1*b077aed3SPierre Pronchery /*
2*b077aed3SPierre Pronchery  * Copyright 2018-2023 The OpenSSL Project Authors. All Rights Reserved.
3*b077aed3SPierre Pronchery  * Copyright (c) 2018-2019, Oracle and/or its affiliates.  All rights reserved.
4*b077aed3SPierre Pronchery  *
5*b077aed3SPierre Pronchery  * Licensed under the Apache License 2.0 (the "License").  You may not use
6*b077aed3SPierre Pronchery  * this file except in compliance with the License.  You can obtain a copy
7*b077aed3SPierre Pronchery  * in the file LICENSE in the source distribution or at
8*b077aed3SPierre Pronchery  * https://www.openssl.org/source/license.html
9*b077aed3SPierre Pronchery  */
10*b077aed3SPierre Pronchery 
11*b077aed3SPierre Pronchery /*
12*b077aed3SPierre Pronchery  * According to NIST SP800-131A "Transitioning the use of cryptographic
13*b077aed3SPierre Pronchery  * algorithms and key lengths" Generation of 1024 bit RSA keys are no longer
14*b077aed3SPierre Pronchery  * allowed for signatures (Table 2) or key transport (Table 5). In the code
15*b077aed3SPierre Pronchery  * below any attempt to generate 1024 bit RSA keys will result in an error (Note
16*b077aed3SPierre Pronchery  * that digital signature verification can still use deprecated 1024 bit keys).
17*b077aed3SPierre Pronchery  *
18*b077aed3SPierre Pronchery  * FIPS 186-4 relies on the use of the auxiliary primes p1, p2, q1 and q2 that
19*b077aed3SPierre Pronchery  * must be generated before the module generates the RSA primes p and q.
20*b077aed3SPierre Pronchery  * Table B.1 in FIPS 186-4 specifies RSA modulus lengths of 2048 and
21*b077aed3SPierre Pronchery  * 3072 bits only, the min/max total length of the auxiliary primes.
22*b077aed3SPierre Pronchery  * FIPS 186-5 Table A.1 includes an additional entry for 4096 which has been
23*b077aed3SPierre Pronchery  * included here.
24*b077aed3SPierre Pronchery  */
25*b077aed3SPierre Pronchery #include <stdio.h>
26*b077aed3SPierre Pronchery #include <openssl/bn.h>
27*b077aed3SPierre Pronchery #include "bn_local.h"
28*b077aed3SPierre Pronchery #include "crypto/bn.h"
29*b077aed3SPierre Pronchery #include "internal/nelem.h"
30*b077aed3SPierre Pronchery 
31*b077aed3SPierre Pronchery #if BN_BITS2 == 64
32*b077aed3SPierre Pronchery # define BN_DEF(lo, hi) (BN_ULONG)hi<<32|lo
33*b077aed3SPierre Pronchery #else
34*b077aed3SPierre Pronchery # define BN_DEF(lo, hi) lo, hi
35*b077aed3SPierre Pronchery #endif
36*b077aed3SPierre Pronchery 
37*b077aed3SPierre Pronchery /* 1 / sqrt(2) * 2^256, rounded up */
38*b077aed3SPierre Pronchery static const BN_ULONG inv_sqrt_2_val[] = {
39*b077aed3SPierre Pronchery     BN_DEF(0x83339916UL, 0xED17AC85UL), BN_DEF(0x893BA84CUL, 0x1D6F60BAUL),
40*b077aed3SPierre Pronchery     BN_DEF(0x754ABE9FUL, 0x597D89B3UL), BN_DEF(0xF9DE6484UL, 0xB504F333UL)
41*b077aed3SPierre Pronchery };
42*b077aed3SPierre Pronchery 
43*b077aed3SPierre Pronchery const BIGNUM ossl_bn_inv_sqrt_2 = {
44*b077aed3SPierre Pronchery     (BN_ULONG *)inv_sqrt_2_val,
45*b077aed3SPierre Pronchery     OSSL_NELEM(inv_sqrt_2_val),
46*b077aed3SPierre Pronchery     OSSL_NELEM(inv_sqrt_2_val),
47*b077aed3SPierre Pronchery     0,
48*b077aed3SPierre Pronchery     BN_FLG_STATIC_DATA
49*b077aed3SPierre Pronchery };
50*b077aed3SPierre Pronchery 
51*b077aed3SPierre Pronchery /*
52*b077aed3SPierre Pronchery  * FIPS 186-5 Table A.1. "Min length of auxiliary primes p1, p2, q1, q2".
