xref: /freebsd/crypto/openssl/crypto/bn/bn_sqrt.c (revision aa0a1e58)
1 /* crypto/bn/bn_sqrt.c */
2 /* Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de>
3  * and Bodo Moeller for the OpenSSL project. */
4 /* ====================================================================
5  * Copyright (c) 1998-2000 The OpenSSL Project.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  *
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  *
19  * 3. All advertising materials mentioning features or use of this
20  *    software must display the following acknowledgment:
21  *    "This product includes software developed by the OpenSSL Project
22  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
23  *
24  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25  *    endorse or promote products derived from this software without
26  *    prior written permission. For written permission, please contact
27  *    openssl-core@openssl.org.
28  *
29  * 5. Products derived from this software may not be called "OpenSSL"
30  *    nor may "OpenSSL" appear in their names without prior written
31  *    permission of the OpenSSL Project.
32  *
33  * 6. Redistributions of any form whatsoever must retain the following
34  *    acknowledgment:
35  *    "This product includes software developed by the OpenSSL Project
36  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
37  *
38  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
39  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
42  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49  * OF THE POSSIBILITY OF SUCH DAMAGE.
50  * ====================================================================
51  *
52  * This product includes cryptographic software written by Eric Young
53  * (eay@cryptsoft.com).  This product includes software written by Tim
54  * Hudson (tjh@cryptsoft.com).
55  *
56  */
57 
58 #include "cryptlib.h"
59 #include "bn_lcl.h"
60 
61 
62 BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
63 /* Returns 'ret' such that
64  *      ret^2 == a (mod p),
65  * using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course
66  * in Algebraic Computational Number Theory", algorithm 1.5.1).
67  * 'p' must be prime!
68  */
69 	{
70 	BIGNUM *ret = in;
71 	int err = 1;
72 	int r;
73 	BIGNUM *A, *b, *q, *t, *x, *y;
74 	int e, i, j;
75 
76 	if (!BN_is_odd(p) || BN_abs_is_word(p, 1))
77 		{
78 		if (BN_abs_is_word(p, 2))
79 			{
80 			if (ret == NULL)
81 				ret = BN_new();
82 			if (ret == NULL)
83 				goto end;
84 			if (!BN_set_word(ret, BN_is_bit_set(a, 0)))
85 				{
86 				if (ret != in)
87 					BN_free(ret);
88 				return NULL;
89 				}
90 			bn_check_top(ret);
91 			return ret;
92 			}
93 
94 		BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
95 		return(NULL);
96 		}
97 
98 	if (BN_is_zero(a) || BN_is_one(a))
99 		{
100 		if (ret == NULL)
101 			ret = BN_new();
102 		if (ret == NULL)
103 			goto end;
104 		if (!BN_set_word(ret, BN_is_one(a)))
105 			{
106 			if (ret != in)
107 				BN_free(ret);
108 			return NULL;
109 			}
110 		bn_check_top(ret);
111 		return ret;
112 		}
113 
114 	BN_CTX_start(ctx);
115 	A = BN_CTX_get(ctx);
116 	b = BN_CTX_get(ctx);
117 	q = BN_CTX_get(ctx);
118 	t = BN_CTX_get(ctx);
119 	x = BN_CTX_get(ctx);
120 	y = BN_CTX_get(ctx);
121 	if (y == NULL) goto end;
122 
123 	if (ret == NULL)
124 		ret = BN_new();
125 	if (ret == NULL) goto end;
126 
127 	/* A = a mod p */
128 	if (!BN_nnmod(A, a, p, ctx)) goto end;
129 
130 	/* now write  |p| - 1  as  2^e*q  where  q  is odd */
131 	e = 1;
132 	while (!BN_is_bit_set(p, e))
133 		e++;
134 	/* we'll set  q  later (if needed) */
135 
136 	if (e == 1)
137 		{
138 		/* The easy case:  (|p|-1)/2  is odd, so 2 has an inverse
139 		 * modulo  (|p|-1)/2,  and square roots can be computed
140 		 * directly by modular exponentiation.
141 		 * We have
142 		 *     2 * (|p|+1)/4 == 1   (mod (|p|-1)/2),
143 		 * so we can use exponent  (|p|+1)/4,  i.e.  (|p|-3)/4 + 1.
