xref: /freebsd/crypto/openssl/crypto/bn/rsaz_exp_x2.c (revision b077aed3)
1*b077aed3SPierre Pronchery /*
2*b077aed3SPierre Pronchery  * Copyright 2020-2023 The OpenSSL Project Authors. All Rights Reserved.
3*b077aed3SPierre Pronchery  * Copyright (c) 2020, Intel Corporation. All Rights Reserved.
4*b077aed3SPierre Pronchery  *
5*b077aed3SPierre Pronchery  * Licensed under the Apache License 2.0 (the "License").  You may not use
6*b077aed3SPierre Pronchery  * this file except in compliance with the License.  You can obtain a copy
7*b077aed3SPierre Pronchery  * in the file LICENSE in the source distribution or at
8*b077aed3SPierre Pronchery  * https://www.openssl.org/source/license.html
9*b077aed3SPierre Pronchery  *
10*b077aed3SPierre Pronchery  *
11*b077aed3SPierre Pronchery  * Originally written by Ilya Albrekht, Sergey Kirillov and Andrey Matyukov
12*b077aed3SPierre Pronchery  * Intel Corporation
13*b077aed3SPierre Pronchery  *
14*b077aed3SPierre Pronchery  */
15*b077aed3SPierre Pronchery 
16*b077aed3SPierre Pronchery #include <openssl/opensslconf.h>
17*b077aed3SPierre Pronchery #include <openssl/crypto.h>
18*b077aed3SPierre Pronchery #include "rsaz_exp.h"
19*b077aed3SPierre Pronchery 
20*b077aed3SPierre Pronchery #ifndef RSAZ_ENABLED
21*b077aed3SPierre Pronchery NON_EMPTY_TRANSLATION_UNIT
22*b077aed3SPierre Pronchery #else
23*b077aed3SPierre Pronchery # include <assert.h>
24*b077aed3SPierre Pronchery # include <string.h>
25*b077aed3SPierre Pronchery 
26*b077aed3SPierre Pronchery # if defined(__GNUC__)
27*b077aed3SPierre Pronchery #  define ALIGN64 __attribute__((aligned(64)))
28*b077aed3SPierre Pronchery # elif defined(_MSC_VER)
29*b077aed3SPierre Pronchery #  define ALIGN64 __declspec(align(64))
30*b077aed3SPierre Pronchery # else
31*b077aed3SPierre Pronchery #  define ALIGN64
32*b077aed3SPierre Pronchery # endif
33*b077aed3SPierre Pronchery 
34*b077aed3SPierre Pronchery # define ALIGN_OF(ptr, boundary) \
35*b077aed3SPierre Pronchery     ((unsigned char *)(ptr) + (boundary - (((size_t)(ptr)) & (boundary - 1))))
36*b077aed3SPierre Pronchery 
37*b077aed3SPierre Pronchery /* Internal radix */
38*b077aed3SPierre Pronchery # define DIGIT_SIZE (52)
39*b077aed3SPierre Pronchery /* 52-bit mask */
40*b077aed3SPierre Pronchery # define DIGIT_MASK ((uint64_t)0xFFFFFFFFFFFFF)
41*b077aed3SPierre Pronchery 
42*b077aed3SPierre Pronchery # define BITS2WORD8_SIZE(x)  (((x) + 7) >> 3)
43*b077aed3SPierre Pronchery # define BITS2WORD64_SIZE(x) (((x) + 63) >> 6)
44*b077aed3SPierre Pronchery 
45*b077aed3SPierre Pronchery static ossl_inline uint64_t get_digit52(const uint8_t *in, int in_len);
46*b077aed3SPierre Pronchery static ossl_inline void put_digit52(uint8_t *out, int out_len, uint64_t digit);
47*b077aed3SPierre Pronchery static void to_words52(BN_ULONG *out, int out_len, const BN_ULONG *in,
48*b077aed3SPierre Pronchery                        int in_bitsize);
49*b077aed3SPierre Pronchery static void from_words52(BN_ULONG *bn_out, int out_bitsize, const BN_ULONG *in);
50*b077aed3SPierre Pronchery static ossl_inline void set_bit(BN_ULONG *a, int idx);
51*b077aed3SPierre Pronchery 
52*b077aed3SPierre Pronchery /* Number of |digit_size|-bit digits in |bitsize|-bit value */
53*b077aed3SPierre Pronchery static ossl_inline int number_of_digits(int bitsize, int digit_size)
54*b077aed3SPierre Pronchery {
55*b077aed3SPierre Pronchery     return (bitsize + digit_size - 1) / digit_size;
56*b077aed3SPierre Pronchery }
57*b077aed3SPierre Pronchery 
58*b077aed3SPierre Pronchery typedef void (*AMM52)(BN_ULONG *res, const BN_ULONG *base,
59*b077aed3SPierre Pronchery                       const BN_ULONG *exp, const BN_ULONG *m, BN_ULONG k0);
60*b077aed3SPierre Pronchery typedef void (*EXP52_x2)(BN_ULONG *res, const BN_ULONG *base,
61*b077aed3SPierre Pronchery                          const BN_ULONG *exp[2], const BN_ULONG *m,
62*b077aed3SPierre Pronchery                          const BN_ULONG *rr, const BN_ULONG k0[2]);
63*b077aed3SPierre Pronchery 
64*b077aed3SPierre Pronchery /*
65*b077aed3SPierre Pronchery  * For details of the methods declared below please refer to
66*b077aed3SPierre Pronchery  *    crypto/bn/asm/rsaz-avx512.pl
67*b077aed3SPierre Pronchery  *
68*b077aed3SPierre Pronchery  * Naming notes:
69*b077aed3SPierre Pronchery  *  amm = Almost Montgomery Multiplication
70*b077aed3SPierre Pronchery  *  ams = Almost Montgomery Squaring
71*b077aed3SPierre Pronchery  *  52x20 - data represented as array of 20 digits in 52-bit radix