53*b077aed3SPierre Pronchery  * (FIPS 186-5 has an entry for >= 4096 bits).
54*b077aed3SPierre Pronchery  *
55*b077aed3SPierre Pronchery  * Params:
56*b077aed3SPierre Pronchery  *     nbits The key size in bits.
57*b077aed3SPierre Pronchery  * Returns:
58*b077aed3SPierre Pronchery  *     The minimum size of the auxiliary primes or 0 if nbits is invalid.
59*b077aed3SPierre Pronchery  */
bn_rsa_fips186_5_aux_prime_min_size(int nbits)60*b077aed3SPierre Pronchery static int bn_rsa_fips186_5_aux_prime_min_size(int nbits)
61*b077aed3SPierre Pronchery {
62*b077aed3SPierre Pronchery     if (nbits >= 4096)
63*b077aed3SPierre Pronchery         return 201;
64*b077aed3SPierre Pronchery     if (nbits >= 3072)
65*b077aed3SPierre Pronchery         return 171;
66*b077aed3SPierre Pronchery     if (nbits >= 2048)
67*b077aed3SPierre Pronchery         return 141;
68*b077aed3SPierre Pronchery     return 0;
69*b077aed3SPierre Pronchery }
70*b077aed3SPierre Pronchery 
71*b077aed3SPierre Pronchery /*
72*b077aed3SPierre Pronchery  * FIPS 186-5 Table A.1 "Max of len(p1) + len(p2) and
73*b077aed3SPierre Pronchery  * len(q1) + len(q2) for p,q Probable Primes".
74*b077aed3SPierre Pronchery  * (FIPS 186-5 has an entry for >= 4096 bits).
75*b077aed3SPierre Pronchery  * Params:
76*b077aed3SPierre Pronchery  *     nbits The key size in bits.
77*b077aed3SPierre Pronchery  * Returns:
78*b077aed3SPierre Pronchery  *     The maximum length or 0 if nbits is invalid.
79*b077aed3SPierre Pronchery  */
bn_rsa_fips186_5_aux_prime_max_sum_size_for_prob_primes(int nbits)80*b077aed3SPierre Pronchery static int bn_rsa_fips186_5_aux_prime_max_sum_size_for_prob_primes(int nbits)
81*b077aed3SPierre Pronchery {
82*b077aed3SPierre Pronchery     if (nbits >= 4096)
83*b077aed3SPierre Pronchery         return 2030;
84*b077aed3SPierre Pronchery     if (nbits >= 3072)
85*b077aed3SPierre Pronchery         return 1518;
86*b077aed3SPierre Pronchery     if (nbits >= 2048)
87*b077aed3SPierre Pronchery         return 1007;
88*b077aed3SPierre Pronchery     return 0;
89*b077aed3SPierre Pronchery }
90*b077aed3SPierre Pronchery 
91*b077aed3SPierre Pronchery /*
92*b077aed3SPierre Pronchery  * Find the first odd integer that is a probable prime.
93*b077aed3SPierre Pronchery  *
94*b077aed3SPierre Pronchery  * See section FIPS 186-4 B.3.6 (Steps 4.2/5.2).