144 		 */
145 		if (!BN_rshift(q, p, 2)) goto end;
146 		q->neg = 0;
147 		if (!BN_add_word(q, 1)) goto end;
148 		if (!BN_mod_exp(ret, A, q, p, ctx)) goto end;
149 		err = 0;
150 		goto vrfy;
151 		}
152 
153 	if (e == 2)
154 		{
155 		/* |p| == 5  (mod 8)
156 		 *
157 		 * In this case  2  is always a non-square since
158 		 * Legendre(2,p) = (-1)^((p^2-1)/8)  for any odd prime.
159 		 * So if  a  really is a square, then  2*a  is a non-square.
160 		 * Thus for
161 		 *      b := (2*a)^((|p|-5)/8),
162 		 *      i := (2*a)*b^2
163 		 * we have
164 		 *     i^2 = (2*a)^((1 + (|p|-5)/4)*2)
165 		 *         = (2*a)^((p-1)/2)
166 		 *         = -1;
167 		 * so if we set
168 		 *      x := a*b*(i-1),
169 		 * then
170 		 *     x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
171 		 *         = a^2 * b^2 * (-2*i)
172 		 *         = a*(-i)*(2*a*b^2)
173 		 *         = a*(-i)*i
174 		 *         = a.
175 		 *
176 		 * (This is due to A.O.L. Atkin,
177 		 * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>,
178 		 * November 1992.)
179 		 */
180 
181 		/* t := 2*a */
182 		if (!BN_mod_lshift1_quick(t, A, p)) goto end;
183 
184 		/* b := (2*a)^((|p|-5)/8) */
185 		if (!BN_rshift(q, p, 3)) goto end;
186 		q->neg = 0;
187 		if (!BN_mod_exp(b, t, q, p, ctx)) goto end;
188 
189 		/* y := b^2 */
190 		if (!BN_mod_sqr(y, b, p, ctx)) goto end;
191 
192 		/* t := (2*a)*b^2 - 1*/
193 		if (!BN_mod_mul(t, t, y, p, ctx)) goto end;
194 		if (!BN_sub_word(t, 1)) goto end;
195 
196 		/* x = a*b*t */
197 		if (!BN_mod_mul(x, A, b, p, ctx)) goto end;
198 		if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
199 
200 		if (!BN_copy(ret, x)) goto end;
201 		err = 0;
202 		goto vrfy;
203 		}
204 
205 	/* e > 2, so we really have to use the Tonelli/Shanks algorithm.
206 	 * First, find some  y  that is not a square. */
207 	if (!BN_copy(q, p)) goto end; /* use 'q' as temp */
208 	q->neg = 0;
209 	i = 2;
210 	do
211 		{
212 		/* For efficiency, try small numbers first;
213 		 * if this fails, try random numbers.
214 		 */
215 		if (i < 22)
216 			{
217 			if (!BN_set_word(y, i)) goto end;
218 			}
219 		else
220 			{
221 			if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) goto end;
222 			if (BN_ucmp(y, p) >= 0)
223 				{
224 				if (!(p->neg ? BN_add : BN_sub)(y, y, p)) goto end;
225 				}
226 			/* now 0 <= y < |p| */
227 			if (BN_is_zero(y))
228 				if (!BN_set_word(y, i)) goto end;
229 			}
230 
231 		r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */
232 		if (r < -1) goto end;
233 		if (r == 0)
234 			{
235 			/* m divides p */
236 			BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
237 			goto end;
238 			}
239 		}
240 	while (r == 1 && ++i < 82);
241 
242 	if (r != -1)
243 		{
244 		/* Many rounds and still no non-square -- this is more likely
245 		 * a bug than just bad luck.
246 		 * Even if  p  is not prime, we should have found some  y
247 		 * such that r == -1.
248 		 */
249 		BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS);
250 		goto end;
251 		}
252 
253 	/* Here's our actual 'q': */
254 	if (!BN_rshift(q, q, e)) goto end;
255 
256 	/* Now that we have some non-square, we can find an element
257 	 * of order  2^e  by computing its q'th power. */
258 	if (!BN_mod_exp(y, y, q, p, ctx)) goto end;
259 	if (BN_is_one(y))
260 		{
261 		BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
262 		goto end;
263 		}
264 
265 	/* Now we know that (if  p  is indeed prime) there is an integer
266 	 * k,  0 <= k < 2^e,  such that
267 	 *
268 	 *      a^q * y^k == 1   (mod p).