72*b077aed3SPierre Pronchery  *  _x1_/_x2_ - 1 or 2 independent inputs/outputs
73*b077aed3SPierre Pronchery  *  _256 suffix - uses 256-bit (AVX512VL) registers
74*b077aed3SPierre Pronchery  */
75*b077aed3SPierre Pronchery 
76*b077aed3SPierre Pronchery /*AMM = Almost Montgomery Multiplication. */
77*b077aed3SPierre Pronchery void ossl_rsaz_amm52x20_x1_256(BN_ULONG *res, const BN_ULONG *base,
78*b077aed3SPierre Pronchery                                const BN_ULONG *exp, const BN_ULONG *m,
79*b077aed3SPierre Pronchery                                BN_ULONG k0);
80*b077aed3SPierre Pronchery static void RSAZ_exp52x20_x2_256(BN_ULONG *res, const BN_ULONG *base,
81*b077aed3SPierre Pronchery                                  const BN_ULONG *exp[2], const BN_ULONG *m,
82*b077aed3SPierre Pronchery                                  const BN_ULONG *rr, const BN_ULONG k0[2]);
83*b077aed3SPierre Pronchery void ossl_rsaz_amm52x20_x2_256(BN_ULONG *out, const BN_ULONG *a,
84*b077aed3SPierre Pronchery                                const BN_ULONG *b, const BN_ULONG *m,
85*b077aed3SPierre Pronchery                                const BN_ULONG k0[2]);
86*b077aed3SPierre Pronchery void ossl_extract_multiplier_2x20_win5(BN_ULONG *red_Y,
87*b077aed3SPierre Pronchery                                        const BN_ULONG *red_table,
88*b077aed3SPierre Pronchery                                        int red_table_idx, int tbl_idx);
89*b077aed3SPierre Pronchery 
90*b077aed3SPierre Pronchery /*
91*b077aed3SPierre Pronchery  * Dual Montgomery modular exponentiation using prime moduli of the
92*b077aed3SPierre Pronchery  * same bit size, optimized with AVX512 ISA.
93*b077aed3SPierre Pronchery  *
94*b077aed3SPierre Pronchery  * Input and output parameters for each exponentiation are independent and
95*b077aed3SPierre Pronchery  * denoted here by index |i|, i = 1..2.
96*b077aed3SPierre Pronchery  *
97*b077aed3SPierre Pronchery  * Input and output are all in regular 2^64 radix.
98*b077aed3SPierre Pronchery  *
99*b077aed3SPierre Pronchery  * Each moduli shall be |factor_size| bit size.
100*b077aed3SPierre Pronchery  *
101*b077aed3SPierre Pronchery  * NOTE: currently only 2x1024 case is supported.
102*b077aed3SPierre Pronchery  *
103*b077aed3SPierre Pronchery  *  [out] res|i|      - result of modular exponentiation: array of qword values
104*b077aed3SPierre Pronchery  *                      in regular (2^64) radix. Size of array shall be enough
105*b077aed3SPierre Pronchery  *                      to hold |factor_size| bits.
106*b077aed3SPierre Pronchery  *  [in]  base|i|     - base
107*b077aed3SPierre Pronchery  *  [in]  exp|i|      - exponent
108*b077aed3SPierre Pronchery  *  [in]  m|i|        - moduli
109*b077aed3SPierre Pronchery  *  [in]  rr|i|       - Montgomery parameter RR = R^2 mod m|i|
110*b077aed3SPierre Pronchery  *  [in]  k0_|i|      - Montgomery parameter k0 = -1/m|i| mod 2^64
111*b077aed3SPierre Pronchery  *  [in]  factor_size - moduli bit size
112*b077aed3SPierre Pronchery  *
113*b077aed3SPierre Pronchery  * \return 0 in case of failure,
114*b077aed3SPierre Pronchery  *         1 in case of success.
115*b077aed3SPierre Pronchery  */
116*b077aed3SPierre Pronchery int ossl_rsaz_mod_exp_avx512_x2(BN_ULONG *res1,
117*b077aed3SPierre Pronchery                                 const BN_ULONG *base1,
118*b077aed3SPierre Pronchery                                 const BN_ULONG *exp1,
119*b077aed3SPierre Pronchery                                 const BN_ULONG *m1,
120*b077aed3SPierre Pronchery                                 const BN_ULONG *rr1,
121*b077aed3SPierre Pronchery                                 BN_ULONG k0_1,
122*b077aed3SPierre Pronchery                                 BN_ULONG *res2,
123*b077aed3SPierre Pronchery                                 const BN_ULONG *base2,
124*b077aed3SPierre Pronchery                                 const BN_ULONG *exp2,
125*b077aed3SPierre Pronchery                                 const BN_ULONG *m2,
126*b077aed3SPierre Pronchery                                 const BN_ULONG *rr2,
127*b077aed3SPierre Pronchery                                 BN_ULONG k0_2,
128*b077aed3SPierre Pronchery                                 int factor_size)
129*b077aed3SPierre Pronchery {
130*b077aed3SPierre Pronchery     int ret = 0;
131*b077aed3SPierre Pronchery 
132*b077aed3SPierre Pronchery     /*
133*b077aed3SPierre Pronchery      * Number of word-size (BN_ULONG) digits to store exponent in redundant
134*b077aed3SPierre Pronchery      * representation.