95*b077aed3SPierre Pronchery  *
96*b077aed3SPierre Pronchery  * Params:
97*b077aed3SPierre Pronchery  *     Xp1 The passed in starting point to find a probably prime.
98*b077aed3SPierre Pronchery  *     p1 The returned probable prime (first odd integer >= Xp1)
99*b077aed3SPierre Pronchery  *     ctx A BN_CTX object.
100*b077aed3SPierre Pronchery  *     cb An optional BIGNUM callback.
101*b077aed3SPierre Pronchery  * Returns: 1 on success otherwise it returns 0.
102*b077aed3SPierre Pronchery  */
bn_rsa_fips186_4_find_aux_prob_prime(const BIGNUM * Xp1,BIGNUM * p1,BN_CTX * ctx,BN_GENCB * cb)103*b077aed3SPierre Pronchery static int bn_rsa_fips186_4_find_aux_prob_prime(const BIGNUM *Xp1,
104*b077aed3SPierre Pronchery                                                 BIGNUM *p1, BN_CTX *ctx,
105*b077aed3SPierre Pronchery                                                 BN_GENCB *cb)
106*b077aed3SPierre Pronchery {
107*b077aed3SPierre Pronchery     int ret = 0;
108*b077aed3SPierre Pronchery     int i = 0;
109*b077aed3SPierre Pronchery     int tmp = 0;
110*b077aed3SPierre Pronchery 
111*b077aed3SPierre Pronchery     if (BN_copy(p1, Xp1) == NULL)
112*b077aed3SPierre Pronchery         return 0;
113*b077aed3SPierre Pronchery     BN_set_flags(p1, BN_FLG_CONSTTIME);
114*b077aed3SPierre Pronchery 
115*b077aed3SPierre Pronchery     /* Find the first odd number >= Xp1 that is probably prime */
116*b077aed3SPierre Pronchery     for(;;) {
117*b077aed3SPierre Pronchery         i++;
118*b077aed3SPierre Pronchery         BN_GENCB_call(cb, 0, i);
119*b077aed3SPierre Pronchery         /* MR test with trial division */
120*b077aed3SPierre Pronchery         tmp = BN_check_prime(p1, ctx, cb);
121*b077aed3SPierre Pronchery         if (tmp > 0)
122*b077aed3SPierre Pronchery             break;
123*b077aed3SPierre Pronchery         if (tmp < 0)
124*b077aed3SPierre Pronchery             goto err;
125*b077aed3SPierre Pronchery         /* Get next odd number */
126*b077aed3SPierre Pronchery         if (!BN_add_word(p1, 2))
127*b077aed3SPierre Pronchery             goto err;
128*b077aed3SPierre Pronchery     }
129*b077aed3SPierre Pronchery     BN_GENCB_call(cb, 2, i);
130*b077aed3SPierre Pronchery     ret = 1;
131*b077aed3SPierre Pronchery err:
132*b077aed3SPierre Pronchery     return ret;
133*b077aed3SPierre Pronchery }
134*b077aed3SPierre Pronchery 
135*b077aed3SPierre Pronchery /*
136*b077aed3SPierre Pronchery  * Generate a probable prime (p or q).
137*b077aed3SPierre Pronchery  *
138*b077aed3SPierre Pronchery  * See FIPS 186-4 B.3.6 (Steps 4 & 5)
139*b077aed3SPierre Pronchery  *
140*b077aed3SPierre Pronchery  * Params:
141*b077aed3SPierre Pronchery  *     p The returned probable prime.
142*b077aed3SPierre Pronchery  *     Xpout An optionally returned random number used during generation of p.
143*b077aed3SPierre Pronchery  *     p1, p2 The returned auxiliary primes. If NULL they are not returned.
144*b077aed3SPierre Pronchery  *     Xp An optional passed in value (that is random number used during
145*b077aed3SPierre Pronchery  *        generation of p).
