes[i] <= 1
305                  : (mods[i] + delta) % primes[i] == 0) {
306             delta += safe ? 4 : 2;
307             if (delta > maxdelta)
308                 goto again;
309             goto loop;
310         }
311     }
312     if (!BN_add_word(rnd, delta))
313         return 0;
314     if (BN_num_bits(rnd) != bits)
315         goto again;
316     bn_check_top(rnd);
317     return 1;
318 }
319 
320 static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods,
321                              const BIGNUM *add, const BIGNUM *rem,
322                              BN_CTX *ctx)
323 {
324     int i, ret = 0;
325     BIGNUM *t1;
326     BN_ULONG delta;
327     BN_ULONG maxdelta = BN_MASK2 - primes[NUMPRIMES - 1];
328 
329     BN_CTX_start(ctx);
330     if ((t1 = BN_CTX_get(ctx)) == NULL)
331         goto err;
332 
333     if (maxdelta > BN_MASK2 - BN_get_word(add))
334         maxdelta = BN_MASK2 - BN_get_word(add);
335 
336  again:
337     if (!BN_rand(rnd, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD))
338         goto err;
339 
340     /* we need ((rnd-rem) % add) == 0 */
341 
342     if (!BN_mod(t1, rnd, add, ctx))
343         goto err;
344     if (!BN_sub(rnd, rnd, t1))
345         goto err;
346     if (rem == NULL) {
347         if (!BN_add_word(rnd, safe ? 3u : 1u))
348             goto err;
349     } else {
350         if (!BN_add(rnd, rnd, rem))
351             goto err;
352     }
353 
354     if (BN_num_bits(rnd) < bits
355             || BN_get_word(rnd) < (safe ? 5u : 3u)) {
356         if (!BN_add(rnd, rnd, add))
357             goto err;
358     }
359 
360     /* we now have a random number 'rnd' to test. */
361     for (i = 1; i < NUMPRIMES; i++) {
362         BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
363         if (mod == (BN_ULONG)-1)
364             goto err;
365         mods[i] = (prime_t) mod;
366     }
367     delta = 0;
368  loop:
369     for (i = 1; i < NUMPRIMES; i++) {
370         /* check that rnd is a prime */
371         if (bits <= 31 && delta <= 0x7fffffff
372                 && square(primes[i]) > BN_get_word(rnd) + delta)
373             break;
374         /* rnd mod p == 1 implies q = (rnd-1)/2 is divisible by p */
375         if (safe ? (mods[i] + delta) % primes[i] <= 1
376                  : (mods[i] + delta) % primes[i] == 0) {
377             delta += BN_get_word(add);
378             if (delta > maxdelta)
379                 goto again;
380             goto loop;
381         }
382     }
383     if (!BN_add_word(rnd, delta))
384         goto err;
385     ret = 1;
386 
387  err:
388     BN_CTX_end(ctx);
389     bn_check_top(rnd);
390     return ret;
391 }
392