135*b077aed3SPierre Pronchery      */
136*b077aed3SPierre Pronchery     int exp_digits = number_of_digits(factor_size + 2, DIGIT_SIZE);
137*b077aed3SPierre Pronchery     int coeff_pow = 4 * (DIGIT_SIZE * exp_digits - factor_size);
138*b077aed3SPierre Pronchery     BN_ULONG *base1_red, *m1_red, *rr1_red;
139*b077aed3SPierre Pronchery     BN_ULONG *base2_red, *m2_red, *rr2_red;
140*b077aed3SPierre Pronchery     BN_ULONG *coeff_red;
141*b077aed3SPierre Pronchery     BN_ULONG *storage = NULL;
142*b077aed3SPierre Pronchery     BN_ULONG *storage_aligned = NULL;
143*b077aed3SPierre Pronchery     BN_ULONG storage_len_bytes = 7 * exp_digits * sizeof(BN_ULONG);
144*b077aed3SPierre Pronchery 
145*b077aed3SPierre Pronchery     /* AMM = Almost Montgomery Multiplication */
146*b077aed3SPierre Pronchery     AMM52 amm = NULL;
147*b077aed3SPierre Pronchery     /* Dual (2-exps in parallel) exponentiation */
148*b077aed3SPierre Pronchery     EXP52_x2 exp_x2 = NULL;
149*b077aed3SPierre Pronchery 
150*b077aed3SPierre Pronchery     const BN_ULONG *exp[2] = {0};
151*b077aed3SPierre Pronchery     BN_ULONG k0[2] = {0};
152*b077aed3SPierre Pronchery 
153*b077aed3SPierre Pronchery     /* Only 1024-bit factor size is supported now */
154*b077aed3SPierre Pronchery     switch (factor_size) {
155*b077aed3SPierre Pronchery     case 1024:
156*b077aed3SPierre Pronchery         amm = ossl_rsaz_amm52x20_x1_256;
157*b077aed3SPierre Pronchery         exp_x2 = RSAZ_exp52x20_x2_256;
158*b077aed3SPierre Pronchery         break;
159*b077aed3SPierre Pronchery     default:
160*b077aed3SPierre Pronchery         goto err;
161*b077aed3SPierre Pronchery     }
162*b077aed3SPierre Pronchery 
163*b077aed3SPierre Pronchery     storage = (BN_ULONG *)OPENSSL_malloc(storage_len_bytes + 64);
164*b077aed3SPierre Pronchery     if (storage == NULL)
165*b077aed3SPierre Pronchery         goto err;
166*b077aed3SPierre Pronchery     storage_aligned = (BN_ULONG *)ALIGN_OF(storage, 64);
167*b077aed3SPierre Pronchery 
168*b077aed3SPierre Pronchery     /* Memory layout for red(undant) representations */
169*b077aed3SPierre Pronchery     base1_red = storage_aligned;
170*b077aed3SPierre Pronchery     base2_red = storage_aligned + 1 * exp_digits;
171*b077aed3SPierre Pronchery     m1_red    = storage_aligned + 2 * exp_digits;
172*b077aed3SPierre Pronchery     m2_red    = storage_aligned + 3 * exp_digits;
173*b077aed3SPierre Pronchery     rr1_red   = storage_aligned + 4 * exp_digits;
174*b077aed3SPierre Pronchery     rr2_red   = storage_aligned + 5 * exp_digits;
175*b077aed3SPierre Pronchery     coeff_red = storage_aligned + 6 * exp_digits;
176*b077aed3SPierre Pronchery 
177*b077aed3SPierre Pronchery     /* Convert base_i, m_i, rr_i, from regular to 52-bit radix */
178*b077aed3SPierre Pronchery     to_words52(base1_red, exp_digits, base1, factor_size);
179*b077aed3SPierre Pronchery     to_words52(base2_red, exp_digits, base2, factor_size);
180*b077aed3SPierre Pronchery     to_words52(m1_red, exp_digits, m1, factor_size);
181*b077aed3SPierre Pronchery     to_words52(m2_red, exp_digits, m2, factor_size);
182*b077aed3SPierre Pronchery     to_words52(rr1_red, exp_digits, rr1, factor_size);
183*b077aed3SPierre Pronchery     to_words52(rr2_red, exp_digits, rr2, factor_size);
184*b077aed3SPierre Pronchery 
185*b077aed3SPierre Pronchery     /*
186*b077aed3SPierre Pronchery      * Compute target domain Montgomery converters RR' for each modulus
187*b077aed3SPierre Pronchery      * based on precomputed original domain's RR.