146*b077aed3SPierre Pronchery  *     Xp1, Xp2 Optional passed in values that are normally generated
147*b077aed3SPierre Pronchery  *              internally. Used to find p1, p2.
148*b077aed3SPierre Pronchery  *     nlen The bit length of the modulus (the key size).
149*b077aed3SPierre Pronchery  *     e The public exponent.
150*b077aed3SPierre Pronchery  *     ctx A BN_CTX object.
151*b077aed3SPierre Pronchery  *     cb An optional BIGNUM callback.
152*b077aed3SPierre Pronchery  * Returns: 1 on success otherwise it returns 0.
153*b077aed3SPierre Pronchery  */
ossl_bn_rsa_fips186_4_gen_prob_primes(BIGNUM * p,BIGNUM * Xpout,BIGNUM * p1,BIGNUM * p2,const BIGNUM * Xp,const BIGNUM * Xp1,const BIGNUM * Xp2,int nlen,const BIGNUM * e,BN_CTX * ctx,BN_GENCB * cb)154*b077aed3SPierre Pronchery int ossl_bn_rsa_fips186_4_gen_prob_primes(BIGNUM *p, BIGNUM *Xpout,
155*b077aed3SPierre Pronchery                                           BIGNUM *p1, BIGNUM *p2,
156*b077aed3SPierre Pronchery                                           const BIGNUM *Xp, const BIGNUM *Xp1,
157*b077aed3SPierre Pronchery                                           const BIGNUM *Xp2, int nlen,
158*b077aed3SPierre Pronchery                                           const BIGNUM *e, BN_CTX *ctx,
159*b077aed3SPierre Pronchery                                           BN_GENCB *cb)
160*b077aed3SPierre Pronchery {
161*b077aed3SPierre Pronchery     int ret = 0;
162*b077aed3SPierre Pronchery     BIGNUM *p1i = NULL, *p2i = NULL, *Xp1i = NULL, *Xp2i = NULL;
163*b077aed3SPierre Pronchery     int bitlen;
164*b077aed3SPierre Pronchery 
165*b077aed3SPierre Pronchery     if (p == NULL || Xpout == NULL)
166*b077aed3SPierre Pronchery         return 0;
167*b077aed3SPierre Pronchery 
168*b077aed3SPierre Pronchery     BN_CTX_start(ctx);
169*b077aed3SPierre Pronchery 
170*b077aed3SPierre Pronchery     p1i = (p1 != NULL) ? p1 : BN_CTX_get(ctx);
171*b077aed3SPierre Pronchery     p2i = (p2 != NULL) ? p2 : BN_CTX_get(ctx);
172*b077aed3SPierre Pronchery     Xp1i = (Xp1 != NULL) ? (BIGNUM *)Xp1 : BN_CTX_get(ctx);
173*b077aed3SPierre Pronchery     Xp2i = (Xp2 != NULL) ? (BIGNUM *)Xp2 : BN_CTX_get(ctx);
174*b077aed3SPierre Pronchery     if (p1i == NULL || p2i == NULL || Xp1i == NULL || Xp2i == NULL)
175*b077aed3SPierre Pronchery         goto err;
176*b077aed3SPierre Pronchery 
177*b077aed3SPierre Pronchery     bitlen = bn_rsa_fips186_5_aux_prime_min_size(nlen);
178*b077aed3SPierre Pronchery     if (bitlen == 0)
179*b077aed3SPierre Pronchery         goto err;
180*b077aed3SPierre Pronchery 
181*b077aed3SPierre Pronchery     /* (Steps 4.1/5.1): Randomly generate Xp1 if it is not passed in */
182*b077aed3SPierre Pronchery     if (Xp1 == NULL) {
183*b077aed3SPierre Pronchery         /* Set the top and bottom bits to make it odd and the correct size */
184*b077aed3SPierre Pronchery         if (!BN_priv_rand_ex(Xp1i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD,
185*b077aed3SPierre Pronchery                              0, ctx))