269 	 *
270 	 * As  a^q  is a square and  y  is not,  k  must be even.
271 	 * q+1  is even, too, so there is an element
272 	 *
273 	 *     X := a^((q+1)/2) * y^(k/2),
274 	 *
275 	 * and it satisfies
276 	 *
277 	 *     X^2 = a^q * a     * y^k
278 	 *         = a,
279 	 *
280 	 * so it is the square root that we are looking for.
281 	 */
282 
283 	/* t := (q-1)/2  (note that  q  is odd) */
284 	if (!BN_rshift1(t, q)) goto end;
285 
286 	/* x := a^((q-1)/2) */
287 	if (BN_is_zero(t)) /* special case: p = 2^e + 1 */
288 		{
289 		if (!BN_nnmod(t, A, p, ctx)) goto end;
290 		if (BN_is_zero(t))
291 			{
292 			/* special case: a == 0  (mod p) */
293 			BN_zero(ret);
294 			err = 0;
295 			goto end;
296 			}
297 		else
298 			if (!BN_one(x)) goto end;
299 		}
300 	else
301 		{
302 		if (!BN_mod_exp(x, A, t, p, ctx)) goto end;
303 		if (BN_is_zero(x))
304 			{
305 			/* special case: a == 0  (mod p) */
306 			BN_zero(ret);
307 			err = 0;
308 			goto end;
309 			}
310 		}
311 
312 	/* b := a*x^2  (= a^q) */
313 	if (!BN_mod_sqr(b, x, p, ctx)) goto end;
314 	if (!BN_mod_mul(b, b, A, p, ctx)) goto end;
315 
316 	/* x := a*x    (= a^((q+1)/2)) */
317 	if (!BN_mod_mul(x, x, A, p, ctx)) goto end;
318 
319 	while (1)
320 		{
321 		/* Now  b  is  a^q * y^k  for some even  k  (0 <= k < 2^E
322 		 * where  E  refers to the original value of  e,  which we
323 		 * don't keep in a variable),  and  x  is  a^((q+1)/2) * y^(k/2).
324 		 *
325 		 * We have  a*b = x^2,
326 		 *    y^2^(e-1) = -1,
327 		 *    b^2^(e-1) = 1.
328 		 */
329 
330 		if (BN_is_one(b))
331 			{
332 			if (!BN_copy(ret, x)) goto end;
333 			err = 0;
334 			goto vrfy;
335 			}
336 
337 
338 		/* find smallest  i  such that  b^(2^i) = 1 */
339 		i = 1;
340 		if (!BN_mod_sqr(t, b, p, ctx)) goto end;
341 		while (!BN_is_one(t))
342 			{
343 			i++;
344 			if (i == e)
345 				{
346 				BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
347 				goto end;
348 				}
349 			if (!BN_mod_mul(t, t, t, p, ctx)) goto end;
350 			}
351 
352 
353 		/* t := y^2^(e - i - 1) */
354 		if (!BN_copy(t, y)) goto end;
355 		for (j = e - i - 1; j > 0; j--)
356 			{
357 			if (!BN_mod_sqr(t, t, p, ctx)) goto end;
358 			}
359 		if (!BN_mod_mul(y, t, t, p, ctx)) goto end;
360 		if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
361 		if (!BN_mod_mul(b, b, y, p, ctx)) goto end;
362 		e = i;
363 		}
364 
365  vrfy:
366 	if (!err)
367 		{
368 		/* verify the result -- the input might have been not a square
369 		 * (test added in 0.9.8) */
370 
371 		if (!BN_mod_sqr(x, ret, p, ctx))
372 			err = 1;
373 
374 		if (!err && 0 != BN_cmp(x, A))
375 			{
376 			BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
377 			err = 1;
378 			}
379 		}
380 
381  end:
382 	if (err)
383 		{
384 		if (ret != NULL && ret != in)
385 			{
386 			BN_clear_free(ret);
387 			}
388 		ret = NULL;
389 		}
390 	BN_CTX_end(ctx);
391 	bn_check_top(ret);
392 	return ret;
393 	}
394