188*b077aed3SPierre Pronchery      *
189*b077aed3SPierre Pronchery      * RR -> RR' transformation steps:
190*b077aed3SPierre Pronchery      *  (1) coeff = 2^k
191*b077aed3SPierre Pronchery      *  (2) t = AMM(RR,RR) = RR^2 / R' mod m
192*b077aed3SPierre Pronchery      *  (3) RR' = AMM(t, coeff) = RR^2 * 2^k / R'^2 mod m
193*b077aed3SPierre Pronchery      * where
194*b077aed3SPierre Pronchery      *  k = 4 * (52 * digits52 - modlen)
195*b077aed3SPierre Pronchery      *  R  = 2^(64 * ceil(modlen/64)) mod m
196*b077aed3SPierre Pronchery      *  RR = R^2 mod M
197*b077aed3SPierre Pronchery      *  R' = 2^(52 * ceil(modlen/52)) mod m
198*b077aed3SPierre Pronchery      *
199*b077aed3SPierre Pronchery      *  modlen = 1024: k = 64, RR = 2^2048 mod m, RR' = 2^2080 mod m
200*b077aed3SPierre Pronchery      */
201*b077aed3SPierre Pronchery     memset(coeff_red, 0, exp_digits * sizeof(BN_ULONG));
202*b077aed3SPierre Pronchery     /* (1) in reduced domain representation */
203*b077aed3SPierre Pronchery     set_bit(coeff_red, 64 * (int)(coeff_pow / 52) + coeff_pow % 52);
204*b077aed3SPierre Pronchery 
205*b077aed3SPierre Pronchery     amm(rr1_red, rr1_red, rr1_red, m1_red, k0_1);     /* (2) for m1 */
206*b077aed3SPierre Pronchery     amm(rr1_red, rr1_red, coeff_red, m1_red, k0_1);   /* (3) for m1 */
207*b077aed3SPierre Pronchery 
208*b077aed3SPierre Pronchery     amm(rr2_red, rr2_red, rr2_red, m2_red, k0_2);     /* (2) for m2 */
209*b077aed3SPierre Pronchery     amm(rr2_red, rr2_red, coeff_red, m2_red, k0_2);   /* (3) for m2 */
210*b077aed3SPierre Pronchery 
211*b077aed3SPierre Pronchery     exp[0] = exp1;
212*b077aed3SPierre Pronchery     exp[1] = exp2;
213*b077aed3SPierre Pronchery 
214*b077aed3SPierre Pronchery     k0[0] = k0_1;
215*b077aed3SPierre Pronchery     k0[1] = k0_2;
216*b077aed3SPierre Pronchery 
217*b077aed3SPierre Pronchery     exp_x2(rr1_red, base1_red, exp, m1_red, rr1_red, k0);
218*b077aed3SPierre Pronchery 
219*b077aed3SPierre Pronchery     /* Convert rr_i back to regular radix */
220*b077aed3SPierre Pronchery     from_words52(res1, factor_size, rr1_red);
221*b077aed3SPierre Pronchery     from_words52(res2, factor_size, rr2_red);
222*b077aed3SPierre Pronchery 
223*b077aed3SPierre Pronchery     /* bn_reduce_once_in_place expects number of BN_ULONG, not bit size */
224*b077aed3SPierre Pronchery     factor_size /= sizeof(BN_ULONG) * 8;
225*b077aed3SPierre Pronchery 
226*b077aed3SPierre Pronchery     bn_reduce_once_in_place(res1, /*carry=*/0, m1, storage, factor_size);
227*b077aed3SPierre Pronchery     bn_reduce_once_in_place(res2, /*carry=*/0, m2, storage, factor_size);
228*b077aed3SPierre Pronchery 
229*b077aed3SPierre Pronchery     ret = 1;
230*b077aed3SPierre Pronchery err:
231*b077aed3SPierre Pronchery     if (storage != NULL) {
232*b077aed3SPierre Pronchery         OPENSSL_cleanse(storage, storage_len_bytes);
233*b077aed3SPierre Pronchery         OPENSSL_free(storage);
234*b077aed3SPierre Pronchery     }
235*b077aed3SPierre Pronchery     return ret;
236*b077aed3SPierre Pronchery }
237*b077aed3SPierre Pronchery 
238*b077aed3SPierre Pronchery /*
239*b077aed3SPierre Pronchery  * Dual 1024-bit w-ary modular exponentiation using prime moduli of the same
240*b077aed3SPierre Pronchery  * bit size using Almost Montgomery Multiplication, optimized with AVX512_IFMA
241*b077aed3SPierre Pronchery  * ISA.
242*b077aed3SPierre Pronchery  *
243*b077aed3SPierre Pronchery  * The parameter w (window size) = 5.
244*b077aed3SPierre Pronchery  *
245*b077aed3SPierre Pronchery  *  [out] res      - result of modular exponentiation: 2x20 qword
246*b077aed3SPierre Pronchery  *                   values in 2^52 radix.
247*b077aed3SPierre Pronchery  *  [in]  base     - base (2x20 qword values in 2^52 radix)
248*b077aed3SPierre Pronchery  *  [in]  exp      - array of 2 pointers to 16 qword values in 2^64 radix.
249*b077aed3SPierre Pronchery  *                   Exponent is not converted to redundant representation.
250*b077aed3SPierre Pronchery  *  [in]  m        - moduli (2x20 qword values in 2^52 radix)
251*b077aed3SPierre Pronchery  *  [in]  rr       - Montgomery parameter for 2 moduli: RR = 2^2080 mod m.
252*b077aed3SPierre Pronchery  *                   (2x20 qword values in 2^52 radix)
253*b077aed3SPierre Pronchery  *  [in]  k0       - Montgomery parameter for 2 moduli: k0 = -1/m mod 2^64
254*b077aed3SPierre Pronchery  *
255*b077aed3SPierre Pronchery  * \return (void).
256*b077aed3SPierre Pronchery  */
257*b077aed3SPierre Pronchery static void RSAZ_exp52x20_x2_256(BN_ULONG *out,          /* [2][20] */
258*b077aed3SPierre Pronchery                                  const BN_ULONG *base,   /* [2][20] */
259*b077aed3SPierre Pronchery                                  const BN_ULONG *exp[2], /* 2x16    */
260*b077aed3SPierre Pronchery                                  const BN_ULONG *m,      /* [2][20] */
261*b077aed3SPierre Pronchery                                  const BN_ULONG *rr,     /* [2][20] */
262*b077aed3SPierre Pronchery                                  const BN_ULONG k0[2])
263*b077aed3SPierre Pronchery {
264*b077aed3SPierre Pronchery # define BITSIZE_MODULUS (1024)
265*b077aed3SPierre Pronchery # define EXP_WIN_SIZE (5)
266*b077aed3SPierre Pronchery # define EXP_WIN_MASK ((1U << EXP_WIN_SIZE) - 1)
267*b077aed3SPierre Pronchery /*
268*b077aed3SPierre Pronchery  * Number of digits (64-bit words) in redundant representation to handle
269*b077aed3SPierre Pronchery  * modulus bits
270*b077aed3SPierre Pronchery  */
271*b077aed3SPierre Pronchery # define RED_DIGITS (20)
272*b077aed3SPierre Pronchery # define EXP_DIGITS (16)
273*b077aed3SPierre Pronchery # define DAMM ossl_rsaz_amm52x20_x2_256
274*b077aed3SPierre Pronchery /*
275*b077aed3SPierre Pronchery  * Squaring is done using multiplication now. That can be a subject of
276*b077aed3SPierre Pronchery  * optimization in future.