186*b077aed3SPierre Pronchery             goto err;
187*b077aed3SPierre Pronchery     }
188*b077aed3SPierre Pronchery     /* (Steps 4.1/5.1): Randomly generate Xp2 if it is not passed in */
189*b077aed3SPierre Pronchery     if (Xp2 == NULL) {
190*b077aed3SPierre Pronchery         /* Set the top and bottom bits to make it odd and the correct size */
191*b077aed3SPierre Pronchery         if (!BN_priv_rand_ex(Xp2i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD,
192*b077aed3SPierre Pronchery                              0, ctx))
193*b077aed3SPierre Pronchery             goto err;
194*b077aed3SPierre Pronchery     }
195*b077aed3SPierre Pronchery 
196*b077aed3SPierre Pronchery     /* (Steps 4.2/5.2) - find first auxiliary probable primes */
197*b077aed3SPierre Pronchery     if (!bn_rsa_fips186_4_find_aux_prob_prime(Xp1i, p1i, ctx, cb)
198*b077aed3SPierre Pronchery             || !bn_rsa_fips186_4_find_aux_prob_prime(Xp2i, p2i, ctx, cb))
199*b077aed3SPierre Pronchery         goto err;
200*b077aed3SPierre Pronchery     /* (Table B.1) auxiliary prime Max length check */
201*b077aed3SPierre Pronchery     if ((BN_num_bits(p1i) + BN_num_bits(p2i)) >=
202*b077aed3SPierre Pronchery             bn_rsa_fips186_5_aux_prime_max_sum_size_for_prob_primes(nlen))
203*b077aed3SPierre Pronchery         goto err;
204*b077aed3SPierre Pronchery     /* (Steps 4.3/5.3) - generate prime */
205*b077aed3SPierre Pronchery     if (!ossl_bn_rsa_fips186_4_derive_prime(p, Xpout, Xp, p1i, p2i, nlen, e,
206*b077aed3SPierre Pronchery                                             ctx, cb))
207*b077aed3SPierre Pronchery         goto err;
208*b077aed3SPierre Pronchery     ret = 1;
209*b077aed3SPierre Pronchery err:
210*b077aed3SPierre Pronchery     /* Zeroize any internally generated values that are not returned */
211*b077aed3SPierre Pronchery     if (p1 == NULL)
212*b077aed3SPierre Pronchery         BN_clear(p1i);
213*b077aed3SPierre Pronchery     if (p2 == NULL)
214*b077aed3SPierre Pronchery         BN_clear(p2i);
215*b077aed3SPierre Pronchery     if (Xp1 == NULL)
216*b077aed3SPierre Pronchery         BN_clear(Xp1i);
217*b077aed3SPierre Pronchery     if (Xp2 == NULL)
218*b077aed3SPierre Pronchery         BN_clear(Xp2i);
219*b077aed3SPierre Pronchery     BN_CTX_end(ctx);
220*b077aed3SPierre Pronchery     return ret;
221*b077aed3SPierre Pronchery }
222*b077aed3SPierre Pronchery 
223*b077aed3SPierre Pronchery /*
224*b077aed3SPierre Pronchery  * Constructs a probable prime (a candidate for p or q) using 2 auxiliary
225*b077aed3SPierre Pronchery  * prime numbers and the Chinese Remainder Theorem.
226*b077aed3SPierre Pronchery  *
227*b077aed3SPierre Pronchery  * See FIPS 186-4 C.9 "Compute a Probable Prime Factor Based on Auxiliary
228*b077aed3SPierre Pronchery  * Primes". Used by FIPS 186-4 B.3.6 Section (4.3) for p and Section (5.3) for q.
229*b077aed3SPierre Pronchery  *
230*b077aed3SPierre Pronchery  * Params:
231*b077aed3SPierre Pronchery  *     Y The returned prime factor (private_prime_factor) of the modulus n.
232*b077aed3SPierre Pronchery  *     X The returned random number used during generation of the prime factor.
233*b077aed3SPierre Pronchery  *     Xin An optional passed in value for X used for testing purposes.
234*b077aed3SPierre Pronchery  *     r1 An auxiliary prime.
235*b077aed3SPierre Pronchery  *     r2 An auxiliary prime.
236*b077aed3SPierre Pronchery  *     nlen The desired length of n (the RSA modulus).
237*b077aed3SPierre Pronchery  *     e The public exponent.
238*b077aed3SPierre Pronchery  *     ctx A BN_CTX object.
239*b077aed3SPierre Pronchery  *     cb An optional BIGNUM callback object.
240*b077aed3SPierre Pronchery  * Returns: 1 on success otherwise it returns 0.
241*b077aed3SPierre Pronchery  * Assumptions:
242*b077aed3SPierre Pronchery  *     Y, X, r1, r2, e are not NULL.
243*b077aed3SPierre Pronchery  */
ossl_bn_rsa_fips186_4_derive_prime(BIGNUM * Y,BIGNUM * X,const BIGNUM * Xin,const BIGNUM * r1,const BIGNUM * r2,int nlen,const BIGNUM * e,BN_CTX * ctx,BN_GENCB * cb)244*b077aed3SPierre Pronchery int ossl_bn_rsa_fips186_4_derive_prime(BIGNUM *Y, BIGNUM *X, const BIGNUM *Xin,
245*b077aed3SPierre Pronchery                                        const BIGNUM *r1, const BIGNUM *r2,
246*b077aed3SPierre Pronchery                                        int nlen, const BIGNUM *e, BN_CTX *ctx,
247*b077aed3SPierre Pronchery                                        BN_GENCB *cb)
248*b077aed3SPierre Pronchery {
249*b077aed3SPierre Pronchery     int ret = 0;
250*b077aed3SPierre Pronchery     int i, imax;
251*b077aed3SPierre Pronchery     int bits = nlen >> 1;
252*b077aed3SPierre Pronchery     BIGNUM *tmp, *R, *r1r2x2, *y1, *r1x2;
253*b077aed3SPierre Pronchery     BIGNUM *base, *range;
254*b077aed3SPierre Pronchery 
255*b077aed3SPierre Pronchery     BN_CTX_start(ctx);
256*b077aed3SPierre Pronchery 
257*b077aed3SPierre Pronchery     base = BN_CTX_get(ctx);
258*b077aed3SPierre Pronchery     range = BN_CTX_get(ctx);
259*b077aed3SPierre Pronchery     R = BN_CTX_get(ctx);
260*b077aed3SPierre Pronchery     tmp = BN_CTX_get(ctx);
261*b077aed3SPierre Pronchery     r1r2x2 = BN_CTX_get(ctx);
262*b077aed3SPierre Pronchery     y1 = BN_CTX_get(ctx);
263*b077aed3SPierre Pronchery     r1x2 = BN_CTX_get(ctx);
264*b077aed3SPierre Pronchery     if (r1x2 == NULL)
265*b077aed3SPierre Pronchery         goto err;
266*b077aed3SPierre Pronchery 
267*b077aed3SPierre Pronchery     if (Xin != NULL && BN_copy(X, Xin) == NULL)
268*b077aed3SPierre Pronchery         goto err;
269*b077aed3SPierre Pronchery 
270*b077aed3SPierre Pronchery     /*
271*b077aed3SPierre Pronchery      * We need to generate a random number X in the range
272*b077aed3SPierre Pronchery      * 1/sqrt(2) * 2^(nlen/2) <= X < 2^(nlen/2).