277*b077aed3SPierre Pronchery  */
278*b077aed3SPierre Pronchery # define DAMS(r,a,m,k0) \
279*b077aed3SPierre Pronchery               ossl_rsaz_amm52x20_x2_256((r),(a),(a),(m),(k0))
280*b077aed3SPierre Pronchery 
281*b077aed3SPierre Pronchery     /* Allocate stack for red(undant) result Y and multiplier X */
282*b077aed3SPierre Pronchery     ALIGN64 BN_ULONG red_Y[2][RED_DIGITS];
283*b077aed3SPierre Pronchery     ALIGN64 BN_ULONG red_X[2][RED_DIGITS];
284*b077aed3SPierre Pronchery 
285*b077aed3SPierre Pronchery     /* Allocate expanded exponent */
286*b077aed3SPierre Pronchery     ALIGN64 BN_ULONG expz[2][EXP_DIGITS + 1];
287*b077aed3SPierre Pronchery 
288*b077aed3SPierre Pronchery     /* Pre-computed table of base powers */
289*b077aed3SPierre Pronchery     ALIGN64 BN_ULONG red_table[1U << EXP_WIN_SIZE][2][RED_DIGITS];
290*b077aed3SPierre Pronchery 
291*b077aed3SPierre Pronchery     int idx;
292*b077aed3SPierre Pronchery 
293*b077aed3SPierre Pronchery     memset(red_Y, 0, sizeof(red_Y));
294*b077aed3SPierre Pronchery     memset(red_table, 0, sizeof(red_table));
295*b077aed3SPierre Pronchery     memset(red_X, 0, sizeof(red_X));
296*b077aed3SPierre Pronchery 
297*b077aed3SPierre Pronchery     /*
298*b077aed3SPierre Pronchery      * Compute table of powers base^i, i = 0, ..., (2^EXP_WIN_SIZE) - 1
299*b077aed3SPierre Pronchery      *   table[0] = mont(x^0) = mont(1)
300*b077aed3SPierre Pronchery      *   table[1] = mont(x^1) = mont(x)
301*b077aed3SPierre Pronchery      */
302*b077aed3SPierre Pronchery     red_X[0][0] = 1;
303*b077aed3SPierre Pronchery     red_X[1][0] = 1;
304*b077aed3SPierre Pronchery     DAMM(red_table[0][0], (const BN_ULONG*)red_X, rr, m, k0);
305*b077aed3SPierre Pronchery     DAMM(red_table[1][0], base,  rr, m, k0);
306*b077aed3SPierre Pronchery 
307*b077aed3SPierre Pronchery     for (idx = 1; idx < (int)((1U << EXP_WIN_SIZE) / 2); idx++) {
308*b077aed3SPierre Pronchery         DAMS(red_table[2 * idx + 0][0], red_table[1 * idx][0], m, k0);
309*b077aed3SPierre Pronchery         DAMM(red_table[2 * idx + 1][0], red_table[2 * idx][0], red_table[1][0], m, k0);
310*b077aed3SPierre Pronchery     }
311*b077aed3SPierre Pronchery 
312*b077aed3SPierre Pronchery     /* Copy and expand exponents */
313*b077aed3SPierre Pronchery     memcpy(expz[0], exp[0], EXP_DIGITS * sizeof(BN_ULONG));
314*b077aed3SPierre Pronchery     expz[0][EXP_DIGITS] = 0;
315*b077aed3SPierre Pronchery     memcpy(expz[1], exp[1], EXP_DIGITS * sizeof(BN_ULONG));
316*b077aed3SPierre Pronchery     expz[1][EXP_DIGITS] = 0;
317*b077aed3SPierre Pronchery 
318*b077aed3SPierre Pronchery     /* Exponentiation */
319*b077aed3SPierre Pronchery     {
320*b077aed3SPierre Pronchery         const int rem = BITSIZE_MODULUS % EXP_WIN_SIZE;
321*b077aed3SPierre Pronchery         BN_ULONG table_idx_mask = EXP_WIN_MASK;
322*b077aed3SPierre Pronchery 
323*b077aed3SPierre Pronchery         int exp_bit_no = BITSIZE_MODULUS - rem;
324*b077aed3SPierre Pronchery         int exp_chunk_no = exp_bit_no / 64;
325*b077aed3SPierre Pronchery         int exp_chunk_shift = exp_bit_no % 64;
326*b077aed3SPierre Pronchery 
327*b077aed3SPierre Pronchery         BN_ULONG red_table_idx_0, red_table_idx_1;
328*b077aed3SPierre Pronchery 
329*b077aed3SPierre Pronchery         /*
330*b077aed3SPierre Pronchery          * If rem == 0, then
331*b077aed3SPierre Pronchery          *      exp_bit_no = modulus_bitsize - exp_win_size
332*b077aed3SPierre Pronchery          * However, this isn't possible because rem is { 1024, 1536, 2048 } % 5
333*b077aed3SPierre Pronchery          * which is { 4, 1, 3 } respectively.
334*b077aed3SPierre Pronchery          *
335*b077aed3SPierre Pronchery          * If this assertion ever fails the fix above is easy.