273*b077aed3SPierre Pronchery      * We can rewrite that as:
274*b077aed3SPierre Pronchery      * base = 1/sqrt(2) * 2^(nlen/2)
275*b077aed3SPierre Pronchery      * range = ((2^(nlen/2))) - (1/sqrt(2) * 2^(nlen/2))
276*b077aed3SPierre Pronchery      * X = base + random(range)
277*b077aed3SPierre Pronchery      * We only have the first 256 bit of 1/sqrt(2)
278*b077aed3SPierre Pronchery      */
279*b077aed3SPierre Pronchery     if (Xin == NULL) {
280*b077aed3SPierre Pronchery         if (bits < BN_num_bits(&ossl_bn_inv_sqrt_2))
281*b077aed3SPierre Pronchery             goto err;
282*b077aed3SPierre Pronchery         if (!BN_lshift(base, &ossl_bn_inv_sqrt_2,
283*b077aed3SPierre Pronchery                        bits - BN_num_bits(&ossl_bn_inv_sqrt_2))
284*b077aed3SPierre Pronchery             || !BN_lshift(range, BN_value_one(), bits)
285*b077aed3SPierre Pronchery             || !BN_sub(range, range, base))
286*b077aed3SPierre Pronchery             goto err;
287*b077aed3SPierre Pronchery     }
288*b077aed3SPierre Pronchery 
289*b077aed3SPierre Pronchery     if (!(BN_lshift1(r1x2, r1)
290*b077aed3SPierre Pronchery             /* (Step 1) GCD(2r1, r2) = 1 */
291*b077aed3SPierre Pronchery             && BN_gcd(tmp, r1x2, r2, ctx)
292*b077aed3SPierre Pronchery             && BN_is_one(tmp)
293*b077aed3SPierre Pronchery             /* (Step 2) R = ((r2^-1 mod 2r1) * r2) - ((2r1^-1 mod r2)*2r1) */
294*b077aed3SPierre Pronchery             && BN_mod_inverse(R, r2, r1x2, ctx)
295*b077aed3SPierre Pronchery             && BN_mul(R, R, r2, ctx) /* R = (r2^-1 mod 2r1) * r2 */
296*b077aed3SPierre Pronchery             && BN_mod_inverse(tmp, r1x2, r2, ctx)
297*b077aed3SPierre Pronchery             && BN_mul(tmp, tmp, r1x2, ctx) /* tmp = (2r1^-1 mod r2)*2r1 */
298*b077aed3SPierre Pronchery             && BN_sub(R, R, tmp)
299*b077aed3SPierre Pronchery             /* Calculate 2r1r2 */
300*b077aed3SPierre Pronchery             && BN_mul(r1r2x2, r1x2, r2, ctx)))
301*b077aed3SPierre Pronchery         goto err;
302*b077aed3SPierre Pronchery     /* Make positive by adding the modulus */
303*b077aed3SPierre Pronchery     if (BN_is_negative(R) && !BN_add(R, R, r1r2x2))
304*b077aed3SPierre Pronchery         goto err;
305*b077aed3SPierre Pronchery 
306*b077aed3SPierre Pronchery     /*
307*b077aed3SPierre Pronchery      * In FIPS 186-4 imax was set to 5 * nlen/2.
308*b077aed3SPierre Pronchery      * Analysis by Allen Roginsky (See https://csrc.nist.gov/CSRC/media/Publications/fips/186/4/final/documents/comments-received-fips186-4-december-2015.pdf
309*b077aed3SPierre Pronchery      * page 68) indicates this has a 1 in 2 million chance of failure.
310*b077aed3SPierre Pronchery      * The number has been updated to 20 * nlen/2 as used in
311*b077aed3SPierre Pronchery      * FIPS186-5 Appendix B.9 Step 9.
312*b077aed3SPierre Pronchery      */
313*b077aed3SPierre Pronchery     imax = 20 * bits; /* max = 20/2 * nbits */
314*b077aed3SPierre Pronchery     for (;;) {
315*b077aed3SPierre Pronchery         if (Xin == NULL) {
316*b077aed3SPierre Pronchery             /*
317*b077aed3SPierre Pronchery              * (Step 3) Choose Random X such that
318*b077aed3SPierre Pronchery              *    sqrt(2) * 2^(nlen/2-1) <= Random X <= (2^(nlen/2)) - 1.