336*b077aed3SPierre Pronchery          */
337*b077aed3SPierre Pronchery         OPENSSL_assert(rem != 0);
338*b077aed3SPierre Pronchery 
339*b077aed3SPierre Pronchery         /* Process 1-st exp window - just init result */
340*b077aed3SPierre Pronchery         red_table_idx_0 = expz[0][exp_chunk_no];
341*b077aed3SPierre Pronchery         red_table_idx_1 = expz[1][exp_chunk_no];
342*b077aed3SPierre Pronchery         /*
343*b077aed3SPierre Pronchery          * The function operates with fixed moduli sizes divisible by 64,
344*b077aed3SPierre Pronchery          * thus table index here is always in supported range [0, EXP_WIN_SIZE).
345*b077aed3SPierre Pronchery          */
346*b077aed3SPierre Pronchery         red_table_idx_0 >>= exp_chunk_shift;
347*b077aed3SPierre Pronchery         red_table_idx_1 >>= exp_chunk_shift;
348*b077aed3SPierre Pronchery 
349*b077aed3SPierre Pronchery         ossl_extract_multiplier_2x20_win5(red_Y[0], (const BN_ULONG*)red_table,
350*b077aed3SPierre Pronchery                                           (int)red_table_idx_0, 0);
351*b077aed3SPierre Pronchery         ossl_extract_multiplier_2x20_win5(red_Y[1], (const BN_ULONG*)red_table,
352*b077aed3SPierre Pronchery                                           (int)red_table_idx_1, 1);
353*b077aed3SPierre Pronchery 
354*b077aed3SPierre Pronchery         /* Process other exp windows */
355*b077aed3SPierre Pronchery         for (exp_bit_no -= EXP_WIN_SIZE; exp_bit_no >= 0; exp_bit_no -= EXP_WIN_SIZE) {
356*b077aed3SPierre Pronchery             /* Extract pre-computed multiplier from the table */
357*b077aed3SPierre Pronchery             {
358*b077aed3SPierre Pronchery                 BN_ULONG T;
359*b077aed3SPierre Pronchery 
360*b077aed3SPierre Pronchery                 exp_chunk_no = exp_bit_no / 64;
361*b077aed3SPierre Pronchery                 exp_chunk_shift = exp_bit_no % 64;
362*b077aed3SPierre Pronchery                 {
363*b077aed3SPierre Pronchery                     red_table_idx_0 = expz[0][exp_chunk_no];
364*b077aed3SPierre Pronchery                     T = expz[0][exp_chunk_no + 1];
365*b077aed3SPierre Pronchery 
366*b077aed3SPierre Pronchery                     red_table_idx_0 >>= exp_chunk_shift;
367*b077aed3SPierre Pronchery                     /*
368*b077aed3SPierre Pronchery                      * Get additional bits from then next quadword
369*b077aed3SPierre Pronchery                      * when 64-bit boundaries are crossed.
370*b077aed3SPierre Pronchery                      */
371*b077aed3SPierre Pronchery                     if (exp_chunk_shift > 64 - EXP_WIN_SIZE) {
372*b077aed3SPierre Pronchery                         T <<= (64 - exp_chunk_shift);
373*b077aed3SPierre Pronchery                         red_table_idx_0 ^= T;
374*b077aed3SPierre Pronchery                     }
375*b077aed3SPierre Pronchery                     red_table_idx_0 &= table_idx_mask;
376*b077aed3SPierre Pronchery 
377*b077aed3SPierre Pronchery                     ossl_extract_multiplier_2x20_win5(red_X[0],
378*b077aed3SPierre Pronchery                                                       (const BN_ULONG*)red_table,
379*b077aed3SPierre Pronchery                                                       (int)red_table_idx_0, 0);
380*b077aed3SPierre Pronchery                 }
381*b077aed3SPierre Pronchery                 {
382*b077aed3SPierre Pronchery                     red_table_idx_1 = expz[1][exp_chunk_no];
383*b077aed3SPierre Pronchery                     T = expz[1][exp_chunk_no + 1];
384*b077aed3SPierre Pronchery 
385*b077aed3SPierre Pronchery                     red_table_idx_1 >>= exp_chunk_shift;
386*b077aed3SPierre Pronchery                     /*
387*b077aed3SPierre Pronchery                      * Get additional bits from then next quadword
388*b077aed3SPierre Pronchery                      * when 64-bit boundaries are crossed.
389*b077aed3SPierre Pronchery                      */
390*b077aed3SPierre Pronchery                     if (exp_chunk_shift > 64 - EXP_WIN_SIZE) {
391*b077aed3SPierre Pronchery                         T <<= (64 - exp_chunk_shift);
392*b077aed3SPierre Pronchery                         red_table_idx_1 ^= T;
393*b077aed3SPierre Pronchery                     }
394*b077aed3SPierre Pronchery                     red_table_idx_1 &= table_idx_mask;
395*b077aed3SPierre Pronchery 
396*b077aed3SPierre Pronchery                     ossl_extract_multiplier_2x20_win5(red_X[1],
397*b077aed3SPierre Pronchery                                                       (const BN_ULONG*)red_table,
398*b077aed3SPierre Pronchery                                                       (int)red_table_idx_1, 1);
399*b077aed3SPierre Pronchery                 }
400*b077aed3SPierre Pronchery             }
401*b077aed3SPierre Pronchery 
402*b077aed3SPierre Pronchery             /* Series of squaring */
403*b077aed3SPierre Pronchery             DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
404*b077aed3SPierre Pronchery             DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
405*b077aed3SPierre Pronchery             DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
406*b077aed3SPierre Pronchery             DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
407*b077aed3SPierre Pronchery             DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
408*b077aed3SPierre Pronchery 
409*b077aed3SPierre Pronchery             DAMM((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0);
410*b077aed3SPierre Pronchery         }
411*b077aed3SPierre Pronchery     }
412*b077aed3SPierre Pronchery 
413*b077aed3SPierre Pronchery     /*
414*b077aed3SPierre Pronchery      *
415*b077aed3SPierre Pronchery      * NB: After the last AMM of exponentiation in Montgomery domain, the result
416*b077aed3SPierre Pronchery      * may be 1025-bit, but the conversion out of Montgomery domain performs an
417*b077aed3SPierre Pronchery      * AMM(x,1) which guarantees that the final result is less than |m|, so no
418*b077aed3SPierre Pronchery      * conditional subtraction is needed here. See "Efficient Software
419*b077aed3SPierre Pronchery      * Implementations of Modular Exponentiation" (by Shay Gueron) paper for details.
420*b077aed3SPierre Pronchery      */
421*b077aed3SPierre Pronchery 
422*b077aed3SPierre Pronchery     /* Convert result back in regular 2^52 domain */
423*b077aed3SPierre Pronchery     memset(red_X, 0, sizeof(red_X));
424*b077aed3SPierre Pronchery     red_X[0][0] = 1;
425*b077aed3SPierre Pronchery     red_X[1][0] = 1;
426*b077aed3SPierre Pronchery     DAMM(out, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0);
427*b077aed3SPierre Pronchery 
428*b077aed3SPierre Pronchery     /* Clear exponents */
429*b077aed3SPierre Pronchery     OPENSSL_cleanse(expz, sizeof(expz));
430*b077aed3SPierre Pronchery     OPENSSL_cleanse(red_Y, sizeof(red_Y));
431*b077aed3SPierre Pronchery 
432*b077aed3SPierre Pronchery # undef DAMS
433*b077aed3SPierre Pronchery # undef DAMM
434*b077aed3SPierre Pronchery # undef EXP_DIGITS
435*b077aed3SPierre Pronchery # undef RED_DIGITS
436*b077aed3SPierre Pronchery # undef EXP_WIN_MASK
437*b077aed3SPierre Pronchery # undef EXP_WIN_SIZE
438*b077aed3SPierre Pronchery # undef BITSIZE_MODULUS
439*b077aed3SPierre Pronchery }
440*b077aed3SPierre Pronchery 
441*b077aed3SPierre Pronchery static ossl_inline uint64_t get_digit52(const uint8_t *in, int in_len)
442*b077aed3SPierre Pronchery {
443*b077aed3SPierre Pronchery     uint64_t digit = 0;
444*b077aed3SPierre Pronchery 
445*b077aed3SPierre Pronchery     assert(in != NULL);
446*b077aed3SPierre Pronchery 
447*b077aed3SPierre Pronchery     for (; in_len > 0; in_len--) {
448*b077aed3SPierre Pronchery         digit <<= 8;
449*b077aed3SPierre Pronchery         digit += (uint64_t)(in[in_len - 1]);
450*b077aed3SPierre Pronchery     }
451*b077aed3SPierre Pronchery     return digit;
452*b077aed3SPierre Pronchery }
453*b077aed3SPierre Pronchery 
454*b077aed3SPierre Pronchery /*
455*b077aed3SPierre Pronchery  * Convert array of words in regular (base=2^64) representation to array of
456*b077aed3SPierre Pronchery  * words in redundant (base=2^52) one.
457*b077aed3SPierre Pronchery  */
458*b077aed3SPierre Pronchery static void to_words52(BN_ULONG *out, int out_len,
459*b077aed3SPierre Pronchery                        const BN_ULONG *in, int in_bitsize)
460*b077aed3SPierre Pronchery {
461*b077aed3SPierre Pronchery     uint8_t *in_str = NULL;
462*b077aed3SPierre Pronchery 
463*b077aed3SPierre Pronchery     assert(out != NULL);
464*b077aed3SPierre Pronchery     assert(in != NULL);
465*b077aed3SPierre Pronchery     /* Check destination buffer capacity */
466*b077aed3SPierre Pronchery     assert(out_len >= number_of_digits(in_bitsize, DIGIT_SIZE));
467*b077aed3SPierre Pronchery 
468*b077aed3SPierre Pronchery     in_str = (uint8_t *)in;
469*b077aed3SPierre Pronchery 
470*b077aed3SPierre Pronchery     for (; in_bitsize >= (2 * DIGIT_SIZE); in_bitsize -= (2 * DIGIT_SIZE), out += 2) {
471*b077aed3SPierre Pronchery         uint64_t digit;
472*b077aed3SPierre Pronchery 
473*b077aed3SPierre Pronchery         memcpy(&digit, in_str, sizeof(digit));
474*b077aed3SPierre Pronchery         out[0] = digit & DIGIT_MASK;
475*b077aed3SPierre Pronchery         in_str += 6;
476*b077aed3SPierre Pronchery         memcpy(&digit, in_str, sizeof(digit));
477*b077aed3SPierre Pronchery         out[1] = (digit >> 4) & DIGIT_MASK;
478*b077aed3SPierre Pronchery         in_str += 7;
479*b077aed3SPierre Pronchery         out_len -= 2;
480*b077aed3SPierre Pronchery     }
481*b077aed3SPierre Pronchery 
482*b077aed3SPierre Pronchery     if (in_bitsize > DIGIT_SIZE) {
483*b077aed3SPierre Pronchery         uint64_t digit = get_digit52(in_str, 7);
484*b077aed3SPierre Pronchery 
485*b077aed3SPierre Pronchery         out[0] = digit & DIGIT_MASK;
486*b077aed3SPierre Pronchery         in_str += 6;
487*b077aed3SPierre Pronchery         in_bitsize -= DIGIT_SIZE;
488*b077aed3SPierre Pronchery         digit = get_digit52(in_str, BITS2WORD8_SIZE(in_bitsize));
489*b077aed3SPierre Pronchery         out[1] = digit >> 4;
490*b077aed3SPierre Pronchery         out += 2;
491*b077aed3SPierre Pronchery         out_len -= 2;
492*b077aed3SPierre Pronchery     } else if (in_bitsize > 0) {
493*b077aed3SPierre Pronchery         out[0] = get_digit52(in_str, BITS2WORD8_SIZE(in_bitsize));
494*b077aed3SPierre Pronchery         out++;
495*b077aed3SPierre Pronchery         out_len--;
496*b077aed3SPierre Pronchery     }
497*b077aed3SPierre Pronchery 
498*b077aed3SPierre Pronchery     while (out_len > 0) {
499*b077aed3SPierre Pronchery         *out = 0;
500*b077aed3SPierre Pronchery         out_len--;
501*b077aed3SPierre Pronchery         out++;
502*b077aed3SPierre Pronchery     }
503*b077aed3SPierre Pronchery }
504*b077aed3SPierre Pronchery 
505*b077aed3SPierre Pronchery static ossl_inline void put_digit52(uint8_t *pStr, int strLen, uint64_t digit)
506*b077aed3SPierre Pronchery {
507*b077aed3SPierre Pronchery     assert(pStr != NULL);
508*b077aed3SPierre Pronchery 
509*b077aed3SPierre Pronchery     for (; strLen > 0; strLen--) {
510*b077aed3SPierre Pronchery         *pStr++ = (uint8_t)(digit & 0xFF);
511*b077aed3SPierre Pronchery         digit >>= 8;
512*b077aed3SPierre Pronchery     }
513*b077aed3SPierre Pronchery }
514*b077aed3SPierre Pronchery 
515*b077aed3SPierre Pronchery /*
516*b077aed3SPierre Pronchery  * Convert array of words in redundant (base=2^52) representation to array of
517*b077aed3SPierre Pronchery  * words in regular (base=2^64) one.