319*b077aed3SPierre Pronchery              */
320*b077aed3SPierre Pronchery             if (!BN_priv_rand_range_ex(X, range, 0, ctx) || !BN_add(X, X, base))
321*b077aed3SPierre Pronchery                 goto err;
322*b077aed3SPierre Pronchery         }
323*b077aed3SPierre Pronchery         /* (Step 4) Y = X + ((R - X) mod 2r1r2) */
324*b077aed3SPierre Pronchery         if (!BN_mod_sub(Y, R, X, r1r2x2, ctx) || !BN_add(Y, Y, X))
325*b077aed3SPierre Pronchery             goto err;
326*b077aed3SPierre Pronchery         /* (Step 5) */
327*b077aed3SPierre Pronchery         i = 0;
328*b077aed3SPierre Pronchery         for (;;) {
329*b077aed3SPierre Pronchery             /* (Step 6) */
330*b077aed3SPierre Pronchery             if (BN_num_bits(Y) > bits) {
331*b077aed3SPierre Pronchery                 if (Xin == NULL)
332*b077aed3SPierre Pronchery                     break; /* Randomly Generated X so Go back to Step 3 */
333*b077aed3SPierre Pronchery                 else
334*b077aed3SPierre Pronchery                     goto err; /* X is not random so it will always fail */
335*b077aed3SPierre Pronchery             }
336*b077aed3SPierre Pronchery             BN_GENCB_call(cb, 0, 2);
337*b077aed3SPierre Pronchery 
338*b077aed3SPierre Pronchery             /* (Step 7) If GCD(Y-1) == 1 & Y is probably prime then return Y */
339*b077aed3SPierre Pronchery             if (BN_copy(y1, Y) == NULL
340*b077aed3SPierre Pronchery                     || !BN_sub_word(y1, 1)
341*b077aed3SPierre Pronchery                     || !BN_gcd(tmp, y1, e, ctx))
342*b077aed3SPierre Pronchery                 goto err;
343*b077aed3SPierre Pronchery             if (BN_is_one(tmp)) {
344*b077aed3SPierre Pronchery                 int rv = BN_check_prime(Y, ctx, cb);
345*b077aed3SPierre Pronchery 
346*b077aed3SPierre Pronchery                 if (rv > 0)
347*b077aed3SPierre Pronchery                     goto end;
348*b077aed3SPierre Pronchery                 if (rv < 0)
349*b077aed3SPierre Pronchery                     goto err;
350*b077aed3SPierre Pronchery             }
351*b077aed3SPierre Pronchery             /* (Step 8-10) */
352*b077aed3SPierre Pronchery             if (++i >= imax) {
353*b077aed3SPierre Pronchery                 ERR_raise(ERR_LIB_BN, BN_R_NO_PRIME_CANDIDATE);
354*b077aed3SPierre Pronchery                 goto err;
355*b077aed3SPierre Pronchery             }
356*b077aed3SPierre Pronchery             if (!BN_add(Y, Y, r1r2x2))
357*b077aed3SPierre Pronchery                 goto err;
358*b077aed3SPierre Pronchery         }
359*b077aed3SPierre Pronchery     }
360*b077aed3SPierre Pronchery end:
361*b077aed3SPierre Pronchery     ret = 1;
362*b077aed3SPierre Pronchery     BN_GENCB_call(cb, 3, 0);
363*b077aed3SPierre Pronchery err:
364*b077aed3SPierre Pronchery     BN_clear(y1);
365*b077aed3SPierre Pronchery     BN_CTX_end(ctx);
366*b077aed3SPierre Pronchery     return ret;
367*b077aed3SPierre Pronchery }
368