518*b077aed3SPierre Pronchery  */
519*b077aed3SPierre Pronchery static void from_words52(BN_ULONG *out, int out_bitsize, const BN_ULONG *in)
520*b077aed3SPierre Pronchery {
521*b077aed3SPierre Pronchery     int i;
522*b077aed3SPierre Pronchery     int out_len = BITS2WORD64_SIZE(out_bitsize);
523*b077aed3SPierre Pronchery 
524*b077aed3SPierre Pronchery     assert(out != NULL);
525*b077aed3SPierre Pronchery     assert(in != NULL);
526*b077aed3SPierre Pronchery 
527*b077aed3SPierre Pronchery     for (i = 0; i < out_len; i++)
528*b077aed3SPierre Pronchery         out[i] = 0;
529*b077aed3SPierre Pronchery 
530*b077aed3SPierre Pronchery     {
531*b077aed3SPierre Pronchery         uint8_t *out_str = (uint8_t *)out;
532*b077aed3SPierre Pronchery 
533*b077aed3SPierre Pronchery         for (; out_bitsize >= (2 * DIGIT_SIZE);
534*b077aed3SPierre Pronchery                out_bitsize -= (2 * DIGIT_SIZE), in += 2) {
535*b077aed3SPierre Pronchery             uint64_t digit;
536*b077aed3SPierre Pronchery 
537*b077aed3SPierre Pronchery             digit = in[0];
538*b077aed3SPierre Pronchery             memcpy(out_str, &digit, sizeof(digit));
539*b077aed3SPierre Pronchery             out_str += 6;
540*b077aed3SPierre Pronchery             digit = digit >> 48 | in[1] << 4;
541*b077aed3SPierre Pronchery             memcpy(out_str, &digit, sizeof(digit));
542*b077aed3SPierre Pronchery             out_str += 7;
543*b077aed3SPierre Pronchery         }
544*b077aed3SPierre Pronchery 
545*b077aed3SPierre Pronchery         if (out_bitsize > DIGIT_SIZE) {
546*b077aed3SPierre Pronchery             put_digit52(out_str, 7, in[0]);
547*b077aed3SPierre Pronchery             out_str += 6;
548*b077aed3SPierre Pronchery             out_bitsize -= DIGIT_SIZE;
549*b077aed3SPierre Pronchery             put_digit52(out_str, BITS2WORD8_SIZE(out_bitsize),
550*b077aed3SPierre Pronchery                         (in[1] << 4 | in[0] >> 48));
551*b077aed3SPierre Pronchery         } else if (out_bitsize) {
552*b077aed3SPierre Pronchery             put_digit52(out_str, BITS2WORD8_SIZE(out_bitsize), in[0]);
553*b077aed3SPierre Pronchery         }
554*b077aed3SPierre Pronchery     }
555*b077aed3SPierre Pronchery }
556*b077aed3SPierre Pronchery 
557*b077aed3SPierre Pronchery /*
558*b077aed3SPierre Pronchery  * Set bit at index |idx| in the words array |a|.
559*b077aed3SPierre Pronchery  * It does not do any boundaries checks, make sure the index is valid before
560*b077aed3SPierre Pronchery  * calling the function.
561*b077aed3SPierre Pronchery  */
562*b077aed3SPierre Pronchery static ossl_inline void set_bit(BN_ULONG *a, int idx)
563*b077aed3SPierre Pronchery {
564*b077aed3SPierre Pronchery     assert(a != NULL);
565*b077aed3SPierre Pronchery 
566*b077aed3SPierre Pronchery     {
567*b077aed3SPierre Pronchery         int i, j;
568*b077aed3SPierre Pronchery 
569*b077aed3SPierre Pronchery         i = idx / BN_BITS2;
570*b077aed3SPierre Pronchery         j = idx % BN_BITS2;
571*b077aed3SPierre Pronchery         a[i] |= (((BN_ULONG)1) << j);
572*b077aed3SPierre Pronchery     }
573*b077aed3SPierre Pronchery }
574*b077aed3SPierre Pronchery 
575*b077aed3SPierre Pronchery #endif
576